Revealing how network structure affects accuracy of link prediction
NASA Astrophysics Data System (ADS)
Yang, Jin-Xuan; Zhang, Xiao-Dong
2017-08-01
Link prediction plays an important role in network reconstruction and network evolution. The network structure affects the accuracy of link prediction, which is an interesting problem. In this paper we use common neighbors and the Gini coefficient to reveal the relation between them, which can provide a good reference for the choice of a suitable link prediction algorithm according to the network structure. Moreover, the statistical analysis reveals correlation between the common neighbors index, Gini coefficient index and other indices to describe the network structure, such as Laplacian eigenvalues, clustering coefficient, degree heterogeneity, and assortativity of network. Furthermore, a new method to predict missing links is proposed. The experimental results show that the proposed algorithm yields better prediction accuracy and robustness to the network structure than existing currently used methods for a variety of real-world networks.
NASA Astrophysics Data System (ADS)
Yashima, Kenta; Ito, Kana; Nakamura, Kazuyuki
2013-03-01
When an Infectious disease where to prevail throughout the population, epidemic parameters such as the basic reproduction ratio, initial point of infection etc. are estimated from the time series data of infected population. However, it is unclear how does the structure of host population affects this estimation accuracy. In other words, what kind of city is difficult to estimate its epidemic parameters? To answer this question, epidemic data are simulated by constructing a commuting network with different network structure and running the infection process over this network. From the given time series data for each network structure, we would like to analyzed estimation accuracy of epidemic parameters.
Dynamics and control of diseases in networks with community structure.
Salathé, Marcel; Jones, James H
2010-04-08
The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.
Solomon-Lane, Tessa K.; Pradhan, Devaleena S.; Willis, Madelyne C.; Grober, Matthew S.
2015-01-01
While individual variation in social behaviour is ubiquitous and causes social groups to differ in structure, how these structural differences affect fitness remains largely unknown. We used social network analysis of replicate bluebanded goby (Lythrypnus dalli) harems to identify the reproductive correlates of social network structure. In stable groups, we quantified agonistic behaviour, reproduction and steroid hormones, which can both affect and respond to social/reproductive cues. We identified distinct, optimal social structures associated with different reproductive measures. Male hatching success (HS) was negatively associated with agonistic reciprocity, a network structure that describes whether subordinates ‘reciprocated’ agonism received from dominants. Egg laying was associated with the individual network positions of the male and dominant female. Thus, males face a trade-off between promoting structures that facilitate egg laying versus HS. Whether this reproductive conflict is avoidable remains to be determined. We also identified different social and/or reproductive roles for 11-ketotestosterone, 17β-oestradiol and cortisol, suggesting that specific neuroendocrine mechanisms may underlie connections between network structure and fitness. This is one of the first investigations of the reproductive and neuroendocrine correlates of social behaviour and network structure in replicate, naturalistic social groups and supports network structure as an important target for natural selection. PMID:26156769
The evolutionary and ecological consequences of animal social networks: emerging issues.
Kurvers, Ralf H J M; Krause, Jens; Croft, Darren P; Wilson, Alexander D M; Wolf, Max
2014-06-01
The first generation of research on animal social networks was primarily aimed at introducing the concept of social networks to the fields of animal behaviour and behavioural ecology. More recently, a diverse body of evidence has shown that social fine structure matters on a broader scale than initially expected, affecting many key ecological and evolutionary processes. Here, we review this development. We discuss the effects of social network structure on evolutionary dynamics (genetic drift, fixation probabilities, and frequency-dependent selection) and social evolution (cooperation and between-individual behavioural differences). We discuss how social network structure can affect important coevolutionary processes (host-pathogen interactions and mutualisms) and population stability. We also discuss the potentially important, but poorly studied, role of social network structure on dispersal and invasion. Throughout, we highlight important areas for future research. Copyright © 2014 Elsevier Ltd. All rights reserved.
Parra, Diana C; Dauti, Marsela; Harris, Jenine K; Reyes, Lissette; Malta, Deborah C; Brownson, Ross C; Quintero, Mario A; Pratt, Michael
2011-11-01
The objective of this study was to describe the network structure and factors associated with collaboration in two networks that promote physical activity (PA) in Brazil and Colombia. Organizations that focus on studying and promoting PA in Brazil (35) and Colombia (53) were identified using a modified one-step reputational snowball sampling process. Participants completed an on-line survey between December 2008 and March 2009 for the Brazil network, and between April and June 2009 for the Colombia network. Network stochastic modeling was used to investigate the likelihood of reported inter-organizational collaboration. While structural features of networks were significant predictors of collaboration within each network, the coefficients and other network characteristics differed. Brazil's PA network was decentralized with a larger number of shared partnerships. Colombia's PA network was centralized and collaboration was influenced by perceived importance of peer organizations. On average, organizations in the PA network of Colombia reported facing more barriers (1.5 vs. 2.5 barriers) for collaboration. Future studies should focus on how these different network structures affect the implementation and uptake of evidence-based PA interventions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Pires, Mathias M; Galetti, Mauro; Donatti, Camila I; Pizo, Marco A; Dirzo, Rodolfo; Guimarães, Paulo R
2014-08-01
The late Quaternary megafaunal extinction impacted ecological communities worldwide, and affected key ecological processes such as seed dispersal. The traits of several species of large-seeded plants are thought to have evolved in response to interactions with extinct megafauna, but how these extinctions affected the organization of interactions in seed-dispersal systems is poorly understood. Here, we combined ecological and paleontological data and network analyses to investigate how the structure of a species-rich seed-dispersal network could have changed from the Pleistocene to the present and examine the possible consequences of such changes. Our results indicate that the seed-dispersal network was organized into modules across the different time periods but has been reconfigured in different ways over time. The episode of megafaunal extinction and the arrival of humans changed how seed dispersers were distributed among network modules. However, the recent introduction of livestock into the seed-dispersal system partially restored the original network organization by strengthening the modular configuration. Moreover, after megafaunal extinctions, introduced species and some smaller native mammals became key components for the structure of the seed-dispersal network. We hypothesize that such changes in network structure affected both animal and plant assemblages, potentially contributing to the shaping of modern ecological communities. The ongoing extinction of key large vertebrates will lead to a variety of context-dependent rearranged ecological networks, most certainly affecting ecological and evolutionary processes.
Simulating synchronization in neuronal networks
NASA Astrophysics Data System (ADS)
Fink, Christian G.
2016-06-01
We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.
The effect of excluding juveniles on apparent adult olive baboons (Papio anubis) social networks
Fedurek, Piotr; Lehmann, Julia
2017-01-01
In recent years there has been much interest in investigating the social structure of group living animals using social network analysis. Many studies so far have focused on the social networks of adults, often excluding younger, immature group members. This potentially may lead to a biased view of group social structure as multiple recent studies have shown that younger group members can significantly contribute to group structure. As proof of the concept, we address this issue by investigating social network structure with and without juveniles in wild olive baboons (Papio anubis) at Gashaka Gumti National Park, Nigeria. Two social networks including all independently moving individuals (i.e., excluding dependent juveniles) were created based on aggressive and grooming behaviour. We used knockout simulations based on the random removal of individuals from the network in order to investigate to what extent the exclusion of juveniles affects the resulting network structure and our interpretation of age-sex specific social roles. We found that juvenile social patterns differed from those of adults and that the exclusion of juveniles from the network significantly altered the resulting overall network structure. Moreover, the removal of juveniles from the network affected individuals in specific age-sex classes differently: for example, including juveniles in the grooming network increased network centrality of adult females while decreasing centrality of adult males. These results suggest that excluding juveniles from the analysis may not only result in a distorted picture of the overall social structure but also may mask some of the social roles of individuals belonging to different age-sex classes. PMID:28323851
The effect of excluding juveniles on apparent adult olive baboons (Papio anubis) social networks.
Fedurek, Piotr; Lehmann, Julia
2017-01-01
In recent years there has been much interest in investigating the social structure of group living animals using social network analysis. Many studies so far have focused on the social networks of adults, often excluding younger, immature group members. This potentially may lead to a biased view of group social structure as multiple recent studies have shown that younger group members can significantly contribute to group structure. As proof of the concept, we address this issue by investigating social network structure with and without juveniles in wild olive baboons (Papio anubis) at Gashaka Gumti National Park, Nigeria. Two social networks including all independently moving individuals (i.e., excluding dependent juveniles) were created based on aggressive and grooming behaviour. We used knockout simulations based on the random removal of individuals from the network in order to investigate to what extent the exclusion of juveniles affects the resulting network structure and our interpretation of age-sex specific social roles. We found that juvenile social patterns differed from those of adults and that the exclusion of juveniles from the network significantly altered the resulting overall network structure. Moreover, the removal of juveniles from the network affected individuals in specific age-sex classes differently: for example, including juveniles in the grooming network increased network centrality of adult females while decreasing centrality of adult males. These results suggest that excluding juveniles from the analysis may not only result in a distorted picture of the overall social structure but also may mask some of the social roles of individuals belonging to different age-sex classes.
Wong, N M L; Liu, H-L; Lin, C; Huang, C-M; Wai, Y-Y; Lee, S-H; Lee, T M C
2016-09-01
Late-life depression (LLD) in the elderly was reported to present with emotion dysregulation accompanied by high perceived loneliness. Previous research has suggested that LLD is a disorder of connectivity and is associated with aberrant network properties. On the other hand, perceived loneliness is found to adversely affect the brain, but little is known about its neurobiological basis in LLD. The current study investigated the relationships between the structural connectivity, functional connectivity during affective processing, and perceived loneliness in LLD. The current study included 54 participants aged >60 years of whom 31 were diagnosed with LLD. Diffusion tensor imaging (DTI) data and task-based functional magnetic resonance imaging (fMRI) data of an affective processing task were collected. Network-based statistics and graph theory techniques were applied, and the participants' perceived loneliness and depression level were measured. The affective processing task included viewing affective stimuli. Structurally, a loneliness-related sub-network was identified across all subjects. Functionally, perceived loneliness was related to connectivity differently in LLD than that in controls when they were processing negative stimuli, with aberrant networking in subcortical area. Perceived loneliness was identified to have a unique role in relation to the negative affective processing in LLD at the functional brain connectional and network levels. The findings increas our understanding of LLD and provide initial evidence of the neurobiological mechanisms of loneliness in LLD. Loneliness might be a potential intervention target in depressive patients.
Hyperconnectivity in juvenile myoclonic epilepsy: a network analysis.
Caeyenberghs, K; Powell, H W R; Thomas, R H; Brindley, L; Church, C; Evans, J; Muthukumaraswamy, S D; Jones, D K; Hamandi, K
2015-01-01
Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients.
Hyperconnectivity in juvenile myoclonic epilepsy: A network analysis
Caeyenberghs, K.; Powell, H.W.R.; Thomas, R.H.; Brindley, L.; Church, C.; Evans, J.; Muthukumaraswamy, S.D.; Jones, D.K.; Hamandi, K.
2014-01-01
Objective Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Methods Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Results Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Conclusions Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients. PMID:25610771
NASA Astrophysics Data System (ADS)
Rich, Scott; Zochowski, Michal; Booth, Victoria
2018-01-01
Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.
Networks in Political Science: Back to the Future
ERIC Educational Resources Information Center
Lazer, David
2011-01-01
What are the relational dimensions of politics? Does the way that people and organizations are connected to each other matter? Are our opinions affected by the people with whom we talk? Are legislators affected by lobbyists? Is the capacity of social movements to mobilize affected by the structure of societal networks? Powerful evidence in the…
Socio-Cognitive Phenotypes Differentially Modulate Large-Scale Structural Covariance Networks.
Valk, Sofie L; Bernhardt, Boris C; Böckler, Anne; Trautwein, Fynn-Mathis; Kanske, Philipp; Singer, Tania
2017-02-01
Functional neuroimaging studies have suggested the existence of 2 largely distinct social cognition networks, one for theory of mind (taking others' cognitive perspective) and another for empathy (sharing others' affective states). To address whether these networks can also be dissociated at the level of brain structure, we combined behavioral phenotyping across multiple socio-cognitive tasks with 3-Tesla MRI cortical thickness and structural covariance analysis in 270 healthy adults, recruited across 2 sites. Regional thickness mapping only provided partial support for divergent substrates, highlighting that individual differences in empathy relate to left insular-opercular thickness while no correlation between thickness and mentalizing scores was found. Conversely, structural covariance analysis showed clearly divergent network modulations by socio-cognitive and -affective phenotypes. Specifically, individual differences in theory of mind related to structural integration between temporo-parietal and dorsomedial prefrontal regions while empathy modulated the strength of dorsal anterior insula networks. Findings were robust across both recruitment sites, suggesting generalizability. At the level of structural network embedding, our study provides a double dissociation between empathy and mentalizing. Moreover, our findings suggest that structural substrates of higher-order social cognition are reflected rather in interregional networks than in the the local anatomical markup of specific regions per se. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Community Attachment and Satisfaction: The Role of a Community's Social Network Structure
ERIC Educational Resources Information Center
Crowe, Jessica
2010-01-01
This paper links the micro and macro levels of analysis by examining how different aspects of community sentiment are affected by one's personal ties to the community compared with the organizational network structure of the community. Using data collected from residents of six communities in Washington State, network analysis combined with…
Takemoto, Kazuhiro; Kajihara, Kosuke
2016-01-01
Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.
Bribery games on inter-dependent regular networks.
Verma, Prateek; Nandi, Anjan K; Sengupta, Supratim
2017-02-16
We examine a scenario of social conflict that is manifest during an interaction between government servants providing a service and citizens who are legally entitled to the service, using evolutionary game-theory in structured populations characterized by an inter-dependent network. Bribe-demands by government servants during such transactions, called harassment bribes, constitute a widespread form of corruption in many countries. We investigate the effect of varying bribe demand made by corrupt officials and the cost of complaining incurred by harassed citizens, on the proliferation of corrupt strategies in the population. We also examine how the connectivity of the various constituent networks affects the spread of corrupt officials in the population. We find that incidents of bribery can be considerably reduced in a network-structured populations compared to mixed populations. Interestingly, we also find that an optimal range for the connectivity of nodes in the citizen's network (signifying the degree of influence a citizen has in affecting the strategy of other citizens in the network) as well as the interaction network aids in the fixation of honest officers. Our results reveal the important role of network structure and connectivity in asymmetric games.
Community-level demographic consequences of urbanization: an ecological network approach.
Rodewald, Amanda D; Rohr, Rudolf P; Fortuna, Miguel A; Bascompte, Jordi
2014-11-01
Ecological networks are known to influence ecosystem attributes, but we poorly understand how interspecific network structure affect population demography of multiple species, particularly for vertebrates. Establishing the link between network structure and demography is at the crux of being able to use networks to understand population dynamics and to inform conservation. We addressed the critical but unanswered question, does network structure explain demographic consequences of urbanization? We studied 141 ecological networks representing interactions between plants and nesting birds in forests across an urbanization gradient in Ohio, USA, from 2001 to 2011. Nest predators were identified by video-recording nests and surveyed from 2004 to 2011. As landscapes urbanized, bird-plant networks were more nested, less compartmentalized and dominated by strong interactions between a few species (i.e. low evenness). Evenness of interaction strengths promoted avian nest survival, and evenness explained demography better than urbanization, level of invasion, numbers of predators or other qualitative network metrics. Highly uneven networks had approximately half the nesting success as the most even networks. Thus, nest survival reflected how urbanization altered species interactions, particularly with respect to how nest placement affected search efficiency of predators. The demographic effects of urbanization were not direct, but were filtered through bird-plant networks. This study illustrates how network structure can influence demography at the community level and further, that knowledge of species interactions and a network approach may be requisite to understanding demographic responses to environmental change. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Effect of edge pruning on structural controllability and observability of complex networks
Mengiste, Simachew Abebe; Aertsen, Ad; Kumar, Arvind
2015-01-01
Controllability and observability of complex systems are vital concepts in many fields of science. The network structure of the system plays a crucial role in determining its controllability and observability. Because most naturally occurring complex systems show dynamic changes in their network connectivity, it is important to understand how perturbations in the connectivity affect the controllability of the system. To this end, we studied the control structure of different types of artificial, social and biological neuronal networks (BNN) as their connections were progressively pruned using four different pruning strategies. We show that the BNNs are more similar to scale-free networks than to small-world networks, when comparing the robustness of their control structure to structural perturbations. We introduce a new graph descriptor, ‘the cardinality curve’, to quantify the robustness of the control structure of a network to progressive edge pruning. Knowing the susceptibility of control structures to different pruning methods could help design strategies to destroy the control structures of dangerous networks such as epidemic networks. On the other hand, it could help make useful networks more resistant to edge attacks. PMID:26674854
Controllability of Surface Water Networks
NASA Astrophysics Data System (ADS)
Riasi, M. Sadegh; Yeghiazarian, Lilit
2017-12-01
To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.
How the initial level of visibility and limited resource affect the evolution of cooperation
NASA Astrophysics Data System (ADS)
Han, Dun; Li, Dandan; Sun, Mei
2016-06-01
This work sheds important light on how the initial level of visibility and limited resource might affect the evolution of the players’ strategies under different network structure. We perform the prisoner’s dilemma game in the lattice network and the scale-free network, the simulation results indicate that the average density of death in lattice network decreases with the increases of the initial proportion of visibility. However, the contrary phenomenon is observed in the scale-free network. Further results reflect that the individuals’ payoff in lattice network is significantly larger than the one in the scale-free network. In the lattice network, the visibility individuals could earn much more than the invisibility one. However, the difference is not apparent in the scale-free network. We also find that a high Successful-Defection-Payoff (SDB) and a rich natural environment have relatively larger deleterious cooperation effects. A high SDB is beneficial to raising the level of visibility in the heterogeneous network, however, that has adverse visibility consequences in homogeneous network. Our result reveals that players are more likely to cooperate voluntarily under homogeneous network structure.
Synaptic Impairment and Robustness of Excitatory Neuronal Networks with Different Topologies
Mirzakhalili, Ehsan; Gourgou, Eleni; Booth, Victoria; Epureanu, Bogdan
2017-01-01
Synaptic deficiencies are a known hallmark of neurodegenerative diseases, but the diagnosis of impaired synapses on the cellular level is not an easy task. Nonetheless, changes in the system-level dynamics of neuronal networks with damaged synapses can be detected using techniques that do not require high spatial resolution. This paper investigates how the structure/topology of neuronal networks influences their dynamics when they suffer from synaptic loss. We study different neuronal network structures/topologies by specifying their degree distributions. The modes of the degree distribution can be used to construct networks that consist of rich clubs and resemble small world networks, as well. We define two dynamical metrics to compare the activity of networks with different structures: persistent activity (namely, the self-sustained activity of the network upon removal of the initial stimulus) and quality of activity (namely, percentage of neurons that participate in the persistent activity of the network). Our results show that synaptic loss affects the persistent activity of networks with bimodal degree distributions less than it affects random networks. The robustness of neuronal networks enhances when the distance between the modes of the degree distribution increases, suggesting that the rich clubs of networks with distinct modes keep the whole network active. In addition, a tradeoff is observed between the quality of activity and the persistent activity. For a range of distributions, both of these dynamical metrics are considerably high for networks with bimodal degree distribution compared to random networks. We also propose three different scenarios of synaptic impairment, which may correspond to different pathological or biological conditions. Regardless of the network structure/topology, results demonstrate that synaptic loss has more severe effects on the activity of the network when impairments are correlated with the activity of the neurons. PMID:28659765
Astegiano, Julia; Altermatt, Florian; Massol, François
2017-11-13
Species establish different interactions (e.g. antagonistic, mutualistic) with multiple species, forming multilayer ecological networks. Disentangling network co-structure in multilayer networks is crucial to predict how biodiversity loss may affect the persistence of multispecies assemblages. Existing methods to analyse multilayer networks often fail to consider network co-structure. We present a new method to evaluate the modular co-structure of multilayer networks through the assessment of species degree co-distribution and network module composition. We focus on modular structure because of its high prevalence among ecological networks. We apply our method to two Lepidoptera-plant networks, one describing caterpillar-plant herbivory interactions and one representing adult Lepidoptera nectaring on flowers, thereby possibly pollinating them. More than 50% of the species established either herbivory or visitation interactions, but not both. These species were over-represented among plants and lepidopterans, and were present in most modules in both networks. Similarity in module composition between networks was high but not different from random expectations. Our method clearly delineates the importance of interpreting multilayer module composition similarity in the light of the constraints imposed by network structure to predict the potential indirect effects of species loss through interconnected modular networks.
Bribery games on inter-dependent regular networks
NASA Astrophysics Data System (ADS)
Verma, Prateek; Nandi, Anjan K.; Sengupta, Supratim
2017-02-01
We examine a scenario of social conflict that is manifest during an interaction between government servants providing a service and citizens who are legally entitled to the service, using evolutionary game-theory in structured populations characterized by an inter-dependent network. Bribe-demands by government servants during such transactions, called harassment bribes, constitute a widespread form of corruption in many countries. We investigate the effect of varying bribe demand made by corrupt officials and the cost of complaining incurred by harassed citizens, on the proliferation of corrupt strategies in the population. We also examine how the connectivity of the various constituent networks affects the spread of corrupt officials in the population. We find that incidents of bribery can be considerably reduced in a network-structured populations compared to mixed populations. Interestingly, we also find that an optimal range for the connectivity of nodes in the citizen’s network (signifying the degree of influence a citizen has in affecting the strategy of other citizens in the network) as well as the interaction network aids in the fixation of honest officers. Our results reveal the important role of network structure and connectivity in asymmetric games.
Bribery games on inter-dependent regular networks
Verma, Prateek; Nandi, Anjan K.; Sengupta, Supratim
2017-01-01
We examine a scenario of social conflict that is manifest during an interaction between government servants providing a service and citizens who are legally entitled to the service, using evolutionary game-theory in structured populations characterized by an inter-dependent network. Bribe-demands by government servants during such transactions, called harassment bribes, constitute a widespread form of corruption in many countries. We investigate the effect of varying bribe demand made by corrupt officials and the cost of complaining incurred by harassed citizens, on the proliferation of corrupt strategies in the population. We also examine how the connectivity of the various constituent networks affects the spread of corrupt officials in the population. We find that incidents of bribery can be considerably reduced in a network-structured populations compared to mixed populations. Interestingly, we also find that an optimal range for the connectivity of nodes in the citizen’s network (signifying the degree of influence a citizen has in affecting the strategy of other citizens in the network) as well as the interaction network aids in the fixation of honest officers. Our results reveal the important role of network structure and connectivity in asymmetric games. PMID:28205644
Optimal topologies for maximizing network transmission capacity
NASA Astrophysics Data System (ADS)
Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.
2018-04-01
It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.
Robust Learning of High-dimensional Biological Networks with Bayesian Networks
NASA Astrophysics Data System (ADS)
Nägele, Andreas; Dejori, Mathäus; Stetter, Martin
Structure learning of Bayesian networks applied to gene expression data has become a potentially useful method to estimate interactions between genes. However, the NP-hardness of Bayesian network structure learning renders the reconstruction of the full genetic network with thousands of genes unfeasible. Consequently, the maximal network size is usually restricted dramatically to a small set of genes (corresponding with variables in the Bayesian network). Although this feature reduction step makes structure learning computationally tractable, on the downside, the learned structure might be adversely affected due to the introduction of missing genes. Additionally, gene expression data are usually very sparse with respect to the number of samples, i.e., the number of genes is much greater than the number of different observations. Given these problems, learning robust network features from microarray data is a challenging task. This chapter presents several approaches tackling the robustness issue in order to obtain a more reliable estimation of learned network features.
The Missing Part of Seed Dispersal Networks: Structure and Robustness of Bat-Fruit Interactions
Mello, Marco Aurelio Ribeiro; Marquitti, Flávia Maria Darcie; Guimarães, Paulo Roberto; Kalko, Elisabeth Klara Viktoria; Jordano, Pedro; de Aguiar, Marcus Aloizio Martinez
2011-01-01
Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks. It is known from population studies that: (i) some bat species depend more on fruits than others, and (ii) that some specialized frugivorous bats prefer particular plant genera. We tested whether those preferences affected the structure and robustness of the whole network and the functional roles of species. Nine bat-fruit datasets from the literature were analyzed and all networks showed lower complementary specialization (H2' = 0.37±0.10, mean ± SD) and similar nestedness (NODF = 0.56±0.12) than pollination networks. All networks were modular (M = 0.32±0.07), and had on average four cohesive subgroups (modules) of tightly connected bats and plants. The composition of those modules followed the genus-genus associations observed at population level (Artibeus-Ficus, Carollia-Piper, and Sturnira-Solanum), although a few of those plant genera were dispersed also by other bats. Bat-fruit networks showed high robustness to simulated cumulative removals of both bats (R = 0.55±0.10) and plants (R = 0.68±0.09). Primary frugivores interacted with a larger proportion of the plants available and also occupied more central positions; furthermore, their extinction caused larger changes in network structure. We conclude that bat-fruit networks are highly cohesive and robust mutualistic systems, in which redundancy is high within modules, although modules are complementary to each other. Dietary specialization seems to be an important structuring factor that affects the topology, the guild structure and functional roles in bat-fruit networks. PMID:21386981
The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions.
Mello, Marco Aurelio Ribeiro; Marquitti, Flávia Maria Darcie; Guimarães, Paulo Roberto; Kalko, Elisabeth Klara Viktoria; Jordano, Pedro; de Aguiar, Marcus Aloizio Martinez
2011-02-28
Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks. It is known from population studies that: (i) some bat species depend more on fruits than others, and (ii) that some specialized frugivorous bats prefer particular plant genera. We tested whether those preferences affected the structure and robustness of the whole network and the functional roles of species. Nine bat-fruit datasets from the literature were analyzed and all networks showed lower complementary specialization (H(2)' = 0.37±0.10, mean ± SD) and similar nestedness (NODF = 0.56±0.12) than pollination networks. All networks were modular (M = 0.32±0.07), and had on average four cohesive subgroups (modules) of tightly connected bats and plants. The composition of those modules followed the genus-genus associations observed at population level (Artibeus-Ficus, Carollia-Piper, and Sturnira-Solanum), although a few of those plant genera were dispersed also by other bats. Bat-fruit networks showed high robustness to simulated cumulative removals of both bats (R = 0.55±0.10) and plants (R = 0.68±0.09). Primary frugivores interacted with a larger proportion of the plants available and also occupied more central positions; furthermore, their extinction caused larger changes in network structure. We conclude that bat-fruit networks are highly cohesive and robust mutualistic systems, in which redundancy is high within modules, although modules are complementary to each other. Dietary specialization seems to be an important structuring factor that affects the topology, the guild structure and functional roles in bat-fruit networks.
Impact of environmental inputs on reverse-engineering approach to network structures.
Wu, Jianhua; Sinfield, James L; Buchanan-Wollaston, Vicky; Feng, Jianfeng
2009-12-04
Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs. With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. We first represent the environmental inputs by a harmonic oscillator and combine them with Granger causality to identify environmental inputs and then uncover the causal network structures. We also generalize it to multiple harmonic oscillators to represent various exogenous influences. This system approach is extensively tested with toy models and successfully applied to a real biological network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The aim is to identify those genes that are directly affected by the presence of the sunlight and uncover the interactive network structures associating with flowering metabolism. We demonstrate that environmental inputs are crucial for correctly inferring network structures. Harmonic causal method is proved to be a powerful technique to detect environment inputs and uncover network structures, especially when the biological data exhibit periodic oscillations.
Optimization of controllability and robustness of complex networks by edge directionality
NASA Astrophysics Data System (ADS)
Liang, Man; Jin, Suoqin; Wang, Dingjie; Zou, Xiufen
2016-09-01
Recently, controllability of complex networks has attracted enormous attention in various fields of science and engineering. How to optimize structural controllability has also become a significant issue. Previous studies have shown that an appropriate directional assignment can improve structural controllability; however, the evolution of the structural controllability of complex networks under attacks and cascading has always been ignored. To address this problem, this study proposes a new edge orientation method (NEOM) based on residual degree that changes the link direction while conserving topology and directionality. By comparing the results with those of previous methods in two random graph models and several realistic networks, our proposed approach is demonstrated to be an effective and competitive method for improving the structural controllability of complex networks. Moreover, numerical simulations show that our method is near-optimal in optimizing structural controllability. Strikingly, compared to the original network, our method maintains the structural controllability of the network under attacks and cascading, indicating that the NEOM can also enhance the robustness of controllability of networks. These results alter the view of the nature of controllability in complex networks, change the understanding of structural controllability and affect the design of network models to control such networks.
The Evolution of the Personal Networks of Novice Librarian Researchers
ERIC Educational Resources Information Center
Kennedy, Marie R.; Kennedy, David P.; Brancolini, Kristine R.
2017-01-01
This article describes for the first time the composition and structure of the personal networks of novice librarian researchers. We used social network analysis to observe if participating in the Institute for Research Design in Librarianship (IRDL) affected the development of the librarians' personal networks and how the networks changed over…
Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro
NASA Astrophysics Data System (ADS)
Shin, J. H.; Gardel, M. L.; Mahadevan, L.; Matsudaira, P.; Weitz, D. A.
2004-06-01
The organization of individual actin filaments into higher-order structures is controlled by actin-binding proteins (ABPs). Although the biological significance of the ABPs is well documented, little is known about how bundling and cross-linking quantitatively affect the microstructure and mechanical properties of actin networks. Here we quantify the effect of the ABP scruin on actin networks by using imaging techniques, cosedimentation assays, multiparticle tracking, and bulk rheology. We show how the structure of the actin network is modified as the scruin concentration is varied, and we correlate these structural changes to variations in the resultant network elasticity.
Navigability of multiplex temporal network
NASA Astrophysics Data System (ADS)
Wang, Yan; Song, Qiao-Zhen
2017-01-01
Real world complex systems have multiple levels of relationships and in many cases, they need to be modeled as multiplex networks where the same nodes can interact with each other in different layers, such as social networks. However, social relationships only appear at prescribed times so the temporal structures of edge activations can also affect the dynamical processes located above them. To consider both factors are simultaneously, we introduce multiplex temporal networks and propose three different walk strategies to investigate the concurrent dynamics of random walks and the temporal structure of multiplex networks. Thus, we derive analytical results for the multiplex centrality and coverage function in multiplex temporal networks. By comparing them with the numerical results, we show how the underlying topology of the layers and the walk strategy affect the efficiency when exploring the networks. In particular, the most interesting result is the emergence of a super-diffusion process, where the time scale of the multiplex is faster than that of both layers acting separately.
NASA Astrophysics Data System (ADS)
Martínez, Darwin; Mahalingam, Jamuna J.; Soddu, Andrea; Franco, Hugo; Lepore, Natasha; Laureys, Steven; Gómez, Francisco
2015-01-01
Disorders of consciousness (DOC) are a consequence of a variety of severe brain injuries. DOC commonly results in anatomical brain modifications, which can affect cortical and sub-cortical brain structures. Postmortem studies suggest that severity of brain damage correlates with level of impairment in DOC. In-vivo studies in neuroimaging mainly focus in alterations on single structures. Recent evidence suggests that rather than one, multiple brain regions can be simultaneously affected by this condition. In other words, DOC may be linked to an underlying cerebral network of structural damage. Recently, geometrical spatial relationships among key sub-cortical brain regions, such as left and right thalamus and brain stem, have been used for the characterization of this network. This approach is strongly supported on automatic segmentation processes, which aim to extract regions of interests without human intervention. Nevertheless, patients with DOC usually present massive structural brain changes. Therefore, segmentation methods may highly influence the characterization of the underlying cerebral network structure. In this work, we evaluate the level of characterization obtained by using the spatial relationships as descriptor of a sub-cortical cerebral network (left and right thalamus) in patients with DOC, when different segmentation approaches are used (FSL, Free-surfer and manual segmentation). Our results suggest that segmentation process may play a critical role for the construction of robust and reliable structural characterization of DOC conditions.
Drying Affects the Fiber Network in Low Molecular Weight Hydrogels
2017-01-01
Low molecular weight gels are formed by the self-assembly of a suitable small molecule gelator into a three-dimensional network of fibrous structures. The gel properties are determined by the fiber structures, the number and type of cross-links and the distribution of the fibers and cross-links in space. Probing these structures and cross-links is difficult. Many reports rely on microscopy of dried gels (xerogels), where the solvent is removed prior to imaging. The assumption is made that this has little effect on the structures, but it is not clear that this assumption is always (or ever) valid. Here, we use small angle neutron scattering (SANS) to probe low molecular weight hydrogels formed by the self-assembly of dipeptides. We compare scattering data for wet and dried gels, as well as following the drying process. We show that the assumption that drying does not affect the network is not always correct. PMID:28631478
Vizentin-Bugoni, Jeferson; Maruyama, Pietro K; Debastiani, Vanderlei J; Duarte, L da S; Dalsgaard, Bo; Sazima, Marlies
2016-01-01
Virtually all empirical ecological interaction networks to some extent suffer from undersampling. However, how limitations imposed by sampling incompleteness affect our understanding of ecological networks is still poorly explored, which may hinder further advances in the field. Here, we use a plant-hummingbird network with unprecedented sampling effort (2716 h of focal observations) from the Atlantic Rainforest in Brazil, to investigate how sampling effort affects the description of network structure (i.e. widely used network metrics) and the relative importance of distinct processes (i.e. species abundances vs. traits) in determining the frequency of pairwise interactions. By dividing the network into time slices representing a gradient of sampling effort, we show that quantitative metrics, such as interaction evenness, specialization (H2 '), weighted nestedness (wNODF) and modularity (Q; QuanBiMo algorithm) were less biased by sampling incompleteness than binary metrics. Furthermore, the significance of some network metrics changed along the sampling effort gradient. Nevertheless, the higher importance of traits in structuring the network was apparent even with small sampling effort. Our results (i) warn against using very poorly sampled networks as this may bias our understanding of networks, both their patterns and structuring processes, (ii) encourage the use of quantitative metrics little influenced by sampling when performing spatio-temporal comparisons and (iii) indicate that in networks strongly constrained by species traits, such as plant-hummingbird networks, even small sampling is sufficient to detect their relative importance for the frequencies of interactions. Finally, we argue that similar effects of sampling are expected for other highly specialized subnetworks. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness
Mangus, J Michael; Turner, Benjamin O
2017-01-01
Abstract While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. PMID:29140500
NASA Astrophysics Data System (ADS)
Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.
2017-11-01
Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.
Decay of interspecific avian flock networks along a disturbance gradient in Amazonia.
Mokross, Karl; Ryder, Thomas B; Côrtes, Marina Corrêa; Wolfe, Jared D; Stouffer, Philip C
2014-02-07
Our understanding of how anthropogenic habitat change shapes species interactions is in its infancy. This is in large part because analytical approaches such as network theory have only recently been applied to characterize complex community dynamics. Network models are a powerful tool for quantifying how ecological interactions are affected by habitat modification because they provide metrics that quantify community structure and function. Here, we examine how large-scale habitat alteration has affected ecological interactions among mixed-species flocking birds in Amazonian rainforest. These flocks provide a model system for investigating how habitat heterogeneity influences non-trophic interactions and the subsequent social structure of forest-dependent mixed-species bird flocks. We analyse 21 flock interaction networks throughout a mosaic of primary forest, fragments of varying sizes and secondary forest (SF) at the Biological Dynamics of Forest Fragments Project in central Amazonian Brazil. Habitat type had a strong effect on network structure at the levels of both species and flock. Frequency of associations among species, as summarized by weighted degree, declined with increasing levels of forest fragmentation and SF. At the flock level, clustering coefficients and overall attendance positively correlated with mean vegetation height, indicating a strong effect of habitat structure on flock cohesion and stability. Prior research has shown that trophic interactions are often resilient to large-scale changes in habitat structure because species are ecologically redundant. By contrast, our results suggest that behavioural interactions and the structure of non-trophic networks are highly sensitive to environmental change. Thus, a more nuanced, system-by-system approach may be needed when thinking about the resiliency of ecological networks.
Does human migration affect international trade? A complex-network perspective.
Fagiolo, Giorgio; Mastrorillo, Marina
2014-01-01
This paper explores the relationships between international human migration and merchandise trade, using a complex-network approach. We firstly compare the topological structure of worldwide networks of human migration and bilateral trade over the period 1960-2000. Next, we ask whether the position of any pair of countries in the migration network affects their bilateral trade flows. We show that: (i) both weighted and binary versions of the networks of international migration and trade are strongly correlated; (ii) such correlations can be mostly explained by country economic/demographic size and geographical distance; and (iii) pairs of countries that are more central in the international-migration network trade more. Our findings suggest that bilateral trade between any two countries is not only affected by the presence of migrants from either countries but also by their relative embeddedness in the complex web of corridors making up the network of international human migration.
