Sample records for network sistemas fotovoltaicos

  1. Evolución estelar en sistemas binarios

    NASA Astrophysics Data System (ADS)

    De Vito, M. A.; Benvenuto, O.

    Definición y clasificación de sistemas binarios; descripción del comportamiento del sistema frente a la variación de su masa; binarias de rayos X; transferencia de masa en sistemas binarios masivos aplicado al posible esclarecimiento del progenitor azul de la supernova SN 1987A; comentario acerca de la evolución de enanas blancas de helio de baja masa y su conexión con los sistemas binarios; reseña del trabajo de Kippenhahn y Weigert sobre el cual está basado el código evolutivo desarrollado en la FCAG por el Dr. Benvenuto y sobre el cual se trabajará para poder incluir la evolución de una estrella con pérdida de masa perteneciente a un sistema binario.

  2. The SISTEMA Project contribution in the implementation of the GEO Geohazards Supersite initiative

    NASA Astrophysics Data System (ADS)

    Vilardo, Giuseppe; Sangianantoni, Agata; Borgstrom, Sven; D'Auria, Luca; De Martino, Prospero; Dolce, Mario; Isaia, Roberto; Marotta, Enrica; Martini, Marcello; Obrizzo, Francesco; Peluso, Rosario; Sansivero, Fabio; Scarpato, Giovanni; Siniscalchi, Valeria; Tammaro, Umberto; Tulino, Sabrina; Castellano, Mario; Bianco, Francesca

    2017-04-01

    SISTEMA Project has been funded by the PO FESR 2007-2013 action, supported by the Campania Region (Italy). The project fosters the integrated use of multidisciplinary data in order to improve the understanding of the volcanic processes at Campi Flegrei and Ischia and to progress in science and surveillance of the territory according to the rationale of Supersite GEO initiative to Campi Flegrei, currently identified as Permanent Supersite. The mission of SISTEMA is to upgrade the existing monitoring and surveillance systems through the design, purchase and installation of new instrumentation, equipment, technology and methods addressing the need of delivering, with improved rapidity, scientific information for decision makers and end-users. The redundancy of monitoring systems is an important issue to guarantee the full operability during emergencies. The Monitoring Centre of INGV-Osservatorio Vesuviano is currently located within the red zone (potentially at risk of invasion by pyroclastic flows in case of eruption) of Campi Flegrei volcano. Its position offers various logistic benefits but at the onset of a volcanic crisis, of course it will be required to shift this Center in a safer area. For this reason, within the SISTEMA project, we envisioned a backup system which, when needed, could guarantee a shift of the Center in a virtually zero time. This can be achieved by fully duplicating the processing system and the data storage. In case of emergency, it would be required only to switch on the visualization systems in the new Center and transferring the personnel involved in the surveillance activities. SISTEMA project has also enabled the development of a permanent GPS and CRs (Corner Reflectors) networks, the latter supporting SAR Interferometry, by helping to improve knowledge of the Campi Flegrei deformation field, both on local and wide scale. In addition, in order to enhance the heat flux measurements from ground based thermal camera observations, the

  3. Nuevos sistemas de frecuencia intermedia para el IAR

    NASA Astrophysics Data System (ADS)

    Olalde, J. C.; Perilli, D.; Larrarte, J. J.

    Se presenta el diagrama en bloques de los nuevos sistemas de Frecuencia Intermedia para los dos radiómetros instalados en el IAR. Entre las características más importantes del sistema podemos mencionar la posibilidad de conectar cualquiera de las dos antenas a los ``backend" disponibles: analizador espectral de alta resolución (META II) de 0,05 Hz, autocorrelador de 1008 canales y contínuo. Se incorporan al sistema nuevos sintetizadores de frecuencia implementados con PLL y la moderna técnica de síntesis digital directa. Por último, el conjunto del sistema es susceptible de ser configurado por las computadoras de adquisición de datos, supervisadas por otra, que entrega el estado de funcionamiento actual y evita la selección de configuraciones incorrectas por parte del usuario.

  4. From the model of El Sistema in Venezuela to current applications: learning and integration through collective music education.

    PubMed

    Majno, Maria

    2012-04-01

    Over the last years, El Sistema--the Venezuelan project started in 1975 and now acknowledged worldwide as the most significant example of collective music education--has inspired a profusion of remarkable initiatives on all continents. From the original impulse by founder José Antonio Abreu, strong social principles of integration are combined with specific musical approaches to achieve individual empowerment as a large-scale alternative to endemic juvenile crime, counteracting the risk factors of social unease, serving as a stimulating example toward emancipation, and providing professional opportunities to the talented. Such a network, in turn, proves to be a powerful instrument of cultural progress: the tenets of "Sistema" become shared values able to foster development, reaching into issues of disability and rehabilitation. This paper presents continuities and contrasts in various ramifications of such a successful trend and outlines perspectives for further impact of this powerful transformational agent. © 2012 New York Academy of Sciences.

  5. The SIM Time Network

    PubMed Central

    Lombardi, Michael A.; Novick, Andrew N.; Lopez R, J. Mauricio; Jimenez, Francisco; de Carlos Lopez, Eduardo; Boulanger, Jean-Simon; Pelletier, Raymond; de Carvalho, Ricardo J.; Solis, Raul; Sanchez, Harold; Quevedo, Carlos Andres; Pascoe, Gregory; Perez, Daniel; Bances, Eduardo; Trigo, Leonardo; Masi, Victor; Postigo, Henry; Questelles, Anthony; Gittens, Anselm

    2011-01-01

    The Sistema Interamericano de Metrologia (SIM) is a regional metrology organization (RMO) whose members are the national metrology institutes (NMIs) located in the 34 nations of the Organization of American States (OAS). The SIM/OAS region extends throughout North, Central, and South America and the Caribbean Islands. About half of the SIM NMIs maintain national standards of time and frequency and must participate in international comparisons in order to establish metrological traceability to the International System (SI) of units. The SIM time network (SIMTN) was developed as a practical, cost effective, and technically sound way to automate these comparisons. The SIMTN continuously compares the time standards of SIM NMIs and produces measurement results in near real-time by utilizing the Internet and the Global Positioning System (GPS). Fifteen SIM NMIs have joined the network as of December 2010. This paper provides a brief overview of SIM and a technical description of the SIMTN. It presents international comparison results and examines the measurement uncertainties. It also discusses the metrological benefits that the network provides to its participants. PMID:26989584

  6. The SIM Time Network.

    PubMed

    Lombardi, Michael A; Novick, Andrew N; Lopez R, J Mauricio; Jimenez, Francisco; de Carlos Lopez, Eduardo; Boulanger, Jean-Simon; Pelletier, Raymond; de Carvalho, Ricardo J; Solis, Raul; Sanchez, Harold; Quevedo, Carlos Andres; Pascoe, Gregory; Perez, Daniel; Bances, Eduardo; Trigo, Leonardo; Masi, Victor; Postigo, Henry; Questelles, Anthony; Gittens, Anselm

    2011-01-01

    The Sistema Interamericano de Metrologia (SIM) is a regional metrology organization (RMO) whose members are the national metrology institutes (NMIs) located in the 34 nations of the Organization of American States (OAS). The SIM/OAS region extends throughout North, Central, and South America and the Caribbean Islands. About half of the SIM NMIs maintain national standards of time and frequency and must participate in international comparisons in order to establish metrological traceability to the International System (SI) of units. The SIM time network (SIMTN) was developed as a practical, cost effective, and technically sound way to automate these comparisons. The SIMTN continuously compares the time standards of SIM NMIs and produces measurement results in near real-time by utilizing the Internet and the Global Positioning System (GPS). Fifteen SIM NMIs have joined the network as of December 2010. This paper provides a brief overview of SIM and a technical description of the SIMTN. It presents international comparison results and examines the measurement uncertainties. It also discusses the metrological benefits that the network provides to its participants.

  7. El Sistema's Open Secrets

    ERIC Educational Resources Information Center

    Booth, Eric

    2011-01-01

    In this article, the author talks about Venezuela's national youth orchestra program called El Sistema whose attributes offer a direct challenge to traditional Western music practices. As U.S. classical music--and all "high arts"--struggle to find relevance to more than the small "arts club" percentage of the U.S. populace, El…

  8. Sistemas Correctores de Campo Para EL Telescopio Cassegrain IAC80

    NASA Astrophysics Data System (ADS)

    Galan, M. J.; Cobos, F. J.

    1987-05-01

    El proyecto de instrumentación de mayor importancia que ha tenido el Instituto de Astrofisica de Canarias en los últimos afios ha sido el diseflo y construcción del te1escopio IAC8O. Este requería del esfuerzo con junto en mec´nica, óptica y electrónica, lo que facilitó la estructuración y el crecimiento de los respectivos grupos de trabajo, que posteriormente se integraron en departamentos En su origen (1977), el telescopio IAC80 fue concebido como un sistema clásico tipo Cassegrain, con una razón focal F/i 1.3 para el sistema Casse grain y una razón focal F/20 para el sistema Coudé. Posteriormente, aunque se mantuvo la filosofia de que el sistema básico fuera el F/11.3, se consideró conveniente el diseño de secundarios para razones focales F/16 y F/32, y se eliminó el de F/20. Sin embargo, dada la importancia relativa que un foco estrictamente fotográfico tiene en un telescopio moderno, diseñado básicamente para fotometría fotoeléctrica y con un campo util mínimamente de 40 minutos de arco, se decídió Ilevar a cabo el diseño de un secundario F/8 con un sistema corrector de campo, pero que estuviera formado únicamente por lentes con superficies esféricas para que asl su construcción fuera posible en España ó en México. La creciente utilización de detectores bidimensionales para fines de investigación astron6mica y la viabilidad de que en un futuro cercano éstos tengan un área sensible cada vez mayor, hicieron atractiva la idea de tener diseñado un sistema corrector de campo para el foco primario (F/3), con un campo útil mínimo de un grado, y también con la limitante de que sus componentes tuvieron sólamente supérficies esféricas. Ambos diseños de los sis-temas correctores de campo se llevaron a cabo, en gran medida, como parte de un proyecto de colaboración e intercambio en el área de diseño y evaluación de sistemas ópticos.

  9. Sistemas de cúmulos globulares extragalácticos

    NASA Astrophysics Data System (ADS)

    Forte, J. C.

    Se describen las características de los sistemas de cúmulos globulares asociados a galaxias elípticas en una variedad de medios y, en particular, aquellas vinculadas con la distribución espacial, frecuencia específica y composición química. Esta discusión se hace dentro de un conjunto de esquemas orientados a explicar las primeras fases de la formación de las galaxias dominantes en cúmulos y del rol de los sistemas de cúmulos globulares en esos procesos.

  10. Resurrection Symphony: "El Sistema" as Ideology in Venezuela and Los Angeles

    ERIC Educational Resources Information Center

    Fink, Robert

    2016-01-01

    The explosive growth of Venezuela's "El Sistema" is rewriting the agenda of musical education in the West. Many commentators from the world of classical music react to the spectacle of dedicated young colonial musicians playing European masterworks as a kind of "miracle," accepting "Sistema" founder José Antonio…

  11. Lifting the Veil: A Realist Critique of Sistema's Upwardly Mobile Path

    ERIC Educational Resources Information Center

    Logan, Owen

    2016-01-01

    El Sistema sits somewhere between a social project and a classical music initiative. However, its promise of delivering upward mobility has not been sufficiently examined as a structural phenomenon which dovetails with critical policy issues in taxation, educational provision, human rights, and welfare. This article argues that Sistema-style…

  12. Thoughts on Seeing "El Sistema"

    ERIC Educational Resources Information Center

    Booth, Eric

    2009-01-01

    The FESNOJIV (the Spanish acronym for the State Foundation for the National System of Youth and Children's Orchestras), more commonly known as "El Sistema," teaches 300,000 of Venezuela's poorest children in the nationwide music learning program. Many begin attending the "nucleo" as early as age two or three, and the vast…

  13. Knowledge Exchange with Sistema Scotland

    ERIC Educational Resources Information Center

    Allan, Julie; Moran, Nikki; Duffy, Celia; Loening, Gica

    2010-01-01

    This paper reports on a knowledge exchange project, funded by the Scottish Funding Council and undertaken by a group of researchers from three higher education institutions in Scotland and the project partner, Sistema Scotland. This newly established charity is attempting to implement a major programme of social change, developed in Venezuela,…

  14. Struggling for Integration: Universalist and Separatist Discourses within El Sistema Sweden

    ERIC Educational Resources Information Center

    Bergman, Åsa; Lindgren, Monica; Saether, Eva

    2016-01-01

    This article focuses on the El Sistema programme, which started up in Sweden in 2010 with the objective to deal with segregation problems typical for Swedish urban areas. The purpose of the article is to examine how promoting integration through music and music education is constructed within El Sistema as a way to help children growing up in…

  15. El problema de estabilidad de los sistemas Hamiltonianos multidimensionales

    NASA Astrophysics Data System (ADS)

    Cincotta, P. M.

    Se revisarán los aspectos básicos del problema de estabilidad de sistemans Hamiltonianos N-dimensionales, haciendo especial énfasis en los posibles mecanismos que dan lugar a la aparición de ``caos": overlap de resonancias, difusión de Arnol'd y otros procesos difusivos alternativos. Se mencionarán los aspectos aún no resueltos sobre la estabilidad de los sistemas con N > 2. Finalmente, se discutirá cuáles de estos mecanismos podrían tener alguna relevancia en la dinámica de sistemas estelares y planetarios.

  16. Hatching Plans: Pedagogy and Discourse within an El Sistema-Inspired Music Program

    ERIC Educational Resources Information Center

    Dobson, Nicolas

    2016-01-01

    In this article, I draw on my experience as an instrumental tutor with a music program inspired by and explicitly linked to El Sistema, to explore new perspectives on Sistema-based pedagogy and management. Detailed ethnographic description of an orchestral session provides a first-hand account of the program's pedagogy, which I then contextualize…

  17. El Sistema Fundamentals in Practice: An Examination of One Public Elementary School Partnership in the US

    ERIC Educational Resources Information Center

    Simpson Steele, Jamie

    2017-01-01

    El Sistema is a Venezuelan program of social change that has inspired a worldwide movement in music education. El Sistema inspires social transformation and musical excellence to occur simultaneously and symbiotically. This study examines: What does El Sistema look like within the context of a public school partnership in the United States? How do…

  18. El Sistema de Referencia Celeste convencional de la IAU

    NASA Astrophysics Data System (ADS)

    Arias, E. F.

    La Unión Astronómica Internacional (IAU) recomendó la adopción de un nuevo sistema de referencia celeste baricéntrico cuyo plano fundamental y origen de ascensiones rectas estén próximos, respectivamente, al ecuador y equinoccio dinámicos J2000.0. El nuevo sistema de referencia estará materializado por las posiciones J2000.0 de radiofuentes extragalácticas determinadas con la técnica de interferometría de larga línea de base (VLBI). El Working Group on Reference Frames de la IAU (WGRF) decidió adoptar (Grasse, 1995) al sistema de referencia celeste extragaláctico del Servicio Internacional de la Rotación Terrestre (IERS) como futuro sistema de referencia celeste convencional bajo el nombre International Celestial Reference System (ICRS) y encomendó su mantenimiento futuro al IERS. El marco de referencia que materializará al ICRS contiene posiciones precisas J2000.0 de más de 600 radiofuentes extragalácticas. Las coordenadas fueron ajustadas en una única solución VLBI en la cual se incluyeron todas las observaciones realizadas hasta octubre de 1995 con la técnica de adquisición de datos VLBI Mark III. Para minimizar los errores sistemáticos que pueden afectar la calidad del marco de referencia se introdujeron mejoras sustanciales en la modelización y en la selección de datos. Un subconjunto de objetos del marco de referencia se utilizó para referir las posiciones estelares determinadas con el satélite astrométrico Hipparcos al ICRS.

  19. Empowering or Boring? Discipline and Authority in a Portuguese Sistema-Inspired Orchestra Rehearsal

    ERIC Educational Resources Information Center

    Boia, Pedro S.; Boal-Palheiros, Graça

    2017-01-01

    El Sistema orchestras may be "transformative" and produce positive changes in the lives of young participants, but there are also negative aspects to discipline and authority that may lead to exclusion. This article positions itself within the current debate on Sistema by treating symmetrically its potentially positive and negative…

  20. El Sistema and American Music Education

    ERIC Educational Resources Information Center

    Lesniak, Melissa

    2012-01-01

    The brainchild of Jose Antonio Abreu, El Sistema, a music education program for aspiring orchestra musicians launched in Venezuela for students of limited means and now spreading to other parts of the world, has become a subject of interest to music teachers and teacher educators in North America. This article examines a bit of the program's…

  1. Russian Perspectives on Network-Centric Warfare: The Key Aim of Serdyukov’s Reform

    DTIC Science & Technology

    2011-01-01

    has faced with its GLObal’naya NAvigatsionnaya Sputnikovaya Sistema —(GLONASS) system, and introducing advanced digitized communications in the armed...of targeting data will be accomplished by organizing virtual channels for data transmission or via a web -portal. The successful function- ing of the...Operations: Tactical Web Takes Shape,” Signal, November 2003; Col. Alan D. Campen, USAF (Ret.), “Look Closely At Network-Centric Warfare: Technology Can

  2. Discos de acresção em sistemas Be-X

    NASA Astrophysics Data System (ADS)

    Lopes de Oliveira, R.; Janot-Pacheco, E.

    2003-08-01

    Alguns fenômenos de outbursts em Be-X sugerem a existência, mesmo que temporária, de um disco de acresção quando da passagem do objeto compacto pelo periastro orbital. Neste trabalho avaliamos a possibilidade de formação do disco de acresção em sistemas Be+estrela de neutrons e Be+anã branca, e a influência da excentricidade orbital na ocorrência deste fenômeno. Utilizamos a expressão analítica para o momento angular específico da matéria constituinte de um meio em expansão lenta, como é o caso do disco circunstelar das estrelas Be, proposta por Wang(1981), sob a condição básica de que o raio de circularização deva ser maior do que o raio de Alfvén. Concluímos que existe um limite para o período orbital do sistema acima do qual não é possível a formação do disco de acresção, e que este valor aumenta para sistemas com excentricidade orbital maior.

  3. Things to Remember about El Sistema: A Response to "El Sistema--A Perspective for North American Music Educators" by Tricia Tunstall

    ERIC Educational Resources Information Center

    Lesniak, Melissa

    2013-01-01

    Melissa Lesniak, the executive director of the Greater Miami Youth Symphony, discusses how much she enjoyed reading the responses to her "El Sistema" article and appreciates the opportunity for healthy dialogue and debate. In response, she states that there are many common goals and objectives across all music education programs that can…

  4. Music Pedagogy as an Aid to Integration? El Sistema-Inspired Music Activity in Two Swedish Preschools

    ERIC Educational Resources Information Center

    Gustavsson, Hans-Olof; Ehrlin, Anna

    2018-01-01

    The study focuses on how preschool and musical school teachers experience working with El Sistema-inspired activity at two municipal preschools in a multicultural district in a medium-sized Swedish town. What, according to the educators,is the most significant aspect of working with El Sistema-inspired activities? The theoretical point of…

  5. The Story of Carora: The Origins of El Sistema

    ERIC Educational Resources Information Center

    Carlson, Alexandra

    2016-01-01

    Venezuela's youth symphony program, the Fundación Musical Simón Bolívar, commonly referred to as "El Sistema," combines musical achievement with learning important life skills through orchestral practice and performance. Although the history most commonly reported outside Venezuela is of the program's director, José Antonio Abreu,…

  6. "The Feelings Have Come Home to Me." Examining Advertising Films on the Swedish Website of El Sistema

    ERIC Educational Resources Information Center

    Kuuse, Anna-Karin; Lindgren, Monica; Skåreus, Eva

    2016-01-01

    The purpose of this study is to analyze how the music educational program of El Sistema Sweden is advertised and legitimized through moving images. The films are a major part of the information on the Swedish national website of El Sistema and are supposed to contribute to the picture that the organization and its founders wish to market. The use…

  7. Sobre os sistemas de referência celeste

    NASA Astrophysics Data System (ADS)

    Poppe, P. C. R.; Martin, V. A. F.

    2003-02-01

    Apresentamos neste trabalho, algumas discussões sobre os sistemas de referência utilizados em Astronomia. Claramente, não é possível esgotar todo este assunto num único texto, mas esperamos, contudo, que o presente material possa ser apreciado nos cursos de Introdução à Astronomia, que estão cada vez mais presentes nas atuais propostas curriculares das graduações de Física. As discussões pertinentes às "Bases de Referência Celeste", serão apresentadas em um outro trabalho.

  8. Sistema Planeta-Satélite. Simulación orbital y potenciales gravitatorios

    NASA Astrophysics Data System (ADS)

    Medina, C.; Carrillo, M.

    Se presenta un programa (desarrollado en Quick Basic 4.5) que simula, en tres dimensiones, el movimiento orbital de un satélite (o luna) alrededor de un planeta, al tiempo que calcula y grafica, en un plano, el potencial gravitatorio del sistema en función de la distancia al planeta. Para la simulación orbital, se emplea la matriz de transformación entre el sistema del planeta y el plano orbital. Para el cálculo y graficación del potencial se aplica un desarrollo en serie hasta el segundo orden, que da cuenta del efecto de achatamiento de los polos, en caso de que éste exista. Las longitudes de los ejes del planeta, la masa de éste y del satélite, sus tamaños aparentes, y los parámetros orbitales son introducidos por el usuario.

  9. El Sistema de Formas en Colores for Teaching Grammar in Spanish

    ERIC Educational Resources Information Center

    Nailon, James

    2010-01-01

    Sistema de formas en colores (SFC) is a symbols-based system for teaching Spanish grammatical structures and concepts within a communicative context in the elementary school. The (ACTFL) Standards for Foreign Language Learning: Preparing for the 21st Century states that, "While grammar and vocabulary are essential tools for communication, it is…

  10. Another Perspective: El Sistema--A Perspective for North American Music Educators

    ERIC Educational Resources Information Center

    Tunstall, Tricia

    2013-01-01

    Herein, Tricia Tunstall presents a critique of the article by Melissa Lesniak published in the December 2012 "Music Educators Journal," and offers a new perspective on the Venezuelan youth orchestra program known as "El Sistema." The program, which began in Caracas thirty-eight years ago, is dedicated to changing the lives of…

  11. Obstáculos a la adherencia y retención en los sistemas de salud público y privado según pacientes y personal de salud

    PubMed Central

    Arístegui, Inés; Dorigo, Analía; Bofill, Lina; Bordatto, Alejandra; Lucas, Mar; Cabanillas, Graciela Fernández; Sued, Omar; Cahn, Pedro; Cassetti, Isabel; Weiss, Stephen; Jones., Deborah

    2016-01-01

    Resumen Introducción el Programa Nacional de Sida garantiza el acceso universal a los antirretrovirales, aun así las personas que reciben medicamentos a través del sistema público no logran obtener una carga viral indetectable en la misma proporción que los pacientes del sistema privado. Este estudio cualitativo tiene como objeto identificar los factores asociados a la adherencia y retención en la cascada de atención de VIH de los sistemas de salud público y privado de Buenos Aires, según las percepciones de pacientes y del personal de salud. Métodos se registraron datos cualitativos de 12 entrevistas semi-estructuradas a informantes clave y 4 grupos focales de pacientes y personal de salud tanto del sistema público como privado. Se codificaron y analizaron temas predeterminados sobre adherencia, utilizando el software QRS Nvivo9® de análisis de datos cualitativos. Resultados pacientes y personal de salud de ambos sistemas coinciden en la importancia del estigma asociado al VIH, la relación médicopaciente, la comunicación entre ambos y la división de responsabilidades en relación al tratamiento como aspectos fundamentales para la adherencia y retención en la cascada de atención. Se observan diferencias entre los sistemas en la forma en que algunos de estos aspectos actúan. Las barreras estructurales se presentan como principales obstáculos del sistema público. Discusión se resalta la necesidad de intervenciones focalizadas en la díada médico-paciente que considere las particularidades de cada sistema de atención para facilitar el compromiso del paciente en la adherencia. PMID:26878024

  12. A critical view of the 'social reinsertion' concept and its implications for the practice of psychologists in the area of mental health in the Brazilian Unified Health System (Sistema Único de Saúde).

    PubMed

    Frazatto, Carina F; Sawaia, Bader B

    2016-03-01

    Improving psychological practice in mental health services in the Brazilian Unified Health System (Sistema Único de Saúde) requires a critical analysis of core concepts of the psychiatric reform, such as 'social reinsertion'. This analysis, oriented by the dialectics of exclusion/inclusion, showed that this concept is impregnated with the adaptation paradigm and asylum view which prevents its effective implantation. The results suggest it is necessary to include social aspects in the discussion of mental health, articulating it with networks of social work and recuperating the revolutionary aspects of the psychiatric reform, thus demarcating the political nature of professional practices. © The Author(s) 2016.

  13. El Sistema as a Bourgeois Social Project: Class, Gender, and Victorian Values

    ERIC Educational Resources Information Center

    Bull, Anna

    2016-01-01

    This article asks why classical music in the UK, which is consumed and practiced by the middle and upper classes, is being used as a social action program for working-class children in British music education schemes inspired by El Sistema. Through exploring the discourse of the social benefits of classical music in the late nineteenth century, a…

  14. Resonances and Tides in Natural Satellites Systems. (Breton Title: Ressonâncias e Marés em Sistemas de Satélites Naturais.) Resonancias y Mareas en Sistemas de Satélites Naturales

    NASA Astrophysics Data System (ADS)

    Callegari, Nelson, Jr.

    2006-12-01

    In this work we describe some aspects of the dynamics of the mean-motion resonances. Emphasis to the case of resonances between regular satellites of the giant planets will be given, even so some aspects of the physics of the resonances in extra-solar planetary systems are also briefly treated. The role of the resonances in satellites systems is discussed through examples, showing how certain resonances, and its relations with the tidal dissipation effects, can be the key of the explanation of some phenomena still not explained in the Solar System. Amongst some examples we highlight the problem of the resurfacing of Enceladus, the existence of active volcanoes in Io, and the possible existence of the subsurface ocean in Europe. This work has as objective the divulgation of some topics in Celestial Mechanics and Planetary Sciences for an undergraduate public in exact sciences, as Astronomy and Physics, and not their detailed description. Neste trabalho descrevemos alguns aspectos da dinâmica de ressonâncias de movimentos médios. Será dada ênfase maior ao caso de ressonâncias entre satélites regulares dos planetas gigantes, embora alguns aspectos da física das ressonâncias em sistemas planetários extra-solares também sejam discutidos brevemente. A importância do estudo de ressonâncias em sistemas de satélites é discutida mais detalhadamente através de exemplos, mostrando como certas ressonâncias e suas relações com efeitos de dissipação de maré podem ser a chave de parte da explicação de alguns fenômenos ainda não explicados no Sistema Solar. Dentre vários exemplos destacamos o problema da remodelagem da superfície do satélite Enceladus, a existência de vulcões ativos em Io, e a possível existência do oceano subterrâneo em Europa. Este trabalho tem como objetivo a divulgação de alguns tópicos de Mecânica Celeste e Planetologia para um público de nível de graduação em disciplinas na área de exatas, em especial Astronomia e F

  15. Experiências internacionais da aplicação de sistemas de apoio à decisão clínica em gastroenterologia

    PubMed Central

    Tenório, Josceli Maria; Hummel, Anderson Diniz; Sdepanian, Vera Lucia; Pisa, Ivan Torres; de Fátima Marin, Heimar

    2015-01-01

    Objetivo Descrever as experiências recentes com a aplicação de sistemas de apoio à decisão clínica em gastroenterologia, de forma a estabelecer o nível de desenvolvimento, testes e vantagens conferidas à prática médica com a introdução desses softwares. Métodos Foi realizada busca nas bases de dados PubMed, LILACS e ISI Web of Knowledge, utilizando termos relacionados à sistemas de apoio à decisão e à gastroenterogia, incluindo artigos originais publicados no período entre 2005 e 2010. Foram recuperadas 104 publicações, na busca inicial e, após a aplicação dos critérios de inclusão e exclusão, foram eleitos nove estudos para leitura do texto completo. Resultados Os sistemas de apoio à decisão clínica apresentam grande multiplicidade de problemas clínicos e investigação de doenças. Em 89% dos casos, são descritos modelos experimentais para o desenvolvimento de sistemas de apoio à decisão clínica. A descrição dos resultados obtidos por técnicas de inteligência artificial em 78% das publicações. Em dois dos estudos foram realizadas comparações com o médico e em apenas uma publicação um estudo controlado foi descrito, mostrando evidências de melhorias na prática médica. Conclusão Os estudos mostram potenciais benefícios dos sistemas de apoio à decisão clínica à prática médica, porém, estudos controlados em ambiente real devem ser realizados para comprovar esta perspectiva. PMID:26491625

  16. Five Encounters with "El Sistema" International: A Venezuelan Marvel Becomes a Global Movement

    ERIC Educational Resources Information Center

    Booth, Eric; Tunstall, Tricia

    2014-01-01

    Genuine worldwide movements for social change are rare in human history. Even more rare is the phenomenon of a worldwide movement for social change through art, with teaching artists at the forefront. This article presents the evolution of such a movement now, in the global blossoming of "El Sistema," a program that seeks to change the…

  17. Social Responsibility and Community Development: Lessons from the Sistema de Aprendizaje Tutorial in Honduras

    ERIC Educational Resources Information Center

    Honeyman, Catherine A.

    2010-01-01

    This article extends understanding of the connections between education, social capital, and development through a mixed-methods case study of the Sistema de Aprendizaje Tutorial, or SAT, an innovative secondary-level education system. The quantitative dimension of the research used survey measures of social responsibility to compare 93 SAT…

  18. Sistemas Correctores de Campo Para EL Telescopio Ritchey-Chretien UNAM212

    NASA Astrophysics Data System (ADS)

    Cobos, F. J.; Galan, M. J.

    1987-05-01

    El telescopio UNAM2l2 fue inaugurado hace siete años y concebido para trabajar en las razones focales: f/7.5, F/13.5, F/27 y F/98. El diseño Ritchey-Chretién corresponde a la razón focal F/7.5 y el foco primario (F/2.286) no se consideró como utilizable para fotografía directa. En el Instituto de Astronomía de la UNAM, se diseñó y construyó un sistema corrector de campo para la razón focal F/7.5, que actualmente está en funcionamiento. Dentro de un programa de colaboración en diseflo y evaluación de sistemas ópticos, entre el Instituto de Astrofísica de Canarias y el Instituto de Astronomía de la UNAM, decidimos intentar el diseño de una correctora de campo para el foco primario del tȩlescopio UNAM212 bajo la consideración de que no son insalvables los problemas que implicaría su instalación y de que es muy posible que, en un futuro relativamente cercano, podamom tener un detector bidimenmional tipo Mepsicrón cuya área sensible haga tentadora la idea de construir la cámara directa para foco primario

  19. Improving Middle School Quality in Poor Countries: Evidence from the Honduran "Sistema De Aprendizaje Tutorial"

    ERIC Educational Resources Information Center

    McEwan, Patrick J.; Murphy-Graham, Erin; Torres Irribarra, David; Aguilar, Claudia; Rápalo, Renán

    2015-01-01

    This article evaluates the impact and cost-effectiveness of offering an innovative middle school model--the Sistema de Aprendizaje Tutorial (SAT)--to Honduran villages instead of traditional middle schools. We identified a matched sample of villages with either type of school and collected baseline data among primary school graduates eligible to…

  20. A network of networks.

    PubMed

    Iedema, Rick; Verma, Raj; Wutzke, Sonia; Lyons, Nigel; McCaughan, Brian

    2017-04-10

    Purpose To further our insight into the role of networks in health system reform, the purpose of this paper is to investigate how one agency, the NSW Agency for Clinical Innovation (ACI), and the multiple networks and enabling resources that it encompasses, govern, manage and extend the potential of networks for healthcare practice improvement. Design/methodology/approach This is a case study investigation which took place over ten months through the first author's participation in network activities and discussions with the agency's staff about their main objectives, challenges and achievements, and with selected services around the state of New South Wales to understand the agency's implementation and large system transformation activities. Findings The paper demonstrates that ACI accommodates multiple networks whose oversight structures, self-organisation and systems change approaches combined in dynamic ways, effectively yield a diversity of network governances. Further, ACI bears out a paradox of "centralised decentralisation", co-locating agents of innovation with networks of implementation and evaluation expertise. This arrangement strengthens and legitimates the role of the strategic hybrid - the healthcare professional in pursuit of change and improvement, and enhances their influence and impact on the wider system. Research limitations/implications While focussing the case study on one agency only, this study is unique as it highlights inter-network connections. Contributing to the literature on network governance, this paper identifies ACI as a "network of networks" through which resources, expectations and stakeholder dynamics are dynamically and flexibly mediated and enhanced. Practical implications The co-location of and dynamic interaction among clinical networks may create synergies among networks, nurture "strategic hybrids", and enhance the impact of network activities on health system reform. Social implications Network governance requires more

  1. [Social networks in drinking behaviors among Japanese: support network, drinking network, and intervening network].

    PubMed

    Yoshihara, Chika; Shimizu, Shinji

    2005-10-01

    The national representative sample was analyzed to examine the relationship between respondents' drinking practice and the social network which was constructed of three different types of network: support network, drinking network, and intervening network. Non-parametric statistical analysis was conducted with chi square method and ANOVA analysis, due to the risk of small samples in some basic tabulation cells. The main results are as follows: (1) In the support network of workplace associates, moderate drinkers enjoyed much more sociable support care than both nondrinkers and hard drinkers, which might suggest a similar effect as the French paradox. Meanwhile in the familial and kinship network, the more intervening care support was provided, the harder respondents' drinking practice. (2) The drinking network among Japanese people for both sexes is likely to be convergent upon certain types of network categories and not decentralized in various categories. This might reflect of the drinking culture of Japan, which permits people to drink everyday as a practice, especially male drinkers. Subsequently, solitary drinking is not optional for female drinkers. (3) Intervening network analysis showed that the harder the respondents' drinking practices, the more frequently their drinking behaviors were checked in almost all the categories of network. A rather complicated gender double-standard was found in the network of hard drinkers with their friends, particularly for female drinkers. Medical professionals played a similar intervening role for men as family and kinship networks but to a less degree than friends for females. The social network is considerably associated with respondents' drinking, providing both sociability for moderate drinkers and intervention for hard drinkers, depending on network categories. To minimize the risk of hard drinking and advance self-healthy drinking there should be more research development on drinking practice and the social network.

  2. Tracking and Treating Mobile Populations. The TB Net System. Migrant Clinicians Network Monograph Series. = El Sistema de Red para la TB.

    ERIC Educational Resources Information Center

    Migrant Clinicians Network, Inc., Austin, TX.

    A comprehensive tracking and referral network that helps provide continuity of care for mobile populations with active tuberculosis (TB) or TB infection is considered essential for effective treatment of TB. However, the interstate referral system that exists between state health departments has been highly inefficient for serving migrant…

  3. Vulnerability of network of networks

    NASA Astrophysics Data System (ADS)

    Havlin, S.; Kenett, D. Y.; Bashan, A.; Gao, J.; Stanley, H. E.

    2014-10-01

    Our dependence on networks - be they infrastructure, economic, social or others - leaves us prone to crises caused by the vulnerabilities of these networks. There is a great need to develop new methods to protect infrastructure networks and prevent cascade of failures (especially in cases of coupled networks). Terrorist attacks on transportation networks have traumatized modern societies. With a single blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet communication. How, and at which cost can one restructure the network such that it will become more robust against malicious attacks? The gradual increase in attacks on the networks society depends on - Internet, mobile phone, transportation, air travel, banking, etc. - emphasize the need to develop new strategies to protect and defend these crucial networks of communication and infrastructure networks. One example is the threat of liquid explosives a few years ago, which completely shut down air travel for days, and has created extreme changes in regulations. Such threats and dangers warrant the need for new tools and strategies to defend critical infrastructure. In this paper we review recent advances in the theoretical understanding of the vulnerabilities of interdependent networks with and without spatial embedding, attack strategies and their affect on such networks of networks as well as recently developed strategies to optimize and repair failures caused by such attacks.

  4. Projeto do sistema anti-ressonante da fiação dos transdutores para o detector Mario Schenberg

    NASA Astrophysics Data System (ADS)

    Vieira, S. J.., Jr.; Melo, J. L.

    2003-08-01

    O detector de ondas gravitacionais Mario Schenberg está sendo projetado e construído pelo grupo Gráviton. Sua construção está ocorrendo no Laboratório de Estado Sólido e Baixas Temperaturas (LESBT) da Universidade de São Paulo, na cidade de São Paulo. Esse detector possui uma massa ressonante esférica de cobre-alumínio, com 65 cm de diâmetro, pesando aproximadamente 1150 Kg, suspensa por um sistema de isolamento vibracional, que se encontra em fase de testes preliminares. A real eficácia desse sistema, entretanto, só poderá ser comprovada quando o detector estiver aparelhado com, pelo menos, um transdutor eletromecânico de altíssima sensibilidade acoplado à massa ressonante. Neste momento, não só este sistema de isolamento vibracional será posto em teste, como o do projeto da fiação que transporta os sinais de microondas até os transdutores e destes para a pré-amplificação. Apesar dessa fiação ter sido projetada para não apresentar nenhum contato com a superfície esférica da antena, de maneira a não haver nenhuma transmissão de ruído vibracional do laboratório para esta, deve-se minimizar o ruído microfônico produzido nessa fiação por oscilações mecânicas, uma vez que ela não utiliza nenhum sistema de isolamento vibracional. Com o intuito de resolver este problema, projetamos uma estrutura, formada por pequenos cilindros conectados por barras, a qual não terá nenhuma ressonância mecânica na faixa de freqüências de interesse para detecção (3000 - 3400 Hz). Desta forma, as vibrações nessa faixa não serão amplificadas. O projeto foi feito usando iterativamente, de maneira a otimizar os resultados obtidos, o programa de elementos finitos Msc/Nastran. Através de simulações feitas neste programa, determinamos os parâmetros geométricos ideais a serem utilizados, os quais proporcionam a maior região espectral de interesse livre de ressonâncias.

  5. Semantic Networks and Social Networks

    ERIC Educational Resources Information Center

    Downes, Stephen

    2005-01-01

    Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…

  6. Modeling the Citation Network by Network Cosmology

    PubMed Central

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well. PMID:25807397

  7. Modeling the citation network by network cosmology.

    PubMed

    Xie, Zheng; Ouyang, Zhenzheng; Zhang, Pengyuan; Yi, Dongyun; Kong, Dexing

    2015-01-01

    Citation between papers can be treated as a causal relationship. In addition, some citation networks have a number of similarities to the causal networks in network cosmology, e.g., the similar in-and out-degree distributions. Hence, it is possible to model the citation network using network cosmology. The casual network models built on homogenous spacetimes have some restrictions when describing some phenomena in citation networks, e.g., the hot papers receive more citations than other simultaneously published papers. We propose an inhomogenous causal network model to model the citation network, the connection mechanism of which well expresses some features of citation. The node growth trend and degree distributions of the generated networks also fit those of some citation networks well.

  8. Interconnecting astronomical networks: evolving from single networks to meta-networks

    NASA Astrophysics Data System (ADS)

    White, R. R.; Allan, A.; Evans, S.; Vestrand, W. T.; Wren, J.; Wozniak, P.

    2006-06-01

    Over the past four years we have seen continued advancement in network technology and how those technologies are beginning to enable astronomical science. Even though some sociological aspects are hindering full cooperation between most observatories and telescopes outside of their academic or institutional connections, an unprecedented step during the summer of 2005 was taken towards creating a world-wide interconnection of astronomical assets. The Telescope Alert Operations Network System (TALONS), a centralized server/client bi-directional network developed and operated by Los Alamos National Laboratory, integrated one of its network nodes with a node from the eScience Telescopes for Astronomical Research (eSTAR), a peer-to-peer agent based network developed and operated by The University of Exeter. Each network can act independently, providing support for their direct clients, and by interconnection provide local clients with access to; outside telescope systems, software tools unavailable locally, and the ability to utilize assets far more efficiently, thereby enabling science on a world-wide scale. In this paper we will look at the evolution of these independent networks into the worlds first heterogeneous telescope network and where this may take astronomy in the future. We will also examine those key elements necessary to providing universal communication between diverse astronomical networks.

  9. SIMAC: development and implementation of a coral reef monitoring network in Colombia.

    PubMed

    Garzón-Ferreira, Jaime; Rodríguez-Ramírez, Alberto

    2010-05-01

    Significant coral reef decline has been observed in Colombia during the last three decades. However, due to the lack of monitoring activities, most of the information about health and changes was fragmentary or inadequate. To develop an expanded nation-wide reef-monitoring program, in 1998 INVEMAR (Instituto de Investigaciones Marinas y Costeras: "Colombian Institute of Marine and Coastal Research") designed and implemented SIMAC (Sistema Nacional de Monitorco de Arrecifes Coralinos en Colombia: "National Monitoring System of Coral Reefs in Colombia") with the participation of other institutions. By the end of 2003 the SIMAC network reached more than twice its initial size, covering ten reef areas (seven in the Caribbean and three in the Pacific), 63 reef sites and 263 permanent transects. SIMAC monitoring continued without interruption until 2008 and should persist in the long-term. The SIMAC has a large database and consists basically of water quality measurements (temperature, salinity, turbidity) and a yearly estimation of benthic reef cover, coral disease prevalence, gorgonian density, abundance of important mobile invertebrates, fish diversity and abundance of important fish species. A methods manual is available in the Internet. Data and results of SIMAC have been widely circulated through a summary report published annually since 2000 for the Colombian environmental agencies and the general public, as well as numerous national and international scientific papers and presentations at meetings. SIMAC information has contributed to support regional and global reef monitoring networks and databases (i.e. CARICOMP, GCRMN, ReefBase).

  10. Topology of the European Network of Earth Observation Networks and the need for an European Network of Networks

    NASA Astrophysics Data System (ADS)

    Masó, Joan; Serral, Ivette; McCallum, Ian; Blonda, Palma; Plag, Hans-Peter

    2016-04-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is an H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. The project will end in February 2017. ConnectinGEO will initiate a European Network of Earth Observation Networks (ENEON) that will encompass space-based, airborne and in-situ observations networks. ENEON will be composed of project partners representing thematic observation networks along with the GEOSS Science and Technology Stakeholder Network, GEO Communities of Practices, Copernicus services, Sentinel missions and in-situ support data representatives, representatives of the European space-based, airborne and in-situ observations networks. This communication presents the complex panorama of Earth Observations Networks in Europe. The list of networks is classified by discipline, variables, geospatial scope, etc. We also capture the membership and relations with other networks and umbrella organizations like GEO. The result is a complex interrelation between networks that can not be clearly expressed in a flat list. Technically the networks can be represented as nodes with relations between them as lines connecting the nodes in a graph. We have chosen RDF as a language and an AllegroGraph 3.3 triple store that is visualized in several ways using for example Gruff 5.7. Our final aim is to identify gaps in the EO Networks and justify the need for a more structured coordination between them.

  11. Radio Engineering System of Short-Range Navigation. RSBN-2. Part I. (Radioteknicheskaya Sistema Blizhney Navigatsii RSBN-2)

    DTIC Science & Technology

    1977-02-09

    RANGE NAVIGATION. RSBN-2 By: Ye. M. Yakovlev, A. N. Kleplkov, et al. English pages: 706 source: Radlotekhnlcheskaya Sistema Bllzhney Navigatsli...L4 and the grid of tube L5 (6N8S) limits grid m^^mammm^m^^^f.^^ rn .„ | -.,, ..S^JTv i tOC = 77050017 PAGE ^ I current©. |: *■ «a—m

  12. Dim Networks: The Utility of Social Network Analysis for Illuminating Partner Security Force Networks

    DTIC Science & Technology

    2015-12-01

    use of social network analysis (SNA) has allowed the military to map dark networks of terrorist organizations and selectively target key elements...data to improve SC. 14. SUBJECT TERMS social network analysis, dark networks, light networks, dim networks, security cooperation, Southeast Asia...task may already exist. Recently, the use of social network analysis (SNA) has allowed the military to map dark networks of terrorist organizations

  13. Association of tuberculosis with multimorbidity and social networks.

    PubMed

    Valenzuela-Jiménez, Hiram; Manrique-Hernández, Edgar Fabian; Idrovo, Alvaro Javier

    2017-01-01

    The combination of tuberculosis with other diseases can affect tuberculosis treatment within populations. In the present study, social network analysis of data retrieved from the Mexican National Epidemiological Surveillance System was used in order to explore associations between the number of contacts and multimorbidity. The node degree was calculated for each individual with tuberculosis and included information from 242 contacts without tuberculosis. Multimorbidity was identified in 49.89% of individuals. The node degrees were highest for individuals with tuberculosis + HIV infection (p < 0.04) and lowest for those with tuberculosis + pulmonary edema (p < 0.07). Social network analysis should be used as a standard method for monitoring tuberculosis and tuberculosis-related syndemics. RESUMO A combinação de tuberculose e outras doenças pode afetar o tratamento da tuberculose nas populações. No presente estudo, a análise de redes sociais de dados extraídos do Sistema Nacional de Vigilância Epidemiológica do México foi usada para explorar as relações entre o número de contatos e a multimorbidade. O grau do nó foi calculado para cada indivíduo com tuberculose e incluiu informações a respeito de 242 contatos sem tuberculose. A multimorbidade foi identificada em 49,89% dos indivíduos. Os maiores graus dos nós foram os referentes a indivíduos com tuberculose + infecção pelo HIV (p < 0,04), e os menores foram os referentes a indivíduos com tuberculose + edema pulmonar (p < 0,07). A análise de redes sociais deve ser usada como método-padrão para monitorar a tuberculose e a sindemia relacionada com a tuberculose.

  14. Cascading Failures and Recovery in Networks of Networks

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo

    Network science have been focused on the properties of a single isolated network that does not interact or depends on other networks. In reality, many real-networks, such as power grids, transportation and communication infrastructures interact and depend on other networks. I will present a framework for studying the vulnerability and the recovery of networks of interdependent networks. In interdependent networks, when nodes in one network fail, they cause dependent nodes in other networks to also fail. This is also the case when some nodes like certain locations play a role in two networks -multiplex. This may happen recursively and can lead to a cascade of failures and to a sudden fragmentation of the system. I will present analytical solutions for the critical threshold and the giant component of a network of n interdependent networks. I will show, that the general theory has many novel features that are not present in the classical network theory. When recovery of components is possible global spontaneous recovery of the networks and hysteresis phenomena occur and the theory suggests an optimal repairing strategy of system of systems. I will also show that interdependent networks embedded in space are significantly more vulnerable compared to non embedded networks. In particular, small localized attacks may lead to cascading failures and catastrophic consequences.Thus, analyzing data of real network of networks is highly required to understand the system vulnerability. DTRA, ONR, Israel Science Foundation.

  15. Percolation of a general network of networks.

    PubMed

    Gao, Jianxi; Buldyrev, Sergey V; Stanley, H Eugene; Xu, Xiaoming; Havlin, Shlomo

    2013-12-01

    Percolation theory is an approach to study the vulnerability of a system. We develop an analytical framework and analyze the percolation properties of a network composed of interdependent networks (NetONet). Typically, percolation of a single network shows that the damage in the network due to a failure is a continuous function of the size of the failure, i.e., the fraction of failed nodes. In sharp contrast, in NetONet, due to the cascading failures, the percolation transition may be discontinuous and even a single node failure may lead to an abrupt collapse of the system. We demonstrate our general framework for a NetONet composed of n classic Erdős-Rényi (ER) networks, where each network depends on the same number m of other networks, i.e., for a random regular network (RR) formed of interdependent ER networks. The dependency between nodes of different networks is taken as one-to-one correspondence, i.e., a node in one network can depend only on one node in the other network (no-feedback condition). In contrast to a treelike NetONet in which the size of the largest connected cluster (mutual component) depends on n, the loops in the RR NetONet cause the largest connected cluster to depend only on m and the topology of each network but not on n. We also analyzed the extremely vulnerable feedback condition of coupling, where the coupling between nodes of different networks is not one-to-one correspondence. In the case of NetONet formed of ER networks, percolation only exhibits two phases, a second order phase transition and collapse, and no first order percolation transition regime is found in the case of the no-feedback condition. In the case of NetONet composed of RR networks, there exists a first order phase transition when the coupling strength q (fraction of interdependency links) is large and a second order phase transition when q is small. Our insight on the resilience of coupled networks might help in designing robust interdependent systems.

  16. Why Network? Theoretical Perspectives on Networking

    ERIC Educational Resources Information Center

    Muijs, Daniel; West, Mel; Ainscow, Mel

    2010-01-01

    In recent years, networking and collaboration have become increasingly popular in education. However, there is at present a lack of attention to the theoretical basis of networking, which could illuminate when and when not to network and under what conditions networks are likely to be successful. In this paper, we will attempt to sketch the…

  17. Time and Frequency Transfer Activities at NIST

    DTIC Science & Technology

    2008-12-01

    differences. The graph shows data from MJD 54466 to MJD 54763 (January 1, 2008 to October 24, 2008). II.E. The Sistema Interamericano de...Metrologia (SIM) Time Network The Sistema Interamericano de Metrologia (SIM) consists of national metrology institutes (NMIs) located in the 34...designed to mitigate multipath signals. All SIM systems are connected to the Internet and upload their measurement results to Internet Web servers

  18. Data center networks and network architecture

    NASA Astrophysics Data System (ADS)

    Esaki, Hiroshi

    2014-02-01

    This paper discusses and proposes the architectural framework, which is for data center networks. The data center networks require new technical challenges, and it would be good opportunity to change the functions, which are not need in current and future networks. Based on the observation and consideration on data center networks, this paper proposes; (i) Broadcast-free layer 2 network (i.e., emulation of broadcast at the end-node), (ii) Full-mesh point-to-point pipes, and (iii) IRIDES (Invitation Routing aDvertisement for path Engineering System).

  19. Hacking Social Networks: Examining the Viability of Using Computer Network Attack Against Social Networks

    DTIC Science & Technology

    2007-03-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited. HACKING SOCIAL NETWORKS : EXAMINING THE...VIABILITY OF USING COMPUTER NETWORK ATTACK AGAINST SOCIAL NETWORKS by Russell G. Schuhart II March 2007 Thesis Advisor: David Tucker Second Reader...Master’s Thesis 4. TITLE AND SUBTITLE: Hacking Social Networks : Examining the Viability of Using Computer Network Attack Against Social Networks 6. AUTHOR

  20. Exploring network operations for data and information networks

    NASA Astrophysics Data System (ADS)

    Yao, Bing; Su, Jing; Ma, Fei; Wang, Xiaomin; Zhao, Xiyang; Yao, Ming

    2017-01-01

    Barabási and Albert, in 1999, formulated scale-free models based on some real networks: World-Wide Web, Internet, metabolic and protein networks, language or sexual networks. Scale-free networks not only appear around us, but also have high qualities in the world. As known, high quality information networks can transfer feasibly and efficiently data, clearly, their topological structures are very important for data safety. We build up network operations for constructing large scale of dynamic networks from smaller scale of network models having good property and high quality. We focus on the simplest operators to formulate complex operations, and are interesting on the closeness of operations to desired network properties.

  1. La distribución de objetos en el Cinturón de Kuiper y la posible existencia de un nuevo planeta en el Sistema Solar

    NASA Astrophysics Data System (ADS)

    Brunini, A.

    A pesar de que la capacidad observacional no lo limita, no se han descubierto objetos en el Cinturón de Kuiper más allá de las 50 AU. Recientemente, hemos propuesto que un embrión planetario originalmente formado en la región de Urano-Neptuno, y posteriormente migrado hacia distancias mayores a 50-60 AU, puede explicar este hecho. Presentamos simulaciones numéricas de acreción del Sistema Solar exterior que muestran cómo, naturalmente, podriamos esperar que un planeta de este tipo se encuentre actualmente en regiones distantes del sistema solar. Analizamos además la posibilidad de detectarlo con instrumentos actuales.

  2. Dependable Networks as a Paradigm for Network Innovation

    NASA Astrophysics Data System (ADS)

    Miki, Tetsuya

    In past, dependable networks meant minimizing network outages or the impact of the outages. However, over the decade, major network services have shifted from telephone and data transmission to Internet and to mobile communication, where higher layer services with a variety of contents are provided. Reviewing these backgrounds of network development, the importance of the dependability of higher layer network services are pointed out. Then, the main aspects to realize the dependability are given for lower, middle and higher layer network services. In addition, some particular issues for dependable networks are described.

  3. Network cosmology.

    PubMed

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

  4. Network Cosmology

    PubMed Central

    Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián

    2012-01-01

    Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688

  5. Network marketing on a small-world network

    NASA Astrophysics Data System (ADS)

    Kim, Beom Jun; Jun, Tackseung; Kim, Jeong-Yoo; Choi, M. Y.

    2006-02-01

    We investigate a dynamic model of network marketing in a small-world network structure artificially constructed similarly to the Watts-Strogatz network model. Different from the traditional marketing, consumers can also play the role of the manufacturer's selling agents in network marketing, which is stimulated by the referral fee the manufacturer offers. As the wiring probability α is increased from zero to unity, the network changes from the one-dimensional regular directed network to the star network where all but one player are connected to one consumer. The price p of the product and the referral fee r are used as free parameters to maximize the profit of the manufacturer. It is observed that at α=0 the maximized profit is constant independent of the network size N while at α≠0, it increases linearly with N. This is in parallel to the small-world transition. It is also revealed that while the optimal value of p stays at an almost constant level in a broad range of α, that of r is sensitive to a change in the network structure. The consumer surplus is also studied and discussed.

  6. Weighted projected networks: mapping hypergraphs to networks.

    PubMed

    López, Eduardo

    2013-05-01

    Many natural, technological, and social systems incorporate multiway interactions, yet are characterized and measured on the basis of weighted pairwise interactions. In this article, I propose a family of models in which pairwise interactions originate from multiway interactions, by starting from ensembles of hypergraphs and applying projections that generate ensembles of weighted projected networks. I calculate analytically the statistical properties of weighted projected networks, and suggest ways these could be used beyond theoretical studies. Weighted projected networks typically exhibit weight disorder along links even for very simple generating hypergraph ensembles. Also, as the size of a hypergraph changes, a signature of multiway interaction emerges on the link weights of weighted projected networks that distinguishes them from fundamentally weighted pairwise networks. This signature could be used to search for hidden multiway interactions in weighted network data. I find the percolation threshold and size of the largest component for hypergraphs of arbitrary uniform rank, translate the results into projected networks, and show that the transition is second order. This general approach to network formation has the potential to shed new light on our understanding of weighted networks.

  7. Computer Networks and Networking: A Primer.

    ERIC Educational Resources Information Center

    Collins, Mauri P.

    1993-01-01

    Provides a basic introduction to computer networks and networking terminology. Topics addressed include modems; the Internet; TCP/IP (Transmission Control Protocol/Internet Protocol); transmission lines; Internet Protocol numbers; network traffic; Fidonet; file transfer protocol (FTP); TELNET; electronic mail; discussion groups; LISTSERV; USENET;…

  8. Network structure exploration in networks with node attributes

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Bu, Junzhao; Tang, Buzhou; Xiang, Xin

    2016-05-01

    Complex networks provide a powerful way to represent complex systems and have been widely studied during the past several years. One of the most important tasks of network analysis is to detect structures (also called structural regularities) embedded in networks by determining group number and group partition. Most of network structure exploration models only consider network links. However, in real world networks, nodes may have attributes that are useful for network structure exploration. In this paper, we propose a novel Bayesian nonparametric (BNP) model to explore structural regularities in networks with node attributes, called Bayesian nonparametric attribute (BNPA) model. This model does not only take full advantage of both links between nodes and node attributes for group partition via shared hidden variables, but also determine group number automatically via the Bayesian nonparametric theory. Experiments conducted on a number of real and synthetic networks show that our BNPA model is able to automatically explore structural regularities in networks with node attributes and is competitive with other state-of-the-art models.

  9. Minimal Increase Network Coding for Dynamic Networks.

    PubMed

    Zhang, Guoyin; Fan, Xu; Wu, Yanxia

    2016-01-01

    Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery.

  10. Minimal Increase Network Coding for Dynamic Networks

    PubMed Central

    Wu, Yanxia

    2016-01-01

    Because of the mobility, computing power and changeable topology of dynamic networks, it is difficult for random linear network coding (RLNC) in static networks to satisfy the requirements of dynamic networks. To alleviate this problem, a minimal increase network coding (MINC) algorithm is proposed. By identifying the nonzero elements of an encoding vector, it selects blocks to be encoded on the basis of relationship between the nonzero elements that the controls changes in the degrees of the blocks; then, the encoding time is shortened in a dynamic network. The results of simulations show that, compared with existing encoding algorithms, the MINC algorithm provides reduced computational complexity of encoding and an increased probability of delivery. PMID:26867211

  11. Undermining and Strengthening Social Networks through Network Modification

    PubMed Central

    Mellon, Jonathan; Yoder, Jordan; Evans, Daniel

    2016-01-01

    Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention. PMID:27703198

  12. Undermining and Strengthening Social Networks through Network Modification.

    PubMed

    Mellon, Jonathan; Yoder, Jordan; Evans, Daniel

    2016-10-05

    Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention.

  13. Undermining and Strengthening Social Networks through Network Modification

    NASA Astrophysics Data System (ADS)

    Mellon, Jonathan; Yoder, Jordan; Evans, Daniel

    2016-10-01

    Social networks have well documented effects at the individual and aggregate level. Consequently it is often useful to understand how an attempt to influence a network will change its structure and consequently achieve other goals. We develop a framework for network modification that allows for arbitrary objective functions, types of modification (e.g. edge weight addition, edge weight removal, node removal, and covariate value change), and recovery mechanisms (i.e. how a network responds to interventions). The framework outlined in this paper helps both to situate the existing work on network interventions but also opens up many new possibilities for intervening in networks. In particular use two case studies to highlight the potential impact of empirically calibrating the objective function and network recovery mechanisms as well as showing how interventions beyond node removal can be optimised. First, we simulate an optimal removal of nodes from the Noordin terrorist network in order to reduce the expected number of attacks (based on empirically predicting the terrorist collaboration network from multiple types of network ties). Second, we simulate optimally strengthening ties within entrepreneurial ecosystems in six developing countries. In both cases we estimate ERGM models to simulate how a network will endogenously evolve after intervention.

  14. The Development of Musical Skills of Underprivileged Children Over the Course of 1 Year: A Study in the Context of an El Sistema-Inspired Program.

    PubMed

    Ilari, Beatriz S; Keller, Patrick; Damasio, Hanna; Habibi, Assal

    2016-01-01

    Developmental research in music has typically centered on the study of single musical skills (e.g., singing, listening) and has been conducted with middle class children who learn music in schools and conservatories. Information on the musical development of children from different social strata, who are enrolled in community-based music programs, remains elusive. This study examined the development of musical skills in underprivileged children who were attending an El Sistema-inspired program in Los Angeles. We investigated how children, predominantly of Latino ethnicity, developed musically with respect to the following musical skills - pitch and rhythmic discrimination, pitch matching, singing a song from memory, and rhythmic entrainment - over the course of 1 year. Results suggested that participation in an El Sistema-inspired program affects children's musical development in distinct ways; with pitch perception and production skills developing faster than rhythmic skills. Furthermore, children from the same ethnic and social background, who did not participate in the El Sistema-inspired music program, showed a decline in singing and pitch discrimination skills over the course of 1 year. Taken together, these results are consistent with the idea of musical development as a complex, spiraling and recursive process that is influenced by several factors including type of musical training. Implications for future research are outlined.

  15. Spatial networks

    NASA Astrophysics Data System (ADS)

    Barthélemy, Marc

    2011-02-01

    Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.

  16. Research in network management techniques for tactical data communications networks

    NASA Astrophysics Data System (ADS)

    Boorstyn, R.; Kershenbaum, A.; Maglaris, B.; Sarachik, P.

    1982-09-01

    This is the final technical report for work performed on network management techniques for tactical data networks. It includes all technical papers that have been published during the control period. Research areas include Packet Network modelling, adaptive network routing, network design algorithms, network design techniques, and local area networks.

  17. Inferring general relations between network characteristics from specific network ensembles.

    PubMed

    Cardanobile, Stefano; Pernice, Volker; Deger, Moritz; Rotter, Stefan

    2012-01-01

    Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their ability to generate networks with large structural variability. In particular, we consider the statistical constraints which the respective construction scheme imposes on the generated networks. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This makes it possible to infer global features from local ones using regression models trained on networks with high generalization power. Our results confirm and extend previous findings regarding the synchronization properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks in good approximation. Finally, we demonstrate on three different data sets (C. elegans neuronal network, R. prowazekii metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models.

  18. Network Hardware Virtualization for Application Provisioning in Core Networks

    DOE PAGES

    Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp; ...

    2017-02-03

    We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less

  19. Network Hardware Virtualization for Application Provisioning in Core Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumaste, Ashwin; Das, Tamal; Khandwala, Kandarp

    We present that service providers and vendors are moving toward a network virtualized core, whereby multiple applications would be treated on their own merit in programmable hardware. Such a network would have the advantage of being customized for user requirements and allow provisioning of next generation services that are built specifically to meet user needs. In this article, we articulate the impact of network virtualization on networks that provide customized services and how a provider's business can grow with network virtualization. We outline a decision map that allows mapping of applications with technology that is supported in network-virtualization - orientedmore » equipment. Analogies to the world of virtual machines and generic virtualization show that hardware supporting network virtualization will facilitate new customer needs while optimizing the provider network from the cost and performance perspectives. A key conclusion of the article is that growth would yield sizable revenue when providers plan ahead in terms of supporting network-virtualization-oriented technology in their networks. To be precise, providers have to incorporate into their growth plans network elements capable of new service deployments while protecting network neutrality. Finally, a simulation study validates our NV-induced model.« less

  20. [The mental health promotion of children and teenagers in vulnerability and social violence: the challenges for an intersectoral network].

    PubMed

    Passos, Izabel Christina Friche; Vieira, Kelly; Moreira, Laura; Rodrigues, Flávia; Amorim, Margarete; Santos, Cláudia; Abreu, Ana; Gomes, Lucas; Mendes, Luciana; Lima, Isabella; Moura, Francisco; França, Cassandra; Ferraz, Cláudia

    This paper presents and discusses the results of an intervention research conducted in Ouro Preto, Brazil from August 2014 to March 2016. The main objective was to contribute to the development of an intersectoral and interdisciplinary network to face psychosocial vulnerabilities of children and teenagers, especially related to sexual violence and drug use. To achieve this, we identified the difficulties faced by the Sistema de Garantia de Direitos Humanos da Criança e do Adolescente (SGDHCA) implemented by the municipality which take care of this population. We also identified protective and promotion factors accomplished to empower them. The methodology used combines Deleuze and Guattari Cartography, Institutional Analysis and the Cross Training. This latter methodology was developed by a group of researchers of Douglas Institute, in Montreal, which we met through scientific co-operation with our laboratory. On account of the practical-theoric and co-participative activities with the professional network of Ouro Preto, we produced a detailed diagnosis of the SGDHCA and a document proposing short, medium and long-term strategies. As final result, we intend to help the local collective-the Forum Intersetorial da Infância e Juventude-to develop a work plan from the proposed actions. In this paper we will concentrate the potential of the methodology used by presenting outcome from two important moments of the research: the discussions of successful and unsuccessful cases that elucidate the network operation and the potential and difficulties arising from the Rotation Positional, important technical of the Cross Training.

  1. Networks.

    ERIC Educational Resources Information Center

    Maughan, George R.; Petitto, Karen R.; McLaughlin, Don

    2001-01-01

    Describes the connectivity features and options of modern campus communication and information system networks, including signal transmission (wire-based and wireless), signal switching, convergence of networks, and network assessment variables, to enable campus leaders to make sound future-oriented decisions. (EV)

  2. Network Management of the SPLICE Computer Network.

    DTIC Science & Technology

    1982-12-01

    Approved for public release; distri4ition unlimited. Network lanagenent Df the SPLICE Computer Network by Zriig E. Opal captaini United St~tes larine... structure of the network must leni itself t3 change and reconfiguration, one author [Ref. 2: p.21] recommended that a global bus topology be adopted for...statistics, trace statistics, snapshot statistiZs, artifi - cial traffic generators, auulat on, a network measurement center which includes control, collction

  3. Robustness of network of networks under targeted attack.

    PubMed

    Dong, Gaogao; Gao, Jianxi; Du, Ruijin; Tian, Lixin; Stanley, H Eugene; Havlin, Shlomo

    2013-05-01

    The robustness of a network of networks (NON) under random attack has been studied recently [Gao et al., Phys. Rev. Lett. 107, 195701 (2011)]. Understanding how robust a NON is to targeted attacks is a major challenge when designing resilient infrastructures. We address here the question how the robustness of a NON is affected by targeted attack on high- or low-degree nodes. We introduce a targeted attack probability function that is dependent upon node degree and study the robustness of two types of NON under targeted attack: (i) a tree of n fully interdependent Erdős-Rényi or scale-free networks and (ii) a starlike network of n partially interdependent Erdős-Rényi networks. For any tree of n fully interdependent Erdős-Rényi networks and scale-free networks under targeted attack, we find that the network becomes significantly more vulnerable when nodes of higher degree have higher probability to fail. When the probability that a node will fail is proportional to its degree, for a NON composed of Erdős-Rényi networks we find analytical solutions for the mutual giant component P(∞) as a function of p, where 1-p is the initial fraction of failed nodes in each network. We also find analytical solutions for the critical fraction p(c), which causes the fragmentation of the n interdependent networks, and for the minimum average degree k[over ¯](min) below which the NON will collapse even if only a single node fails. For a starlike NON of n partially interdependent Erdős-Rényi networks under targeted attack, we find the critical coupling strength q(c) for different n. When q>q(c), the attacked system undergoes an abrupt first order type transition. When q≤q(c), the system displays a smooth second order percolation transition. We also evaluate how the central network becomes more vulnerable as the number of networks with the same coupling strength q increases. The limit of q=0 represents no dependency, and the results are consistent with the classical

  4. Networks within networks: The neuronal control of breathing

    PubMed Central

    Garcia, Alfredo J.; Zanella, Sebastien; Koch, Henner; Doi, Atsushi; Ramirez, Jan-Marino

    2013-01-01

    Breathing emerges through complex network interactions involving neurons distributed throughout the nervous system. The respiratory rhythm generating network is composed of micro networks functioning within larger networks to generate distinct rhythms and patterns that characterize breathing. The pre-Bötzinger complex, a rhythm generating network located within the ventrolateral medulla assumes a core function without which respiratory rhythm generation and breathing cease altogether. It contains subnetworks with distinct synaptic and intrinsic membrane properties that give rise to different types of respiratory rhythmic activities including eupneic, sigh, and gasping activities. While critical aspects of these rhythmic activities are preserved when isolated in in vitro preparations, the pre-Bötzinger complex functions in the behaving animal as part of a larger network that receives important inputs from areas such as the pons and parafacial nucleus. The respiratory network is also an integrator of modulatory and sensory inputs that imbue the network with the important ability to adapt to changes in the behavioral, metabolic, and developmental conditions of the organism. This review summarizes our current understanding of these interactions and relates the emerging concepts to insights gained in other rhythm generating networks. PMID:21333801

  5. Network Monitor and Control of Disruption-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh

    2014-01-01

    For nearly a decade, NASA and many researchers in the international community have been developing Internet-like protocols that allow for automated network operations in networks where the individual links between nodes are only sporadically connected. A family of Disruption-Tolerant Networking (DTN) protocols has been developed, and many are reaching CCSDS Blue Book status. A NASA version of DTN known as the Interplanetary Overlay Network (ION) has been flight-tested on the EPOXI spacecraft and ION is currently being tested on the International Space Station. Experience has shown that in order for a DTN service-provider to set up a large scale multi-node network, a number of network monitor and control technologies need to be fielded as well as the basic DTN protocols. The NASA DTN program is developing a standardized means of querying a DTN node to ascertain its operational status, known as the DTN Management Protocol (DTNMP), and the program has developed some prototypes of DTNMP software. While DTNMP is a necessary component, it is not sufficient to accomplish Network Monitor and Control of a DTN network. JPL is developing a suite of tools that provide for network visualization, performance monitoring and ION node control software. This suite of network monitor and control tools complements the GSFC and APL-developed DTN MP software, and the combined package can form the basis for flight operations using DTN.

  6. Network Sampling and Classification:An Investigation of Network Model Representations

    PubMed Central

    Airoldi, Edoardo M.; Bai, Xue; Carley, Kathleen M.

    2011-01-01

    Methods for generating a random sample of networks with desired properties are important tools for the analysis of social, biological, and information networks. Algorithm-based approaches to sampling networks have received a great deal of attention in recent literature. Most of these algorithms are based on simple intuitions that associate the full features of connectivity patterns with specific values of only one or two network metrics. Substantive conclusions are crucially dependent on this association holding true. However, the extent to which this simple intuition holds true is not yet known. In this paper, we examine the association between the connectivity patterns that a network sampling algorithm aims to generate and the connectivity patterns of the generated networks, measured by an existing set of popular network metrics. We find that different network sampling algorithms can yield networks with similar connectivity patterns. We also find that the alternative algorithms for the same connectivity pattern can yield networks with different connectivity patterns. We argue that conclusions based on simulated network studies must focus on the full features of the connectivity patterns of a network instead of on the limited set of network metrics for a specific network type. This fact has important implications for network data analysis: for instance, implications related to the way significance is currently assessed. PMID:21666773

  7. Networking standards

    NASA Technical Reports Server (NTRS)

    Davies, Mark

    1991-01-01

    The enterprise network is currently a multivendor environment consisting of many defacto and proprietary standards. During the 1990s, these networks will evolve towards networks which are based on international standards in both Local Area Network (LAN) and Wide Area Network (WAN) space. Also, you can expect to see the higher level functions and applications begin the same transition. Additional information is given in viewgraph form.

  8. Network Solutions.

    ERIC Educational Resources Information Center

    Vietzke, Robert; And Others

    1996-01-01

    This special section explains the latest developments in networking technologies, profiles school districts benefiting from successful implementations, and reviews new products for building networks. Highlights include ATM (asynchronous transfer mode), cable modems, networking switches, Internet screening software, file servers, network management…

  9. Energy-aware virtual network embedding in flexi-grid networks.

    PubMed

    Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng

    2017-11-27

    Network virtualization technology has been proposed to allow multiple heterogeneous virtual networks (VNs) to coexist on a shared substrate network, which increases the utilization of the substrate network. Efficiently mapping VNs on the substrate network is a major challenge on account of the VN embedding (VNE) problem. Meanwhile, energy efficiency has been widely considered in the network design in terms of operation expenses and the ecological awareness. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the electricity cost of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low electricity cost. Numerical results show that the heuristic algorithm performs closely to the ILP for a small size network, and we also demonstrate its applicability to larger networks.

  10. Deploying temporary networks for upscaling of sparse network stations

    NASA Astrophysics Data System (ADS)

    Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Kelly, Victoria; Hall, Mark; Palecki, Michael A.; Temimi, Marouane

    2016-10-01

    Soil observations networks at the national scale play an integral role in hydrologic modeling, drought assessment, agricultural decision support, and our ability to understand climate change. Understanding soil moisture variability is necessary to apply these measurements to model calibration, business and consumer applications, or even human health issues. The installation of soil moisture sensors as sparse, national networks is necessitated by limited financial resources. However, this results in the incomplete sampling of the local heterogeneity of soil type, vegetation cover, topography, and the fine spatial distribution of precipitation events. To this end, temporary networks can be installed in the areas surrounding a permanent installation within a sparse network. The temporary networks deployed in this study provide a more representative average at the 3 km and 9 km scales, localized about the permanent gauge. The value of such temporary networks is demonstrated at test sites in Millbrook, New York and Crossville, Tennessee. The capacity of a single U.S. Climate Reference Network (USCRN) sensor set to approximate the average of a temporary network at the 3 km and 9 km scales using a simple linear scaling function is tested. The capacity of a temporary network to provide reliable estimates with diminishing numbers of sensors, the temporal stability of those networks, and ultimately, the relationship of the variability of those networks to soil moisture conditions at the permanent sensor are investigated. In this manner, this work demonstrates the single-season installation of a temporary network as a mechanism to characterize the soil moisture variability at a permanent gauge within a sparse network.

  11. The Development of Musical Skills of Underprivileged Children Over the Course of 1 Year: A Study in the Context of an El Sistema-Inspired Program

    PubMed Central

    Ilari, Beatriz S.; Keller, Patrick; Damasio, Hanna; Habibi, Assal

    2016-01-01

    Developmental research in music has typically centered on the study of single musical skills (e.g., singing, listening) and has been conducted with middle class children who learn music in schools and conservatories. Information on the musical development of children from different social strata, who are enrolled in community-based music programs, remains elusive. This study examined the development of musical skills in underprivileged children who were attending an El Sistema-inspired program in Los Angeles. We investigated how children, predominantly of Latino ethnicity, developed musically with respect to the following musical skills – pitch and rhythmic discrimination, pitch matching, singing a song from memory, and rhythmic entrainment – over the course of 1 year. Results suggested that participation in an El Sistema-inspired program affects children’s musical development in distinct ways; with pitch perception and production skills developing faster than rhythmic skills. Furthermore, children from the same ethnic and social background, who did not participate in the El Sistema-inspired music program, showed a decline in singing and pitch discrimination skills over the course of 1 year. Taken together, these results are consistent with the idea of musical development as a complex, spiraling and recursive process that is influenced by several factors including type of musical training. Implications for future research are outlined. PMID:26869964

  12. Network neuroscience

    PubMed Central

    Bassett, Danielle S; Sporns, Olaf

    2017-01-01

    Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system. PMID:28230844

  13. Network configuration management : paving the way to network agility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maestas, Joseph H.

    2007-08-01

    Sandia networks consist of nearly nine hundred routers and switches and nearly one million lines of command code, and each line ideally contributes to the capabilities of the network to convey information from one location to another. Sandia's Cyber Infrastructure Development and Deployment organizations recognize that it is therefore essential to standardize network configurations and enforce conformance to industry best business practices and documented internal configuration standards to provide a network that is agile, adaptable, and highly available. This is especially important in times of constrained budgets as members of the workforce are called upon to improve efficiency, effectiveness, andmore » customer focus. Best business practices recommend using the standardized configurations in the enforcement process so that when root cause analysis results in recommended configuration changes, subsequent configuration auditing will improve compliance to the standard. Ultimately, this minimizes mean time to repair, maintains the network security posture, improves network availability, and enables efficient transition to new technologies. Network standardization brings improved network agility, which in turn enables enterprise agility, because the network touches all facets of corporate business. Improved network agility improves the business enterprise as a whole.« less

  14. Comparison analysis on vulnerability of metro networks based on complex network

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhua; Wang, Shuliang; Wang, Xiaoyuan

    2018-04-01

    This paper analyzes the networked characteristics of three metro networks, and two malicious attacks are employed to investigate the vulnerability of metro networks based on connectivity vulnerability and functionality vulnerability. Meanwhile, the networked characteristics and vulnerability of three metro networks are compared with each other. The results show that Shanghai metro network has the largest transport capacity, Beijing metro network has the best local connectivity and Guangzhou metro network has the best global connectivity, moreover Beijing metro network has the best homogeneous degree distribution. Furthermore, we find that metro networks are very vulnerable subjected to malicious attacks, and Guangzhou metro network has the best topological structure and reliability among three metro networks. The results indicate that the proposed methodology is feasible and effective to investigate the vulnerability and to explore better topological structure of metro networks.

  15. Network architecture in a converged optical + IP network

    NASA Astrophysics Data System (ADS)

    Wakim, Walid; Zottmann, Harald

    2012-01-01

    As demands on Provider Networks continue to grow at exponential rates, providers are forced to evaluate how to continue to grow the network while increasing service velocity, enhancing resiliency while decreasing the total cost of ownership (TCO). The bandwidth growth that networks are experiencing is in the form packet based multimedia services such as video, video conferencing, gaming, etc... mixed with Over the Top (OTT) content providers such as Netflix, and the customer's expectations that best effort is not enough you end up with a situation that forces the provider to analyze how to gain more out of the network with less cost. In this paper we will discuss changes in the network that are driving us to a tighter integration between packet and optical layers and how to improve on today's multi - layer inefficiencies to drive down network TCO and provide for a fully integrated and dynamic network that will decrease time to revenue.

  16. Temporal networks

    NASA Astrophysics Data System (ADS)

    Holme, Petter; Saramäki, Jari

    2012-10-01

    A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered

  17. From network structure to network reorganization: implications for adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Schneider-Mizell, Casey M.; Parent, Jack M.; Ben-Jacob, Eshel; Zochowski, Michal R.; Sander, Leonard M.

    2010-12-01

    Networks can be dynamical systems that undergo functional and structural reorganization. One example of such a process is adult hippocampal neurogenesis, in which new cells are continuously born and incorporate into the existing network of the dentate gyrus region of the hippocampus. Many of these introduced cells mature and become indistinguishable from established neurons, joining the existing network. Activity in the network environment is known to promote birth, survival and incorporation of new cells. However, after epileptogenic injury, changes to the connectivity structure around the neurogenic niche are known to correlate with aberrant neurogenesis. The possible role of network-level changes in the development of epilepsy is not well understood. In this paper, we use a computational model to investigate how the structural and functional outcomes of network reorganization, driven by addition of new cells during neurogenesis, depend on the original network structure. We find that there is a stable network topology that allows the network to incorporate new neurons in a manner that enhances activity of the persistently active region, but maintains global network properties. In networks having other connectivity structures, new cells can greatly alter the distribution of firing activity and destroy the initial activity patterns. We thus find that new cells are able to provide focused enhancement of network only for small-world networks with sufficient inhibition. Network-level deviations from this topology, such as those caused by epileptogenic injury, can set the network down a path that develops toward pathological dynamics and aberrant structural integration of new cells.

  18. Network morphospace

    PubMed Central

    Avena-Koenigsberger, Andrea; Goñi, Joaquín; Solé, Ricard; Sporns, Olaf

    2015-01-01

    The structure of complex networks has attracted much attention in recent years. It has been noted that many real-world examples of networked systems share a set of common architectural features. This raises important questions about their origin, for example whether such network attributes reflect common design principles or constraints imposed by selectional forces that have shaped the evolution of network topology. Is it possible to place the many patterns and forms of complex networks into a common space that reveals their relations, and what are the main rules and driving forces that determine which positions in such a space are occupied by systems that have actually evolved? We suggest that these questions can be addressed by combining concepts from two currently relatively unconnected fields. One is theoretical morphology, which has conceptualized the relations between morphological traits defined by mathematical models of biological form. The second is network science, which provides numerous quantitative tools to measure and classify different patterns of local and global network architecture across disparate types of systems. Here, we explore a new theoretical concept that lies at the intersection between both fields, the ‘network morphospace’. Defined by axes that represent specific network traits, each point within such a space represents a location occupied by networks that share a set of common ‘morphological’ characteristics related to aspects of their connectivity. Mapping a network morphospace reveals the extent to which the space is filled by existing networks, thus allowing a distinction between actual and impossible designs and highlighting the generative potential of rules and constraints that pervade the evolution of complex systems. PMID:25540237

  19. Process-in-Network: A Comprehensive Network Processing Approach

    PubMed Central

    Urzaiz, Gabriel; Villa, David; Villanueva, Felix; Lopez, Juan Carlos

    2012-01-01

    A solid and versatile communications platform is very important in modern Ambient Intelligence (AmI) applications, which usually require the transmission of large amounts of multimedia information over a highly heterogeneous network. This article focuses on the concept of Process-in-Network (PIN), which is defined as the possibility that the network processes information as it is being transmitted, and introduces a more comprehensive approach than current network processing technologies. PIN can take advantage of waiting times in queues of routers, idle processing capacity in intermediate nodes, and the information that passes through the network. PMID:22969390

  20. Correlated network of networks enhances robustness against catastrophic failures.

    PubMed

    Min, Byungjoon; Zheng, Muhua

    2018-01-01

    Networks in nature rarely function in isolation but instead interact with one another with a form of a network of networks (NoN). A network of networks with interdependency between distinct networks contains instability of abrupt collapse related to the global rule of activation. As a remedy of the collapse instability, here we investigate a model of correlated NoN. We find that the collapse instability can be removed when hubs provide the majority of interconnections and interconnections are convergent between hubs. Thus, our study identifies a stable structure of correlated NoN against catastrophic failures. Our result further suggests a plausible way to enhance network robustness by manipulating connection patterns, along with other methods such as controlling the state of node based on a local rule.

  1. Trauma-Exposed Latina Immigrants' Networks: A Social Network Analysis Approach.

    PubMed

    Hurtado-de-Mendoza, Alejandra; Serrano, Adriana; Gonzales, Felisa A; Fernandez, Nicole C; Cabling, Mark; Kaltman, Stacey

    2016-11-01

    Trauma exposure among Latina immigrants is common. Social support networks can buffer the impact of trauma on mental health. This study characterizes the social networks of trauma-exposed Latina immigrants using a social network analysis perspective. In 2011-2012 a convenience sample (n=28) of Latina immigrants with trauma exposure and presumptive depression or posttraumatic stress disorder was recruited from a community clinic in Washington DC. Participants completed a social network assessment and listed up to ten persons in their network (alters). E-Net was used to describe the aggregate structural, interactional, and functional characteristics of networks and Node-XL was used in a case study to diagram one network. Most participants listed children (93%), siblings (82%), and friends (71%) as alters, and most alters lived in the US (69%). Perceived emotional support and positive social interaction were higher compared to tangible, language, information, and financial support. A case study illustrates the use of network visualizations to assess the strengths and weaknesses of social networks. Targeted social network interventions to enhance supportive networks among trauma-exposed Latina immigrants are warranted.

  2. Modeling gene regulatory networks: A network simplification algorithm

    NASA Astrophysics Data System (ADS)

    Ferreira, Luiz Henrique O.; de Castro, Maria Clicia S.; da Silva, Fabricio A. B.

    2016-12-01

    Boolean networks have been used for some time to model Gene Regulatory Networks (GRNs), which describe cell functions. Those models can help biologists to make predictions, prognosis and even specialized treatment when some disturb on the GRN lead to a sick condition. However, the amount of information related to a GRN can be huge, making the task of inferring its boolean network representation quite a challenge. The method shown here takes into account information about the interactome to build a network, where each node represents a protein, and uses the entropy of each node as a key to reduce the size of the network, allowing the further inferring process to focus only on the main protein hubs, the ones with most potential to interfere in overall network behavior.

  3. Classification of complex networks based on similarity of topological network features

    NASA Astrophysics Data System (ADS)

    Attar, Niousha; Aliakbary, Sadegh

    2017-09-01

    Over the past few decades, networks have been widely used to model real-world phenomena. Real-world networks exhibit nontrivial topological characteristics and therefore, many network models are proposed in the literature for generating graphs that are similar to real networks. Network models reproduce nontrivial properties such as long-tail degree distributions or high clustering coefficients. In this context, we encounter the problem of selecting the network model that best fits a given real-world network. The need for a model selection method reveals the network classification problem, in which a target-network is classified into one of the candidate network models. In this paper, we propose a novel network classification method which is independent of the network size and employs an alignment-free metric of network comparison. The proposed method is based on supervised machine learning algorithms and utilizes the topological similarities of networks for the classification task. The experiments show that the proposed method outperforms state-of-the-art methods with respect to classification accuracy, time efficiency, and robustness to noise.

  4. Network reconfiguration and neuronal plasticity in rhythm-generating networks.

    PubMed

    Koch, Henner; Garcia, Alfredo J; Ramirez, Jan-Marino

    2011-12-01

    Neuronal networks are highly plastic and reconfigure in a state-dependent manner. The plasticity at the network level emerges through multiple intrinsic and synaptic membrane properties that imbue neurons and their interactions with numerous nonlinear properties. These properties are continuously regulated by neuromodulators and homeostatic mechanisms that are critical to maintain not only network stability and also adapt networks in a short- and long-term manner to changes in behavioral, developmental, metabolic, and environmental conditions. This review provides concrete examples from neuronal networks in invertebrates and vertebrates, and illustrates that the concepts and rules that govern neuronal networks and behaviors are universal.

  5. Psychology and social networks: a dynamic network theory perspective.

    PubMed

    Westaby, James D; Pfaff, Danielle L; Redding, Nicholas

    2014-04-01

    Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  6. Animal transportation networks

    PubMed Central

    Perna, Andrea; Latty, Tanya

    2014-01-01

    Many group-living animals construct transportation networks of trails, galleries and burrows by modifying the environment to facilitate faster, safer or more efficient movement. Animal transportation networks can have direct influences on the fitness of individuals, whereas the shape and structure of transportation networks can influence community dynamics by facilitating contacts between different individuals and species. In this review, we discuss three key areas in the study of animal transportation networks: the topological properties of networks, network morphogenesis and growth, and the behaviour of network users. We present a brief primer on elements of network theory, and then discuss the different ways in which animal groups deal with the fundamental trade-off between the competing network properties of travel efficiency, robustness and infrastructure cost. We consider how the behaviour of network users can impact network efficiency, and call for studies that integrate both network topology and user behaviour. We finish with a prospectus for future research. PMID:25165598

  7. Correlated network of networks enhances robustness against catastrophic failures

    PubMed Central

    Zheng, Muhua

    2018-01-01

    Networks in nature rarely function in isolation but instead interact with one another with a form of a network of networks (NoN). A network of networks with interdependency between distinct networks contains instability of abrupt collapse related to the global rule of activation. As a remedy of the collapse instability, here we investigate a model of correlated NoN. We find that the collapse instability can be removed when hubs provide the majority of interconnections and interconnections are convergent between hubs. Thus, our study identifies a stable structure of correlated NoN against catastrophic failures. Our result further suggests a plausible way to enhance network robustness by manipulating connection patterns, along with other methods such as controlling the state of node based on a local rule. PMID:29668730

  8. Coexistencia e integracion de comunicaciones inalambricas en sistemas de transmision opticos

    NASA Astrophysics Data System (ADS)

    Perez Soler, Joaquin

    Current network and telecommunication systems are required to provide higher data rates in access networks to an increasing number of users. This fact is mainly due to the increase in the Internet traffic data, which is related with the higher demand of online videogames and software, the increased complexity in the content of web pages, the joint distribution of audio-visual and added-value online content, and the introduction of high-definition services and contents such as video on demand, as a result of a society increasingly more interconnected. In order to satisfy these higher data rates requirements, new techniques for the joint distribution of several wireless communication systems are proposed in this Thesis. The aim of these techniques is to facilitate the deployment of an integrated access network at the customer premises, enabling the integration of optical transmission over an optical access network and radio-frequency transmission in the same infrastructure. Two main wireless communication systems are considered in this Thesis, WiMAX (Worldwide Interoperability for Microwave Access) and UWB (Ultra-Wide Band) according to WiMedia Alliance recommendation. Comparing the bit rate and expected range, WiMAX and UWB are complementary radio technologies expected to coexist in a near future in integrated access networks. The optical access network considered in this Thesis can be regarded as a FTTH network (Fibre-to-the-Home). The wireless signals are natively transmitted over optical network, that is, without frequency upconversion and remodulation stages, over one or several optical carriers. This technology, which is known as Radio-over-Fibre (RoF), is well suited for integrated access networks. First, the requirements for the wireless convergence of services based on Multi-Band Orthogonal-Frequency Division-Multiplexing UWB (MB-OFDM UWB) and WiMAX 802.16e in Wireless Personal Area Networks (WPAN) are stated. The aim of this study is to provide relevant

  9. Low-rank network decomposition reveals structural characteristics of small-world networks

    NASA Astrophysics Data System (ADS)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-12-01

    Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.

  10. Vulnerability of complex networks

    NASA Astrophysics Data System (ADS)

    Mishkovski, Igor; Biey, Mario; Kocarev, Ljupco

    2011-01-01

    We consider normalized average edge betweenness of a network as a metric of network vulnerability. We suggest that normalized average edge betweenness together with is relative difference when certain number of nodes and/or edges are removed from the network is a measure of network vulnerability, called vulnerability index. Vulnerability index is calculated for four synthetic networks: Erdős-Rényi (ER) random networks, Barabási-Albert (BA) model of scale-free networks, Watts-Strogatz (WS) model of small-world networks, and geometric random networks. Real-world networks for which vulnerability index is calculated include: two human brain networks, three urban networks, one collaboration network, and two power grid networks. We find that WS model of small-world networks and biological networks (human brain networks) are the most robust networks among all networks studied in the paper.

  11. Trauma-Exposed Latina Immigrants’ Networks: A Social Network Analysis Approach

    PubMed Central

    Hurtado-de-Mendoza, Alejandra; Serrano, Adriana; Gonzales, Felisa A.; Fernandez, Nicole C.; Cabling, Mark; Kaltman, Stacey

    2015-01-01

    Objective Trauma exposure among Latina immigrants is common. Social support networks can buffer the impact of trauma on mental health. This study characterizes the social networks of trauma-exposed Latina immigrants using a social network analysis perspective. Methods In 2011–2012 a convenience sample (n=28) of Latina immigrants with trauma exposure and presumptive depression or posttraumatic stress disorder was recruited from a community clinic in Washington DC. Participants completed a social network assessment and listed up to ten persons in their network (alters). E-Net was used to describe the aggregate structural, interactional, and functional characteristics of networks and Node-XL was used in a case study to diagram one network. Results Most participants listed children (93%), siblings (82%), and friends (71%) as alters, and most alters lived in the US (69%). Perceived emotional support and positive social interaction were higher compared to tangible, language, information, and financial support. A case study illustrates the use of network visualizations to assess the strengths and weaknesses of social networks. Conclusions Targeted social network interventions to enhance supportive networks among trauma-exposed Latina immigrants are warranted. PMID:28078194

  12. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks.

    PubMed

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo

    2014-04-21

    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

  13. Modelling dendritic ecological networks in space: An integrated network perspective

    Treesearch

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

  14. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    PubMed Central

    2011-01-01

    Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis. PMID:22784571

  15. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    PubMed

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  16. A Network of Networks Perspective on Global Trade.

    PubMed

    Maluck, Julian; Donner, Reik V

    2015-01-01

    Mutually intertwined supply chains in contemporary economy result in a complex network of trade relationships with a highly non-trivial topology that varies with time. In order to understand the complex interrelationships among different countries and economic sectors, as well as their dynamics, a holistic view on the underlying structural properties of this network is necessary. This study employs multi-regional input-output data to decompose 186 national economies into 26 industry sectors and utilizes the approach of interdependent networks to analyze the substructure of the resulting international trade network for the years 1990-2011. The partition of the network into national economies is observed to be compatible with the notion of communities in the sense of complex network theory. By studying internal versus cross-subgraph contributions to established complex network metrics, new insights into the architecture of global trade are obtained, which allow to identify key elements of global economy. Specifically, financial services and business activities dominate domestic trade whereas electrical and machinery industries dominate foreign trade. In order to further specify each national sector's role individually, (cross-)clustering coefficients and cross-betweenness are obtained for different pairs of subgraphs. The corresponding analysis reveals that specific industrial sectors tend to favor distinct directionality patterns and that the cross-clustering coefficient for geographically close country pairs is remarkably high, indicating that spatial factors are still of paramount importance for the organization of trade patterns in modern economy. Regarding the evolution of the trade network's substructure, globalization is well-expressed by trends of several structural characteristics (e.g., link density and node strength) in the interacting network framework. Extreme events, such as the financial crisis 2008/2009, are manifested as anomalies superimposed to

  17. Managing Network Partitions in Structured P2P Networks

    NASA Astrophysics Data System (ADS)

    Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif

    Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.

  18. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks

    PubMed Central

    Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei

    2017-01-01

    Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction. PMID:28672867

  19. Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks.

    PubMed

    Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei

    2017-06-26

    Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.

  20. Network Upgrade for the SLC: PEP II Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crane, M.; Call, M.; Clark, S.

    2011-09-09

    The PEP-II control system required a new network to support the system functions. This network, called CTLnet, is an FDDI/Ethernet based network using only TCP/IP protocols. An upgrade of the SLC Control System micro communications to use TCP/IP and SLCNET would allow all PEP-II control system nodes to use TCP/IP. CTLnet is private and separate from the SLAC public network. Access to nodes and control system functions is provided by multi-homed application servers with connections to both the private CTLnet and the SLAC public network. Monitoring and diagnostics are provided using a dedicated system. Future plans and current status informationmore » is included.« less

  1. User Access Management Based on Network Pricing for Social Network Applications

    PubMed Central

    Ma, Xingmin; Gu, Qing

    2018-01-01

    Social applications play a very important role in people’s lives, as users communicate with each other through social networks on a daily basis. This presents a challenge: How does one receive high-quality service from social networks at a low cost? Users can access different kinds of wireless networks from various locations. This paper proposes a user access management strategy based on network pricing such that networks can increase its income and improve service quality. Firstly, network price is treated as an optimizing access parameter, and an unascertained membership algorithm is used to make pricing decisions. Secondly, network price is adjusted dynamically in real time according to network load. Finally, selecting a network is managed and controlled in terms of the market economy. Simulation results show that the proposed scheme can effectively balance network load, reduce network congestion, improve the user's quality of service (QoS) requirements, and increase the network’s income. PMID:29495252

  2. A Collaboration Network Model Of Cytokine-Protein Network

    NASA Astrophysics Data System (ADS)

    Zou, Sheng-Rong; Zhou, Ta; Peng, Yu-Jing; Guo, Zhong-Wei; Gu, Chang-Gui; He, Da-Ren

    2008-03-01

    Complex networks provide us a new view for investigation of immune systems. We collect data through STRING database and present a network description with cooperation network model. The cytokine-protein network model we consider is constituted by two kinds of nodes, one is immune cytokine types which can be regarded as collaboration acts, the other one is protein type which can be regarded as collaboration actors. From act degree distribution that can be well described by typical SPL (shifted power law) functions [1], we find that HRAS, TNFRSF13C, S100A8, S100A1, MAPK8, S100A7, LIF, CCL4, CXCL13 are highly collaborated with other proteins. It reveals that these mediators are important in cytokine-protein network to regulate immune activity. Dyad in the collaboration networks can be defined as two proteins and they appear in one cytokine collaboration relationship. The dyad act degree distribution can also be well described by typical SPL functions. [1] Assortativity and act degree distribution of some collaboration networks, Hui Chang, Bei-Bei Su, Yue-Ping Zhou, Daren He, Physica A, 383 (2007) 687-702

  3. Network traffic anomaly prediction using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea

    2017-03-01

    As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.