Epidemic spreading on complex networks with overlapping and non-overlapping community structure
NASA Astrophysics Data System (ADS)
Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng
2015-02-01
Many real-world networks exhibit community structure where vertices belong to one or more communities. Recent studies show that community structure plays an import role in epidemic spreading. In this paper, we investigate how the extent of overlap among communities affects epidemics. In order to experiment on the characteristic of overlapping communities, we propose a rewiring algorithm that can change the community structure from overlapping to non-overlapping while maintaining the degree distribution of the network. We simulate the Susceptible-Infected-Susceptible (SIS) epidemic process on synthetic scale-free networks and real-world networks by applying our rewiring algorithm. Experiments show that epidemics spread faster on networks with higher level of overlapping communities. Furthermore, overlapping communities' effect interacts with the average degree's effect. Our work further illustrates the important role of overlapping communities in the process of epidemic spreading.
Buchanan, Colin R; Pettit, Lewis D; Storkey, Amos J; Abrahams, Sharon; Bastin, Mark E
2015-05-01
To investigate white matter structural connectivity changes associated with amyotrophic lateral sclerosis (ALS) using network analysis and compare the results with those obtained using standard voxel-based methods, specifically Tract-based Spatial Statistics (TBSS). MRI data were acquired from 30 patients with ALS and 30 age-matched healthy controls. For each subject, 85 grey matter regions (network nodes) were identified from high resolution structural MRI, and network connections formed from the white matter tracts generated by diffusion MRI and probabilistic tractography. Whole-brain networks were constructed using strong constraints on anatomical plausibility and a weighting reflecting tract-averaged fractional anisotropy (FA). Analysis using Network-based Statistics (NBS), without a priori selected regions, identified an impaired motor-frontal-subcortical subnetwork (10 nodes and 12 bidirectional connections), consistent with upper motor neuron pathology, in the ALS group compared with the controls (P = 0.020). Reduced FA in three of the impaired network connections, which involved fibers of the corticospinal tract, correlated with rate of disease progression (P ≤ 0.024). A novel network-tract comparison revealed that the connections involved in the affected network had a strong correspondence (mean overlap of 86.2%) with white matter tracts identified as having reduced FA compared with the control group using TBSS. These findings suggest that white matter degeneration in ALS is strongly linked to the motor cortex, and that impaired structural networks identified using NBS have a strong correspondence to affected white matter tracts identified using more conventional voxel-based methods. © 2014 Wiley Periodicals, Inc.
Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo
2015-01-01
Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.
The Social Context of Adolescent Smoking: A Systems Perspective
Hipp, John R.; Timberlake, David S.
2010-01-01
We used a systems science perspective to examine adolescents' personal networks, school networks, and neighborhoods as a system through which emotional support and peer influence flow, and we sought to determine whether these flows affected past-month smoking at 2 time points, 1994–1995 and 1996. To test relationships, we employed structural equation modeling and used public-use data from the National Longitudinal Study of Adolescent Health (n = 6504). Personal network properties affected past-month smoking at both time points via the flow of emotional support. We observed a feedback loop from personal network properties to emotional support and then to past-month smoking. Past-month smoking at time 1 fed back to positively affect in-degree centrality (i.e., popularity). Findings suggest that networks and neighborhoods in this system positively affected past-month smoking via flows of emotional support. PMID:20466966
Beyond topology: coevolution of structure and flux in metabolic networks.
Morrison, E S; Badyaev, A V
2017-10-01
Interactions between the structure of a metabolic network and its functional properties underlie its evolutionary diversification, but the mechanism by which such interactions arise remains elusive. Particularly unclear is whether metabolic fluxes that determine the concentrations of compounds produced by a metabolic network, are causally linked to a network's structure or emerge independently of it. A direct empirical study of populations where both structural and functional properties vary among individuals' metabolic networks is required to establish whether changes in structure affect the distribution of metabolic flux. In a population of house finches (Haemorhous mexicanus), we reconstructed full carotenoid metabolic networks for 442 individuals and uncovered 11 structural variants of this network with different compounds and reactions. We examined the consequences of this structural diversity for the concentrations of plumage-bound carotenoids produced by flux in these networks. We found that concentrations of metabolically derived, but not dietary carotenoids, depended on network structure. Flux was partitioned similarly among compounds in individuals of the same network structure: within each network, compound concentrations were closely correlated. The highest among-individual variation in flux occurred in networks with the strongest among-compound correlations, suggesting that changes in the magnitude, but not the distribution of flux, underlie individual differences in compound concentrations on a static network structure. These findings indicate that the distribution of flux in carotenoid metabolism closely follows network structure. Thus, evolutionary diversification and local adaptations in carotenoid metabolism may depend more on the gain or loss of enzymatic reactions than on changes in flux within a network structure. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Discussion Tool Effects on Collaborative Learning and Social Network Structure
ERIC Educational Resources Information Center
Tomsic, Astrid; Suthers, Daniel D.
2006-01-01
This study investigated the social network structure of booking officers at the Honolulu Police Department and how the introduction of an online discussion tool affected knowledge about operation of a booking module. Baseline data provided evidence for collaboration among officers in the same district using e-mail, telephone and face-to-face media…
Multiplex network analysis of employee performance and employee social relationships
NASA Astrophysics Data System (ADS)
Cai, Meng; Wang, Wei; Cui, Ying; Stanley, H. Eugene
2018-01-01
In human resource management, employee performance is strongly affected by both formal and informal employee networks. Most previous research on employee performance has focused on monolayer networks that can represent only single categories of employee social relationships. We study employee performance by taking into account the entire multiplex structure of underlying employee social networks. We collect three datasets consisting of five different employee relationship categories in three firms, and predict employee performance using degree centrality and eigenvector centrality in a superimposed multiplex network (SMN) and an unfolded multiplex network (UMN). We use a quadratic assignment procedure (QAP) analysis and a regression analysis to demonstrate that the different categories of relationship are mutually embedded and that the strength of their impact on employee performance differs. We also use weighted/unweighted SMN/UMN to measure the predictive accuracy of this approach and find that employees with high centrality in a weighted UMN are more likely to perform well. Our results shed new light on how social structures affect employee performance.
Comparative analysis of quantitative efficiency evaluation methods for transportation networks
He, Yuxin; Hong, Jian
2017-01-01
An effective evaluation of transportation network efficiency could offer guidance for the optimal control of urban traffic. Based on the introduction and related mathematical analysis of three quantitative evaluation methods for transportation network efficiency, this paper compares the information measured by them, including network structure, traffic demand, travel choice behavior and other factors which affect network efficiency. Accordingly, the applicability of various evaluation methods is discussed. Through analyzing different transportation network examples it is obtained that Q-H method could reflect the influence of network structure, traffic demand and user route choice behavior on transportation network efficiency well. In addition, the transportation network efficiency measured by this method and Braess’s Paradox can be explained with each other, which indicates a better evaluation of the real operation condition of transportation network. Through the analysis of the network efficiency calculated by Q-H method, it can also be drawn that a specific appropriate demand is existed to a given transportation network. Meanwhile, under the fixed demand, both the critical network structure that guarantees the stability and the basic operation of the network and a specific network structure contributing to the largest value of the transportation network efficiency can be identified. PMID:28399165
Comparative analysis of quantitative efficiency evaluation methods for transportation networks.
He, Yuxin; Qin, Jin; Hong, Jian
2017-01-01
An effective evaluation of transportation network efficiency could offer guidance for the optimal control of urban traffic. Based on the introduction and related mathematical analysis of three quantitative evaluation methods for transportation network efficiency, this paper compares the information measured by them, including network structure, traffic demand, travel choice behavior and other factors which affect network efficiency. Accordingly, the applicability of various evaluation methods is discussed. Through analyzing different transportation network examples it is obtained that Q-H method could reflect the influence of network structure, traffic demand and user route choice behavior on transportation network efficiency well. In addition, the transportation network efficiency measured by this method and Braess's Paradox can be explained with each other, which indicates a better evaluation of the real operation condition of transportation network. Through the analysis of the network efficiency calculated by Q-H method, it can also be drawn that a specific appropriate demand is existed to a given transportation network. Meanwhile, under the fixed demand, both the critical network structure that guarantees the stability and the basic operation of the network and a specific network structure contributing to the largest value of the transportation network efficiency can be identified.
NASA Astrophysics Data System (ADS)
Barthélemy, Marc
2011-02-01
Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.
Social learning strategies modify the effect of network structure on group performance.
Barkoczi, Daniel; Galesic, Mirta
2016-10-07
The structure of communication networks is an important determinant of the capacity of teams, organizations and societies to solve policy, business and science problems. Yet, previous studies reached contradictory results about the relationship between network structure and performance, finding support for the superiority of both well-connected efficient and poorly connected inefficient network structures. Here we argue that understanding how communication networks affect group performance requires taking into consideration the social learning strategies of individual team members. We show that efficient networks outperform inefficient networks when individuals rely on conformity by copying the most frequent solution among their contacts. However, inefficient networks are superior when individuals follow the best member by copying the group member with the highest payoff. In addition, groups relying on conformity based on a small sample of others excel at complex tasks, while groups following the best member achieve greatest performance for simple tasks. Our findings reconcile contradictory results in the literature and have broad implications for the study of social learning across disciplines.
Social learning strategies modify the effect of network structure on group performance
NASA Astrophysics Data System (ADS)
Barkoczi, Daniel; Galesic, Mirta
2016-10-01
The structure of communication networks is an important determinant of the capacity of teams, organizations and societies to solve policy, business and science problems. Yet, previous studies reached contradictory results about the relationship between network structure and performance, finding support for the superiority of both well-connected efficient and poorly connected inefficient network structures. Here we argue that understanding how communication networks affect group performance requires taking into consideration the social learning strategies of individual team members. We show that efficient networks outperform inefficient networks when individuals rely on conformity by copying the most frequent solution among their contacts. However, inefficient networks are superior when individuals follow the best member by copying the group member with the highest payoff. In addition, groups relying on conformity based on a small sample of others excel at complex tasks, while groups following the best member achieve greatest performance for simple tasks. Our findings reconcile contradictory results in the literature and have broad implications for the study of social learning across disciplines.
Dynamics of influence and social balance in spatially-embedded regular and random networks
NASA Astrophysics Data System (ADS)
Singh, P.; Sreenivasan, S.; Szymanski, B.; Korniss, G.
2015-03-01
Structural balance - the tendency of social relationship triads to prefer specific states of polarity - can be a fundamental driver of beliefs, behavior, and attitudes on social networks. Here we study how structural balance affects deradicalization in an otherwise polarized population of leftists and rightists constituting the nodes of a low-dimensional social network. Specifically, assuming an externally moderating influence that converts leftists or rightists to centrists with probability p, we study the critical value p =pc , below which the presence of metastable mixed population states exponentially delay the achievement of centrist consensus. Above the critical value, centrist consensus is the only fixed point. Complementing our previously shown results for complete graphs, we present results for the process on low-dimensional networks, and show that the low-dimensional embedding of the underlying network significantly affects the critical value of probability p. Intriguingly, on low-dimensional networks, the critical value pc can show non-monotonicity as the dimensionality of the network is varied. We conclude by analyzing the scaling behavior of temporal variation of unbalanced triad density in the network for different low-dimensional network topologies. Supported in part by ARL NS-CTA, ONR, and ARO.
Spatial price dynamics: From complex network perspective
NASA Astrophysics Data System (ADS)
Li, Y. L.; Bi, J. T.; Sun, H. J.
2008-10-01
The spatial price problem means that if the supply price plus the transportation cost is less than the demand price, there exists a trade. Thus, after an amount of exchange, the demand price will decrease. This process is continuous until an equilibrium state is obtained. However, how the trade network structure affects this process has received little attention. In this paper, we give a evolving model to describe the levels of spatial price on different complex network structures. The simulation results show that the network with shorter path length is sensitive to the variation of prices.
A review of structural and functional brain networks: small world and atlas.
Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang
2015-03-01
Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.
Butz, Markus; Steenbuck, Ines D; van Ooyen, Arjen
2014-01-01
After brain lesions caused by tumors or stroke, or after lasting loss of input (deafferentation), inter- and intra-regional brain networks respond with complex changes in topology. Not only areas directly affected by the lesion but also regions remote from the lesion may alter their connectivity-a phenomenon known as diaschisis. Changes in network topology after brain lesions can lead to cognitive decline and increasing functional disability. However, the principles governing changes in network topology are poorly understood. Here, we investigated whether homeostatic structural plasticity can account for changes in network topology after deafferentation and brain lesions. Homeostatic structural plasticity postulates that neurons aim to maintain a desired level of electrical activity by deleting synapses when neuronal activity is too high and by providing new synaptic contacts when activity is too low. Using our Model of Structural Plasticity, we explored how local changes in connectivity induced by a focal loss of input affected global network topology. In accordance with experimental and clinical data, we found that after partial deafferentation, the network as a whole became more random, although it maintained its small-world topology, while deafferentated neurons increased their betweenness centrality as they rewired and returned to the homeostatic range of activity. Furthermore, deafferentated neurons increased their global but decreased their local efficiency and got longer tailed degree distributions, indicating the emergence of hub neurons. Together, our results suggest that homeostatic structural plasticity may be an important driving force for lesion-induced network reorganization and that the increase in betweenness centrality of deafferentated areas may hold as a biomarker for brain repair.
Propagation of Innovations in Networked Groups
ERIC Educational Resources Information Center
Mason, Winter A.; Jones, Andy; Goldstone, Robert L.
2008-01-01
A novel paradigm was developed to study the behavior of groups of networked people searching a problem space. The authors examined how different network structures affect the propagation of information in laboratory-created groups. Participants made numerical guesses and received scores that were also made available to their neighbors in the…
Engen, Haakon G; Bernhardt, Boris C; Skottnik, Leon; Ricard, Matthieu; Singer, Tania
2017-08-31
Our goal was to assess the effects of long-term mental training in socio-affective skills on structural brain networks. We studied a group of long-term meditation practitioners (LTMs) who have focused on cultivating socio-affective skills using loving-kindness and compassion meditation for an average of 40k h, comparing these to meditation-naïve controls. To maximize homogeneity of prior practice, LTMs were included only if they had undergone extensive full-time meditation retreats in the same center. MRI-based cortical thickness analysis revealed increased thickness in the LTM cohort relative to meditation-native controls in fronto-insular cortices. To identify functional networks relevant for the generation of socio-affective states, structural imaging analysis were complemented by fMRI analysis in LTMs, showing amplitude increases during a loving-kindness meditation session relative to non-meditative rest in multiple prefrontal and insular regions bilaterally. Importantly, functional findings partially overlapped with regions of cortical thickness increases in the left ventrolateral prefrontal cortex and anterior insula, suggesting that these regions may play a central role in the generation of emotional states relevant for the meditative practice. Our multi-modal MRI approach revealed structural changes in LTMs who have cultivated loving-kindness and compassion for a significant period of their life in functional networks activated by these practices. These preliminary cross-sectional findings motivate future longitudinal work studying brain plasticity following the regular practice of skills aiming at enhancing human altruism and prosocial motivation. Copyright © 2017 Elsevier Ltd. All rights reserved.
The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness.
Huskey, Richard; Mangus, J Michael; Turner, Benjamin O; Weber, René
2017-12-01
While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. © The Author (2017). Published by Oxford University Press.
Structural diversity effect on hashtag adoption in Twitter
NASA Astrophysics Data System (ADS)
Zhang, Aihua; Zheng, Mingxing; Pang, Bowen
2018-03-01
With online social network developing rapidly these years, user' behavior in online social network has attracted a lot of attentions to it. In this paper, we study Twitter user's behavior of hashtag adoption from the perspective of social contagion and focus on "structure diversity" effect on individual's behavior in Twitter. We achieve data through Twitter's API by crawling and build a users' network to carry on empirical research. The Girvan-Newman (G-N) algorithm is used to analyze the structural diversity of user's ego network, and Logistic regression model is adopted to examine the hypothesis. The findings of our empirical study indicate that user' behavior in online social network is indeed influenced by his friends and his decision is significantly affected by the number of groups that these friends belong to, which we call structural diversity.
Structural brain network analysis in families multiply affected with bipolar I disorder.
Forde, Natalie J; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J; Cannon, Dara M; Murray, Robin M; McDonald, Colm
2015-10-30
Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its endophenotypic potential. Magnetic resonance diffusion images for 19 BP type I patients in remission, 21 of their first degree unaffected relatives, and 18 unrelated healthy controls underwent tractography. With the automated anatomical labelling atlas being used to define nodes, a connectivity matrix was generated for each subject. Network metrics were extracted with the Brain Connectivity Toolbox and then analysed for group differences, accounting for potential confounding effects of age, gender and familial association. Whole brain analysis revealed no differences between groups. Analysis of specific mainly frontal regions, previously implicated as potentially endophenotypic by functional magnetic resonance imaging analysis of the same cohort, revealed a significant effect of group in the right medial superior frontal gyrus and left middle frontal gyrus driven by reduced organisation in patients compared with controls. The organisation of whole brain networks of those affected with BP I does not differ from their unaffected relatives or healthy controls. In discreet frontal regions, however, anatomical connectivity is disrupted in patients but not in their unaffected relatives. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Inference of neuronal network spike dynamics and topology from calcium imaging data
Lütcke, Henry; Gerhard, Felipe; Zenke, Friedemann; Gerstner, Wulfram; Helmchen, Fritjof
2013-01-01
Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP) occurrence (“spike trains”) from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR) and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties. PMID:24399936
Detecting network communities beyond assortativity-related attributes
NASA Astrophysics Data System (ADS)
Liu, Xin; Murata, Tsuyoshi; Wakita, Ken
2014-07-01
In network science, assortativity refers to the tendency of links to exist between nodes with similar attributes. In social networks, for example, links tend to exist between individuals of similar age, nationality, location, race, income, educational level, religious belief, and language. Thus, various attributes jointly affect the network topology. An interesting problem is to detect community structure beyond some specific assortativity-related attributes ρ, i.e., to take out the effect of ρ on network topology and reveal the hidden community structures which are due to other attributes. An approach to this problem is to redefine the null model of the modularity measure, so as to simulate the effect of ρ on network topology. However, a challenge is that we do not know to what extent the network topology is affected by ρ and by other attributes. In this paper, we propose a distance modularity, which allows us to freely choose any suitable function to simulate the effect of ρ. Such freedom can help us probe the effect of ρ and detect the hidden communities which are due to other attributes. We test the effectiveness of distance modularity on synthetic benchmarks and two real-world networks.
Mass media influence spreading in social networks with community structure
NASA Astrophysics Data System (ADS)
Candia, Julián; Mazzitello, Karina I.
2008-07-01
We study an extension of Axelrod's model for social influence, in which cultural drift is represented as random perturbations, while mass media are introduced by means of an external field. In this scenario, we investigate how the modular structure of social networks affects the propagation of mass media messages across a society. The community structure of social networks is represented by coupled random networks, in which two random graphs are connected by intercommunity links. Considering inhomogeneous mass media fields, we study the conditions for successful message spreading and find a novel phase diagram in the multidimensional parameter space. These findings show that social modularity effects are of paramount importance for designing successful, cost-effective advertising campaigns.
Exploration of tetrahedral structures in silicate cathodes using a motif-network scheme
Zhao, Xin; Wu, Shunqing; Lv, Xiaobao; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Lin, Zijing; Zhu, Zi-Zhong; Ho, Kai-Ming
2015-01-01
Using a motif-network search scheme, we studied the tetrahedral structures of the dilithium/disodium transition metal orthosilicates A2MSiO4 with A = Li or Na and M = Mn, Fe or Co. In addition to finding all previously reported structures, we discovered many other different tetrahedral-network-based crystal structures which are highly degenerate in energy. These structures can be classified into structures with 1D, 2D and 3D M-Si-O frameworks. A clear trend of the structural preference in different systems was revealed and possible indicators that affect the structure stabilities were introduced. For the case of Na systems which have been much less investigated in the literature relative to the Li systems, we predicted their ground state structures and found evidence for the existence of new structural motifs. PMID:26497381
Tensegrity II. How structural networks influence cellular information processing networks
NASA Technical Reports Server (NTRS)
Ingber, Donald E.
2003-01-01
The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.
Ecological consequences of colony structure in dynamic ant nest networks.
Ellis, Samuel; Franks, Daniel W; Robinson, Elva J H
2017-02-01
Access to resources depends on an individual's position within the environment. This is particularly important to animals that invest heavily in nest construction, such as social insects. Many ant species have a polydomous nesting strategy: a single colony inhabits several spatially separated nests, often exchanging resources between the nests. Different nests in a polydomous colony potentially have differential access to resources, but the ecological consequences of this are unclear. In this study, we investigate how nest survival and budding in polydomous wood ant ( Formica lugubris ) colonies are affected by being part of a multi-nest system. Using field data and novel analytical approaches combining survival models with dynamic network analysis, we show that the survival and budding of nests within a polydomous colony are affected by their position in the nest network structure. Specifically, we find that the flow of resources through a nest, which is based on its position within the wider nest network, determines a nest's likelihood of surviving and of founding new nests. Our results highlight how apparently disparate entities in a biological system can be integrated into a functional ecological unit. We also demonstrate how position within a dynamic network structure can have important ecological consequences.
Electric Current Flow Through Two-Dimensional Networks
NASA Astrophysics Data System (ADS)
Gaspard, Mallory
In modern nanotechnology, two-dimensional atomic network structures boast promising applications as nanoscale circuit boards to serve as the building blocks of more sustainable and efficient, electronic devices. However, properties associated with the network connectivity can be beneficial or deleterious to the current flow. Taking a computational approach, we will study large uniform networks, as well as large random networks using Kirchhoff's Equations in conjunction with graph theoretical measures of network connectedness and flows, to understand how network connectivity affects overall ability for successful current flow throughout a network. By understanding how connectedness affects flow, we may develop new ways to design more efficient two-dimensional materials for the next generation of nanoscale electronic devices, and we will gain a deeper insight into the intricate balance between order and chaos in the universe. Rensselaer Polytechnic Institute, SURP Institutional Grant.
Coevolution of game and network structure with adjustable linking
NASA Astrophysics Data System (ADS)
Qin, Shao-Meng; Zhang, Guo-Yong; Chen, Yong
2009-12-01
Most papers about the evolutionary game on graph assume the statistic network structure. However, in the real world, social interaction could change the relationship among people. And the change of social structure will also affect people’s strategies. We build a coevolution model of prisoner’s dilemma game and network structure to study the dynamic interaction in the real world. Differing from other coevolution models, players rewire their network connections according to the density of cooperation and other players’ payoffs. We use a parameter α to control the effect of payoff in the process of rewiring. Based on the asynchronous update rule and Monte Carlo simulation, we find that, when players prefer to rewire their links to those who are richer, the temptation can increase the cooperation density.
Reconstruction of network topology using status-time-series data
NASA Astrophysics Data System (ADS)
Pandey, Pradumn Kumar; Badarla, Venkataramana
2018-01-01
Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.
NASA Astrophysics Data System (ADS)
Gao, Zilin; Wang, Yinhe; Zhang, Lili
2018-02-01
In the existing research results of the complex dynamical networks controlled, the controllers are mainly used to guarantee the synchronization or stabilization of the nodes’ state, and the terms coupled with connection relationships may affect the behaviors of nodes, this obviously ignores the dynamic common behavior of the connection relationships between the nodes. In fact, from the point of view of large-scale system, a complex dynamical network can be regarded to be composed of two time-varying dynamic subsystems, which can be called the nodes subsystem and the connection relationships subsystem, respectively. Similar to the synchronization or stabilization of the nodes subsystem, some characteristic phenomena can be also emerged in the connection relationships subsystem. For example, the structural balance in the social networks and the synaptic facilitation in the biological neural networks. This paper focuses on the structural balance in dynamic complex networks. Generally speaking, the state of the connection relationships subsystem is difficult to be measured accurately in practical applications, and thus it is not easy to implant the controller directly into the connection relationships subsystem. It is noted that the nodes subsystem and the relationships subsystem are mutually coupled, which implies that the state of the connection relationships subsystem can be affected by the controllable state of nodes subsystem. Inspired by this observation, by using the structural balance theory of triad, the controller with the parameter adaptive law is proposed for the nodes subsystem in this paper, which may ensure the connection relationship matrix to approximate a given structural balance matrix in the sense of the uniformly ultimately bounded (UUB). That is, the structural balance may be obtained by employing the controlling state of the nodes subsystem. Finally, the simulations are used to show the validity of the method in this paper.
Viewing socio-affective stimuli increases connectivity within an extended default mode network.
Göttlich, Martin; Ye, Zheng; Rodriguez-Fornells, Antoni; Münte, Thomas F; Krämer, Ulrike M
2017-03-01
Empathy is an essential ability for prosocial behavior. Previous imaging studies identified a number of brain regions implicated in affective and cognitive aspects of empathy. In this study, we investigated the neural correlates of empathy from a network perspective using graph theory and beta-series correlations. Two independent data sets were acquired using the same paradigm that elicited empathic responses to socio-affective stimuli. One data set was used to define the network nodes and modular structure, the other data set was used to investigate the effects of emotional versus neutral stimuli on network connectivity. Emotional relative to neutral stimuli increased connectivity between 74 nodes belonging to different networks. Most of these nodes belonged to an extended default mode network (eDMN). The other nodes belonged to a cognitive control network or visual networks. Within the eDMN, posterior STG/TPJ regions were identified as provincial hubs. The eDMN also showed stronger connectivity to the cognitive control network encompassing lateral PFC regions. Connector hubs between the two networks were posterior cingulate cortex and ventrolateral PFC. This stresses the advantage of a network approach as regions similarly modulated by task conditions can be dissociated into distinct networks and regions crucial for network integration can be identified. Copyright © 2017 Elsevier Inc. All rights reserved.
Structural and Functional Plasticity in the Maternal Brain Circuitry
ERIC Educational Resources Information Center
Pereira, Mariana
2016-01-01
Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…
Opinion dynamics in a group-based society
NASA Astrophysics Data System (ADS)
Gargiulo, F.; Huet, S.
2010-09-01
Many models have been proposed to analyze the evolution of opinion structure due to the interaction of individuals in their social environment. Such models analyze the spreading of ideas both in completely interacting backgrounds and on social networks, where each person has a finite set of interlocutors. In this paper we analyze the reciprocal feedback between the opinions of the individuals and the structure of the interpersonal relationships at the level of community structures. For this purpose we define a group-based random network and we study how this structure co-evolves with opinion dynamics processes. We observe that the adaptive network structure affects the opinion dynamics process helping the consensus formation. The results also show interesting behaviors in regards to the size distribution of the groups and their correlation with opinion structure.
Exploration of tetrahedral structures in silicate cathodes using a motif-network scheme
Zhao, Xin; Wu, Shunqing; Lv, Xiaobao; ...
2015-10-26
Using a motif-network search scheme, we studied the tetrahedral structures of the dilithium/disodium transition metal orthosilicates A 2MSiO 4 with A = Li or Na and M = Mn, Fe or Co. In addition to finding all previously reported structures, we discovered many other different tetrahedral-network-based crystal structures which are highly degenerate in energy. In addition, these structures can be classified into structures with 1D, 2D and 3D M-Si-O frameworks. A clear trend of the structural preference in different systems was revealed and possible indicators that affect the structure stabilities were introduced. For the case of Na systems which havemore » been much less investigated in the literature relative to the Li systems, we predicted their ground state structures and found evidence for the existence of new structural motifs.« less
Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Hearps, Stephen J; Beauchamp, Miriam H; Yeates, Keith O; Anderson, Vicki A
2017-09-01
Deficits in theory of mind (ToM) are common after neurological insult acquired in the first and second decade of life, however the contribution of large-scale neural networks to ToM deficits in children with brain injury is unclear. Using paediatric traumatic brain injury (TBI) as a model, this study investigated the sub-acute effect of paediatric traumatic brain injury on grey-matter volume of three large-scale, domain-general brain networks (the Default Mode Network, DMN; the Central Executive Network, CEN; and the Salience Network, SN), as well as two domain-specific neural networks implicated in social-affective processes (the Cerebro-Cerebellar Mentalizing Network, CCMN and the Mirror Neuron/Empathy Network, MNEN). We also evaluated prospective structure-function relationships between these large-scale neural networks and cognitive, affective and conative ToM. 3D T1- weighted magnetic resonance imaging sequences were acquired sub-acutely in 137 children [TBI: n = 103; typically developing (TD) children: n = 34]. All children were assessed on measures of ToM at 24-months post-injury. Children with severe TBI showed sub-acute volumetric reductions in the CCMN, SN, MNEN, CEN and DMN, as well as reduced grey-matter volumes of several hub regions of these neural networks. Volumetric reductions in the CCMN and several of its hub regions, including the cerebellum, predicted poorer cognitive ToM. In contrast, poorer affective and conative ToM were predicted by volumetric reductions in the SN and MNEN, respectively. Overall, results suggest that cognitive, affective and conative ToM may be prospectively predicted by individual differences in structure of different neural systems-the CCMN, SN and MNEN, respectively. The prospective relationship between cerebellar volume and cognitive ToM outcomes is a novel finding in our paediatric brain injury sample and suggests that the cerebellum may play a role in the neural networks important for ToM. These findings are discussed in relation to neurocognitive models of ToM. We conclude that detection of sub-acute volumetric abnormalities of large-scale neural networks and their hub regions may aid in the early identification of children at risk for chronic social-cognitive impairment. © The Author (2017). Published by Oxford University Press.
Population coding in sparsely connected networks of noisy neurons.
Tripp, Bryan P; Orchard, Jeff
2012-01-01
This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.
Association of Structural Global Brain Network Properties with Intelligence in Normal Aging
Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas
2014-01-01
Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994
Consensus between Pipelines in Structural Brain Networks
Parker, Christopher S.; Deligianni, Fani; Cardoso, M. Jorge; Daga, Pankaj; Modat, Marc; Dayan, Michael; Clark, Chris A.
2014-01-01
Structural brain networks may be reconstructed from diffusion MRI tractography data and have great potential to further our understanding of the topological organisation of brain structure in health and disease. Network reconstruction is complex and involves a series of processesing methods including anatomical parcellation, registration, fiber orientation estimation and whole-brain fiber tractography. Methodological choices at each stage can affect the anatomical accuracy and graph theoretical properties of the reconstructed networks, meaning applying different combinations in a network reconstruction pipeline may produce substantially different networks. Furthermore, the choice of which connections are considered important is unclear. In this study, we assessed the similarity between structural networks obtained using two independent state-of-the-art reconstruction pipelines. We aimed to quantify network similarity and identify the core connections emerging most robustly in both pipelines. Similarity of network connections was compared between pipelines employing different atlases by merging parcels to a common and equivalent node scale. We found a high agreement between the networks across a range of fiber density thresholds. In addition, we identified a robust core of highly connected regions coinciding with a peak in similarity across network density thresholds, and replicated these results with atlases at different node scales. The binary network properties of these core connections were similar between pipelines but showed some differences in atlases across node scales. This study demonstrates the utility of applying multiple structural network reconstrution pipelines to diffusion data in order to identify the most important connections for further study. PMID:25356977
Katashima, Takuya; Urayama, Kenji; Chung, Ung-il; Sakai, Takamasa
2015-05-07
The pure shear deformation of the Tetra-polyethylene glycol gels reveals the presence of an explicit cross-effect of strains in the strain energy density function even for the polymer networks with nearly regular structure including no appreciable amount of structural defect such as trapped entanglement. This result is in contrast to the expectation of the classical Gaussian network model (Neo Hookean model), i.e., the vanishing of the cross effect in regular networks with no trapped entanglement. The results show that (1) the cross effect of strains is not dependent on the network-strand length; (2) the cross effect is not affected by the presence of non-network strands; (3) the cross effect is proportional to the network polymer concentration including both elastically effective and ineffective strands; (4) no cross effect is expected exclusively in zero limit of network concentration in real polymer networks. These features indicate that the real polymer networks with regular network structures have an explicit cross-effect of strains, which originates from some interaction between network strands (other than entanglement effect) such as nematic interaction, topological interaction, and excluded volume interaction.
Cascading failures in complex networks with community structure
NASA Astrophysics Data System (ADS)
Lin, Guoqiang; di, Zengru; Fan, Ying
2014-12-01
Much empirical evidence shows that when attacked with cascading failures, scale-free or even random networks tend to collapse more extensively when the initially deleted node has higher betweenness. Meanwhile, in networks with strong community structure, high-betweenness nodes tend to be bridge nodes that link different communities, and the removal of such nodes will reduce only the connections among communities, leaving the networks fairly stable. Understanding what will affect cascading failures and how to protect or attack networks with strong community structure is therefore of interest. In this paper, we have constructed scale-free Community Networks (SFCN) and Random Community Networks (RCN). We applied these networks, along with the Lancichinett-Fortunato-Radicchi (LFR) benchmark, to the cascading-failure scenario to explore their vulnerability to attack and the relationship between cascading failures and the degree distribution and community structure of a network. The numerical results show that when the networks are of a power-law distribution, a stronger community structure will result in the failure of fewer nodes. In addition, the initial removal of the node with the highest betweenness will not lead to the worst cascading, i.e. the largest avalanche size. The Betweenness Overflow (BOF), an index that we developed, is an effective indicator of this tendency. The RCN, however, display a different result. In addition, the avalanche size of each node can be adopted as an index to evaluate the importance of the node.
Does Human Migration Affect International Trade? A Complex-Network Perspective
Fagiolo, Giorgio; Mastrorillo, Marina
2014-01-01
This paper explores the relationships between international human migration and merchandise trade using a complex-network approach. We firstly compare the topological structure of worldwide networks of human migration and bilateral trade over the period 1960–2000. Next, we ask whether pairs of countries that are more central in the migration network trade more. We show that: (i) the networks of international migration and trade are strongly correlated, and such correlation can be mostly explained by country economic/demographic size and geographical distance; (ii) centrality in the international-migration network boosts bilateral trade; (iii) intensive forms of country centrality are more trade enhancing than their extensive counterparts. Our findings suggest that bilateral trade between any two countries is not only affected by the presence of migrants from either countries, but also by their relative embeddedness in the complex web of corridors making up the network of international human migration. PMID:24828376
Wu, Minjie; Lu, Lisa H.; Passarotti, Alessandra M.; Wegbreit, Ezra; Fitzgerald, Jacklynn; Pavuluri, Mani N.
2013-01-01
Background The aim of the present study was to map the pathophysiology of resting state functional connectivity accompanying structural and functional abnormalities in children with bipolar disorder. Methods Children with bipolar disorder and demographically matched healthy controls underwent resting-state functional magnetic resonance imaging. A model-free independent component analysis was performed to identify intrinsically interconnected networks. Results We included 34 children with bipolar disorder and 40 controls in our analysis. Three distinct resting state networks corresponding to affective, executive and sensorimotor functions emerged as being significantly different between the pediatric bipolar disorder (PBD) and control groups. All 3 networks showed hyperconnectivity in the PBD relative to the control group. Specifically, the connectivity of the dorsal anterior cingulate cortex (ACC) differentiated the PBD from the control group in both the affective and the executive networks. Exploratory analysis suggests that greater connectivity of the right amygdala within the affective network is associated with better executive function in children with bipolar disorder, but not in controls. Limitations Unique clinical characteristics of the study sample allowed us to evaluate the pathophysiology of resting state connectivity at an early state of PBD, which led to the lack of generalizability in terms of comorbid disorders existing in a typical PBD population. Conclusion Abnormally engaged resting state affective, executive and sensorimotor networks observed in children with bipolar disorder may reflect a biological context in which abnormal task-based brain activity can occur. Dual engagement of the dorsal ACC in affective and executive networks supports the neuroanatomical interface of these networks, and the amygdala’s engagement in moderating executive function illustrates the intricate interplay of these neural operations at rest. PMID:23735583
Mental Models of Invisible Logical Networks
NASA Technical Reports Server (NTRS)
Sanderson, P.
1984-01-01
Subjects were required to discover the structure of a logical network whose links were invisible. Network structure had to be inferred from the behavior of the components after a failure. It was hypothesized that since such failure diagnosis tasks often draw on spatial processes, a good deal of spatial complexity in the network should affect network discovery. Results show that the ability to discover the linkages in the network is directly related to the spatial complexity of the pathway described by the linkages. This effect was generally independent of the amount of evidence available to subjects about the existence of the link. These results raise the question of whether inferences about spatially complex pathways were simply not made, or whether they were made but not retained because of a high load on memory resources.