  4. Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks

    PubMed Central

    Lähdesmäki, Harri; Hautaniemi, Sampsa; Shmulevich, Ilya; Yli-Harja, Olli

    2006-01-01

    A significant amount of attention has recently been focused on modeling of gene regulatory networks. Two frequently used large-scale modeling frameworks are Bayesian networks (BNs) and Boolean networks, the latter one being a special case of its recent stochastic extension, probabilistic Boolean networks (PBNs). PBN is a promising model class that generalizes the standard rule-based interactions of Boolean networks into the stochastic setting. Dynamic Bayesian networks (DBNs) is a general and versatile model class that is able to represent complex temporal stochastic processes and has also been proposed as a model for gene regulatory systems. In this paper, we concentrate on these two model classes and demonstrate that PBNs and a certain subclass of DBNs can represent the same joint probability distribution over their common variables. The major benefit of introducing the relationships between the models is that it opens up the possibility of applying the standard tools of DBNs to PBNs and vice versa. Hence, the standard learning tools of DBNs can be applied in the context of PBNs, and the inference methods give a natural way of handling the missing values in PBNs which are often present in gene expression measurements. Conversely, the tools for controlling the stationary behavior of the networks, tools for projecting networks onto sub-networks, and efficient learning schemes can be used for DBNs. In other words, the introduced relationships between the models extend the collection of analysis tools for both model classes. PMID:17415411

  5. Airborne Network Optimization with Dynamic Network Update

    DTIC Science & Technology

    2015-03-26

    Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University...Member Dr. Barry E. Mullins Member AFIT-ENG-MS-15-M-030 Abstract Modern networks employ congestion and routing management algorithms that can perform...airborne networks. Intelligent agents can make use of Kalman filter predictions to make informed decisions to manage communication in airborne networks. The

  6. Aberrant within- and between-network connectivity of the mirror neuron system network and the mentalizing network in first episode psychosis.

    PubMed

    Choe, Eugenie; Lee, Tae Young; Kim, Minah; Hur, Ji-Won; Yoon, Youngwoo Bryan; Cho, Kang-Ik K; Kwon, Jun Soo

    2018-03-26

    It has been suggested that the mentalizing network and the mirror neuron system network support important social cognitive processes that are impaired in schizophrenia. However, the integrity and interaction of these two networks have not been sufficiently studied, and their effects on social cognition in schizophrenia remain unclear. Our study included 26 first-episode psychosis (FEP) patients and 26 healthy controls. We utilized resting-state functional connectivity to examine the a priori-defined mirror neuron system network and the mentalizing network and to assess the within- and between-network connectivities of the networks in FEP patients. We also assessed the correlation between resting-state functional connectivity measures and theory of mind performance. FEP patients showed altered within-network connectivity of the mirror neuron system network, and aberrant between-network connectivity between the mirror neuron system network and the mentalizing network. The within-network connectivity of the mirror neuron system network was noticeably correlated with theory of mind task performance in FEP patients. The integrity and interaction of the mirror neuron system network and the mentalizing network may be altered during the early stages of psychosis. Additionally, this study suggests that alterations in the integrity of the mirror neuron system network are highly related to deficient theory of mind in schizophrenia, and this problem would be present from the early stage of psychosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Functional Module Analysis for Gene Coexpression Networks with Network Integration.

    PubMed

    Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.

  8. Network Analysis Tools: from biological networks to clusters and pathways.

    PubMed

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  9. Energy-aware virtual network embedding in flexi-grid optical networks

    NASA Astrophysics Data System (ADS)

    Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng; Chen, Bin

    2018-01-01

    Virtual network embedding (VNE) problem is to map multiple heterogeneous virtual networks (VN) on a shared substrate network, which mitigate the ossification of the substrate network. Meanwhile, energy efficiency has been widely considered in the network design. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the power increment of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low energy consumption. Numerical results show the functionality of the heuristic algorithm in a 24-node network.

  10. A Network Selection Algorithm Considering Power Consumption in Hybrid Wireless Networks

    NASA Astrophysics Data System (ADS)

    Joe, Inwhee; Kim, Won-Tae; Hong, Seokjoon

    In this paper, we propose a novel network selection algorithm considering power consumption in hybrid wireless networks for vertical handover. CDMA, WiBro, WLAN networks are candidate networks for this selection algorithm. This algorithm is composed of the power consumption prediction algorithm and the final network selection algorithm. The power consumption prediction algorithm estimates the expected lifetime of the mobile station based on the current battery level, traffic class and power consumption for each network interface card of the mobile station. If the expected lifetime of the mobile station in a certain network is not long enough compared the handover delay, this particular network will be removed from the candidate network list, thereby preventing unnecessary handovers in the preprocessing procedure. On the other hand, the final network selection algorithm consists of AHP (Analytic Hierarchical Process) and GRA (Grey Relational Analysis). The global factors of the network selection structure are QoS, cost and lifetime. If user preference is lifetime, our selection algorithm selects the network that offers longest service duration due to low power consumption. Also, we conduct some simulations using the OPNET simulation tool. The simulation results show that the proposed algorithm provides longer lifetime in the hybrid wireless network environment.

  11. Research of ad hoc network based on SINCGARS network

    NASA Astrophysics Data System (ADS)

    Nie, Hao; Cai, Xiaoxia; Chen, Hong; Chen, Jian; Weng, Pengfei

    2016-03-01

    In today's world, science and technology make a spurt of progress, so society has entered the era of information technology, network. Only the comprehensive use of electronic warfare and network warfare means can we maximize their access to information and maintain the information superiority. Combined with the specific combat mission and operational requirements, the research design and construction in accordance with the actual military which are Suitable for the future of information technology needs of the tactical Adhoc network, tactical internet, will greatly improve the operational efficiency of the command of the army. Through the study of the network of the U.S. military SINCGARS network, it can explore the routing protocol and mobile model, to provide a reference for the research of our army network.

  12. Network rewiring dynamics with convergence towards a star network

    PubMed Central

    Dick, G.; Parry, M.

    2016-01-01

    Network rewiring as a method for producing a range of structures was first introduced in 1998 by Watts & Strogatz (Nature 393, 440–442. (doi:10.1038/30918)). This approach allowed a transition from regular through small-world to a random network. The subsequent interest in scale-free networks motivated a number of methods for developing rewiring approaches that converged to scale-free networks. This paper presents a rewiring algorithm (RtoS) for undirected, non-degenerate, fixed size networks that transitions from regular, through small-world and scale-free to star-like networks. Applications of the approach to models for the spread of infectious disease and fixation time for a simple genetics model are used to demonstrate the efficacy and application of the approach. PMID:27843396

  13. Network rewiring dynamics with convergence towards a star network.

    PubMed

    Whigham, P A; Dick, G; Parry, M

    2016-10-01

    Network rewiring as a method for producing a range of structures was first introduced in 1998 by Watts & Strogatz ( Nature 393 , 440-442. (doi:10.1038/30918)). This approach allowed a transition from regular through small-world to a random network. The subsequent interest in scale-free networks motivated a number of methods for developing rewiring approaches that converged to scale-free networks. This paper presents a rewiring algorithm (RtoS) for undirected, non-degenerate, fixed size networks that transitions from regular, through small-world and scale-free to star-like networks. Applications of the approach to models for the spread of infectious disease and fixation time for a simple genetics model are used to demonstrate the efficacy and application of the approach.

  14. Network survivability performance

    NASA Astrophysics Data System (ADS)

    1993-11-01

    This technical report has been developed to address the survivability of telecommunications networks including services. It responds to the need for a common understanding of, and assessment techniques for network survivability, availability, integrity, and reliability. It provides a basis for designing and operating telecommunications networks to user expectations for network survivability and a foundation for continuing industry activities in the subject area. This report focuses on the survivability of both public and private networks and covers a wide range of users. Two frameworks are established for quantifying and categorizing service outages, and for classifying network survivability techniques and measures. The performance of the network survivability techniques is considered; however, recommended objectives are not established for network survivability performance.

  15. An Adaptive Complex Network Model for Brain Functional Networks

    PubMed Central

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902

  16. A Squeezed Artificial Neural Network for the Symbolic Network Reliability Functions of Binary-State Networks.

    PubMed

    Yeh, Wei-Chang

    Network reliability is an important index to the provision of useful information for decision support in the modern world. There is always a need to calculate symbolic network reliability functions (SNRFs) due to dynamic and rapid changes in network parameters. In this brief, the proposed squeezed artificial neural network (SqANN) approach uses the Monte Carlo simulation to estimate the corresponding reliability of a given designed matrix from the Box-Behnken design, and then the Taguchi method is implemented to find the appropriate number of neurons and activation functions of the hidden layer and the output layer in ANN to evaluate SNRFs. According to the experimental results of the benchmark networks, the comparison appears to support the superiority of the proposed SqANN method over the traditional ANN-based approach with at least 16.6% improvement in the median absolute deviation in the cost of extra 2 s on average for all experiments.Network reliability is an important index to the provision of useful information for decision support in the modern world. There is always a need to calculate symbolic network reliability functions (SNRFs) due to dynamic and rapid changes in network parameters. In this brief, the proposed squeezed artificial neural network (SqANN) approach uses the Monte Carlo simulation to estimate the corresponding reliability of a given designed matrix from the Box-Behnken design, and then the Taguchi method is implemented to find the appropriate number of neurons and activation functions of the hidden layer and the output layer in ANN to evaluate SNRFs. According to the experimental results of the benchmark networks, the comparison appears to support the superiority of the proposed SqANN method over the traditional ANN-based approach with at least 16.6% improvement in the median absolute deviation in the cost of extra 2 s on average for all experiments.

  17. Distributed sensor networks: a cellular nonlinear network perspective.

    PubMed

    Haenggi, Martin

    2003-12-01

    Large-scale networks of integrated wireless sensors become increasingly tractable. Advances in hardware technology and engineering design have led to dramatic reductions in size, power consumption, and cost for digital circuitry, and wireless communications. Networking, self-organization, and distributed operation are crucial ingredients to harness the sensing, computing, and computational capabilities of the nodes into a complete system. This article shows that those networks can be considered as cellular nonlinear networks (CNNs), and that their analysis and design may greatly benefit from the rich theoretical results available for CNNs.

  18. Impact of reduced scale free network on wireless sensor network

    NASA Astrophysics Data System (ADS)

    Keshri, Neha; Gupta, Anurag; Mishra, Bimal Kumar

    2016-12-01

    In heterogeneous wireless sensor network (WSN) each data-packet traverses through multiple hops over restricted communication range before it reaches the sink. The amount of energy required to transmit a data-packet is directly proportional to the number of hops. To balance the energy costs across the entire network and to enhance the robustness in order to improve the lifetime of WSN becomes a key issue of researchers. Due to high dimensionality of an epidemic model of WSN over a general scale free network, it is quite difficult to have close study of network dynamics. To overcome this complexity, we simplify a general scale free network by partitioning all of its motes into two classes: higher-degree motes and lower-degree motes, and equating the degrees of all higher-degree motes with lower-degree motes, yielding a reduced scale free network. We develop an epidemic model of WSN based on reduced scale free network. The existence of unique positive equilibrium is determined with some restrictions. Stability of the system is proved. Furthermore, simulation results show improvements made in this paper have made the entire network have a better robustness to the network failure and the balanced energy costs. This reduced model based on scale free network theory proves more applicable to the research of WSN.

  19. Network meta-analysis, electrical networks and graph theory.

    PubMed

    Rücker, Gerta

    2012-12-01

    Network meta-analysis is an active field of research in clinical biostatistics. It aims to combine information from all randomized comparisons among a set of treatments for a given medical condition. We show how graph-theoretical methods can be applied to network meta-analysis. A meta-analytic graph consists of vertices (treatments) and edges (randomized comparisons). We illustrate the correspondence between meta-analytic networks and electrical networks, where variance corresponds to resistance, treatment effects to voltage, and weighted treatment effects to current flows. Based thereon, we then show that graph-theoretical methods that have been routinely applied to electrical networks also work well in network meta-analysis. In more detail, the resulting consistent treatment effects induced in the edges can be estimated via the Moore-Penrose pseudoinverse of the Laplacian matrix. Moreover, the variances of the treatment effects are estimated in analogy to electrical effective resistances. It is shown that this method, being computationally simple, leads to the usual fixed effect model estimate when applied to pairwise meta-analysis and is consistent with published results when applied to network meta-analysis examples from the literature. Moreover, problems of heterogeneity and inconsistency, random effects modeling and including multi-armed trials are addressed. Copyright © 2012 John Wiley & Sons, Ltd. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Neural network for control of rearrangeable Clos networks.

    PubMed

    Park, Y K; Cherkassky, V

    1994-09-01

    Rapid evolution in the field of communication networks requires high speed switching technologies. This involves a high degree of parallelism in switching control and routing performed at the hardware level. The multistage crossbar networks have always been attractive to switch designers. In this paper a neural network approach to controlling a three-stage Clos network in real time is proposed. This controller provides optimal routing of communication traffic requests on a call-by-call basis by rearranging existing connections, with a minimum length of rearrangement sequence so that a new blocked call request can be accommodated. The proposed neural network controller uses Paull's rearrangement algorithm, along with the special (least used) switch selection rule in order to minimize the length of rearrangement sequences. The functional behavior of our model is verified by simulations and it is shown that the convergence time required for finding an optimal solution is constant, regardless of the switching network size. The performance is evaluated for random traffic with various traffic loads. Simulation results show that applying the least used switch selection rule increases the efficiency in switch rearrangements, reducing the network convergence time. The implementation aspects are also discussed to show the feasibility of the proposed approach.

  1. Resilience of networks formed of interdependent modular networks

    NASA Astrophysics Data System (ADS)

    Shekhtman, Louis M.; Shai, Saray; Havlin, Shlomo

    2015-12-01

    Many infrastructure networks have a modular structure and are also interdependent with other infrastructures. While significant research has explored the resilience of interdependent networks, there has been no analysis of the effects of modularity. Here we develop a theoretical framework for attacks on interdependent modular networks and support our results through simulations. We focus, for simplicity, on the case where each network has the same number of communities and the dependency links are restricted to be between pairs of communities of different networks. This is particularly realistic for modeling infrastructure across cities. Each city has its own infrastructures and different infrastructures are dependent only within the city. However, each infrastructure is connected within and between cities. For example, a power grid will connect many cities as will a communication network, yet a power station and communication tower that are interdependent will likely be in the same city. It has previously been shown that single networks are very susceptible to the failure of the interconnected nodes (between communities) (Shai et al 2014 arXiv:1404.4748) and that attacks on these nodes are even more crippling than attacks based on betweenness (da Cunha et al 2015 arXiv:1502.00353). In our example of cities these nodes have long range links which are more likely to fail. For both treelike and looplike interdependent modular networks we find distinct regimes depending on the number of modules, m. (i) In the case where there are fewer modules with strong intraconnections, the system first separates into modules in an abrupt first-order transition and then each module undergoes a second percolation transition. (ii) When there are more modules with many interconnections between them, the system undergoes a single transition. Overall, we find that modular structure can significantly influence the type of transitions observed in interdependent networks and should be

  2. A Network of Networks Perspective on Global Trade

    PubMed Central

    Maluck, Julian; Donner, Reik V.

    2015-01-01

    Mutually intertwined supply chains in contemporary economy result in a complex network of trade relationships with a highly non-trivial topology that varies with time. In order to understand the complex interrelationships among different countries and economic sectors, as well as their dynamics, a holistic view on the underlying structural properties of this network is necessary. This study employs multi-regional input-output data to decompose 186 national economies into 26 industry sectors and utilizes the approach of interdependent networks to analyze the substructure of the resulting international trade network for the years 1990–2011. The partition of the network into national economies is observed to be compatible with the notion of communities in the sense of complex network theory. By studying internal versus cross-subgraph contributions to established complex network metrics, new insights into the architecture of global trade are obtained, which allow to identify key elements of global economy. Specifically, financial services and business activities dominate domestic trade whereas electrical and machinery industries dominate foreign trade. In order to further specify each national sector’s role individually, (cross-)clustering coefficients and cross-betweenness are obtained for different pairs of subgraphs. The corresponding analysis reveals that specific industrial sectors tend to favor distinct directionality patterns and that the cross-clustering coefficient for geographically close country pairs is remarkably high, indicating that spatial factors are still of paramount importance for the organization of trade patterns in modern economy. Regarding the evolution of the trade network’s substructure, globalization is well-expressed by trends of several structural characteristics (e.g., link density and node strength) in the interacting network framework. Extreme events, such as the financial crisis 2008/2009, are manifested as anomalies superimposed

  3. SCM: A method to improve network service layout efficiency with network evolution

    PubMed Central

    Zhao, Qi; Zhang, Chuanhao

    2017-01-01

    Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of “software defined network + network function virtualization” (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently. PMID:29267299

  4. SCM: A method to improve network service layout efficiency with network evolution.

    PubMed

    Zhao, Qi; Zhang, Chuanhao; Zhao, Zheng

    2017-01-01

    Network services are an important component of the Internet, which are used to expand network functions for third-party developers. Network function virtualization (NFV) can improve the speed and flexibility of network service deployment. However, with the evolution of the network, network service layout may become inefficient. Regarding this problem, this paper proposes a service chain migration (SCM) method with the framework of "software defined network + network function virtualization" (SDN+NFV), which migrates service chains to adapt to network evolution and improves the efficiency of the network service layout. SCM is modeled as an integer linear programming problem and resolved via particle swarm optimization. An SCM prototype system is designed based on an SDN controller. Experiments demonstrate that SCM could reduce the network traffic cost and energy consumption efficiently.

  5. Multilayer Brain Networks

    NASA Astrophysics Data System (ADS)

    Vaiana, Michael; Muldoon, Sarah Feldt

    2018-01-01

    The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure-function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

  6. Resilience of networks to environmental stress: From regular to random networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho

    2018-04-01

    Despite the huge interest in network resilience to stress, most of the studies have concentrated on internal stress damaging network structure (e.g., node removals). Here we study how networks respond to environmental stress deteriorating their external conditions. We show that, when regular networks gradually disintegrate as environmental stress increases, disordered networks can suddenly collapse at critical stress with hysteresis and vulnerability to perturbations. We demonstrate that this difference results from a trade-off between node resilience and network resilience to environmental stress. The nodes in the disordered networks can suppress their collapses due to the small-world topology of the networks but eventually collapse all together in return. Our findings indicate that some real networks can be highly resilient against environmental stress to a threshold yet extremely vulnerable to the stress above the threshold because of their small-world topology.

  7. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    NASA Astrophysics Data System (ADS)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  8. [Political challenges facing the consolidation of the Sistema Único de Saúde: a historical approach].

    PubMed

    Rodrigues, Paulo Henrique de Almeida

    2014-01-01

    This article investigates the circumstances in which Brazil’s sanitation reform was conceived and the Sistema Único de Saúde (SUS) was constructed. A brief analysis is conducted of Brazil’s political transition to democracy, focusing on three political challenges facing the consolidation of SUS: its weak support base amongst workers, competition with the private sector, and the fragmentation of its administration caused by its municipalization. Finally, the changes in the scenario caused by the weakening of neoliberalism since the 2008 crisis, the reemergence of a multipolar political scenario internationally, and the financing conditions of the Brazilian State are described.

  9. Technological Networks

    NASA Astrophysics Data System (ADS)

    Mitra, Bivas

    The study of networks in the form of mathematical graph theory is one of the fundamental pillars of discrete mathematics. However, recent years have witnessed a substantial new movement in network research. The focus of the research is shifting away from the analysis of small graphs and the properties of individual vertices or edges to consideration of statistical properties of large scale networks. This new approach has been driven largely by the availability of technological networks like the Internet [12], World Wide Web network [2], etc. that allow us to gather and analyze data on a scale far larger than previously possible. At the same time, technological networks have evolved as a socio-technological system, as the concepts of social systems that are based on self-organization theory have become unified in technological networks [13]. In today’s society, we have a simple and universal access to great amounts of information and services. These information services are based upon the infrastructure of the Internet and the World Wide Web. The Internet is the system composed of ‘computers’ connected by cables or some other form of physical connections. Over this physical network, it is possible to exchange e-mails, transfer files, etc. On the other hand, the World Wide Web (commonly shortened to the Web) is a system of interlinked hypertext documents accessed via the Internet where nodes represent web pages and links represent hyperlinks between the pages. Peer-to-peer (P2P) networks [26] also have recently become a popular medium through which huge amounts of data can be shared. P2P file sharing systems, where files are searched and downloaded among peers without the help of central servers, have emerged as a major component of Internet traffic. An important advantage in P2P networks is that all clients provide resources, including bandwidth, storage space, and computing power. In this chapter, we discuss these technological networks in detail. The review

  10. Adaptive dynamical networks

    NASA Astrophysics Data System (ADS)

    Maslennikov, O. V.; Nekorkin, V. I.

    2017-10-01

    Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.

  11. A Network Coding Based Routing Protocol for Underwater Sensor Networks

    PubMed Central

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime. PMID:22666045

  12. A network coding based routing protocol for underwater sensor networks.

    PubMed

    Wu, Huayang; Chen, Min; Guan, Xin

    2012-01-01

    Due to the particularities of the underwater environment, some negative factors will seriously interfere with data transmission rates, reliability of data communication, communication range, and network throughput and energy consumption of underwater sensor networks (UWSNs). Thus, full consideration of node energy savings, while maintaining a quick, correct and effective data transmission, extending the network life cycle are essential when routing protocols for underwater sensor networks are studied. In this paper, we have proposed a novel routing algorithm for UWSNs. To increase energy consumption efficiency and extend network lifetime, we propose a time-slot based routing algorithm (TSR).We designed a probability balanced mechanism and applied it to TSR. The theory of network coding is introduced to TSBR to meet the requirement of further reducing node energy consumption and extending network lifetime. Hence, time-slot based balanced network coding (TSBNC) comes into being. We evaluated the proposed time-slot based balancing routing algorithm and compared it with other classical underwater routing protocols. The simulation results show that the proposed protocol can reduce the probability of node conflicts, shorten the process of routing construction, balance energy consumption of each node and effectively prolong the network lifetime.

  13. Directed network modules

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Farkas, Illés J.; Pollner, Péter; Derényi, Imre; Vicsek, Tamás

    2007-06-01

    A search technique locating network modules, i.e. internally densely connected groups of nodes in directed networks is introduced by extending the clique percolation method originally proposed for undirected networks. After giving a suitable definition for directed modules we investigate their percolation transition in the Erdos-Rényi graph both analytically and numerically. We also analyse four real-world directed networks, including Google's own web-pages, an email network, a word association graph and the transcriptional regulatory network of the yeast Saccharomyces cerevisiae. The obtained directed modules are validated by additional information available for the nodes. We find that directed modules of real-world graphs inherently overlap and the investigated networks can be classified into two major groups in terms of the overlaps between the modules. Accordingly, in the word-association network and Google's web-pages, overlaps are likely to contain in-hubs, whereas the modules in the email and transcriptional regulatory network tend to overlap via out-hubs.

  14. Network connectivity value.

    PubMed

    Dragicevic, Arnaud; Boulanger, Vincent; Bruciamacchie, Max; Chauchard, Sandrine; Dupouey, Jean-Luc; Stenger, Anne

    2017-04-21

    In order to unveil the value of network connectivity, we formalize the construction of ecological networks in forest environments as an optimal control dynamic graph-theoretic problem. The network is based on a set of bioreserves and patches linked by ecological corridors. The node dynamics, built upon the consensus protocol, form a time evolutive Mahalanobis distance weighted by the opportunity costs of timber production. We consider a case of complete graph, where the ecological network is fully connected, and a case of incomplete graph, where the ecological network is partially connected. The results show that the network equilibrium depends on the size of the reception zone, while the network connectivity depends on the environmental compatibility between the ecological areas. Through shadow prices, we find that securing connectivity in partially connected networks is more expensive than in fully connected networks, but should be undertaken when the opportunity costs are significant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Default mode network, motor network, dorsal and ventral basal ganglia networks in the rat brain: comparison to human networks using resting state-fMRI.

    PubMed

    Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan

    2015-01-01

    Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats.

  16. Default Mode Network, Motor Network, Dorsal and Ventral Basal Ganglia Networks in the Rat Brain: Comparison to Human Networks Using Resting State-fMRI

    PubMed Central

    Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan

    2015-01-01

    Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats. PMID:25789862

  17. Lifting SU(2) spin networks to projected spin networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupuis, Maiete; Livine, Etera R.

    2010-09-15

    Projected spin network states are the canonical basis of quantum states of geometry for the recent EPRL-FK spinfoam models for quantum gravity introduced by Engle-Pereira-Rovelli-Livine and Freidel-Krasnov. They are functionals of both the Lorentz connection and the time-normal field. We analyze in detail the map from these projected spin networks to the standard SU(2) spin networks of loop quantum gravity. We show that this map is not one to one and that the corresponding ambiguity is parameterized by the Immirzi parameter. We conclude with a comparison of the scalar products between projected spin networks and SU(2) spin network states.

  18. Nested Neural Networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1992-01-01

    Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.

  19. A research on the application of software defined networking in satellite network architecture

    NASA Astrophysics Data System (ADS)

    Song, Huan; Chen, Jinqiang; Cao, Suzhi; Cui, Dandan; Li, Tong; Su, Yuxing

    2017-10-01

    Software defined network is a new type of network architecture, which decouples control plane and data plane of traditional network, has the feature of flexible configurations and is a direction of the next generation terrestrial Internet development. Satellite network is an important part of the space-ground integrated information network, while the traditional satellite network has the disadvantages of difficult network topology maintenance and slow configuration. The application of SDN technology in satellite network can solve these problems that traditional satellite network faces. At present, the research on the application of SDN technology in satellite network is still in the stage of preliminary study. In this paper, we start with introducing the SDN technology and satellite network architecture. Then we mainly introduce software defined satellite network architecture, as well as the comparison of different software defined satellite network architecture and satellite network virtualization. Finally, the present research status and development trend of SDN technology in satellite network are analyzed.

  20. An iterative network partition algorithm for accurate identification of dense network modules

    PubMed Central

    Sun, Siqi; Dong, Xinran; Fu, Yao; Tian, Weidong

    2012-01-01

    A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity has the advantage of preserving the primary network structure of the undetected modules. Thus, we have developed a simple iterative Network Partition (iNP) algorithm to partition a network. The iNP algorithm provides a general framework in which any modularity-based algorithm can be implemented in the network partition step. Here, we tested iNP with three modularity-based algorithms: multi-step greedy (MSG), spectral clustering and Qcut. Compared with the original three methods, iNP achieved a significant improvement in the quality of network partition in a benchmark study with simulated networks, identified more modules with significantly better enrichment of functionally related genes in both yeast protein complex network and breast cancer gene co-expression network, and discovered more cancer-specific modules in the cancer gene co-expression network. As such, iNP should have a broad application as a general method to assist in the analysis of biological networks. PMID:22121225

  1. CUFID-query: accurate network querying through random walk based network flow estimation.

    PubMed

    Jeong, Hyundoo; Qian, Xiaoning; Yoon, Byung-Jun

    2017-12-28

    Functional modules in biological networks consist of numerous biomolecules and their complicated interactions. Recent studies have shown that biomolecules in a functional module tend to have similar interaction patterns and that such modules are often conserved across biological networks of different species. As a result, such conserved functional modules can be identified through comparative analysis of biological networks. In this work, we propose a novel network querying algorithm based on the CUFID (Comparative network analysis Using the steady-state network Flow to IDentify orthologous proteins) framework combined with an efficient seed-and-extension approach. The proposed algorithm, CUFID-query, can accurately detect conserved functional modules as small subnetworks in the target network that are expected to perform similar functions to the given query functional module. The CUFID framework was recently developed for probabilistic pairwise global comparison of biological networks, and it has been applied to pairwise global network alignment, where the framework was shown to yield accurate network alignment results. In the proposed CUFID-query algorithm, we adopt the CUFID framework and extend it for local network alignment, specifically to solve network querying problems. First, in the seed selection phase, the proposed method utilizes the CUFID framework to compare the query and the target networks and to predict the probabilistic node-to-node correspondence between the networks. Next, the algorithm selects and greedily extends the seed in the target network by iteratively adding nodes that have frequent interactions with other nodes in the seed network, in a way that the conductance of the extended network is maximally reduced. Finally, CUFID-query removes irrelevant nodes from the querying results based on the personalized PageRank vector for the induced network that includes the fully extended network and its neighboring nodes. Through extensive

  2. Local area networking: Ames centerwide network

    NASA Technical Reports Server (NTRS)

    Price, Edwin

    1988-01-01

    A computer network can benefit the user by making his/her work quicker and easier. A computer network is made up of seven different layers with the lowest being the hardware, the top being the user, and the middle being the software. These layers are discussed.

  3. A neural networks-based hybrid routing protocol for wireless mesh networks.

    PubMed

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  4. A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks

    PubMed Central

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. PMID:22969360

  5. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal

  6. ASI-Sistema Rischio Vulcanico SRV: a pilot project to develop EO data processing modules and products for volcanic activity monitoring based on Italian Civil Protection Department requirements and needs

    NASA Astrophysics Data System (ADS)

    Buongiorno, Maria Fabrizia; Musacchio, Massimo; Silvestri, Malvina; Spinetti, Claudia; Corradini, Stefano; Lombardo, Valerio; Merucci, Luca; Sansosti, Eugenio; Pugnagli, Sergio; Teggi, Sergio; Pace, Gaetano; Fermi, Marco; Zoffoli, Simona

    2007-10-01

    The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the volcanic monitoring. The objective of the project is to develop a pre-operative system based on EO data and ground measurements integration to support the volcanic risk monitoring of the Italian Civil Protection Department which requirements and need are well integrated in the GMES Emergency Core Services program. The project philosophy is to implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools EO derived parameters considering three activity phases: 1) knowledge and prevention; 2) crisis; 3) post crisis. In order to combine effectively the EO data and the ground networks measurements the system will implement a multi-parametric analysis tool, which represents and unique tool to analyze contemporaneously a large data set of data in "near real time". The SRV project will be tested his operational capabilities on three Italian Volcanoes: Etna,Vesuvio and Campi Flegrei.

  7. Hierarchical thinking in network biology: the unbiased modularization of biochemical networks.

    PubMed

    Papin, Jason A; Reed, Jennifer L; Palsson, Bernhard O

    2004-12-01

    As reconstructed biochemical reaction networks continue to grow in size and scope, there is a growing need to describe the functional modules within them. Such modules facilitate the study of biological processes by deconstructing complex biological networks into conceptually simple entities. The definition of network modules is often based on intuitive reasoning. As an alternative, methods are being developed for defining biochemical network modules in an unbiased fashion. These unbiased network modules are mathematically derived from the structure of the whole network under consideration.

  8. Differential network as an indicator of osteoporosis with network entropy.

    PubMed

    Ma, Lili; Du, Hongmei; Chen, Guangdong

    2018-07-01

    Osteoporosis is a common skeletal disorder characterized by a decrease in bone mass and density. The peak bone mass (PBM) is a significant determinant of osteoporosis. To gain insights into the indicating effect of PBM to osteoporosis, this study focused on characterizing the PBM networks and identifying key genes. One biological data set with 12 monocyte low PBM samples and 11 high PBM samples was derived to construct protein-protein interaction networks (PPINs). Based on clique-merging, module-identification algorithm was used to identify modules from PPINs. The systematic calculation and comparison were performed to test whether the network entropy can discriminate the low PBM network from high PBM network. We constructed 32 destination networks with 66 modules divided from monocyte low and high PBM networks. Among them, network 11 was the only significantly differential one (P<0.05) with 8 nodes and 28 edges. All genes belonged to precursors of osteoclasts, which were related to calcium transport as well as blood monocytes. In conclusion, based on the entropy in PBM PPINs, the differential network appears to be a novel therapeutic indicator for osteoporosis during the bone monocyte progression; these findings are helpful in disclosing the pathogenetic mechanisms of osteoporosis.

  9. Understanding resilience in industrial symbiosis networks: insights from network analysis.

    PubMed

    Chopra, Shauhrat S; Khanna, Vikas

    2014-08-01

    Industrial symbiotic networks are based on the principles of ecological systems where waste equals food, to develop synergistic networks. For example, industrial symbiosis (IS) at Kalundborg, Denmark, creates an exchange network of waste, water, and energy among companies based on contractual dependency. Since most of the industrial symbiotic networks are based on ad-hoc opportunities rather than strategic planning, gaining insight into disruptive scenarios is pivotal for understanding the balance of resilience and sustainability and developing heuristics for designing resilient IS networks. The present work focuses on understanding resilience as an emergent property of an IS network via a network-based approach with application to the Kalundborg Industrial Symbiosis (KIS). Results from network metrics and simulated disruptive scenarios reveal Asnaes power plant as the most critical node in the system. We also observe a decrease in the vulnerability of nodes and reduction in single points of failure in the system, suggesting an increase in the overall resilience of the KIS system from 1960 to 2010. Based on our findings, we recommend design strategies, such as increasing diversity, redundancy, and multi-functionality to ensure flexibility and plasticity, to develop resilient and sustainable industrial symbiotic networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Validating Large Scale Networks Using Temporary Local Scale Networks

    USDA-ARS?s Scientific Manuscript database

    The USDA NRCS Soil Climate Analysis Network and NOAA Climate Reference Networks are nationwide meteorological and land surface data networks with soil moisture measurements in the top layers of soil. There is considerable interest in scaling these point measurements to larger scales for validating ...

  11. Heterogeneous Spacecraft Networks

    NASA Technical Reports Server (NTRS)

    Nakamura, Yosuke (Inventor); Faber, Nicolas T. (Inventor); Frost, Chad R. (Inventor); Alena, Richard L. (Inventor)

    2018-01-01

    The present invention provides a heterogeneous spacecraft network including a network management architecture to facilitate communication between a plurality of operations centers and a plurality of data user communities. The network management architecture includes a plurality of network nodes in communication with the plurality of operations centers. The present invention also provides a method of communication for a heterogeneous spacecraft network. The method includes: transmitting data from a first space segment to a first ground segment; transmitting the data from the first ground segment to a network management architecture; transmitting data from a second space segment to a second ground segment, the second space and ground segments having incompatible communication systems with the first space and ground segments; transmitting the data from the second ground station to the network management architecture; and, transmitting data from the network management architecture to a plurality of data user communities.

  12. Migration of optical core network to next generation networks - Carrier Grade Ethernet Optical Transport Network

    NASA Astrophysics Data System (ADS)

    Glamočanin, D.

    2017-05-01

    In order to maintain the continuity of the telecom operators’ network construction, while monitoring development needs, increasing customers’ demands and application of technological improvements, it is necessary to migrate optical transport core network to the next generation networks - Carrier Grade Ethernet Optical Transport Network (OTN CE). The primary objective of OTN CE is to realize an environment that is based solely on the switching in the optical domain, i.e. the realization of transparent optical networks and optical switching to the second layer of ISO / OSI model. The realization of such a network provides opportunities for further development of existing, but also technologically more demanding, new services. It is also a prerequisite to provide higher scalability, reliability, security and quality of QoS service, as well as prerequisites for the establishment of SLA (Service Level Agreement) for existing services, especially traffic in real time. This study aims to clarify the proposed model, which has the potential to be eventually adjusted in accordance with new scientific knowledge in this field as well as market requirements.

  13. Resource constrained design of artificial neural networks using comparator neural network

    NASA Technical Reports Server (NTRS)

    Wah, Benjamin W.; Karnik, Tanay S.

    1992-01-01

    We present a systematic design method executed under resource constraints for automating the design of artificial neural networks using the back error propagation algorithm. Our system aims at finding the best possible configuration for solving the given application with proper tradeoff between the training time and the network complexity. The design of such a system is hampered by three related problems. First, there are infinitely many possible network configurations, each may take an exceedingly long time to train; hence, it is impossible to enumerate and train all of them to completion within fixed time, space, and resource constraints. Second, expert knowledge on predicting good network configurations is heuristic in nature and is application dependent, rendering it difficult to characterize fully in the design process. A learning procedure that refines this knowledge based on examples on training neural networks for various applications is, therefore, essential. Third, the objective of the network to be designed is ill-defined, as it is based on a subjective tradeoff between the training time and the network cost. A design process that proposes alternate configurations under different cost-performance tradeoff is important. We have developed a Design System which schedules the available time, divided into quanta, for testing alternative network configurations. Its goal is to select/generate and test alternative network configurations in each quantum, and find the best network when time is expended. Since time is limited, a dynamic schedule that determines the network configuration to be tested in each quantum is developed. The schedule is based on relative comparison of predicted training times of alternative network configurations using comparator network paradigm. The comparator network has been trained to compare training times for a large variety of traces of TSSE-versus-time collected during back-propagation learning of various applications.

  14. Ecological network analysis for a virtual water network.

    PubMed

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  15. Network motif frequency vectors reveal evolving metabolic network organisation.

    PubMed

    Pearcy, Nicole; Crofts, Jonathan J; Chuzhanova, Nadia

    2015-01-01

    At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this underlying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biological features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic networks.

  16. Integrated Networks.

    ERIC Educational Resources Information Center

    Robinovitz, Stewart

    1987-01-01

    A strategy for integrated data and voice networks implemented at the University of Michigan is described. These networks often use multi-technologies, multi-vendors, and multi-transmission media that will be fused into a single integrated network. Transmission media include twisted-pair wire, coaxial cable, fiber optics, and microwave. (Author/MLW)

  17. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-06-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  18. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan; Jersey Inst Ansari, New; Jersey Inst, New

    2005-04-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  19. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-05-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  20. Editorial [Special issue on software defined networks and infrastructures, network function virtualisation, autonomous systems and network management

    DOE PAGES

    Biswas, Amitava; Liu, Chen; Monga, Inder; ...

    2016-01-01

    For last few years, there has been a tremendous growth in data traffic due to high adoption rate of mobile devices and cloud computing. Internet of things (IoT) will stimulate even further growth. This is increasing scale and complexity of telecom/internet service provider (SP) and enterprise data centre (DC) compute and network infrastructures. As a result, managing these large network-compute converged infrastructures is becoming complex and cumbersome. To cope up, network and DC operators are trying to automate network and system operations, administrations and management (OAM) functions. OAM includes all non-functional mechanisms which keep the network running.

  1. Bio-Inspired Networking — Self-Organizing Networked Embedded Systems

    NASA Astrophysics Data System (ADS)

    Dressler, Falko

    The turn to nature has brought us many unforeseen great concepts and solutions. This course seems to hold on for many research domains. In this article, we study the applicability of biological mechanisms and techniques in the domain of communications. In particular, we study the behavior and the challenges in networked embedded systems that are meant to self-organize in large groups of nodes. Application examples include wireless sensor networks and sensor/actuator networks. Based on a review of the needs and requirements in such networks, we study selected bio-inspired networking approaches that claim to outperform other methods in specific domains. We study mechanisms in swarm intelligence, the artificial immune system, and approaches based on investigations on the cellular signaling pathways. As a major conclusion, we derive that bio-inspired networking techniques do have advantages compared to engineering methods. Nevertheless, selection and employment must be done carefully to achieve the desired performance gains.

  2. Research in Network Management Techniques for Tactical Data Communications Network.

    DTIC Science & Technology

    1982-09-01

    the control period. Research areas include Packet Network modelling, adaptive network routing, network design algorithms, network design techniques...contro!lers are designed to perform their limited tasks optimally. For the dynamic routing problem considered here, the local controllers are node...feedback to finding in optimum stead-o-state routing (static strategies) under non - control which can be easily implemented in real time. congested

  3. Class network routing

    DOEpatents

    Bhanot, Gyan [Princeton, NJ; Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY

    2009-09-08

    Class network routing is implemented in a network such as a computer network comprising a plurality of parallel compute processors at nodes thereof. Class network routing allows a compute processor to broadcast a message to a range (one or more) of other compute processors in the computer network, such as processors in a column or a row. Normally this type of operation requires a separate message to be sent to each processor. With class network routing pursuant to the invention, a single message is sufficient, which generally reduces the total number of messages in the network as well as the latency to do a broadcast. Class network routing is also applied to dense matrix inversion algorithms on distributed memory parallel supercomputers with hardware class function (multicast) capability. This is achieved by exploiting the fact that the communication patterns of dense matrix inversion can be served by hardware class functions, which results in faster execution times.

  4. Properties of healthcare teaming networks as a function of network construction algorithms.

    PubMed

    Zand, Martin S; Trayhan, Melissa; Farooq, Samir A; Fucile, Christopher; Ghoshal, Gourab; White, Robert J; Quill, Caroline M; Rosenberg, Alexander; Barbosa, Hugo Serrano; Bush, Kristen; Chafi, Hassan; Boudreau, Timothy

    2017-01-01

    Network models of healthcare systems can be used to examine how providers collaborate, communicate, refer patients to each other, and to map how patients traverse the network of providers. Most healthcare service network models have been constructed from patient claims data, using billing claims to link a patient with a specific provider in time. The data sets can be quite large (106-108 individual claims per year), making standard methods for network construction computationally challenging and thus requiring the use of alternate construction algorithms. While these alternate methods have seen increasing use in generating healthcare networks, there is little to no literature comparing the differences in the structural properties of the generated networks, which as we demonstrate, can be dramatically different. To address this issue, we compared the properties of healthcare networks constructed using different algorithms from 2013 Medicare Part B outpatient claims data. Three different algorithms were compared: binning, sliding frame, and trace-route. Unipartite networks linking either providers or healthcare organizations by shared patients were built using each method. We find that each algorithm produced networks with substantially different topological properties, as reflected by numbers of edges, network density, assortativity, clustering coefficients and other structural measures. Provider networks adhered to a power law, while organization networks were best fit by a power law with exponential cutoff. Censoring networks to exclude edges with less than 11 shared patients, a common de-identification practice for healthcare network data, markedly reduced edge numbers and network density, and greatly altered measures of vertex prominence such as the betweenness centrality. Data analysis identified patterns in the distance patients travel between network providers, and a striking set of teaming relationships between providers in the Northeast United States and

  5. Properties of healthcare teaming networks as a function of network construction algorithms

    PubMed Central

    Trayhan, Melissa; Farooq, Samir A.; Fucile, Christopher; Ghoshal, Gourab; White, Robert J.; Quill, Caroline M.; Rosenberg, Alexander; Barbosa, Hugo Serrano; Bush, Kristen; Chafi, Hassan; Boudreau, Timothy

    2017-01-01

    Network models of healthcare systems can be used to examine how providers collaborate, communicate, refer patients to each other, and to map how patients traverse the network of providers. Most healthcare service network models have been constructed from patient claims data, using billing claims to link a patient with a specific provider in time. The data sets can be quite large (106–108 individual claims per year), making standard methods for network construction computationally challenging and thus requiring the use of alternate construction algorithms. While these alternate methods have seen increasing use in generating healthcare networks, there is little to no literature comparing the differences in the structural properties of the generated networks, which as we demonstrate, can be dramatically different. To address this issue, we compared the properties of healthcare networks constructed using different algorithms from 2013 Medicare Part B outpatient claims data. Three different algorithms were compared: binning, sliding frame, and trace-route. Unipartite networks linking either providers or healthcare organizations by shared patients were built using each method. We find that each algorithm produced networks with substantially different topological properties, as reflected by numbers of edges, network density, assortativity, clustering coefficients and other structural measures. Provider networks adhered to a power law, while organization networks were best fit by a power law with exponential cutoff. Censoring networks to exclude edges with less than 11 shared patients, a common de-identification practice for healthcare network data, markedly reduced edge numbers and network density, and greatly altered measures of vertex prominence such as the betweenness centrality. Data analysis identified patterns in the distance patients travel between network providers, and a striking set of teaming relationships between providers in the Northeast United States and

  6. Robust Learning of High-dimensional Biological Networks with Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Nägele, Andreas; Dejori, Mathäus; Stetter, Martin

    Structure learning of Bayesian networks applied to gene expression data has become a potentially useful method to estimate interactions between genes. However, the NP-hardness of Bayesian network structure learning renders the reconstruction of the full genetic network with thousands of genes unfeasible. Consequently, the maximal network size is usually restricted dramatically to a small set of genes (corresponding with variables in the Bayesian network). Although this feature reduction step makes structure learning computationally tractable, on the downside, the learned structure might be adversely affected due to the introduction of missing genes. Additionally, gene expression data are usually very sparse with respect to the number of samples, i.e., the number of genes is much greater than the number of different observations. Given these problems, learning robust network features from microarray data is a challenging task. This chapter presents several approaches tackling the robustness issue in order to obtain a more reliable estimation of learned network features.

  7. Correlations in star networks: from Bell inequalities to network inequalities

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Olivier Renou, Marc; Gisin, Nicolas; Brunner, Nicolas

    2017-07-01

    The problem of characterizing classical and quantum correlations in networks is considered. Contrary to the usual Bell scenario, where distant observers share a physical system emitted by one common source, a network features several independent sources, each distributing a physical system to a subset of observers. In the quantum setting, the observers can perform joint measurements on initially independent systems, which may lead to strong correlations across the whole network. In this work, we introduce a technique to systematically map a Bell inequality to a family of Bell-type inequalities bounding classical correlations on networks in a star-configuration. Also, we show that whenever a given Bell inequality can be violated by some entangled state ρ, then all the corresponding network inequalities can be violated by considering many copies of ρ distributed in the star network. The relevance of these ideas is illustrated by applying our method to a specific multi-setting Bell inequality. We derive the corresponding network inequalities, and study their quantum violations.

  8. Structural Behavioral Study on the General Aviation Network Based on Complex Network

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Lu, Na

    2017-12-01

    The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.

  9. Shared protection based virtual network mapping in space division multiplexing optical networks

    NASA Astrophysics Data System (ADS)

    Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie

    2018-05-01

    Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.

  10. A Network Access Control Framework for 6LoWPAN Networks

    PubMed Central

    Oliveira, Luís M. L.; Rodrigues, Joel J. P. C.; de Sousa, Amaro F.; Lloret, Jaime

    2013-01-01

    Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. PMID:23334610

  11. Networking in 1993.

    ERIC Educational Resources Information Center

    Clement, John; Abrahams, Janice

    1994-01-01

    Describes the growth and evolution of educational networking including the growth in the number of users; networking tools such as Gopher; Internet information resources; problems; evaluations of network use in education; the evolution of educational communities on the Internet; integrating networks into the process of educational change; and the…

  12. Interorganizational relationships within state tobacco control networks: a social network analysis.

    PubMed

    Krauss, Melissa; Mueller, Nancy; Luke, Douglas

    2004-10-01

    State tobacco control programs are implemented by networks of public and private agencies with a common goal to reduce tobacco use. The degree of a program's comprehensiveness depends on the scope of its activities and the variety of agencies involved in the network. Structural aspects of these networks could help describe the process of implementing a state's tobacco control program, but have not yet been examined. Social network analysis was used to examine the structure of five state tobacco control networks. Semi-structured interviews with key agencies collected quantitative and qualitative data on frequency of contact among network partners, money flow, relationship productivity, level of network effectiveness, and methods for improvement. Most states had hierarchical communication structures in which partner agencies had frequent contact with one or two central agencies. Lead agencies had the highest control over network communication. Networks with denser communication structures had denser productivity structures. Lead agencies had the highest financial influence within the networks, while statewide coalitions were financially influenced by others. Lead agencies had highly productive relationships with others, while agencies with narrow roles had fewer productive relationships. Statewide coalitions that received Robert Wood Johnson Foundation funding had more highly productive relationships than coalitions that did not receive the funding. Results suggest that frequent communication among network partners is related to more highly productive relationships. Results also highlight the importance of lead agencies and statewide coalitions in implementing a comprehensive state tobacco control program. Network analysis could be useful in developing process indicators for state tobacco control programs.