Network reciprocity by coexisting learning and teaching strategies
NASA Astrophysics Data System (ADS)
Tanimoto, Jun; Brede, Markus; Yamauchi, Atsuo
2012-03-01
We propose a network reciprocity model in which an agent probabilistically adopts learning or teaching strategies. In the learning adaptation mechanism, an agent may copy a neighbor's strategy through Fermi pairwise comparison. The teaching adaptation mechanism involves an agent imposing its strategy on a neighbor. Our simulations reveal that the reciprocity is significantly affected by the frequency with which learning and teaching agents coexist in a network and by the structure of the network itself.
Understanding and planning ecological restoration of plant-pollinator networks.
Devoto, Mariano; Bailey, Sallie; Craze, Paul; Memmott, Jane
2012-04-01
Theory developed from studying changes in the structure and function of communities during natural or managed succession can guide the restoration of particular communities. We constructed 30 quantitative plant-flower visitor networks along a managed successional gradient to identify the main drivers of change in network structure. We then applied two alternative restoration strategies in silico (restoring for functional complementarity or redundancy) to data from our early successional plots to examine whether different strategies affected the restoration trajectories. Changes in network structure were explained by a combination of age, tree density and variation in tree diameter, even when variance explained by undergrowth structure was accounted for first. A combination of field data, a network approach and numerical simulations helped to identify which species should be given restoration priority in the context of different restoration targets. This combined approach provides a powerful tool for directing management decisions, particularly when management seeks to restore or conserve ecosystem function. © 2012 Blackwell Publishing Ltd/CNRS.
Applications of graph theory to landscape genetics
Garroway, Colin J; Bowman, Jeff; Carr, Denis; Wilson, Paul J
2008-01-01
We investigated the relationships among landscape quality, gene flow, and population genetic structure of fishers (Martes pennanti) in ON, Canada. We used graph theory as an analytical framework considering each landscape as a network node. The 34 nodes were connected by 93 edges. Network structure was characterized by a higher level of clustering than expected by chance, a short mean path length connecting all pairs of nodes, and a resiliency to the loss of highly connected nodes. This suggests that alleles can be efficiently spread through the system and that extirpations and conservative harvest are not likely to affect their spread. Two measures of node centrality were negatively related to both the proportion of immigrants in a node and node snow depth. This suggests that central nodes are producers of emigrants, contain high-quality habitat (i.e., deep snow can make locomotion energetically costly) and that fishers were migrating from high to low quality habitat. A method of community detection on networks delineated five genetic clusters of nodes suggesting cryptic population structure. Our analyses showed that network models can provide system-level insight into the process of gene flow with implications for understanding how landscape alterations might affect population fitness and evolutionary potential. PMID:25567802
The relevance of network micro-structure for neural dynamics.
Pernice, Volker; Deger, Moritz; Cardanobile, Stefano; Rotter, Stefan
2013-01-01
The activity of cortical neurons is determined by the input they receive from presynaptic neurons. Many previous studies have investigated how specific aspects of the statistics of the input affect the spike trains of single neurons and neurons in recurrent networks. However, typically very simple random network models are considered in such studies. Here we use a recently developed algorithm to construct networks based on a quasi-fractal probability measure which are much more variable than commonly used network models, and which therefore promise to sample the space of recurrent networks in a more exhaustive fashion than previously possible. We use the generated graphs as the underlying network topology in simulations of networks of integrate-and-fire neurons in an asynchronous and irregular state. Based on an extensive dataset of networks and neuronal simulations we assess statistical relations between features of the network structure and the spiking activity. Our results highlight the strong influence that some details of the network structure have on the activity dynamics of both single neurons and populations, even if some global network parameters are kept fixed. We observe specific and consistent relations between activity characteristics like spike-train irregularity or correlations and network properties, for example the distributions of the numbers of in- and outgoing connections or clustering. Exploiting these relations, we demonstrate that it is possible to estimate structural characteristics of the network from activity data. We also assess higher order correlations of spiking activity in the various networks considered here, and find that their occurrence strongly depends on the network structure. These results provide directions for further theoretical studies on recurrent networks, as well as new ways to interpret spike train recordings from neural circuits.
Wild cricket social networks show stability across generations.
Fisher, David N; Rodríguez-Muñoz, Rolando; Tregenza, Tom
2016-07-27
A central part of an animal's environment is its interactions with conspecifics. There has been growing interest in the potential to capture these interactions in the form of a social network. Such networks can then be used to examine how relationships among individuals affect ecological and evolutionary processes. However, in the context of selection and evolution, the utility of this approach relies on social network structures persisting across generations. This is an assumption that has been difficult to test because networks spanning multiple generations have not been available. We constructed social networks for six annual generations over a period of eight years for a wild population of the cricket Gryllus campestris. Through the use of exponential random graph models (ERGMs), we found that the networks in any given year were able to predict the structure of networks in other years for some network characteristics. The capacity of a network model of any given year to predict the networks of other years did not depend on how far apart those other years were in time. Instead, the capacity of a network model to predict the structure of a network in another year depended on the similarity in population size between those years. Our results indicate that cricket social network structure resists the turnover of individuals and is stable across generations. This would allow evolutionary processes that rely on network structure to take place. The influence of network size may indicate that scaling up findings on social behaviour from small populations to larger ones will be difficult. Our study also illustrates the utility of ERGMs for comparing networks, a task for which an effective approach has been elusive.
Do Sexual Networks of Men Who Have Sex with Men in New York City Differ by Race/Ethnicity?
Nandi, Vijay; Hoover, Donald R.; Lucy, Debbie; Stewart, Kiwan; Frye, Victoria; Cerda, Magdalena; Ompad, Danielle; Latkin, Carl; Koblin, Beryl A.
2016-01-01
Abstract The United States HIV epidemic disproportionately affects black and Hispanic men who have sex with men (MSM). This disparity might be partially explained by differences in social and sexual network structure and composition. A total of 1267 MSM in New York City completed an ACASI survey and egocentric social and sexual network inventory about their sex partners in the past 3 months, and underwent HIV testing. Social and sexual network structure and composition were compared by race/ethnicity of the egos: black, non-Hispanic (N = 365 egos), white, non-Hispanic (N = 466), and Hispanic (N = 436). 21.1% were HIV-positive by HIV testing; 17.2% reported serodiscordant and serostatus unknown unprotected anal/vaginal intercourse (SDUI) in the last 3 months. Black MSM were more likely than white and Hispanic MSM to report exclusively having partners of same race/ethnicity. Black and Hispanic MSM had more HIV-positive and unknown status partners than white MSM. White men were more likely to report overlap of social and sex partners than black and Hispanic men. No significant differences by race/ethnicity were found for network size, density, having concurrent partners, or having partners with ≥10 years age difference. Specific network composition characteristics may explain racial/ethnic disparities in HIV infection rates among MSM, including HIV status of sex partners in networks and lack of social support within sexual networks. Network structural characteristics such as size and density do not appear to have such an impact. These data add to our understanding of the complexity of social factors affecting black MSM and Hispanic MSM in the U.S. PMID:26745143
Contact networks structured by sex underpin sex-specific epidemiology of infection.
Silk, Matthew J; Weber, Nicola L; Steward, Lucy C; Hodgson, David J; Boots, Mike; Croft, Darren P; Delahay, Richard J; McDonald, Robbie A
2018-02-01
Contact networks are fundamental to the transmission of infection and host sex often affects the acquisition and progression of infection. However, the epidemiological impacts of sex-related variation in animal contact networks have rarely been investigated. We test the hypothesis that sex-biases in infection are related to variation in multilayer contact networks structured by sex in a population of European badgers Meles meles naturally infected with Mycobacterium bovis. Our key results are that male-male and between-sex networks are structured at broader spatial scales than female-female networks and that in male-male and between-sex contact networks, but not female-female networks, there is a significant relationship between infection and contacts with individuals in other groups. These sex differences in social behaviour may underpin male-biased acquisition of infection and may result in males being responsible for more between-group transmission. This highlights the importance of sex-related variation in host behaviour when managing animal diseases. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Costs for switching partners reduce network dynamics but not cooperative behaviour
Bednarik, Peter; Fehl, Katrin; Semmann, Dirk
2014-01-01
Social networks represent the structuring of interactions between group members. Above all, many interactions are profoundly cooperative in humans and other animals. In accordance with this natural observation, theoretical work demonstrates that certain network structures favour the evolution of cooperation. Yet, recent experimental evidence suggests that static networks do not enhance cooperative behaviour in humans. By contrast, dynamic networks do foster cooperation. However, costs associated with dynamism such as time or resource investments in finding and establishing new partnerships have been neglected so far. Here, we show that human participants are much less likely to break links when costs arise for building new links. Especially, when costs were high, the network was nearly static. Surprisingly, cooperation levels in Prisoner's Dilemma games were not affected by reduced dynamism in social networks. We conclude that the mere potential to quit collaborations is sufficient in humans to reach high levels of cooperative behaviour. Effects of self-structuring processes or assortment on the network played a minor role: participants simply adjusted their cooperative behaviour in response to the threats of losing a partner or of being expelled. PMID:25122233
Effects of Network Structure, Competition and Memory Time on Social Spreading Phenomena
NASA Astrophysics Data System (ADS)
Gleeson, James P.; O'Sullivan, Kevin P.; Baños, Raquel A.; Moreno, Yamir
2016-04-01
Online social media has greatly affected the way in which we communicate with each other. However, little is known about what fundamental mechanisms drive dynamical information flow in online social systems. Here, we introduce a generative model for online sharing behavior that is analytically tractable and that can reproduce several characteristics of empirical micro-blogging data on hashtag usage, such as (time-dependent) heavy-tailed distributions of meme popularity. The presented framework constitutes a null model for social spreading phenomena that, in contrast to purely empirical studies or simulation-based models, clearly distinguishes the roles of two distinct factors affecting meme popularity: the memory time of users and the connectivity structure of the social network.
Kayser, Jona; Haslbeck, Martin; Dempfle, Lisa; Krause, Maike; Grashoff, Carsten; Buchner, Johannes; Herrmann, Harald; Bausch, Andreas R
2013-10-15
The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
De Witte, Nele A J; Mueller, Sven C
2017-12-01
Anxiety and depression are associated with altered communication within global brain networks and between these networks and the amygdala. Functional connectivity studies demonstrate an effect of anxiety and depression on four critical brain networks involved in top-down attentional control (fronto-parietal network; FPN), salience detection and error monitoring (cingulo-opercular network; CON), bottom-up stimulus-driven attention (ventral attention network; VAN), and default mode (default mode network; DMN). However, structural evidence on the white matter (WM) connections within these networks and between these networks and the amygdala is lacking. The current study in a large healthy sample (n = 483) observed that higher trait anxiety-depression predicted lower WM integrity in the connections between amygdala and specific regions of the FPN, CON, VAN, and DMN. We discuss the possible consequences of these anatomical alterations for cognitive-affective functioning and underscore the need for further theory-driven research on individual differences in anxiety and depression on brain structure.
Stability and dynamical properties of material flow systems on random networks
NASA Astrophysics Data System (ADS)
Anand, K.; Galla, T.
2009-04-01
The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.
Structure and Evolution of the Foreign Exchange Networks
NASA Astrophysics Data System (ADS)
Kwapień, J.; Gworek, S.; Drożdż, S.
2009-01-01
We investigate topology and temporal evolution of the foreign currency exchange market viewed from a weighted network perspective. Based on exchange rates for a set of 46 currencies (including precious metals), we construct different representations of the FX network depending on a choice of the base currency. Our results show that the network structure is not stable in time, but there are main clusters of currencies, which persist for a long period of time despite the fact that their size and content are variable. We find a long-term trend in the network's evolution which affects the USD and EUR nodes. In all the network representations, the USD node gradually loses its centrality, while, on contrary, the EUR node has become slightly more central than it used to be in its early years. Despite this directional trend, the overall evolution of the network is noisy.
Robinson, Kathryn M; Hauzy, Céline; Loeuille, Nicolas; Albrectsen, Benedicte R
2015-01-01
Nestedness and modularity are measures of ecological networks whose causative effects are little understood. We analyzed antagonistic plant–herbivore bipartite networks using common gardens in two contrasting environments comprised of aspen trees with differing evolutionary histories of defence against herbivores. These networks were tightly connected owing to a high level of specialization of arthropod herbivores that spend a large proportion of the life cycle on aspen. The gardens were separated by ten degrees of latitude with resultant differences in abiotic conditions. We evaluated network metrics and reported similar connectance between gardens but greater numbers of links per species in the northern common garden. Interaction matrices revealed clear nestedness, indicating subsetting of the bipartite interactions into specialist divisions, in both the environmental and evolutionary aspen groups, although nestedness values were only significant in the northern garden. Variation in plant vulnerability, measured as the frequency of herbivore specialization in the aspen population, was significantly partitioned by environment (common garden) but not by evolutionary origin of the aspens. Significant values of modularity were observed in all network matrices. Trait-matching indicated that growth traits, leaf morphology, and phenolic metabolites affected modular structure in both the garden and evolutionary groups, whereas extra-floral nectaries had little influence. Further examination of module configuration revealed that plant vulnerability explained considerable variance in web structure. The contrasting conditions between the two gardens resulted in bottom-up effects of the environment, which most strongly influenced the overall network architecture, however, the aspen groups with dissimilar evolutionary history also showed contrasting degrees of nestedness and modularity. Our research therefore shows that, while evolution does affect the structure of aspen–herbivore bipartite networks, the role of environmental variations is a dominant constraint. PMID:26306175
Dynamics of subway networks based on vehicles operation timetable
NASA Astrophysics Data System (ADS)
Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui
2017-05-01
In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.
Baggio, Jacopo A; BurnSilver, Shauna B; Arenas, Alex; Magdanz, James S; Kofinas, Gary P; De Domenico, Manlio
2016-11-29
Network analysis provides a powerful tool to analyze complex influences of social and ecological structures on community and household dynamics. Most network studies of social-ecological systems use simple, undirected, unweighted networks. We analyze multiplex, directed, and weighted networks of subsistence food flows collected in three small indigenous communities in Arctic Alaska potentially facing substantial economic and ecological changes. Our analysis of plausible future scenarios suggests that changes to social relations and key households have greater effects on community robustness than changes to specific wild food resources.
Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks
Giannini, Tereza C.; Garibaldi, Lucas A.; Acosta, Andre L.; Silva, Juliana S.; Maia, Kate P.; Saraiva, Antonio M.; Guimarães, Paulo R.; Kleinert, Astrid M. P.
2015-01-01
Supergeneralists, defined as species that interact with multiple groups of species in ecological networks, can act as important connectors of otherwise disconnected species subsets. In Brazil, there are two supergeneralist bees: the honeybee Apis mellifera, a non-native species, and Trigona spinipes, a native stingless bee. We compared the role of both species and the effect of geographic and local factors on networks by addressing three questions: 1) Do both species have similar abundance and interaction patterns (degree and strength) in plant-bee networks? 2) Are both species equally influential to the network structure (nestedness, connectance, and plant and bee niche overlap)? 3) How are these species affected by geographic (altitude, temperature, precipitation) and local (natural vs. disturbed habitat) factors? We analyzed 21 plant-bee weighted interaction networks, encompassing most of the main biomes in Brazil. We found no significant difference between both species in abundance, in the number of plant species with which each bee species interacts (degree), and in the sum of their dependencies (strength). Structural equation models revealed the effect of A. mellifera and T. spinipes, respectively, on the interaction network pattern (nestedness) and in the similarity in bee’s interactive partners (bee niche overlap). It is most likely that the recent invasion of A. mellifera resulted in its rapid settlement inside the core of species that retain the largest number of interactions, resulting in a strong influence on nestedness. However, the long-term interaction between native T. spinipes and other bees most likely has a more direct effect on their interactive behavior. Moreover, temperature negatively affected A. mellifera bees, whereas disturbed habitats positively affected T. spinipes. Conversely, precipitation showed no effect. Being positively (T. spinipes) or indifferently (A. mellifera) affected by disturbed habitats makes these species prone to pollinate plant species in these areas, which are potentially poor in pollinators. PMID:26356234
Gorriz-Mifsud, Elena; Secco, Laura; Da Re, Riccardo; Pisani, Elena; Bonet, José Antonio
2017-03-01
In diffuse forest uses, like non-timber forest products' harvesting, the behavioural alignment of pickers is crucial for avoiding a "tragedy of the commons". Moreover, the introduction of policy tools such as a harvest permit system may help in keeping the activity under control. Besides the official enforcement, pickers' engagement may also derive from the perceived legitimate decision of forest managers and the community pressure to behave according to the shared values. Framed within the social capital theory, this paper examines three types of relations of rural communities in a protected area in Catalonia (Spain) where a system of mushroom picking permits was recently introduced. Through social network analysis, we explore structural changes in relations within the policy network across the policy conception, design and implementation phases. We then test whether social links of the pickers' community relate to influential members of the policy network. Lastly, we assess whether pickers' bonding and bridging structures affect the rate of permit uptake. Our results show that the high degree of acceptance could be explained by an adequate consideration of pickers' preferences within the decision-making group: local pickers show proximity to members of the policy network with medium-high influence during the three policy phases. The policy network also evolves, with some members emerging as key actors during certain phases. Significant differences are found in pickers' relations among and across the involved municipalities following an urban-rural gradient. A preliminary relation is found between social structures and differential pickers' engagement. These results illustrate a case of positive social capital backing policy design and, probably, also implementation. This calls for a meticulous design of forest policy networks with respect to communities of affected forest users. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sampling of temporal networks: Methods and biases
NASA Astrophysics Data System (ADS)
Rocha, Luis E. C.; Masuda, Naoki; Holme, Petter
2017-11-01
Temporal networks have been increasingly used to model a diversity of systems that evolve in time; for example, human contact structures over which dynamic processes such as epidemics take place. A fundamental aspect of real-life networks is that they are sampled within temporal and spatial frames. Furthermore, one might wish to subsample networks to reduce their size for better visualization or to perform computationally intensive simulations. The sampling method may affect the network structure and thus caution is necessary to generalize results based on samples. In this paper, we study four sampling strategies applied to a variety of real-life temporal networks. We quantify the biases generated by each sampling strategy on a number of relevant statistics such as link activity, temporal paths and epidemic spread. We find that some biases are common in a variety of networks and statistics, but one strategy, uniform sampling of nodes, shows improved performance in most scenarios. Given the particularities of temporal network data and the variety of network structures, we recommend that the choice of sampling methods be problem oriented to minimize the potential biases for the specific research questions on hand. Our results help researchers to better design network data collection protocols and to understand the limitations of sampled temporal network data.
Protein thermal denaturation is modulated by central residues in the protein structure network.
Souza, Valquiria P; Ikegami, Cecília M; Arantes, Guilherme M; Marana, Sandro R
2016-03-01
Network structural analysis, known as residue interaction networks or graphs (RIN or RIG, respectively) or protein structural networks or graphs (PSN or PSG, respectively), comprises a useful tool for detecting important residues for protein function, stability, folding and allostery. In RIN, the tertiary structure is represented by a network in which residues (nodes) are connected by interactions (edges). Such structural networks have consistently presented a few central residues that are important for shortening the pathways linking any two residues in a protein structure. To experimentally demonstrate that central residues effectively participate in protein properties, mutations were directed to seven central residues of the β-glucosidase Sfβgly (β-D-glucoside glucohydrolase; EC 3.2.1.21). These mutations reduced the thermal stability of the enzyme, as evaluated by changes in transition temperature (Tm ) and the denaturation rate at 45 °C. Moreover, mutations directed to the vicinity of a central residue also caused significant decreases in the Tm of Sfβgly and clearly increased the unfolding rate constant at 45 °C. However, mutations at noncentral residues or at surrounding residues did not affect the thermal stability of Sfβgly. Therefore, the data reported in the present study suggest that the perturbation of the central residues reduced the stability of the native structure of Sfβgly. These results are in agreement with previous findings showing that networks are robust, whereas attacks on central nodes cause network failure. Finally, the present study demonstrates that central residues underlie the functional properties of proteins. © 2016 Federation of European Biochemical Societies.
A Mechanistic Model of Human Recall of Social Network Structure and Relationship Affect.
Omodei, Elisa; Brashears, Matthew E; Arenas, Alex
2017-12-07
The social brain hypothesis argues that the need to deal with social challenges was key to our evolution of high intelligence. Research with non-human primates as well as experimental and fMRI studies in humans produce results consistent with this claim, leading to an estimate that human primary groups should consist of roughly 150 individuals. Gaps between this prediction and empirical observations can be partially accounted for using "compression heuristics", or schemata that simplify the encoding and recall of social information. However, little is known about the specific algorithmic processes used by humans to store and recall social information. We describe a mechanistic model of human network recall and demonstrate its sufficiency for capturing human recall behavior observed in experimental contexts. We find that human recall is predicated on accurate recall of a small number of high degree network nodes and the application of heuristics for both structural and affective information. This provides new insight into human memory, social network evolution, and demonstrates a novel approach to uncovering human cognitive operations.
Strategic tradeoffs in competitor dynamics on adaptive networks.
Hébert-Dufresne, Laurent; Allard, Antoine; Noël, Pierre-André; Young, Jean-Gabriel; Libby, Eric
2017-08-08
Recent empirical work highlights the heterogeneity of social competitions such as political campaigns: proponents of some ideologies seek debate and conversation, others create echo chambers. While symmetric and static network structure is typically used as a substrate to study such competitor dynamics, network structure can instead be interpreted as a signature of the competitor strategies, yielding competition dynamics on adaptive networks. Here we demonstrate that tradeoffs between aggressiveness and defensiveness (i.e., targeting adversaries vs. targeting like-minded individuals) creates paradoxical behaviour such as non-transitive dynamics. And while there is an optimal strategy in a two competitor system, three competitor systems have no such solution; the introduction of extreme strategies can easily affect the outcome of a competition, even if the extreme strategies have no chance of winning. Not only are these results reminiscent of classic paradoxical results from evolutionary game theory, but the structure of social networks created by our model can be mapped to particular forms of payoff matrices. Consequently, social structure can act as a measurable metric for social games which in turn allows us to provide a game theoretical perspective on online political debates.
The Role of Temporal Trends in Growing Networks
Ruppin, Eytan; Shavitt, Yuval
2016-01-01
The rich get richer principle, manifested by the Preferential attachment (PA) mechanism, is widely considered one of the major factors in the growth of real-world networks. PA stipulates that popular nodes are bound to be more attractive than less popular nodes; for example, highly cited papers are more likely to garner further citations. However, it overlooks the transient nature of popularity, which is often governed by trends. Here, we show that in a wide range of real-world networks the recent popularity of a node, i.e., the extent by which it accumulated links recently, significantly influences its attractiveness and ability to accumulate further links. We proceed to model this observation with a natural extension to PA, named Trending Preferential Attachment (TPA), in which edges become less influential as they age. TPA quantitatively parametrizes a fundamental network property, namely the network’s tendency to trends. Through TPA, we find that real-world networks tend to be moderately to highly trendy. Networks are characterized by different susceptibilities to trends, which determine their structure to a large extent. Trendy networks display complex structural traits, such as modular community structure and degree-assortativity, occurring regularly in real-world networks. In summary, this work addresses an inherent trait of complex networks, which greatly affects their growth and structure, and develops a unified model to address its interaction with preferential attachment. PMID:27486847
Caminiti, Silvia P; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F
2015-01-01
bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms.
Epidemics in Adaptive Social Networks with Temporary Link Deactivation
NASA Astrophysics Data System (ADS)
Tunc, Ilker; Shkarayev, Maxim S.; Shaw, Leah B.
2013-04-01
Disease spread in a society depends on the topology of the network of social contacts. Moreover, individuals may respond to the epidemic by adapting their contacts to reduce the risk of infection, thus changing the network structure and affecting future disease spread. We propose an adaptation mechanism where healthy individuals may choose to temporarily deactivate their contacts with sick individuals, allowing reactivation once both individuals are healthy. We develop a mean-field description of this system and find two distinct regimes: slow network dynamics, where the adaptation mechanism simply reduces the effective number of contacts per individual, and fast network dynamics, where more efficient adaptation reduces the spread of disease by targeting dangerous connections. Analysis of the bifurcation structure is supported by numerical simulations of disease spread on an adaptive network. The system displays a single parameter-dependent stable steady state and non-monotonic dependence of connectivity on link deactivation rate.
Vulnerability of a killer whale social network to disease outbreaks
NASA Astrophysics Data System (ADS)
Guimarães, Paulo R., Jr.; de Menezes, Márcio Argollo; Baird, Robin W.; Lusseau, David; Guimarães, Paulo; Dos Reis, Sérgio F.
2007-10-01
Emerging infectious diseases are among the main threats to conservation of biological diversity. A crucial task facing epidemiologists is to predict the vulnerability of populations of endangered animals to disease outbreaks. In this context, the network structure of social interactions within animal populations may affect disease spreading. However, endangered animal populations are often small and to investigate the dynamics of small networks is a difficult task. Using network theory, we show that the social structure of an endangered population of mammal-eating killer whales is vulnerable to disease outbreaks. This feature was found to be a consequence of the combined effects of the topology and strength of social links among individuals. Our results uncover a serious challenge for conservation of the species and its ecosystem. In addition, this study shows that the network approach can be useful to study dynamical processes in very small networks.
Hara, Noriko; Chen, Hui; Ynalvez, Marcus Antonius
2017-01-01
Prior studies showed that scientists' professional networks contribute to research productivity, but little work has examined what factors predict the formation of professional networks. This study sought to 1) examine what factors predict the formation of international ties between faculty and graduate students and 2) identify how these international ties would affect publication productivity in three East Asian countries. Face-to-face surveys and in-depth semi-structured interviews were conducted with a sample of faculty and doctoral students in life sciences at 10 research institutions in Japan, Singapore, and Taiwan. Our final sample consisted of 290 respondents (84 faculty and 206 doctoral students) and 1,435 network members. We used egocentric social network analysis to examine the structure of international ties and how they relate to research productivity. Our findings suggest that overseas graduate training can be a key factor in graduate students' development of international ties in these countries. Those with a higher proportion of international ties in their professional networks were likely to have published more papers and written more manuscripts. For faculty, international ties did not affect the number of manuscripts written or of papers published, but did correlate with an increase in publishing in top journals. The networks we examined were identified by asking study participants with whom they discuss their research. Because the relationships may not appear in explicit co-authorship networks, these networks were not officially recorded elsewhere. This study sheds light on the relationships of these invisible support networks to researcher productivity.
Chen, Hui; Ynalvez, Marcus Antonius
2017-01-01
Prior studies showed that scientists’ professional networks contribute to research productivity, but little work has examined what factors predict the formation of professional networks. This study sought to 1) examine what factors predict the formation of international ties between faculty and graduate students and 2) identify how these international ties would affect publication productivity in three East Asian countries. Face-to-face surveys and in-depth semi-structured interviews were conducted with a sample of faculty and doctoral students in life sciences at 10 research institutions in Japan, Singapore, and Taiwan. Our final sample consisted of 290 respondents (84 faculty and 206 doctoral students) and 1,435 network members. We used egocentric social network analysis to examine the structure of international ties and how they relate to research productivity. Our findings suggest that overseas graduate training can be a key factor in graduate students’ development of international ties in these countries. Those with a higher proportion of international ties in their professional networks were likely to have published more papers and written more manuscripts. For faculty, international ties did not affect the number of manuscripts written or of papers published, but did correlate with an increase in publishing in top journals. The networks we examined were identified by asking study participants with whom they discuss their research. Because the relationships may not appear in explicit co-authorship networks, these networks were not officially recorded elsewhere. This study sheds light on the relationships of these invisible support networks to researcher productivity. PMID:29045500
Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A
2018-07-01
Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.
Knockouts of high-ranking males have limited impact on baboon social networks.
Franz, Mathias; Altmann, Jeanne; Alberts, Susan C
Social network structures can crucially impact complex social processes such as collective behaviour or the transmission of information and diseases. However, currently it is poorly understood how social networks change over time. Previous studies on primates suggest that `knockouts' (due to death or dispersal) of high-ranking individuals might be important drivers for structural changes in animal social networks. Here we test this hypothesis using long-term data on a natural population of baboons, examining the effects of 29 natural knockouts of alpha or beta males on adult female social networks. We investigated whether and how knockouts affected (1) changes in grooming and association rates among adult females, and (2) changes in mean degree and global clustering coefficient in these networks. The only significant effect that we found was a decrease in mean degree in grooming networks in the first month after knockouts, but this decrease was rather small, and grooming networks rebounded to baseline levels by the second month after knockouts. Taken together our results indicate that the removal of high-ranking males has only limited or no lasting effects on social networks of adult female baboons. This finding calls into question the hypothesis that the removal of high-ranking individuals has a destabilizing effect on social network structures in social animals.
The Network of Global Corporate Control
Vitali, Stefania; Glattfelder, James B.; Battiston, Stefano
2011-01-01
The structure of the control network of transnational corporations affects global market competition and financial stability. So far, only small national samples were studied and there was no appropriate methodology to assess control globally. We present the first investigation of the architecture of the international ownership network, along with the computation of the control held by each global player. We find that transnational corporations form a giant bow-tie structure and that a large portion of control flows to a small tightly-knit core of financial institutions. This core can be seen as an economic “super-entity” that raises new important issues both for researchers and policy makers. PMID:22046252
Döring, Clemens; Hussein, Mohamed A; Jekle, Mario; Becker, Thomas
2017-08-15
For rye dough structure, it is hypothesised that the presence of arabinoxylan hinders the proteins from forming a coherent network. This hypothesis was investigated using fluorescent-stained antibodies that bind to the arabinoxylan chains. Image analysis proves that the arabinoxylan surrounds the proteins, negatively affecting protein networking. Further, it is hypothesised that the dosing of xylanase and transglutaminase has a positive impact on rye dough and bread characteristics; the findings in this study evidenced that this increases the protein network by up to 38% accompanied by a higher volume rise of 10.67%, compared to standard rye dough. These outcomes combine a product-oriented and physiochemical design of a recipe, targeting structural and functional relationships, and demonstrate a successful methodology for enhancing rye bread quality. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barrett, Lisa Feldman; Satpute, Ajay
2013-01-01
Understanding how a human brain creates a human mind ultimately depends on mapping psychological categories and concepts to physical measurements of neural response. Although it has long been assumed that emotional, social, and cognitive phenomena are realized in the operations of separate brain regions or brain networks, we demonstrate that it is possible to understand the body of neuroimaging evidence using a framework that relies on domain general, distributed structure-function mappings. We review current research in affective and social neuroscience and argue that the emerging science of large-scale intrinsic brain networks provides a coherent framework for a domain-general functional architecture of the human brain. PMID:23352202
Pilger, Tyler J; Gido, Keith B; Propst, David L; Whitney, James E; Turner, Thomas F
2017-05-01
Dendritic ecological network (DEN) architecture can be a strong predictor of spatial genetic patterns in theoretical and simulation studies. Yet, interspecific differences in dispersal capabilities and distribution within the network may equally affect species' genetic structuring. We characterized patterns of genetic variation from up to ten microsatellite loci for nine numerically dominant members of the upper Gila River fish community, New Mexico, USA. Using comparative landscape genetics, we evaluated the role of network architecture for structuring populations within species (pairwise F ST ) while explicitly accounting for intraspecific demographic influences on effective population size (N e ). Five species exhibited patterns of connectivity and/or genetic diversity gradients that were predicted by network structure. These species were generally considered to be small-bodied or habitat specialists. Spatial variation of N e was a strong predictor of pairwise F ST for two species, suggesting patterns of connectivity may also be influenced by genetic drift independent of network properties. Finally, two study species exhibited genetic patterns that were unexplained by network properties and appeared to be related to nonequilibrium processes. Properties of DENs shape community-wide genetic structure but effects are modified by intrinsic traits and nonequilibrium processes. Further theoretical development of the DEN framework should account for such cases. © 2017 John Wiley & Sons Ltd.
Virality Prediction and Community Structure in Social Networks
NASA Astrophysics Data System (ADS)
Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol
2013-08-01
How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.
Virality Prediction and Community Structure in Social Networks
Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol
2013-01-01
How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications. PMID:23982106
Virality prediction and community structure in social networks.
Weng, Lilian; Menczer, Filippo; Ahn, Yong-Yeol
2013-01-01
How does network structure affect diffusion? Recent studies suggest that the answer depends on the type of contagion. Complex contagions, unlike infectious diseases (simple contagions), are affected by social reinforcement and homophily. Hence, the spread within highly clustered communities is enhanced, while diffusion across communities is hampered. A common hypothesis is that memes and behaviors are complex contagions. We show that, while most memes indeed spread like complex contagions, a few viral memes spread across many communities, like diseases. We demonstrate that the future popularity of a meme can be predicted by quantifying its early spreading pattern in terms of community concentration. The more communities a meme permeates, the more viral it is. We present a practical method to translate data about community structure into predictive knowledge about what information will spread widely. This connection contributes to our understanding in computational social science, social media analytics, and marketing applications.
[Social Networks of Children with Mentally Ill Parents].
Stiawa, Maja; Kilian, Reinhold
2017-10-01
Social Networks of Children with Mentally Ill Parents Mental illness of parents can be a load situation for children. Supporting social relations might be an important source in such a situation. Social relations can be shown by social network analysis. Studies about social networks and mental health indicate differences regarding structure and potential for support when compared with social networks of healthy individuals. If and how mental illness of parents has an impact on their children's network is widely unknown. This systematic review shows methods and results of studies about social networks of children with mentally ill parents. By systematic search in electronic databases as well as manual search, two studies were found who met the target criteria. Both studies were conducted in the USA. Results of studies indicate that parental mental illness affects the state of mental health and social networks of children. Symptomatology of children changed due to perceived social support of network contacts. Impact of social support and strong network contacts seems to depend on age of children and the family situation. That's why support offers should be adapt to children's age. Focusing on social networks as potential resource for support and needs of the family affected seems appropriate during treatment.
Evaluating factors that predict the structure of a commensalistic epiphyte–phorophyte network
Sáyago, Roberto; Lopezaraiza-Mikel, Martha; Quesada, Mauricio; Álvarez-Añorve, Mariana Yolotl; Cascante-Marín, Alfredo; Bastida, Jesus Ma.
2013-01-01
A central issue in ecology is the understanding of the establishment of biotic interactions. We studied the factors that affect the assembly of the commensalistic interactions between vascular epiphytes and their host plants. We used an analytical approach that considers all individuals and species of epiphytic bromeliads and woody hosts and non-hosts at study plots. We built models of interaction probabilities among species to assess if host traits and abundance and spatial overlap of species predict the quantitative epiphyte–host network. Species abundance, species spatial overlap and host size largely predicted pairwise interactions and several network metrics. Wood density and bark texture of hosts also contributed to explain network structure. Epiphytes were more common on large hosts, on abundant woody species, with denser wood and/or rougher bark. The network had a low level of specialization, although several interactions were more frequent than expected by the models. We did not detect a phylogenetic signal on the network structure. The effect of host size on the establishment of epiphytes indicates that mature forests are necessary to preserve diverse bromeliad communities. PMID:23407832
NASA Astrophysics Data System (ADS)
Costea, Carmen
2006-10-01
Network analysis studies the development of the social structure of relationships around a group or an institutional body, and how it affects beliefs and behaviours. Causal constraints require a special and deeper attention to the social structure. The purpose of this paper is to give a new approach to the idea that this reality should be primarily conceived and investigated from the perspective of the properties of relations between and within units, instead of the properties of these units themselves. The relationship may refer to the exchange of products, labour, information and money. By mapping these relationships, network analysis can help to uncover the emergent and informal communication patterns of commercial companies that may be compared to the formal communication structures. These emergent patterns can be used to explain institutional and individuals’ behaviours. Network analysis techniques focus on the communication structure of an organization that can be subdivided and handled with different approaches. Structural features that can be analysed through the use of network analysis techniques are, for example, the (formal and informal) communication patterns in an organization or the identification of specific groups within an organization. Special attention may be given to specific aspects of communication patterns.