  13. A Network Primer: Full-Fledged Educational Networks.

    ERIC Educational Resources Information Center

    Lehrer, Ariella

    1988-01-01

    Discusses some of the factors included in choosing appropriate computer networks for the classroom. Describes such networks as those produced by Apple Computer, Corvus Systems, Velan, Berkeley Softworks, Tandy, LAN-TECH, Unisys, and International Business Machines (IBM). (TW)

  14. Network planning study of the metro-optical-network-oriented 3G application

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Xu, Rong; Lin, Jin Tong

    2005-02-01

    To compare with the 2G mobile communication, 3G technologies can supply the perfect service scope and performance. 3G is the trend of the mobile communication. So now to build the transmission network, it is needed to consider how the transmission network to support the 3G applications. For the 3G network architecture, it include the 2 part: Utran access network and core network. So the metro optical network should consider how to build the network to adapt the 3G applications. Include the metro core and access layer. In the metro core, we should consider the network should evolved towards the Mesh architecture with ASON function to realize the fast protection and restoration, quick end-to-end service provision, and high capacity cross-connect matrix etc. In the access layer, the network should have the ability to access the 3G services such as ATM interface with IMA function. In addition, the traffic grooming should be provided to improve the bandwidth utility. In this paper, first we present the MCC network situation, the network planning model will be introduced. Then we present the topology architecture, node capacity and traffic forecast. At last, based on our analysis, we will give a total solution to MCC to build their metro optical network toward to the mesh network with the consideration of 3G services.

  15. Abnormal functional network connectivity among resting-state networks in children with frontal lobe epilepsy.

    PubMed

    Widjaja, E; Zamyadi, M; Raybaud, C; Snead, O C; Smith, M L

    2013-12-01

    Epilepsy is considered a disorder of neural networks. The aims of this study were to assess functional connectivity within resting-state networks and functional network connectivity across resting-state networks by use of resting-state fMRI in children with frontal lobe epilepsy and to relate changes in resting-state networks with neuropsychological function. Fifteen patients with frontal lobe epilepsy and normal MR imaging and 14 healthy control subjects were recruited. Spatial independent component analysis was used to identify the resting-state networks, including frontal, attention, default mode network, sensorimotor, visual, and auditory networks. The Z-maps of resting-state networks were compared between patients and control subjects. The relation between abnormal connectivity and neuropsychological function was assessed. Correlations from all pair-wise combinations of independent components were performed for each group and compared between groups. The frontal network was the only network that showed reduced connectivity in patients relative to control subjects. The remaining 5 networks demonstrated both reduced and increased functional connectivity within resting-state networks in patients. There was a weak association between connectivity in frontal network and executive function (P = .029) and a significant association between sensorimotor network and fine motor function (P = .004). Control subjects had 79 pair-wise independent components that showed significant temporal coherence across all resting-state networks except for default mode network-auditory network. Patients had 66 pairs of independent components that showed significant temporal coherence across all resting-state networks. Group comparison showed reduced functional network connectivity between default mode network-attention, frontal-sensorimotor, and frontal-visual networks and increased functional network connectivity between frontal-attention, default mode network-sensorimotor, and frontal

  16. Optical network democratization.

    PubMed

    Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra

    2016-03-06

    The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).

  17. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  18. Correlação de longo alcance em sistemas binários de raios-x usando remoção de flutuações

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Moret, M. A.; Zebende, G. F.; Nogueira, E., Jr.

    2003-08-01

    Neste trabalho é proposta uma metodologia de analise de series temporais de fontes astrofísicas, baseada no método proposto por Peng et al. (1994) e Liu et al. (1999), o qual consiste na idéia de que uma série temporal correlacionada pode ser mapeada por um processo de busca de auto-similaridades em diversas escalas de tempo n. Removendo as eventuais tendências e integrando o sinal observado, é obtida uma medida do desvio médio quadrático das flutuações do sinal integrado F(n)~na, onde a representa o fator de escala associado com a auto-similaridade da correlação de longo alcance do sinal. Baseado nos valores obtidos de a, é possível distinguir entre os casos de sinais não-correlacionados, tipo ruído branco (a = 0,5), sinal anti-persistentes (a < 0,5) e sinal persistente (a > 0,5). Usando esta metodologia, foram analisadas 129 curvas de luz de sistemas binários de raios-X, provenientes do banco de dados públicos de observações feitas pelo instrumento All Sky Monitor, a bordo do satélite Rossi X-Ray Timing Explorer (ASM-RXTE). Foram identificadas a presença de a'0,5 em mais de 90% dos sistemas estudados, implicando em dizer que as flutuações de intensidade observadas apresentam correlação de auto-similaridade, sem entretanto, indícios de apresentarem uma escala de tempo característica das flutuações de intensidade. Sistemas onde são observadas erupções (flares), apresentam sistematicamente a > 0,5, característica esta, possivelmente associada com persistência das flutuações de densidade de disco ou taxa de acréscimo de massa. Os sistemas com curvas de luz onde nao são observadas as erupções apresentam uma distribuição normal centrada em a~0,62+/-0,10. Referências ¾ Peng, C.-K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., e Goldberg, A.L., Phys. Rev. E, (49), 1685 (1994). ¾ Liu, Y., Gopikrishnan, P., Cizeau, P., Meyer, M., Peng,C.-K., e Stanley, H.E., Phys. Rev. E, (60), 1390 (1999).

  19. Networking Ethics: A Survey of Bioethics Networks Across the U.S.

    PubMed

    Fausett, Jennifer Kleiner; Gilmore-Szott, Eleanor; Hester, D Micah

    2016-06-01

    Ethics networks have emerged over the last few decades as a mechanism for individuals and institutions over various regions, cities and states to converge on healthcare-related ethical issues. However, little is known about the development and nature of such networks. In an effort to fill the gap in the knowledge about such networks, a survey was conducted that evaluated the organizational structure, missions and functions, as well as the outcomes/products of ethics networks across the country. Eighteen established bioethics networks were identified via consensus of three search processes and were approached for participation. The participants completed a survey developed for the purposes of this study and distributed via SurveyMonkey. Responses were obtained from 10 of the 18 identified and approached networks regarding topic areas of: Network Composition and Catchment Areas; Network Funding and Expenses; Personnel; Services; and Missions and Accomplishments. Bioethics networks are designed primarily to bring ethics education and support to professionals and hospitals. They do so over specifically defined areas-states, regions, or communities-and each is concerned about how to stay financially healthy. At the same time, the networks work off different organizational models, either as stand-alone organizations or as entities within existing organizational structures.

  20. In-network adaptation of SHVC video in software-defined networks

    NASA Astrophysics Data System (ADS)

    Awobuluyi, Olatunde; Nightingale, James; Wang, Qi; Alcaraz Calero, Jose Maria; Grecos, Christos

    2016-04-01

    Software Defined Networks (SDN), when combined with Network Function Virtualization (NFV) represents a paradigm shift in how future networks will behave and be managed. SDN's are expected to provide the underpinning technologies for future innovations such as 5G mobile networks and the Internet of Everything. The SDN architecture offers features that facilitate an abstracted and centralized global network view in which packet forwarding or dropping decisions are based on application flows. Software Defined Networks facilitate a wide range of network management tasks, including the adaptation of real-time video streams as they traverse the network. SHVC, the scalable extension to the recent H.265 standard is a new video encoding standard that supports ultra-high definition video streams with spatial resolutions of up to 7680×4320 and frame rates of 60fps or more. The massive increase in bandwidth required to deliver these U-HD video streams dwarfs the bandwidth requirements of current high definition (HD) video. Such large bandwidth increases pose very significant challenges for network operators. In this paper we go substantially beyond the limited number of existing implementations and proposals for video streaming in SDN's all of which have primarily focused on traffic engineering solutions such as load balancing. By implementing and empirically evaluating an SDN enabled Media Adaptation Network Entity (MANE) we provide a valuable empirical insight into the benefits and limitations of SDN enabled video adaptation for real time video applications. The SDN-MANE is the video adaptation component of our Video Quality Assurance Manager (VQAM) SDN control plane application, which also includes an SDN monitoring component to acquire network metrics and a decision making engine using algorithms to determine the optimum adaptation strategy for any real time video application flow given the current network conditions. Our proposed VQAM application has been implemented and

  1. Promoting Social Network Awareness: A Social Network Monitoring System

    ERIC Educational Resources Information Center

    Cadima, Rita; Ferreira, Carlos; Monguet, Josep; Ojeda, Jordi; Fernandez, Joaquin

    2010-01-01

    To increase communication and collaboration opportunities, members of a community must be aware of the social networks that exist within that community. This paper describes a social network monitoring system--the KIWI system--that enables users to register their interactions and visualize their social networks. The system was implemented in a…

  2. Spectral Analysis of Rich Network Topology in Social Networks

    ERIC Educational Resources Information Center

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  3. Autonomous vision networking: miniature wireless sensor networks with imaging technology

    NASA Astrophysics Data System (ADS)

    Messinger, Gioia; Goldberg, Giora

    2006-09-01

    The recent emergence of integrated PicoRadio technology, the rise of low power, low cost, System-On-Chip (SOC) CMOS imagers, coupled with the fast evolution of networking protocols and digital signal processing (DSP), created a unique opportunity to achieve the goal of deploying large-scale, low cost, intelligent, ultra-low power distributed wireless sensor networks for the visualization of the environment. Of all sensors, vision is the most desired, but its applications in distributed sensor networks have been elusive so far. Not any more. The practicality and viability of ultra-low power vision networking has been proven and its applications are countless, from security, and chemical analysis to industrial monitoring, asset tracking and visual recognition, vision networking represents a truly disruptive technology applicable to many industries. The presentation discusses some of the critical components and technologies necessary to make these networks and products affordable and ubiquitous - specifically PicoRadios, CMOS imagers, imaging DSP, networking and overall wireless sensor network (WSN) system concepts. The paradigm shift, from large, centralized and expensive sensor platforms, to small, low cost, distributed, sensor networks, is possible due to the emergence and convergence of a few innovative technologies. Avaak has developed a vision network that is aided by other sensors such as motion, acoustic and magnetic, and plans to deploy it for use in military and commercial applications. In comparison to other sensors, imagers produce large data files that require pre-processing and a certain level of compression before these are transmitted to a network server, in order to minimize the load on the network. Some of the most innovative chemical detectors currently in development are based on sensors that change color or pattern in the presence of the desired analytes. These changes are easily recorded and analyzed by a CMOS imager and an on-board DSP processor

  4. On efeito do achatamento nos pontos de equilíbrio e na dinâmica de sistemas coorbitais

    NASA Astrophysics Data System (ADS)

    Mourão, D. C.; Winter, O. C.; Yokoyama, T.

    2003-08-01

    Neste trabalho analisamos o efeito do achatamento do corpo principal nos pontos de equilíbrio lagrangianos e na configuração de órbitas girino-ferradura. Enfatizamos os sistemas coorbitais de satélites de Saturno, pois se encontram em relativa proximidade com o planeta, em que o efeito do achatamento se torna mais evidente. O estudo é dividido em três etapas independentes. Na primeira fase analisamos as equações de movimento do problema restrito de três corpos considerando o efeito do achatamento, e através do balanceamento de forças buscamos a nova configuração dos pontos de equilíbrio lagrangianos. Concluímos, nesta etapa, que os pontos de equilíbrio estáveis apresentam um pequeno deslocamento definido pelo parâmetro de achatamento, não podendo ser mais representados por triângulos eqüiláteros. Aplicamos este resultado aos satélites coorbitais de Tetis e Dione, encontrando as posições de equilíbrio levemente deslocadas em relação ao caso sem achatamento. Na segunda fase visamos o sistema Saturno-Jano-Epimeteu, que por se tratar de um sistema de massas comparáveis, optamos por desenvolver as equações de Yoder et al (Icarus 53, pág 431-443, 1983), que permitem determinar os pontos de equilíbrio e a amplitude de oscilação angular das órbitas girino-ferradura para o problema não-restrito de três corpos, porém, no nosso estudo consideramos o efeito do achatamento do corpo principal nestas equações. Encontramos que a distância angular entre satélites, quando em posição de equilíbrio estável, diminui quanto maior for o parâmetro de achatamento do corpo principal. Além disso, a órbita de transição girino-ferradura possui largura angular menor em relação ao caso sem achatamento. Por fim, realizamos integrações numéricas para os casos reais de coorbitais de Saturno comparando com os resultados analíticos. Nestas integrações simulamos diversas órbitas girino-ferradura com diferentes parâmetros de achatamento

  5. The salience network causally influences default mode network activity during moral reasoning

    PubMed Central

    Wilson, Stephen M.; D’Esposito, Mark; Kayser, Andrew S.; Grossman, Scott N.; Poorzand, Pardis; Seeley, William W.; Miller, Bruce L.; Rankin, Katherine P.

    2013-01-01

    Large-scale brain networks are integral to the coordination of human behaviour, and their anatomy provides insights into the clinical presentation and progression of neurodegenerative illnesses such as Alzheimer’s disease, which targets the default mode network, and behavioural variant frontotemporal dementia, which targets a more anterior salience network. Although the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, patients with Alzheimer’s disease give normal responses to these dilemmas whereas patients with behavioural variant frontotemporal dementia give abnormal responses to these dilemmas. We hypothesized that this apparent discrepancy between activation- and patient-based studies of moral reasoning might reflect a modulatory role for the salience network in regulating default mode network activation. Using functional magnetic resonance imaging to characterize network activity of patients with behavioural variant frontotemporal dementia and healthy control subjects, we present four converging lines of evidence supporting a causal influence from the salience network to the default mode network during moral reasoning. First, as previously reported, the default mode network is recruited when healthy subjects deliberate about ‘personal’ moral dilemmas, but patients with behavioural variant frontotemporal dementia producing atrophy in the salience network give abnormally utilitarian responses to these dilemmas. Second, patients with behavioural variant frontotemporal dementia have reduced recruitment of the default mode network compared with healthy control subjects when deliberating about these dilemmas. Third, a Granger causality analysis of functional neuroimaging data from healthy control subjects demonstrates directed functional connectivity from nodes of the salience network to nodes of the default mode network during moral reasoning. Fourth, this Granger causal influence is diminished in

  6. A Collaborative Learning Network Approach to Improvement: The CUSP Learning Network.

    PubMed

    Weaver, Sallie J; Lofthus, Jennifer; Sawyer, Melinda; Greer, Lee; Opett, Kristin; Reynolds, Catherine; Wyskiel, Rhonda; Peditto, Stephanie; Pronovost, Peter J

    2015-04-01

    Collaborative improvement networks draw on the science of collaborative organizational learning and communities of practice to facilitate peer-to-peer learning, coaching, and local adaption. Although significant improvements in patient safety and quality have been achieved through collaborative methods, insight regarding how collaborative networks are used by members is needed. Improvement Strategy: The Comprehensive Unit-based Safety Program (CUSP) Learning Network is a multi-institutional collaborative network that is designed to facilitate peer-to-peer learning and coaching specifically related to CUSP. Member organizations implement all or part of the CUSP methodology to improve organizational safety culture, patient safety, and care quality. Qualitative case studies developed by participating members examine the impact of network participation across three levels of analysis (unit, hospital, health system). In addition, results of a satisfaction survey designed to evaluate member experiences were collected to inform network development. Common themes across case studies suggest that members found value in collaborative learning and sharing strategies across organizational boundaries related to a specific improvement strategy. The CUSP Learning Network is an example of network-based collaborative learning in action. Although this learning network focuses on a particular improvement methodology-CUSP-there is clear potential for member-driven learning networks to grow around other methods or topic areas. Such collaborative learning networks may offer a way to develop an infrastructure for longer-term support of improvement efforts and to more quickly diffuse creative sustainment strategies.

  7. Thin Watts-Strogatz networks.

    PubMed

    de Moura, Alessandro P S

    2006-01-01

    A modified version of the Watts-Strogatz (WS) network model is proposed, in which the number of shortcuts scales with the network size N as Nalpha, with alpha < 1. In these networks, the ratio of the number of shortcuts to the network size approaches zero as N --> infinity, whereas in the original WS model, this ratio is constant. We call such networks "thin Watts-Strogatz networks." We show that even though the fraction of shortcuts becomes vanishingly small for large networks, they still cause a kind of small-world effect, in the sense that the length L of the network increases sublinearly with the size. We develop a mean-field theory for these networks, which predicts that the length scales as N1-alpha ln N for large N. We also study how a search using only local information works in thin WS networks. We find that the search performance is enhanced compared to the regular network, and we predict that the search time tau scales as N1-alpha/2. These theoretical results are tested using numerical simulations. We comment on the possible relevance of thin WS networks for the design of high-performance low-cost communication networks.

  8. Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network

    NASA Astrophysics Data System (ADS)

    Li, Huajiao; An, Haizhong; Wang, Yue; Huang, Jiachen; Gao, Xiangyun

    2016-05-01

    Keeping abreast of trends in the articles and rapidly grasping a body of article's key points and relationship from a holistic perspective is a new challenge in both literature research and text mining. As the important component, keywords can present the core idea of the academic article. Usually, articles on a single theme or area could share one or some same keywords, and we can analyze topological features and evolution of the articles co-keyword networks and keywords co-occurrence networks to realize the in-depth analysis of the articles. This paper seeks to integrate statistics, text mining, complex networks and visualization to analyze all of the academic articles on one given theme, complex network(s). All 5944 ;complex networks; articles that were published between 1990 and 2013 and are available on the Web of Science are extracted. Based on the two-mode affiliation network theory, a new frontier of complex networks, we constructed two different networks, one taking the articles as nodes, the co-keyword relationships as edges and the quantity of co-keywords as the weight to construct articles co-keyword network, and another taking the articles' keywords as nodes, the co-occurrence relationships as edges and the quantity of simultaneous co-occurrences as the weight to construct keyword co-occurrence network. An integrated method for analyzing the topological features and evolution of the articles co-keyword network and keywords co-occurrence networks is proposed, and we also defined a new function to measure the innovation coefficient of the articles in annual level. This paper provides a useful tool and process for successfully achieving in-depth analysis and rapid understanding of the trends and relationships of articles in a holistic perspective.

  9. Complex Network Simulation of Forest Network Spatial Pattern in Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zeng, Y.

    2017-09-01

    Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network's power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network's degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network's main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc.) for networking a standard and base datum.

  10. Ground-based GNSS network and integrated water vapor mapping during the development of severe storms at the Cuyo region (Argentina)

    NASA Astrophysics Data System (ADS)

    Calori, A.; Santos, J. R.; Blanco, M.; Pessano, H.; Llamedo, P.; Alexander, P.; de la Torre, A.

    2016-07-01

    Mendoza is a province of Argentina located between 32° S and 34° S at the leeside of the Andes Foothills. Very intense thunderstorms form between October and March (southern hemisphere summer), which produce large hail and damage in crops and properties. Although some hypotheses and conceptual models were proposed in order to identify key possible mechanisms that contribute to trigger convection, they are still waiting for the validation process. As moisture is the main ingredient for storms formation, the identification of its geographical distribution could be used together with other synoptic and mesoscale forcing features to forecast intense convective events. A novel technique in estimating moisture concentration and its geographical distribution has been introduced in order to observe the influx and variability of humidity at this region, during a 45-day period in midsummer. In doing so, we resort to the information provided by the ground-basedGlobal Navigation Satellite System (GNSS) network. More than 300 active stations constitute the continuously operating GNSS network over Southern and Central America (SIRGAS-CON, Sistema de Referencia Geocéntrico para las Américas de Operación Continua). This network allows to retrieve integrated water vapor (IWV) content, mapping this variable by the use of a digital model of terrain. In the period and region under study, a prevailing influx of humidity from N and NE and a high correlation between the accumulation/depletion of humidity and the hail/no hail precipitation days is observed. We discuss in particular the development of five storms detected by the S-Band radar network belonging to the Province of Mendoza. Although the results strongly suggest that IWV maps are capable to represent the humidity dynamics in the considered region, it is still important to highlight that the calculated values for IWV are unrealistic at some locations as the consequence of deep atmospheric gradients. These biases may be

  11. The transfer and transformation of collective network information in gene-matched networks.

    PubMed

    Kitsukawa, Takashi; Yagi, Takeshi

    2015-10-09

    Networks, such as the human society network, social and professional networks, and biological system networks, contain vast amounts of information. Information signals in networks are distributed over nodes and transmitted through intricately wired links, making the transfer and transformation of such information difficult to follow. Here we introduce a novel method for describing network information and its transfer using a model network, the Gene-matched network (GMN), in which nodes (neurons) possess attributes (genes). In the GMN, nodes are connected according to their expression of common genes. Because neurons have multiple genes, the GMN is cluster-rich. We show that, in the GMN, information transfer and transformation were controlled systematically, according to the activity level of the network. Furthermore, information transfer and transformation could be traced numerically with a vector using genes expressed in the activated neurons, the active-gene array, which was used to assess the relative activity among overlapping neuronal groups. Interestingly, this coding style closely resembles the cell-assembly neural coding theory. The method introduced here could be applied to many real-world networks, since many systems, including human society and various biological systems, can be represented as a network of this type.

  12. Networks in ATLAS

    NASA Astrophysics Data System (ADS)

    McKee, Shawn; ATLAS Collaboration

    2017-10-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. What this means for ATLAS in particular needs to be understood. ATLAS has evolved its computing model since the LHC started based upon its experience with using globally distributed resources. The most significant theme of those changes has been increased reliance upon, and use of, its networks. We will report on a number of networking initiatives in ATLAS including participation in the global perfSONAR network monitoring and measuring efforts of WLCG and OSG, the collaboration with the LHCOPN/LHCONE effort, the integration of network awareness into PanDA, the use of the evolving ATLAS analytics framework to better understand our networks and the changes in our DDM system to allow remote access to data. We will also discuss new efforts underway that are exploring the inclusion and use of software defined networks (SDN) and how ATLAS might benefit from: • Orchestration and optimization of distributed data access and data movement. • Better control of workflows, end to end. • Enabling prioritization of time-critical vs normal tasks • Improvements in the efficiency of resource usage

  13. Identity and Professional Networking.

    PubMed

    Raj, Medha; Fast, Nathanael J; Fisher, Oliver

    2017-06-01

    Despite evidence that large professional networks afford a host of financial and professional benefits, people vary in how motivated they are to build such networks. To help explain this variance, the present article moves beyond a rational self-interest account to examine the possibility that identity shapes individuals' intentions to network. Study 1 established a positive association between viewing professional networking as identity-congruent and the tendency to prioritize strengthening and expanding one's professional network. Study 2 revealed that manipulating the salience of the self affects networking intentions, but only among those high in networking identity-congruence. Study 3 further established causality by experimentally manipulating identity-congruence to increase networking intentions. Study 4 examined whether identity or self-interest is a better predictor of networking intentions, providing support for the former. These findings indicate that identity influences the networks people develop. Implications for research on the self, identity-based motivation, and professional networking are discussed.

  14. Social networks in primates: smart and tolerant species have more efficient networks.

    PubMed

    Pasquaretta, Cristian; Levé, Marine; Claidière, Nicolas; van de Waal, Erica; Whiten, Andrew; MacIntosh, Andrew J J; Pelé, Marie; Bergstrom, Mackenzie L; Borgeaud, Christèle; Brosnan, Sarah F; Crofoot, Margaret C; Fedigan, Linda M; Fichtel, Claudia; Hopper, Lydia M; Mareno, Mary Catherine; Petit, Odile; Schnoell, Anna Viktoria; di Sorrentino, Eugenia Polizzi; Thierry, Bernard; Tiddi, Barbara; Sueur, Cédric

    2014-12-23

    Network optimality has been described in genes, proteins and human communicative networks. In the latter, optimality leads to the efficient transmission of information with a minimum number of connections. Whilst studies show that differences in centrality exist in animal networks with central individuals having higher fitness, network efficiency has never been studied in animal groups. Here we studied 78 groups of primates (24 species). We found that group size and neocortex ratio were correlated with network efficiency. Centralisation (whether several individuals are central in the group) and modularity (how a group is clustered) had opposing effects on network efficiency, showing that tolerant species have more efficient networks. Such network properties affecting individual fitness could be shaped by natural selection. Our results are in accordance with the social brain and cultural intelligence hypotheses, which suggest that the importance of network efficiency and information flow through social learning relates to cognitive abilities.

  15. Networks Technology Conference

    NASA Technical Reports Server (NTRS)

    Tasaki, Keiji K. (Editor)

    1993-01-01

    The papers included in these proceedings represent the most interesting and current topics being pursued by personnel at GSFC's Networks Division and supporting contractors involved in Space, Ground, and Deep Space Network (DSN) technical work. Although 29 papers are represented in the proceedings, only 12 were presented at the conference because of space and time limitations. The proceedings are organized according to five principal technical areas of interest to the Networks Division: Project Management; Network Operations; Network Control, Scheduling, and Monitoring; Modeling and Simulation; and Telecommunications Engineering.

  16. Control of Multilayer Networks

    PubMed Central

    Menichetti, Giulia; Dall’Asta, Luca; Bianconi, Ginestra

    2016-01-01

    The controllability of a network is a theoretical problem of relevance in a variety of contexts ranging from financial markets to the brain. Until now, network controllability has been characterized only on isolated networks, while the vast majority of complex systems are formed by multilayer networks. Here we build a theoretical framework for the linear controllability of multilayer networks by mapping the problem into a combinatorial matching problem. We found that correlating the external signals in the different layers can significantly reduce the multiplex network robustness to node removal, as it can be seen in conjunction with a hybrid phase transition occurring in interacting Poisson networks. Moreover we observe that multilayer networks can stabilize the fully controllable multiplex network configuration that can be stable also when the full controllability of the single network is not stable. PMID:26869210

  17. Deep Logic Networks: Inserting and Extracting Knowledge From Deep Belief Networks.

    PubMed

    Tran, Son N; d'Avila Garcez, Artur S

    2018-02-01

    Developments in deep learning have seen the use of layerwise unsupervised learning combined with supervised learning for fine-tuning. With this layerwise approach, a deep network can be seen as a more modular system that lends itself well to learning representations. In this paper, we investigate whether such modularity can be useful to the insertion of background knowledge into deep networks, whether it can improve learning performance when it is available, and to the extraction of knowledge from trained deep networks, and whether it can offer a better understanding of the representations learned by such networks. To this end, we use a simple symbolic language-a set of logical rules that we call confidence rules-and show that it is suitable for the representation of quantitative reasoning in deep networks. We show by knowledge extraction that confidence rules can offer a low-cost representation for layerwise networks (or restricted Boltzmann machines). We also show that layerwise extraction can produce an improvement in the accuracy of deep belief networks. Furthermore, the proposed symbolic characterization of deep networks provides a novel method for the insertion of prior knowledge and training of deep networks. With the use of this method, a deep neural-symbolic system is proposed and evaluated, with the experimental results indicating that modularity through the use of confidence rules and knowledge insertion can be beneficial to network performance.

  18. Network planning under uncertainties

    NASA Astrophysics Data System (ADS)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2008-11-01

    One of the main focuses for network planning is on the optimization of network resources required to build a network under certain traffic demand projection. Traditionally, the inputs to this type of network planning problems are treated as deterministic. In reality, the varying traffic requirements and fluctuations in network resources can cause uncertainties in the decision models. The failure to include the uncertainties in the network design process can severely affect the feasibility and economics of the network. Therefore, it is essential to find a solution that can be insensitive to the uncertain conditions during the network planning process. As early as in the 1960's, a network planning problem with varying traffic requirements over time had been studied. Up to now, this kind of network planning problems is still being active researched, especially for the VPN network design. Another kind of network planning problems under uncertainties that has been studied actively in the past decade addresses the fluctuations in network resources. One such hotly pursued research topic is survivable network planning. It considers the design of a network under uncertainties brought by the fluctuations in topology to meet the requirement that the network remains intact up to a certain number of faults occurring anywhere in the network. Recently, the authors proposed a new planning methodology called Generalized Survivable Network that tackles the network design problem under both varying traffic requirements and fluctuations of topology. Although all the above network planning problems handle various kinds of uncertainties, it is hard to find a generic framework under more general uncertainty conditions that allows a more systematic way to solve the problems. With a unified framework, the seemingly diverse models and algorithms can be intimately related and possibly more insights and improvements can be brought out for solving the problem. This motivates us to seek a

  19. Stories in Networks and Networks in Stories: A Tri-Modal Model for Mixed-Methods Social Network Research on Teachers

    ERIC Educational Resources Information Center

    Baker-Doyle, Kira J.

    2015-01-01

    Social network research on teachers and schools has risen exponentially in recent years as an innovative method to reveal the role of social networks in education. However, scholars are still exploring ways to incorporate traditional quantitative methods of Social Network Analysis (SNA) with qualitative approaches to social network research. This…

  20. An Inter-Networking Mechanism with Stepwise Synchronization for Wireless Sensor Networks

    PubMed Central

    Yamamoto, Hiroshi; Wakamiya, Naoki; Murata, Masayuki

    2011-01-01

    To realize the ambient information society, multiple wireless networks deployed in the region and devices carried by users are required to cooperate with each other. Since duty cycles and operational frequencies are different among networks, we need a mechanism to allow networks to efficiently exchange messages. For this purpose, we propose a novel inter-networking mechanism where two networks are synchronized with each other in a moderate manner, which we call stepwise synchronization. With our proposal, to bridge the gap between intrinsic operational frequencies, nodes near the border of networks adjust their operational frequencies in a stepwise fashion based on the pulse-coupled oscillator model as a fundamental theory of synchronization. Through simulation experiments, we show that the communication delay and the energy consumption of border nodes are reduced, which enables wireless sensor networks to communicate longer with each other. PMID:22164073

  1. An inter-networking mechanism with stepwise synchronization for wireless sensor networks.

    PubMed

    Yamamoto, Hiroshi; Wakamiya, Naoki; Murata, Masayuki

    2011-01-01

    To realize the ambient information society, multiple wireless networks deployed in the region and devices carried by users are required to cooperate with each other. Since duty cycles and operational frequencies are different among networks, we need a mechanism to allow networks to efficiently exchange messages. For this purpose, we propose a novel inter-networking mechanism where two networks are synchronized with each other in a moderate manner, which we call stepwise synchronization. With our proposal, to bridge the gap between intrinsic operational frequencies, nodes near the border of networks adjust their operational frequencies in a stepwise fashion based on the pulse-coupled oscillator model as a fundamental theory of synchronization. Through simulation experiments, we show that the communication delay and the energy consumption of border nodes are reduced, which enables wireless sensor networks to communicate longer with each other.

  2. Optimal Network for Patients with Severe Mental Illness: A Social Network Analysis.

    PubMed

    Lorant, Vincent; Nazroo, James; Nicaise, Pablo

    2017-11-01

    It is still unclear what the optimal structure of mental health care networks should be. We examine whether certain types of network structure have been associated with improved continuity of care and greater social integration. A social network survey was carried out, covering 954 patients across 19 mental health networks in Belgium in 2014. We found continuity of care to be associated with large, centralized, and homophilous networks, whereas social integration was associated with smaller, centralized, and heterophilous networks. Two important goals of mental health service provision, continuity of care and social integration, are associated with different types of network. Further research is needed to ascertain the direction of this association.

  3. Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neuralmore » networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for

  4. Default Network Modulation and Large-Scale Network Interactivity in Healthy Young and Old Adults

    PubMed Central

    Schacter, Daniel L.

    2012-01-01

    We investigated age-related changes in default, attention, and control network activity and their interactions in young and old adults. Brain activity during autobiographical and visuospatial planning was assessed using multivariate analysis and with intrinsic connectivity networks as regions of interest. In both groups, autobiographical planning engaged the default network while visuospatial planning engaged the attention network, consistent with a competition between the domains of internalized and externalized cognition. The control network was engaged for both planning tasks. In young subjects, the control network coupled with the default network during autobiographical planning and with the attention network during visuospatial planning. In old subjects, default-to-control network coupling was observed during both planning tasks, and old adults failed to deactivate the default network during visuospatial planning. This failure is not indicative of default network dysfunction per se, evidenced by default network engagement during autobiographical planning. Rather, a failure to modulate the default network in old adults is indicative of a lower degree of flexible network interactivity and reduced dynamic range of network modulation to changing task demands. PMID:22128194

  5. Social networks in primates: smart and tolerant species have more efficient networks

    PubMed Central

    Pasquaretta, Cristian; Levé, Marine; Claidière, Nicolas; van de Waal, Erica; Whiten, Andrew; MacIntosh, Andrew J. J.; Pelé, Marie; Bergstrom, Mackenzie L.; Borgeaud, Christèle; Brosnan, Sarah F.; Crofoot, Margaret C.; Fedigan, Linda M.; Fichtel, Claudia; Hopper, Lydia M.; Mareno, Mary Catherine; Petit, Odile; Schnoell, Anna Viktoria; di Sorrentino, Eugenia Polizzi; Thierry, Bernard; Tiddi, Barbara; Sueur, Cédric

    2014-01-01

    Network optimality has been described in genes, proteins and human communicative networks. In the latter, optimality leads to the efficient transmission of information with a minimum number of connections. Whilst studies show that differences in centrality exist in animal networks with central individuals having higher fitness, network efficiency has never been studied in animal groups. Here we studied 78 groups of primates (24 species). We found that group size and neocortex ratio were correlated with network efficiency. Centralisation (whether several individuals are central in the group) and modularity (how a group is clustered) had opposing effects on network efficiency, showing that tolerant species have more efficient networks. Such network properties affecting individual fitness could be shaped by natural selection. Our results are in accordance with the social brain and cultural intelligence hypotheses, which suggest that the importance of network efficiency and information flow through social learning relates to cognitive abilities. PMID:25534964

  6. Summarisation of weighted networks

    NASA Astrophysics Data System (ADS)

    Zhou, Fang; Qu, Qiang; Toivonen, Hannu

    2017-09-01

    Networks often contain implicit structure. We introduce novel problems and methods that look for structure in networks, by grouping nodes into supernodes and edges to superedges, and then make this structure visible to the user in a smaller generalised network. This task of finding generalisations of nodes and edges is formulated as 'network Summarisation'. We propose models and algorithms for networks that have weights on edges, on nodes or on both, and study three new variants of the network summarisation problem. In edge-based weighted network summarisation, the summarised network should preserve edge weights as well as possible. A wider class of settings is considered in path-based weighted network summarisation, where the resulting summarised network should preserve longer range connectivities between nodes. Node-based weighted network summarisation in turn allows weights also on nodes and summarisation aims to preserve more information related to high weight nodes. We study theoretical properties of these problems and show them to be NP-hard. We propose a range of heuristic generalisation algorithms with different trade-offs between complexity and quality of the result. Comprehensive experiments on real data show that weighted networks can be summarised efficiently with relatively little error.

  7. Networks in Cell Biology

    NASA Astrophysics Data System (ADS)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  8. Epidemics on interconnected networks

    NASA Astrophysics Data System (ADS)

    Dickison, Mark; Havlin, S.; Stanley, H. E.

    2012-06-01

    Populations are seldom completely isolated from their environment. Individuals in a particular geographic or social region may be considered a distinct network due to strong local ties but will also interact with individuals in other networks. We study the susceptible-infected-recovered process on interconnected network systems and find two distinct regimes. In strongly coupled network systems, epidemics occur simultaneously across the entire system at a critical infection strength βc, below which the disease does not spread. In contrast, in weakly coupled network systems, a mixed phase exists below βc of the coupled network system, where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.

  9. Fat fractal scaling of drainage networks from a random spatial network model

    USGS Publications Warehouse

    Karlinger, Michael R.; Troutman, Brent M.

    1992-01-01

    An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables.

  10. Sentient networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapline, G.

    1998-03-01

    The engineering problems of constructing autonomous networks of sensors and data processors that can provide alerts for dangerous situations provide a new context for debating the question whether man-made systems can emulate the cognitive capabilities of the mammalian brain. In this paper we consider the question whether a distributed network of sensors and data processors can form ``perceptions`` based on sensory data. Because sensory data can have exponentially many explanations, the use of a central data processor to analyze the outputs from a large ensemble of sensors will in general introduce unacceptable latencies for responding to dangerous situations. A bettermore » idea is to use a distributed ``Helmholtz machine`` architecture in which the sensors are connected to a network of simple processors, and the collective state of the network as a whole provides an explanation for the sensory data. In general communication within such a network will require time division multiplexing, which opens the door to the possibility that with certain refinements to the Helmholtz machine architecture it may be possible to build sensor networks that exhibit a form of artificial consciousness.« less

  11. Network bandwidth utilization forecast model on high bandwidth networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wuchert; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2%. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less

  12. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-01-01

    Call for Papers: Optical Access Networks

    Guest Editors Jun Zheng, University of Ottawa Nirwan Ansari, New Jersey Institute of Technology

    Submission Deadline: 1 June 2005

    Background

    With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the

  13. The ASCI Network for SC 2000: Gigabyte Per Second Networking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PRATT, THOMAS J.; NAEGLE, JOHN H.; MARTINEZ JR., LUIS G.

    2001-11-01

    This document highlights the Discom's Distance computing and communication team activities at the 2000 Supercomputing conference in Dallas Texas. This conference is sponsored by the IEEE and ACM. Sandia's participation in the conference has now spanned a decade, for the last five years Sandia National Laboratories, Los Alamos National Lab and Lawrence Livermore National Lab have come together at the conference under the DOE's ASCI, Accelerated Strategic Computing Initiatives, Program rubric to demonstrate ASCI's emerging capabilities in computational science and our combined expertise in high performance computer science and communication networking developments within the program. At SC 2000, DISCOM demonstratedmore » an infrastructure. DISCOM2 uses this forum to demonstrate and focus communication and pre-standard implementation of 10 Gigabit Ethernet, the first gigabyte per second data IP network transfer application, and VPN technology that enabled a remote Distributed Resource Management tools demonstration. Additionally a national OC48 POS network was constructed to support applications running between the show floor and home facilities. This network created the opportunity to test PSE's Parallel File Transfer Protocol (PFTP) across a network that had similar speed and distances as the then proposed DISCOM WAN. The SCINET SC2000 showcased wireless networking and the networking team had the opportunity to explore this emerging technology while on the booth. This paper documents those accomplishments, discusses the details of their convention exhibit floor. We also supported the production networking needs of the implementation, and describes how these demonstrations supports DISCOM overall strategies in high performance computing networking.« less

  14. A link prediction method for heterogeneous networks based on BP neural network

    NASA Astrophysics Data System (ADS)

    Li, Ji-chao; Zhao, Dan-ling; Ge, Bing-Feng; Yang, Ke-Wei; Chen, Ying-Wu

    2018-04-01

    Most real-world systems, composed of different types of objects connected via many interconnections, can be abstracted as various complex heterogeneous networks. Link prediction for heterogeneous networks is of great significance for mining missing links and reconfiguring networks according to observed information, with considerable applications in, for example, friend and location recommendations and disease-gene candidate detection. In this paper, we put forward a novel integrated framework, called MPBP (Meta-Path feature-based BP neural network model), to predict multiple types of links for heterogeneous networks. More specifically, the concept of meta-path is introduced, followed by the extraction of meta-path features for heterogeneous networks. Next, based on the extracted meta-path features, a supervised link prediction model is built with a three-layer BP neural network. Then, the solution algorithm of the proposed link prediction model is put forward to obtain predicted results by iteratively training the network. Last, numerical experiments on the dataset of examples of a gene-disease network and a combat network are conducted to verify the effectiveness and feasibility of the proposed MPBP. It shows that the MPBP with very good performance is superior to the baseline methods.

  15. "Time-dependent flow-networks"

    NASA Astrophysics Data System (ADS)

    Tupikina, Liubov; Molkentin, Nora; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marwan, Norbert; Kurths, Jürgen

    2015-04-01

    Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply information or heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e. high computational complexity and fixed variety of the flows in the underlying system, we introduce a new, method of flow-networks for changing in time velocity fields including external forcing in the system, noise and temperature-decay. Method of the flow-network construction can be divided into several steps: first we obtain the linear recursive equation for the temperature time-series. Then we compute the correlation matrix for time-series averaging the tensor product over all realizations of the noise, which we interpret as a weighted adjacency matrix of the flow-network and analyze using network measures. We apply the method to different types of moving flows with geographical relevance such as meandering flow. Analyzing the flow-networks using network measures we find that our approach can highlight zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. Flow-networks can be powerful tool to understand the connection between system's dynamics and network's topology analyzed using network measures in order to shed light on different climatic phenomena.

  16. Organization of complex networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim

    Many large complex systems can be successfully analyzed using the language of graphs and networks. Interactions between the objects in a network are treated as links connecting nodes. This approach to understanding the structure of networks is an important step toward understanding the way corresponding complex systems function. Using the tools of statistical physics, we analyze the structure of networks as they are found in complex systems such as the Internet, the World Wide Web, and numerous industrial and social networks. In the first chapter we apply the concept of self-similarity to the study of transport properties in complex networks. Self-similar or fractal networks, unlike non-fractal networks, exhibit similarity on a range of scales. We find that these fractal networks have transport properties that differ from those of non-fractal networks. In non-fractal networks, transport flows primarily through the hubs. In fractal networks, the self-similar structure requires any transport to also flow through nodes that have only a few connections. We also study, in models and in real networks, the crossover from fractal to non-fractal networks that occurs when a small number of random interactions are added by means of scaling techniques. In the second chapter we use k-core techniques to study dynamic processes in networks. The k-core of a network is the network's largest component that, within itself, exhibits all nodes with at least k connections. We use this k-core analysis to estimate the relative leadership positions of firms in the Life Science (LS) and Information and Communication Technology (ICT) sectors of industry. We study the differences in the k-core structure between the LS and the ICT sectors. We find that the lead segment (highest k-core) of the LS sector, unlike that of the ICT sector, is remarkably stable over time: once a particular firm enters the lead segment, it is likely to remain there for many years. In the third chapter we study how

  17. Do You Lock Your Network Doors? Some Network Management Precautions.

    ERIC Educational Resources Information Center

    Neray, Phil

    1997-01-01

    Discusses security problems and solutions for networked organizations with Internet connections. Topics include access to private networks from electronic mail information; computer viruses; computer software; corporate espionage; firewalls, that is computers that stand between a local network and the Internet; passwords; and physical security.…

  18. The Quake-Catcher Network: An Innovative Community-Based Seismic Network

    NASA Astrophysics Data System (ADS)

    Saltzman, J.; Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.

    2009-12-01

    The Quake-Catcher Network (QCN) is a volunteer computing seismic network that engages citizen scientists, teachers, and museums to participate in the detection of earthquakes. In less than two years, the network has grown to over 1000 participants globally and continues to expand. QCN utilizes Micro-Electro-Mechanical System (MEMS) accelerometers, in laptops and external to desktop computers, to detect moderate to large earthquakes. One goal of the network is to involve K-12 classrooms and museums by providing sensors and software to introduce participants to seismology and community-based scientific data collection. The Quake-Catcher Network provides a unique opportunity to engage participants directly in the scientific process, through hands-on activities that link activities and outcomes to their daily lives. Partnerships with teachers and museum staff are critical to growth of the Quake Catcher Network. Each participating institution receives a MEMS accelerometer to connect, via USB, to a computer that can be used for hands-on activities and to record earthquakes through a distributed computing system. We developed interactive software (QCNLive) that allows participants to view sensor readings in real time. Participants can also record earthquakes and download earthquake data that was collected by their sensor or other QCN sensors. The Quake-Catcher Network combines research and outreach to improve seismic networks and increase awareness and participation in science-based research in K-12 schools.

  19. Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks

    PubMed Central

    Hosseini, S. M. Hadi; Kesler, Shelli R.

    2013-01-01

    In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672

  20. Cluster-based single-sink wireless sensor networks and passive optical network converged network incorporating sideband modulation schemes

    NASA Astrophysics Data System (ADS)

    Kumar, Love; Sharma, Vishal; Singh, Amarpal

    2018-02-01

    Wireless sensor networks have tremendous applications, such as civil, military, and environmental monitoring. In most of the applications, sensor data are required to be propagated over the internet/core networks, which result in backhaul setback. Subsequently, there is a necessity to backhaul the sensed information of such networks together with prolonging of the transmission link. Passive optical network (PON) is next-generation access technology emerging as a potential candidate for convergence of the sensed data to the core system. Earlier, the work with single-optical line terminal-PON was demonstrated and investigated merely analytically. This work is an attempt to demonstrate a practical model of a bidirectional single-sink wireless sensor network-PON converged network in which the collected data from cluster heads are transmitted over PON networks. Further, modeled converged structure has been investigated under the influence of double, single, and tandem sideband modulation schemes incorporating a corresponding phase-delay to the sensor data entities that have been overlooked in the past. The outcome illustrates the successful fusion of the sensor data entities over PON with acceptable bit error rate and signal to noise ratio serving as a potential development in the sphere of such converged networks. It has also been revealed that the data entities treated with tandem side band modulation scheme help in improving the performance of the converged structure. Additionally, analysis for uplink transmission reported with queue theory in terms of time cycle, average time delay, data packet generation, and bandwidth utilization. An analytical analysis of proposed converged network shows that average time delay for data packet transmission is less as compared with time cycle delay.

  1. Do-it-yourself networks: a novel method of generating weighted networks.

    PubMed

    Shanafelt, D W; Salau, K R; Baggio, J A

    2017-11-01

    Network theory is finding applications in the life and social sciences for ecology, epidemiology, finance and social-ecological systems. While there are methods to generate specific types of networks, the broad literature is focused on generating unweighted networks. In this paper, we present a framework for generating weighted networks that satisfy user-defined criteria. Each criterion hierarchically defines a feature of the network and, in doing so, complements existing algorithms in the literature. We use a general example of ecological species dispersal to illustrate the method and provide open-source code for academic purposes.

  2. Better sales networks.

    PubMed

    Ustüner, Tuba; Godes, David

    2006-01-01

    Anyone in sales will tell you that social networks are critical. The more contacts you have, the more leads you'll generate, and, ultimately, the more sales you'll make. But that's a vast oversimplification. Different configurations of networks produce different results, and the salesperson who develops a nuanced understanding of social networks will outshine competitors. The salesperson's job changes over the course of the selling process. Different abilities are required in each stage of the sale: identifying prospects, gaining buy-in from potential customers, creating solutions, and closing the deal. Success in the first stage, for instance, depends on the salesperson acquiring precise and timely information about opportunities from contacts in the marketplace. Closing the deal requires the salesperson to mobilize contacts from prior sales to act as references. Managers often view sales networks only in terms of direct contacts. But someone who knows lots of people doesn't necessarily have an effective network because networks often pay off most handsomely through indirect contacts. Moreover, the density of the connections in a network is important. Do a salesperson's contacts know all the same people, or are their associates widely dispersed? Sparse networks are better, for example, at generating unique information. Managers can use three levers--sales force structure, compensation, and skills development--to encourage salespeople to adopt a network-based view and make the best possible use of social webs. For example, the sales force can be restructured to decouple lead generation from other tasks because some people are very good at building diverse ties but not so good at maintaining other kinds of networks. Companies that take steps of this kind to help their sales teams build better networks will reap tremendous advantages.

  3. Data Requirements to Assess Department of Defense (DOD) Investments in Law Enforcement in Southwest Asia

    DTIC Science & Technology

    2011-09-01

    form similar organizational structures—loosely-connected webs of small, specialized cells, etc.28 Illicit networks form organizational structures...Activities SIMCI Sistema Integrado de Monitoreo de Cultivos Ilícitos (Integrated Crops Monitoring System) STRIDE System To Retrieve Information from Drug

  4. Bayesian Network Webserver: a comprehensive tool for biological network modeling.

    PubMed

    Ziebarth, Jesse D; Bhattacharya, Anindya; Cui, Yan

    2013-11-01

    The Bayesian Network Webserver (BNW) is a platform for comprehensive network modeling of systems genetics and other biological datasets. It allows users to quickly and seamlessly upload a dataset, learn the structure of the network model that best explains the data and use the model to understand relationships between network variables. Many datasets, including those used to create genetic network models, contain both discrete (e.g. genotype) and continuous (e.g. gene expression traits) variables, and BNW allows for modeling hybrid datasets. Users of BNW can incorporate prior knowledge during structure learning through an easy-to-use structural constraint interface. After structure learning, users are immediately presented with an interactive network model, which can be used to make testable hypotheses about network relationships. BNW, including a downloadable structure learning package, is available at http://compbio.uthsc.edu/BNW. (The BNW interface for adding structural constraints uses HTML5 features that are not supported by current version of Internet Explorer. We suggest using other browsers (e.g. Google Chrome or Mozilla Firefox) when accessing BNW). ycui2@uthsc.edu. Supplementary data are available at Bioinformatics online.