Inherited Retinal Degenerative Disease Clinical Trial Network
2012-10-01
strategies can be designed , tested and adopted as standard care. 2 While repeat evaluation and study of affected patients are vital to rigorously...following document is a summary of our experience and research in testing retinal structure and function in eyes with degenerative retinal diseases...Network PRINCIPAL INVESTIGATOR: Patricia Zilliox, Ph.D. CONTRACTING ORGANIZATION: National Neurovision Research Institute Owings
Using Social Networks to Enhance Teaching and Learning Experiences in Higher Learning Institutions
ERIC Educational Resources Information Center
Balakrishnan, Vimala
2014-01-01
The paper first explores the factors that affect the use of social networks to enhance teaching and learning experiences among students and lecturers, using structured questionnaires prepared based on the Push-Pull-Mooring framework. A total of 455 students and lecturers from higher learning institutions in Malaysia participated in this study.…
Judd, Kevin
2013-12-01
Many physical and biochemical systems are well modelled as a network of identical non-linear dynamical elements with linear coupling between them. An important question is how network structure affects chaotic dynamics, for example, by patterns of synchronisation and coherence. It is shown that small networks can be characterised precisely into patterns of exact synchronisation and large networks characterised by partial synchronisation at the local and global scale. Exact synchronisation modes are explained using tools of symmetry groups and invariance, and partial synchronisation is explained by finite-time shadowing of exact synchronisation modes.
Mean-field equations for neuronal networks with arbitrary degree distributions.
Nykamp, Duane Q; Friedman, Daniel; Shaker, Sammy; Shinn, Maxwell; Vella, Michael; Compte, Albert; Roxin, Alex
2017-04-01
The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.
Heuristic urban transportation network design method, a multilayer coevolution approach
NASA Astrophysics Data System (ADS)
Ding, Rui; Ujang, Norsidah; Hamid, Hussain bin; Manan, Mohd Shahrudin Abd; Li, Rong; Wu, Jianjun
2017-08-01
The design of urban transportation networks plays a key role in the urban planning process, and the coevolution of urban networks has recently garnered significant attention in literature. However, most of these recent articles are based on networks that are essentially planar. In this research, we propose a heuristic multilayer urban network coevolution model with lower layer network and upper layer network that are associated with growth and stimulate one another. We first use the relative neighbourhood graph and the Gabriel graph to simulate the structure of rail and road networks, respectively. With simulation we find that when a specific number of nodes are added, the total travel cost ratio between an expanded network and the initial lower layer network has the lowest value. The cooperation strength Λ and the changeable parameter average operation speed ratio Θ show that transit users' route choices change dramatically through the coevolution process and that their decisions, in turn, affect the multilayer network structure. We also note that the simulated relation between the Gini coefficient of the betweenness centrality, Θ and Λ have an optimal point for network design. This research could inspire the analysis of urban network topology features and the assessment of urban growth trends.
Mean-field equations for neuronal networks with arbitrary degree distributions
NASA Astrophysics Data System (ADS)
Nykamp, Duane Q.; Friedman, Daniel; Shaker, Sammy; Shinn, Maxwell; Vella, Michael; Compte, Albert; Roxin, Alex
2017-04-01
The emergent dynamics in networks of recurrently coupled spiking neurons depends on the interplay between single-cell dynamics and network topology. Most theoretical studies on network dynamics have assumed simple topologies, such as connections that are made randomly and independently with a fixed probability (Erdös-Rényi network) (ER) or all-to-all connected networks. However, recent findings from slice experiments suggest that the actual patterns of connectivity between cortical neurons are more structured than in the ER random network. Here we explore how introducing additional higher-order statistical structure into the connectivity can affect the dynamics in neuronal networks. Specifically, we consider networks in which the number of presynaptic and postsynaptic contacts for each neuron, the degrees, are drawn from a joint degree distribution. We derive mean-field equations for a single population of homogeneous neurons and for a network of excitatory and inhibitory neurons, where the neurons can have arbitrary degree distributions. Through analysis of the mean-field equations and simulation of networks of integrate-and-fire neurons, we show that such networks have potentially much richer dynamics than an equivalent ER network. Finally, we relate the degree distributions to so-called cortical motifs.
Burgstaller, Gerald; Gregor, Martin; Winter, Lilli
2010-01-01
Focal adhesions (FAs) located at the ends of actin/myosin-containing contractile stress fibers form tight connections between fibroblasts and their underlying extracellular matrix. We show here that mature FAs and their derivative fibronectin fibril-aligned fibrillar adhesions (FbAs) serve as docking sites for vimentin intermediate filaments (IFs) in a plectin isoform 1f (P1f)-dependent manner. Time-lapse video microscopy revealed that FA-associated P1f captures mobile vimentin filament precursors, which then serve as seeds for de novo IF network formation via end-to-end fusion with other mobile precursors. As a consequence of IF association, the turnover of FAs is reduced. P1f-mediated IF network formation at FbAs creates a resilient cage-like core structure that encases and positions the nucleus while being stably connected to the exterior of the cell. We show that the formation of this structure affects cell shape with consequences for cell polarization. PMID:20702585
Network resilience in the face of health system reform.
Sheaff, Rod; Benson, Lawrence; Farbus, Lou; Schofield, Jill; Mannion, Russell; Reeves, David
2010-03-01
Many health systems now use networks as governance structures. Network 'macroculture' is the complex of artefacts, espoused values and unarticulated assumptions through which network members coordinate network activities. Knowledge of how network macroculture during 2006-2008 develops is therefore of value for understanding how health networks operate, how health system reforms affect them, and how networks function (and can be used) as governance structures. To examine how quasi-market reforms impact upon health networks' macrocultures we systematically compared longitudinal case studies of these impacts across two care networks, a programme network and a user-experience network in the English NHS. We conducted interviews with key informants, focus groups, non-participant observations of meetings and analyses of key documents. We found that in these networks, artefacts adapted to health system reform faster than espoused values did, and the latter adapted faster than basic underlying assumptions. These findings contribute to knowledge by providing empirical support for theories which hold that changes in networks' core practical activity are what stimulate changes in other aspects of network macroculture. The most powerful way of using network macroculture to manage the formation and operation of health networks therefore appears to be by focusing managerial activity on the ways in which networks produce their core artefacts. 2009 Elsevier Ltd. All rights reserved.
Alagapan, Sankaraleengam; Franca, Eric; Pan, Liangbin; Leondopulos, Stathis; Wheeler, Bruce C; DeMarse, Thomas B
2016-01-01
In this study, we created four network topologies composed of living cortical neurons and compared resultant structural-functional dynamics including the nature and quality of information transmission. Each living network was composed of living cortical neurons and were created using microstamping of adhesion promoting molecules and each was "designed" with different levels of convergence embedded within each structure. Networks were cultured over a grid of electrodes that permitted detailed measurements of neural activity at each node in the network. Of the topologies we tested, the "Random" networks in which neurons connect based on their own intrinsic properties transmitted information embedded within their spike trains with higher fidelity relative to any other topology we tested. Within our patterned topologies in which we explicitly manipulated structure, the effect of convergence on fidelity was dependent on both topology and time-scale (rate vs. temporal coding). A more detailed examination using tools from network analysis revealed that these changes in fidelity were also associated with a number of other structural properties including a node's degree, degree-degree correlations, path length, and clustering coefficients. Whereas information transmission was apparent among nodes with few connections, the greatest transmission fidelity was achieved among the few nodes possessing the highest number of connections (high degree nodes or putative hubs). These results provide a unique view into the relationship between structure and its affect on transmission fidelity, at least within these small neural populations with defined network topology. They also highlight the potential role of tools such as microstamp printing and microelectrode array recordings to construct and record from arbitrary network topologies to provide a new direction in which to advance the study of structure-function relationships.
Economic networks: Heterogeneity-induced vulnerability and loss of synchronization
NASA Astrophysics Data System (ADS)
Colon, Célian; Ghil, Michael
2017-12-01
Interconnected systems are prone to propagation of disturbances, which can undermine their resilience to external perturbations. Propagation dynamics can clearly be affected by potential time delays in the underlying processes. We investigate how such delays influence the resilience of production networks facing disruption of supply. Interdependencies between economic agents are modeled using systems of Boolean delay equations (BDEs); doing so allows us to introduce heterogeneity in production delays and in inventories. Complex network topologies are considered that reproduce realistic economic features, including a network of networks. Perturbations that would otherwise vanish can, because of delay heterogeneity, amplify and lead to permanent disruptions. This phenomenon is enabled by the interactions between short cyclic structures. Difference in delays between two interacting, and otherwise resilient, structures can in turn lead to loss of synchronization in damage propagation and thus prevent recovery. Finally, this study also shows that BDEs on complex networks can lead to metastable relaxation oscillations, which are damped out in one part of a network while moving on to another part.
Supply network configuration—A benchmarking problem
NASA Astrophysics Data System (ADS)
Brandenburg, Marcus
2018-03-01
Managing supply networks is a highly relevant task that strongly influences the competitiveness of firms from various industries. Designing supply networks is a strategic process that considerably affects the structure of the whole network. In contrast, supply networks for new products are configured without major adaptations of the existing structure, but the network has to be configured before the new product is actually launched in the marketplace. Due to dynamics and uncertainties, the resulting planning problem is highly complex. However, formal models and solution approaches that support supply network configuration decisions for new products are scant. The paper at hand aims at stimulating related model-based research. To formulate mathematical models and solution procedures, a benchmarking problem is introduced which is derived from a case study of a cosmetics manufacturer. Tasks, objectives, and constraints of the problem are described in great detail and numerical values and ranges of all problem parameters are given. In addition, several directions for future research are suggested.
Monitoring the bending and twist of morphing structures
NASA Astrophysics Data System (ADS)
Smoker, J.; Baz, A.
2008-03-01
This paper presents the development of the theoretical basis for the design of sensor networks for determining the 2-dimensioal shape of morphing structures by monitoring simultaneously the bending and twist deflections. The proposed development is based on the non-linear theory of finite elements to extract the transverse linear and angular deflections of a plate-like structure. The sensors outputs are wirelessly transmitted to the command unit to simultaneously compute maps of the linear and angular deflections and maps of the strain distribution of the entire structure. The deflection and shape information are required to ascertain that the structure is properly deployed and that its surfaces are operating wrinkle-free. The strain map ensures that the structure is not loaded excessively to adversely affect its service life. The developed theoretical model is validated experimentally using a prototype of a variable cambered span morphing structure provided with a network of distributed sensors. The structure/sensor network system is tested under various static conditions to determine the response characteristics of the proposed sensor network as compared to other conventional sensor systems. The presented theoretical and experimental techniques can have a great impact on the safe deployment and effective operation of a wide variety of morphing and inflatable structures such as morphing aircraft, solar sails, inflatable wings, and large antennas.
Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina
2018-01-01
Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772
Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina
2018-04-01
Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.
Multiple-predators-based capture process on complex networks
NASA Astrophysics Data System (ADS)
Ramiz Sharafat, Rajput; Pu, Cunlai; Li, Jie; Chen, Rongbin; Xu, Zhongqi
2017-03-01
The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter $\\alpha$. We derive the distribution of the lamb's lifetime and the expected lifetime $\\left\\langle T\\right\\rangle $. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. We also study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than large-degree nodes to prolong the lifetime of the lamb. Moreover, dense or homogeneous network structures are against the survival of the lamb.
NASA Astrophysics Data System (ADS)
Havlin, S.; Kenett, D. Y.; Ben-Jacob, E.; Bunde, A.; Cohen, R.; Hermann, H.; Kantelhardt, J. W.; Kertész, J.; Kirkpatrick, S.; Kurths, J.; Portugali, J.; Solomon, S.
2012-11-01
Network theory has become one of the most visible theoretical frameworks that can be applied to the description, analysis, understanding, design and repair of multi-level complex systems. Complex networks occur everywhere, in man-made and human social systems, in organic and inorganic matter, from nano to macro scales, and in natural and anthropogenic structures. New applications are developed at an ever-increasing rate and the promise for future growth is high, since increasingly we interact with one another within these vital and complex environments. Despite all the great successes of this field, crucial aspects of multi-level complex systems have been largely ignored. Important challenges of network science are to take into account many of these missing realistic features such as strong coupling between networks (networks are not isolated), the dynamics of networks (networks are not static), interrelationships between structure, dynamics and function of networks, interdependencies in given networks (and other classes of links, including different signs of interactions), and spatial properties (including geographical aspects) of networks. This aim of this paper is to introduce and discuss the challenges that future network science needs to address, and how different disciplines will be accordingly affected.
Social network and decision-making in primates: a report on Franco-Japanese research collaborations.
Sueur, Cédric; Pelé, Marie
2016-07-01
Sociality is suggested to evolve as a strategy for animals to cope with challenges in their environment. Within a population, each individual can be seen as part of a network of social interactions that vary in strength, type and dynamics (Sueur et al. 2011a). The structure of this social network can strongly impact upon not only on the fitness of individuals and their decision-making, but also on the ecology of populations and the evolution of a species. Our Franco-Japanese collaboration allowed us to study social networks in several species (Japanese macaques, chimpanzees, colobines, etc.) and on different topics (social epidemiology, social evolution, information transmission). Individual attributes such as stress, rank or age can affect how individuals take decisions and the structure of the social network. This heterogeneity is linked to the assortativity of individuals and to the efficiency of the flow within a network. It is important, therefore, that this heterogeneity is integrated in the process or pattern under study in order to provide a better resolution of investigation and, ultimately, a better understanding of behavioural strategies, social dynamics and social evolution. How social information affects decision-making could be important to understand how social groups make collective decisions and how information may spread throughout the social group. In human beings, road-crossing behaviours in the presence of other individuals is a good way to study the influence of social information on individual behaviour and decision-making, for instance. Culture directly affects which information - personal vs social - individuals prefer to follow. Our collaboration contributed to the understanding of the relative influence of different factors, cultural and ecological, on primate, including human, sociality.
Emergence of scale-free close-knit friendship structure in online social networks.
Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan
2012-01-01
Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This work helps understand the interplay between structures on different scales in online social networks.
Emergence of Scale-Free Close-Knit Friendship Structure in Online Social Networks
Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan
2012-01-01
Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This work helps understand the interplay between structures on different scales in online social networks. PMID:23272067
Optimal Learning Paths in Information Networks
Rodi, G. C.; Loreto, V.; Servedio, V. D. P.; Tria, F.
2015-01-01
Each sphere of knowledge and information could be depicted as a complex mesh of correlated items. By properly exploiting these connections, innovative and more efficient navigation strategies could be defined, possibly leading to a faster learning process and an enduring retention of information. In this work we investigate how the topological structure embedding the items to be learned can affect the efficiency of the learning dynamics. To this end we introduce a general class of algorithms that simulate the exploration of knowledge/information networks standing on well-established findings on educational scheduling, namely the spacing and lag effects. While constructing their learning schedules, individuals move along connections, periodically revisiting some concepts, and sometimes jumping on very distant ones. In order to investigate the effect of networked information structures on the proposed learning dynamics we focused both on synthetic and real-world graphs such as subsections of Wikipedia and word-association graphs. We highlight the existence of optimal topological structures for the simulated learning dynamics whose efficiency is affected by the balance between hubs and the least connected items. Interestingly, the real-world graphs we considered lead naturally to almost optimal learning performances. PMID:26030508
Sampling properties of directed networks
NASA Astrophysics Data System (ADS)
Son, S.-W.; Christensen, C.; Bizhani, G.; Foster, D. V.; Grassberger, P.; Paczuski, M.
2012-10-01
For many real-world networks only a small “sampled” version of the original network may be investigated; those results are then used to draw conclusions about the actual system. Variants of breadth-first search (BFS) sampling, which are based on epidemic processes, are widely used. Although it is well established that BFS sampling fails, in most cases, to capture the IN component(s) of directed networks, a description of the effects of BFS sampling on other topological properties is all but absent from the literature. To systematically study the effects of sampling biases on directed networks, we compare BFS sampling to random sampling on complete large-scale directed networks. We present new results and a thorough analysis of the topological properties of seven complete directed networks (prior to sampling), including three versions of Wikipedia, three different sources of sampled World Wide Web data, and an Internet-based social network. We detail the differences that sampling method and coverage can make to the structural properties of sampled versions of these seven networks. Most notably, we find that sampling method and coverage affect both the bow-tie structure and the number and structure of strongly connected components in sampled networks. In addition, at a low sampling coverage (i.e., less than 40%), the values of average degree, variance of out-degree, degree autocorrelation, and link reciprocity are overestimated by 30% or more in BFS-sampled networks and only attain values within 10% of the corresponding values in the complete networks when sampling coverage is in excess of 65%. These results may cause us to rethink what we know about the structure, function, and evolution of real-world directed networks.
Buskens, Vincent; Snijders, Chris
2016-01-01
We study how payoffs and network structure affect reaching the payoff-dominant equilibrium in a [Formula: see text] coordination game that actors play with their neighbors in a network. Using an extensive simulation analysis of over 100,000 networks with 2-25 actors, we show that the importance of network characteristics is restricted to a limited part of the payoff space. In this part, we conclude that the payoff-dominant equilibrium is chosen more often if network density is larger, the network is more centralized, and segmentation of the network is smaller. Moreover, it is more likely that heterogeneity in behavior persists if the network is more segmented and less centralized. Persistence of heterogeneous behavior is not related to network density.
Yang, Xiaozhao Y; Kelly, Brian C; Yang, Tingzhong
2014-09-01
The decision to initiate, maintain, or quit cigarette smoking is structured by both social networks and health beliefs. Self-exempting beliefs affect people's decisions in favor of a behavior even when they recognize the harm associated with it. This study incorporated the literatures on social networks and self-exempting beliefs to study the problem of daily smoking by exploring their mediatory relationships and the mechanisms of how smoking behavior is developed and maintained. Specifically, this article hypothesizes that social networks affect daily smoking directly as well as indirectly by facilitating the formation of self-exempting beliefs. The sample comes from urban male residents in Hangzhou, China randomly selected and interviewed through multistage sampling in 2011. Using binary mediation analysis with logistic regression to test the hypotheses, the authors found that (a) daily smoking is associated with having smokers in several social network arenas and (b) self-exempting beliefs about smoking mediate the association between coworker network and daily smoking, but not for family network and friend network. The role of social network at work place in the creation and maintenance of self-exempting beliefs should be considered by policymakers, prevention experts, and interventionists.
Lange, Denise; Del-Claro, Kleber
2014-01-01
Plant-animal interactions occur in a community context of dynamic and complex ecological interactive networks. The understanding of who interacts with whom is a basic information, but the outcomes of interactions among associates are fundamental to draw valid conclusions about the functional structure of the network. Ecological networks studies in general gave little importance to know the true outcomes of interactions and how they may change over time. We evaluate the dynamic of an interaction network between ants and plants with extrafloral nectaries, by verifying the temporal variation in structure and outcomes of mutualism for the plant community (leaf herbivory). To reach this goal, we used two tools: bipartite network analysis and experimental manipulation. The networks exhibited the same general pattern as other mutualistic networks: nestedness, asymmetry and low specialization and this pattern was maintained over time, but with internal changes (species degree, connectance and ant abundance). These changes influenced the protection effectiveness of plants by ants, which varied over time. Our study shows that interaction networks between ants and plants are dynamic over time, and that these alterations affect the outcomes of mutualisms. In addition, our study proposes that the set of single systems that shape ecological networks can be manipulated for a greater understanding of the entire system. PMID:25141007
Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant
Ackbarow, Theodor; Sen, Dipanjan; Thaulow, Christian; Buehler, Markus J.
2009-01-01
Alpha-helix based protein networks as they appear in intermediate filaments in the cell’s cytoskeleton and the nuclear membrane robustly withstand large deformation of up to several hundred percent strain, despite the presence of structural imperfections or flaws. This performance is not achieved by most synthetic materials, which typically fail at much smaller deformation and show a great sensitivity to the existence of structural flaws. Here we report a series of molecular dynamics simulations with a simple coarse-grained multi-scale model of alpha-helical protein domains, explaining the structural and mechanistic basis for this observed behavior. We find that the characteristic properties of alpha-helix based protein networks are due to the particular nanomechanical properties of their protein constituents, enabling the formation of large dissipative yield regions around structural flaws, effectively protecting the protein network against catastrophic failure. We show that the key for these self protecting properties is a geometric transformation of the crack shape that significantly reduces the stress concentration at corners. Specifically, our analysis demonstrates that the failure strain of alpha-helix based protein networks is insensitive to the presence of structural flaws in the protein network, only marginally affecting their overall strength. Our findings may help to explain the ability of cells to undergo large deformation without catastrophic failure while providing significant mechanical resistance. PMID:19547709
Reducing readmissions to detoxification: an interorganizational network perspective.
Spear, Suzanne E
2014-04-01
The high cost of detoxification (detox) services and health risks associated with continued substance abuse make readmission to detox an important indicator of poor performance for substance use disorder treatment systems. This study examined the extent to which the structure of local networks available to detox programs affects patients' odds of readmission to detox within 1 year. Administrative data from 32 counties in California in 2008-2009 were used to map network ties between programs based on patient transfers. Social network analysis was employed to measure structural features of detox program networks. Contextual predictors included efficiency (proportion of ties within a network that are non-redundant) and out-degree (number of outgoing ties to other programs). A binary mixed model was used to predict the odds of readmission among detox patients in residential (non-hospital) facilities (N=18,278). After adjusting for patient-level covariates and continuity of service from detox to outpatient or residential treatment, network efficiency was associated with lower odds of readmission. The impact of network structure on detox readmissions suggests that the interorganizational context in which detox programs operate may be important for improving continuity of service within substance use disorder treatment systems. Implications for future research are discussed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Reducing Readmissions to Detoxification: An Interorganizational Network Perspective
Spear, Suzanne E.
2014-01-01
Background The high cost of detoxification (detox) services and health risks associated with continued substance abuse make readmission to detox an important indicator of poor performance for substance use disorder treatment systems. This study examined the extent to which the structure of local networks available to detox programs affects patients’ odds of readmission to detox within 1 year. Methods Administrative data from 32 counties in California in 2008–2009 were used to map network ties between programs based on patient transfers. Social network analysis was employed to measure structural features of detox program networks. Contextual predictors included efficiency (proportion of ties within a network that are non-redundant) and out-degree (number of outgoing ties to other programs). A binary mixed model was used to predict the odds of readmission among detox patients in residential (non-hospital) facilities (N =18,278). Results After adjusting for patient-level covariates and continuity of service from detox to outpatient or residential treatment, network efficiency was associated with lower odds of readmission. Conclusion The impact of network structure on detox readmissions suggests that the interorganizational context in which detox programs operate may be important for improving continuity of service within substance use disorder treatment systems. Implications for future research are discussed. PMID:24529966
Rautureau, S; Dufour, B; Durand, B
2012-07-01
The networks generated by live animal movements are the principal vector for the propagation of infectious agents between farms, and their topology strongly affects how fast a disease may spread. The structural characteristics of networks may thus provide indicators of network vulnerability to the spread of infectious disease. This study applied social network analysis methods to describe the French swine trade network. Initial analysis involved calculating several parameters to characterize networks and then identifying high-risk subgroups of holdings for different time scales. Holding-specific centrality measurements ('degree', 'betweenness' and 'ingoing infection chain'), which summarize the place and the role of holdings in the network, were compared according to the production type. In addition, network components and communities, areas where connectedness is particularly high and could influence the speed and the extent of a disease, were identified and analysed. Dealer holdings stood out because of their high centrality values suggesting that these holdings may control the flow of animals in part of the network. Herds with growing units had higher values for degree and betweenness centrality, representing central positions for both spreading and receiving disease, whereas herds with finishing units had higher values for in-degree and ingoing infection chain centrality values and appeared more vulnerable with many contacts through live animal movements and thus at potentially higher risk for introduction of contagious diseases. This reflects the dynamics of the swine trade with downward movements along the production chain. But, the significant heterogeneity of farms with several production units did not reveal any particular type of production for targeting disease surveillance or control. Besides, no giant strong connected component was observed, the network being rather organized according to communities of small or medium size (<20% of network size). Because of this fragmentation, the swine trade network appeared less structurally vulnerable than ruminant trade networks. This fragmentation is explained by the hierarchical structure, which thus limits the structural vulnerability of the global trade network. However, inside communities, the hierarchical structure of the swine production system would favour the spread of an infectious agent (especially if introduced in breeding herds).
Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes.
Hosseini, S M Hadi; Mazaika, Paul; Mauras, Nelly; Buckingham, Bruce; Weinzimer, Stuart A; Tsalikian, Eva; White, Neil H; Reiss, Allan L
2016-11-01
Type 1 diabetes mellitus (T1D), one of the most frequent chronic diseases in children, is associated with glucose dysregulation that contributes to an increased risk for neurocognitive deficits. While there is a bulk of evidence regarding neurocognitive deficits in adults with T1D, little is known about how early-onset T1D affects neural networks in young children. Recent data demonstrated widespread alterations in regional gray matter and white matter associated with T1D in young children. These widespread neuroanatomical changes might impact the organization of large-scale brain networks. In the present study, we applied graph-theoretical analysis to test whether the organization of structural covariance networks in the brain for a cohort of young children with T1D (N = 141) is altered compared to healthy controls (HC; N = 69). While the networks in both groups followed a small world organization-an architecture that is simultaneously highly segregated and integrated-the T1D network showed significantly longer path length compared with HC, suggesting reduced global integration of brain networks in young children with T1D. In addition, network robustness analysis revealed that the T1D network model showed more vulnerability to neural insult compared with HC. These results suggest that early-onset T1D negatively impacts the global organization of structural covariance networks and influences the trajectory of brain development in childhood. This is the first study to examine structural covariance networks in young children with T1D. Improving glycemic control for young children with T1D might help prevent alterations in brain networks in this population. Hum Brain Mapp 37:4034-4046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Complementary molecular information changes our perception of food web structure
Wirta, Helena K.; Hebert, Paul D. N.; Kaartinen, Riikka; Prosser, Sean W.; Várkonyi, Gergely; Roslin, Tomas
2014-01-01
How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host–parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them. PMID:24449902
How electrostatic networks modulate specificity and stability of collagen.
Zheng, Hongning; Lu, Cheng; Lan, Jun; Fan, Shilong; Nanda, Vikas; Xu, Fei
2018-06-12
One-quarter of the 28 types of natural collagen exist as heterotrimers. The oligomerization state of collagen affects the structure and mechanics of the extracellular matrix, providing essential cues to modulate biological and pathological processes. A lack of high-resolution structural information limits our mechanistic understanding of collagen heterospecific self-assembly. Here, the 1.77-Å resolution structure of a synthetic heterotrimer demonstrates the balance of intermolecular electrostatics and hydrogen bonding that affects collagen stability and heterospecificity of assembly. Atomistic simulations and mutagenesis based on the solved structure are used to explore the contributions of specific interactions to energetics. A predictive model of collagen stability and specificity is developed for engineering novel collagen structures.
Sidlauskaite, Justina; Caeyenberghs, Karen; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R
2015-01-01
Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD). However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics - small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.
Armour, Cherie; Fried, Eiko I; Deserno, Marie K; Tsai, Jack; Pietrzak, Robert H
2017-01-01
Recent developments in psychometrics enable the application of network models to analyze psychological disorders, such as PTSD. Instead of understanding symptoms as indicators of an underlying common cause, this approach suggests symptoms co-occur in syndromes due to causal interactions. The current study has two goals: (1) examine the network structure among the 20 DSM-5 PTSD symptoms, and (2) incorporate clinically relevant variables to the network to investigate whether PTSD symptoms exhibit differential relationships with suicidal ideation, depression, anxiety, physical functioning/quality of life (QoL), mental functioning/QoL, age, and sex. We utilized a nationally representative U.S. military veteran's sample; and analyzed the data from a subsample of 221 veterans who reported clinically significant DSM-5 PTSD symptoms. Networks were estimated using state-of-the-art regularized partial correlation models. Data and code are published along with the paper. The 20-item DSM-5 PTSD network revealed that symptoms were positively connected within the network. Especially strong connections emerged between nightmares and flashbacks; blame of self or others and negative trauma-related emotions, detachment and restricted affect; and hypervigilance and exaggerated startle response. The most central symptoms were negative trauma-related emotions, flashbacks, detachment, and physiological cue reactivity. Incorporation of clinically relevant covariates into the network revealed paths between self-destructive behavior and suicidal ideation; concentration difficulties and anxiety, depression, and mental QoL; and depression and restricted affect. These results demonstrate the utility of a network approach in modeling the structure of DSM-5 PTSD symptoms, and suggest differential associations between specific DSM-5 PTSD symptoms and clinical outcomes in trauma survivors. Implications of these results for informing the assessment and treatment of this disorder, are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rautureau, S; Dufour, B; Durand, B
2011-04-01
Besides farming, trade of livestock is a major component of agricultural economy. However, the networks generated by live animal movements are the major support for the propagation of infectious agents between farms, and their structure strongly affects how fast a disease may spread. Structural characteristics may thus be indicators of network vulnerability to the spread of infectious disease. The method proposed here is based upon the analysis of specific subnetworks: the giant strongly connected components (GSCs). Their existence, size and geographic extent are used to assess network vulnerability. Their disappearance when targeted nodes are removed allows studying how network vulnerability may be controlled under emergency conditions. The method was applied to the cattle trade network in France, 2005. Giant strongly connected components were present and widely spread all over the country in yearly, monthly and weekly networks. Among several tested approaches, the most efficient way to make GSCs disappear was based on the ranking of nodes by decreasing betweenness centrality (the proportion of shortest paths between nodes on which a specific node lies). Giant strongly connected components disappearance was obtained after removal of <1% of network nodes. Under emergency conditions, suspending animal trade activities in a small subset of holdings may thus allow to control the spread of an infectious disease through the animal trade network. Nodes representing markets and dealers were widely affected by these simulated control measures. This confirms their importance as 'hubs' for infectious diseases spread. Besides emergency conditions, specific sensitization and preventive measures should be dedicated to this population. © 2010 Blackwell Verlag GmbH.
Temporal lobe epilepsy and affective disorders: the role of the subgenual anterior cingulate cortex.
Stretton, J; Pope, R A; Winston, G P; Sidhu, M K; Symms, M; Duncan, J S; Koepp, M; Thompson, P J; Foong, J
2015-02-01
Reduced deactivation within the default mode network (DMN) is common in individuals with primary affective disorders relative to healthy volunteers (HVs). It is unknown whether similar network abnormalities are present in temporal lobe epilepsy (TLE) patients with a history of affective psychopathology. 17 TLE patients with a lifetime affective diagnosis, 31 TLE patients with no formal psychiatric history and 30 HVs were included. We used a visuo-spatial 'n-back' paradigm to compare working memory (WM) network activation between these groups. Post hoc analyses included voxel-based morphometry and diffusion tensor imaging. The Beck Depression Inventory-Fast Screen and Beck Anxiety Inventory were completed on the day of scanning. Each group activated the fronto-parietal WM networks and deactivated the typical DMN in response to increasing task demands. Group comparison revealed that TLE patients with lifetime affective morbidity showed significantly greater deactivation in subgenual anterior cingulate cortex (sACC) than either the TLE-only or the HVs (p<0.001). This effect persisted after covarying for current psychotropic medication and severity of current depressive/anxiety symptoms (all p<0.001). Correlational analysis revealed that this finding was not driven by differences in task performance. There were no significant differences in grey matter volume or structural connectivity between the TLE groups. Our results provide novel evidence suggesting that affective psychopathology in TLE has a neurobiological correlate, and in this context the sACC performs differently compared with network activity in primary affective disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
A natural experiment of social network formation and dynamics.
Phan, Tuan Q; Airoldi, Edoardo M
2015-05-26
Social networks affect many aspects of life, including the spread of diseases, the diffusion of information, the workers' productivity, and consumers' behavior. Little is known, however, about how these networks form and change. Estimating causal effects and mechanisms that drive social network formation and dynamics is challenging because of the complexity of engineering social relations in a controlled environment, endogeneity between network structure and individual characteristics, and the lack of time-resolved data about individuals' behavior. We leverage data from a sample of 1.5 million college students on Facebook, who wrote more than 630 million messages and 590 million posts over 4 years, to design a long-term natural experiment of friendship formation and social dynamics in the aftermath of a natural disaster. The analysis shows that affected individuals are more likely to strengthen interactions, while maintaining the same number of friends as unaffected individuals. Our findings suggest that the formation of social relationships may serve as a coping mechanism to deal with high-stress situations and build resilience in communities.
A natural experiment of social network formation and dynamics
Phan, Tuan Q.; Airoldi, Edoardo M.
2015-01-01
Social networks affect many aspects of life, including the spread of diseases, the diffusion of information, the workers' productivity, and consumers' behavior. Little is known, however, about how these networks form and change. Estimating causal effects and mechanisms that drive social network formation and dynamics is challenging because of the complexity of engineering social relations in a controlled environment, endogeneity between network structure and individual characteristics, and the lack of time-resolved data about individuals' behavior. We leverage data from a sample of 1.5 million college students on Facebook, who wrote more than 630 million messages and 590 million posts over 4 years, to design a long-term natural experiment of friendship formation and social dynamics in the aftermath of a natural disaster. The analysis shows that affected individuals are more likely to strengthen interactions, while maintaining the same number of friends as unaffected individuals. Our findings suggest that the formation of social relationships may serve as a coping mechanism to deal with high-stress situations and build resilience in communities. PMID:25964337
Effects of biotic and abiotic factors on the temporal dynamic of bat-fruit interactions
NASA Astrophysics Data System (ADS)
Laurindo, Rafael de Souza; Gregorin, Renato; Tavares, Davi Castro
2017-08-01
Mutualistic interactions between animals and plants vary over time and space based on the abundance of fruits or animals and seasonality. Little is known about this temporal dynamic and the influence of biotic and abiotic factors on the structure of interaction networks. We evaluated changes in the structure of network interactions between bats and fruits in relation to variations in rainfall. Our results suggest that fruit abundance is the main variable responsible for temporal changes in network attributes, such as network size, connectance, and number of interactions. In the same way, temperature positively affected the abundance of fruits and bats. An increase in temperature and alterations in rainfall patterns, due to human induced climate change, can cause changes in phenological patterns and fruit production, with negative consequences to biodiversity maintenance, ecological interactions, and ecosystem functioning.
Caminiti, Silvia P.; Canessa, Nicola; Cerami, Chiara; Dodich, Alessandra; Crespi, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Falini, Andrea; Cappa, Stefano F.
2015-01-01
Background bvFTD patients display an impairment in the attribution of cognitive and affective states to others, reflecting GM atrophy in brain regions associated with social cognition, such as amygdala, superior temporal cortex and posterior insula. Distinctive patterns of abnormal brain functioning at rest have been reported in bvFTD, but their relationship with defective attribution of affective states has not been investigated. Objective To investigate the relationship among resting-state brain activity, gray matter (GM) atrophy and the attribution of mental states in the behavioral variant of fronto-temporal degeneration (bvFTD). Methods We compared 12 bvFTD patients with 30 age- and education-matched healthy controls on a) performance in a task requiring the attribution of affective vs. cognitive mental states; b) metrics of resting-state activity in known functional networks; and c) the relationship between task-performances and resting-state metrics. In addition, we assessed a connection between abnormal resting-state metrics and GM atrophy. Results Compared with controls, bvFTD patients showed a reduction of intra-network coherent activity in several components, as well as decreased strength of activation in networks related to attentional processing. Anomalous resting-state activity involved networks which also displayed a significant reduction of GM density. In patients, compared with controls, higher affective mentalizing performance correlated with stronger functional connectivity between medial prefrontal sectors of the default-mode and attentional/performance monitoring networks, as well as with increased coherent activity in components of the executive, sensorimotor and fronto-limbic networks. Conclusions Some of the observed effects may reflect specific compensatory mechanisms for the atrophic changes involving regions in charge of affective mentalizing. The analysis of specific resting-state networks thus highlights an intermediate level of analysis between abnormal brain structure and impaired behavioral performance in bvFTD, reflecting both dysfunction and compensation mechanisms. PMID:26594631
The Impact of the Invasive Alien Plant, Impatiens glandulifera, on Pollen Transfer Networks
Emer, Carine; Vaughan, Ian P.; Hiscock, Simon; Memmott, Jane
2015-01-01
Biological invasions are a threat to the maintenance of ecological processes, including pollination. Plant-flower visitor networks are traditionally used as a surrogated for pollination at the community level, despite they do not represent the pollination process, which takes place at the stigma of plants where pollen grains are deposited. Here we investigated whether the invasion of the alien plant Impatiens glandulifera (Balsaminaceae) affects pollen transfer at the community level. We asked whether more alien pollen is deposited on the stigmas of plants on invaded sites, whether deposition is affected by stigma type (dry, semidry and wet) and whether the invasion of I. glandulifera changes the structure of the resulting pollen transfer networks. We sampled stigmas of plants on 10 sites invaded by I. glandulifera (hereafter, balsam) and 10 non-invaded control sites. All 20 networks had interactions with balsam pollen, although significantly more balsam pollen was found on plants with dry stigmas in invaded areas. Balsam pollen deposition was restricted to a small subset of plant species, which is surprising because pollinators are known to carry high loads of balsam pollen. Balsam invasion did not affect the loading of native pollen, nor did it affect pollen transfer network properties; networks were modular and poorly nested, both of which are likely to be related to the specificity of pollen transfer interactions. Our results indicate that pollination networks become more specialized when moving from the flower visitation to the level of pollen transfer networks. Therefore, caution is needed when inferring pollination from patterns of insect visitation or insect pollen loads as the relationship between these and pollen deposition is not straightforward. PMID:26633170
Effect of social networks and well-being on acute care needs.