  5. A network function-based definition of communities in complex networks.

    PubMed

    Chauhan, Sanjeev; Girvan, Michelle; Ott, Edward

    2012-09-01

    We consider an alternate definition of community structure that is functionally motivated. We define network community structure based on the function the network system is intended to perform. In particular, as a specific example of this approach, we consider communities whose function is enhanced by the ability to synchronize and/or by resilience to node failures. Previous work has shown that, in many cases, the largest eigenvalue of the network's adjacency matrix controls the onset of both synchronization and percolation processes. Thus, for networks whose functional performance is dependent on these processes, we propose a method that divides a given network into communities based on maximizing a function of the largest eigenvalues of the adjacency matrices of the resulting communities. We also explore the differences between the partitions obtained by our method and the modularity approach (which is based solely on consideration of network structure). We do this for several different classes of networks. We find that, in many cases, modularity-based partitions do almost as well as our function-based method in finding functional communities, even though modularity does not specifically incorporate consideration of function.

  6. Unraveling spurious properties of interaction networks with tailored random networks.

    PubMed

    Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus

    2011-01-01

    We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.

  7. Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks

    PubMed Central

    Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus

    2011-01-01

    We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures – known for their complex spatial and temporal dynamics – we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis. PMID:21850239

  8. Tactical Network Load Balancing in Multi-Gateway Wireless Sensor Networks

    DTIC Science & Technology

    2013-12-01

    writeup scrsz = get( 0 ,’ScreenSize’); %Creation of the random Sensor Network fig = figure(1); set(fig, ’Position’,[1 scrsz( 4 )*.25 scrsz(3)*.7...thesis writeup scrsz = get( 0 ,’ScreenSize’); %Creation of the random Sensor Network fig = figure(1); set(fig, ’Position’,[1 scrsz( 4 )*.25 scrsz(3)*.7...TYPE AND DATES COVERED Master’s Thesis 4 . TITLE AND SUBTITLE TACTICAL NETWORK LOAD BALANCING IN MULTI-GATEWAY WIRELESS SENSOR NETWORKS 5

  9. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-03-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  10. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less

  11. Real-time network traffic classification technique for wireless local area networks based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza

    2017-05-01

    Network traffic or data traffic in a Wireless Local Area Network (WLAN) is the amount of network packets moving across a wireless network from each wireless node to another wireless node, which provide the load of sampling in a wireless network. WLAN's Network traffic is the main component for network traffic measurement, network traffic control and simulation. Traffic classification technique is an essential tool for improving the Quality of Service (QoS) in different wireless networks in the complex applications such as local area networks, wireless local area networks, wireless personal area networks, wireless metropolitan area networks, and wide area networks. Network traffic classification is also an essential component in the products for QoS control in different wireless network systems and applications. Classifying network traffic in a WLAN allows to see what kinds of traffic we have in each part of the network, organize the various kinds of network traffic in each path into different classes in each path, and generate network traffic matrix in order to Identify and organize network traffic which is an important key for improving the QoS feature. To achieve effective network traffic classification, Real-time Network Traffic Classification (RNTC) algorithm for WLANs based on Compressed Sensing (CS) is presented in this paper. The fundamental goal of this algorithm is to solve difficult wireless network management problems. The proposed architecture allows reducing False Detection Rate (FDR) to 25% and Packet Delay (PD) to 15 %. The proposed architecture is also increased 10 % accuracy of wireless transmission, which provides a good background for establishing high quality wireless local area networks.

  12. LTAR linkages with other research networks: Capitalizing on network interconnections

    USDA-ARS?s Scientific Manuscript database

    The USDA ARS Research Unit based at the Jornada Experimental Range outside of Las Cruces, NM, is a member of the USDA’s Long Term Agro-ecosystem Research (LTAR) Network, the National Science Foundation’s Long Term Ecological Research (LTER) Network, the National Ecological Observation Network (NEON)...

  13. Comparison of neural network applications for channel assignment in cellular TDMA networks and dynamically sectored PCS networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1997-04-01

    The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics

  14. Benefits, Challenges, Characteristics and Instructional Approaches in an El Sistema Inspired After-School String Program Developed as a University-School Partnership in the United States

    ERIC Educational Resources Information Center

    Hopkins, Michael; Provenzano, Anthony M.; Spencer, Michael S.

    2017-01-01

    The purpose of this study was to examine the benefits, challenges, program characteristics and instructional approaches of an El Sistema inspired (ESI) after-school string program developed as a university-school partnership. Case study methodology was used to examine the program. Fifth-grade students received 75 minutes of after-school…

  15. Spatial analysis of bus transport networks using network theory

    NASA Astrophysics Data System (ADS)

    Shanmukhappa, Tanuja; Ho, Ivan Wang-Hei; Tse, Chi Kong

    2018-07-01

    In this paper, we analyze the bus transport network (BTN) structure considering the spatial embedding of the network for three cities, namely, Hong Kong (HK), London (LD), and Bengaluru (BL). We propose a novel approach called supernode graph structuring for modeling the bus transport network. A static demand estimation procedure is proposed to assign the node weights by considering the points of interests (POIs) and the population distribution in the city over various localized zones. In addition, the end-to-end delay is proposed as a parameter to measure the topological efficiency of the bus networks instead of the shortest distance measure used in previous works. With the aid of supernode graph representation, important network parameters are analyzed for the directed, weighted and geo-referenced bus transport networks. It is observed that the supernode concept has significant advantage in analyzing the inherent topological behavior. For instance, the scale-free and small-world behavior becomes evident with supernode representation as compared to conventional or regular graph representation for the Hong Kong network. Significant improvement in clustering, reduction in path length, and increase in centrality values are observed in all the three networks with supernode representation. The correlation between topologically central nodes and the geographically central nodes reveals the interesting fact that the proposed static demand estimation method for assigning node weights aids in better identifying the geographically significant nodes in the network. The impact of these geographically significant nodes on the local traffic behavior is demonstrated by simulation using the SUMO (Simulation of Urban Mobility) tool which is also supported by real-world empirical data, and our results indicate that the traffic speed around a particular bus stop can reach a jammed state from a free flow state due to the presence of these geographically important nodes. A comparison

  16. The correlation of metrics in complex networks with applications in functional brain networks

    NASA Astrophysics Data System (ADS)

    Li, C.; Wang, H.; de Haan, W.; Stam, C. J.; Van Mieghem, P.

    2011-11-01

    An increasing number of network metrics have been applied in network analysis. If metric relations were known better, we could more effectively characterize networks by a small set of metrics to discover the association between network properties/metrics and network functioning. In this paper, we investigate the linear correlation coefficients between widely studied network metrics in three network models (Bárabasi-Albert graphs, Erdös-Rényi random graphs and Watts-Strogatz small-world graphs) as well as in functional brain networks of healthy subjects. The metric correlations, which we have observed and theoretically explained, motivate us to propose a small representative set of metrics by including only one metric from each subset of mutually strongly dependent metrics. The following contributions are considered important. (a) A network with a given degree distribution can indeed be characterized by a small representative set of metrics. (b) Unweighted networks, which are obtained from weighted functional brain networks with a fixed threshold, and Erdös-Rényi random graphs follow a similar degree distribution. Moreover, their metric correlations and the resultant representative metrics are similar as well. This verifies the influence of degree distribution on metric correlations. (c) Most metric correlations can be explained analytically. (d) Interestingly, the most studied metrics so far, the average shortest path length and the clustering coefficient, are strongly correlated and, thus, redundant. Whereas spectral metrics, though only studied recently in the context of complex networks, seem to be essential in network characterizations. This representative set of metrics tends to both sufficiently and effectively characterize networks with a given degree distribution. In the study of a specific network, however, we have to at least consider the representative set so that important network properties will not be neglected.

  17. 78 FR 775 - Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...,846B; TA-W-81,846C; TA-W-81,846D] Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Alpharetta, GA; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division Hunt Valley, MD; Goodman Networks, Inc. Core Network Engineering (Deployment Engineering) Division...

  18. Virtual network embedding in cross-domain network based on topology and resource attributes

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Zhang, Zhizhong; Feng, Linlin; Liu, Lilan

    2018-03-01

    Aiming at the network architecture ossification and the diversity of access technologies issues, this paper researches the cross-domain virtual network embedding algorithm. By analysing the topological attribute from the local and global perspective of nodes in the virtual network and the physical network, combined with the local network resource property, we rank the embedding priority of the nodes with PCA and TOPSIS methods. Besides, the link load distribution is considered. Above all, We proposed an cross-domain virtual network embedding algorithm based on topology and resource attributes. The simulation results depicts that our algorithm increases the acceptance rate of multi-domain virtual network requests, compared with the existing virtual network embedding algorithm.

  19. Robustness of weighted networks

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Cassi, Davide

    2018-01-01

    Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.

  20. Are Nested Networks More Robust to Disturbance? A Test Using Epiphyte-Tree, Comensalistic Networks

    PubMed Central

    Piazzon, Martín; Larrinaga, Asier R.; Santamaría, Luis

    2011-01-01

    Recent research on ecological networks suggests that mutualistic networks are more nested than antagonistic ones and, as a result, they are more robust against chains of extinctions caused by disturbances. We evaluate whether mutualistic networks are more nested than comensalistic and antagonistic networks, and whether highly nested, host-epiphyte comensalistic networks fit the prediction of high robustness against disturbance. A review of 59 networks including mutualistic, antagonistic and comensalistic relationships showed that comensalistic networks are significantly more nested than antagonistic and mutualistic networks, which did not differ between themselves. Epiphyte-host networks from old-growth forests differed from those from disturbed forest in several topological parameters based on both qualitative and quantitative matrices. Network robustness increased with network size, but the slope of this relationship varied with nestedness and connectance. Our results indicate that interaction networks show complex responses to disturbances, which influence their topology and indirectly affect their robustness against species extinctions. PMID:21589931

  1. Flexible embedding of networks

    NASA Astrophysics Data System (ADS)

    Fernandez-Gracia, Juan; Buckee, Caroline; Onnela, Jukka-Pekka

    We introduce a model for embedding one network into another, focusing on the case where network A is much bigger than network B. Nodes from network A are assigned to the nodes in network B using an algorithm where we control the extent of localization of node placement in network B using a single parameter. Starting from an unassigned node in network A, called the source node, we first map this node to a randomly chosen node in network B, called the target node. We then assign the neighbors of the source node to the neighborhood of the target node using a random walk based approach. To assign each neighbor of the source node to one of the nodes in network B, we perform a random walk starting from the target node with stopping probability α. We repeat this process until all nodes in network A have been mapped to the nodes of network B. The simplicity of the model allows us to calculate key quantities of interest in closed form. By varying the parameter α, we are able to produce embeddings from very local (α = 1) to very global (α --> 0). We show how our calculations fit the simulated results, and we apply the model to study how social networks are embedded in geography and how the neurons of C. Elegans are embedded in the surrounding volume.

  2. Advanced Polymer Network Structures

    DTIC Science & Technology

    2016-02-01

    double networks in a single step was identified from coarse-grained molecular dynamics simulations of polymer solvents bearing rigid side chains dissolved...in a polymer network. Coarse-grained molecular dynamics simulations also explored the mechanical behavior of traditional double networks and...DRI), polymer networks, polymer gels, molecular dynamics simulations , double networks 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  3. Distributed network scheduling

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Schaffer, Steven R.

    2004-01-01

    Distributed Network Scheduling is the scheduling of future communications of a network by nodes in the network. This report details software for doing this onboard spacecraft in a remote network. While prior work on distributed scheduling has been applied to remote spacecraft networks, the software reported here focuses on modeling communication activities in greater detail and including quality of service constraints. Our main results are based on a Mars network of spacecraft and include identifying a maximum opportunity of improving traverse exploration rate a factor of three; a simulation showing reduction in one-way delivery times from a rover to Earth from as much as 5 to 1.5 hours; simulated response to unexpected events averaging under an hour onboard; and ground schedule generation ranging from seconds to 50 minutes for 15 to 100 communication goals.

  4. Professional social networking.

    PubMed

    Rowley, Robert D

    2014-12-01

    We review the current state of social communication between healthcare professionals, the role of consumer social networking, and some emerging technologies to address the gaps. In particular, the review covers (1) the current state of loose social networking for continuing medical education (CME) and other broadcast information dissemination; (2) social networking for business promotion; (3) social networking for peer collaboration, including simple communication as well as more robust data-centered collaboration around patient care; and (4) engaging patients on social platforms, including integrating consumer-originated data into the mix of healthcare data. We will see how, as the nature of healthcare delivery moves from the institution-centric way of tradition to a more social and networked ambulatory pattern that we see emerging today, the nature of health IT has also moved from enterprise-centric systems to more socially networked, cloud-based options.

  5. Applications of Social Network Analysis

    NASA Astrophysics Data System (ADS)

    Thilagam, P. Santhi

    A social network [2] is a description of the social structure between actors, mostly persons, groups or organizations. It indicates the ways in which they are connected with each other by some relationship such as friendship, kinship, finance exchange etc. In a nutshell, when the person uses already known/unknown people to create new contacts, it forms social networking. The social network is not a new concept rather it can be formed when similar people interact with each other directly or indirectly to perform particular task. Examples of social networks include a friendship networks, collaboration networks, co-authorship networks, and co-employees networks which depict the direct interaction among the people. There are also other forms of social networks, such as entertainment networks, business Networks, citation networks, and hyperlink networks, in which interaction among the people is indirect. Generally, social networks operate on many levels, from families up to the level of nations and assists in improving interactive knowledge sharing, interoperability and collaboration.

  6. Identifying network representation issues with the network trip.

    DOT National Transportation Integrated Search

    2012-04-23

    The purpose of this study was to evaluate the effects of road-network representation on the application of the Network Robustness Index (NRI), using the Chittenden County Regional Transportation Model. The results are expected to improve the requirem...

  7. Neural-Network Simulator

    NASA Technical Reports Server (NTRS)

    Mitchell, Paul H.

    1991-01-01

    F77NNS (FORTRAN 77 Neural Network Simulator) computer program simulates popular back-error-propagation neural network. Designed to take advantage of vectorization when used on computers having this capability, also used on any computer equipped with ANSI-77 FORTRAN Compiler. Problems involving matching of patterns or mathematical modeling of systems fit class of problems F77NNS designed to solve. Program has restart capability so neural network solved in stages suitable to user's resources and desires. Enables user to customize patterns of connections between layers of network. Size of neural network F77NNS applied to limited only by amount of random-access memory available to user.

  8. On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.

    PubMed

    Amanowicz, Marek; Krygier, Jaroslaw

    2018-05-26

    In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.

  9. Network Analysis on Attitudes

    PubMed Central

    Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L. J.

    2017-01-01

    In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs. PMID:28919944

  10. Wayfinding in Social Networks

    NASA Astrophysics Data System (ADS)

    Liben-Nowell, David

    With the recent explosion of popularity of commercial social-networking sites like Facebook and MySpace, the size of social networks that can be studied scientifically has passed from the scale traditionally studied by sociologists and anthropologists to the scale of networks more typically studied by computer scientists. In this chapter, I will highlight a recent line of computational research into the modeling and analysis of the small-world phenomenon - the observation that typical pairs of people in a social network are connected by very short chains of intermediate friends - and the ability of members of a large social network to collectively find efficient routes to reach individuals in the network. I will survey several recent mathematical models of social networks that account for these phenomena, with an emphasis on both the provable properties of these social-network models and the empirical validation of the models against real large-scale social-network data.

  11. Sub-Network Kernels for Measuring Similarity of Brain Connectivity Networks in Disease Diagnosis.

    PubMed

    Jie, Biao; Liu, Mingxia; Zhang, Daoqiang; Shen, Dinggang

    2018-05-01

    As a simple representation of interactions among distributed brain regions, brain networks have been widely applied to automated diagnosis of brain diseases, such as Alzheimer's disease (AD) and its early stage, i.e., mild cognitive impairment (MCI). In brain network analysis, a challenging task is how to measure the similarity between a pair of networks. Although many graph kernels (i.e., kernels defined on graphs) have been proposed for measuring the topological similarity of a pair of brain networks, most of them are defined using general graphs, thus ignoring the uniqueness of each node in brain networks. That is, each node in a brain network denotes a particular brain region, which is a specific characteristics of brain networks. Accordingly, in this paper, we construct a novel sub-network kernel for measuring the similarity between a pair of brain networks and then apply it to brain disease classification. Different from current graph kernels, our proposed sub-network kernel not only takes into account the inherent characteristic of brain networks, but also captures multi-level (from local to global) topological properties of nodes in brain networks, which are essential for defining the similarity measure of brain networks. To validate the efficacy of our method, we perform extensive experiments on subjects with baseline functional magnetic resonance imaging data obtained from the Alzheimer's disease neuroimaging initiative database. Experimental results demonstrate that the proposed method outperforms several state-of-the-art graph-based methods in MCI classification.

  12. Entropy of network ensembles

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra

    2009-03-01

    In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.

  13. Information network architectures

    NASA Technical Reports Server (NTRS)

    Murray, N. D.

    1985-01-01

    Graphs, charts, diagrams and outlines of information relative to information network architectures for advanced aerospace missions, such as the Space Station, are presented. Local area information networks are considered a likely technology solution. The principle needs for the network are listed.

  14. First field trial of Virtual Network Operator oriented network on demand (NoD) service provisioning over software defined multi-vendor OTN networks

    NASA Astrophysics Data System (ADS)

    Li, Yajie; Zhao, Yongli; Zhang, Jie; Yu, Xiaosong; Chen, Haoran; Zhu, Ruijie; Zhou, Quanwei; Yu, Chenbei; Cui, Rui

    2017-01-01

    A Virtual Network Operator (VNO) is a provider and reseller of network services from other telecommunications suppliers. These network providers are categorized as virtual because they do not own the underlying telecommunication infrastructure. In terms of business operation, VNO can provide customers with personalized services by leasing network infrastructure from traditional network providers. The unique business modes of VNO lead to the emergence of network on demand (NoD) services. The conventional network provisioning involves a series of manual operation and configuration, which leads to high cost in time. Considering the advantages of Software Defined Networking (SDN), this paper proposes a novel NoD service provisioning solution to satisfy the private network need of VNOs. The solution is first verified in the real software defined multi-domain optical networks with multi-vendor OTN equipment. With the proposed solution, NoD service can be deployed via online web portals in near-real time. It reinvents the customer experience and redefines how network services are delivered to customers via an online self-service portal. Ultimately, this means a customer will be able to simply go online, click a few buttons and have new services almost instantaneously.

  15. Precise Network Modeling of Systems Genetics Data Using the Bayesian Network Webserver.

    PubMed

    Ziebarth, Jesse D; Cui, Yan

    2017-01-01

    The Bayesian Network Webserver (BNW, http://compbio.uthsc.edu/BNW ) is an integrated platform for Bayesian network modeling of biological datasets. It provides a web-based network modeling environment that seamlessly integrates advanced algorithms for probabilistic causal modeling and reasoning with Bayesian networks. BNW is designed for precise modeling of relatively small networks that contain less than 20 nodes. The structure learning algorithms used by BNW guarantee the discovery of the best (most probable) network structure given the data. To facilitate network modeling across multiple biological levels, BNW provides a very flexible interface that allows users to assign network nodes into different tiers and define the relationships between and within the tiers. This function is particularly useful for modeling systems genetics datasets that often consist of multiscalar heterogeneous genotype-to-phenotype data. BNW enables users to, within seconds or minutes, go from having a simply formatted input file containing a dataset to using a network model to make predictions about the interactions between variables and the potential effects of experimental interventions. In this chapter, we will introduce the functions of BNW and show how to model systems genetics datasets with BNW.

  16. Adverse outcome pathway networks II: Network analytics.

    PubMed

    Villeneuve, Daniel L; Angrish, Michelle M; Fortin, Marie C; Katsiadaki, Ioanna; Leonard, Marc; Margiotta-Casaluci, Luigi; Munn, Sharon; O'Brien, Jason M; Pollesch, Nathan L; Smith, L Cody; Zhang, Xiaowei; Knapen, Dries

    2018-06-01

    Toxicological responses to stressors are more complex than the simple one-biological-perturbation to one-adverse-outcome model portrayed by individual adverse outcome pathways (AOPs). Consequently, the AOP framework was designed to facilitate de facto development of AOP networks that can aid in the understanding and prediction of pleiotropic and interactive effects more common to environmentally realistic, complex exposure scenarios. The present study introduces nascent concepts related to the qualitative analysis of AOP networks. First, graph theory-based approaches for identifying important topological features are illustrated using 2 example AOP networks derived from existing AOP descriptions. Second, considerations for identifying the most significant path(s) through an AOP network from either a biological or risk assessment perspective are described. Finally, approaches for identifying interactions among AOPs that may result in additive, synergistic, or antagonistic responses (or previously undefined emergent patterns of response) are introduced. Along with a companion article (part I), these concepts set the stage for the development of tools and case studies that will facilitate more rigorous analysis of AOP networks, and the utility of AOP network-based predictions, for use in research and regulatory decision-making. The present study addresses one of the major themes identified through a Society of Environmental Toxicology and Chemistry Horizon Scanning effort focused on advancing the AOP framework. Environ Toxicol Chem 2018;37:1734-1748. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the

  17. Analysis of metro network performance from a complex network perspective

    NASA Astrophysics Data System (ADS)

    Wu, Xingtang; Dong, Hairong; Tse, Chi Kong; Ho, Ivan W. H.; Lau, Francis C. M.

    2018-02-01

    In this paper, the performance of metro networks is studied from a network science perspective. We review the structural efficiency of metro networks on the basis of a passenger's intuitive routing strategy that optimizes the number of transfers and the distance traveled.A new node centrality measure, called node occupying probability, is introduced for evaluating the level of utilization of stations. The robustness of a metro network is analyzed under several attack scenarios. Six metro networks (Beijing, London, Paris, Hong Kong, Tokyo and New York) are compared in terms of the node occupying probability and a few other performance parameters. Simulation results show that the New York metro system has better topological efficiency, the Tokyo and Hong Kong systems are the most robust under random attack and target attack, respectively.

  18. Network-assisted crop systems genetics: network inference and integrative analysis.

    PubMed

    Lee, Tak; Kim, Hyojin; Lee, Insuk

    2015-04-01

    Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Global Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks

    DTIC Science & Technology

    2014-03-31

    Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks M.M. Asadi H. Mahboubi A...2014 Global Network Connectivity Assessment via Local Data Exchange for Underwater Acoustic Sensor Networks Contract Report # AMBUSH.1.1 Contract...pi j /= 0. The sensor network considered in this work is composed of underwater sensors , which use acoustic waves for

  20. Emergent spectral properties of river network topology: an optimal channel network approach.

    PubMed

    Abed-Elmdoust, Armaghan; Singh, Arvind; Yang, Zong-Liang

    2017-09-13

    Characterization of river drainage networks has been a subject of research for many years. However, most previous studies have been limited to quantities which are loosely connected to the topological properties of these networks. In this work, through a graph-theoretic formulation of drainage river networks, we investigate the eigenvalue spectra of their adjacency matrix. First, we introduce a graph theory model for river networks and explore the properties of the network through its adjacency matrix. Next, we show that the eigenvalue spectra of such complex networks follow distinct patterns and exhibit striking features including a spectral gap in which no eigenvalue exists as well as a finite number of zero eigenvalues. We show that such spectral features are closely related to the branching topology of the associated river networks. In this regard, we find an empirical relation for the spectral gap and nullity in terms of the energy dissipation exponent of the drainage networks. In addition, the eigenvalue distribution is found to follow a finite-width probability density function with certain skewness which is related to the drainage pattern. Our results are based on optimal channel network simulations and validated through examples obtained from physical experiments on landscape evolution. These results suggest the potential of the spectral graph techniques in characterizing and modeling river networks.

  1. Crista Supraventricularis Purkinje Network and Its Relation to Intraseptal Purkinje Network.

    PubMed

    De Almeida, Marcos C; Araujo, Mayssa; Duque, Mathias; Vilhena, Virginia

    2017-10-01

    Using transparent specimens with a dual color injection, microscopy, and computer tomography, this report shows that the right and left ventricular subendocardial Purkinje networks are connected by an extensive septal network in the bovine heart. The septal network is present along the entire septum except at a free zone below ventricular valves. Being the only communication of the basal right septum with the right free wall, the supraventricular crest is an enigmatic but not, by any means, hidden muscular structure. It is one of the last structures to be activated in human heart. It is shown here that the supraventricular crest Purkinje network connects the anterosuperior right ventricular basal free wall Purkinje network to anterior right ventricular basal septal Purkinje network. It is suggested that the stimulus initiated at middle left ventricular endocardium will activate the supraventricular crest. The intraseptal connection found between the basal left ventricular subendocardial septal Purkinje network and the right ventricular basal septal Purkinje network is, probably, the pathway for the stimulus. An anatomic basis is provided to explain why the inflow tract contracts earlier than the outflow tract in the right ventricle systole. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1793-1801, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Optical Access Networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Ansari, Nirwan

    2005-02-01

    Call for Papers: Optical Access Networks With the wide deployment of fiber-optic technology over the past two decades, we have witnessed a tremendous growth of bandwidth capacity in the backbone networks of today's telecommunications infrastructure. However, access networks, which cover the "last-mile" areas and serve numerous residential and small business users, have not been scaled up commensurately. The local subscriber lines for telephone and cable television are still using twisted pairs and coaxial cables. Most residential connections to the Internet are still through dial-up modems operating at a low speed on twisted pairs. As the demand for access bandwidth increases with emerging high-bandwidth applications, such as distance learning, high-definition television (HDTV), and video on demand (VoD), the last-mile access networks have become a bandwidth bottleneck in today's telecommunications infrastructure. To ease this bottleneck, it is imperative to provide sufficient bandwidth capacity in the access networks to open the bottleneck and thus present more opportunities for the provisioning of multiservices. Optical access solutions promise huge bandwidth to service providers and low-cost high-bandwidth services to end users and are therefore widely considered the technology of choice for next-generation access networks. To realize the vision of optical access networks, however, many key issues still need to be addressed, such as network architectures, signaling protocols, and implementation standards. The major challenges lie in the fact that an optical solution must be not only robust, scalable, and flexible, but also implemented at a low cost comparable to that of existing access solutions in order to increase the economic viability of many potential high-bandwidth applications. In recent years, optical access networks have been receiving tremendous attention from both academia and industry. A large number of research activities have been carried out or

  3. The Community Science Workshop Network Story: Becoming a Networked Organization

    ERIC Educational Resources Information Center

    St. John, Mark

    2014-01-01

    The Community Science Workshops (CSWs)--with funding from the S.D. Bechtel, Jr. Foundation, and the Gordon and Betty Moore Foundation--created a network among the CSW sites in California. The goals of the CSW Network project have been to improve programs, build capacity throughout the Network, and establish new sites. Inverness Research has been…

  4. Compressive Network Analysis

    PubMed Central

    Jiang, Xiaoye; Yao, Yuan; Liu, Han; Guibas, Leonidas

    2014-01-01

    Modern data acquisition routinely produces massive amounts of network data. Though many methods and models have been proposed to analyze such data, the research of network data is largely disconnected with the classical theory of statistical learning and signal processing. In this paper, we present a new framework for modeling network data, which connects two seemingly different areas: network data analysis and compressed sensing. From a nonparametric perspective, we model an observed network using a large dictionary. In particular, we consider the network clique detection problem and show connections between our formulation with a new algebraic tool, namely Randon basis pursuit in homogeneous spaces. Such a connection allows us to identify rigorous recovery conditions for clique detection problems. Though this paper is mainly conceptual, we also develop practical approximation algorithms for solving empirical problems and demonstrate their usefulness on real-world datasets. PMID:25620806

  5. Multidimensional Analysis of Linguistic Networks

    NASA Astrophysics Data System (ADS)

    Araújo, Tanya; Banisch, Sven

    Network-based approaches play an increasingly important role in the analysis of data even in systems in which a network representation is not immediately apparent. This is particularly true for linguistic networks, which use to be induced from a linguistic data set for which a network perspective is only one out of several options for representation. Here we introduce a multidimensional framework for network construction and analysis with special focus on linguistic networks. Such a framework is used to show that the higher is the abstraction level of network induction, the harder is the interpretation of the topological indicators used in network analysis. Several examples are provided allowing for the comparison of different linguistic networks as well as to networks in other fields of application of network theory. The computation and the intelligibility of some statistical indicators frequently used in linguistic networks are discussed. It suggests that the field of linguistic networks, by applying statistical tools inspired by network studies in other domains, may, in its current state, have only a limited contribution to the development of linguistic theory.

  6. Creating, generating and comparing random network models with NetworkRandomizer.

    PubMed

    Tosadori, Gabriele; Bestvina, Ivan; Spoto, Fausto; Laudanna, Carlo; Scardoni, Giovanni

    2016-01-01

    Biological networks are becoming a fundamental tool for the investigation of high-throughput data in several fields of biology and biotechnology. With the increasing amount of information, network-based models are gaining more and more interest and new techniques are required in order to mine the information and to validate the results. To fill the validation gap we present an app, for the Cytoscape platform, which aims at creating randomised networks and randomising existing, real networks. Since there is a lack of tools that allow performing such operations, our app aims at enabling researchers to exploit different, well known random network models that could be used as a benchmark for validating real, biological datasets. We also propose a novel methodology for creating random weighted networks, i.e. the multiplication algorithm, starting from real, quantitative data. Finally, the app provides a statistical tool that compares real versus randomly computed attributes, in order to validate the numerical findings. In summary, our app aims at creating a standardised methodology for the validation of the results in the context of the Cytoscape platform.

  7. Dependable Emergency-Response Networking Based on Retaskable Network Infrastructures

    DTIC Science & Technology

    2008-04-01

    a Focus Group for the National Reliability and Interoperability Council (NRIC VII), which has helped to suggest a list of possible types of agents...APR 2008 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Dependable Emergency-Response Networking Based on Retaskable Network...of his network op- timization algorithms. We would like to thank the TCIP Center team for their feed- back on this work. This work was supported in

  8. Satellite networks for education.

    NASA Technical Reports Server (NTRS)

    Singh, J. P.; Morgan, R. P.; Rosenbaum, F. J.

    1972-01-01

    Consideration of satellite-based educational networking. The characteristics and structure of networks are reviewed, and pressures within the educational establishment that are providing motivation for various types of networks are discussed. A number of studies are cited in which networking needs for educational sectors and services are defined. The current status of educational networking for educational radio and television, instructional television fixed services, inter- and intrastate educational communication networks, computer networks, cable television for education, and continuing and proposed educational experiments using NASA's Applications Technology Satellites is reviewed. Possible satellite-based educational telecommunication services and three alternatives for implementing educational satellite systems are described. Some remarks are made concerning public policy aspects of future educational satellite system development.

  9. JPRS Report Science & Technology, Europe

    DTIC Science & Technology

    1991-08-22

    MHS has already been manu- facturing two other components developed by CNET which have proved to be indispensable companions of the CTA4 for...SSGRR Alcatel-Face Standard, Sistema , Telettra Network-related problem areas Feasibility study of an ATM system via satellite Participants

  10. Network-induced oscillatory behavior in material flow networks and irregular business cycles

    NASA Astrophysics Data System (ADS)

    Helbing, Dirk; Lämmer, Stefen; Witt, Ulrich; Brenner, Thomas

    2004-11-01

    Network theory is rapidly changing our understanding of complex systems, but the relevance of topological features for the dynamic behavior of metabolic networks, food webs, production systems, information networks, or cascade failures of power grids remains to be explored. Based on a simple model of supply networks, we offer an interpretation of instabilities and oscillations observed in biological, ecological, economic, and engineering systems. We find that most supply networks display damped oscillations, even when their units—and linear chains of these units—behave in a nonoscillatory way. Moreover, networks of damped oscillators tend to produce growing oscillations. This surprising behavior offers, for example, a different interpretation of business cycles and of oscillating or pulsating processes. The network structure of material flows itself turns out to be a source of instability, and cyclical variations are an inherent feature of decentralized adjustments.

  11. Modeling of workflow-engaged networks on radiology transfers across a metro network.

    PubMed

    Camorlinga, Sergio; Schofield, Bruce

    2006-04-01

    Radiology metro networks bear the challenging proposition of interconnecting several hospitals in a region to provide a comprehensive diagnostic imaging service. Consequences of a poorly designed and implemented metro network could cause delays or no access at all when health care providers try to retrieve medical cases across the network. This could translate into limited diagnostic services to patients, resulting in negative impacts to the patients' medical treatment. A workflow-engaged network (WEN) is a new network paradigm. A WEN appreciates radiology workflows and priorities in using the network. A WEN greatly improves the network performance by guaranteeing that critical image transfers experience minimal delay. It adjusts network settings to ensure the application's requirements are met. This means that high-priority image transfers will have guaranteed and known delay times, whereas lower-priority traffic will have increased delays. This paper introduces a modeling to understand the benefits that WEN brings to a radiology metro network. The modeling uses actual data patterns and flows found in a hospital metro region. The workflows considered are based on the Integrating the Healthcare Enterprise profiles. This modeling has been applied to metropolitan workflows of a health region. The modeling helps identify the kind of metro network that supports data patterns and flows in a metro area. The results of the modeling show that a 155-Mb/s metropolitan area network (MAN) with WEN operates virtually equal to a normal 622-Mb/s MAN without WEN, with potential cost savings for leased line services measured in the millions of dollars per year.

  12. Network Visualization Project (NVP)

    DTIC Science & Technology

    2016-07-01

    network visualization, network traffic analysis, network forensics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF...shell, is a command-line framework used for network forensic analysis. Dshell processes existing pcap files and filters output information based on

  13. The Network Classroom.

    ERIC Educational Resources Information Center

    Maule, R. William

    1993-01-01

    Discussion of the role of new computer communications technologies in education focuses on modern networking systems, including fiber distributed data interface and Integrated Services Digital Network; strategies for implementing networked-based communication; and public online information resources for the classroom, including Bitnet, Internet,…

  14. Sustaining Research Networks: the Twenty-Year Experience of the HMO Research Network

    PubMed Central

    Steiner, John F.; Paolino, Andrea R.; Thompson, Ella E.; Larson, Eric B.

    2014-01-01

    Purpose: As multi-institutional research networks assume a central role in clinical research, they must address the challenge of sustainability. Despite its importance, the concept of network sustainability has received little attention in the literature, and the sustainability strategies of durable scientific networks have not been described. Innovation: The Health Maintenance Organization Research Network (HMORN) is a consortium of 18 research departments in integrated health care delivery systems with over 15 million members in the United States and Israel. The HMORN has coordinated federally funded scientific networks and studies since 1994. This case study describes the HMORN approach to sustainability, proposes an operational definition of network sustainability, and identifies 10 essential elements that can enhance sustainability. Credibility: The sustainability framework proposed here is drawn from prior publications on organizational issues by HMORN investigators and from the experience of recent HMORN leaders and senior staff. Conclusion and Discussion: Network sustainability can be defined as (1) the development and enhancement of shared research assets to facilitate a sequence of research studies in a specific content area or multiple areas, and (2) a community of researchers and other stakeholders who reuse and develop those assets. Essential elements needed to develop the shared assets of a network include: network governance; trustworthy data and processes for sharing data; shared knowledge about research tools; administrative efficiency; physical infrastructure; and infrastructure funding. The community of researchers within a network is enhanced by: a clearly defined mission, vision and values; protection of human subjects; a culture of collaboration; and strong relationships with host organizations. While the importance of these elements varies based on the membership and goals of a network, this framework for sustainability can enhance strategic

  15. Markets on Networks

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltan; Anghel, Marian; Bassler, Kevin; Korniss, Gyorgy

    2003-03-01

    The dynamics of human, and most biological populations is characterized by competition for resources. By its own nature, this dynamics creates the group of "elites", formed by those agents who have strategies that are the most successful in the given situation, and therefore the rest of the agents will tend to follow, imitate, or interact with them, creating a social structure of leadership in the agent society. These inter-agent communications generate a complex social network with small-world character which itself forms the substrate for a second network, the action network. The latter is a highly dynamic, adaptive, directed network, defined by those inter-agent communication links on the substrate along which the passed information /prediction is acted upon by the other agents. By using the minority game for competition dynamics, here we show that when the substrate network is highly connected, the action network spontaneously develops hubs with a broad distribution of out-degrees, defining a robust leadership structure that is scale-free. Furthermore, in certain, realistic parameter ranges, facilitated by information passing on the action network, agents can spontaneously generate a high degree of cooperation making the collective almost maximally efficient.

  16. Local network assessment

    NASA Astrophysics Data System (ADS)

    Glen, D. V.

    1985-04-01

    Local networks, related standards activities of the Institute of Electrical and Electronics Engineers the American National Standards Institute and other elements are presented. These elements include: (1) technology choices such as topology, transmission media, and access protocols; (2) descriptions of standards for the 802 local area networks (LAN's); high speed local networks (HSLN's) and military specification local networks; and (3) intra- and internetworking using bridges and gateways with protocols Interconnection (OSI) reference model. The convergence of LAN/PBX technology is also described.

  17. Counting motifs in dynamic networks.

    PubMed

    Mukherjee, Kingshuk; Hasan, Md Mahmudul; Boucher, Christina; Kahveci, Tamer

    2018-04-11

    A network motif is a sub-network that occurs frequently in a given network. Detection of such motifs is important since they uncover functions and local properties of the given biological network. Finding motifs is however a computationally challenging task as it requires solving the costly subgraph isomorphism problem. Moreover, the topology of biological networks change over time. These changing networks are called dynamic biological networks. As the network evolves, frequency of each motif in the network also changes. Computing the frequency of a given motif from scratch in a dynamic network as the network topology evolves is infeasible, particularly for large and fast evolving networks. In this article, we design and develop a scalable method for counting the number of motifs in a dynamic biological network. Our method incrementally updates the frequency of each motif as the underlying network's topology evolves. Our experiments demonstrate that our method can update the frequency of each motif in orders of magnitude faster than counting the motif embeddings every time the network changes. If the network evolves more frequently, the margin with which our method outperforms the existing static methods, increases. We evaluated our method extensively using synthetic and real datasets, and show that our method is highly accurate(≥ 96%) and that it can be scaled to large dense networks. The results on real data demonstrate the utility of our method in revealing interesting insights on the evolution of biological processes.

  18. Hybrid services efficient provisioning over the network coding-enabled elastic optical networks

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Gu, Rentao; Ji, Yuefeng; Kavehrad, Mohsen

    2017-03-01

    As a variety of services have emerged, hybrid services have become more common in real optical networks. Although the elastic spectrum resource optimizations over the elastic optical networks (EONs) have been widely investigated, little research has been carried out on the hybrid services of the routing and spectrum allocation (RSA), especially over the network coding-enabled EON. We investigated the RSA for the unicast service and network coding-based multicast service over the network coding-enabled EON with the constraints of time delay and transmission distance. To address this issue, a mathematical model was built to minimize the total spectrum consumption for the hybrid services over the network coding-enabled EON under the constraints of time delay and transmission distance. The model guarantees different routing constraints for different types of services. The immediate nodes over the network coding-enabled EON are assumed to be capable of encoding the flows for different kinds of information. We proposed an efficient heuristic algorithm of the network coding-based adaptive routing and layered graph-based spectrum allocation algorithm (NCAR-LGSA). From the simulation results, NCAR-LGSA shows highly efficient performances in terms of the spectrum resources utilization under different network scenarios compared with the benchmark algorithms.

  19. How has climate change altered network connectivity in a mountain stream network?

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Schmadel, N.; Wondzell, S. M.; Johnson, S.

    2017-12-01

    Connectivity along river networks is broadly recognized as dynamic, with seasonal and event-based expansion and contraction of the network extent. Intermittently flowing streams are particularly important as they define a crucial threshold for continuously connected waters that enable migration by aquatic species. In the Pacific northwestern U.S., changes in atmospheric circulation have been found to alter rainfall patterns and result in decreased summer low-flows in the region. However, the impact of this climate dynamic on network connectivity is heretofore unstudied. Thus, we ask: How has connectivity in the riparian corridor changed in response to observed changes in climate? In this study we take the well-studied H.J. Andrews Experimental Forest as representative of mountain river networks in the Pacific northwestern U.S. First, we analyze 63 years of stream gauge information from a network of 11 gauges to document observed changes in timing and magnitude of stream discharge. We found declining magnitudes of seasonal low-flows and shifting seasonality of water export from the catchment, both of which we attribute to changes in precipitation timing and storage as snow vs. rainfall. Next, we use these discharge data to drive a reduced-complexity model of the river network to simulate network connectivity over 63 years. Model results show that network contraction (i.e., minimum network extent) has decreased over the past 63 years. Unexpectedly, the increasing winter peak flows did not correspond with increasing network expansion, suggesting a geologic control on maximum flowing network extent. We find dynamic expansion and contraction of the network primarily occurs during period of catchment discharge less than about 1 m3/s at the outlet, whereas the network extent is generally constant for discharges from 1 to 300 m3/s. Results of our study are of interest to scientists focused on connectivity as a control on ecological processes both directly (e.g., fish

  20. Local-Area-Network Simulator

    NASA Technical Reports Server (NTRS)

    Gibson, Jim; Jordan, Joe; Grant, Terry

    1990-01-01

    Local Area Network Extensible Simulator (LANES) computer program provides method for simulating performance of high-speed local-area-network (LAN) technology. Developed as design and analysis software tool for networking computers on board proposed Space Station. Load, network, link, and physical layers of layered network architecture all modeled. Mathematically models according to different lower-layer protocols: Fiber Distributed Data Interface (FDDI) and Star*Bus. Written in FORTRAN 77.

  1. Reconfigureable network node

    DOEpatents

    Vanderveen, Keith B [Tracy, CA; Talbot, Edward B [Livermore, CA; Mayer, Laurence E [Davis, CA

    2008-04-08

    Nodes in a network having a plurality of nodes establish communication links with other nodes using available transmission media, as the ability to establish such links becomes available and desirable. The nodes predict when existing communications links will fail, become overloaded or otherwise degrade network effectiveness and act to establish substitute or additional links before the node's ability to communicate with the other nodes on the network is adversely affected. A node stores network topology information and programmed link establishment rules and criteria. The node evaluates characteristics that predict existing links with other nodes becoming unavailable or degraded. The node then determines whether it can form a communication link with a substitute node, in order to maintain connectivity with the network. When changing its communication links, a node broadcasts that information to the network. Other nodes update their stored topology information and consider the updated topology when establishing new communications links for themselves.

  2. NASA Integrated Network COOP

    NASA Technical Reports Server (NTRS)

    Anderson, Michael L.; Wright, Nathaniel; Tai, Wallace

    2012-01-01

    Natural disasters, terrorist attacks, civil unrest, and other events have the potential of disrupting mission-essential operations in any space communications network. NASA's Space Communications and Navigation office (SCaN) is in the process of studying options for integrating the three existing NASA network elements, the Deep Space Network, the Near Earth Network, and the Space Network, into a single integrated network with common services and interfaces. The need to maintain Continuity of Operations (COOP) after a disastrous event has a direct impact on the future network design and operations concepts. The SCaN Integrated Network will provide support to a variety of user missions. The missions have diverse requirements and include anything from earth based platforms to planetary missions and rovers. It is presumed that an integrated network, with common interfaces and processes, provides an inherent advantage to COOP in that multiple elements and networks can provide cross-support in a seamless manner. The results of trade studies support this assumption but also show that centralization as a means of achieving integration can result in single points of failure that must be mitigated. The cost to provide this mitigation can be substantial. In support of this effort, the team evaluated the current approaches to COOP, developed multiple potential approaches to COOP in a future integrated network, evaluated the interdependencies of the various approaches to the various network control and operations options, and did a best value assessment of the options. The paper will describe the trade space, the study methods, and results of the study.

  3. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    PubMed

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  4. A network dynamics approach to chemical reaction networks

    NASA Astrophysics Data System (ADS)

    van der Schaft, A. J.; Rao, S.; Jayawardhana, B.

    2016-04-01

    A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.

  5. WWLLN and Earth Networks new combined Global Lightning Network: First Look

    NASA Astrophysics Data System (ADS)

    Holzworth, R. H., II; Brundell, J. B.; Sloop, C.; Heckman, S.; Rodger, C. J.

    2016-12-01

    Lightning VLF sferic waveforms detected around the world by WWLLN (World Wide Lightning Location Network) and by Earth Networks WTLN receivers are being analyzed in real time to calculate the time of group arrival (TOGA) of the sferic wave packet at each station. These times (TOGAs) are then used for time-of-arrival analysis to determine the source lightning location. Beginning in 2016 we have successfully implemented the operational software to allow the incorporation of waveforms from hundreds of Earth Networks sensors into the normal WWLLN TOGA processing, resulting in a new global lightning distribution which has over twice as many stroke locations as the WWLLN-only data set. The combined global lightning network shows marked improvement over the WWLLN-only data set in regions such as central and southern Africa, and over the Indian subcontinent. As of July 2016 the new data set is typically running at about 230% of WWLLN-only in terms of total strokes, and some days over 250%, using data from 65 to 70 WWLLN stations, combined with the VLF channel from about 160 Earth Networks stations. The Earth Networks lightning network includes nearly 1000 receiving stations, so it is anticipated we will be able to further increase the total stations being used for the new combined network while still maintaining a relatively smooth global distribution of the sensors. Detailed comparisons of the new data set with WWLLN-only data, as well as with independent lightning location networks including WTLN in the CONUS and NZLDN in New Zealand will be presented.

  6. Extracting information from multiplex networks

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ ˜ S for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  7. Network Metamodeling: The Effect of Correlation Metric Choice on Phylogenomic and Transcriptomic Network Topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weighill, Deborah A; Jacobson, Daniel A

    We explore the use of a network meta-modeling approach to compare the effects of similarity metrics used to construct biological networks on the topology of the resulting networks. This work reviews various similarity metrics for the construction of networks and various topology measures for the characterization of resulting network topology, demonstrating the use of these metrics in the construction and comparison of phylogenomic and transcriptomic networks.

  8. Satellite networks for education

    NASA Technical Reports Server (NTRS)

    Singh, J. P.; Morgan, R. P.; Rosenbaum, F. J.

    1972-01-01

    Satellite based educational networking is discussed with particular attention given to the potential uses of communications satellites to help meet educational needs in the United states. Four major subject areas were covered; (1) characteristics and structure of networks, (2) definition of pressures within educational establishment that provide motivation for various types of networks, (3) examination of current educational networking status for educational radio and television, instructional television fixed services, inter- and intra-state educational communication networks, computer networks, and cable television for education, and (4) identification of possible satellite based educational telecommunication services and three alternatives for implementing educational satellite systems.

  9. Collaborative learning in networks.

    PubMed

    Mason, Winter; Watts, Duncan J

    2012-01-17

    Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions.