Sintonen, Sanna; Pehkonen, Aini
2014-01-01
The effect of social surroundings has been noted as an important component of the well-being of elderly people. A strong social network and strong and steady relationships are necessary for coping when illness or functional limitations occur in later life. Vulnerability can affect well-being and functioning particularly when sudden life changes occur. The objective of this study was to analyse how the determinants of social well-being affect individual acute care needs when sudden life changes occur. Empirical evidence was collected using a cross-sectional mail survey in Finland in January 2011 among individuals aged 55-79 years. The age-stratified random sample covered 3000 individuals, and the eventual response rate was 56% (1680). Complete responses were received from 1282 respondents (42.7%). The study focuses on the compactness of social networks, social disability, the stability of social relationships and the fear of loneliness as well as how these factors influence acute care needs. The measurement was based on a latent factor structure, and the key concepts were measured using two ordinal items. The results of the structural model suggest that the need for care is directly affected by social disability and the fear of loneliness. In addition, social disability is a determinant of the fear of loneliness and therefore plays an important role if sudden life changes occur. The compactness of social networks decreases social disability and partly diminishes the fear of loneliness and therefore has an indirect effect on the need for care. The stability of social relationships was influenced by the social networks and disability, but was an insignificant predictor of care needs. To conclude, social networks and well-being can decrease care needs, and supportive actions should be targeted to avoid loneliness and social isolation so that the informal network could be applied as an aspect of care-giving when acute life changes occur. © 2013 John Wiley & Sons Ltd.
Detailed temporal structure of communication networks in groups of songbirds.
Stowell, Dan; Gill, Lisa; Clayton, David
2016-06-01
Animals in groups often exchange calls, in patterns whose temporal structure may be influenced by contextual factors such as physical location and the social network structure of the group. We introduce a model-based analysis for temporal patterns of animal call timing, originally developed for networks of firing neurons. This has advantages over cross-correlation analysis in that it can correctly handle common-cause confounds and provides a generative model of call patterns with explicit parameters for the influences between individuals. It also has advantages over standard Markovian analysis in that it incorporates detailed temporal interactions which affect timing as well as sequencing of calls. Further, a fitted model can be used to generate novel synthetic call sequences. We apply the method to calls recorded from groups of domesticated zebra finch (Taeniopygia guttata) individuals. We find that the communication network in these groups has stable structure that persists from one day to the next, and that 'kernels' reflecting the temporal range of influence have a characteristic structure for a calling individual's effect on itself, its partner and on others in the group. We further find characteristic patterns of influences by call type as well as by individual. © 2016 The Authors.
Structural Support, Networking and Individual Survival: Career Changes in Italy and Spain
ERIC Educational Resources Information Center
Barabasch, Antje; Merrill, Barbara; Zanazzi, Silvia
2015-01-01
Southern European countries, like Italy and Spain, have been severely affected by the recent economic crisis. This has affected their labour market in terms of increased unemployment, while many of those in employment feel more insecure. As a consequence, many individuals turn to education as a step to making a career change. The opportunities and…
ERIC Educational Resources Information Center
Hwang, Wu-Yuin; Kongcharoen, Chaknarin; Ghinea, Gheorghita
2017-01-01
According to aptitude theory, the measures of aptitude include not only cognitive factors but also affective factors (i.e., emotions) and conative factors (i.e., motivation) that can influence students' learning achievement (LA). Therefore, this study employed structural equation modelling from experimental data of 96 college students to…
The neurobiological basis of temperament: towards a better understanding of psychopathology.
Whittle, Sarah; Allen, Nicholas B; Lubman, Dan I; Yücel, Murat
2006-01-01
The ability to characterise psychopathologies on the basis of their underlying neurobiology is critical in improving our understanding of disorder etiology and making more effective diagnostic and treatment decisions. Given the well-documented relationship between temperament (i.e. core personality traits) and psychopathology, research investigating the neurobiological substrates that underlie temperament is potentially key to our understanding of the biological basis of mental disorder. We present evidence that specific areas of the prefrontal cortex (including the dorsolateral prefrontal, anterior cingulate, and orbitofrontal cortices) and limbic structures (including the amygdala, hippocampus and nucleus accumbens) are key regions associated with three fundamental dimensions of temperament: Negative Affect, Positive Affect, and Constraint. Proposed relationships are based on two types of research: (a) research into the neurobiological correlates of affective and cognitive processes underlying these dimensions; and (b) research into the neurobiology of various psychopathologies, which have been correlated with these dimensions. A model is proposed detailing how these structures might comprise neural networks whose functioning underlies the three temperaments. Recommendations are made for future research into the neurobiology of temperament, including the need to focus on neural networks rather than individual structures, and the importance of prospective, longitudinal, multi-modal imaging studies in at-risk youth.
O’Farrill, Georgina; Gauthier Schampaert, Kim; Rayfield, Bronwyn; Bodin, Örjan; Calmé, Sophie; Sengupta, Raja; Gonzalez, Andrew
2014-01-01
Landscape connectivity is considered a priority for ecosystem conservation because it may mitigate the synergistic effects of climate change and habitat loss. Climate change predictions suggest changes in precipitation regimes, which will affect the availability of water resources, with potential consequences for landscape connectivity. The Greater Calakmul Region of the Yucatan Peninsula (Mexico) has experienced a 16% decrease in precipitation over the last 50 years, which we hypothesise has affected water resource connectivity. We used a network model of connectivity, for three large endangered species (Baird’s tapir, white-lipped peccary and jaguar), to assess the effect of drought on waterhole availability and connectivity in a forested landscape inside and adjacent to the Calakmul Biosphere Reserve. We used reported travel distances and home ranges for our species to establish movement distances in our model. Specifically, we compared the effects of 10 drought scenarios on the number of waterholes (nodes) and the subsequent changes in network structure and node importance. Our analysis revealed that drought dramatically influenced spatial structure and potential connectivity of the network. Our results show that waterhole connectivity and suitable habitat (area surrounding waterholes) is lost faster inside than outside the reserve for all three study species, an outcome that may drive them outside the reserve boundaries. These results emphasize the need to assess how the variability in the availability of seasonal water resource may affect the viability of animal populations under current climate change inside and outside protected areas. PMID:24830392
O'Farrill, Georgina; Gauthier Schampaert, Kim; Rayfield, Bronwyn; Bodin, Örjan; Calmé, Sophie; Sengupta, Raja; Gonzalez, Andrew
2014-01-01
Landscape connectivity is considered a priority for ecosystem conservation because it may mitigate the synergistic effects of climate change and habitat loss. Climate change predictions suggest changes in precipitation regimes, which will affect the availability of water resources, with potential consequences for landscape connectivity. The Greater Calakmul Region of the Yucatan Peninsula (Mexico) has experienced a 16% decrease in precipitation over the last 50 years, which we hypothesise has affected water resource connectivity. We used a network model of connectivity, for three large endangered species (Baird's tapir, white-lipped peccary and jaguar), to assess the effect of drought on waterhole availability and connectivity in a forested landscape inside and adjacent to the Calakmul Biosphere Reserve. We used reported travel distances and home ranges for our species to establish movement distances in our model. Specifically, we compared the effects of 10 drought scenarios on the number of waterholes (nodes) and the subsequent changes in network structure and node importance. Our analysis revealed that drought dramatically influenced spatial structure and potential connectivity of the network. Our results show that waterhole connectivity and suitable habitat (area surrounding waterholes) is lost faster inside than outside the reserve for all three study species, an outcome that may drive them outside the reserve boundaries. These results emphasize the need to assess how the variability in the availability of seasonal water resource may affect the viability of animal populations under current climate change inside and outside protected areas.
Sankarasubramanian, Vishwanath; Cunningham, David A; Potter-Baker, Kelsey A; Beall, Erik B; Roelle, Sarah M; Varnerin, Nicole M; Machado, Andre G; Jones, Stephen E; Lowe, Mark J; Plow, Ela B
2017-04-01
The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks, whereas DLPFC stimulation modulates FC of both sensory and affective networks. Our findings when replicated in a larger group of individuals could provide useful evidence that may inform future studies on pain to differentiate between effects of M1 and DLPFC stimulation. Notably, our finding that individuals with high baseline pain thresholds experience greater FC changes with DLPFC tDCS implies the role of DLPFC in pain modulation, particularly pain tolerance.
Sankarasubramanian, Vishwanath; Cunningham, David A.; Potter-Baker, Kelsey A.; Beall, Erik B.; Roelle, Sarah M.; Varnerin, Nicole M.; Machado, Andre G.; Jones, Stephen E.; Lowe, Mark J.
2017-01-01
Abstract The pain matrix is comprised of an extensive network of brain structures involved in sensory and/or affective information processing. The thalamus is a key structure constituting the pain matrix. The thalamus serves as a relay center receiving information from multiple ascending pathways and relating information to and from multiple cortical areas. However, it is unknown how thalamocortical networks specific to sensory-affective information processing are functionally integrated. Here, in a proof-of-concept study in healthy humans, we aimed to understand this connectivity using transcranial direct current stimulation (tDCS) targeting primary motor (M1) or dorsolateral prefrontal cortices (DLPFC). We compared changes in functional connectivity (FC) with DLPFC tDCS to changes in FC with M1 tDCS. FC changes were also compared to further investigate its relation with individual's baseline experience of pain. We hypothesized that resting-state FC would change based on tDCS location and would represent known thalamocortical networks. Ten right-handed individuals received a single application of anodal tDCS (1 mA, 20 min) to right M1 and DLPFC in a single-blind, sham-controlled crossover study. FC changes were studied between ventroposterolateral (VPL), the sensory nucleus of thalamus, and cortical areas involved in sensory information processing and between medial dorsal (MD), the affective nucleus, and cortical areas involved in affective information processing. Individual's perception of pain at baseline was assessed using cutaneous heat pain stimuli. We found that anodal M1 tDCS and anodal DLPFC tDCS both increased FC between VPL and sensorimotor cortices, although FC effects were greater with M1 tDCS. Similarly, anodal M1 tDCS and anodal DLPFC tDCS both increased FC between MD and motor cortices, but only DLPFC tDCS modulated FC between MD and affective cortices, like DLPFC. Our findings suggest that M1 stimulation primarily modulates FC of sensory networks, whereas DLPFC stimulation modulates FC of both sensory and affective networks. Our findings when replicated in a larger group of individuals could provide useful evidence that may inform future studies on pain to differentiate between effects of M1 and DLPFC stimulation. Notably, our finding that individuals with high baseline pain thresholds experience greater FC changes with DLPFC tDCS implies the role of DLPFC in pain modulation, particularly pain tolerance. PMID:28142257
Bidirectional selection between two classes in complex social networks.
Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong
2014-12-19
The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.
Robustness and percolation of holes in complex networks
NASA Astrophysics Data System (ADS)
Zhou, Andu; Maletić, Slobodan; Zhao, Yi
2018-07-01
Efficient robustness and fault tolerance of complex network is significantly influenced by its connectivity, commonly modeled by the structure of pairwise relations between network elements, i.e., nodes. Nevertheless, aggregations of nodes build higher-order structures embedded in complex network, which may be more vulnerable when the fraction of nodes is removed. The structure of higher-order aggregations of nodes can be naturally modeled by simplicial complexes, whereas the removal of nodes affects the values of topological invariants, like the number of higher-dimensional holes quantified with Betti numbers. Following the methodology of percolation theory, as the fraction of nodes is removed, new holes appear, which have the role of merger between already present holes. In the present article, relationship between the robustness and homological properties of complex network is studied, through relating the graph-theoretical signatures of robustness and the quantities derived from topological invariants. The simulation results of random failures and intentional attacks on networks suggest that the changes of graph-theoretical signatures of robustness are followed by differences in the distribution of number of holes per cluster under different attack strategies. In the broader sense, the results indicate the importance of topological invariants research for obtaining further insights in understanding dynamics taking place over complex networks.
Multi-scale modularity and motif distributional effect in metabolic networks.
Gao, Shang; Chen, Alan; Rahmani, Ali; Zeng, Jia; Tan, Mehmet; Alhajj, Reda; Rokne, Jon; Demetrick, Douglas; Wei, Xiaohui
2016-01-01
Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks.
Medium range order and structural relaxation in As–Se network glasses through FSDP analysis
Golovchak, R.; Lucas, P.; Oelgoetz, J.; ...
2015-01-13
We performed synchrotron X-ray diffraction and neutron scattering studies on As-Se glasses in two states: as-prepared (rejuvenated) and aged for similar to 27 years. The first sharp diffraction peak (FSDP) obtained from the structure factor data as a function of composition and temperature indicates that the cooperative processes that are responsible for structural relaxation do not affect FSDP. The results are correlated with the composition dependence of the complex heat capacity of the glasses and concentration of different structural fragments in the glass network. Furthermore, the comparison of structural information shows that density fluctuations, which were thought previously to havemore » a significant contribution to FSDP, have much smaller effect than the cation-cation correlations, presence of ordered structural fragments or cage molecules.« less
Oscillations contribute to memory consolidation by changing criticality and stability in the brain
NASA Astrophysics Data System (ADS)
Wu, Jiaxing; Skilling, Quinton; Ognjanovski, Nicolette; Aton, Sara; Zochowski, Michal
Oscillations are a universal feature of every level of brain dynamics and have been shown to contribute to many brain functions. To investigate the fundamental mechanism underpinning oscillatory activity, the properties of heterogeneous networks are compared in situations with and without oscillations. Our results show that both network criticality and stability are changed in the presence of oscillations. Criticality describes the network state of neuronal avalanche, a cascade of bursts of action potential firing in neural network. Stability measures how stable the spike timing relationship between neuron pairs is over time. Using a detailed spiking model, we found that the branching parameter σ changes relative to oscillation and structural network properties, corresponding to transmission among different critical states. Also, analysis of functional network structures shows that the oscillation helps to stabilize neuronal representation of memory. Further, quantitatively similar results are observed in biological data recorded in vivo. In summary, we have observed that, by regulating the neuronal firing pattern, oscillations affect both criticality and stability properties of the network, and thus contribute to memory formation.
Neural connections foster social connections: a diffusion-weighted imaging study of social networks
Hampton, William H.; Unger, Ashley; Von Der Heide, Rebecca J.
2016-01-01
Although we know the transition from childhood to adulthood is marked by important social and neural development, little is known about how social network size might affect neurocognitive development or vice versa. Neuroimaging research has identified several brain regions, such as the amygdala, as key to this affiliative behavior. However, white matter connectivity among these regions, and its behavioral correlates, remain unclear. Here we tested two hypotheses: that an amygdalocentric structural white matter network governs social affiliative behavior and that this network changes during adolescence and young adulthood. We measured social network size behaviorally, and white matter microstructure using probabilistic diffusion tensor imaging in a sample of neurologically normal adolescents and young adults. Our results suggest amygdala white matter microstructure is key to understanding individual differences in social network size, with connectivity to other social brain regions such as the orbitofrontal cortex and anterior temporal lobe predicting much variation. In addition, participant age correlated with both network size and white matter variation in this network. These findings suggest the transition to adulthood may constitute a critical period for the optimization of structural brain networks underlying affiliative behavior. PMID:26755769
Gelation And Mechanical Response of Patchy Rods
NASA Astrophysics Data System (ADS)
Kazem, Navid; Majidi, Carmel; Maloney, Craig
We perform Brownian Dynamics simulations to study the gelation of suspensions of attractive, rod-like particles. We show that details of the particle-particle interactions can dramatically affect the dynamics of gelation and the structure and mechanics of the networks that form. If the attraction between the rods is perfectly smooth along their length, they will collapse into compact bundles. If the attraction is sufficiently corrugated or patchy, over time, a rigid space spanning network forms. We study the structure and mechanical properties of the networks that form as a function of the fraction of the surface that is allowed to bind. Surprisingly, the structural and mechanical properties are non-monotonic in the surface coverage. At low coverage, there are not a sufficient number of cross-linking sites to form networks. At high coverage, rods bundle and form disconnected clusters. At intermediate coverage, robust networks form. The elastic modulus and yield stress are both non-monotonic in the surface coverage. The stiffest and strongest networks show an essentially homogeneous deformation under strain with rods re-orienting along the extensional axis. Weaker, clumpy networks at high surface coverage exhibit relatively little re-orienting with strong non-affine deformation. These results suggest design strategies for tailoring surface interactions between rods to yield rigid networks with optimal properties. National Science Foundation and the Air Force Office of Scientific Research.
Cortical connectivity in fronto-temporal focal epilepsy from EEG analysis: A study via graph theory.
Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Della Marca, Giacomo; Vollono, Catello; Mazzucchi, Edoardo; Bramanti, Placido; Rossini, Paolo Maria
2015-06-01
It is believed that effective connectivity and optimal network structure are essential for proper information processing in the brain. Indeed, functional abnormalities of the brain are found to be associated with pathological changes in connectivity and network structures. The aim of the present study was to explore the interictal network properties of EEG signals from temporal lobe structures in the context of fronto-temporal lobe epilepsy. To complete this aim, the graph characteristics of the EEG data of 17 patients suffering from focal epilepsy of the fronto-temporal type, recorded during interictal periods, were examined and compared in terms of the affected versus the unaffected hemispheres. EEG connectivity analysis was performed using eLORETA software in 15 fronto-temporal regions (Brodmann Areas BAs 8, 9, 10, 11, 20, 21, 22, 37, 38, 41, 42, 44, 45, 46, 47) on both affected and unaffected hemispheres. The evaluation of the graph analysis parameters, such as 'global' (characteristic path length) and 'local' connectivity (clustering coefficient) showed a statistically significant interaction among side (affected and unaffected hemisphere) and Band (delta, theta, alpha, beta, gamma). Duncan post hoc testing showed an increase of the path length in the alpha band in the affected hemisphere with respect to the unaffected one, as evaluated by an inter-hemispheric marker. The affected hemisphere also showed higher values of local connectivity in the alpha band. In general, an increase of local and global graph theory parameters in the alpha band was found in the affected hemisphere. It was also demonstrated that these effects were more evident in drug-free patients than in those undergoing pharmacological therapy. The increased measures in the affected hemisphere of both functional local segregation and global integration could result from the combination of overlapping mechanisms, including reactive neuroplastic changes seeking to maintain constant integration and segregation properties. This reactive neuroplastic mechanism seeking to maintain constant integration and segregation properties seems to be more evident in the absence of antiepileptic treatment. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Yang, Yi-Ling; Huang, Jian-Peng; Jiang, Li; Liu, Jian-Hua
2017-12-25
Previous studies have shown that there are many common structures between the neural network of pain and memory, and the main structure in the pain network is also part of the memory network. Chronic pain is characterized by recurrent attacks and is associated with persistent ectopic impulse, which causes changes in synaptic structure and function based on nerve activity. These changes may induce long-term potentiation of synaptic transmission, and ultimately lead to changes in the central nervous system to produce "pain memory". Acupuncture is an effective method in treating chronic pain. It has been proven that acupuncture can affect the spinal cord dorsal horn, hippocampus, cingulate gyrus and other related areas. The possible mechanisms of action include opioid-induced analgesia, activation of glial cells, and the expression of brain derived neurotrophic factor (BDNF). In this study, we systematically review the brain structures, stage of "pain memory" and the mechanisms of acupuncture on synaptic plasticity in chronic pain.
Contrasting effects of invasive plants in plant-pollinator networks.
Bartomeus, Ignasi; Vilà, Montserrat; Santamaría, Luís
2008-04-01
The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotus affine acinaciformis and Opuntia stricta) affect the structure of Mediterranean plant-pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant-pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant-pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant-pollinator network.
Canuet, Leonides; Pusil, Sandra; López, María Eugenia; Bajo, Ricardo; Pineda-Pardo, José Ángel; Cuesta, Pablo; Gálvez, Gerardo; Gaztelu, José María; Lourido, Daniel; García-Ribas, Guillermo; Maestú, Fernando
2015-07-15
Synaptic dysfunction is a core deficit in Alzheimer's disease, preceding hallmark pathological abnormalities. Resting-state magnetoencephalography (MEG) was used to assess whether functional connectivity patterns, as an index of synaptic dysfunction, are associated with CSF biomarkers [i.e., phospho-tau (p-tau) and amyloid beta (Aβ42) levels]. We studied 12 human subjects diagnosed with mild cognitive impairment due to Alzheimer's disease, comparing those with normal and abnormal CSF levels of the biomarkers. We also evaluated the association between aberrant functional connections and structural connectivity abnormalities, measured with diffusion tensor imaging, as well as the convergent impact of cognitive deficits and CSF variables on network disorganization. One-third of the patients converted to Alzheimer's disease during a follow-up period of 2.5 years. Patients with abnomal CSF p-tau and Aβ42 levels exhibited both reduced and increased functional connectivity affecting limbic structures such as the anterior/posterior cingulate cortex, orbitofrontal cortex, and medial temporal areas in different frequency bands. A reduction in posterior cingulate functional connectivity mediated by p-tau was associated with impaired axonal integrity of the hippocampal cingulum. We noted that several connectivity abnormalities were predicted by CSF biomarkers and cognitive scores. These preliminary results indicate that CSF markers of amyloid deposition and neuronal injury in early Alzheimer's disease associate with a dual pattern of cortical network disruption, affecting key regions of the default mode network and the temporal cortex. MEG is useful to detect early synaptic dysfunction associated with Alzheimer's disease brain pathology in terms of functional network organization. In this preliminary study, we used magnetoencephalography and an integrative approach to explore the impact of CSF biomarkers, neuropsychological scores, and white matter structural abnormalities on neural function in mild cognitive impairment. Disruption in functional connectivity between several pairs of cortical regions associated with abnormal levels of biomarkers, cognitive deficits, or with impaired axonal integrity of hippocampal tracts. Amyloid deposition and tau protein-related neuronal injury in early Alzheimer's disease are associated with synaptic dysfunction and a dual pattern of cortical network disorganization (i.e., desynchronization and hypersynchronization) that affects key regions of the default mode network and temporal areas. Copyright © 2015 the authors 0270-6474/15/3510326-06$15.00/0.
The interplay between social networks and culture: theoretically and among whales and dolphins.
Cantor, Mauricio; Whitehead, Hal
2013-05-19
Culture is increasingly being understood as a driver of mammalian phenotypes. Defined as group-specific behaviour transmitted by social learning, culture is shaped by social structure. However, culture can itself affect social structure if individuals preferentially interact with others whose behaviour is similar, or cultural symbols are used to mark groups. Using network formalism, this interplay can be depicted by the coevolution of nodes and edges together with the coevolution of network topology and transmission patterns. We review attempts to model the links between the spread, persistence and diversity of culture and the network topology of non-human societies. We illustrate these processes using cetaceans. The spread of socially learned begging behaviour within a population of bottlenose dolphins followed the topology of the social network, as did the evolution of the song of the humpback whale between breeding areas. In three bottlenose dolphin populations, individuals preferentially associated with animals using the same socially learned foraging behaviour. Homogeneous behaviour within the tight, nearly permanent social structures of the large matrilineal whales seems to result from transmission bias, with cultural symbols marking social structures. We recommend the integration of studies of culture and society in species for which social learning is an important determinant of behaviour.
The interplay between social networks and culture: theoretically and among whales and dolphins
Cantor, Mauricio; Whitehead, Hal
2013-01-01
Culture is increasingly being understood as a driver of mammalian phenotypes. Defined as group-specific behaviour transmitted by social learning, culture is shaped by social structure. However, culture can itself affect social structure if individuals preferentially interact with others whose behaviour is similar, or cultural symbols are used to mark groups. Using network formalism, this interplay can be depicted by the coevolution of nodes and edges together with the coevolution of network topology and transmission patterns. We review attempts to model the links between the spread, persistence and diversity of culture and the network topology of non-human societies. We illustrate these processes using cetaceans. The spread of socially learned begging behaviour within a population of bottlenose dolphins followed the topology of the social network, as did the evolution of the song of the humpback whale between breeding areas. In three bottlenose dolphin populations, individuals preferentially associated with animals using the same socially learned foraging behaviour. Homogeneous behaviour within the tight, nearly permanent social structures of the large matrilineal whales seems to result from transmission bias, with cultural symbols marking social structures. We recommend the integration of studies of culture and society in species for which social learning is an important determinant of behaviour. PMID:23569288
Pathways towards instability in financial networks
NASA Astrophysics Data System (ADS)
Bardoscia, Marco; Battiston, Stefano; Caccioli, Fabio; Caldarelli, Guido
2017-02-01
Following the financial crisis of 2007-2008, a deep analogy between the origins of instability in financial systems and complex ecosystems has been pointed out: in both cases, topological features of network structures influence how easily distress can spread within the system. However, in financial network models, the details of how financial institutions interact typically play a decisive role, and a general understanding of precisely how network topology creates instability remains lacking. Here we show how processes that are widely believed to stabilize the financial system, that is, market integration and diversification, can actually drive it towards instability, as they contribute to create cyclical structures which tend to amplify financial distress, thereby undermining systemic stability and making large crises more likely. This result holds irrespective of the details of how institutions interact, showing that policy-relevant analysis of the factors affecting financial stability can be carried out while abstracting away from such details.
Pathways towards instability in financial networks
Bardoscia, Marco; Battiston, Stefano; Caccioli, Fabio; Caldarelli, Guido
2017-01-01
Following the financial crisis of 2007–2008, a deep analogy between the origins of instability in financial systems and complex ecosystems has been pointed out: in both cases, topological features of network structures influence how easily distress can spread within the system. However, in financial network models, the details of how financial institutions interact typically play a decisive role, and a general understanding of precisely how network topology creates instability remains lacking. Here we show how processes that are widely believed to stabilize the financial system, that is, market integration and diversification, can actually drive it towards instability, as they contribute to create cyclical structures which tend to amplify financial distress, thereby undermining systemic stability and making large crises more likely. This result holds irrespective of the details of how institutions interact, showing that policy-relevant analysis of the factors affecting financial stability can be carried out while abstracting away from such details. PMID:28221338
Modelling students' knowledge organisation: Genealogical conceptual networks
NASA Astrophysics Data System (ADS)
Koponen, Ismo T.; Nousiainen, Maija
2018-04-01
Learning scientific knowledge is largely based on understanding what are its key concepts and how they are related. The relational structure of concepts also affects how concepts are introduced in teaching scientific knowledge. We model here how students organise their knowledge when they represent their understanding of how physics concepts are related. The model is based on assumptions that students use simple basic linking-motifs in introducing new concepts and mostly relate them to concepts that were introduced a few steps earlier, i.e. following a genealogical ordering. The resulting genealogical networks have relatively high local clustering coefficients of nodes but otherwise resemble networks obtained with an identical degree distribution of nodes but with random linking between them (i.e. the configuration-model). However, a few key nodes having a special structural role emerge and these nodes have a higher than average communicability betweenness centralities. These features agree with the empirically found properties of students' concept networks.
Pathways towards instability in financial networks.
Bardoscia, Marco; Battiston, Stefano; Caccioli, Fabio; Caldarelli, Guido
2017-02-21
Following the financial crisis of 2007-2008, a deep analogy between the origins of instability in financial systems and complex ecosystems has been pointed out: in both cases, topological features of network structures influence how easily distress can spread within the system. However, in financial network models, the details of how financial institutions interact typically play a decisive role, and a general understanding of precisely how network topology creates instability remains lacking. Here we show how processes that are widely believed to stabilize the financial system, that is, market integration and diversification, can actually drive it towards instability, as they contribute to create cyclical structures which tend to amplify financial distress, thereby undermining systemic stability and making large crises more likely. This result holds irrespective of the details of how institutions interact, showing that policy-relevant analysis of the factors affecting financial stability can be carried out while abstracting away from such details.
Optimal stabilization of Boolean networks through collective influence
NASA Astrophysics Data System (ADS)
Wang, Jiannan; Pei, Sen; Wei, Wei; Feng, Xiangnan; Zheng, Zhiming
2018-03-01
Boolean networks have attracted much attention due to their wide applications in describing dynamics of biological systems. During past decades, much effort has been invested in unveiling how network structure and update rules affect the stability of Boolean networks. In this paper, we aim to identify and control a minimal set of influential nodes that is capable of stabilizing an unstable Boolean network. For locally treelike Boolean networks with biased truth tables, we propose a greedy algorithm to identify influential nodes in Boolean networks by minimizing the largest eigenvalue of a modified nonbacktracking matrix. We test the performance of the proposed collective influence algorithm on four different networks. Results show that the collective influence algorithm can stabilize each network with a smaller set of nodes compared with other heuristic algorithms. Our work provides a new insight into the mechanism that determines the stability of Boolean networks, which may find applications in identifying virulence genes that lead to serious diseases.
NASA Astrophysics Data System (ADS)
Kagawa, Yuki; Takamatsu, Atsuko
2009-04-01
To reveal the relation between network structures found in two-dimensional biological systems, such as protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investigated their dynamics. Results showed that the distribution of edge weights in the networks strongly affects (i) the propensity for global synchronization and (ii) emerging ratios of oscillation patterns, such as traveling and concentric waves, even if the total weight is fixed. In-phase locking, traveling wave, and concentric wave patterns were, respectively, observed most frequently in uniformly weighted, center weighted treelike, and periphery weighted ring-shaped networks. Controlling the global spatiotemporal patterns with the weight distribution given by the local weighting (coupling) rules might be useful in biological network systems including the plasmodial networks and neural networks in the brain.
A mechanism of institutional isomorphism in referral networks among hospitals in Seoul, South Korea.
Jung, Minsoo; Choi, Mankyu
2010-01-01
Hospitals engage in medical referral system relations voluntarily, by virtue of their own service capacities. These capacities include medical technology, equipment supply, and patient management, which are assessed individually by medical institutions in efforts to control costs and maintain efficiency in tertiary hospitals. This study assessed referral networks according to the institutional isomorphism theory of new economic sociology. As a result, the referral networks were shown to exhibit emergent structural hierarchy via cumulative clustering by established year and were not affected by attributive variables such as region, bed number, and year of establishment. In particular, the networks evidenced institutional isomorphism with certain central hospitals. As a consequence, personal indices were shown to decrease in accordance with its period, and only the structural index increased. Normative pressures cause organizations to become hierarchically homogenized, in accordance with the principle of organizational learning in specialized fields. Therefore, normative isomorphism on the basis of public domains should be considered an inherent factor in the development of referral networks.
Catroppa, Cathy; Beare, Richard; Silk, Timothy J.; Hearps, Stephen J.; Beauchamp, Miriam H.; Yeates, Keith O.; Anderson, Vicki A.
2017-01-01
Abstract Deficits in theory of mind (ToM) are common after neurological insult acquired in the first and second decade of life, however the contribution of large-scale neural networks to ToM deficits in children with brain injury is unclear. Using paediatric traumatic brain injury (TBI) as a model, this study investigated the sub-acute effect of paediatric traumatic brain injury on grey-matter volume of three large-scale, domain-general brain networks (the Default Mode Network, DMN; the Central Executive Network, CEN; and the Salience Network, SN), as well as two domain-specific neural networks implicated in social-affective processes (the Cerebro-Cerebellar Mentalizing Network, CCMN and the Mirror Neuron/Empathy Network, MNEN). We also evaluated prospective structure–function relationships between these large-scale neural networks and cognitive, affective and conative ToM. 3D T1- weighted magnetic resonance imaging sequences were acquired sub-acutely in 137 children [TBI: n = 103; typically developing (TD) children: n = 34]. All children were assessed on measures of ToM at 24-months post-injury. Children with severe TBI showed sub-acute volumetric reductions in the CCMN, SN, MNEN, CEN and DMN, as well as reduced grey-matter volumes of several hub regions of these neural networks. Volumetric reductions in the CCMN and several of its hub regions, including the cerebellum, predicted poorer cognitive ToM. In contrast, poorer affective and conative ToM were predicted by volumetric reductions in the SN and MNEN, respectively. Overall, results suggest that cognitive, affective and conative ToM may be prospectively predicted by individual differences in structure of different neural systems—the CCMN, SN and MNEN, respectively. The prospective relationship between cerebellar volume and cognitive ToM outcomes is a novel finding in our paediatric brain injury sample and suggests that the cerebellum may play a role in the neural networks important for ToM. These findings are discussed in relation to neurocognitive models of ToM. We conclude that detection of sub-acute volumetric abnormalities of large-scale neural networks and their hub regions may aid in the early identification of children at risk for chronic social-cognitive impairment. PMID:28505355
Poudel, R; Jumpponen, A; Schlatter, D C; Paulitz, T C; Gardener, B B McSpadden; Kinkel, L L; Garrett, K A
2016-10-01
Network models of soil and plant microbiomes provide new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how observed network structures can be used to generate testable hypotheses about candidate microbes affecting plant health. The framework includes four types of network analyses. "General network analysis" identifies candidate taxa for maintaining an existing microbial community. "Host-focused analysis" includes a node representing a plant response such as yield, identifying taxa with direct or indirect associations with that node. "Pathogen-focused analysis" identifies taxa with direct or indirect associations with taxa known a priori as pathogens. "Disease-focused analysis" identifies taxa associated with disease. Positive direct or indirect associations with desirable outcomes, or negative associations with undesirable outcomes, indicate candidate taxa. Network analysis provides characterization not only of taxa with direct associations with important outcomes such as disease suppression, biofertilization, or expression of plant host resistance, but also taxa with indirect associations via their association with other key taxa. We illustrate the interpretation of network structure with analyses of microbiomes in the oak phyllosphere, and in wheat rhizosphere and bulk soil associated with the presence or absence of infection by Rhizoctonia solani.
How plants connect pollination and herbivory networks and their contribution to community stability.
Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin
2016-04-01
Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.
Grosser, Travis J; Venkataramani, Vijaya; Labianca, Giuseppe Joe
2017-09-01
While most social network studies of employee innovation behavior examine the focal employees' ("egos'") network structure, we employ an alter-centric perspective to study the personal characteristics of employees' network contacts-their "alters"-to better understand employee innovation. Specifically, we examine how the creative self-efficacy (CSE) and innovation behavior of employees' social network contacts affects their ability to generate and implement novel ideas. Hypotheses were tested using a sample of 144 employees in a U.S.-based product development organization. We find that the average CSE of alters in an employee's problem solving network is positively related to that employee's innovation behavior, with this relationship being mediated by these alters' average innovation behavior. The relationship between the alters' average innovation behavior and the employee's own innovation behavior is strengthened when these alters have less dense social networks. Post hoc results suggest that having network contacts with high levels of CSE also leads to an increase in ego's personal CSE 1 year later in cases where the employee's initial level of CSE was relatively low. Implications for theory and practice are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Peroxisome protein import: a complex journey.
Baker, Alison; Lanyon-Hogg, Thomas; Warriner, Stuart L
2016-06-15
The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor-cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes. © 2016 The Author(s).
Ge, Hongmei; Xia, Ling; Zhou, Xuping; Zhang, Delu; Hu, Chunxiang
2014-02-01
A study on the effects of light intensity (40 and 80 μE/m(2)/sec) on the components and topographical structures of extracellular polysaccharides (EPS) was carried out in cyanobacteria Nostoc sp.. EPS yield increased with light intensity. However, light intensity did not significantly affect the EPS fractions and monosaccharide composition. Higher light intensity generally resulted in higher protein content of EPS in similar fractions. The topographical structure of EPS, investigated by atomic force microscopy, appeared as spherical lumps, chains and networks. The long chains were observed at higher light intensity. Thus, light intensity affected the yield and nature of EPS.
The role of community structure on the nature of explosive synchronization.
Lotfi, Nastaran; Rodrigues, Francisco A; Darooneh, Amir Hossein
2018-03-01
In this paper, we analyze explosive synchronization in networks with a community structure. The results of our study indicate that the mesoscopic structure of the networks could affect the synchronization of coupled oscillators. With the variation of three parameters, the degree probability distribution exponent, the community size probability distribution exponent, and the mixing parameter, we could have a fast or slow phase transition. Besides, in some cases, we could have communities which are synchronized inside but not with other communities and vice versa. We also show that there is a limit in these mesoscopic structures which suppresses the transition from the second-order phase transition and results in explosive synchronization. This could be considered as a tuning parameter changing the transition of the system from the second order to the first order.
Analysis on Voltage Profile of Distribution Network with Distributed Generation
NASA Astrophysics Data System (ADS)
Shao, Hua; Shi, Yujie; Yuan, Jianpu; An, Jiakun; Yang, Jianhua
2018-02-01
Penetration of distributed generation has some impacts on a distribution network in load flow, voltage profile, reliability, power loss and so on. After the impacts and the typical structures of the grid-connected distributed generation are analyzed, the back/forward sweep method of the load flow calculation of the distribution network is modelled including distributed generation. The voltage profiles of the distribution network affected by the installation location and the capacity of distributed generation are thoroughly investigated and simulated. The impacts on the voltage profiles are summarized and some suggestions to the installation location and the capacity of distributed generation are given correspondingly.
Molecular mechanisms of the effect of ultrasound on the fibrinolysis of clots
Chernysh, Irina N.; Everbach, E. Carr; Purohit, Prashant K.; Weisel, John W.
2016-01-01
Summary Background Ultrasound accelerates tissue-type plasminogen activator (t-PA)-induced fibrinolysis of clots in vitro and in vivo. Objective To identify mechanisms for the enhancement of t-PA-induced fibrinolysis of clots. Methods Turbidity is an accurate and convenient method, not previously used, to follow the effects of ultrasound. Deconvolution microscopy was used to determine changes in structure, while fluorescence recovery after photobleaching was used to characterize the kinetics of binding/unbinding and transport. Results The ultrasound pulse repetition frequency affected clot lysis times, but there were no thermal effects. Ultrasound in the absence of t-PA produced a slight but consistent decrease in turbidity, suggesting a decrease in fibrin diameter due solely to the action of the ultrasound, likely caused by an increase in protofibril tension because of vibration from ultrasound. Changes in fibrin network structure during lysis with ultrasound were visualized in real time by deconvolution microscopy, revealing that the network becomes unstable when 30–40% of the protein in the network was digested, whereas without ultrasound, the fibrin network was digested gradually and retained structural integrity. Fluorescence recovery after photobleaching during lysis revealed that the off-rate of oligomers from digesting fibers was not much affected but the number of binding/unbinding sites was increased. Conclusions Ultrasound causes a decrease in the diameter of the fibers due to tension as a result of vibration, leading to increased binding sites for plasmin(ogen)/t-PA. The positive feedback of this structural change together with increased mixing/transport of t-PA/plasmin(ogen) is likely to account for the observed enhancement of fibrinolysis by ultrasound. PMID:25619618
The effect of hubs and shortcuts on fixation time in evolutionary graphs
NASA Astrophysics Data System (ADS)
Askari, Marziyeh; Moradi Miraghaei, Zeinab; Aghababaei Samani, Keivan
2017-07-01
How can a new species (like a gene, an idea, or a strategy) take over the whole of a population? This process, which is called fixation, is considerably affected by the structure of the population. There are two key quantities to quantify the fixation process, namely fixation probability and fixation time. Fixation probability has been vastly studied in recent years, but fixation time has not been completely explored, yet. This is because the discovery of a relationship between fixation time and network structure is quite challenging. In this paper we investigate this relationship for a number of well-known complex networks. We show that the existence of a few high-degree nodes (hubs) in the network results in a longer fixation time, while the existence of a few short-cuts decreases the fixation time. Furthermore we investigate the effect of network parameters, such as connection probability, on fixation time. We show that by increasing the density of edges, fixation time decreases for all types of studied networks. Finally, we survey the effect of rewiring probability in a Watts-Strogatz network on fixation time.
Voluntary Vaccination through Self-organizing Behaviors on Locally-mixed Social Networks.
Shi, Benyun; Qiu, Hongjun; Niu, Wenfang; Ren, Yizhi; Ding, Hong; Chen, Dan
2017-06-01
Voluntary vaccination reflects how individuals weigh the risk of infection and the cost of vaccination against the spread of vaccine-preventable diseases, such as smallpox and measles. In a homogeneously mixing population, the infection risk of an individual depends largely on the proportion of vaccinated individuals due to the effects of herd immunity. While in a structured population, the infection risk can also be affected by the structure of individuals' social network. In this paper, we focus on studying individuals' self-organizing behaviors under the circumstance of voluntary vaccination in different types of social networks. Specifically, we assume that each individual together with his/her neighbors forms a local well-mixed environment, where individuals meet equally often as long as they have a common neighbor. We carry out simulations on four types of locally-mixed social networks to investigate the network effects on voluntary vaccination. Furthermore, we also evaluate individuals' vaccinating decisions through interacting with their "neighbors of neighbors". The results and findings of this paper provide a new perspective for vaccination policy-making by taking into consideration human responses in complex social networks.
Social patterns revealed through random matrix theory
NASA Astrophysics Data System (ADS)
Sarkar, Camellia; Jalan, Sarika
2014-11-01
Despite the tremendous advancements in the field of network theory, very few studies have taken weights in the interactions into consideration that emerge naturally in all real-world systems. Using random matrix analysis of a weighted social network, we demonstrate the profound impact of weights in interactions on emerging structural properties. The analysis reveals that randomness existing in particular time frame affects the decisions of individuals rendering them more freedom of choice in situations of financial security. While the structural organization of networks remains the same throughout all datasets, random matrix theory provides insight into the interaction pattern of individuals of the society in situations of crisis. It has also been contemplated that individual accountability in terms of weighted interactions remains as a key to success unless segregation of tasks comes into play.
New methodologies for multi-scale time-variant reliability analysis of complex lifeline networks
NASA Astrophysics Data System (ADS)
Kurtz, Nolan Scot
The cost of maintaining existing civil infrastructure is enormous. Since the livelihood of the public depends on such infrastructure, its state must be managed appropriately using quantitative approaches. Practitioners must consider not only which components are most fragile to hazard, e.g. seismicity, storm surge, hurricane winds, etc., but also how they participate on a network level using network analysis. Focusing on particularly damaged components does not necessarily increase network functionality, which is most important to the people that depend on such infrastructure. Several network analyses, e.g. S-RDA, LP-bounds, and crude-MCS, and performance metrics, e.g. disconnection bounds and component importance, are available for such purposes. Since these networks are existing, the time state is also important. If networks are close to chloride sources, deterioration may be a major issue. Information from field inspections may also have large impacts on quantitative models. To address such issues, hazard risk analysis methodologies for deteriorating networks subjected to seismicity, i.e. earthquakes, have been created from analytics. A bridge component model has been constructed for these methodologies. The bridge fragilities, which were constructed from data, required a deeper level of analysis as these were relevant for specific structures. Furthermore, chloride-induced deterioration network effects were investigated. Depending on how mathematical models incorporate new information, many approaches are available, such as Bayesian model updating. To make such procedures more flexible, an adaptive importance sampling scheme was created for structural reliability problems. Additionally, such a method handles many kinds of system and component problems with singular or multiple important regions of the limit state function. These and previously developed analysis methodologies were found to be strongly sensitive to the network size. Special network topologies may be more or less computationally difficult, while the resolution of the network also has large affects. To take advantage of some types of topologies, network hierarchical structures with super-link representation have been used in the literature to increase the computational efficiency by analyzing smaller, densely connected networks; however, such structures were based on user input and subjective at times. To address this, algorithms must be automated and reliable. These hierarchical structures may indicate the structure of the network itself. This risk analysis methodology has been expanded to larger networks using such automated hierarchical structures. Component importance is the most important objective from such network analysis; however, this may only provide the information of which bridges to inspect/repair earliest and little else. High correlations influence such component importance measures in a negative manner. Additionally, a regional approach is not appropriately modelled. To investigate a more regional view, group importance measures based on hierarchical structures have been created. Such structures may also be used to create regional inspection/repair approaches. Using these analytical, quantitative risk approaches, the next generation of decision makers may make both component and regional-based optimal decisions using information from both network function and further effects of infrastructure deterioration.
Marx, Marcia
2014-11-01
This study examined the structural barriers to communication for first-line nurse managers with their staff nurses. The delivery of quality care depends on effective communication in hospital units. First-line nurse managers are central figures in networks whose responsibility is to communicate information from the senior management to staff nurses. The data were collected using face-to-face interviews with first-line managers at two US hospitals The interviews were transcribed and coded with limited use of the qualitative software atlas Interview questions focused on work experiences of managers with special emphases on communication. Structural barriers that influenced managers' communication included the amount of face-to-face interaction with nurses, the amount of information to communicate, levels of formalization, outreach to all nurses, time constraints and nurses' subcultural networks These factors compromised managers' ability to communicate effectively with nurses. Managers should carefully examine how structure affects communication recognizing that some dynamics of structure cannot be changed but that they can influence others, such as formalization and communication networks. Managers should examine their own positioning within nurses' networks and demonstrate to nurses that their expertise contributes to the collaborative capital upon which nursing practice depends. © 2013 John Wiley & Sons Ltd.
From neurons to epidemics: How trophic coherence affects spreading processes.
Klaise, Janis; Johnson, Samuel
2016-06-01
Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models-one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network-and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.
Wu, Qiong; Gao, Yang; Liu, Ai-Shi; Xie, Li-Zhi; Qian, Long; Yang, Xiao-Guang
2018-01-01
To date, the most frequently reported neuroimaging biomarkers in Parkinson's disease (PD) are direct brain imaging measurements focusing on local disrupted regions. However, the notion that PD is related to abnormal functional and structural connectivity has received support in the past few years. Here, we employed graph theory to analyze the structural co-variance networks derived from 50 PD patients and 48 normal controls (NC). Then, the small world properties of brain networks were assessed in the structural networks that were constructed based on cortical volume data. Our results showed that both the PD and NC groups had a small world architecture in brain structural networks. However, the PD patients had a higher characteristic path length and clustering coefficients compared with the NC group. With regard to the nodal centrality, 11 regions, including 3 association cortices, 5 paralimbic cortices, and 3 subcortical regions were identified as hubs in the PD group. In contrast, 10 regions, including 7 association cortical regions, 2 paralimbic cortical regions, and the primary motor cortex region, were identified as hubs. Moreover, the regional centrality was profoundly affected in PD patients, including decreased nodal centrality in the right inferior occipital gyrus and the middle temporal gyrus and increased nodal centrality in the right amygdala, the left caudate and the superior temporal gyrus. In addition, the structural cortical network of PD showed reduced topological stability for targeted attacks. Together, this study shows that the coordinated patterns of cortical volume network are widely altered in PD patients with a decrease in the efficiency of parallel information processing. These changes provide structural evidence to support the concept that the core pathophysiology of PD is associated with disruptive alterations in the coordination of large-scale brain networks that underlie high-level cognition. Copyright © 2017. Published by Elsevier B.V.
Acute lesions that impair affective empathy
Oishi, Kenichi; Hsu, John; Lindquist, Martin; Gottesman, Rebecca F.; Jarso, Samson; Crainiceanu, Ciprian; Mori, Susumu
2013-01-01
Functional imaging studies of healthy participants and previous lesion studies have provided evidence that empathy involves dissociable cognitive functions that rely on at least partially distinct neural networks that can be individually impaired by brain damage. These studies converge in support of the proposal that affective empathy—making inferences about how another person feels—engages at least the following areas: prefrontal cortex, orbitofrontal gyrus, anterior insula, anterior cingulate cortex, temporal pole, amygdala and temporoparietal junction. We hypothesized that right-sided lesions to any one of these structures, except temporoparietal junction, would cause impaired affective empathy (whereas bilateral damage to temporoparietal junction would be required to disrupt empathy). We studied 27 patients with acute right hemisphere ischaemic stroke and 24 neurologically intact inpatients on a test of affective empathy. Acute impairment of affective empathy was associated with infarcts in the hypothesized network, particularly temporal pole and anterior insula. All patients with impaired affective empathy were also impaired in comprehension of affective prosody, but many patients with impairments in prosodic comprehension had spared affective empathy. Patients with impaired affective empathy were older, but showed no difference in performance on tests of hemispatial neglect, volume of infarct or sex distribution compared with patients with intact affective empathy. PMID:23824490
Controllability of multiplex, multi-time-scale networks
NASA Astrophysics Data System (ADS)
Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.
2016-09-01
The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified model, we provide crucial insight into disentangling how our ability to control real interacting complex systems is affected by a variety of sources of complexity.
NETWORK ASSISTED ANALYSIS TO REVEAL THE GENETIC BASIS OF AUTISM1
Liu, Li; Lei, Jing; Roeder, Kathryn
2016-01-01
While studies show that autism is highly heritable, the nature of the genetic basis of this disorder remains illusive. Based on the idea that highly correlated genes are functionally interrelated and more likely to affect risk, we develop a novel statistical tool to find more potentially autism risk genes by combining the genetic association scores with gene co-expression in specific brain regions and periods of development. The gene dependence network is estimated using a novel partial neighborhood selection (PNS) algorithm, where node specific properties are incorporated into network estimation for improved statistical and computational efficiency. Then we adopt a hidden Markov random field (HMRF) model to combine the estimated network and the genetic association scores in a systematic manner. The proposed modeling framework can be naturally extended to incorporate additional structural information concerning the dependence between genes. Using currently available genetic association data from whole exome sequencing studies and brain gene expression levels, the proposed algorithm successfully identified 333 genes that plausibly affect autism risk. PMID:27134692
Large-scale brain network abnormalities in Huntington's disease revealed by structural covariance.
Minkova, Lora; Eickhoff, Simon B; Abdulkadir, Ahmed; Kaller, Christoph P; Peter, Jessica; Scheller, Elisa; Lahr, Jacob; Roos, Raymund A; Durr, Alexandra; Leavitt, Blair R; Tabrizi, Sarah J; Klöppel, Stefan
2016-01-01
Huntington's disease (HD) is a progressive neurodegenerative disorder that can be diagnosed with certainty decades before symptom onset. Studies using structural MRI have identified grey matter (GM) loss predominantly in the striatum, but also involving various cortical areas. So far, voxel-based morphometric studies have examined each brain region in isolation and are thus unable to assess the changes in the interrelation of brain regions. Here, we examined the structural covariance in GM volumes in pre-specified motor, working memory, cognitive flexibility, and social-affective networks in 99 patients with manifest HD (mHD), 106 presymptomatic gene mutation carriers (pre-HD), and 108 healthy controls (HC). After correction for global differences in brain volume, we found that increased GM volume in one region was associated with increased GM volume in another. When statistically comparing the groups, no differences between HC and pre-HD were observed, but increased positive correlations were evident for mHD, relative to pre-HD and HC. These findings could be explained by a HD-related neuronal loss heterogeneously affecting the examined network at the pre-HD stage, which starts to dominate structural covariance globally at the manifest stage. Follow-up analyses identified structural connections between frontoparietal motor regions to be linearly modified by disease burden score (DBS). Moderator effects of disease load burden became significant at a DBS level typically associated with the onset of unequivocal HD motor signs. Together with existing findings from functional connectivity analyses, our data indicates a critical role of these frontoparietal regions for the onset of HD motor signs. © 2015 Wiley Periodicals, Inc.
Brain Structural Networks in Mouse Exposed to Chronic Maternal Undernutrition.
Barbeito-Andrés, Jimena; Gleiser, Pablo M; Bernal, Valeria; Hallgrímsson, Benedikt; Gonzalez, Paula N
2018-06-01
Brain structural connectivity is known to be altered in cases of intrauterine growth restriction and premature birth, although the specific effect of maternal nutritional restriction, a common burden in human populations, has not been assessed yet. Here we analyze the effects of maternal undernutrition during pregnancy and lactation by establishing three experimental groups of female mice divided according to their diet: control (Co), moderate calorie-protein restriction (MCP) and severe protein restriction (SP). Nutritionally restricted dams gained relatively less weight during pregnancy and the body weight of the offspring was also affected by maternal undernutrition, showing global growth restriction. We performed magnetic resonance imaging (MRI) of the offspring's brains after weaning and analyzed their connectivity patterns using complex graph theory. In general, changes observed in the MCP group were more subtle than in SP. Results indicated that brain structures were not homogeneously affected by early nutritional stress. In particular, the growth of central brain regions, such as the temporo-parietal cortex, and long integrative myelinated tracts were relatively preserved, while the frequency of short tracts was relatively reduced. We also found a differential effect on network parameters: network degree, clustering, characteristic path length and small-worldness remained mainly unchanged, while the rich-club index was lower in nutritionally restricted animals. Rich-club decrease reflects an impairment in the structure by which brain regions with large number of connections tend to be more densely linked among themselves. Overall, the findings presented here support the hypothesis that chronic nutritional stress produces long-term changes in brain structural connectivity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Accelerating consensus on coevolving networks: The effect of committed individuals
NASA Astrophysics Data System (ADS)
Singh, P.; Sreenivasan, S.; Szymanski, B. K.; Korniss, G.
2012-04-01
Social networks are not static but, rather, constantly evolve in time. One of the elements thought to drive the evolution of social network structure is homophily—the need for individuals to connect with others who are similar to them. In this paper, we study how the spread of a new opinion, idea, or behavior on such a homophily-driven social network is affected by the changing network structure. In particular, using simulations, we study a variant of the Axelrod model on a network with a homophily-driven rewiring rule imposed. First, we find that the presence of rewiring within the network, in general, impedes the reaching of consensus in opinion, as the time to reach consensus diverges exponentially with network size N. We then investigate whether the introduction of committed individuals who are rigid in their opinion on a particular issue can speed up the convergence to consensus on that issue. We demonstrate that as committed agents are added, beyond a critical value of the committed fraction, the consensus time growth becomes logarithmic in network size N. Furthermore, we show that slight changes in the interaction rule can produce strikingly different results in the scaling behavior of consensus time, Tc. However, the benefit gained by introducing committed agents is qualitatively preserved across all the interaction rules we consider.
Genomic analysis of the hierarchical structure of regulatory networks
Yu, Haiyuan; Gerstein, Mark
2006-01-01
A fundamental question in biology is how the cell uses transcription factors (TFs) to coordinate the expression of thousands of genes in response to various stimuli. The relationships between TFs and their target genes can be modeled in terms of directed regulatory networks. These relationships, in turn, can be readily compared with commonplace “chain-of-command” structures in social networks, which have characteristic hierarchical layouts. Here, we develop algorithms for identifying generalized hierarchies (allowing for various loop structures) and use these approaches to illuminate extensive pyramid-shaped hierarchical structures existing in the regulatory networks of representative prokaryotes (Escherichia coli) and eukaryotes (Saccharomyces cerevisiae), with most TFs at the bottom levels and only a few master TFs on top. These masters are situated near the center of the protein–protein interaction network, a different type of network from the regulatory one, and they receive most of the input for the whole regulatory hierarchy through protein interactions. Moreover, they have maximal influence over other genes, in terms of affecting expression-level changes. Surprisingly, however, TFs at the bottom of the regulatory hierarchy are more essential to the viability of the cell. Finally, one might think master TFs achieve their wide influence through directly regulating many targets, but TFs with most direct targets are in the middle of the hierarchy. We find, in fact, that these midlevel TFs are “control bottlenecks” in the hierarchy, and this great degree of control for “middle managers” has parallels in efficient social structures in various corporate and governmental settings. PMID:17003135
Richetin, Juliette; Preti, Emanuele; Costantini, Giulio; De Panfilis, Chiara
2017-01-01
We argue that the series of traits characterizing Borderline Personality Disorder samples do not weigh equally. In this regard, we believe that network approaches employed recently in Personality and Psychopathology research to provide information about the differential relationships among symptoms would be useful to test our claim. To our knowledge, this approach has never been applied to personality disorders. We applied network analysis to the nine Borderline Personality Disorder traits to explore their relationships in two samples drawn from university students and clinical populations (N = 1317 and N = 96, respectively). We used the Fused Graphical Lasso, a technique that allows estimating networks from different populations separately while considering their similarities and differences. Moreover, we examined centrality indices to determine the relative importance of each symptom in each network. The general structure of the two networks was very similar in the two samples, although some differences were detected. Results indicate the centrality of mainly affective instability, identity, and effort to avoid abandonment aspects in Borderline Personality Disorder. Results are consistent with the new DSM Alternative Model for Personality Disorders. We discuss them in terms of implications for therapy.
Costantini, Giulio; De Panfilis, Chiara
2017-01-01
We argue that the series of traits characterizing Borderline Personality Disorder samples do not weigh equally. In this regard, we believe that network approaches employed recently in Personality and Psychopathology research to provide information about the differential relationships among symptoms would be useful to test our claim. To our knowledge, this approach has never been applied to personality disorders. We applied network analysis to the nine Borderline Personality Disorder traits to explore their relationships in two samples drawn from university students and clinical populations (N = 1317 and N = 96, respectively). We used the Fused Graphical Lasso, a technique that allows estimating networks from different populations separately while considering their similarities and differences. Moreover, we examined centrality indices to determine the relative importance of each symptom in each network. The general structure of the two networks was very similar in the two samples, although some differences were detected. Results indicate the centrality of mainly affective instability, identity, and effort to avoid abandonment aspects in Borderline Personality Disorder. Results are consistent with the new DSM Alternative Model for Personality Disorders. We discuss them in terms of implications for therapy. PMID:29040324
Ponzi scheme diffusion in complex networks
NASA Astrophysics Data System (ADS)
Zhu, Anding; Fu, Peihua; Zhang, Qinghe; Chen, Zhenyue
2017-08-01
Ponzi schemes taking the form of Internet-based financial schemes have been negatively affecting China's economy for the last two years. Because there is currently a lack of modeling research on Ponzi scheme diffusion within social networks yet, we develop a potential-investor-divestor (PID) model to investigate the diffusion dynamics of Ponzi scheme in both homogeneous and inhomogeneous networks. Our simulation study of artificial and real Facebook social networks shows that the structure of investor networks does indeed affect the characteristics of dynamics. Both the average degree of distribution and the power-law degree of distribution will reduce the spreading critical threshold and will speed up the rate of diffusion. A high speed of diffusion is the key to alleviating the interest burden and improving the financial outcomes for the Ponzi scheme operator. The zero-crossing point of fund flux function we introduce proves to be a feasible index for reflecting the fast-worsening situation of fiscal instability and predicting the forthcoming collapse. The faster the scheme diffuses, the higher a peak it will reach and the sooner it will collapse. We should keep a vigilant eye on the harm of Ponzi scheme diffusion through modern social networks.
Effects of spatial scale of sampling on food web structure
Wood, Spencer A; Russell, Roly; Hanson, Dieta; Williams, Richard J; Dunne, Jennifer A
2015-01-01
This study asks whether the spatial scale of sampling alters structural properties of food webs and whether any differences are attributable to changes in species richness and connectance with scale. Understanding how different aspects of sampling effort affect ecological network structure is important for both fundamental ecological knowledge and the application of network analysis in conservation and management. Using a highly resolved food web for the marine intertidal ecosystem of the Sanak Archipelago in the Eastern Aleutian Islands, Alaska, we assess how commonly studied properties of network structure differ for 281 versions of the food web sampled at five levels of spatial scale representing six orders of magnitude in area spread across the archipelago. Species (S) and link (L) richness both increased by approximately one order of magnitude across the five spatial scales. Links per species (L/S) more than doubled, while connectance (C) decreased by approximately two-thirds. Fourteen commonly studied properties of network structure varied systematically with spatial scale of sampling, some increasing and others decreasing. While ecological network properties varied systematically with sampling extent, analyses using the niche model and a power-law scaling relationship indicate that for many properties, this apparent sensitivity is attributable to the increasing S and decreasing C of webs with increasing spatial scale. As long as effects of S and C are accounted for, areal sampling bias does not have a special impact on our understanding of many aspects of network structure. However, attention does need be paid to some properties such as the fraction of species in loops, which increases more than expected with greater spatial scales of sampling. PMID:26380704
Xu, Man; Tan, Xiangliang; Zhang, Xinyuan; Guo, Yihao; Mei, Yingjie; Feng, Qianjin; Xu, Yikai; Feng, Yanqiu
2017-01-01
Systemic lupus erythematosus (SLE) is a chronic inflammatory female-predominant autoimmune disease that can affect the central nervous system and exhibit neuropsychiatric symptoms. In SLE patients without neuropsychiatric symptoms (non-NPSLE), recent diffusion tensor imaging studies showed white matter abnormalities in their brains. The present study investigated the entire brain white matter structural connectivity in non-NPSLE patients by using probabilistic tractography and connectivity-based analyses. Whole-brain structural networks of 29 non-NPSLE patients and 29 healthy controls (HCs) were examined. The structural networks were constructed with interregional probabilistic connectivity. Graph theory analysis was performed to investigate the topological properties, and network-based statistic was employed to assess the alterations of the interregional connections among non-NPSLE patients and controls. Compared with HCs, non-NPSLE patients demonstrated significantly decreased global and local network efficiencies and showed increased characteristic path length. This finding suggests that the global integration and local specialization were impaired. Moreover, the regional properties (nodal efficiency and degree) in the frontal, occipital, and cingulum regions of the non-NPSLE patients were significantly changed and negatively correlated with the disease activity index. The distribution pattern of the hubs measured by nodal degree was altered in the patient group. Finally, the non-NPSLE group exhibited decreased structural connectivity in the left median cingulate-centered component and increased connectivity in the left precuneus-centered component and right middle temporal lobe-centered component. This study reveals an altered topological organization of white matter networks in non-NPSLE patients. Furthermore, this research provides new insights into the structural disruptions underlying the functional and neurocognitive deficits in non-NPSLE patients.
Current-flow efficiency of networks
NASA Astrophysics Data System (ADS)
Liu, Kai; Yan, Xiaoyong
2018-02-01
Many real-world networks, from infrastructure networks to social and communication networks, can be formulated as flow networks. How to realistically measure the transport efficiency of these networks is of fundamental importance. The shortest-path-based efficiency measurement has limitations, as it assumes that flow travels only along those shortest paths. Here, we propose a new metric named current-flow efficiency, in which we calculate the average reciprocal effective resistance between all pairs of nodes in the network. This metric takes the multipath effect into consideration and is more suitable for measuring the efficiency of many real-world flow equilibrium networks. Moreover, this metric can handle a disconnected graph and can thus be used to identify critical nodes and edges from the efficiency-loss perspective. We further analyze how the topological structure affects the current-flow efficiency of networks based on some model and real-world networks. Our results enable a better understanding of flow networks and shed light on the design and improvement of such networks with higher transport efficiency.
Taking a systems approach to ecological systems
Grace, James B.
2015-01-01
Increasingly, there is interest in a systems-level understanding of ecological problems, which requires the evaluation of more complex, causal hypotheses. In this issue of the Journal of Vegetation Science, Soliveres et al. use structural equation modeling to test a causal network hypothesis about how tree canopies affect understorey communities. Historical analysis suggests structural equation modeling has been under-utilized in ecology.
NASA Astrophysics Data System (ADS)
Li, Ming-Xia; Jiang, Zhi-Qiang; Xie, Wen-Jie; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing
2015-02-01
Traders develop and adopt different trading strategies attempting to maximize their profits in financial markets. These trading strategies not only result in specific topological structures in trading networks, which connect the traders with the pairwise buy-sell relationships, but also have potential impacts on market dynamics. Here, we present a detailed analysis on how the market behaviors are correlated with the structures of traders in trading networks based on audit trail data for the Baosteel stock and its warrant at the transaction level from 22 August 2005 to 23 August 2006. In our investigation, we divide each trade day into 48 rolling time windows with a length of 5 min, construct a trading network within each window, and obtain a time series of over 11,600 trading networks. We find that there are strongly simultaneous correlations between the topological metrics (including network centralization, assortative index, and average path length) of trading networks that characterize the patterns of order execution and the financial variables (including return, volatility, intertrade duration, and trading volume) for the stock and its warrant. Our analysis may shed new lights on how the microscopic interactions between elements within complex system affect the system's performance.
HoPaCI-DB: host-Pseudomonas and Coxiella interaction database
Bleves, Sophie; Dunger, Irmtraud; Walter, Mathias C.; Frangoulidis, Dimitrios; Kastenmüller, Gabi; Voulhoux, Romé; Ruepp, Andreas
2014-01-01
Bacterial infectious diseases are the result of multifactorial processes affected by the interplay between virulence factors and host targets. The host-Pseudomonas and Coxiella interaction database (HoPaCI-DB) is a publicly available manually curated integrative database (http://mips.helmholtz-muenchen.de/HoPaCI/) of host–pathogen interaction data from Pseudomonas aeruginosa and Coxiella burnetii. The resource provides structured information on 3585 experimentally validated interactions between molecules, bioprocesses and cellular structures extracted from the scientific literature. Systematic annotation and interactive graphical representation of disease networks make HoPaCI-DB a versatile knowledge base for biologists and network biology approaches. PMID:24137008
Morphology and linear-elastic moduli of random network solids.
Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E
2011-06-17
The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Understanding Online Health Groups for Depression: Social Network and Linguistic Perspectives
2016-01-01
Background Mental health problems have become increasingly prevalent in the past decade. With the advance of Web 2.0 technologies, social media present a novel platform for Web users to form online health groups. Members of online health groups discuss health-related issues and mutually help one another by anonymously revealing their mental conditions, sharing personal experiences, exchanging health information, and providing suggestions and support. The conversations in online health groups contain valuable information to facilitate the understanding of their mutual help behaviors and their mental health problems. Objective We aimed to characterize the conversations in a major online health group for major depressive disorder (MDD) patients in a popular Chinese social media platform. In particular, we intended to explain how Web users discuss depression-related issues from the perspective of the social networks and linguistic patterns revealed by the members’ conversations. Methods Social network analysis and linguistic analysis were employed to characterize the social structure and linguistic patterns, respectively. Furthermore, we integrated both perspectives to exploit the hidden relations between them. Results We found an intensive use of self-focus words and negative affect words. In general, group members used a higher proportion of negative affect words than positive affect words. The social network of the MDD group for depression possessed small-world and scale-free properties, with a much higher reciprocity ratio and clustering coefficient value as compared to the networks of other social media platforms and classic network models. We observed a number of interesting relationships, either strong correlations or convergent trends, between the topological properties and linguistic properties of the MDD group members. Conclusions (1) The MDD group members have the characteristics of self-preoccupation and negative thought content, according to Beck’s cognitive theory of depression; (2) the social structure of the MDD group is much stickier than those of other social media groups, indicating the tendency of mutual communications and efficient spread of information in the MDD group; and (3) the linguistic patterns of MDD members are associated with their topological positions in the social network. PMID:26966078
Understanding Online Health Groups for Depression: Social Network and Linguistic Perspectives.
Xu, Ronghua; Zhang, Qingpeng
2016-03-10
Mental health problems have become increasingly prevalent in the past decade. With the advance of Web 2.0 technologies, social media present a novel platform for Web users to form online health groups. Members of online health groups discuss health-related issues and mutually help one another by anonymously revealing their mental conditions, sharing personal experiences, exchanging health information, and providing suggestions and support. The conversations in online health groups contain valuable information to facilitate the understanding of their mutual help behaviors and their mental health problems. We aimed to characterize the conversations in a major online health group for major depressive disorder (MDD) patients in a popular Chinese social media platform. In particular, we intended to explain how Web users discuss depression-related issues from the perspective of the social networks and linguistic patterns revealed by the members' conversations. Social network analysis and linguistic analysis were employed to characterize the social structure and linguistic patterns, respectively. Furthermore, we integrated both perspectives to exploit the hidden relations between them. We found an intensive use of self-focus words and negative affect words. In general, group members used a higher proportion of negative affect words than positive affect words. The social network of the MDD group for depression possessed small-world and scale-free properties, with a much higher reciprocity ratio and clustering coefficient value as compared to the networks of other social media platforms and classic network models. We observed a number of interesting relationships, either strong correlations or convergent trends, between the topological properties and linguistic properties of the MDD group members. (1) The MDD group members have the characteristics of self-preoccupation and negative thought content, according to Beck's cognitive theory of depression; (2) the social structure of the MDD group is much stickier than those of other social media groups, indicating the tendency of mutual communications and efficient spread of information in the MDD group; and (3) the linguistic patterns of MDD members are associated with their topological positions in the social network.
Young, Jacob S.; Smith, David V.; Coutlee, Christopher G.; Huettel, Scott A.
2015-01-01
Individuals with autistic spectrum disorders exhibit distinct personality traits linked to attentional, social, and affective functions, and those traits are expressed with varying levels of severity in the neurotypical and subclinical population. Variation in autistic traits has been linked to reduced functional and structural connectivity (i.e., underconnectivity, or reduced synchrony) with neural networks modulated by attentional, social, and affective functions. Yet, it remains unclear whether reduced synchrony between these neural networks contributes to autistic traits. To investigate this issue, we used functional magnetic resonance imaging to record brain activation while neurotypical participants who varied in their subclinical scores on the Autism-Spectrum Quotient (AQ) viewed alternating blocks of social and nonsocial stimuli (i.e., images of faces and of landscape scenes). We used independent component analysis (ICA) combined with a spatiotemporal regression to quantify synchrony between neural networks. Our results indicated that decreased synchrony between the executive control network (ECN) and a face-scene network (FSN) predicted higher scores on the AQ. This relationship was not explained by individual differences in head motion, preferences for faces, or personality variables related to social cognition. Our findings build on clinical reports by demonstrating that reduced synchrony between distinct neural networks contributes to a range of subclinical autistic traits. PMID:25852527
Skouras, Stavros; Lohmann, Gabriele
2018-01-01
Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with “small-world” properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex—and sensory systems in general—in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions. PMID:29385142
Aghajani, Moji; Colins, Olivier F; Klapwijk, Eduard T; Veer, Ilya M; Andershed, Henrik; Popma, Arne; van der Wee, Nic J; Vermeiren, Robert R J M
2016-11-01
Psychopathy is a serious psychiatric phenomenon characterized by a pathological constellation of affective (e.g., callous, unemotional), interpersonal (e.g., manipulative, egocentric), and behavioral (e.g., impulsive, irresponsible) personality traits. Though amygdala subregional defects are suggested in psychopathy, the functionality and connectivity of different amygdala subnuclei is typically disregarded in neurocircuit-level analyses of psychopathic personality. Hence, little is known of how amygdala subregional networks may contribute to psychopathy and its underlying trait assemblies in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral (BLA) and centromedial (CMA) amygdala networks in relation to affective, interpersonal, and behavioral traits of psychopathy, in conduct-disordered juveniles with a history of serious delinquency (N = 50, mean age = 16.83 ± 1.32). As predicted, amygdalar connectivity profiles exhibited dissociable relations with different traits of psychopathy. Interpersonal psychopathic traits not only related to increased connectivity of BLA and CMA with a corticostriatal network formation accommodating reward processing, but also predicted stronger CMA connectivity with a network of cortical midline structures supporting sociocognitive processes. In contrast, affective psychopathic traits related to diminished CMA connectivity with a frontolimbic network serving salience processing and affective responding. Finally, behavioral psychopathic traits related to heightened BLA connectivity with a frontoparietal cluster implicated in regulatory executive functioning. We suggest that these trait-specific shifts in amygdalar connectivity could be particularly relevant to the psychopathic phenotype, as they may fuel a self-centered, emotionally cold, and behaviorally disinhibited profile. Hum Brain Mapp 37:4017-4033, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Colins, Olivier F.; Klapwijk, Eduard T.; Veer, Ilya M.; Andershed, Henrik; Popma, Arne; van der Wee, Nic J.; Vermeiren, Robert R.J.M.
2016-01-01
Abstract Psychopathy is a serious psychiatric phenomenon characterized by a pathological constellation of affective (e.g., callous, unemotional), interpersonal (e.g., manipulative, egocentric), and behavioral (e.g., impulsive, irresponsible) personality traits. Though amygdala subregional defects are suggested in psychopathy, the functionality and connectivity of different amygdala subnuclei is typically disregarded in neurocircuit‐level analyses of psychopathic personality. Hence, little is known of how amygdala subregional networks may contribute to psychopathy and its underlying trait assemblies in severely antisocial people. We addressed this important issue by uniquely examining the intrinsic functional connectivity of basolateral (BLA) and centromedial (CMA) amygdala networks in relation to affective, interpersonal, and behavioral traits of psychopathy, in conduct‐disordered juveniles with a history of serious delinquency (N = 50, mean age = 16.83 ± 1.32). As predicted, amygdalar connectivity profiles exhibited dissociable relations with different traits of psychopathy. Interpersonal psychopathic traits not only related to increased connectivity of BLA and CMA with a corticostriatal network formation accommodating reward processing, but also predicted stronger CMA connectivity with a network of cortical midline structures supporting sociocognitive processes. In contrast, affective psychopathic traits related to diminished CMA connectivity with a frontolimbic network serving salience processing and affective responding. Finally, behavioral psychopathic traits related to heightened BLA connectivity with a frontoparietal cluster implicated in regulatory executive functioning. We suggest that these trait‐specific shifts in amygdalar connectivity could be particularly relevant to the psychopathic phenotype, as they may fuel a self‐centered, emotionally cold, and behaviorally disinhibited profile. Hum Brain Mapp 37:4017–4033, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27453465
Social network extraction based on Web: 1. Related superficial methods
NASA Astrophysics Data System (ADS)
Khairuddin Matyuso Nasution, Mahyuddin
2018-01-01
Often the nature of something affects methods to resolve the related issues about it. Likewise, methods to extract social networks from the Web, but involve the structured data types differently. This paper reveals several methods of social network extraction from the same sources that is Web: the basic superficial method, the underlying superficial method, the description superficial method, and the related superficial methods. In complexity we derive the inequalities between methods and so are their computations. In this case, we find that different results from the same tools make the difference from the more complex to the simpler: Extraction of social network by involving co-occurrence is more complex than using occurrences.