  10. A network security monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberlein, L.T.; Dias, G.V.; Levitt, K.N.

    1989-11-01

    The study of security in computer networks is a rapidly growing area of interest because of the proliferation of networks and the paucity of security measures in most current networks. Since most networks consist of a collection of inter-connected local area networks (LANs), this paper concentrates on the security-related issues in a single broadcast LAN such as Ethernet. Specifically, we formalize various possible network attacks and outline methods of detecting them. Our basic strategy is to develop profiles of usage of network resources and then compare current usage patterns with the historical profile to determine possible security violations. Thus, ourmore » work is similar to the host-based intrusion-detection systems such as SRI's IDES. Different from such systems, however, is our use of a hierarchical model to refine the focus of the intrusion-detection mechanism. We also report on the development of our experimental LAN monitor currently under implementation. Several network attacks have been simulated and results on how the monitor has been able to detect these attacks are also analyzed. Initial results demonstrate that many network attacks are detectable with our monitor, although it can surely be defeated. Current work is focusing on the integration of network monitoring with host-based techniques. 20 refs., 2 figs.« less

  11. Collaborative learning in networks

    PubMed Central

    Mason, Winter; Watts, Duncan J.

    2012-01-01

    Complex problems in science, business, and engineering typically require some tradeoff between exploitation of known solutions and exploration for novel ones, where, in many cases, information about known solutions can also disseminate among individual problem solvers through formal or informal networks. Prior research on complex problem solving by collectives has found the counterintuitive result that inefficient networks, meaning networks that disseminate information relatively slowly, can perform better than efficient networks for problems that require extended exploration. In this paper, we report on a series of 256 Web-based experiments in which groups of 16 individuals collectively solved a complex problem and shared information through different communication networks. As expected, we found that collective exploration improved average success over independent exploration because good solutions could diffuse through the network. In contrast to prior work, however, we found that efficient networks outperformed inefficient networks, even in a problem space with qualitative properties thought to favor inefficient networks. We explain this result in terms of individual-level explore-exploit decisions, which we find were influenced by the network structure as well as by strategic considerations and the relative payoff between maxima. We conclude by discussing implications for real-world problem solving and possible extensions. PMID:22184216

  12. Serial Network Flow Monitor

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    Using a commercial software CD and minimal up-mass, SNFM monitors the Payload local area network (LAN) to analyze and troubleshoot LAN data traffic. Validating LAN traffic models may allow for faster and more reliable computer networks to sustain systems and science on future space missions. Research Summary: This experiment studies the function of the computer network onboard the ISS. On-orbit packet statistics are captured and used to validate ground based medium rate data link models and enhance the way that the local area network (LAN) is monitored. This information will allow monitoring and improvement in the data transfer capabilities of on-orbit computer networks. The Serial Network Flow Monitor (SNFM) experiment attempts to characterize the network equivalent of traffic jams on board ISS. The SNFM team is able to specifically target historical problem areas including the SAMS (Space Acceleration Measurement System) communication issues, data transmissions from the ISS to the ground teams, and multiple users on the network at the same time. By looking at how various users interact with each other on the network, conflicts can be identified and work can begin on solutions. SNFM is comprised of a commercial off the shelf software package that monitors packet traffic through the payload Ethernet LANs (local area networks) on board ISS.

  13. 78 FR 12359 - Goodman Networks, Inc., Core Network Engineering (Deployment Engineering) Division Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ...., Core Network Engineering (Deployment Engineering) Division Including Workers in the Core Network Engineering (Deployment Engineering) Division in Alpharetta, GA, Hunt Valley, MD, Naperville, IL, and St... Reconsideration applicable to workers and former workers of Goodman Networks, Inc., Core Network Engineering...

  14. Understanding network concepts in modules

    PubMed Central

    2007-01-01

    Background Network concepts are increasingly used in biology and genetics. For example, the clustering coefficient has been used to understand network architecture; the connectivity (also known as degree) has been used to screen for cancer targets; and the topological overlap matrix has been used to define modules and to annotate genes. Dozens of potentially useful network concepts are known from graph theory. Results Here we study network concepts in special types of networks, which we refer to as approximately factorizable networks. In these networks, the pairwise connection strength (adjacency) between 2 network nodes can be factored into node specific contributions, named node 'conformity'. The node conformity turns out to be highly related to the connectivity. To provide a formalism for relating network concepts to each other, we define three types of network concepts: fundamental-, conformity-based-, and approximate conformity-based concepts. Fundamental concepts include the standard definitions of connectivity, density, centralization, heterogeneity, clustering coefficient, and topological overlap. The approximate conformity-based analogs of fundamental network concepts have several theoretical advantages. First, they allow one to derive simple relationships between seemingly disparate networks concepts. For example, we derive simple relationships between the clustering coefficient, the heterogeneity, the density, the centralization, and the topological overlap. The second advantage of approximate conformity-based network concepts is that they allow one to show that fundamental network concepts can be approximated by simple functions of the connectivity in module networks. Conclusion Using protein-protein interaction, gene co-expression, and simulated data, we show that a) many networks comprised of module nodes are approximately factorizable and b) in these types of networks, simple relationships exist between seemingly disparate network concepts. Our

  15. Engineering technology for networks

    NASA Technical Reports Server (NTRS)

    Paul, Arthur S.; Benjamin, Norman

    1991-01-01

    Space Network (SN) modeling and evaluation are presented. The following tasks are included: Network Modeling (developing measures and metrics for SN, modeling of the Network Control Center (NCC), using knowledge acquired from the NCC to model the SNC, and modeling the SN); and Space Network Resource scheduling.

  16. Designing Secure Library Networks.

    ERIC Educational Resources Information Center

    Breeding, Michael

    1997-01-01

    Focuses on designing a library network to maximize security. Discusses UNIX and file servers; connectivity to campus, corporate networks and the Internet; separation of staff from public servers; controlling traffic; the threat of network sniffers; hubs that eliminate eavesdropping; dividing the network into subnets; Switched Ethernet;…

  17. Thermodynamics of random reaction networks.

    PubMed

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  18. Advancing Health Professions Education Research by Creating a Network of Networks.

    PubMed

    Carney, Patricia A; Brandt, Barbara; Dekhtyar, Michael; Holmboe, Eric S

    2018-02-27

    Producing the best evidence to show educational outcomes, such as competency achievement and credentialing effectiveness, across the health professions education continuum will require large multisite research projects and longitudinal studies. Current limitations that must be overcome to reach this goal include the prevalence of single-institution study designs, assessments of a single curricular component, and cross-sectional study designs that provide only a snapshot in time of a program or initiative rather than a longitudinal perspective.One solution to overcoming these limitations is to develop a network of networks that collaborates, using longitudinal approaches, across health professions and regions of the United States. Currently, individual networks are advancing educational innovation toward understanding the effectiveness of educational and credentialing programs. Examples of such networks include: (1) the American Medical Association's Accelerating Change in Medical Education initiative, (2) the National Center for Interprofessional Practice and Education, and (3) the Accreditation Council for Graduate Medical Education's Accreditation System. In this Invited Commentary, the authors briefly profile these existing networks, identify their progress and the challenges they have encountered, and propose a vigorous way forward toward creating a national network of networks designed to determine the effectiveness of health professions education and credentialing.

  19. Bayesian network prior: network analysis of biological data using external knowledge

    PubMed Central

    Isci, Senol; Dogan, Haluk; Ozturk, Cengizhan; Otu, Hasan H.

    2014-01-01

    Motivation: Reverse engineering GI networks from experimental data is a challenging task due to the complex nature of the networks and the noise inherent in the data. One way to overcome these hurdles would be incorporating the vast amounts of external biological knowledge when building interaction networks. We propose a framework where GI networks are learned from experimental data using Bayesian networks (BNs) and the incorporation of external knowledge is also done via a BN that we call Bayesian Network Prior (BNP). BNP depicts the relation between various evidence types that contribute to the event ‘gene interaction’ and is used to calculate the probability of a candidate graph (G) in the structure learning process. Results: Our simulation results on synthetic, simulated and real biological data show that the proposed approach can identify the underlying interaction network with high accuracy even when the prior information is distorted and outperforms existing methods. Availability: Accompanying BNP software package is freely available for academic use at http://bioe.bilgi.edu.tr/BNP. Contact: hasan.otu@bilgi.edu.tr Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:24215027

  20. Reciprocity of weighted networks

    PubMed Central

    Squartini, Tiziano; Picciolo, Francesco; Ruzzenenti, Franco; Garlaschelli, Diego

    2013-01-01

    In directed networks, reciprocal links have dramatic effects on dynamical processes, network growth, and higher-order structures such as motifs and communities. While the reciprocity of binary networks has been extensively studied, that of weighted networks is still poorly understood, implying an ever-increasing gap between the availability of weighted network data and our understanding of their dyadic properties. Here we introduce a general approach to the reciprocity of weighted networks, and define quantities and null models that consistently capture empirical reciprocity patterns at different structural levels. We show that, counter-intuitively, previous reciprocity measures based on the similarity of mutual weights are uninformative. By contrast, our measures allow to consistently classify different weighted networks according to their reciprocity, track the evolution of a network's reciprocity over time, identify patterns at the level of dyads and vertices, and distinguish the effects of flux (im)balances or other (a)symmetries from a true tendency towards (anti-)reciprocation. PMID:24056721

  1. Reciprocity of weighted networks.

    PubMed

    Squartini, Tiziano; Picciolo, Francesco; Ruzzenenti, Franco; Garlaschelli, Diego

    2013-01-01

    In directed networks, reciprocal links have dramatic effects on dynamical processes, network growth, and higher-order structures such as motifs and communities. While the reciprocity of binary networks has been extensively studied, that of weighted networks is still poorly understood, implying an ever-increasing gap between the availability of weighted network data and our understanding of their dyadic properties. Here we introduce a general approach to the reciprocity of weighted networks, and define quantities and null models that consistently capture empirical reciprocity patterns at different structural levels. We show that, counter-intuitively, previous reciprocity measures based on the similarity of mutual weights are uninformative. By contrast, our measures allow to consistently classify different weighted networks according to their reciprocity, track the evolution of a network's reciprocity over time, identify patterns at the level of dyads and vertices, and distinguish the effects of flux (im)balances or other (a)symmetries from a true tendency towards (anti-)reciprocation.

  2. Computer network defense system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urias, Vincent; Stout, William M. S.; Loverro, Caleb

    A method and apparatus for protecting virtual machines. A computer system creates a copy of a group of the virtual machines in an operating network in a deception network to form a group of cloned virtual machines in the deception network when the group of the virtual machines is accessed by an adversary. The computer system creates an emulation of components from the operating network in the deception network. The components are accessible by the group of the cloned virtual machines as if the group of the cloned virtual machines was in the operating network. The computer system moves networkmore » connections for the group of the virtual machines in the operating network used by the adversary from the group of the virtual machines in the operating network to the group of the cloned virtual machines, enabling protecting the group of the virtual machines from actions performed by the adversary.« less

  3. Internet protocol network mapper

    DOEpatents

    Youd, David W.; Colon III, Domingo R.; Seidl, Edward T.

    2016-02-23

    A network mapper for performing tasks on targets is provided. The mapper generates a map of a network that specifies the overall configuration of the network. The mapper inputs a procedure that defines how the network is to be mapped. The procedure specifies what, when, and in what order the tasks are to be performed. Each task specifies processing that is to be performed for a target to produce results. The procedure may also specify input parameters for a task. The mapper inputs initial targets that specify a range of network addresses to be mapped. The mapper maps the network by, for each target, executing the procedure to perform the tasks on the target. The results of the tasks represent the mapping of the network defined by the initial targets.

  4. Column generation algorithms for virtual network embedding in flexi-grid optical networks.

    PubMed

    Lin, Rongping; Luo, Shan; Zhou, Jingwei; Wang, Sheng; Chen, Bin; Zhang, Xiaoning; Cai, Anliang; Zhong, Wen-De; Zukerman, Moshe

    2018-04-16

    Network virtualization provides means for efficient management of network resources by embedding multiple virtual networks (VNs) to share efficiently the same substrate network. Such virtual network embedding (VNE) gives rise to a challenging problem of how to optimize resource allocation to VNs and to guarantee their performance requirements. In this paper, we provide VNE algorithms for efficient management of flexi-grid optical networks. We provide an exact algorithm aiming to minimize the total embedding cost in terms of spectrum cost and computation cost for a single VN request. Then, to achieve scalability, we also develop a heuristic algorithm for the same problem. We apply these two algorithms for a dynamic traffic scenario where many VN requests arrive one-by-one. We first demonstrate by simulations for the case of a six-node network that the heuristic algorithm obtains very close blocking probabilities to exact algorithm (about 0.2% higher). Then, for a network of realistic size (namely, USnet) we demonstrate that the blocking probability of our new heuristic algorithm is about one magnitude lower than a simpler heuristic algorithm, which was a component of an earlier published algorithm.

  5. Single-shot secure quantum network coding on butterfly network with free public communication

    NASA Astrophysics Data System (ADS)

    Owari, Masaki; Kato, Go; Hayashi, Masahito

    2018-01-01

    Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.

  6. Wireless mesh networks.

    PubMed

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  7. Optical storage networking

    NASA Astrophysics Data System (ADS)

    Mohr, Ulrich

    2001-11-01

    For efficient business continuance and backup of mission- critical data an inter-site storage network is required. Where traditional telecommunications costs are prohibitive for all but the largest organizations, there is an opportunity for regional carries to deliver an innovative storage service. This session reveals how a combination of optical networking and protocol-aware SAN gateways can provide an extended storage networking platform with the lowest cost of ownership and the highest possible degree of reliability, security and availability. Companies of every size, with mainframe and open-systems environments, can afford to use this integrated service. Three mayor applications are explained; channel extension, Network Attached Storage (NAS), Storage Area Networks (SAN) and how optical networks address the specific requirements. One advantage of DWDM is the ability for protocols such as ESCON, Fibre Channel, ATM and Gigabit Ethernet, to be transported natively and simultaneously across a single fiber pair, and the ability to multiplex many individual fiber pairs over a single pair, thereby reducing fiber cost and recovering fiber pairs already in use. An optical storage network enables a new class of service providers, Storage Service Providers (SSP) aiming to deliver value to the enterprise by managing storage, backup, replication and restoration as an outsourced service.

  8. One network metric datastore to track them all: the OSG network metric service

    NASA Astrophysics Data System (ADS)

    Quick, Robert; Babik, Marian; Fajardo, Edgar M.; Gross, Kyle; Hayashi, Soichi; Krenz, Marina; Lee, Thomas; McKee, Shawn; Pipes, Christopher; Teige, Scott

    2017-10-01

    The Open Science Grid (OSG) relies upon the network as a critical part of the distributed infrastructures it enables. In 2012, OSG added a new focus area in networking with a goal of becoming the primary source of network information for its members and collaborators. This includes gathering, organizing, and providing network metrics to guarantee effective network usage and prompt detection and resolution of any network issues, including connection failures, congestion, and traffic routing. In September of 2015, this service was deployed into the OSG production environment. We will report on the creation, implementation, testing, and deployment of the OSG Networking Service. Starting from organizing the deployment of perfSONAR toolkits within OSG and its partners, to the challenges of orchestrating regular testing between sites, to reliably gathering the resulting network metrics and making them available for users, virtual organizations, and higher level services, all aspects of implementation will be reviewed. In particular, several higher-level services were developed to bring the OSG network service to its full potential. These include a web-based mesh configuration system, which allows central scheduling and management of all the network tests performed by the instances; a set of probes to continually gather metrics from the remote instances and publish it to different sources; a central network datastore (esmond), which provides interfaces to access the network monitoring information in close to real time and historically (up to a year) giving the state of the tests; and a perfSONAR infrastructure monitor system, ensuring the current perfSONAR instances are correctly configured and operating as intended. We will also describe the challenges we encountered in ongoing operations of the network service and how we have evolved our procedures to address those challenges. Finally we will describe our plans for future extensions and improvements to the service.

  9. Emergent Network Defense

    ERIC Educational Resources Information Center

    Crane, Earl Newell

    2013-01-01

    The research problem that inspired this effort is the challenge of managing the security of systems in large-scale heterogeneous networked environments. Human intervention is slow and limited: humans operate at much slower speeds than networked computer communications and there are few humans associated with each network. Enabling each node in the…

  10. NASA Integrated Space Communications Network

    NASA Technical Reports Server (NTRS)

    Tai, Wallace; Wright, Nate; Prior, Mike; Bhasin, Kul

    2012-01-01

    The NASA Integrated Network for Space Communications and Navigation (SCaN) has been in the definition phase since 2010. It is intended to integrate NASA s three existing network elements, i.e., the Space Network, Near Earth Network, and Deep Space Network, into a single network. In addition to the technical merits, the primary purpose of the Integrated Network is to achieve a level of operating cost efficiency significantly higher than it is today. Salient features of the Integrated Network include (a) a central system element that performs service management functions and user mission interfaces for service requests; (b) a set of common service execution equipment deployed at the all stations that provides return, forward, and radiometric data processing and delivery capabilities; (c) the network monitor and control operations for the entire integrated network are conducted remotely and centrally at a prime-shift site and rotating among three sites globally (a follow-the-sun approach); (d) the common network monitor and control software deployed at all three network elements that supports the follow-the-sun operations.

  11. Thermodynamics of Random Reaction Networks

    PubMed Central

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa −1.5 for linear and −1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks. PMID:25723751

  12. Modeling online social signed networks

    NASA Astrophysics Data System (ADS)

    Li, Le; Gu, Ke; Zeng, An; Fan, Ying; Di, Zengru

    2018-04-01

    People's online rating behavior can be modeled by user-object bipartite networks directly. However, few works have been devoted to reveal the hidden relations between users, especially from the perspective of signed networks. We analyze the signed monopartite networks projected by the signed user-object bipartite networks, finding that the networks are highly clustered with obvious community structure. Interestingly, the positive clustering coefficient is remarkably higher than the negative clustering coefficient. Then, a Signed Growing Network model (SGN) based on local preferential attachment is proposed to generate a user's signed network that has community structure and high positive clustering coefficient. Other structural properties of the modeled networks are also found to be similar to the empirical networks.

  13. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Tradeoff on Phenotype Robustness in Biological Networks Part II: Ecological Networks

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    In ecological networks, network robustness should be large enough to confer intrinsic robustness for tolerating intrinsic parameter fluctuations, as well as environmental robustness for resisting environmental disturbances, so that the phenotype stability of ecological networks can be maintained, thus guaranteeing phenotype robustness. However, it is difficult to analyze the network robustness of ecological systems because they are complex nonlinear partial differential stochastic systems. This paper develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance sensitivity in ecological networks. We found that the phenotype robustness criterion for ecological networks is that if intrinsic robustness + environmental robustness ≦ network robustness, then the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations and environmental disturbances. These results in robust ecological networks are similar to that in robust gene regulatory networks and evolutionary networks even they have different spatial-time scales. PMID:23515112

  14. Network Basics.

    ERIC Educational Resources Information Center

    Tennant, Roy

    1992-01-01

    Explains how users can find and access information resources available on the Internet. Highlights include network information centers (NICs); lists, both formal and informal; computer networking protocols, including international standards; electronic mail; remote log-in; and file transfer. (LRW)

  15. Security-Enhanced Autonomous Network Management

    NASA Technical Reports Server (NTRS)

    Zeng, Hui

    2015-01-01

    Ensuring reliable communication in next-generation space networks requires a novel network management system to support greater levels of autonomy and greater awareness of the environment and assets. Intelligent Automation, Inc., has developed a security-enhanced autonomous network management (SEANM) approach for space networks through cross-layer negotiation and network monitoring, analysis, and adaptation. The underlying technology is bundle-based delay/disruption-tolerant networking (DTN). The SEANM scheme allows a system to adaptively reconfigure its network elements based on awareness of network conditions, policies, and mission requirements. Although SEANM is generically applicable to any radio network, for validation purposes it has been prototyped and evaluated on two specific networks: a commercial off-the-shelf hardware test-bed using Institute of Electrical Engineers (IEEE) 802.11 Wi-Fi devices and a military hardware test-bed using AN/PRC-154 Rifleman Radio platforms. Testing has demonstrated that SEANM provides autonomous network management resulting in reliable communications in delay/disruptive-prone environments.

  16. Quantifying randomness in real networks

    NASA Astrophysics Data System (ADS)

    Orsini, Chiara; Dankulov, Marija M.; Colomer-de-Simón, Pol; Jamakovic, Almerima; Mahadevan, Priya; Vahdat, Amin; Bassler, Kevin E.; Toroczkai, Zoltán; Boguñá, Marián; Caldarelli, Guido; Fortunato, Santo; Krioukov, Dmitri

    2015-10-01

    Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks--the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain--and find that many important local and global structural properties of these networks are closely reproduced by dk-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate dk-random graphs.

  17. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    NASA Astrophysics Data System (ADS)

    Dasari, Venkat R.; Sadlier, Ronald J.; Geerhart, Billy E.; Snow, Nikolai A.; Williams, Brian P.; Humble, Travis S.

    2017-05-01

    Well-defined and stable quantum networks are essential to realize functional quantum communication applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. In this paper, we describe new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  18. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Venkat; Sadlier, Ronald J; Geerhart, Mr. Billy

    Well-defined and stable quantum networks are essential to realize functional quantum applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. We develop new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  19. Collective network routing

    DOEpatents

    Hoenicke, Dirk

    2014-12-02

    Disclosed are a unified method and apparatus to classify, route, and process injected data packets into a network so as to belong to a plurality of logical networks, each implementing a specific flow of data on top of a common physical network. The method allows to locally identify collectives of packets for local processing, such as the computation of the sum, difference, maximum, minimum, or other logical operations among the identified packet collective. Packets are injected together with a class-attribute and an opcode attribute. Network routers, employing the described method, use the packet attributes to look-up the class-specific route information from a local route table, which contains the local incoming and outgoing directions as part of the specifically implemented global data flow of the particular virtual network.

  20. Programmability of nanowire networks

    NASA Astrophysics Data System (ADS)

    Bellew, A. T.; Bell, A. P.; McCarthy, E. K.; Fairfield, J. A.; Boland, J. J.

    2014-07-01

    Electrical connectivity in networks of nanoscale junctions must be better understood if nanowire devices are to be scaled up from single wires to functional material systems. We show that the natural connectivity behaviour found in random nanowire networks presents a new paradigm for creating multi-functional, programmable materials. In devices made from networks of Ni/NiO core-shell nanowires at different length scales, we discover the emergence of distinct behavioural regimes when networks are electrically stressed. We show that a small network, with few nanowire-nanowire junctions, acts as a unipolar resistive switch, demonstrating very high ON/OFF current ratios (>105). However, large networks of nanowires distribute an applied bias across a large number of junctions, and thus respond not by switching but instead by evolving connectivity. We demonstrate that these emergent properties lead to fault-tolerant materials whose resistance may be tuned, and which are capable of adaptively reconfiguring under stress. By combining these two behavioural regimes, we demonstrate that the same nanowire network may be programmed to act both as a metallic interconnect, and a resistive switch device with high ON/OFF ratio. These results enable the fabrication of programmable, multi-functional materials from random nanowire networks.Electrical connectivity in networks of nanoscale junctions must be better understood if nanowire devices are to be scaled up from single wires to functional material systems. We show that the natural connectivity behaviour found in random nanowire networks presents a new paradigm for creating multi-functional, programmable materials. In devices made from networks of Ni/NiO core-shell nanowires at different length scales, we discover the emergence of distinct behavioural regimes when networks are electrically stressed. We show that a small network, with few nanowire-nanowire junctions, acts as a unipolar resistive switch, demonstrating very high ON

  1. Attractor Metabolic Networks

    PubMed Central

    De la Fuente, Ildefonso M.; Cortes, Jesus M.; Pelta, David A.; Veguillas, Juan

    2013-01-01

    Background The experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a Systemic Metabolic Structure in the cell, characterized by a set of different enzymatic reactions always locked into active states (metabolic core) while the rest of the catalytic processes are only intermittently active. This global metabolic structure was verified for Escherichia coli, Helicobacter pylori and Saccharomyces cerevisiae, and it seems to be a common key feature to all cellular organisms. In concordance with these observations, the cell can be considered a complex metabolic network which mainly integrates a large ensemble of self-organized multienzymatic complexes interconnected by substrate fluxes and regulatory signals, where multiple autonomous oscillatory and quasi-stationary catalytic patterns simultaneously emerge. The network adjusts the internal metabolic activities to the external change by means of flux plasticity and structural plasticity. Methodology/Principal Findings In order to research the systemic mechanisms involved in the regulation of the cellular enzymatic activity we have studied different catalytic activities of a dissipative metabolic network under different external stimuli. The emergent biochemical data have been analysed using statistical mechanic tools, studying some macroscopic properties such as the global information and the energy of the system. We have also obtained an equivalent Hopfield network using a Boltzmann machine. Our main result shows that the dissipative metabolic network can behave as an attractor metabolic network. Conclusions/Significance We have found that the systemic enzymatic activities are governed by attractors with capacity to store functional metabolic patterns which can be correctly recovered from specific input stimuli. The network attractors regulate the catalytic patterns, modify the efficiency

  2. Countering Threat Networks

    DTIC Science & Technology

    2016-12-21

    PLANNING TO COUNTER THREAT NETWORKS  Joint Intelligence Preparation of the Operational Environment and Threat Networks...Army Expeditionary Forensic Facility in Afghanistan ........ E-9 E-4 Exploitation Support to Intelligence Fusion and Decision Making ......... E-10...Approach The groundwork for successful countering threat networks activities starts with information and intelligence to develop an understanding

  3. Metallic nanowire networks

    DOEpatents

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  4. Coupled biopolymer networks

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.; Zhang, Tao

    2015-03-01

    The actin cytoskeleton provides the cell with structural integrity and allows it to change shape to crawl along a surface, for example. The actin cytoskeleton can be modeled as a semiflexible biopolymer network that modifies its morphology in response to both external and internal stimuli. Just inside the inner nuclear membrane of a cell exists a network of filamentous lamin that presumably protects the heart of the cell nucleus--the DNA. Lamins are intermediate filaments that can also be modeled as semiflexible biopolymers. It turns out that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins that bridge the outer and inner nuclear membranes. We, therefore, probe the consequences of such a coupling via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the cytoskeletal network. Such study could have implications for mechanical mechanisms of the regulation of transcription, since DNA--yet another semiflexible polymer--contains lamin-binding domains, and, thus, widen the field of epigenetics.

  5. Interdependent Multi-Layer Networks: Modeling and Survivability Analysis with Applications to Space-Based Networks

    PubMed Central

    Castet, Jean-Francois; Saleh, Joseph H.

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the

  6. Interdependent multi-layer networks: modeling and survivability analysis with applications to space-based networks.

    PubMed

    Castet, Jean-Francois; Saleh, Joseph H

    2013-01-01

    This article develops a novel approach and algorithmic tools for the modeling and survivability analysis of networks with heterogeneous nodes, and examines their application to space-based networks. Space-based networks (SBNs) allow the sharing of spacecraft on-orbit resources, such as data storage, processing, and downlink. Each spacecraft in the network can have different subsystem composition and functionality, thus resulting in node heterogeneity. Most traditional survivability analyses of networks assume node homogeneity and as a result, are not suited for the analysis of SBNs. This work proposes that heterogeneous networks can be modeled as interdependent multi-layer networks, which enables their survivability analysis. The multi-layer aspect captures the breakdown of the network according to common functionalities across the different nodes, and it allows the emergence of homogeneous sub-networks, while the interdependency aspect constrains the network to capture the physical characteristics of each node. Definitions of primitives of failure propagation are devised. Formal characterization of interdependent multi-layer networks, as well as algorithmic tools for the analysis of failure propagation across the network are developed and illustrated with space applications. The SBN applications considered consist of several networked spacecraft that can tap into each other's Command and Data Handling subsystem, in case of failure of its own, including the Telemetry, Tracking and Command, the Control Processor, and the Data Handling sub-subsystems. Various design insights are derived and discussed, and the capability to perform trade-space analysis with the proposed approach for various network characteristics is indicated. The select results here shown quantify the incremental survivability gains (with respect to a particular class of threats) of the SBN over the traditional monolith spacecraft. Failure of the connectivity between nodes is also examined, and the

  7. Identifying changes in the support networks of end-of-life carers using social network analysis

    PubMed Central

    Leonard, Rosemary; Horsfall, Debbie; Noonan, Kerrie

    2015-01-01

    End-of-life caring is often associated with reduced social networks for both the dying person and for the carer. However, those adopting a community participation and development approach, see the potential for the expansion and strengthening of networks. This paper uses Knox, Savage and Harvey's definitions of three generations social network analysis to analyse the caring networks of people with a terminal illness who are being cared for at home and identifies changes in these caring networks that occurred over the period of caring. Participatory network mapping of initial and current networks was used in nine focus groups. The analysis used key concepts from social network analysis (size, density, transitivity, betweenness and local clustering) together with qualitative analyses of the group's reflections on the maps. The results showed an increase in the size of the networks and that ties between the original members of the network strengthened. The qualitative data revealed the importance between core and peripheral network members and the diverse contributions of the network members. The research supports the value of third generation social network analysis and the potential for end-of-life caring to build social capital. PMID:24644162

  8. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    PubMed

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  9. Network Compression as a Quality Measure for Protein Interaction Networks

    PubMed Central

    Royer, Loic; Reimann, Matthias; Stewart, A. Francis; Schroeder, Michael

    2012-01-01

    With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients. PMID:22719828

  10. Toward multidomain integrated network management for ATM and SDH networks

    NASA Astrophysics Data System (ADS)

    Galis, Alex; Gantenbein, Dieter; Covaci, Stefan; Bianza, Carlo; Karayannis, Fotis; Mykoniatis, George

    1996-12-01

    ACTS Project AC080 MISA has embarked upon the task of realizing and validating via European field trials integrated end-to-end management of hybrid SDH and ATM networks in the framework of open network provision. This paper reflects the initial work of the project and gives an overview of the proposed MISA system architecture and initial design. We describe our understanding of the underlying enterprise model in the network management context, including the concept of the MISA Global Broadband Connectivity Management service. It supports Integrated Broadband Communication by defining an end-to-end broadband connection service in a multi-domain business environment. Its implementation by the MISA consortium within trials across Europe aims for an efficient management of network resources of the SDH and ATM infrastructure, considering optimum end-to-end quality of service and the needs of a number of telecommunication actors: customers, value-added service providers, and network providers.

  11. Graph distance for complex networks

    NASA Astrophysics Data System (ADS)

    Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki

    2016-10-01

    Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.

  12. Controllability of flow-conservation networks

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Zeng, An; Jiang, Rui; Yuan, Zhengzhong; Wang, Wen-Xu

    2017-07-01

    The ultimate goal of exploring complex networks is to control them. As such, controllability of complex networks has been intensively investigated. Despite recent advances in studying the impact of a network's topology on its controllability, a comprehensive understanding of the synergistic impact of network topology and dynamics on controllability is still lacking. Here, we explore the controllability of flow-conservation networks, trying to identify the minimal number of driver nodes that can guide the network to any desirable state. We develop a method to analyze the controllability on flow-conservation networks based on exact controllability theory, transforming the original analysis on adjacency matrix to Laplacian matrix. With this framework, we systematically investigate the impact of some key factors of networks, including link density, link directionality, and link polarity, on the controllability of these networks. We also obtain the analytical equations by investigating the network's structural properties approximatively and design the efficient tools. Finally, we consider some real networks with flow dynamics, finding that their controllability is significantly different from that predicted by only considering the topology. These findings deepen our understanding of network controllability with flow-conservation dynamics and provide a general framework to incorporate real dynamics in the analysis of network controllability.

  13. Integrative network alignment reveals large regions of global network similarity in yeast and human.

    PubMed

    Kuchaiev, Oleksii; Przulj, Natasa

    2011-05-15

    High-throughput methods for detecting molecular interactions have produced large sets of biological network data with much more yet to come. Analogous to sequence alignment, efficient and reliable network alignment methods are expected to improve our understanding of biological systems. Unlike sequence alignment, network alignment is computationally intractable. Hence, devising efficient network alignment heuristics is currently a foremost challenge in computational biology. We introduce a novel network alignment algorithm, called Matching-based Integrative GRAph ALigner (MI-GRAAL), which can integrate any number and type of similarity measures between network nodes (e.g. proteins), including, but not limited to, any topological network similarity measure, sequence similarity, functional similarity and structural similarity. Hence, we resolve the ties in similarity measures and find a combination of similarity measures yielding the largest contiguous (i.e. connected) and biologically sound alignments. MI-GRAAL exposes the largest functional, connected regions of protein-protein interaction (PPI) network similarity to date: surprisingly, it reveals that 77.7% of proteins in the baker's yeast high-confidence PPI network participate in such a subnetwork that is fully contained in the human high-confidence PPI network. This is the first demonstration that species as diverse as yeast and human contain so large, continuous regions of global network similarity. We apply MI-GRAAL's alignments to predict functions of un-annotated proteins in yeast, human and bacteria validating our predictions in the literature. Furthermore, using network alignment scores for PPI networks of different herpes viruses, we reconstruct their phylogenetic relationship. This is the first time that phylogeny is exactly reconstructed from purely topological alignments of PPI networks. Supplementary files and MI-GRAAL executables: http://bio-nets.doc.ic.ac.uk/MI-GRAAL/.

  14. Modeling the interdependent network based on two-mode networks

    NASA Astrophysics Data System (ADS)

    An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian

    2017-10-01

    Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.

  15. Surrogate-assisted identification of influences of network construction on evolving weighted functional networks

    NASA Astrophysics Data System (ADS)

    Stahn, Kirsten; Lehnertz, Klaus

    2017-12-01

    We aim at identifying factors that may affect the characteristics of evolving weighted networks derived from empirical observations. To this end, we employ various chains of analysis that are often used in field studies for a data-driven derivation and characterization of such networks. As an example, we consider fully connected, weighted functional brain networks before, during, and after epileptic seizures that we derive from multichannel electroencephalographic data recorded from epilepsy patients. For these evolving networks, we estimate clustering coefficient and average shortest path length in a time-resolved manner. Lastly, we make use of surrogate concepts that we apply at various levels of the chain of analysis to assess to what extent network characteristics are dominated by properties of the electroencephalographic recordings and/or the evolving weighted networks, which may be accessible more easily. We observe that characteristics are differently affected by the unavoidable referencing of the electroencephalographic recording, by the time-series-analysis technique used to derive the properties of network links, and whether or not networks were normalized. Importantly, for the majority of analysis settings, we observe temporal evolutions of network characteristics to merely reflect the temporal evolutions of mean interaction strengths. Such a property of the data may be accessible more easily, which would render the weighted network approach—as used here—as an overly complicated description of simple aspects of the data.

  16. Experimental demonstration of OSPF-TE extensions in muiti-domain OBS networks connected by GMPLS network

    NASA Astrophysics Data System (ADS)

    Tian, Chunlei; Yin, Yawei; Wu, Jian; Lin, Jintong

    2008-11-01

    The interworking network of Generalized Multi-Protocol Label Switching (GMPLS) and Optical Burst Switching (OBS) is attractive network architecture for the future IP/DWDM network nowadays. In this paper, OSPF-TE extensions for multi-domain Optical Burst Switching networks connected by GMPLS controlled WDM network are proposed, the corresponding experimental results such as the advertising latency are also presented by using an OBS network testbed. The experimental results show that it works effectively on the OBS/GMPLS networks.

  17. Constructing a Watts-Strogatz network from a small-world network with symmetric degree distribution.

    PubMed

    Menezes, Mozart B C; Kim, Seokjin; Huang, Rongbing

    2017-01-01

    Though the small-world phenomenon is widespread in many real networks, it is still challenging to replicate a large network at the full scale for further study on its structure and dynamics when sufficient data are not readily available. We propose a method to construct a Watts-Strogatz network using a sample from a small-world network with symmetric degree distribution. Our method yields an estimated degree distribution which fits closely with that of a Watts-Strogatz network and leads into accurate estimates of network metrics such as clustering coefficient and degree of separation. We observe that the accuracy of our method increases as network size increases.

  18. Celestial data routing network

    NASA Astrophysics Data System (ADS)

    Bordetsky, Alex

    2000-11-01

    Imagine that information processing human-machine network is threatened in a particular part of the world. Suppose that an anticipated threat of physical attacks could lead to disruption of telecommunications network management infrastructure and access capabilities for small geographically distributed groups engaged in collaborative operations. Suppose that small group of astronauts are exploring the solar planet and need to quickly configure orbital information network to support their collaborative work and local communications. The critical need in both scenarios would be a set of low-cost means of small team celestial networking. To the geographically distributed mobile collaborating groups such means would allow to maintain collaborative multipoint work, set up orbital local area network, and provide orbital intranet communications. This would be accomplished by dynamically assembling the network enabling infrastructure of the small satellite based router, satellite based Codec, and set of satellite based intelligent management agents. Cooperating single function pico satellites, acting as agents and personal switching devices together would represent self-organizing intelligent orbital network of cooperating mobile management nodes. Cooperative behavior of the pico satellite based agents would be achieved by comprising a small orbital artificial neural network capable of learning and restructing the networking resources in response to the anticipated threat.

  19. Robustness of airline route networks

    NASA Astrophysics Data System (ADS)

    Lordan, Oriol; Sallan, Jose M.; Escorihuela, Nuria; Gonzalez-Prieto, David

    2016-03-01

    Airlines shape their route network by defining their routes through supply and demand considerations, paying little attention to network performance indicators, such as network robustness. However, the collapse of an airline network can produce high financial costs for the airline and all its geographical area of influence. The aim of this study is to analyze the topology and robustness of the network route of airlines following Low Cost Carriers (LCCs) and Full Service Carriers (FSCs) business models. Results show that FSC hubs are more central than LCC bases in their route network. As a result, LCC route networks are more robust than FSC networks.

  20. Competing edge networks

    NASA Astrophysics Data System (ADS)

    Parsons, Mark; Grindrod, Peter

    2012-06-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

  1. Exploring complex networks.

    PubMed

    Strogatz, S H

    2001-03-08

    The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems-be they neurons, power stations or lasers-will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.

  2. Effective professional networking.

    PubMed

    Goolsby, Mary Jo; Knestrick, Joyce M

    2017-08-01

    The reasons for nurse practitioners to develop a professional network are boundless and are likely to change over time. Networking opens doors and creates relationships that support new opportunities, personal development, collaborative research, policy activism, evidence-based practice, and more. Successful professional networking involves shared, mutually beneficial interactions between individuals and/or individuals and groups, regardless of whether it occurs face to face or electronically. This article combines nuggets from the literature with guidance based on the authors' combined experience in networking activities at the local, national, and international levels. ©2017 American Association of Nurse Practitioners.

  3. Extending Resolution of Fault Slip With Geodetic Networks Through Optimal Network Design

    NASA Astrophysics Data System (ADS)

    Sathiakumar, Sharadha; Barbot, Sylvain Denis; Agram, Piyush

    2017-12-01

    Geodetic networks consisting of high precision and high rate Global Navigation Satellite Systems (GNSS) stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan, and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.

  4. Operating systems and network protocols for wireless sensor networks.

    PubMed

    Dutta, Prabal; Dunkels, Adam

    2012-01-13

    Sensor network protocols exist to satisfy the communication needs of diverse applications, including data collection, event detection, target tracking and control. Network protocols to enable these services are constrained by the extreme resource scarcity of sensor nodes-including energy, computing, communications and storage-which must be carefully managed and multiplexed by the operating system. These challenges have led to new protocols and operating systems that are efficient in their energy consumption, careful in their computational needs and miserly in their memory footprints, all while discovering neighbours, forming networks, delivering data and correcting failures.

  5. Rethinking Networks in Education: Case Studies of Organisational Development Networks in Neoliberal Contexts

    ERIC Educational Resources Information Center

    Townsend, Andrew

    2013-01-01

    In 2002 the National College for School Leadership in England launched what they claimed to be the biggest school networking initiative of its kind. The networks which were members of this programme involved schools working together to achieve shared priorities and can be viewed as examples of organisational development networks. These networks,…

  6. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  7. A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.

    2018-02-01

    Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.

  8. Network model of bilateral power markets based on complex networks

    NASA Astrophysics Data System (ADS)

    Wu, Yang; Liu, Junyong; Li, Furong; Yan, Zhanxin; Zhang, Li

    2014-06-01

    The bilateral power transaction (BPT) mode becomes a typical market organization with the restructuring of electric power industry, the proper model which could capture its characteristics is in urgent need. However, the model is lacking because of this market organization's complexity. As a promising approach to modeling complex systems, complex networks could provide a sound theoretical framework for developing proper simulation model. In this paper, a complex network model of the BPT market is proposed. In this model, price advantage mechanism is a precondition. Unlike other general commodity transactions, both of the financial layer and the physical layer are considered in the model. Through simulation analysis, the feasibility and validity of the model are verified. At same time, some typical statistical features of BPT network are identified. Namely, the degree distribution follows the power law, the clustering coefficient is low and the average path length is a bit long. Moreover, the topological stability of the BPT network is tested. The results show that the network displays a topological robustness to random market member's failures while it is fragile against deliberate attacks, and the network could resist cascading failure to some extent. These features are helpful for making decisions and risk management in BPT markets.

  9. Obstructions in Vascular Networks: Relation Between Network Morphology and Blood Supply

    PubMed Central

    Torres Rojas, Aimee M.; Meza Romero, Alejandro; Pagonabarraga, Ignacio; Travasso, Rui D. M.; Corvera Poiré, Eugenia

    2015-01-01

    We relate vascular network structure to hemodynamics after vessel obstructions. We consider tree-like networks with a viscoelastic fluid with the rheological characteristics of blood. We analyze the network hemodynamic response, which is a function of the frequencies involved in the driving, and a measurement of the resistance to flow. This response function allows the study of the hemodynamics of the system, without the knowledge of a particular pressure gradient. We find analytical expressions for the network response, which explicitly show the roles played by the network structure, the degree of obstruction, and the geometrical place in which obstructions occur. Notably, we find that the sequence of resistances of the network without occlusions strongly determines the tendencies that the response function has with the anatomical place where obstructions are located. We identify anatomical sites in a network that are critical for its overall capacity to supply blood to a tissue after obstructions. We demonstrate that relatively small obstructions in such critical sites are able to cause a much larger decrease on flow than larger obstructions placed in non-critical sites. Our results indicate that, to a large extent, the response of the network is determined locally. That is, it depends on the structure that the vasculature has around the place where occlusions are found. This result is manifest in a network that follows Murray’s law, which is in reasonable agreement with several mammalian vasculatures. For this one, occlusions in early generation vessels have a radically different effect than occlusions in late generation vessels occluding the same percentage of area available to flow. This locality implies that whenever there is a tissue irrigated by a tree-like in vivo vasculature, our model is able to interpret how important obstructions are for the irrigation of such tissue. PMID:26086774

  10. Current-flow efficiency of networks

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Yan, Xiaoyong

    2018-02-01

    Many real-world networks, from infrastructure networks to social and communication networks, can be formulated as flow networks. How to realistically measure the transport efficiency of these networks is of fundamental importance. The shortest-path-based efficiency measurement has limitations, as it assumes that flow travels only along those shortest paths. Here, we propose a new metric named current-flow efficiency, in which we calculate the average reciprocal effective resistance between all pairs of nodes in the network. This metric takes the multipath effect into consideration and is more suitable for measuring the efficiency of many real-world flow equilibrium networks. Moreover, this metric can handle a disconnected graph and can thus be used to identify critical nodes and edges from the efficiency-loss perspective. We further analyze how the topological structure affects the current-flow efficiency of networks based on some model and real-world networks. Our results enable a better understanding of flow networks and shed light on the design and improvement of such networks with higher transport efficiency.

  11. Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network

    NASA Astrophysics Data System (ADS)

    Yang, Bin

    2017-07-01

    Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately

  12. Network Patch Cables Demystified: A Super Activity for Computer Networking Technology

    ERIC Educational Resources Information Center

    Brown, Douglas L.

    2004-01-01

    This article de-mystifies network patch cable secrets so that people can connect their computers and transfer those pesky files--without screaming at the cables. It describes a network cabling activity that can offer students a great hands-on opportunity for working with the tools, techniques, and media used in computer networking. Since the…

  13. Attack Vulnerability of Network Controllability.

    PubMed

    Lu, Zhe-Ming; Li, Xin-Feng

    2016-01-01

    Controllability of complex networks has attracted much attention, and understanding the robustness of network controllability against potential attacks and failures is of practical significance. In this paper, we systematically investigate the attack vulnerability of network controllability for the canonical model networks as well as the real-world networks subject to attacks on nodes and edges. The attack strategies are selected based on degree and betweenness centralities calculated for either the initial network or the current network during the removal, among which random failure is as a comparison. It is found that the node-based strategies are often more harmful to the network controllability than the edge-based ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert scale-free model, which has a highly biased structure, proves to be the most vulnerable of the tested model networks. In contrast, the Erdős-Rényi random model, which lacks structural bias, exhibits much better robustness to both node-based and edge-based attacks. We also survey the control robustness of 25 real-world networks, and the numerical results show that most real networks are control robust to random node failures, which has not been observed in the model networks. And the recalculated betweenness-based strategy is the most efficient way to harm the controllability of real-world networks. Besides, we find that the edge degree is not a good quantity to measure the importance of an edge in terms of network controllability.

  14. Calibração do sistema imageador do telescópio MASCO

    NASA Astrophysics Data System (ADS)

    Mejía, J.; D'Amico, F.; Villela, T.; Braga, J.

    2003-08-01

    O MASCO (MÁScara COdificada) é um telescópio imageador de raios-X e gama atualmente configurado para operar na faixa de 50 a 600 keV com uma resolução angular de 14 minutos de arco num campo de visada total circular de 23,5° de diâmetro. O MASCO está totalmente operacional e deverá ser lançado em um balão estratosférico no segundo semestre de 2003 para realizar observações durante ~20 horas a ~40 km de altitude. O telescópio utiliza uma máscara codificada de padrão uniformemente redundante modificado (MURA) de dimensões 19 ´ 19. Esse padrão pertence a uma subclasse de MURAs que apresenta anti-simetria de 90° e conseqüentemente permite a utilização da técnica de subtração de variações sistemáticas de ruído de fundo através de utilização da configuração anti-máscara, obtida com uma simples rotação da máscara. Neste trabalho apresentamos resultados de calibrações em laboratório que tiveram como objetivo testar o sistema imageador. Imagens de fontes radioativas foram obtidas com o telescópio em configuração de vôo, com a máscara girando. Serão discutidos os resultados desses testes e as técnicas desenvolvidas para eliminar ambigüidades de posição de fontes, otimização da relação sinal-ruído e observação de fontes fora do campo totalmente codificado. O sistema de máscara/antimáscara mostrou-se capaz de aumentar a relação sinal-ruído de ~60% para fontes intensas (100 s). Com a máscara girando, a técnica de reconstrução de imagens desenvolvida identificou a posição exata da fonte e não introduziu perda de sensibilidade. Imagens de uma fonte colocada a 8,3° - fora do campo totalmente codificado do telescópio -, mostraram uma diminuição de ~40% na relação sinal/ruído em relação ao centro do campo de visada, o que se deve à codificação incompleta pela máscara e à absorção parcial do fluxo pelos detectores de blindagem.