Asteris, Panagiotis G; Tsaris, Athanasios K; Cavaleri, Liborio; Repapis, Constantinos C; Papalou, Angeliki; Di Trapani, Fabio; Karypidis, Dimitrios F
2016-01-01
The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of these approaches do not take into account the presence of infill walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period. In the present paper, artificial neural networks (ANNs) are used to predict the fundamental period of infilled reinforced concrete (RC) structures. For the training and the validation of the ANN, a large data set is used based on a detailed investigation of the parameters that affect the fundamental period of RC structures. The comparison of the predicted values with analytical ones indicates the potential of using ANNs for the prediction of the fundamental period of infilled RC frame structures taking into account the crucial parameters that influence its value.
Asteris, Panagiotis G.; Tsaris, Athanasios K.; Cavaleri, Liborio; Repapis, Constantinos C.; Papalou, Angeliki; Di Trapani, Fabio; Karypidis, Dimitrios F.
2016-01-01
The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of these approaches do not take into account the presence of infill walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period. In the present paper, artificial neural networks (ANNs) are used to predict the fundamental period of infilled reinforced concrete (RC) structures. For the training and the validation of the ANN, a large data set is used based on a detailed investigation of the parameters that affect the fundamental period of RC structures. The comparison of the predicted values with analytical ones indicates the potential of using ANNs for the prediction of the fundamental period of infilled RC frame structures taking into account the crucial parameters that influence its value. PMID:27066069
Regulation of Mitochondrial Structure and Dynamics by the Cytoskeleton and Mechanical Factors.
Bartolák-Suki, Erzsébet; Imsirovic, Jasmin; Nishibori, Yuichiro; Krishnan, Ramaswamy; Suki, Béla
2017-08-21
Mitochondria supply cells with energy in the form of ATP, guide apoptosis, and contribute to calcium buffering and reactive oxygen species production. To support these diverse functions, mitochondria form an extensive network with smaller clusters that are able to move along microtubules aided by motor proteins. Mitochondria are also associated with the actin network, which is involved in cellular responses to various mechanical factors. In this review, we discuss mitochondrial structure and function in relation to the cytoskeleton and various mechanical factors influencing cell functions. We first summarize the morphological features of mitochondria with an emphasis on fission and fusion as well as how network properties govern function. We then review the relationship between the mitochondria and the cytoskeletal structures, including mechanical interactions. We also discuss how stretch and its dynamic pattern affect mitochondrial structure and function. Finally, we present preliminary data on how extracellular matrix stiffness influences mitochondrial morphology and ATP generation. We conclude by discussing the more general role that mitochondria may play in mechanobiology and how the mechanosensitivity of mitochondria may contribute to the development of several diseases and aging.
Regulation of Mitochondrial Structure and Dynamics by the Cytoskeleton and Mechanical Factors
Bartolák-Suki, Erzsébet; Imsirovic, Jasmin; Nishibori, Yuichiro; Krishnan, Ramaswamy; Suki, Béla
2017-01-01
Mitochondria supply cells with energy in the form of ATP, guide apoptosis, and contribute to calcium buffering and reactive oxygen species production. To support these diverse functions, mitochondria form an extensive network with smaller clusters that are able to move along microtubules aided by motor proteins. Mitochondria are also associated with the actin network, which is involved in cellular responses to various mechanical factors. In this review, we discuss mitochondrial structure and function in relation to the cytoskeleton and various mechanical factors influencing cell functions. We first summarize the morphological features of mitochondria with an emphasis on fission and fusion as well as how network properties govern function. We then review the relationship between the mitochondria and the cytoskeletal structures, including mechanical interactions. We also discuss how stretch and its dynamic pattern affect mitochondrial structure and function. Finally, we present preliminary data on how extracellular matrix stiffness influences mitochondrial morphology and ATP generation. We conclude by discussing the more general role that mitochondria may play in mechanobiology and how the mechanosensitivity of mitochondria may contribute to the development of several diseases and aging. PMID:28825689
NASA Astrophysics Data System (ADS)
Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye
2016-03-01
Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.
Maguire, Sarah E.; Schmidt, Marc F.; White, David J.
2013-01-01
Social experiences can organize physiological, neural, and reproductive function, but there are few experimental preparations that allow one to study the effect individuals have in structuring their social environment. We examined the connections between mechanisms underlying individual behavior and social dynamics in flocks of brown-headed cowbirds (Molothrus ater). We conducted targeted inactivations of the neural song control system in female subjects. Playback tests revealed that the lesions affected females' song preferences: lesioned females were no longer selective for high quality conspecific song. Instead, they reacted to all cowbird songs vigorously. When lesioned females were introduced into mixed-sex captive flocks, they were less likely to form strong pair-bonds, and they no longer showed preferences for dominant males. This in turn created a cascade of effects through the groups. Social network analyses showed that the introduction of the lesioned females created instabilities in the social structure: males in the groups changed their dominance status and their courtship patterns, and even the competitive behavior of other female group-mates was affected. These results reveal that inactivation of the song control system in female cowbirds not only affects individual behavior, but also exerts widespread effects on the stability of the entire social system. PMID:23650558
Maguire, Sarah E; Schmidt, Marc F; White, David J
2013-01-01
Social experiences can organize physiological, neural, and reproductive function, but there are few experimental preparations that allow one to study the effect individuals have in structuring their social environment. We examined the connections between mechanisms underlying individual behavior and social dynamics in flocks of brown-headed cowbirds (Molothrus ater). We conducted targeted inactivations of the neural song control system in female subjects. Playback tests revealed that the lesions affected females' song preferences: lesioned females were no longer selective for high quality conspecific song. Instead, they reacted to all cowbird songs vigorously. When lesioned females were introduced into mixed-sex captive flocks, they were less likely to form strong pair-bonds, and they no longer showed preferences for dominant males. This in turn created a cascade of effects through the groups. Social network analyses showed that the introduction of the lesioned females created instabilities in the social structure: males in the groups changed their dominance status and their courtship patterns, and even the competitive behavior of other female group-mates was affected. These results reveal that inactivation of the song control system in female cowbirds not only affects individual behavior, but also exerts widespread effects on the stability of the entire social system.
NASA Astrophysics Data System (ADS)
Holme, Petter; Saramäki, Jari
2012-10-01
A great variety of systems in nature, society and technology-from the web of sexual contacts to the Internet, from the nervous system to power grids-can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via e-mail, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks. The study of temporal networks is very interdisciplinary in nature. Reflecting this, even the object of study has many names-temporal graphs, evolving graphs, time-varying graphs, time-aggregated graphs, time-stamped graphs, dynamic networks, dynamic graphs, dynamical graphs, and so on. This review covers different fields where temporal graphs are considered, but does not attempt to unify related terminology-rather, we want to make papers readable across disciplines.
Selection for territory acquisition is modulated by social network structure in a wild songbird
Farine, D R; Sheldon, B C
2015-01-01
The social environment may be a key mediator of selection that operates on animals. In many cases, individuals may experience selection not only as a function of their phenotype, but also as a function of the interaction between their phenotype and the phenotypes of the conspecifics they associate with. For example, when animals settle after dispersal, individuals may benefit from arriving early, but, in many cases, these benefits will be affected by the arrival times of other individuals in their local environment. We integrated a recently described method for calculating assortativity on weighted networks, which is the correlation between an individual's phenotype and that of its associates, into an existing framework for measuring the magnitude of social selection operating on phenotypes. We applied this approach to large-scale data on social network structure and the timing of arrival into the breeding area over three years. We found that late-arriving individuals had a reduced probability of breeding. However, the probability of breeding was also influenced by individuals’ social networks. Associating with late-arriving conspecifics increased the probability of successfully acquiring a breeding territory. Hence, social selection could offset the effects of nonsocial selection. Given parallel theoretical developments of the importance of local network structure on population processes, and increasing data being collected on social networks in free-living populations, the integration of these concepts could yield significant insights into social evolution. PMID:25611344
From neurons to epidemics: How trophic coherence affects spreading processes
NASA Astrophysics Data System (ADS)
Klaise, Janis; Johnson, Samuel
2016-06-01
Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.
Discretized kinetic theory on scale-free networks
NASA Astrophysics Data System (ADS)
Bertotti, Maria Letizia; Modanese, Giovanni
2016-10-01
The network of interpersonal connections is one of the possible heterogeneous factors which affect the income distribution emerging from micro-to-macro economic models. In this paper we equip our model discussed in [1, 2] with a network structure. The model is based on a system of n differential equations of the kinetic discretized-Boltzmann kind. The network structure is incorporated in a probabilistic way, through the introduction of a link density P(α) and of correlation coefficients P(β|α), which give the conditioned probability that an individual with α links is connected to one with β links. We study the properties of the equations and give analytical results concerning the existence, normalization and positivity of the solutions. For a fixed network with P(α) = c/α q , we investigate numerically the dependence of the detailed and marginal equilibrium distributions on the initial conditions and on the exponent q. Our results are compatible with those obtained from the Bouchaud-Mezard model and from agent-based simulations, and provide additional information about the dependence of the individual income on the level of connectivity.
The roosting spatial network of a bird-predator bat.
Fortuna, Miguel A; Popa-Lisseanu, Ana G; Ibáñez, Carlos; Bascompte, Jordi
2009-04-01
The use of roosting sites by animal societies is important in conservation biology, animal behavior, and epidemiology. The giant noctule bat (Nyctalus lasiopterus) constitutes fission-fusion societies whose members spread every day in multiple trees for shelter. To assess how the pattern of roosting use determines the potential for information exchange or disease spreading, we applied the framework of complex networks. We found a social and spatial segregation of the population in well-defined modules or compartments, formed by groups of bats sharing the same trees. Inside each module, we revealed an asymmetric use of trees by bats representative of a nested pattern. By applying a simple epidemiological model, we show that there is a strong correlation between network structure and the rate and shape of infection dynamics. This modular structure slows down the spread of diseases and the exchange of information through the entire network. The implication for management is complex, affecting differently the cohesion inside and among colonies and the transmission of parasites and diseases. Network analysis can hence be applied to quantifying the conservation status of individual trees used by species depending on hollows for shelter.
a Weighted Local-World Evolving Network Model Based on the Edge Weights Preferential Selection
NASA Astrophysics Data System (ADS)
Li, Ping; Zhao, Qingzhen; Wang, Haitang
2013-05-01
In this paper, we use the edge weights preferential attachment mechanism to build a new local-world evolutionary model for weighted networks. It is different from previous papers that the local-world of our model consists of edges instead of nodes. Each time step, we connect a new node to two existing nodes in the local-world through the edge weights preferential selection. Theoretical analysis and numerical simulations show that the scale of the local-world affect on the weight distribution, the strength distribution and the degree distribution. We give the simulations about the clustering coefficient and the dynamics of infectious diseases spreading. The weight dynamics of our network model can portray the structure of realistic networks such as neural network of the nematode C. elegans and Online Social Network.
Evolution of the social network of scientific collaborations
NASA Astrophysics Data System (ADS)
Barabasi, Albert-Laszlo; Jeong, Hawoong; Neda, Zoltan; Ravasz, Erzsebet; Schubert, Andras; Vicsek, Tamas
2002-03-01
The co-authorship network of scientists represents a prototype of complex evolving networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically.
Topological structure and mechanics of glassy polymer networks.
Elder, Robert M; Sirk, Timothy W
2017-11-22
The influence of chain-level network architecture (i.e., topology) on mechanics was explored for unentangled polymer networks using a blend of coarse-grained molecular simulations and graph-theoretic concepts. A simple extension of the Watts-Strogatz model is proposed to control the graph properties of the network such that the corresponding physical properties can be studied with simulations. The architecture of polymer networks assembled with a dynamic curing approach were compared with the extended Watts-Strogatz model, and found to agree surprisingly well. The final cured structures of the dynamically-assembled networks were nearly an intermediate between lattice and random connections due to restrictions imposed by the finite length of the chains. Further, the uni-axial stress response, character of the bond breaking, and non-affine displacements of fully-cured glassy networks were analyzed as a function of the degree of disorder in the network architecture. It is shown that the architecture strongly affects the network stability, flow stress, onset of bond breaking, and ultimate stress while leaving the modulus and yield point nearly unchanged. The results show that internal restrictions imposed by the network architecture alter the chain-level response through changes to the crosslink dynamics in the flow regime and through the degree of coordinated chain failure at the ultimate stress. The properties considered here are shown to be sensitive to even incremental changes to the architecture and, therefore, the overall network architecture, beyond simple defects, is predicted to be a meaningful physical parameter in the mechanics of glassy polymer networks.
NASA Astrophysics Data System (ADS)
Duncan, Elizabeth C.; Reddick, Wilburn E.; Glass, John O.; Hyun, Jung Won; Ji, Qing; Li, Yimei; Gajjar, Amar
2016-03-01
We applied a modified probabilistic fiber-tracking method for the extraction of fiber pathways to quantify decreased white matter integrity as a surrogate of structural loss in connectivity due to cranial radiation therapy (CRT) as treatment for pediatric medulloblastoma. Thirty subjects were examined (n=8 average-risk, n=22 high-risk) and the groups did not differ significantly in age at examination. The pathway analysis created a structural connectome focused on sub-networks within the central executive network (CEN) for comparison between baseline and post-CRT scans and for comparison between standard and high dose CRT. A paired-wise comparison of the connectivity between baseline and post-CRT scans showed the irradiation did have a significant detrimental impact on white matter integrity (decreased fractional anisotropy (FA) and decreased axial diffusivity (AX)) in most of the CEN sub-networks. Group comparisons of the change in the connectivity revealed that patients receiving high dose CRT experienced significant AX decreases in all sub-networks while the patients receiving standard dose CRT had relatively stable AX measures across time. This study on pediatric patients with medulloblastoma demonstrated the utility of this method to identify specific sub-networks within the developing brain affected by CRT.
Revealing the Effect of Irradiation on Cement Hydrates: Evidence of a Topological Self-Organization.
Krishnan, N M Anoop; Wang, Bu; Sant, Gaurav; Phillips, James C; Bauchy, Mathieu
2017-09-20
Despite the crucial role of concrete in the construction of nuclear power plants, the effects of radiation exposure (i.e., in the form of neutrons) on the calcium-silicate-hydrate (C-S-H, i.e., the glue of concrete) remain largely unknown. Using molecular dynamics simulations, we systematically investigate the effects of irradiation on the structure of C-S-H across a range of compositions. Expectedly, although C-S-H is more resistant to irradiation than typical crystalline silicates, such as quartz, we observe that radiation exposure affects C-S-H's structural order, silicate mean chain length, and the amount of molecular water that is present in the atomic network. By topological analysis, we show that these "structural effects" arise from a self-organization of the atomic network of C-S-H upon irradiation. This topological self-organization is driven by the (initial) presence of atomic eigenstress in the C-S-H network and is facilitated by the presence of water in the network. Overall, we show that C-S-H exhibits an optimal resistance to radiation damage when its atomic network is isostatic (at Ca/Si = 1.5). Such an improved understanding of the response of C-S-H to irradiation can pave the way to the design of durable concrete for radiation applications.
Efficient local behavioral-change strategies to reduce the spread of epidemics in networks
NASA Astrophysics Data System (ADS)
Bu, Yilei; Gregory, Steve; Mills, Harriet L.
2013-10-01
It has recently become established that the spread of infectious diseases between humans is affected not only by the pathogen itself but also by changes in behavior as the population becomes aware of the epidemic, for example, social distancing. It is also well known that community structure (the existence of relatively densely connected groups of vertices) in contact networks influences the spread of disease. We propose a set of local strategies for social distancing, based on community structure, that can be employed in the event of an epidemic to reduce the epidemic size. Unlike most social distancing methods, ours do not require individuals to know the disease state (infected or susceptible, etc.) of others, and we do not make the unrealistic assumption that the structure of the entire contact network is known. Instead, the recommended behavior change is based only on an individual's local view of the network. Each individual avoids contact with a fraction of his/her contacts, using knowledge of his/her local network to decide which contacts should be avoided. If the behavior change occurs only when an individual becomes ill or aware of the disease, these strategies can substantially reduce epidemic size with a relatively small cost, measured by the number of contacts avoided.
Minicucci, Domenic; Guediche, Sara; Blumstein, Sheila E
2013-08-01
The current study explored how factors of acoustic-phonetic and lexical competition affect access to the lexical-semantic network during spoken word recognition. An auditory semantic priming lexical decision task was presented to subjects while in the MR scanner. Prime-target pairs consisted of prime words with the initial voiceless stop consonants /p/, /t/, and /k/ followed by word and nonword targets. To examine the neural consequences of lexical and sound structure competition, primes either had voiced minimal pair competitors or they did not, and they were either acoustically modified to be poorer exemplars of the voiceless phonetic category or not. Neural activation associated with semantic priming (Unrelated-Related conditions) revealed a bilateral fronto-temporo-parietal network. Within this network, clusters in the left insula/inferior frontal gyrus (IFG), left superior temporal gyrus (STG), and left posterior middle temporal gyrus (pMTG) showed sensitivity to lexical competition. The pMTG also demonstrated sensitivity to acoustic modification, and the insula/IFG showed an interaction between lexical competition and acoustic modification. These findings suggest the posterior lexical-semantic network is modulated by both acoustic-phonetic and lexical structure, and that the resolution of these two sources of competition recruits frontal structures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Flow interaction based propagation model and bursty influence behavior analysis of Internet flows
NASA Astrophysics Data System (ADS)
Wu, Xiao-Yu; Gu, Ren-Tao; Ji, Yue-Feng
2016-11-01
QoS (quality of service) fluctuations caused by Internet bursty flows influence the user experience in the Internet, such as the increment of packet loss and transmission time. In this paper, we establish a mathematical model to study the influence propagation behavior of the bursty flow, which is helpful for developing a deep understanding of the network dynamics in the Internet complex system. To intuitively reflect the propagation process, a data flow interaction network with a hierarchical structure is constructed, where the neighbor order is proposed to indicate the neighborhood relationship between the bursty flow and other flows. The influence spreads from the bursty flow to each order of neighbors through flow interactions. As the influence spreads, the bursty flow has negative effects on the odd order neighbors and positive effects on the even order neighbors. The influence intensity of bursty flow decreases sharply between two adjacent orders and the decreasing degree can reach up to dozens of times in the experimental simulation. Moreover, the influence intensity increases significantly when network congestion situation becomes serious, especially for the 1st order neighbors. Network structural factors are considered to make a further study. Simulation results show that the physical network scale expansion can reduce the influence intensity of bursty flow by decreasing the flow distribution density. Furthermore, with the same network scale, the influence intensity in WS small-world networks is 38.18% and 18.40% lower than that in ER random networks and BA scale-free networks, respectively, due to a lower interaction probability between flows. These results indicate that the macro-structural changes such as network scales and styles will affect the inner propagation behaviors of the bursty flow.
NASA Astrophysics Data System (ADS)
Kan, Jia-Qian; Zhang, Hai-Feng
2017-03-01
In this paper, we study the interplay between the epidemic spreading and the diffusion of awareness in multiplex networks. In the model, an infectious disease can spread in one network representing the paths of epidemic spreading (contact network), leading to the diffusion of awareness in the other network (information network), and then the diffusion of awareness will cause individuals to take social distances, which in turn affects the epidemic spreading. As for the diffusion of awareness, we assume that, on the one hand, individuals can be informed by other aware neighbors in information network, on the other hand, the susceptible individuals can be self-awareness induced by the infected neighbors in the contact networks (local information) or mass media (global information). Through Markov chain approach and numerical computations, we find that the density of infected individuals and the epidemic threshold can be affected by the structures of the two networks and the effective transmission rate of the awareness. However, we prove that though the introduction of the self-awareness can lower the density of infection, which cannot increase the epidemic threshold no matter of the local information or global information. Our finding is remarkably different to many previous results on single-layer network: local information based behavioral response can alter the epidemic threshold. Furthermore, our results indicate that the nodes with more neighbors (hub nodes) in information networks are easier to be informed, as a result, their risk of infection in contact networks can be effectively reduced.
De Pourcq, Kaat; De Regge, Melissa; Van den Heede, Koen; Van de Voorde, Carine; Gemmel, Paul; Eeckloo, Kristof
2018-03-29
Objectives This study aims to identify the facilitators and barriers to governance models of hospital collaborations. The country-specific characteristics of the Belgian healthcare system and legislation are taken into account. Methods A case study was carried out in six Belgian hospital collaborations. Different types of governance models were selected: two health systems, two participant-governed networks, and two lead-organization-governed networks. Within these collaborations, 43 people were interviewed. Results All structures have both advantages and disadvantages. It is important that the governance model fits the network. However, structural, procedural, and especially contextual factors also affect the collaborations, such as alignment of hospitals' and professionals' goals, competition, distance, level of integrated care, time needed for decision-making, and legal and financial incentives. Conclusion The fit between the governance model and the collaboration can facilitate the functioning of a collaboration. The main barriers we identified are contextual factors. The Belgian government needs to play a major role in facilitating collaboration.
Assembly of one-dimensional supramolecular objects: From monomers to networks
NASA Astrophysics Data System (ADS)
Sayar, Mehmet; Stupp, Samuel I.
2005-07-01
One-dimensional supramolecular aggregates can form networks at exceedingly low concentrations. Recent experiments in several laboratories, including our own, have demonstrated the formation of gels by these systems at concentrations well under 1% by weight. The systems of interest in our laboratory form either cylindrical nanofibers or ribbons as a result of strong noncovalent interactions among monomers. The stiffness and interaction energies among these thread-like objects can vary significantly depending on the chemical structure of the monomers used. We have used Monte Carlo simulations to study the structure of the threads and their ability to form networks through bundle formation. The persistence length of the threads was found to be strongly affected not only by stiffness, but also by the strength of attractive two-body interactions among thread segments. The relative values of stiffness and attractive two-body interaction strength determine if threads collapse or create bundles. Only in the presence of sufficiently long threads and bundle formation can these systems assemble into networks of high connectivity.
Bainbridge, Daryl; Brazil, Kevin; Krueger, Paul; Ploeg, Jenny; Taniguchi, Alan; Darnay, Julie
2011-01-01
There is increasing global interest in using regional palliative care networks (PCNs) to integrate care and create systems that are more cost-effective and responsive. We examined a PCN that used a community development approach to build capacity for palliative care in each distinct community in a region of southern Ontario, Canada, with the goal of achieving a competent integrated system. Using a case study methodology, we examined a PCN at the structural level through a document review, a survey of 20 organizational administrators, and an interview with the network director. The PCN identified 14 distinct communities at different stages of development within the region. Despite the lack of some key features that would facilitate efficient palliative care delivery across these communities, administrators largely viewed the network partnership as beneficial and collaborative. The PCN has attempted to recognize specific needs in each local area. Change is gradual but participatory. There remain structural issues that may negatively affect the functioning of the PCN.
Early development of structural networks and the impact of prematurity on brain connectivity.
Batalle, Dafnis; Hughes, Emer J; Zhang, Hui; Tournier, J-Donald; Tusor, Nora; Aljabar, Paul; Wali, Luqman; Alexander, Daniel C; Hajnal, Joseph V; Nosarti, Chiara; Edwards, A David; Counsell, Serena J
2017-04-01
Preterm infants are at high risk of neurodevelopmental impairment, which may be due to altered development of brain connectivity. We aimed to (i) assess structural brain development from 25 to 45 weeks gestational age (GA) using graph theoretical approaches and (ii) test the hypothesis that preterm birth results in altered white matter network topology. Sixty-five infants underwent MRI between 25 +3 and 45 +6 weeks GA. Structural networks were constructed using constrained spherical deconvolution tractography and were weighted by measures of white matter microstructure (fractional anisotropy, neurite density and orientation dispersion index). We observed regional differences in brain maturation, with connections to and from deep grey matter showing most rapid developmental changes during this period. Intra-frontal, frontal to cingulate, frontal to caudate and inter-hemispheric connections matured more slowly. We demonstrated a core of key connections that was not affected by GA at birth. However, local connectivity involving thalamus, cerebellum, superior frontal lobe, cingulate gyrus and short range cortico-cortical connections was related to the degree of prematurity and contributed to altered global topology of the structural brain network. The relative preservation of core connections at the expense of local connections may support more effective use of impaired white matter reserve following preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Baltoumas, Fotis A; Theodoropoulou, Margarita C; Hamodrakas, Stavros J
2016-06-01
A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.
NASA Astrophysics Data System (ADS)
Baltoumas, Fotis A.; Theodoropoulou, Margarita C.; Hamodrakas, Stavros J.
2016-06-01
A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.
NASA Astrophysics Data System (ADS)
Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca
2017-04-01
The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of land-use/land-cover changes and river regulation on network-scale connectivity.
Fujimoto, Kayo; Valente, Thomas W.
2012-01-01
This study investigates two contagion mechanisms of peer influence based on direct communication (cohesion) versus comparison through peers who occupy similar network positions (structural equivalence) in the context of adolescents' drinking alcohol and smoking. To date, the two contagion mechanisms have been considered observationally inseparable, but this study attempts to disentangle structural equivalence from cohesion as a contagion mechanism by examining the extent to which the transmission of drinking and smoking behaviors attenuates as a function of social distance (i.e., from immediate friends to indirectly connected peers). Using the U.S. Add Health data consisting of a nationally representative sample of American adolescents (Grades 7-12), this study measured peer risk-taking up to four steps away from the adolescent (friends of friends of friends of friends) using a network exposure model. Peer influence was tested using a logistic regression model of alcohol drinking and cigarette smoking. Results indicate that influence based on structural equivalence tended to be stronger than influence based on cohesion in general, and that the magnitude of the effect decreased up to three steps away from the adolescent (friends of friends of friends). Further analysis indicated that structural equivalence acted as a mechanism of contagion for drinking and cohesion acted as one for smoking. These results indicate that the two transmission mechanisms with differing network proximities can differentially affect drinking and smoking behaviors in American adolescents. PMID:22475405
Three-Dimensional Bi₂Te₃ Networks of Interconnected Nanowires: Synthesis and Optimization.
Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martín-González, Marisol
2018-05-18
Self-standing Bi₂Te₃ networks of interconnected nanowires were fabricated in three-dimensional porous anodic alumina templates (3D⁻AAO) with a porous structure spreading in all three spatial dimensions. Pulsed electrodeposition parameters were optimized to grow highly oriented Bi₂Te₃ interconnected nanowires with stoichiometric composition inside those 3D⁻AAO templates. The nanowire networks were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Raman spectroscopy. The results are compared to those obtained in films and 1D nanowires grown under similar conditions. The crystalline structure and composition of the 3D Bi⁻Te nanowire network are finely tuned by controlling the applied voltage and the relaxation time off at zero current density during the deposition. With this fabrication method, and controlling the electrodeposition parameters, stoichiometric Bi₂Te₃ networks of interconnected nanowires have been obtained, with a preferential orientation along [1 1 0], which makes them optimal candidates for out-of-plane thermoelectric applications. Moreover, the templates in which they are grown can be dissolved and the network of interconnected nanowires is self-standing without affecting its composition and orientation properties.
Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space.
Carstensen, Daniel W; Sabatino, Malena; Morellato, Leonor Patricia C
2016-05-01
Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where flowers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant-pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defining pollination systems as corresponding groups of flower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifically we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and finally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confirm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not find a significant effect of pollination systems on the spatial consistency of pairwise interactions. These results indicate that the spatial rewiring of interactions could be constrained by pollination systems, resulting in conserved network structures in spite of high variation in pairwise interactions. Our findings suggest a relevant role of pollination systems in structuring plant-pollinator networks and we argue that structural patterns at the sub-network level can help us to fully understand how and why interactions vary across space and time.
Variables Affecting Successful Reintegration as Perceived by Offenders and Professionals
ERIC Educational Resources Information Center
Graffam, Joe; Shinkfield, Alison; Lavelle, Barbara; McPherson, Wenda
2004-01-01
Six broad domains were identified as influencing reintegration of ex-offenders including personal conditions, social network/environment, accommodation, criminal justice system, rehabilitation and counselling support, and employment and training support. Semi-structured interviews were conducted with 12 offenders and 22 professionals from criminal…
Robinson, J M; Henderson, W A
2018-01-12
We report a method using functional-molecular databases and network modelling to identify hypothetical mRNA-miRNA interaction networks regulating intestinal epithelial barrier function. The model forms a data-analysis component of our cell culture experiments, which produce RNA expression data from Nanostring Technologies nCounter ® system. The epithelial tight-junction (TJ) and actin cytoskeleton interact as molecular components of the intestinal epithelial barrier. Upstream regulation of TJ-cytoskeleton interaction is effected by the Rac/Rock/Rho signaling pathway and other associated pathways which may be activated or suppressed by extracellular signaling from growth factors, hormones, and immune receptors. Pathway activations affect epithelial homeostasis, contributing to degradation of the epithelial barrier associated with osmotic dysregulation, inflammation, and tumor development. The complexity underlying miRNA-mRNA interaction networks represents a roadblock for prediction and validation of competing-endogenous RNA network function. We developed a network model to identify hypothetical co-regulatory motifs in a miRNA-mRNA interaction network related to epithelial function. A mRNA-miRNA interaction list was generated using KEGG and miRWalk2.0 databases. R-code was developed to quantify and visualize inherent network structures. We identified a sub-network with a high number of shared, targeting miRNAs, of genes associated with cellular proliferation and cancer, including c-MYC and Cyclin D.
Grey-matter network disintegration as predictor of cognitive and motor function with aging.
Koini, Marisa; Duering, Marco; Gesierich, Benno G; Rombouts, Serge A R B; Ropele, Stefan; Wagner, Fabian; Enzinger, Christian; Schmidt, Reinhold
2018-06-01
Loss of grey-matter volume with advancing age affects the entire cortex. It has been suggested that atrophy occurs in a network-dependent manner with advancing age rather than in independent brain areas. The relationship between networks of structural covariance (SCN) disintegration and cognitive functioning during normal aging is not fully explored. We, therefore, aimed to (1) identify networks that lose GM integrity with advancing age, (2) investigate if age-related impairment of integrity in GM networks associates with cognitive function and decreasing fine motor skills (FMS), and (3) examine if GM disintegration is a mediator between age and cognition and FMS. T1-weighted scans of n = 257 participants (age range: 20-87) were used to identify GM networks using independent component analysis. Random forest analysis was implemented to examine the importance of network integrity as predictors of memory, executive functions, and FMS. The associations between GM disintegration, age and cognitive performance, and FMS were assessed using mediation analyses. Advancing age was associated with decreasing cognitive performance and FMS. Fourteen of 20 GM networks showed integrity changes with advancing age. Next to age and education, eight networks (fronto-parietal, fronto-occipital, temporal, limbic, secondary somatosensory, cuneal, sensorimotor network, and a cerebellar network) showed an association with cognition and FMS (up to 15.08%). GM networks partially mediated the effect between age and cognition and age and FMS. We confirm an age-related decline in cognitive functioning and FMS in non-demented community-dwelling subjects and showed that aging selectively affects the integrity of GM networks. The negative effect of age on cognition and FMS is associated with distinct GM networks and is partly mediated by their disintegration.
Thinking Big or Small: Does Mental Abstraction Affect Social Network Organization?
Bacev-Giles, Chantal; Peetz, Johanna
2016-01-01
Four studies examined how mental abstraction affects how people perceive their relationships with other people, specifically, how these relationships may be categorized in social groups. We expected that individuals induced to think abstractly would report fewer more global social groups, compared to those induced to think concretely, who would report more specific groups. However, induced abstract mindset did not affect how people structured their social groups (Study 2–4), despite evidence that the mindset manipulation changed the level of abstraction in their thoughts (Study 3) and evidence that it changed how people structured groups for a control condition (household objects, Study 4). Together, these studies suggest that while the way people organize their relationships into groups is malleable; cognitive abstraction does not seem to affect how people categorize their relationships into social groups. PMID:26808086
NASA Astrophysics Data System (ADS)
Temme, A.; Langston, A. L.
2017-12-01
Traditional classification of channel networks is helpful for qualitative geologic and geomorphic inference. For instance, a dendritic network indicates no strong lithological control on where channels flow. However, an approach where channel network structure is quantified, is required to be able to indicate for instance how increasing levels of lithological control lead, gradually or suddenly, to a trellis-type drainage network Our contribution aims to aid this transition to a quantitative analysis of channel networks. First, to establish the range of typically occurring channel network properties, we selected 30 examples of traditional drainage network types from around the world. For each of these, we calculated a set of topological and geometric properties, such as total drainage length, average length of a channel segment and the average angle of intersection of channel segments. A decision tree was used to formalize the relation between these newly quantified properties on the one hand, and traditional network types on the other hand. Then, to explore how variations in lithological and geomorphic boundary conditions affect channel network structure, we ran a set of experiments with landscape evolution model Landlab. For each simulated channel network, the same set of topological and geometric properties was calculated as for the 30 real-world channel networks. The latter were used for a first, visual evaluation to find out whether a simulated network that looked, for instance, rectangular, also had the same set of properties as real-world rectangular channel networks. Ultimately, the relation between these properties and the imposed lithological and geomorphic boundary conditions was explored using simple bivariate statistics.
Cooperation and coexpression: How coexpression networks shift in response to multiple mutualists.
Palakurty, Sathvik X; Stinchcombe, John R; Afkhami, Michelle E
2018-04-01
A mechanistic understanding of community ecology requires tackling the nonadditive effects of multispecies interactions, a challenge that necessitates integration of ecological and molecular complexity-namely moving beyond pairwise ecological interaction studies and the "gene at a time" approach to mechanism. Here, we investigate the consequences of multispecies mutualisms for the structure and function of genomewide differential coexpression networks for the first time, using the tractable and ecologically important interaction between legume Medicago truncatula, rhizobia and mycorrhizal fungi. First, we found that genes whose expression is affected nonadditively by multiple mutualists are more highly connected in gene networks than expected by chance and had 94% greater network centrality than genes showing additive effects, suggesting that nonadditive genes may be key players in the widespread transcriptomic responses to multispecies symbioses. Second, multispecies mutualisms substantially changed coexpression network structure of 18 modules of host plant genes and 22 modules of the fungal symbionts' genes, indicating that third-party mutualists can cause significant rewiring of plant and fungal molecular networks. Third, we found that 60% of the coexpressed gene sets that explained variation in plant performance had coexpression structures that were altered by interactive effects of rhizobia and fungi. Finally, an "across-symbiosis" approach identified sets of plant and mycorrhizal genes whose coexpression structure was unique to the multiple mutualist context and suggested coupled responses across the plant-mycorrhizal interaction to rhizobial mutualists. Taken together, these results show multispecies mutualisms have substantial effects on the molecular interactions in host plants, microbes and across symbiotic boundaries. © 2018 John Wiley & Sons Ltd.
Local communities obstruct global consensus: Naming game on multi-local-world networks
NASA Astrophysics Data System (ADS)
Lou, Yang; Chen, Guanrong; Fan, Zhengping; Xiang, Luna
2018-02-01
Community structure is essential for social communications, where individuals belonging to the same community are much more actively interacting and communicating with each other than those in different communities within the human society. Naming game, on the other hand, is a social communication model that simulates the process of learning a name of an object within a community of humans, where the individuals can generally reach global consensus asymptotically through iterative pair-wise conversations. The underlying network indicates the relationships among the individuals. In this paper, three typical topologies, namely random-graph, small-world and scale-free networks, are employed, which are embedded with the multi-local-world community structure, to study the naming game. Simulations show that (1) the convergence process to global consensus is getting slower as the community structure becomes more prominent, and eventually might fail; (2) if the inter-community connections are sufficiently dense, neither the number nor the size of the communities affects the convergence process; and (3) for different topologies with the same (or similar) average node-degree, local clustering of individuals obstruct or prohibit global consensus to take place. The results reveal the role of local communities in a global naming game in social network studies.