  15. A game-theoretic approach to optimize ad hoc networks inspired by small-world network topology

    NASA Astrophysics Data System (ADS)

    Tan, Mian; Yang, Tinghong; Chen, Xing; Yang, Gang; Zhu, Guoqing; Holme, Petter; Zhao, Jing

    2018-03-01

    Nodes in ad hoc networks are connected in a self-organized manner. Limited communication radius makes information transmit in multi-hop mode, and each forwarding needs to consume the energy of nodes. Insufficient communication radius or exhaustion of energy may cause the absence of some relay nodes and links, further breaking network connectivity. On the other hand, nodes in the network may refuse to cooperate due to objective faulty or personal selfish, hindering regular communication in the network. This paper proposes a model called Repeated Game in Small World Networks (RGSWN). In this model, we first construct ad hoc networks with small-world feature by forming "communication shortcuts" between multiple-radio nodes. Small characteristic path length reduces average forwarding times in networks; meanwhile high clustering coefficient enhances network robustness. Such networks still maintain relative low global power consumption, which is beneficial to extend the network survival time. Then we use MTTFT strategy (Mend-Tolerance Tit-for-Tat) for repeated game as a rule for the interactions between neighbors in the small-world networks. Compared with other five strategies of repeated game, this strategy not only punishes the nodes' selfishness more reasonably, but also has the best tolerance to the network failure. This work is insightful for designing an efficient and robust ad hoc network.

  16. Network Sampling with Memory: A proposal for more efficient sampling from social networks.

    PubMed

    Mouw, Ted; Verdery, Ashton M

    2012-08-01

    Techniques for sampling from networks have grown into an important area of research across several fields. For sociologists, the possibility of sampling from a network is appealing for two reasons: (1) A network sample can yield substantively interesting data about network structures and social interactions, and (2) it is useful in situations where study populations are difficult or impossible to survey with traditional sampling approaches because of the lack of a sampling frame. Despite its appeal, methodological concerns about the precision and accuracy of network-based sampling methods remain. In particular, recent research has shown that sampling from a network using a random walk based approach such as Respondent Driven Sampling (RDS) can result in high design effects (DE)-the ratio of the sampling variance to the sampling variance of simple random sampling (SRS). A high design effect means that more cases must be collected to achieve the same level of precision as SRS. In this paper we propose an alternative strategy, Network Sampling with Memory (NSM), which collects network data from respondents in order to reduce design effects and, correspondingly, the number of interviews needed to achieve a given level of statistical power. NSM combines a "List" mode, where all individuals on the revealed network list are sampled with the same cumulative probability, with a "Search" mode, which gives priority to bridge nodes connecting the current sample to unexplored parts of the network. We test the relative efficiency of NSM compared to RDS and SRS on 162 school and university networks from Add Health and Facebook that range in size from 110 to 16,278 nodes. The results show that the average design effect for NSM on these 162 networks is 1.16, which is very close to the efficiency of a simple random sample (DE=1), and 98.5% lower than the average DE we observed for RDS.

  17. UMA/GAN network architecture analysis

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  18. Thermodynamic Constraints Improve Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2017-08-08

    In pursuit of establishing a realistic metabolic phenotypic space, the reversibility of reactions is thermodynamically constrained in modern metabolic networks. The reversibility constraints follow from heuristic thermodynamic poise approximations that take anticipated cellular metabolite concentration ranges into account. Because constraints reduce the feasible space, draft metabolic network reconstructions may need more extensive reconciliation, and a larger number of genes may become essential. Notwithstanding ubiquitous application, the effect of reversibility constraints on the predictive capabilities of metabolic networks has not been investigated in detail. Instead, work has focused on the implementation and validation of the thermodynamic poise calculation itself. With the advance of fast linear programming-based network reconciliation, the effects of reversibility constraints on network reconciliation and gene essentiality predictions have become feasible and are the subject of this study. Networks with thermodynamically informed reversibility constraints outperformed gene essentiality predictions compared to networks that were constrained with randomly shuffled constraints. Unconstrained networks predicted gene essentiality as accurately as thermodynamically constrained networks, but predicted substantially fewer essential genes. Networks that were reconciled with sequence similarity data and strongly enforced reversibility constraints outperformed all other networks. We conclude that metabolic network analysis confirmed the validity of the thermodynamic constraints, and that thermodynamic poise information is actionable during network reconciliation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Network Modeling and Energy-Efficiency Optimization for Advanced Machine-to-Machine Sensor Networks

    PubMed Central

    Jung, Sungmo; Kim, Jong Hyun; Kim, Seoksoo

    2012-01-01

    Wireless machine-to-machine sensor networks with multiple radio interfaces are expected to have several advantages, including high spatial scalability, low event detection latency, and low energy consumption. Here, we propose a network model design method involving network approximation and an optimized multi-tiered clustering algorithm that maximizes node lifespan by minimizing energy consumption in a non-uniformly distributed network. Simulation results show that the cluster scales and network parameters determined with the proposed method facilitate a more efficient performance compared to existing methods. PMID:23202190

  20. Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks

    PubMed Central

    Kim, Deokho; Park, Karam; Ro, Won W.

    2011-01-01

    While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053

  1. Networks as systems.

    PubMed

    Best, Allan; Berland, Alex; Greenhalgh, Trisha; Bourgeault, Ivy L; Saul, Jessie E; Barker, Brittany

    2018-03-19

    Purpose The purpose of this paper is to present a case study of the World Health Organization's Global Healthcare Workforce Alliance (GHWA). Based on a commissioned evaluation of GHWA, it applies network theory and key concepts from systems thinking to explore network emergence, effectiveness, and evolution to over a ten-year period. The research was designed to provide high-level strategic guidance for further evolution of global governance in human resources for health (HRH). Design/methodology/approach Methods included a review of published literature on HRH governance and current practice in the field and an in-depth case study whose main data sources were relevant GHWA background documents and key informant interviews with GHWA leaders, staff, and stakeholders. Sampling was purposive and at a senior level, focusing on board members, executive directors, funders, and academics. Data were analyzed thematically with reference to systems theory and Shiffman's theory of network development. Findings Five key lessons emerged: effective management and leadership are critical; networks need to balance "tight" and "loose" approaches to their structure and processes; an active communication strategy is key to create and maintain support; the goals, priorities, and membership must be carefully focused; and the network needs to support shared measurement of progress on agreed-upon goals. Shiffman's middle-range network theory is a useful tool when guided by the principles of complex systems that illuminate dynamic situations and shifting interests as global alliances evolve. Research limitations/implications This study was implemented at the end of the ten-year funding cycle. A more continuous evaluation throughout the term would have provided richer understanding of issues. Experience and perspectives at the country level were not assessed. Practical implications Design and management of large, complex networks requires ongoing attention to key issues like leadership

  2. Improved passive optical network architectures to support local area network emulation and protection

    NASA Astrophysics Data System (ADS)

    Wong, Elaine; Nadarajah, Nishaanthan; Chae, Chang-Joon; Nirmalathas, Ampalavanapillai; Attygalle, Sanjeewa M.

    2006-01-01

    We describe two optical layer schemes which simultaneously facilitate local area network emulation and automatic protection switching against distribution fiber breaks in passive optical networks. One scheme employs a narrowband fiber Bragg grating placed close to the star coupler in the feeder fiber of the passive optical network, while the other uses an additional short length distribution fiber from the star coupler to each customer for the redirection of the customer traffic. Both schemes use RF subcarrier multiplexed transmission for intercommunication between customers in conjunction with upstream access to the central office at baseband. Failure detection and automatic protection switching are performed independently by each optical network unit that is located at the customer premises in a distributed manner. The restoration of traffic transported between the central office and an optical network unit in the event of the distribution fiber break is performed by interconnecting adjacent optical network units and carrying out signal transmissions via an independent but interconnected optical network unit. Such a protection mechanism enables multiple adjacent optical network units to be simultaneously protected by a single optical network unit utilizing its maximum available bandwidth. We experimentally verify the feasibility of both schemes with 1.25 Gb/s upstream baseband transmission to the central office and 155 Mb/s local area network data transmission on a RF subcarrier frequency. The experimental results obtained from both schemes are compared, and the power budgets are calculated to analyze the scalability of each scheme.

  3. QOS-aware error recovery in wireless body sensor networks using adaptive network coding.

    PubMed

    Razzaque, Mohammad Abdur; Javadi, Saeideh S; Coulibaly, Yahaya; Hira, Muta Tah

    2014-12-29

    Wireless body sensor networks (WBSNs) for healthcare and medical applications are real-time and life-critical infrastructures, which require a strict guarantee of quality of service (QoS), in terms of latency, error rate and reliability. Considering the criticality of healthcare and medical applications, WBSNs need to fulfill users/applications and the corresponding network's QoS requirements. For instance, for a real-time application to support on-time data delivery, a WBSN needs to guarantee a constrained delay at the network level. A network coding-based error recovery mechanism is an emerging mechanism that can be used in these systems to support QoS at very low energy, memory and hardware cost. However, in dynamic network environments and user requirements, the original non-adaptive version of network coding fails to support some of the network and user QoS requirements. This work explores the QoS requirements of WBSNs in both perspectives of QoS. Based on these requirements, this paper proposes an adaptive network coding-based, QoS-aware error recovery mechanism for WBSNs. It utilizes network-level and user-/application-level information to make it adaptive in both contexts. Thus, it provides improved QoS support adaptively in terms of reliability, energy efficiency and delay. Simulation results show the potential of the proposed mechanism in terms of adaptability, reliability, real-time data delivery and network lifetime compared to its counterparts.

  4. Telecommunications Network Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1989-05-01

    The Office of Civilian Radioactive Waste Management (OCRWM) must, among other things, be equipped to readily produce, file, store, access, retrieve, and transfer a wide variety of technical and institutional data and information. The data and information regularly produced by members of the OCRWM Program supports, and will continue to support, a wide range of program activities. Some of the more important of these information communication-related activities include: supporting the preparation, submittal, and review of a license application to the Nuclear Regulatory Commission (NRC) to authorize the construction of a geologic repository; responding to requests for information from parties affectedmore » by and/or interested in the program; and providing evidence of compliance with all relevant Federal, State, local, and Indian Tribe regulations, statutes, and/or treaties. The OCRWM Telecommunications Network Plan (TNP) is intended to identify, as well as to present the current strategy for satisfying, the telecommunications requirements of the civilian radioactive waste management program. The TNP will set forth the plan for integrating OCRWM`s information resources among major program sites. Specifically, this plan will introduce a telecommunications network designed to establish communication linkages across the program`s Washington, DC; Chicago, Illinois; and Las Vegas, Nevada, sites. The linkages across these and associated sites will comprise Phase I of the proposed OCRWM telecommunications network. The second phase will focus on the modification and expansion of the Phase I network to fully accommodate access to the OCRWM Licensing Support System (LSS). The primary components of the proposed OCRWM telecommunications network include local area networks; extended local area networks; and remote extended (wide) area networks. 10 refs., 6 figs.« less

  5. Modeling fluctuations in default-mode brain network using a spiking neural network.

    PubMed

    Yamanishi, Teruya; Liu, Jian-Qin; Nishimura, Haruhiko

    2012-08-01

    Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range.

  6. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security.

    PubMed

    Kang, Min-Joo; Kang, Je-Won

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.

  7. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security

    PubMed Central

    Kang, Min-Joo

    2016-01-01

    A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus. PMID:27271802

  8. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks

    PubMed Central

    Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

    2017-01-01

    Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic. PMID:28245222

  9. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks.

    PubMed

    Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

    2017-01-01

    Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.

  10. Degradable transportation network with the addition of electric vehicles: Network equilibrium analysis

    PubMed Central

    Zhang, Rui; Yao, Enjian; Yang, Yang

    2017-01-01

    Introducing electric vehicles (EVs) into urban transportation network brings higher requirement on travel time reliability and charging reliability. Specifically, it is believed that travel time reliability is a key factor influencing travelers’ route choice. Meanwhile, due to the limited cruising range, EV drivers need to better learn about the required energy for the whole trip to make decisions about whether charging or not and where to charge (i.e., charging reliability). Since EV energy consumption is highly related to travel speed, network uncertainty affects travel time and charging demand estimation significantly. Considering the network uncertainty resulted from link degradation, which influences the distribution of travel demand on transportation network and the energy demand on power network, this paper aims to develop a reliability-based network equilibrium framework for accommodating degradable road conditions with the addition of EVs. First, based on the link travel time distribution, the mean and variance of route travel time and monetary expenses related to energy consumption are deduced, respectively. And the charging time distribution of EVs with charging demand is also estimated. Then, a nested structure is considered to deal with the difference of route choice behavior derived by the different uncertainty degrees between the routes with and without degradable links. Given the expected generalized travel cost and a psychological safety margin, a traffic assignment model with the addition of EVs is formulated. Subsequently, a heuristic solution algorithm is developed to solve the proposed model. Finally, the effects of travelers’ risk attitude, network degradation degree, and EV penetration rate on network performance are illustrated through an example network. The numerical results show that the difference of travelers’ risk attitudes does have impact on the route choice, and the widespread adoption of EVs can cut down the total system

  11. Degradable transportation network with the addition of electric vehicles: Network equilibrium analysis.

    PubMed

    Zhang, Rui; Yao, Enjian; Yang, Yang

    2017-01-01

    Introducing electric vehicles (EVs) into urban transportation network brings higher requirement on travel time reliability and charging reliability. Specifically, it is believed that travel time reliability is a key factor influencing travelers' route choice. Meanwhile, due to the limited cruising range, EV drivers need to better learn about the required energy for the whole trip to make decisions about whether charging or not and where to charge (i.e., charging reliability). Since EV energy consumption is highly related to travel speed, network uncertainty affects travel time and charging demand estimation significantly. Considering the network uncertainty resulted from link degradation, which influences the distribution of travel demand on transportation network and the energy demand on power network, this paper aims to develop a reliability-based network equilibrium framework for accommodating degradable road conditions with the addition of EVs. First, based on the link travel time distribution, the mean and variance of route travel time and monetary expenses related to energy consumption are deduced, respectively. And the charging time distribution of EVs with charging demand is also estimated. Then, a nested structure is considered to deal with the difference of route choice behavior derived by the different uncertainty degrees between the routes with and without degradable links. Given the expected generalized travel cost and a psychological safety margin, a traffic assignment model with the addition of EVs is formulated. Subsequently, a heuristic solution algorithm is developed to solve the proposed model. Finally, the effects of travelers' risk attitude, network degradation degree, and EV penetration rate on network performance are illustrated through an example network. The numerical results show that the difference of travelers' risk attitudes does have impact on the route choice, and the widespread adoption of EVs can cut down the total system travel

  12. Software Defined Networking for Next Generation Converged Metro-Access Networks

    NASA Astrophysics Data System (ADS)

    Ruffini, M.; Slyne, F.; Bluemm, C.; Kitsuwan, N.; McGettrick, S.

    2015-12-01

    While the concept of Software Defined Networking (SDN) has seen a rapid deployment within the data center community, its adoption in telecommunications network has progressed slowly, although the concept has been swiftly adopted by all major telecoms vendors. This paper presents a control plane architecture for SDN-driven converged metro-access networks, developed through the DISCUS European FP7 project. The SDN-based controller architecture was developed in a testbed implementation targeting two main scenarios: fast feeder fiber protection over dual-homed Passive Optical Networks (PONs) and dynamic service provisioning over a multi-wavelength PON. Implementation details and results of the experiment carried out over the second scenario are reported in the paper, showing the potential of SDN in providing assured on-demand services to end-users.

  13. Attack Vulnerability of Network Controllability

    PubMed Central

    2016-01-01

    Controllability of complex networks has attracted much attention, and understanding the robustness of network controllability against potential attacks and failures is of practical significance. In this paper, we systematically investigate the attack vulnerability of network controllability for the canonical model networks as well as the real-world networks subject to attacks on nodes and edges. The attack strategies are selected based on degree and betweenness centralities calculated for either the initial network or the current network during the removal, among which random failure is as a comparison. It is found that the node-based strategies are often more harmful to the network controllability than the edge-based ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert scale-free model, which has a highly biased structure, proves to be the most vulnerable of the tested model networks. In contrast, the Erdős-Rényi random model, which lacks structural bias, exhibits much better robustness to both node-based and edge-based attacks. We also survey the control robustness of 25 real-world networks, and the numerical results show that most real networks are control robust to random node failures, which has not been observed in the model networks. And the recalculated betweenness-based strategy is the most efficient way to harm the controllability of real-world networks. Besides, we find that the edge degree is not a good quantity to measure the importance of an edge in terms of network controllability. PMID:27588941

  14. Breakdown of interdependent directed networks.

    PubMed

    Liu, Xueming; Stanley, H Eugene; Gao, Jianxi

    2016-02-02

    Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis.

  15. Leadership in complex networks: the importance of network position and strategic action in a translational cancer research network.

    PubMed

    Long, Janet C; Cunningham, Frances C; Wiley, Janice; Carswell, Peter; Braithwaite, Jeffrey

    2013-10-11

    Leadership behaviour in complex networks is under-researched, and little has been written concerning leadership of translational research networks (TRNs) that take discoveries made 'at the bench' and translate them into practices used 'at the bedside.' Understanding leaders' opportunities and behaviours within TRNs working to solve this key problem in implementing evidence into clinical practice is therefore important. This study explored the network position of governing body members and perceptions of their role in a new TRN in Sydney, Australia. The paper asks three questions: Firstly, do the formal, mandated leaders of this TRN hold key positions of centrality or brokerage in the informal social network of collaborative ties? Secondly, if so, do they recognise the leadership opportunities that their network positions afford them? Thirdly, what activities associated with these key roles do they believe will maximise the TRN's success? Semi-structured interviews of all 14 governing body members conducted in early 2012 explored perceptions of their roles and sought comments on a list of activities drawn from review of successful transdisciplinary collaboratives combined with central and brokerage roles. An on-line, whole network survey of all 68 TRN members sought to understand and map existing collaborative connections. Leaders' positions in the network were assessed using UCInet, and graphs were generated in NetDraw. Social network analysis identified that governing body members had high centrality and high brokerage potential in the informal network of work-related ties. Interviews showed perceived challenges including 'silos' and the mismatch between academic and clinical goals of research. Governing body members recognised their central positions, which would facilitate the leadership roles of leading, making decisions, and providing expert advice necessary for the co-ordination of effort and relevant input across domains. Brokerage potential was recognised

  16. Leadership in complex networks: the importance of network position and strategic action in a translational cancer research network

    PubMed Central

    2013-01-01

    Background Leadership behaviour in complex networks is under-researched, and little has been written concerning leadership of translational research networks (TRNs) that take discoveries made ‘at the bench’ and translate them into practices used ‘at the bedside.’ Understanding leaders’ opportunities and behaviours within TRNs working to solve this key problem in implementing evidence into clinical practice is therefore important. This study explored the network position of governing body members and perceptions of their role in a new TRN in Sydney, Australia. The paper asks three questions: Firstly, do the formal, mandated leaders of this TRN hold key positions of centrality or brokerage in the informal social network of collaborative ties? Secondly, if so, do they recognise the leadership opportunities that their network positions afford them? Thirdly, what activities associated with these key roles do they believe will maximise the TRN’s success? Methods Semi-structured interviews of all 14 governing body members conducted in early 2012 explored perceptions of their roles and sought comments on a list of activities drawn from review of successful transdisciplinary collaboratives combined with central and brokerage roles. An on-line, whole network survey of all 68 TRN members sought to understand and map existing collaborative connections. Leaders’ positions in the network were assessed using UCInet, and graphs were generated in NetDraw. Results Social network analysis identified that governing body members had high centrality and high brokerage potential in the informal network of work-related ties. Interviews showed perceived challenges including ‘silos’ and the mismatch between academic and clinical goals of research. Governing body members recognised their central positions, which would facilitate the leadership roles of leading, making decisions, and providing expert advice necessary for the co-ordination of effort and relevant input across

  17. Dynamic and interacting complex networks

    NASA Astrophysics Data System (ADS)

    Dickison, Mark E.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible

  18. Telestroke network fundamentals.

    PubMed

    Meyer, Brett C; Demaerschalk, Bart M

    2012-10-01

    The objectives of this manuscript are to identify key components to maintaining the logistic and/or operational sustainability of a telestroke network, to identify best practices to be considered for assessment and management of acute stroke when planning for and developing a telestroke network, to show practical steps to enable progress toward implementing a telestroke solution for optimizing acute stroke care, to incorporate evidence-based practice guidelines and care pathways into a telestroke network, to emphasize technology variables and options, and to propose metrics to use when determining the performance, outcomes, and quality of a telestroke network. Copyright © 2012 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Program Helps Simulate Neural Networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  20. Reflections on Active Networking

    DTIC Science & Technology

    2005-01-01

    Reflections on Active Networking Jonathan M. Smith CIS Department, University of Pennsylvania jms@cis.upenn.edu Abstract Interactions among...called “ Active Networking” came into being. It demonstrates the deep roots Active Networking has in the programming languages, networking and operating...broader research agenda, and the specific goals pursued in the SwitchWare project. I close by speculating on possible futures for Active Networking

  1. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.

    PubMed

    Ni, Jingchao; Koyuturk, Mehmet; Tong, Hanghang; Haines, Jonathan; Xu, Rong; Zhang, Xiang

    2016-11-10

    Accurately prioritizing candidate disease genes is an important and challenging problem. Various network-based methods have been developed to predict potential disease genes by utilizing the disease similarity network and molecular networks such as protein interaction or gene co-expression networks. Although successful, a common limitation of the existing methods is that they assume all diseases share the same molecular network and a single generic molecular network is used to predict candidate genes for all diseases. However, different diseases tend to manifest in different tissues, and the molecular networks in different tissues are usually different. An ideal method should be able to incorporate tissue-specific molecular networks for different diseases. In this paper, we develop a robust and flexible method to integrate tissue-specific molecular networks for disease gene prioritization. Our method allows each disease to have its own tissue-specific network(s). We formulate the problem of candidate gene prioritization as an optimization problem based on network propagation. When there are multiple tissue-specific networks available for a disease, our method can automatically infer the relative importance of each tissue-specific network. Thus it is robust to the noisy and incomplete network data. To solve the optimization problem, we develop fast algorithms which have linear time complexities in the number of nodes in the molecular networks. We also provide rigorous theoretical foundations for our algorithms in terms of their optimality and convergence properties. Extensive experimental results show that our method can significantly improve the accuracy of candidate gene prioritization compared with the state-of-the-art methods. In our experiments, we compare our methods with 7 popular network-based disease gene prioritization algorithms on diseases from Online Mendelian Inheritance in Man (OMIM) database. The experimental results demonstrate that our methods

  2. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.10 Annual...

  3. 40 CFR 58.10 - Annual monitoring network plan and periodic network assessment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Annual monitoring network plan and periodic network assessment. 58.10 Section 58.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR QUALITY SURVEILLANCE Monitoring Network § 58.10 Annual...

  4. Performance verification of network function virtualization in software defined optical transport networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Hu, Liyazhou; Wang, Wei; Li, Yajie; Zhang, Jie

    2017-01-01

    With the continuous opening of resource acquisition and application, there are a large variety of network hardware appliances deployed as the communication infrastructure. To lunch a new network application always implies to replace the obsolete devices and needs the related space and power to accommodate it, which will increase the energy and capital investment. Network function virtualization1 (NFV) aims to address these problems by consolidating many network equipment onto industry standard elements such as servers, switches and storage. Many types of IT resources have been deployed to run Virtual Network Functions (vNFs), such as virtual switches and routers. Then how to deploy NFV in optical transport networks is a of great importance problem. This paper focuses on this problem, and gives an implementation architecture of NFV-enabled optical transport networks based on Software Defined Optical Networking (SDON) with the procedure of vNFs call and return. Especially, an implementation solution of NFV-enabled optical transport node is designed, and a parallel processing method for NFV-enabled OTN nodes is proposed. To verify the performance of NFV-enabled SDON, the protocol interaction procedures of control function virtualization and node function virtualization are demonstrated on SDON testbed. Finally, the benefits and challenges of the parallel processing method for NFV-enabled OTN nodes are simulated and analyzed.

  5. Molecular ecological network analyses.

    PubMed

    Deng, Ye; Jiang, Yi-Huei; Yang, Yunfeng; He, Zhili; Luo, Feng; Zhou, Jizhong

    2012-05-30

    Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open

  6. Network problem threshold

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra, R.

    1992-01-01

    Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.

  7. Inferring Centrality from Network Snapshots

    NASA Astrophysics Data System (ADS)

    Shao, Haibin; Mesbahi, Mehran; Li, Dewei; Xi, Yugeng

    2017-01-01

    The topology and dynamics of a complex network shape its functionality. However, the topologies of many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of network topology, we show how the data generated from the network dynamics can be utilised to infer the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We show that the tempo centrality can be used to construct an accurate estimate of both the propagation rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. Our findings provide an approach to infer the performance of a consensus network from its temporal data.

  8. Switch-connected HyperX network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Heidelberger, Philip

    A network system includes a plurality of sub-network planes and global switches. The sub-network planes have a same network topology as each other. Each of the sub-network planes includes edge switches. Each of the edge switches has N ports. Each of the global switches is configured to connect a group of edge switches at a same location in the sub-network planes. In each of the sub-network planes, some of the N ports of each of the edge switches are connected to end nodes, and others of the N ports are connected to other edge switches in the same sub-network plane,more » other of the N ports are connected to at least one of the global switches.« less

  9. A consensual neural network

    NASA Technical Reports Server (NTRS)

    Benediktsson, J. A.; Ersoy, O. K.; Swain, P. H.

    1991-01-01

    A neural network architecture called a consensual neural network (CNN) is proposed for the classification of data from multiple sources. Its relation to hierarchical and ensemble neural networks is discussed. CNN is based on the statistical consensus theory and uses nonlinearly transformed input data. The input data are transformed several times, and the different transformed data are applied as if they were independent inputs. The independent inputs are classified using stage neural networks and outputs from the stage networks are then weighted and combined to make a decision. Experimental results based on remote-sensing data and geographic data are given.

  10. Network structure of production

    PubMed Central

    Atalay, Enghin; Hortaçsu, Ali; Roberts, James; Syverson, Chad

    2011-01-01

    Complex social networks have received increasing attention from researchers. Recent work has focused on mechanisms that produce scale-free networks. We theoretically and empirically characterize the buyer–supplier network of the US economy and find that purely scale-free models have trouble matching key attributes of the network. We construct an alternative model that incorporates realistic features of firms’ buyer–supplier relationships and estimate the model’s parameters using microdata on firms’ self-reported customers. This alternative framework is better able to match the attributes of the actual economic network and aids in further understanding several important economic phenomena. PMID:21402924

  11. Social networks to biological networks: systems biology of Mycobacterium tuberculosis.

    PubMed

    Vashisht, Rohit; Bhardwaj, Anshu; Osdd Consortium; Brahmachari, Samir K

    2013-07-01

    Contextualizing relevant information to construct a network that represents a given biological process presents a fundamental challenge in the network science of biology. The quality of network for the organism of interest is critically dependent on the extent of functional annotation of its genome. Mostly the automated annotation pipelines do not account for unstructured information present in volumes of literature and hence large fraction of genome remains poorly annotated. However, if used, this information could substantially enhance the functional annotation of a genome, aiding the development of a more comprehensive network. Mining unstructured information buried in volumes of literature often requires manual intervention to a great extent and thus becomes a bottleneck for most of the automated pipelines. In this review, we discuss the potential of scientific social networking as a solution for systematic manual mining of data. Focusing on Mycobacterium tuberculosis, as a case study, we discuss our open innovative approach for the functional annotation of its genome. Furthermore, we highlight the strength of such collated structured data in the context of drug target prediction based on systems level analysis of pathogen.

  12. Modelling dendritic ecological networks in space: anintegrated network perspective

    USGS Publications Warehouse

    Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.

    2013-01-01

    the context of stream ecology. Within this context, we summarise the key innovations of a new family of spatial statistical models that describe spatial relationships in DENs. Finally, we discuss how different network analyses may be combined to address more complex and novel research questions. While our main focus is streams, the taxonomy of network analyses is also relevant anywhere spatial patterns in both network and 2-D space can be used to explore the influence of multi-scale processes on biota and their habitat (e.g. plant morphology and pest infestation, or preferential migration along stream or road corridors).

  13. Effects of Neuromodulation on Excitatory-Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure

    NASA Astrophysics Data System (ADS)

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2018-01-01

    Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

  14. Expert networks in CLIPS

    NASA Technical Reports Server (NTRS)

    Hruska, S. I.; Dalke, A.; Ferguson, J. J.; Lacher, R. C.

    1991-01-01

    Rule-based expert systems may be structurally and functionally mapped onto a special class of neural networks called expert networks. This mapping lends itself to adaptation of connectionist learning strategies for the expert networks. A parsing algorithm to translate C Language Integrated Production System (CLIPS) rules into a network of interconnected assertion and operation nodes has been developed. The translation of CLIPS rules to an expert network and back again is illustrated. Measures of uncertainty similar to those rules in MYCIN-like systems are introduced into the CLIPS system and techniques for combining and hiring nodes in the network based on rule-firing with these certainty factors in the expert system are presented. Several learning algorithms are under study which automate the process of attaching certainty factors to rules.

  15. Network testbed creation and validation

    DOEpatents

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John

    2017-03-21

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.

  16. The Benefits of Grid Networks

    ERIC Educational Resources Information Center

    Tennant, Roy

    2005-01-01

    In the article, the author talks about the benefits of grid networks. In speaking of grid networks the author is referring to both networks of computers and networks of humans connected together in a grid topology. Examples are provided of how grid networks are beneficial today and the ways in which they have been used.

  17. Effects of network node consolidation in optical access and aggregation networks on costs and power consumption

    NASA Astrophysics Data System (ADS)

    Lange, Christoph; Hülsermann, Ralf; Kosiankowski, Dirk; Geilhardt, Frank; Gladisch, Andreas

    2010-01-01

    The increasing demand for higher bit rates in access networks requires fiber deployment closer to the subscriber resulting in fiber-to-the-home (FTTH) access networks. Besides higher access bit rates optical access network infrastructure and related technologies enable the network operator to establish larger service areas resulting in a simplified network structure with a lower number of network nodes. By changing the network structure network operators want to benefit from a changed network cost structure by decreasing in short and mid term the upfront investments for network equipment due to concentration effects as well as by reducing the energy costs due to a higher energy efficiency of large network sites housing a high amount of network equipment. In long term also savings in operational expenditures (OpEx) due to the closing of central office (CO) sites are expected. In this paper different architectures for optical access networks basing on state-of-the-art technology are analyzed with respect to network installation costs and power consumption in the context of access node consolidation. Network planning and dimensioning results are calculated for a realistic network scenario of Germany. All node consolidation scenarios are compared against a gigabit capable passive optical network (GPON) based FTTH access network operated from the conventional CO sites. The results show that a moderate reduction of the number of access nodes may be beneficial since in that case the capital expenditures (CapEx) do not rise extraordinarily and savings in OpEx related to the access nodes are expected. The total power consumption does not change significantly with decreasing number of access nodes but clustering effects enable a more energyefficient network operation and optimized power purchase order quantities leading to benefits in energy costs.

  18. Connectivity Restoration in Wireless Sensor Networks via Space Network Coding.

    PubMed

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing

    2017-04-20

    The problem of finding the number and optimal positions of relay nodes for restoring the network connectivity in partitioned Wireless Sensor Networks (WSNs) is Non-deterministic Polynomial-time hard (NP-hard) and thus heuristic methods are preferred to solve it. This paper proposes a novel polynomial time heuristic algorithm, namely, Relay Placement using Space Network Coding (RPSNC), to solve this problem, where Space Network Coding, also called Space Information Flow (SIF), is a new research paradigm that studies network coding in Euclidean space, in which extra relay nodes can be introduced to reduce the cost of communication. Unlike contemporary schemes that are often based on Minimum Spanning Tree (MST), Euclidean Steiner Minimal Tree (ESMT) or a combination of MST with ESMT, RPSNC is a new min-cost multicast space network coding approach that combines Delaunay triangulation and non-uniform partitioning techniques for generating a number of candidate relay nodes, and then linear programming is applied for choosing the optimal relay nodes and computing their connection links with terminals. Subsequently, an equilibrium method is used to refine the locations of the optimal relay nodes, by moving them to balanced positions. RPSNC can adapt to any density distribution of relay nodes and terminals, as well as any density distribution of terminals. The performance and complexity of RPSNC are analyzed and its performance is validated through simulation experiments.

  19. Optical slotted circuit switched network: a bandwidth efficient alternative to wavelength-routed network

    NASA Astrophysics Data System (ADS)

    Li, Yan; Collier, Martin

    2007-11-01

    Wavelength-routed networks have received enormous attention due to the fact that they are relatively simple to implement and implicitly offer Quality of Service (QoS) guarantees. However, they suffer from a bandwidth inefficiency problem and require complex Routing and Wavelength Assignment (RWA). Most attempts to address the above issues exploit the joint use of WDM and TDM technologies. The resultant TDM-based wavelength-routed networks partition the wavelength bandwidth into fixed-length time slots organized as a fixed-length frame. Multiple connections can thus time-share a wavelength and the grooming of their traffic leads to better bandwidth utilization. The capability of switching in both wavelength and time domains in such networks also mitigates the RWA problem. However, TMD-based wavelength-routed networks work in synchronous mode and strict synchronization among all network nodes is required. Global synchronization for all-optical networks which operate at extremely high speed is technically challenging, and deploying an optical synchronizer for each wavelength involves considerable cost. An Optical Slotted Circuit Switching (OSCS) architecture is proposed in this paper. In an OSCS network, slotted circuits are created to better utilize the wavelength bandwidth than in classic wavelength-routed networks. The operation of the protocol is such as to avoid the need for global synchronization required by TDM-based wavelength-routed networks.

  20. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks*

    PubMed Central

    Krumholz, Elias W.; Libourel, Igor G. L.

    2015-01-01

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773

  1. Task vs. rest-different network configurations between the coactivation and the resting-state brain networks.

    PubMed

    Di, Xin; Gohel, Suril; Kim, Eun H; Biswal, Bharat B

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest.

  2. Analysis of the Chinese air route network as a complex network

    NASA Astrophysics Data System (ADS)

    Cai, Kai-Quan; Zhang, Jun; Du, Wen-Bo; Cao, Xian-Bin

    2012-02-01

    The air route network, which supports all the flight activities of the civil aviation, is the most fundamental infrastructure of air traffic management system. In this paper, we study the Chinese air route network (CARN) within the framework of complex networks. We find that CARN is a geographical network possessing exponential degree distribution, low clustering coefficient, large shortest path length and exponential spatial distance distribution that is obviously different from that of the Chinese airport network (CAN). Besides, via investigating the flight data from 2002 to 2010, we demonstrate that the topology structure of CARN is homogeneous, howbeit the distribution of flight flow on CARN is rather heterogeneous. In addition, the traffic on CARN keeps growing in an exponential form and the increasing speed of west China is remarkably larger than that of east China. Our work will be helpful to better understand Chinese air traffic systems.

  3. Frontal parietal control network regulates the anti-correlated default and dorsal attention networks.

    PubMed

    Gao, Wei; Lin, Weili

    2012-01-01

    Recent reports demonstrate the anti-correlated behaviors between the default (DF) and the dorsal attention (DA) networks. We aimed to investigate the roles of the frontal parietal control (FPC) network in regulating the two anti-correlated networks through three experimental conditions, including resting, continuous self-paced/attended sequential finger tapping (FT), and natural movie watching (MW), respectively. The two goal-directed tasks were chosen to engage either one of the two competing networks-FT for DA whereas MW for default. We hypothesized that FPC will selectively augment/suppress either network depending on how the task targets the specific network; FPC will positively correlate with the target network, but negatively correlate with the network anti-correlated with the target network. We further hypothesized that significant causal links from FPC to both DA and DF are present during all three experimental conditions, supporting the initiative regulating role of FPC over the two opposing systems. Consistent with our hypotheses, FPC exhibited a significantly higher positive correlation with DA (P = 0.0095) whereas significantly more negative correlation with default (P = 0.0025) during FT when compared to resting. Completely opposite to that observed during FT, the FPC was significantly anti-correlated with DA (P = 2.1e-6) whereas positively correlated with default (P = 0.0035) during MW. Furthermore, extensive causal links from FPC to both DA and DF were observed across all three experimental states. Together, our results strongly support the notion that the FPC regulates the anti-correlated default and DA networks. Copyright © 2011 Wiley Periodicals, Inc.

  4. Innovation network

    PubMed Central

    Acemoglu, Daron; Akcigit, Ufuk; Kerr, William R.

    2016-01-01

    Technological progress builds upon itself, with the expansion of invention in one domain propelling future work in linked fields. Our analysis uses 1.8 million US patents and their citation properties to map the innovation network and its strength. Past innovation network structures are calculated using citation patterns across technology classes during 1975–1994. The interaction of this preexisting network structure with patent growth in upstream technology fields has strong predictive power on future innovation after 1995. This pattern is consistent with the idea that when there is more past upstream innovation for a particular technology class to build on, then that technology class innovates more. PMID:27681628

  5. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.

    PubMed

    Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio

    2018-06-19

    Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.

  6. How multiple social networks affect user awareness: The information diffusion process in multiplex networks

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Tang, Shaoting; Fang, Wenyi; Guo, Quantong; Zhang, Xiao; Zheng, Zhiming

    2015-10-01

    The information diffusion process in single complex networks has been extensively studied, especially for modeling the spreading activities in online social networks. However, individuals usually use multiple social networks at the same time, and can share the information they have learned from one social network to another. This phenomenon gives rise to a new diffusion process on multiplex networks with more than one network layer. In this paper we account for this multiplex network spreading by proposing a model of information diffusion in two-layer multiplex networks. We develop a theoretical framework using bond percolation and cascading failure to describe the intralayer and interlayer diffusion. This allows us to obtain analytical solutions for the fraction of informed individuals as a function of transmissibility T and the interlayer transmission rate θ . Simulation results show that interaction between layers can greatly enhance the information diffusion process. And explosive diffusion can occur even if the transmissibility of the focal layer is under the critical threshold, due to interlayer transmission.

  7. Inferring Centrality from Network Snapshots

    PubMed Central

    Shao, Haibin; Mesbahi, Mehran; Li, Dewei; Xi, Yugeng

    2017-01-01

    The topology and dynamics of a complex network shape its functionality. However, the topologies of many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of network topology, we show how the data generated from the network dynamics can be utilised to infer the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We show that the tempo centrality can be used to construct an accurate estimate of both the propagation rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. Our findings provide an approach to infer the performance of a consensus network from its temporal data. PMID:28098166

  8. Reputation-based collaborative network biology.

    PubMed

    Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Fields, R Brett; Hayes, William; Hoeng, Julia; Park, Jennifer S; Peitsch, Manuel C

    2015-01-01

    A pilot reputation-based collaborative network biology platform, Bionet, was developed for use in the sbv IMPROVER Network Verification Challenge to verify and enhance previously developed networks describing key aspects of lung biology. Bionet was successful in capturing a more comprehensive view of the biology associated with each network using the collective intelligence and knowledge of the crowd. One key learning point from the pilot was that using a standardized biological knowledge representation language such as BEL is critical to the success of a collaborative network biology platform. Overall, Bionet demonstrated that this approach to collaborative network biology is highly viable. Improving this platform for de novo creation of biological networks and network curation with the suggested enhancements for scalability will serve both academic and industry systems biology communities.

  9. Achieving network level privacy in Wireless Sensor Networks.

    PubMed

    Shaikh, Riaz Ahmed; Jameel, Hassan; d'Auriol, Brian J; Lee, Heejo; Lee, Sungyoung; Song, Young-Jae

    2010-01-01

    Full network level privacy has often been categorized into four sub-categories: Identity, Route, Location and Data privacy. Achieving full network level privacy is a critical and challenging problem due to the constraints imposed by the sensor nodes (e.g., energy, memory and computation power), sensor networks (e.g., mobility and topology) and QoS issues (e.g., packet reach-ability and timeliness). In this paper, we proposed two new identity, route and location privacy algorithms and data privacy mechanism that addresses this problem. The proposed solutions provide additional trustworthiness and reliability at modest cost of memory and energy. Also, we proved that our proposed solutions provide protection against various privacy disclosure attacks, such as eavesdropping and hop-by-hop trace back attacks.

  10. Using Social Network Analysis to Assess Mentorship and Collaboration in a Public Health Network.

    PubMed

    Petrescu-Prahova, Miruna; Belza, Basia; Leith, Katherine; Allen, Peg; Coe, Norma B; Anderson, Lynda A

    2015-08-20

    Addressing chronic disease burden requires the creation of collaborative networks to promote systemic changes and engage stakeholders. Although many such networks exist, they are rarely assessed with tools that account for their complexity. This study examined the structure of mentorship and collaboration relationships among members of the Healthy Aging Research Network (HAN) using social network analysis (SNA). We invited 97 HAN members and partners to complete an online social network survey that included closed-ended questions about HAN-specific mentorship and collaboration during the previous 12 months. Collaboration was measured by examining the activity of the network on 6 types of products: published articles, in-progress manuscripts, grant applications, tools, research projects, and presentations. We computed network-level measures such as density, number of components, and centralization to assess the cohesiveness of the network. Sixty-three respondents completed the survey (response rate, 65%). Responses, which included information about collaboration with nonrespondents, suggested that 74% of HAN members were connected through mentorship ties and that all 97 members were connected through at least one form of collaboration. Mentorship and collaboration ties were present both within and across boundaries of HAN member organizations. SNA of public health collaborative networks provides understanding about the structure of relationships that are formed as a result of participation in network activities. This approach may offer members and funders a way to assess the impact of such networks that goes beyond simply measuring products and participation at the individual level.

  11. Network Sampling with Memory: A proposal for more efficient sampling from social networks

    PubMed Central

    Mouw, Ted; Verdery, Ashton M.

    2013-01-01

    Techniques for sampling from networks have grown into an important area of research across several fields. For sociologists, the possibility of sampling from a network is appealing for two reasons: (1) A network sample can yield substantively interesting data about network structures and social interactions, and (2) it is useful in situations where study populations are difficult or impossible to survey with traditional sampling approaches because of the lack of a sampling frame. Despite its appeal, methodological concerns about the precision and accuracy of network-based sampling methods remain. In particular, recent research has shown that sampling from a network using a random walk based approach such as Respondent Driven Sampling (RDS) can result in high design effects (DE)—the ratio of the sampling variance to the sampling variance of simple random sampling (SRS). A high design effect means that more cases must be collected to achieve the same level of precision as SRS. In this paper we propose an alternative strategy, Network Sampling with Memory (NSM), which collects network data from respondents in order to reduce design effects and, correspondingly, the number of interviews needed to achieve a given level of statistical power. NSM combines a “List” mode, where all individuals on the revealed network list are sampled with the same cumulative probability, with a “Search” mode, which gives priority to bridge nodes connecting the current sample to unexplored parts of the network. We test the relative efficiency of NSM compared to RDS and SRS on 162 school and university networks from Add Health and Facebook that range in size from 110 to 16,278 nodes. The results show that the average design effect for NSM on these 162 networks is 1.16, which is very close to the efficiency of a simple random sample (DE=1), and 98.5% lower than the average DE we observed for RDS. PMID:24159246

  12. Network operating system

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Long-term and short-term objectives for the development of a network operating system for the Space Station are stated. The short-term objective is to develop a prototype network operating system for a 100 megabit/second fiber optic data bus. The long-term objective is to establish guidelines for writing a detailed specification for a Space Station network operating system. Major milestones are noted. Information is given in outline form.

  13. Networking: the view from HEP

    NASA Astrophysics Data System (ADS)

    McKee, Shawn

    2017-10-01

    Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. National and global-scale collaborations that characterize HEP would not be feasible without ubiquitous capable networks. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. This paper will briefly discuss the history of networking in HEP, the current activities and challenges we are facing, and try to provide some understanding of where networking may be going in the next 5 to 10 years.

  14. Network testbed creation and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices,more » embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.« less

  15. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks

    PubMed Central

    Meyer-Bäse, Anke; Roberts, Rodney G.; Illan, Ignacio A.; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja

    2017-01-01

    Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary

  16. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks.

    PubMed

    Meyer-Bäse, Anke; Roberts, Rodney G; Illan, Ignacio A; Meyer-Bäse, Uwe; Lobbes, Marc; Stadlbauer, Andreas; Pinker-Domenig, Katja

    2017-01-01

    Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary

  17. Dynamic Network Selection for Multicast Services in Wireless Cooperative Networks

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Jin, Le; He, Feng; Cheng, Hanwen; Wu, Lenan

    In next generation mobile multimedia communications, different wireless access networks are expected to cooperate. However, it is a challenging task to choose an optimal transmission path in this scenario. This paper focuses on the problem of selecting the optimal access network for multicast services in the cooperative mobile and broadcasting networks. An algorithm is proposed, which considers multiple decision factors and multiple optimization objectives. An analytic hierarchy process (AHP) method is applied to schedule the service queue and an artificial neural network (ANN) is used to improve the flexibility of the algorithm. Simulation results show that by applying the AHP method, a group of weight ratios can be obtained to improve the performance of multiple objectives. And ANN method is effective to adaptively adjust weight ratios when users' new waiting threshold is generated.

  18. Improved Autoassociative Neural Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2003-01-01

    Improved autoassociative neural networks, denoted nexi, have been proposed for use in controlling autonomous robots, including mobile exploratory robots of the biomorphic type. In comparison with conventional autoassociative neural networks, nexi would be more complex but more capable in that they could be trained to do more complex tasks. A nexus would use bit weights and simple arithmetic in a manner that would enable training and operation without a central processing unit, programs, weight registers, or large amounts of memory. Only a relatively small amount of memory (to hold the bit weights) and a simple logic application- specific integrated circuit would be needed. A description of autoassociative neural networks is prerequisite to a meaningful description of a nexus. An autoassociative network is a set of neurons that are completely connected in the sense that each neuron receives input from, and sends output to, all the other neurons. (In some instantiations, a neuron could also send output back to its own input terminal.) The state of a neuron is completely determined by the inner product of its inputs with weights associated with its input channel. Setting the weights sets the behavior of the network. The neurons of an autoassociative network are usually regarded as comprising a row or vector. Time is a quantized phenomenon for most autoassociative networks in the sense that time proceeds in discrete steps. At each time step, the row of neurons forms a pattern: some neurons are firing, some are not. Hence, the current state of an autoassociative network can be described with a single binary vector. As time goes by, the network changes the vector. Autoassociative networks move vectors over hyperspace landscapes of possibilities.

  19. Network discovery with DCM

    PubMed Central

    Friston, Karl J.; Li, Baojuan; Daunizeau, Jean; Stephan, Klaas E.

    2011-01-01

    This paper is about inferring or discovering the functional architecture of distributed systems using Dynamic Causal Modelling (DCM). We describe a scheme that recovers the (dynamic) Bayesian dependency graph (connections in a network) using observed network activity. This network discovery uses Bayesian model selection to identify the sparsity structure (absence of edges or connections) in a graph that best explains observed time-series. The implicit adjacency matrix specifies the form of the network (e.g., cyclic or acyclic) and its graph-theoretical attributes (e.g., degree distribution). The scheme is illustrated using functional magnetic resonance imaging (fMRI) time series to discover functional brain networks. Crucially, it can be applied to experimentally evoked responses (activation studies) or endogenous activity in task-free (resting state) fMRI studies. Unlike conventional approaches to network discovery, DCM permits the analysis of directed and cyclic graphs. Furthermore, it eschews (implausible) Markovian assumptions about the serial independence of random fluctuations. The scheme furnishes a network description of distributed activity in the brain that is optimal in the sense of having the greatest conditional probability, relative to other networks. The networks are characterised in terms of their connectivity or adjacency matrices and conditional distributions over the directed (and reciprocal) effective connectivity between connected nodes or regions. We envisage that this approach will provide a useful complement to current analyses of functional connectivity for both activation and resting-state studies. PMID:21182971

  20. Dynamics of Bottlebrush Networks

    NASA Astrophysics Data System (ADS)

    Cao, Zhen; Daniel, William; Vatankhah-Varnosfaderani, Mohammad; Sheiko, Sergei; Dobrynin, Andrey

    The deformation dynamics of bottlebrush networks in a melt state is studied using a combination of theoretical, computational, and experimental techniques. Three main molecular relaxation processes are identified in these systems: (i) relaxation of the side chains, (ii) relaxation of the bottlebrush backbones on length scales shorter than the bottlebrush Kuhn length (bK) , and (iii) relaxation of the bottlebrush network strands between cross-links. The relaxation of side chains having a degree of polymerization (DP), nsc, dominates the network dynamics on the time scales τ0 < t <=τsc , where τ0 and τsc τ0 (nsc + 1)2 are the characteristic relaxation times of monomeric units and side chains, respectively. In this time interval, the shear modulus at small deformations decays with time as G0BB (t) t - 1 / 2. On time scales t >τsc, bottlebrush elastomers behave as networks of filaments with a shear modulus G0BB (t) (nsc + 1)- 1 / 4t - 1 / 2 . Finally, the response of the bottlebrush networks becomes time independent at times scales longer than the Rouse time of the bottlebrush network strands. In this time interval, the network shear modulus depends on the network molecular parameters as G0BB (t) (nsc + 1)-1N-1 . Analysis of the simulation data shows that the stress evolution in the bottlebrush networks during constant strain-rate deformation can be described by a universal function. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.

  1. Dynamic Neural Networks Supporting Memory Retrieval

    PubMed Central

    St. Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.

    2011-01-01

    How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) Medial Prefrontal Cortex (PFC) Network, associated with self-referential processes, 2) Medial Temporal Lobe (MTL) Network, associated with memory, 3) Frontoparietal Network, associated with strategic search, and 4) Cingulooperculum Network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior. PMID:21550407

  2. Research on NGN network control technology

    NASA Astrophysics Data System (ADS)

    Li, WenYao; Zhou, Fang; Wu, JianXue; Li, ZhiGuang

    2004-04-01

    Nowadays NGN (Next Generation Network) is the hotspot for discussion and research in IT section. The NGN core technology is the network control technology. The key goal of NGN is to realize the network convergence and evolution. Referring to overlay network model core on Softswitch technology, circuit switch network and IP network convergence realized. Referring to the optical transmission network core on ASTN/ASON, service layer (i.e. IP layer) and optical transmission convergence realized. Together with the distributing feature of NGN network control technology, on NGN platform, overview of combining Softswitch and ASTN/ASON control technology, the solution whether IP should be the NGN core carrier platform attracts general attention, and this is also a QoS problem on NGN end to end. This solution produces the significant practical meaning on equipment development, network deployment, network design and optimization, especially on realizing present network smooth evolving to the NGN. This is why this paper puts forward the research topic on the NGN network control technology. This paper introduces basics on NGN network control technology, then proposes NGN network control reference model, at the same time describes a realizable network structure of NGN. Based on above, from the view of function realization, NGN network control technology is discussed and its work mechanism is analyzed.

  3. Rich-Cores in Networks

    PubMed Central

    Ma, Athen; Mondragón, Raúl J.

    2015-01-01

    A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively. PMID:25799585

  4. Rich-cores in networks.

    PubMed

    Ma, Athen; Mondragón, Raúl J

    2015-01-01

    A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively.

  5. Synchronization in interdependent networks

    NASA Astrophysics Data System (ADS)

    Um, Jaegon; Minnhagen, Petter; Kim, Beom Jun

    2011-06-01

    We explore the synchronization behavior in interdependent systems, where the one-dimensional (1D) network (the intranetwork coupling strength JI) is ferromagnetically intercoupled (the strength J) to the Watts-Strogatz (WS) small-world network (the intranetwork coupling strength JII). In the absence of the internetwork coupling (J =0), the former network is well known not to exhibit the synchronized phase at any finite coupling strength, whereas the latter displays the mean-field transition. Through an analytic approach based on the mean-field approximation, it is found that for the weakly coupled 1D network (JI≪1) the increase of J suppresses synchrony, because the nonsynchronized 1D network becomes a heavier burden for the synchronization process of the WS network. As the coupling in the 1D network becomes stronger, it is revealed by the renormalization group (RG) argument that the synchronization is enhanced as JI is increased, implying that the more enhanced partial synchronization in the 1D network makes the burden lighter. Extensive numerical simulations confirm these expected behaviors, while exhibiting a reentrant behavior in the intermediate range of JI. The nonmonotonic change of the critical value of JII is also compared with the result from the numerical RG calculation.

  6. Optimal Phase Oscillatory Network

    NASA Astrophysics Data System (ADS)

    Follmann, Rosangela

    2013-03-01

    Important topics as preventive detection of epidemics, collective self-organization, information flow and systemic robustness in clusters are typical examples of processes that can be studied in the context of the theory of complex networks. It is an emerging theory in a field, which has recently attracted much interest, involving the synchronization of dynamical systems associated to nodes, or vertices, of the network. Studies have shown that synchronization in oscillatory networks depends not only on the individual dynamics of each element, but also on the combination of the topology of the connections as well as on the properties of the interactions of these elements. Moreover, the response of the network to small damages, caused at strategic points, can enhance the global performance of the whole network. In this presentation we explore an optimal phase oscillatory network altered by an additional term in the coupling function. The application to associative-memory network shows improvement on the correct information retrieval as well as increase of the storage capacity. The inclusion of some small deviations on the nodes, when solutions are attracted to a false state, results in additional enhancement of the performance of the associative-memory network. Supported by FAPESP - Sao Paulo Research Foundation, grant number 2012/12555-4

  7. The protein folding network

    NASA Astrophysics Data System (ADS)

    Rao, Francesco; Caflisch, Amedeo

    2004-03-01

    Networks are everywhere. The conformation space of a 20-residue antiparallel beta-sheet peptide [1], sampled by molecular dynamics simulations, is mapped to a network. Conformations are nodes of the network, and the transitions between them are links. As previously found for the World-Wide Web as well as for social and biological networks , the conformation space contains highly connected hubs like the native state which is the most populated free energy basin. Furthermore, the network shows a hierarchical modularity [2] which is consistent with the funnel mechanism of folding [3] and is not observed for a random heteropolymer lacking a native state. Here we show that the conformation space network describes the free energy landscape without requiring projections into arbitrarily chosen reaction coordinates. The network analysis provides a basis for understanding the heterogeneity of the folding transition state and the existence of multiple pathways. [1] P. Ferrara and A. Caflisch, Folding simulations of a three-stranded antiparallel beta-sheet peptide, PNAS 97, 10780-10785 (2000). [2] Ravasz, E. and Barabási, A. L. Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003). [3] Dill, K. and Chan, H From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10-19 (1997)

  8. A Balanced Memory Network

    PubMed Central

    Roudi, Yasser; Latham, Peter E

    2007-01-01

    A fundamental problem in neuroscience is understanding how working memory—the ability to store information at intermediate timescales, like tens of seconds—is implemented in realistic neuronal networks. The most likely candidate mechanism is the attractor network, and a great deal of effort has gone toward investigating it theoretically. Yet, despite almost a quarter century of intense work, attractor networks are not fully understood. In particular, there are still two unanswered questions. First, how is it that attractor networks exhibit irregular firing, as is observed experimentally during working memory tasks? And second, how many memories can be stored under biologically realistic conditions? Here we answer both questions by studying an attractor neural network in which inhibition and excitation balance each other. Using mean-field analysis, we derive a three-variable description of attractor networks. From this description it follows that irregular firing can exist only if the number of neurons involved in a memory is large. The same mean-field analysis also shows that the number of memories that can be stored in a network scales with the number of excitatory connections, a result that has been suggested for simple models but never shown for realistic ones. Both of these predictions are verified using simulations with large networks of spiking neurons. PMID:17845070

  9. A balanced memory network.

    PubMed

    Roudi, Yasser; Latham, Peter E

    2007-09-01

    A fundamental problem in neuroscience is understanding how working memory--the ability to store information at intermediate timescales, like tens of seconds--is implemented in realistic neuronal networks. The most likely candidate mechanism is the attractor network, and a great deal of effort has gone toward investigating it theoretically. Yet, despite almost a quarter century of intense work, attractor networks are not fully understood. In particular, there are still two unanswered questions. First, how is it that attractor networks exhibit irregular firing, as is observed experimentally during working memory tasks? And second, how many memories can be stored under biologically realistic conditions? Here we answer both questions by studying an attractor neural network in which inhibition and excitation balance each other. Using mean-field analysis, we derive a three-variable description of attractor networks. From this description it follows that irregular firing can exist only if the number of neurons involved in a memory is large. The same mean-field analysis also shows that the number of memories that can be stored in a network scales with the number of excitatory connections, a result that has been suggested for simple models but never shown for realistic ones. Both of these predictions are verified using simulations with large networks of spiking neurons.

  10. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical gaussian models and bayesian networks.

    PubMed

    Werhli, Adriano V; Grzegorczyk, Marco; Husmeier, Dirk

    2006-10-15

    An important problem in systems biology is the inference of biochemical pathways and regulatory networks from postgenomic data. Various reverse engineering methods have been proposed in the literature, and it is important to understand their relative merits and shortcomings. In the present paper, we compare the accuracy of reconstructing gene regulatory networks with three different modelling and inference paradigms: (1) Relevance networks (RNs): pairwise association scores independent of the remaining network; (2) graphical Gaussian models (GGMs): undirected graphical models with constraint-based inference, and (3) Bayesian networks (BNs): directed graphical models with score-based inference. The evaluation is carried out on the Raf pathway, a cellular signalling network describing the interaction of 11 phosphorylated proteins and phospholipids in human immune system cells. We use both laboratory data from cytometry experiments as well as data simulated from the gold-standard network. We also compare passive observations with active interventions. On Gaussian observational data, BNs and GGMs were found to outperform RNs. The difference in performance was not significant for the non-linear simulated data and the cytoflow data, though. Also, we did not observe a significant difference between BNs and GGMs on observational data in general. However, for interventional data, BNs outperform GGMs and RNs, especially when taking the edge directions rather than just the skeletons of the graphs into account. This suggests that the higher computational costs of inference with BNs over GGMs and RNs are not justified when using only passive observations, but that active interventions in the form of gene knockouts and over-expressions are required to exploit the full potential of BNs. Data, software and supplementary material are available from http://www.bioss.sari.ac.uk/staff/adriano/research.html

  11. Evaluating the Effectiveness of Community-Based Dementia Care Networks: The Dementia Care Networks' Study

    ERIC Educational Resources Information Center

    Lemieux-Charles, Louis; Chambers, Larry W.; Cockerill, Rhonda; Jaglal, Susan; Brazil, Kevin; Cohen, Carole; LeClair, Ken; Dalziel, Bill; Schulman, Barbara

    2005-01-01

    Purpose: The Dementia Care Networks' Study examined the effectiveness of four community-based, not-for-profit dementia networks. The study involved assessing the relationship between the types of administrative and service-delivery exchanges that occurred among the networked agencies and the network members' perception of the effectiveness of…

  12. Launch Control Network Engineer

    NASA Technical Reports Server (NTRS)

    Medeiros, Samantha

    2017-01-01

    The Spaceport Command and Control System (SCCS) is being built at the Kennedy Space Center in order to successfully launch NASA’s revolutionary vehicle that allows humans to explore further into space than ever before. During my internship, I worked with the Network, Firewall, and Hardware teams that are all contributing to the huge SCCS network project effort. I learned the SCCS network design and the several concepts that are running in the background. I also updated and designed documentation for physical networks that are part of SCCS. This includes being able to assist and build physical installations as well as configurations. I worked with the network design for vehicle telemetry interfaces to the Launch Control System (LCS); this allows the interface to interact with other systems at other NASA locations. This network design includes the Space Launch System (SLS), Interim Cryogenic Propulsion Stage (ICPS), and the Orion Multipurpose Crew Vehicle (MPCV). I worked on the network design and implementation in the Customer Avionics Interface Development and Analysis (CAIDA) lab.

  13. Parallel consensual neural networks.

    PubMed

    Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H

    1997-01-01

    A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.

  14. Toward Optimal Transport Networks

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.

    2008-01-01

    Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.

  15. How Did the Information Flow in the #AlphaGo Hashtag Network? A Social Network Analysis of the Large-Scale Information Network on Twitter.

    PubMed

    Kim, Jinyoung

    2017-12-01

    As it becomes common for Internet users to use hashtags when posting and searching information on social media, it is important to understand who builds a hashtag network and how information is circulated within the network. This article focused on unlocking the potential of the #AlphaGo hashtag network by addressing the following questions. First, the current study examined whether traditional opinion leadership (i.e., the influentials hypothesis) or grassroot participation by the public (i.e., the interpersonal hypothesis) drove dissemination of information in the hashtag network. Second, several unique patterns of information distribution by key users were identified. Finally, the association between attributes of key users who exerted great influence on information distribution (i.e., the number of followers and follows) and their central status in the network was tested. To answer the proffered research questions, a social network analysis was conducted using a large-scale hashtag network data set from Twitter (n = 21,870). The results showed that the leading actors in the network were actively receiving information from their followers rather than serving as intermediaries between the original information sources and the public. Moreover, the leading actors played several roles (i.e., conversation starters, influencers, and active engagers) in the network. Furthermore, the number of their follows and followers were significantly associated with their central status in the hashtag network. Based on the results, the current research explained how the information was exchanged in the hashtag network by proposing the reciprocal model of information flow.

  16. Patent Citation Networks

    NASA Astrophysics Data System (ADS)

    Strandburg, Katherine; Tobochnik, Jan; Csardi, Gabor

    2005-03-01

    Patent applications contain citations which are similar to but different from those found in published scientific papers. In particular, patent citations are governed by legal rules. Moreover, a large fraction of citations are made not by the patent inventor, but by a patent examiner during the application procedure. Using a patent database, which contains the patent citations, assignees and inventors, we have applied network analysis and built network models. Our work includes determining the structure of the patent citation network and comparing it to existing results for scientific citation networks; identifying differences between various technological fields and comparing the observed differences to expectations based on anecdotal evidence about patenting practice; and developing models to explain the results.

  17. Bridges in complex networks

    NASA Astrophysics Data System (ADS)

    Wu, Ang-Kun; Tian, Liang; Liu, Yang-Yu

    2018-01-01

    A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized counterparts. We find that real networks typically have more bridges than their completely randomized counterparts, but they have a fraction of bridges that is very similar to their degree-preserving randomizations. We define an edge centrality measure, called bridgeness, to quantify the importance of a bridge in damaging a network. We find that certain real networks have a very large average and variance of bridgeness compared to their degree-preserving randomizations and other real networks. Finally, we offer an analytical framework to calculate the bridge fraction and the average and variance of bridgeness for uncorrelated random networks with arbitrary degree distributions.

  18. Immunization of complex networks

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2002-03-01

    Complex networks such as the sexual partnership web or the Internet often show a high degree of redundancy and heterogeneity in their connectivity properties. This peculiar connectivity provides an ideal environment for the spreading of infective agents. Here we show that the random uniform immunization of individuals does not lead to the eradication of infections in all complex networks. Namely, networks with scale-free properties do not acquire global immunity from major epidemic outbreaks even in the presence of unrealistically high densities of randomly immunized individuals. The absence of any critical immunization threshold is due to the unbounded connectivity fluctuations of scale-free networks. Successful immunization strategies can be developed only by taking into account the inhomogeneous connectivity properties of scale-free networks. In particular, targeted immunization schemes, based on the nodes' connectivity hierarchy, sharply lower the network's vulnerability to epidemic attacks.

  19. Organizational network analysis for two networks in the Washington State Department of Transportation.

    DOT National Transportation Integrated Search

    2010-10-01

    Organizational network analysis (ONA) consists of gathering data on information sharing and : connectivity in a group, calculating network measures, creating network maps, and using this : information to analyze and improve the functionality of the g...

  20. Groundwater data network interoperability

    USGS Publications Warehouse

    Brodaric, Boyan; Booth, Nathaniel; Boisvert, Eric; Lucido, Jessica M.

    2016-01-01

    Water data networks are increasingly being integrated to answer complex scientific questions that often span large geographical areas and cross political borders. Data heterogeneity is a major obstacle that impedes interoperability within and between such networks. It is resolved here for groundwater data at five levels of interoperability, within a Spatial Data Infrastructure architecture. The result is a pair of distinct national groundwater data networks for the United States and Canada, and a combined data network in which they are interoperable. This combined data network enables, for the first time, transparent public access to harmonized groundwater data from both sides of the shared international border.

  1. Implementation of quantum key distribution network simulation module in the network simulator NS-3

    NASA Astrophysics Data System (ADS)

    Mehic, Miralem; Maurhart, Oliver; Rass, Stefan; Voznak, Miroslav

    2017-10-01

    As the research in quantum key distribution (QKD) technology grows larger and becomes more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. Due to the specificity of the QKD link which requires optical and Internet connection between the network nodes, to deploy a complete testbed containing multiple network hosts and links to validate and verify a certain network algorithm or protocol would be very costly. Network simulators in these circumstances save vast amounts of money and time in accomplishing such a task. The simulation environment offers the creation of complex network topologies, a high degree of control and repeatable experiments, which in turn allows researchers to conduct experiments and confirm their results. In this paper, we described the design of the QKD network simulation module which was developed in the network simulator of version 3 (NS-3). The module supports simulation of the QKD network in an overlay mode or in a single TCP/IP mode. Therefore, it can be used to simulate other network technologies regardless of QKD.

  2. Space-Time Neural Networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Shelton, Robert O.

    1992-01-01

    Concept of space-time neural network affords distributed temporal memory enabling such network to model complicated dynamical systems mathematically and to recognize temporally varying spatial patterns. Digital filters replace synaptic-connection weights of conventional back-error-propagation neural network.

  3. Mechanical Cell-Cell Communication in Fibrous Networks: The Importance of Network Geometry.

    PubMed

    Humphries, D L; Grogan, J A; Gaffney, E A

    2017-03-01

    Cells contracting in extracellular matrix (ECM) can transmit stress over long distances, communicating their position and orientation to cells many tens of micrometres away. Such phenomena are not observed when cells are seeded on substrates with linear elastic properties, such as polyacrylamide (PA) gel. The ability for fibrous substrates to support far reaching stress and strain fields has implications for many physiological processes, while the mechanical properties of ECM are central to several pathological processes, including tumour invasion and fibrosis. Theoretical models have investigated the properties of ECM in a variety of network geometries. However, the effects of network architecture on mechanical cell-cell communication have received little attention. This work investigates the effects of geometry on network mechanics, and thus the ability for cells to communicate mechanically through different networks. Cell-derived displacement fields are quantified for various network geometries while controlling for network topology, cross-link density and micromechanical properties. We find that the heterogeneity of response, fibre alignment, and substrate displacement fields are sensitive to network choice. Further, we show that certain geometries support mechanical communication over longer distances than others. As such, we predict that the choice of network geometry is important in fundamental modelling of cell-cell interactions in fibrous substrates, as well as in experimental settings, where mechanical signalling at the cellular scale plays an important role. This work thus informs the construction of theoretical models for substrate mechanics and experimental explorations of mechanical cell-cell communication.

  4. MX Hierarchical Networking System.

    DTIC Science & Technology

    1982-02-01

    criteria considered in this report are defined as follows: 1. Single Network Limitation. Will the scheme allow the maximum size network anticipated to be...AD-AI16 758 CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAIGN IL F/G 5/2 MX HIERARCHICAL NETWORKING SYSTEM.(U) FEB 82 M O-CONNOR, L M SOLISH, L...laboratory__ _ _ _ _ _ _ _ _ _ _ _ MX HIERARCHICAL NETWORKING SYSTEM by Michael O’Connor L. Michael Golish Lee Boyer IsI Approved for public

  5. Airport Surface Network Architecture Definition

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.

    2006-01-01

    Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network

  6. Social Network Analysis of Biomedical Research Collaboration Networks in a CTSA Institution

    PubMed Central

    Bian, Jiang; Xie, Mengjun; Topaloglu, Umit; Hudson, Teresa; Eswaran, Hari; Hogan, William

    2014-01-01

    BACKGROUND The popularity of social networks has triggered a number of research efforts on network analyses of research collaborations in the Clinical and Translational Science Award (CTSA) community. Those studies mainly focus on the general understanding of collaboration networks by measuring common network metrics. More fundamental questions about collaborations still remain unanswered such as recognizing “influential” nodes and identifying potential new collaborations that are most rewarding. METHODS We analyzed biomedical research collaboration networks (RCNs) constructed from a dataset of research grants collected at a CTSA institution (i.e. University of Arkansas for Medical Sciences (UAMS)) in a comprehensive and systematic manner. First, our analysis covers the full spectrum of a RCN study: from network modeling to network characteristics measurement, from key nodes recognition to potential links (collaborations) suggestion. Second, our analysis employs non-conventional model and techniques including a weighted network model for representing collaboration strength, rank aggregation for detecting important nodes, and Random Walk with Restart (RWR) for suggesting new research collaborations. RESULTS By applying our models and techniques to RCNs at UAMS prior to and after the CTSA, we have gained valuable insights that not only reveal the temporal evolution of the network dynamics but also assess the effectiveness of the CTSA and its impact on a research institution. We find that collaboration networks at UAMS are not scale-free but small-world. Quantitative measures have been obtained to evident that the RCNs at UAMS are moving towards favoring multidisciplinary research. Moreover, our link prediction model creates the basis of collaboration recommendations with an impressive accuracy (AUC: 0.990, MAP@3: 1.48 and MAP@5: 1.522). Last but not least, an open-source visual analytical tool for RCNs is being developed and released through Github. CONCLUSIONS

  7. Information transmission on hybrid networks

    NASA Astrophysics Data System (ADS)

    Chen, Rongbin; Cui, Wei; Pu, Cunlai; Li, Jie; Ji, Bo; Gakis, Konstantinos; Pardalos, Panos M.

    2018-01-01

    Many real-world communication networks often have hybrid nature with both fixed nodes and moving modes, such as the mobile phone networks mainly composed of fixed base stations and mobile phones. In this paper, we discuss the information transmission process on the hybrid networks with both fixed and mobile nodes. The fixed nodes (base stations) are connected as a spatial lattice on the plane forming the information-carrying backbone, while the mobile nodes (users), which are the sources and destinations of information packets, connect to their current nearest fixed nodes respectively to deliver and receive information packets. We observe the phase transition of traffic load in the hybrid network when the packet generation rate goes from below and then above a critical value, which measures the network capacity of packets delivery. We obtain the optimal speed of moving nodes leading to the maximum network capacity. We further improve the network capacity by rewiring the fixed nodes and by considering the current load of fixed nodes during packets transmission. Our purpose is to optimize the network capacity of hybrid networks from the perspective of network science, and provide some insights for the construction of future communication infrastructures.

  8. Networking for philanthropy: increasing volunteer behavior via social networking sites.

    PubMed

    Kim, Yoojung; Lee, Wei-Na

    2014-03-01

    Social networking sites (SNSs) provide a unique social venue to engage the young generation in philanthropy through their networking capabilities. An integrated model that incorporates social capital into the Theory of Reasoned Action is developed to explain volunteer behavior through social networks. As expected, volunteer behavior was predicted by volunteer intention, which was influenced by attitudes and subjective norms. In addition, social capital, an outcome of the extensive use of SNSs, was as an important driver of users' attitude and subjective norms toward volunteering via SNSs.

  9. Walk-based measure of balance in signed networks: Detecting lack of balance in social networks

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Benzi, Michele

    2014-10-01

    There is a longstanding belief that in social networks with simultaneous friendly and hostile interactions (signed networks) there is a general tendency to a global balance. Balance represents a state of the network with a lack of contentious situations. Here we introduce a method to quantify the degree of balance of any signed (social) network. It accounts for the contribution of all signed cycles in the network and gives, in agreement with empirical evidence, more weight to the shorter cycles than to the longer ones. We found that, contrary to what is generally believed, many signed social networks, in particular very large directed online social networks, are in general very poorly balanced. We also show that unbalanced states can be changed by tuning the weights of the social interactions among the agents in the network.

  10. Terminal-oriented computer-communication networks.

    NASA Technical Reports Server (NTRS)

    Schwartz, M.; Boorstyn, R. R.; Pickholtz, R. L.

    1972-01-01

    Four examples of currently operating computer-communication networks are described in this tutorial paper. They include the TYMNET network, the GE Information Services network, the NASDAQ over-the-counter stock-quotation system, and the Computer Sciences Infonet. These networks all use programmable concentrators for combining a multiplicity of terminals. Included in the discussion for each network is a description of the overall network structure, the handling and transmission of messages, communication requirements, routing and reliability consideration where applicable, operating data and design specifications where available, and unique design features in the area of computer communications.

  11. On Tree-Based Phylogenetic Networks.

    PubMed

    Zhang, Louxin

    2016-07-01

    A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.

  12. SEQUOIA: significance enhanced network querying through context-sensitive random walk and minimization of network conductance.

    PubMed

    Jeong, Hyundoo; Yoon, Byung-Jun

    2017-03-14

    Network querying algorithms provide computational means to identify conserved network modules in large-scale biological networks that are similar to known functional modules, such as pathways or molecular complexes. Two main challenges for network querying algorithms are the high computational complexity of detecting potential isomorphism between the query and the target graphs and ensuring the biological significance of the query results. In this paper, we propose SEQUOIA, a novel network querying algorithm that effectively addresses these issues by utilizing a context-sensitive random walk (CSRW) model for network comparison and minimizing the network conductance of potential matches in the target network. The CSRW model, inspired by the pair hidden Markov model (pair-HMM) that has been widely used for sequence comparison and alignment, can accurately assess the node-to-node correspondence between different graphs by accounting for node insertions and deletions. The proposed algorithm identifies high-scoring network regions based on the CSRW scores, which are subsequently extended by maximally reducing the network conductance of the identified subnetworks. Performance assessment based on real PPI networks and known molecular complexes show that SEQUOIA outperforms existing methods and clearly enhances the biological significance of the query results. The source code and datasets can be downloaded from http://www.ece.tamu.edu/~bjyoon/SEQUOIA .

  13. Task vs. rest—different network configurations between the coactivation and the resting-state brain networks

    PubMed Central

    Di, Xin; Gohel, Suril; Kim, Eun H.; Biswal, Bharat B.

    2013-01-01

    There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest. PMID:24062654

  14. Network portal: a database for storage, analysis and visualization of biological networks

    PubMed Central

    Turkarslan, Serdar; Wurtmann, Elisabeth J.; Wu, Wei-Ju; Jiang, Ning; Bare, J. Christopher; Foley, Karen; Reiss, David J.; Novichkov, Pavel; Baliga, Nitin S.

    2014-01-01

    The ease of generating high-throughput data has enabled investigations into organismal complexity at the systems level through the inference of networks of interactions among the various cellular components (genes, RNAs, proteins and metabolites). The wider scientific community, however, currently has limited access to tools for network inference, visualization and analysis because these tasks often require advanced computational knowledge and expensive computing resources. We have designed the network portal (http://networks.systemsbiology.net) to serve as a modular database for the integration of user uploaded and public data, with inference algorithms and tools for the storage, visualization and analysis of biological networks. The portal is fully integrated into the Gaggle framework to seamlessly exchange data with desktop and web applications and to allow the user to create, save and modify workspaces, and it includes social networking capabilities for collaborative projects. While the current release of the database contains networks for 13 prokaryotic organisms from diverse phylogenetic clades (4678 co-regulated gene modules, 3466 regulators and 9291 cis-regulatory motifs), it will be rapidly populated with prokaryotic and eukaryotic organisms as relevant data become available in public repositories and through user input. The modular architecture, simple data formats and open API support community development of the portal. PMID:24271392

  15. Sailor: Maryland's Online Public Information Network. Sailor Network Assessment Final Report: Findings and Future Sailor Network Development.

    ERIC Educational Resources Information Center

    Bertot, John Carlo; McClure, Charles R.

    This report describes the results of an assessment of Sailor, Maryland's Online Public Information Network, which provides statewide Internet connection to 100% of Maryland public libraries. The concept of a "statewide networked environment" includes information services, products, hardware and software, telecommunications…

  16. Trust Maximization in Social Networks

    NASA Astrophysics Data System (ADS)

    Zhan, Justin; Fang, Xing

    Trust is a human-related phenomenon in social networks. Trust research on social networks has gained much attention on its usefulness, and on modeling propagations. There is little focus on finding maximum trust in social networks which is particularly important when a social network is oriented by certain tasks. In this paper, we propose a trust maximization algorithm based on the task-oriented social networks.

  17. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    ERIC Educational Resources Information Center

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  18. Using Active Networking to Detect and Troubleshoot Issues in Tactical Data Networks

    DTIC Science & Technology

    2014-06-01

    networking (SDN) paradigm, which has gained popularity in recent years, has its roots in the idea of programmable networks [6]. By extending the...278–289, Aug. 2011. 67 [13] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles , “Plan: A programming language for active networks,” ACM

  19. Complex Network Theory Applied to the Growth of Kuala Lumpur's Public Urban Rail Transit Network.

    PubMed

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain Bin; Wu, Jianjun

    2015-01-01

    Recently, the number of studies involving complex network applications in transportation has increased steadily as scholars from various fields analyze traffic networks. Nonetheless, research on rail network growth is relatively rare. This research examines the evolution of the Public Urban Rail Transit Networks of Kuala Lumpur (PURTNoKL) based on complex network theory and covers both the topological structure of the rail system and future trends in network growth. In addition, network performance when facing different attack strategies is also assessed. Three topological network characteristics are considered: connections, clustering and centrality. In PURTNoKL, we found that the total number of nodes and edges exhibit a linear relationship and that the average degree stays within the interval [2.0488, 2.6774] with heavy-tailed distributions. The evolutionary process shows that the cumulative probability distribution (CPD) of degree and the average shortest path length show good fit with exponential distribution and normal distribution, respectively. Moreover, PURTNoKL exhibits clear cluster characteristics; most of the nodes have a 2-core value, and the CPDs of the centrality's closeness and betweenness follow a normal distribution function and an exponential distribution, respectively. Finally, we discuss four different types of network growth styles and the line extension process, which reveal that the rail network's growth is likely based on the nodes with the biggest lengths of the shortest path and that network protection should emphasize those nodes with the largest degrees and the highest betweenness values. This research may enhance the networkability of the rail system and better shape the future growth of public rail networks.

  20. Network-based stochastic competitive learning approach to disambiguation in collaborative networks.

    PubMed

    Christiano Silva, Thiago; Raphael Amancio, Diego

    2013-03-01

    Many patterns have been uncovered in complex systems through the application of concepts and methodologies of complex networks. Unfortunately, the validity and accuracy of the unveiled patterns are strongly dependent on the amount of unavoidable noise pervading the data, such as the presence of homonymous individuals in social networks. In the current paper, we investigate the problem of name disambiguation in collaborative networks, a task that plays a fundamental role on a myriad of scientific contexts. In special, we use an unsupervised technique which relies on a particle competition mechanism in a networked environment to detect the clusters. It has been shown that, in this kind of environment, the learning process can be improved because the network representation of data can capture topological features of the input data set. Specifically, in the proposed disambiguating model, a set of particles is randomly spawned into the nodes constituting the network. As time progresses, the particles employ a movement strategy composed of a probabilistic convex mixture of random and preferential walking policies. In the former, the walking rule exclusively depends on the topology of the network and is responsible for the exploratory behavior of the particles. In the latter, the walking rule depends both on the topology and the domination levels that the particles impose on the neighboring nodes. This type of behavior compels the particles to perform a defensive strategy, because it will force them to revisit nodes that are already dominated by them, rather than exploring rival territories. Computer simulations conducted on the networks extracted from the arXiv repository of preprint papers and also from other databases reveal the effectiveness of the model, which turned out to be more accurate than traditional clustering methods.

  1. Network-based stochastic competitive learning approach to disambiguation in collaborative networks

    NASA Astrophysics Data System (ADS)

    Christiano Silva, Thiago; Raphael Amancio, Diego

    2013-03-01

    Many patterns have been uncovered in complex systems through the application of concepts and methodologies of complex networks. Unfortunately, the validity and accuracy of the unveiled patterns are strongly dependent on the amount of unavoidable noise pervading the data, such as the presence of homonymous individuals in social networks. In the current paper, we investigate the problem of name disambiguation in collaborative networks, a task that plays a fundamental role on a myriad of scientific contexts. In special, we use an unsupervised technique which relies on a particle competition mechanism in a networked environment to detect the clusters. It has been shown that, in this kind of environment, the learning process can be improved because the network representation of data can capture topological features of the input data set. Specifically, in the proposed disambiguating model, a set of particles is randomly spawned into the nodes constituting the network. As time progresses, the particles employ a movement strategy composed of a probabilistic convex mixture of random and preferential walking policies. In the former, the walking rule exclusively depends on the topology of the network and is responsible for the exploratory behavior of the particles. In the latter, the walking rule depends both on the topology and the domination levels that the particles impose on the neighboring nodes. This type of behavior compels the particles to perform a defensive strategy, because it will force them to revisit nodes that are already dominated by them, rather than exploring rival territories. Computer simulations conducted on the networks extracted from the arXiv repository of preprint papers and also from other databases reveal the effectiveness of the model, which turned out to be more accurate than traditional clustering methods.

  2. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2015-07-31

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Broadband network selection issues

    NASA Astrophysics Data System (ADS)

    Leimer, Michael E.

    1996-01-01

    Selecting the best network for a given cable or telephone company provider is not as obvious as it appears. The cost and performance trades between Hybrid Fiber Coax (HFC), Fiber to the Curb (FTTC) and Asymmetric Digital Subscriber Line networks lead to very different choices based on the existing plant and the expected interactive subscriber usage model. This paper presents some of the issues and trades that drive network selection. The majority of the Interactive Television trials currently underway or planned are based on HFC networks. As a throw away market trial or a short term strategic incursion into a cable market, HFC may make sense. In the long run, if interactive services see high demand, HFC costs per node and an ever shrinking neighborhood node size to service large numbers of subscribers make FTTC appear attractive. For example, thirty-three 64-QAM modulators are required to fill the 550 MHz to 750 MHz spectrum with compressed video streams in 6 MHz channels. This large amount of hardware at each node drives not only initial build-out costs, but operations and maintenance costs as well. FTTC, with its potential for digitally switching large amounts of bandwidth to an given home, offers the potential to grow with the interactive subscriber base with less downstream cost. Integrated telephony on these networks is an issue that appears to be an afterthought for most of the networks being selected at the present time. The major players seem to be videocentric and include telephony as a simple add-on later. This may be a reasonable view point for the telephone companies that plan to leave their existing phone networks untouched. However, a phone company planning a network upgrade or a cable company jumping into the telephony business needs to carefully weigh the cost and performance issues of the various network choices. Each network type provides varying capability in both upstream and downstream bandwidth for voice channels. The noise characteristics

  4. Detecting trends in academic research from a citation network using network representation learning

    PubMed Central

    Mori, Junichiro; Ochi, Masanao; Sakata, Ichiro

    2018-01-01

    Several network features and information retrieval methods have been proposed to elucidate the structure of citation networks and to detect important nodes. However, it is difficult to retrieve information related to trends in an academic field and to detect cutting-edge areas from the citation network. In this paper, we propose a novel framework that detects the trend as the growth direction of a citation network using network representation learning(NRL). We presume that the linear growth of citation network in latent space obtained by NRL is the result of the iterative edge additional process of a citation network. On APS datasets and papers of some domains of the Web of Science, we confirm the existence of trends by observing that an academic field grows in a specific direction linearly in latent space. Next, we calculate each node’s degree of trend-following as an indicator called the intrinsic publication year (IPY). As a result, there is a correlation between the indicator and the number of future citations. Furthermore, a word frequently used in the abstracts of cutting-edge papers (high-IPY paper) is likely to be used often in future publications. These results confirm the validity of the detected trend for predicting citation network growth. PMID:29782521

  5. Network analysis applications in hydrology

    NASA Astrophysics Data System (ADS)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  6. Network-Based Management Procedures.

    ERIC Educational Resources Information Center

    Buckner, Allen L.

    Network-based management procedures serve as valuable aids in organizational management, achievement of objectives, problem solving, and decisionmaking. Network techniques especially applicable to educational management systems are the program evaluation and review technique (PERT) and the critical path method (CPM). Other network charting…

  7. The Laplacian spectrum of neural networks

    PubMed Central

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  8. Distributed Telescope Networks in the Era of Network-Centric Astronomy

    NASA Astrophysics Data System (ADS)

    Solomos, N. H.

    2010-07-01

    In parallel with the world-wide demand for pushing our observational limits (increasingly larger telescope collecting power (ELTs) on the ground, most advanced technology satellites in space), we nowadays realize rapid rising of interest for the construction and deployment of a technologically advanced meta-network or Heterogeneous Telescope Network (hereafter HTN). The HTN is a Network of networks of telescopes and each node of it, consists of an inhomogeneous ensemble of different telescopes, sharing one common feature: the incorporation of a high degree of automation. The rationale behind this new tool, is that crucial astrophysical problems could be tackled very soon from the world-wide spread variety of well equipped autonomous telescopes working as a single instrument. In the full version of this paper, the research potential and future prospects of worldwide networked telescopic systems, is reviewed in the framework of current progress in Astrophysics. It is concluded that the research horizons of HTNs are very broad and the associated technology is currently in a maturity level that permits deployment. An extended interoperability-establishment initiative, involving telescopes of both hemispheres, based on accepted standards, appears a matter of priority. Observatories with infrastructure -of any size-, maintaining computerized telescope facilities, could respond to the challenge, devote part of their resources to the HTN and, in return, receive the rewards of shared resources, observing flexibility, optimized observing performance and the very high observing efficiency of a telescopic meta-network in facilitating competitive front line research.

  9. NASA Communications Augmentation network

    NASA Technical Reports Server (NTRS)

    Omidyar, Guy C.; Butler, Thomas E.; Laios, Straton C.

    1990-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate (MO&DSD) is to undertake a major initiative to develop the Nascom Augmentation (NAUG) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System (EOS), and other projects. The NAUG is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The NAUG network development will be based on the Open Systems Interconnection Reference Model (OSI-RM). This paper describes the NAUG network architecture, subsystems, topology, and services; addresses issues of internetworking the Nascom network with other elements of the Space Station Information System (SSIS); discusses the operations environment. This paper also notes the areas of related research and presents the current conception of how the network will provide broadband services in 1998.

  10. Theorizing Network-Centric Activity in Education

    ERIC Educational Resources Information Center

    HaLevi, Andrew

    2011-01-01

    Networks and network-centric activity are increasingly prevalent in schools and school districts. In addition to ubiquitous social network tools like Facebook and Twitter, educational leaders deal with a wide variety of network organizational forms that include professional development, advocacy, informational networks and network-centric reforms.…

  11. Why do Scale-Free Networks Emerge in Nature? From Gradient Networks to Transport Efficiency

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltan

    2004-03-01

    It has recently been recognized [1,2,3] that a large number of complex networks are scale-free (having a power-law degree distribution). Examples include citation networks [4], the internet [5], the world-wide-web [6], cellular metabolic networks [7], protein interaction networks [8], the sex-web [9] and alliance networks in the U.S. biotechnology industry [10]. The existence of scale-free networks in such diverse systems suggests that there is a simple underlying common reason for their development. Here, we propose that scale-free networks emerge because they ensure efficient transport of some entity. We show that for flows generated by gradients of a scalar "potential'' distributed on a network, non scale-free networks, e.g., random graphs [11], will become maximally congested, while scale-free networks will ensure efficient transport in the large network size limit. [1] R. Albert and A.-L. Barabási, Rev.Mod.Phys. 74, 47 (2002). [2] M.E.J. Newman, SIAM Rev. 45, 167 (2003). [3] S.N. Dorogovtsev and J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford Univ. Press, Oxford, 2003. [4] S. Redner, Eur.Phys.J. B, 4, 131 (1998). [5] M. Faloutsos, P. Faloutsos and C. Faloutsos Comp.Comm.Rev. 29, 251 (1999). [6] R. Albert, H. Jeong, and A.L. Barabási, Nature 401, 130 (1999). [7] H. Jeong et.al. Nature 407, 651 (2000). [8] H. Jeong, S. Mason, A.-L. Barabási and Z. N. Oltvai, Nature 411, 41 (2001). [9] F. Liljeros et. al. Nature 411 907 (2000). [10] W. W. Powell, D. R. White, K. W. Koput and J. Owen-Smith Am.J.Soc. in press. [11] B. Bollobás, Random Graphs, Second Edition, Cambridge University Press (2001).

  12. Impact of Network Activity Levels on the Performance of Passive Network Service Dependency Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Thomas E.; Chikkagoudar, Satish; Arthur-Durett, Kristine M.

    Network services often do not operate alone, but instead, depend on other services distributed throughout a network to correctly function. If a service fails, is disrupted, or degraded, it is likely to impair other services. The web of dependencies can be surprisingly complex---especially within a large enterprise network---and evolve with time. Acquiring, maintaining, and understanding dependency knowledge is critical for many network management and cyber defense activities. While automation can improve situation awareness for network operators and cyber practitioners, poor detection accuracy reduces their confidence and can complicate their roles. In this paper we rigorously study the effects of networkmore » activity levels on the detection accuracy of passive network-based service dependency discovery methods. The accuracy of all except for one method was inversely proportional to network activity levels. Our proposed cross correlation method was particularly robust to the influence of network activity. The proposed experimental treatment will further advance a more scientific evaluation of methods and provide the ability to determine their operational boundaries.« less

  13. SAMO (Sistema de Apoyo Mechanizado a la Operacion): An operational aids computer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stormer, T.D.; Laflor, E.V.

    1989-01-01

    SAMO (Sistema de Apoyo Mechanizado a la Operacion) is a sensor-driven, computer-based, graphic display system designed by Westinghouse to aid the A. N. Asco operations staff during all modes of plant operations, including emergencies. The SAMO system is being implemented in the A. N. Asco plant in two phases that coincide with consecutive refueling outages for each of two nuclear units at the Asco site. Phase 1 of the SAMO system implements the following functions: (1) emergency operational aids, (2) postaccident monitoring, (3) plant graphics display, (4) high-speed transient analysis recording, (5) historical data collection, storage, and retrieval, (6) sequencemore » of events, and (7) posttrip review. During phase 2 of the SAMO project, the current plant computer will be removed and the functions now performed by the plant computer will be performed by the SAMO system. In addition, the following functions will be implemented: (1) normal and simple transients operational aid, (2) plant information graphics; and (3) real-time radiological off-site dose calculation.« less

  14. Characterization of essential proteins based on network topology in proteins interaction networks

    NASA Astrophysics Data System (ADS)

    Bakar, Sakhinah Abu; Taheri, Javid; Zomaya, Albert Y.

    2014-06-01

    The identification of essential proteins is theoretically and practically important as (1) it is essential to understand the minimal surviving requirements for cellular lives, and (2) it provides fundamental for development of drug. As conducting experimental studies to identify essential proteins are both time and resource consuming, here we present a computational approach in predicting them based on network topology properties from protein-protein interaction networks of Saccharomyces cerevisiae. The proposed method, namely EP3NN (Essential Proteins Prediction using Probabilistic Neural Network) employed a machine learning algorithm called Probabilistic Neural Network as a classifier to identify essential proteins of the organism of interest; it uses degree centrality, closeness centrality, local assortativity and local clustering coefficient of each protein in the network for such predictions. Results show that EP3NN managed to successfully predict essential proteins with an accuracy of 95% for our studied organism. Results also show that most of the essential proteins are close to other proteins, have assortativity behavior and form clusters/sub-graph in the network.

  15. Networks in cognitive science.

    PubMed

    Baronchelli, Andrea; Ferrer-i-Cancho, Ramon; Pastor-Satorras, Romualdo; Chater, Nick; Christiansen, Morten H

    2013-07-01

    Networks of interconnected nodes have long played a key role in Cognitive Science, from artificial neural networks to spreading activation models of semantic memory. Recently, however, a new Network Science has been developed, providing insights into the emergence of global, system-scale properties in contexts as diverse as the Internet, metabolic reactions, and collaborations among scientists. Today, the inclusion of network theory into Cognitive Sciences, and the expansion of complex-systems science, promises to significantly change the way in which the organization and dynamics of cognitive and behavioral processes are understood. In this paper, we review recent contributions of network theory at different levels and domains within the Cognitive Sciences. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Computer Network Security- The Challenges of Securing a Computer Network

    NASA Technical Reports Server (NTRS)

    Scotti, Vincent, Jr.

    2011-01-01

    This article is intended to give the reader an overall perspective on what it takes to design, implement, enforce and secure a computer network in the federal and corporate world to insure the confidentiality, integrity and availability of information. While we will be giving you an overview of network design and security, this article will concentrate on the technology and human factors of securing a network and the challenges faced by those doing so. It will cover the large number of policies and the limits of technology and physical efforts to enforce such policies.

  17. Experimental high-speed network

    NASA Astrophysics Data System (ADS)

    McNeill, Kevin M.; Klein, William P.; Vercillo, Richard; Alsafadi, Yasser H.; Parra, Miguel V.; Dallas, William J.

    1993-09-01

    Many existing local area networking protocols currently applied in medical imaging were originally designed for relatively low-speed, low-volume networking. These protocols utilize small packet sizes appropriate for text based communication. Local area networks of this type typically provide raw bandwidth under 125 MHz. These older network technologies are not optimized for the low delay, high data traffic environment of a totally digital radiology department. Some current implementations use point-to-point links when greater bandwidth is required. However, the use of point-to-point communications for a total digital radiology department network presents many disadvantages. This paper describes work on an experimental multi-access local area network called XFT. The work includes the protocol specification, and the design and implementation of network interface hardware and software. The protocol specifies the Physical and Data Link layers (OSI layers 1 & 2) for a fiber-optic based token ring providing a raw bandwidth of 500 MHz. The protocol design and implementation of the XFT interface hardware includes many features to optimize image transfer and provide flexibility for additional future enhancements which include: a modular hardware design supporting easy portability to a variety of host system buses, a versatile message buffer design providing 16 MB of memory, and the capability to extend the raw bandwidth of the network to 3.0 GHz.

  18. Robustness and structure of complex networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai

    This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks

  19. Flow networks for Ocean currents

    NASA Astrophysics Data System (ADS)

    Tupikina, Liubov; Molkenthin, Nora; Marwan, Norbert; Kurths, Jürgen

    2014-05-01

    Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e., by its high computational complexity, we here introduce a new, discrete construction of flow-networks, which is then applied to static and dynamic velocity fields. Analyzing the flow-networks of prototypical flows we find that our approach can highlight the zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. We also apply the method to time series data of the Equatorial Pacific Ocean Current and the Gulf Stream ocean current for the changing velocity fields, which could not been done before, and analyse the properties of the dynamical system. Flow-networks can be powerful tools to theoretically understand the step from system's dynamics to network's topology that can be analyzed using network measures and is used for shading light on different climatic phenomena.

  20. Contemporary Network Proteomics and Its Requirements

    PubMed Central

    Goh, Wilson Wen Bin; Wong, Limsoon; Sng, Judy Chia Ghee

    2013-01-01

    The integration of networks with genomics (network genomics) is a familiar field. Conventional network analysis takes advantage of the larger coverage and relative stability of gene expression measurements. Network proteomics on the other hand has to develop further on two critical factors: (1) expanded data coverage and consistency, and (2) suitable reference network libraries, and data mining from them. Concerning (1) we discuss several contemporary themes that can improve data quality, which in turn will boost the outcome of downstream network analysis. For (2), we focus on network analysis developments, specifically, the need for context-specific networks and essential considerations for localized network analysis. PMID:24833333