Multimodal investigation of epileptic networks: The case of insular cortex epilepsy.
Zerouali, Y; Ghaziri, J; Nguyen, D K
2016-01-01
The insula is a deep cortical structure sharing extensive synaptic connections with a variety of brain regions, including several frontal, temporal, and parietal structures. The identification of the insular connectivity network is obviously valuable for understanding a number of cognitive processes, but also for understanding epilepsy since insular seizures involve a number of remote brain regions. Ultimately, knowledge of the structure and causal relationships within the epileptic networks associated with insular cortex epilepsy can offer deeper insights into this relatively neglected type of epilepsy enabling the refining of the clinical approach in managing patients affected by it. In the present chapter, we first review the multimodal noninvasive tests performed during the presurgical evaluation of epileptic patients with drug refractory focal epilepsy, with particular emphasis on their value for the detection of insular cortex epilepsy. Second, we review the emerging multimodal investigation techniques in the field of epilepsy, that aim to (1) enhance the detection of insular cortex epilepsy and (2) unveil the architecture and causal relationships within epileptic networks. We summarize the results of these approaches with emphasis on the specific case of insular cortex epilepsy. © 2016 Elsevier B.V. All rights reserved.
Social Network Structures of Breast Cancer Patients and the Contributing Role of Patient Navigators.
Gunn, Christine M; Parker, Victoria A; Bak, Sharon M; Ko, Naomi; Nelson, Kerrie P; Battaglia, Tracy A
2017-08-01
Minority women in the U.S. continue to experience inferior breast cancer outcomes compared with white women, in part due to delays in care delivery. Emerging cancer care delivery models like patient navigation focus on social barriers, but evidence demonstrating how these models increase social capital is lacking. This pilot study describes the social networks of newly diagnosed breast cancer patients and explores the contributing role of patient navigators. Twenty-five women completed a one hour interview about their social networks related to cancer care support. Network metrics identified important structural attributes and influential individuals. Bivariate associations between network metrics, type of network, and whether the network included a navigator were measured. Secondary analyses explored associations between network structures and clinical outcomes. We identified three types of networks: kin-based, role and/or affect-based, or heterogeneous. Network metrics did not vary significantly by network type. There was a low prevalence of navigators included in the support networks (25%). Network density scores were significantly higher in those networks without a navigator. Network metrics were not predictive of clinical outcomes in multivariate models. Patient navigators were not frequently included in support networks, but provided distinctive types of support. If navigators can identify patients with poorly integrated (less dense) social networks, or who have unmet tangible support needs, the intensity of navigation services could be tailored. Services and systems that address gaps and variations in patient social networks should be explored for their potential to reduce cancer health disparities. This study used a new method to identify the breadth and strength of social support following a diagnosis of breast cancer, especially examining the role of patient navigators in providing support. While navigators were only included in one quarter of patient support networks, they did provide essential supports to some individuals. Health care providers and systems need to better understand the contributions of social supports both within and outside of health care to design and tailor interventions that seek to reduce health care disparities and improve cancer outcomes. © AlphaMed Press 2017.
NASA Astrophysics Data System (ADS)
Caselle, Jennifer E.; Rassweiler, Andrew; Hamilton, Scott L.; Warner, Robert R.
2015-09-01
Oceans currently face a variety of threats, requiring ecosystem-based approaches to management such as networks of marine protected areas (MPAs). We evaluated changes in fish biomass on temperate rocky reefs over the decade following implementation of a network of MPAs in the northern Channel Islands, California. We found that the biomass of targeted (i.e. fished) species has increased consistently inside all MPAs in the network, with an effect of geography on the strength of the response. More interesting, biomass of targeted fish species also increased outside MPAs, although only 27% as rapidly as in the protected areas, indicating that redistribution of fishing effort has not severely affected unprotected populations. Whether the increase outside of MPAs is due to changes in fishing pressure, fisheries management actions, adult spillover, favorable environmental conditions, or a combination of all four remains unknown. We evaluated methods of controlling for biogeographic or environmental variation across networks of protected areas and found similar performance of models incorporating empirical sea surface temperature versus a simple geographic blocking term based on assemblage structure. The patterns observed are promising indicators of the success of this network, but more work is needed to understand how ecological and physical contexts affect MPA performance.
Caselle, Jennifer E.; Rassweiler, Andrew; Hamilton, Scott L.; Warner, Robert R.
2015-01-01
Oceans currently face a variety of threats, requiring ecosystem-based approaches to management such as networks of marine protected areas (MPAs). We evaluated changes in fish biomass on temperate rocky reefs over the decade following implementation of a network of MPAs in the northern Channel Islands, California. We found that the biomass of targeted (i.e. fished) species has increased consistently inside all MPAs in the network, with an effect of geography on the strength of the response. More interesting, biomass of targeted fish species also increased outside MPAs, although only 27% as rapidly as in the protected areas, indicating that redistribution of fishing effort has not severely affected unprotected populations. Whether the increase outside of MPAs is due to changes in fishing pressure, fisheries management actions, adult spillover, favorable environmental conditions, or a combination of all four remains unknown. We evaluated methods of controlling for biogeographic or environmental variation across networks of protected areas and found similar performance of models incorporating empirical sea surface temperature versus a simple geographic blocking term based on assemblage structure. The patterns observed are promising indicators of the success of this network, but more work is needed to understand how ecological and physical contexts affect MPA performance. PMID:26373803
Pribush, A; Meyerstein, D; Meyerstein, N
2010-01-01
Results reported in the companion paper showed that erythrocytes in quiescent blood are combined into a network followed by the formation of plasma channels within it. This study is focused on structural changes in the settling dispersed phase subsequent to the channeling and the effect of the structural organization on the sedimentation rate. It is suggested that the initial, slow stage of erythrocyte sedimentation is mainly controlled by the gravitational compactness of the collapsed network. The lifetime of RBC network and hence the duration of the slow regime of erythrocyte sedimentation decrease with an increase in the intercellular pair potential and with a decrease in Hct. The gravitational compactness of the collapsed network causes its rupture into individual fragments. The catastrophic collapse of the network transforms erythrocyte sedimentation from slow to fast regime. The size of RBC network fragment is insignificantly affected by Hct and is mainly determined by the intensity of intercellular attractive interactions. When cells were suspended in the weak aggregating medium, the Stokes radius of fragments does not differ measurably from that of individual RBCs. The proposed mechanism provides a reasonable explanation of the effects of RBC aggregation, Hct and the initial height of the blood column on the delayed erythrocyte sedimentation.
Effect of risk perception on epidemic spreading in temporal networks
NASA Astrophysics Data System (ADS)
Moinet, Antoine; Pastor-Satorras, Romualdo; Barrat, Alain
2018-01-01
Many progresses in the understanding of epidemic spreading models have been obtained thanks to numerous modeling efforts and analytical and numerical studies, considering host populations with very different structures and properties, including complex and temporal interaction networks. Moreover, a number of recent studies have started to go beyond the assumption of an absence of coupling between the spread of a disease and the structure of the contacts on which it unfolds. Models including awareness of the spread have been proposed, to mimic possible precautionary measures taken by individuals that decrease their risk of infection, but have mostly considered static networks. Here, we adapt such a framework to the more realistic case of temporal networks of interactions between individuals. We study the resulting model by analytical and numerical means on both simple models of temporal networks and empirical time-resolved contact data. Analytical results show that the epidemic threshold is not affected by the awareness but that the prevalence can be significantly decreased. Numerical studies on synthetic temporal networks highlight, however, the presence of very strong finite-size effects, resulting in a significant shift of the effective epidemic threshold in the presence of risk awareness. For empirical contact networks, the awareness mechanism leads as well to a shift in the effective threshold and to a strong reduction of the epidemic prevalence.
Model validation of simple-graph representations of metabolism
Holme, Petter
2009-01-01
The large-scale properties of chemical reaction systems, such as metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information, lists of chemical reactions, available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure—network modularity (the propensity for edges to be clustered into dense groups that are sparsely connected between each other). To achieve this goal, we design a model of reaction systems where network modularity can be controlled and measure how well the reduction to simple graphs captures the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate–product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreates correlations between degree and mass of the molecules. PMID:19158012
Koren, Hila; Kaminer, Ido
2016-01-01
Widely used information diffusion models such as Independent Cascade Model, Susceptible Infected Recovered (SIR) and others fail to acknowledge that information is constantly subject to modification. Some aspects of information diffusion are best explained by network structural characteristics while in some cases strong influence comes from individual decisions. We introduce reinvention, the ability to modify information, as an individual level decision that affects the diffusion process as a whole. Based on a combination of constructs from the Diffusion of Innovations and the Critical Mass Theories, the present study advances the CMS (consume, modify, share) model which accounts for the interplay between network structure and human behavior and interactions. The model's building blocks include processes leading up to and following the formation of a critical mass of information adopters and disseminators. We examine the formation of an inflection point, information reach, sustainability of the diffusion process and collective value creation. The CMS model is tested on two directed networks and one undirected network, assuming weak or strong ties and applying constant and relative modification schemes. While all three networks are designed for disseminating new knowledge they differ in structural properties. Our findings suggest that modification enhances the diffusion of information in networks that support undirected connections and carries the biggest effect when information is shared via weak ties. Rogers' diffusion model and traditional information contagion models are fine tuned. Our results show that modifications not only contribute to a sustainable diffusion process, but also aid information in reaching remote areas of the network. The results point to the importance of cultivating weak ties, allowing reciprocal interaction among nodes and supporting the modification of information in promoting diffusion processes. These results have theoretical and practical implications for designing networks aimed at accelerating the creation and diffusion of information. PMID:27798636
Koren, Hila; Kaminer, Ido; Raban, Daphne Ruth
2016-01-01
Widely used information diffusion models such as Independent Cascade Model, Susceptible Infected Recovered (SIR) and others fail to acknowledge that information is constantly subject to modification. Some aspects of information diffusion are best explained by network structural characteristics while in some cases strong influence comes from individual decisions. We introduce reinvention, the ability to modify information, as an individual level decision that affects the diffusion process as a whole. Based on a combination of constructs from the Diffusion of Innovations and the Critical Mass Theories, the present study advances the CMS (consume, modify, share) model which accounts for the interplay between network structure and human behavior and interactions. The model's building blocks include processes leading up to and following the formation of a critical mass of information adopters and disseminators. We examine the formation of an inflection point, information reach, sustainability of the diffusion process and collective value creation. The CMS model is tested on two directed networks and one undirected network, assuming weak or strong ties and applying constant and relative modification schemes. While all three networks are designed for disseminating new knowledge they differ in structural properties. Our findings suggest that modification enhances the diffusion of information in networks that support undirected connections and carries the biggest effect when information is shared via weak ties. Rogers' diffusion model and traditional information contagion models are fine tuned. Our results show that modifications not only contribute to a sustainable diffusion process, but also aid information in reaching remote areas of the network. The results point to the importance of cultivating weak ties, allowing reciprocal interaction among nodes and supporting the modification of information in promoting diffusion processes. These results have theoretical and practical implications for designing networks aimed at accelerating the creation and diffusion of information.
A new model linking elastic properties and ionic conductivity of mixed network former glasses.
Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Martin, Steve W; Kieffer, John
2018-01-17
Glasses are promising candidate materials for all-solid-state electrolytes for rechargeable batteries due to their outstanding mechanical stability, wide electrochemical stability range, and open structure for potentially high conductivity. Mechanical stiffness and ionic conductivity are two key parameters for solid-state electrolytes. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. With mixed-network formers, the structure of the network changes while the network modifier mole fraction is kept constant, i.e., x = 0.2, which allows us to analyze the effect of the network structure on various properties, including ionic conductivity and elastic properties. Besides the non-linear, non-additive mixed glass former effect, we find that the longitudinal, shear and Young's moduli depend on the combined number density of tetrahedrally and octahedrally coordinated network former elements. These units provide connectivity in three dimensions, which is required for the networks to exhibit restoring forces in response to isotropic and shear deformations. Moreover, the activation energy for modifier cation, Na + , migration is strongly correlated with the bulk modulus, suggesting that the elastic strain energy associated with the passageway dilation for the sodium ions is governed by the bulk modulus of the glass. The detailed analysis provided here gives an estimate for the number of atoms in the vicinity of the migrating cation that are affected by elastic deformation during the activated process. The larger this number and the more compliant the glass network, the lower is the activation energy for the cation jump.
Neural signatures of cognitive and emotional biases in depression
Fossati, Philippe
2008-01-01
Functional brain imaging studies suggest that depression is a system-level disorder affecting discrete but functionally linked cortical and limbic structures, with abnormalities in the anterior cingulate, lateral, ami medial prefrontal cortex, amygdala, ami hippocampus. Within this circuitry, abnormal corticolimbic interactions underlie cognitive deficits ami emotional impairment in depression. Depression involves biases toward processing negative emotional information and abnormal self-focus in response to emotional stimuli. These biases in depression could reflect excessive analytical self-focus in depression, as well as impaired cognitive control of emotional response to negative stimuli. By combining structural and functional investigations, brain imaging studies mav help to generate novel antidepressant treatments that regulate structural and factional plasticity within the neural network regulating mood and affective behavior.
Geodynamic movements and deformations of the Sudetic structural unit of the Bohemian Massif
NASA Astrophysics Data System (ADS)
Schenk, V.; Jechumtálová, Z.; Schenková, Z.; Kottnauer, P.
2003-04-01
The African plate pushes to European orogenic Alpine structures that transfer the compression further to Variscan structural units, including the Bohemian Massif. Central parts of the Bohemian Massif are relatively deep-seated and, therefore, some of marginal parts of the Massif and its border geological structures should be affected intensively and moved distinctly with respect to the central parts. The geodynamical GPS network EAST SUDETEN is located just over the area mentioned above, i.e. it covers both kinetically quasi-effected and quasi-non-effected structural blocks. GPS data observed already for six annual campaigns (1997-2002) were processed and movement vectors of individual network sites were assessed. Applied data processing did not allow errors in the horizontal direction 2 mm and in the vertical direction 5-6 mm to be exceeded. Since time series of coordinate changes for several network sites gave rather pronounce movement trends, preliminary deformations among individual structural blocks were evaluated and compared to other geological, geophysical and geodetic materials. The investigation has been supported by the Grant Agency of the Czech Republic, projects 205/97/0679 and 205/01/0480, and by the research programme of the Ministry of Education, Youth and Sport of the Czech Republic, project LN00A005 "Dynamics of the Earth".
Lee, Kyuyoung; Polson, Dale; Lowe, Erin; Main, Rodger; Holtkamp, Derald; Martínez-López, Beatriz
2017-03-01
The analysis of the pork value chain is becoming key to understanding the risk of infectious disease dissemination in the swine industry. In this study, we used social network analysis to characterize the swine shipment network structure and properties in a typical multisite swine production system in the US. We also aimed to evaluate the association between network properties and porcine respiratory and reproductive syndrome virus (PRRSV) transmission between production sites. We analyzed the 109,868 swine shipments transporting over 93 million swine between more than 500 production sites from 2012 to 2014. A total of 248 PRRSV positive occurrences were reported from 79 production sites during those 3 years. The temporal dynamics of swine shipments was evaluated by computing network properties in one-month and three-month networks. The association of PRRS occurrence in sow farms with centrality properties from one-month and three-month networks was assessed by using the multilevel logistic regression. All monthly networks showed a scale-free network topology with positive degree assortativity. The regression model revealed that out-degree centrality had a negative association with PRRS occurrence in sow farms in both one-month and three-month networks [OR=0.79 (95% CI, 0.63-0.99) in one-month network and 0.56 (95% CI, 0.36, 0.88) in three-month network] and in-closeness centrality model was positively associated with PRRS occurrence in sow farms in the three-month network [OR=2.45 (95% CI, 1.14-5.26)]. We also describe how the occurrence of porcine epidemic diarrheac (PED) outbreaks severely affected the network structure as well as the PRRS occurrence reports and its association with centrality measures in sow farms. The structure of the swine shipment network and the connectivity between production sites influenced on the PRRSV transmission. The use of network topology and characteristics combining with spatial analysis based on fine scale geographical location of production sites will be useful to inform the design of more cost-efficient, risk-based surveillance and control measures for PRRSV as well as other diseases in the US swine industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Improving the recommender algorithms with the detected communities in bipartite networks
NASA Astrophysics Data System (ADS)
Zhang, Peng; Wang, Duo; Xiao, Jinghua
2017-04-01
Recommender system offers a powerful tool to make information overload problem well solved and thus gains wide concerns of scholars and engineers. A key challenge is how to make recommendations more accurate and personalized. We notice that community structures widely exist in many real networks, which could significantly affect the recommendation results. By incorporating the information of detected communities in the recommendation algorithms, an improved recommendation approach for the networks with communities is proposed. The approach is examined in both artificial and real networks, the results show that the improvement on accuracy and diversity can be 20% and 7%, respectively. This reveals that it is beneficial to classify the nodes based on the inherent properties in recommender systems.
Public–nonprofit partnership performance in a disaster context: the case of Haiti.
Nolte, Isabella M; Boenigk, Silke
2011-01-01
During disasters, partnerships between public and nonprofit organizations are vital to provide fast relief to affected communities. In this article, we develop a process model to support a performance evaluation of such intersectoral partnerships. The model includes input factors, organizational structures, outputs and the long-term outcomes of public–nonprofit partnerships. These factors derive from theory and a systematic literature review of emergency, public, nonprofit, and network research. To adapt the model to a disaster context, we conducted a case study that examines public and nonprofit organizations that partnered during the 2010 Haiti earthquake. The case study results show that communication, trust, and experience are the most important partnership inputs; the most prevalent governance structure of public–nonprofit partnerships is a lead organization network. Time and quality measures should be considered to assess partnership outputs, and community, network, and organizational actor perspectives must be taken into account when evaluating partnership outcomes.
Community Structure in Social Networks: Applications for Epidemiological Modelling
Kitchovitch, Stephan; Liò, Pietro
2011-01-01
During an infectious disease outbreak people will often change their behaviour to reduce their risk of infection. Furthermore, in a given population, the level of perceived risk of infection will vary greatly amongst individuals. The difference in perception could be due to a variety of factors including varying levels of information regarding the pathogen, quality of local healthcare, availability of preventative measures, etc. In this work we argue that we can split a social network, representing a population, into interacting communities with varying levels of awareness of the disease. We construct a theoretical population and study which such communities suffer most of the burden of the disease and how their awareness affects the spread of infection. We aim to gain a better understanding of the effects that community-structured networks and variations in awareness, or risk perception, have on the disease dynamics and to promote more community-resolved modelling in epidemiology. PMID:21789238
Vertex centralities in input-output networks reveal the structure of modern economies
NASA Astrophysics Data System (ADS)
Blöchl, Florian; Theis, Fabian J.; Vega-Redondo, Fernando; Fisher, Eric O.'N.
2011-04-01
Input-output tables describe the flows of goods and services between the sectors of an economy. These tables can be interpreted as weighted directed networks. At the usual level of aggregation, they contain nodes with strong self-loops and are almost completely connected. We derive two measures of node centrality that are well suited for such networks. Both are based on random walks and have interpretations as the propagation of supply shocks through the economy. Random walk centrality reveals the vertices most immediately affected by a shock. Counting betweenness identifies the nodes where a shock lingers longest. The two measures differ in how they treat self-loops. We apply both to data from a wide set of countries and uncover salient characteristics of the structures of these national economies. We further validate our indices by clustering according to sectors’ centralities. This analysis reveals geographical proximity and similar developmental status.
The Effects of Peer Group Network Properties on Drug Use Among Homeless Youth
Rice, Eric; Milburn, Norweeta G.; Rotheram-Borus, Mary Jane; Mallett, Shelley; Rosenthal, Doreen
2010-01-01
The authors examine how the properties of peer networks affect amphetamine, cocaine, and injection drug use over 3 months among newly homeless adolescents, aged 12 to 20 in Los Angeles (n = 217; 83% retention at 3 months) and Melbourne (n = 119; 72% retention at 3 months). Several hypotheses regarding the effects of social network properties on the peer influence process are developed. Multivariate logistic regression analyses show that higher concentrations of homeless peers in networks at recruitment were associated with increased likelihood of amphetamine and cocaine use at 3-month follow-up. Higher concentrations of injecting peers were associated with increased risk of injection drug use 3 months later. Change in network structure over time toward increased concentrations of homeless peers was associated with increased risk of cocaine use and injecting. Higher density networks at baseline were positively associated with increased likelihood of cocaine and amphetamine use at 3 months. PMID:20539820
Inferring personal economic status from social network location
NASA Astrophysics Data System (ADS)
Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A.
2017-05-01
It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.
Inferring personal economic status from social network location.
Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A
2017-05-16
It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.
Chen, Nai-Ching; Huang, Chi-Wei; Huang, Shu-Hua; Chang, Wen-Neng; Chang, Ya-Ting; Lui, Chun-Chung; Lin, Pin-Hsuan; Lee, Chen-Chang; Chang, Yen-Hsiang; Chang, Chiung-Chih
2015-01-01
Abstract While carbon monoxide (CO) intoxication often triggers multiple intraneuronal immune- or inflammatory-related cascades, it is not known whether the pathological processes within the affected regions evolve equally in the long term. To understand the neurodegenerative networks, we examined 49 patients with a clinical diagnosis of CO intoxication related to charcoal burning suicide at the chronic stage and compared them with 15 age- and sex-matched controls. Reconstructions of degenerative networks were performed using T1 magnetic resonance imaging, diffusion-tensor imaging, and fluorodeoxyglucose positron emission tomography (PET). Tract-specific fractional anisotropy (FA) quantification of 11 association fibers was performed while the clinical significance of the reconstructed structural or functional networks was determined by correlating them with the cognitive parameters. Compared with the controls, the patients had frontotemporal gray matter (GM) atrophy, diffuse white matter (WM) FA decrement, and axial diffusivity (AD) increment. The patients were further stratified into 3 groups based on the cognitive severities. The spatial extents within the frontal-insular-caudate GM as well as the prefrontal WM AD increment regions determined the cognitive severities among 3 groups. Meanwhile, the prefrontal WM FA values and PET signals also correlated significantly with the patient's Mini-Mental State Examination score. Frontal hypometabolic patterns in PET analysis, even after adjusted for GM volume, were highly coherent to the GM atrophic regions, suggesting structural basis of functional alterations. Among the calculated major association bundles, only the anterior thalamic radiation FA values correlated significantly with all chosen cognitive scores. Our findings suggest that fronto-insular-caudate areas represent target degenerative network in CO intoxication. The topography that occurred at a cognitive severity-specific level at the chronic phase suggested the clinical roles of frontal areas. Although changes in FA are also diffusely distributed, different regional changes in AD suggested unequal long-term compensatory capacities among WM bundles. As such, the affected WM regions showing irreversible changes may exert adverse impacts to the interconnected GM structures. PMID:25984663
Social networks, time homeless, and social support: A study of men on Skid Row.
Green, Harold D; Tucker, Joan S; Golinelli, Daniela; Wenzel, Suzanne L
2013-12-18
Homeless men are frequently unsheltered and isolated, disconnected from supportive organizations and individuals. However, little research has investigated these men's social networks. We investigate the structure and composition of homeless men's social networks, vis-a-vis short- and long-term homelessness with a sample of men drawn randomly from meal lines on Skid Row in Los Angeles. Men continuously homeless for the past six months display networks composed of riskier members when compared to men intermittently homeless during that time. Men who report chronic, long-term homelessness display greater social network fragmentation when compared to non-chronically homeless men. While intermittent homelessness affects network composition in ways that may be addressable with existing interventions, chronic homelessness fragments networks, which may be more difficult to address with those interventions. These findings have implications for access to social support from network members which, in turn, impacts the resources homeless men require from other sources such as the government or NGOs.
Social networks, time homeless, and social support: A study of men on Skid Row
Green, Harold D.; Tucker, Joan S.; Golinelli, Daniela; Wenzel, Suzanne L.
2014-01-01
Homeless men are frequently unsheltered and isolated, disconnected from supportive organizations and individuals. However, little research has investigated these men’s social networks. We investigate the structure and composition of homeless men’s social networks, vis-a-vis short- and long-term homelessness with a sample of men drawn randomly from meal lines on Skid Row in Los Angeles. Men continuously homeless for the past six months display networks composed of riskier members when compared to men intermittently homeless during that time. Men who report chronic, long-term homelessness display greater social network fragmentation when compared to non-chronically homeless men. While intermittent homelessness affects network composition in ways that may be addressable with existing interventions, chronic homelessness fragments networks, which may be more difficult to address with those interventions. These findings have implications for access to social support from network members which, in turn, impacts the resources homeless men require from other sources such as the government or NGOs. PMID:24466427
A fast community detection method in bipartite networks by distance dynamics
NASA Astrophysics Data System (ADS)
Sun, Hong-liang; Ch'ng, Eugene; Yong, Xi; Garibaldi, Jonathan M.; See, Simon; Chen, Duan-bing
2018-04-01
Many real bipartite networks are found to be divided into two-mode communities. In this paper, we formulate a new two-mode community detection algorithm BiAttractor. It is based on distance dynamics model Attractor proposed by Shao et al. with extension from unipartite to bipartite networks. Since Jaccard coefficient of distance dynamics model is incapable to measure distances of different types of vertices in bipartite networks, our main contribution is to extend distance dynamics model from unipartite to bipartite networks using a novel measure Local Jaccard Distance (LJD). Furthermore, distances between different types of vertices are not affected by common neighbors in the original method. This new idea makes clear assumptions and yields interpretable results in linear time complexity O(| E |) in sparse networks, where | E | is the number of edges. Experiments on synthetic networks demonstrate it is capable to overcome resolution limit compared with existing other methods. Further research on real networks shows that this model can accurately detect interpretable community structures in a short time.
Trapping in scale-free networks with hierarchical organization of modularity.
Zhang, Zhongzhi; Lin, Yuan; Gao, Shuyang; Zhou, Shuigeng; Guan, Jihong; Li, Mo
2009-11-01
A wide variety of real-life networks share two remarkable generic topological properties: scale-free behavior and modular organization, and it is natural and important to study how these two features affect the dynamical processes taking place on such networks. In this paper, we investigate a simple stochastic process--trapping problem, a random walk with a perfect trap fixed at a given location, performed on a family of hierarchical networks that exhibit simultaneously striking scale-free and modular structure. We focus on a particular case with the immobile trap positioned at the hub node having the largest degree. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping problem, which is the mean of the node-to-trap first-passage time over the entire network. The exact expression for the MFPT is calculated through the recurrence relations derived from the special construction of the hierarchical networks. The obtained rigorous formula corroborated by extensive direct numerical calculations exhibits that the MFPT grows algebraically with the network order. Concretely, the MFPT increases as a power-law function of the number of nodes with the exponent much less than 1. We demonstrate that the hierarchical networks under consideration have more efficient structure for transport by diffusion in contrast with other analytically soluble media including some previously studied scale-free networks. We argue that the scale-free and modular topologies are responsible for the high efficiency of the trapping process on the hierarchical networks.
NASA Astrophysics Data System (ADS)
Tang, Zhenchao; Liu, Zhenyu; Li, Ruili; Cui, Xinwei; Li, Hongjun; Dong, Enqing; Tian, Jie
2017-03-01
It's widely known that HIV infection would cause white matter integrity impairments. Nevertheless, it is still unclear that how the white matter anatomical structural connections are affected by HIV infection. In the current study, we employed a multivariate pattern analysis to explore the HIV-related white matter connections alterations. Forty antiretroviraltherapy- naïve HIV patients and thirty healthy controls were enrolled. Firstly, an Automatic Anatomical Label (AAL) atlas based white matter structural network, a 90 × 90 FA-weighted matrix, was constructed for each subject. Then, the white matter connections deprived from the structural network were entered into a lasso-logistic regression model to perform HIV-control group classification. Using leave one out cross validation, a classification accuracy (ACC) of 90% (P=0.002) and areas under the receiver operating characteristic curve (AUC) of 0.96 was obtained by the classification model. This result indicated that the white matter anatomical structural connections contributed greatly to HIV-control group classification, providing solid evidence that the white matter connections were affected by HIV infection. Specially, 11 white matter connections were selected in the classification model, mainly crossing the regions of frontal lobe, Cingulum, Hippocampus, and Thalamus, which were reported to be damaged in previous HIV studies. This might suggest that the white matter connections adjacent to the HIV-related impaired regions were prone to be damaged.
Liu, Zhenqiu; Sun, Fengzhu; Braun, Jonathan; McGovern, Dermot P B; Piantadosi, Steven
2015-04-01
Identifying disease associated taxa and constructing networks for bacteria interactions are two important tasks usually studied separately. In reality, differentiation of disease associated taxa and correlation among taxa may affect each other. One genus can be differentiated because it is highly correlated with another highly differentiated one. In addition, network structures may vary under different clinical conditions. Permutation tests are commonly used to detect differences between networks in distinct phenotypes, and they are time-consuming. In this manuscript, we propose a multilevel regularized regression method to simultaneously identify taxa and construct networks. We also extend the framework to allow construction of a common network and differentiated network together. An efficient algorithm with dual formulation is developed to deal with the large-scale n ≪ m problem with a large number of taxa (m) and a small number of samples (n) efficiently. The proposed method is regularized with a general Lp (p ∈ [0, 2]) penalty and models the effects of taxa abundance differentiation and correlation jointly. We demonstrate that it can identify both true and biologically significant genera and network structures. Software MLRR in MATLAB is available at http://biostatistics.csmc.edu/mlrr/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Structural diversity in social contagion
Ugander, Johan; Backstrom, Lars; Marlow, Cameron; Kleinberg, Jon
2012-01-01
The concept of contagion has steadily expanded from its original grounding in epidemic disease to describe a vast array of processes that spread across networks, notably social phenomena such as fads, political opinions, the adoption of new technologies, and financial decisions. Traditional models of social contagion have been based on physical analogies with biological contagion, in which the probability that an individual is affected by the contagion grows monotonically with the size of his or her “contact neighborhood”—the number of affected individuals with whom he or she is in contact. Whereas this contact neighborhood hypothesis has formed the underpinning of essentially all current models, it has been challenging to evaluate it due to the difficulty in obtaining detailed data on individual network neighborhoods during the course of a large-scale contagion process. Here we study this question by analyzing the growth of Facebook, a rare example of a social process with genuinely global adoption. We find that the probability of contagion is tightly controlled by the number of connected components in an individual's contact neighborhood, rather than by the actual size of the neighborhood. Surprisingly, once this “structural diversity” is controlled for, the size of the contact neighborhood is in fact generally a negative predictor of contagion. More broadly, our analysis shows how data at the size and resolution of the Facebook network make possible the identification of subtle structural signals that go undetected at smaller scales yet hold pivotal predictive roles for the outcomes of social processes. PMID:22474360
Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio; Jacobsen, Dean; Dangles, Olivier
2015-01-01
Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we expect a reduction in both environmental filtering and dispersal limitation, inducing a taxonomic homogenization of the aquatic fauna in glacierized catchments as well as the extinction of specialized species in headwater groundwater and glacier-fed streams, and consequently an irreversible reduction in regional diversity. PMID:26308853
Beach, Paul A.; Huck, Jonathan T.; Zhu, David C.; Bozoki, Andrea C.
2017-01-01
While pain behaviors are increased in Alzheimer’s disease (AD) patients compared to healthy seniors (HS) across multiple disease stages, autonomic responses are reduced with advancing AD. To better understand the neural mechanisms underlying these phenomena, we undertook a controlled cross-sectional study examining behavioral (Pain Assessment in Advanced Dementia, PAINAD scores) and autonomic (heart rate, HR) pain responses in 24 HS and 20 AD subjects using acute pressure stimuli. Resting-state fMRI was utilized to investigate how group connectivity differences were related to altered pain responses. Pain behaviors (slope of PAINAD score change and mean PAINAD score) were increased in patients vs. controls. Autonomic measures (HR change intercept and mean HR change) were reduced in severe vs. mildly affected AD patients. Group functional connectivity differences associated with greater pain behavior reactivity in patients included: connectivity within a temporal limbic network (TLN) and between the TLN and ventromedial prefrontal cortex (vmPFC); between default mode network (DMN) subcomponents; between the DMN and ventral salience network (vSN). Reduced HR responses within the AD group were associated with connectivity changes within the DMN and vSN—specifically the precuneus and vmPFC. Discriminant classification indicated HR-related connectivity within the vSN to the vmPFC best distinguished AD severity. Thus, altered behavioral and autonomic pain responses in AD reflects dysfunction of networks and structures subserving affective, self-reflective, salience and autonomic regulation. PMID:28959201
Building clinical networks: a developmental evaluation framework.
Carswell, Peter; Manning, Benjamin; Long, Janet; Braithwaite, Jeffrey
2014-05-01
Clinical networks have been designed as a cross-organisational mechanism to plan and deliver health services. With recent concerns about the effectiveness of these structures, it is timely to consider an evidence-informed approach for how they can be developed and evaluated. To document an evaluation framework for clinical networks by drawing on the network evaluation literature and a 5-year study of clinical networks. We searched literature in three domains: network evaluation, factors that aid or inhibit network development, and on robust methods to measure network characteristics. This material was used to build a framework required for effective developmental evaluation. The framework's architecture identifies three stages of clinical network development; partner selection, network design and network management. Within each stage is evidence about factors that act as facilitators and barriers to network growth. These factors can be used to measure progress via appropriate methods and tools. The framework can provide for network growth and support informed decisions about progress. For the first time in one place a framework incorporating rigorous methods and tools can identify factors known to affect the development of clinical networks. The target user group is internal stakeholders who need to conduct developmental evaluation to inform key decisions along their network's developmental pathway.
Evolutionary dynamics on any population structure
NASA Astrophysics Data System (ADS)
Allen, Benjamin; Lippner, Gabor; Chen, Yu-Ting; Fotouhi, Babak; Momeni, Naghmeh; Yau, Shing-Tung; Nowak, Martin A.
2017-03-01
Evolution occurs in populations of reproducing individuals. The structure of a population can affect which traits evolve. Understanding evolutionary game dynamics in structured populations remains difficult. Mathematical results are known for special structures in which all individuals have the same number of neighbours. The general case, in which the number of neighbours can vary, has remained open. For arbitrary selection intensity, the problem is in a computational complexity class that suggests there is no efficient algorithm. Whether a simple solution for weak selection exists has remained unanswered. Here we provide a solution for weak selection that applies to any graph or network. Our method relies on calculating the coalescence times of random walks. We evaluate large numbers of diverse population structures for their propensity to favour cooperation. We study how small changes in population structure—graph surgery—affect evolutionary outcomes. We find that cooperation flourishes most in societies that are based on strong pairwise ties.
Comprehensive evaluation of impacts of distributed generation integration in distribution network
NASA Astrophysics Data System (ADS)
Peng, Sujiang; Zhou, Erbiao; Ji, Fengkun; Cao, Xinhui; Liu, Lingshuang; Liu, Zifa; Wang, Xuyang; Cai, Xiaoyu
2018-04-01
All Distributed generation (DG) as the supplement to renewable energy centralized utilization, is becoming the focus of development direction of renewable energy utilization. With the increasing proportion of DG in distribution network, the network power structure, power flow distribution, operation plans and protection are affected to some extent. According to the main impacts of DG, a comprehensive evaluation model of distributed network with DG is proposed in this paper. A comprehensive evaluation index system including 7 aspects, along with their corresponding index calculation method is established for quantitative analysis. The indices under different access capacity of DG in distribution network are calculated based on the IEEE RBTS-Bus 6 system and the evaluation result is calculated by analytic hierarchy process (AHP). The proposed model and method are verified effective and validity through case study.
Impact of mobility structure on optimization of small-world networks of mobile agents
NASA Astrophysics Data System (ADS)
Lee, Eun; Holme, Petter
2016-06-01
In ad hoc wireless networking, units are connected to each other rather than to a central, fixed, infrastructure. Constructing and maintaining such networks create several trade-off problems between robustness, communication speed, power consumption, etc., that bridges engineering, computer science and the physics of complex systems. In this work, we address the role of mobility patterns of the agents on the optimal tuning of a small-world type network construction method. By this method, the network is updated periodically and held static between the updates. We investigate the optimal updating times for different scenarios of the movement of agents (modeling, for example, the fat-tailed trip distances, and periodicities, of human travel). We find that these mobility patterns affect the power consumption in non-trivial ways and discuss how these effects can best be handled.
Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy
Reijmer, Yael D.; Fotiadis, Panagiotis; Martinez-Ramirez, Sergi; Salat, David H.; Schultz, Aaron; Shoamanesh, Ashkan; Ayres, Alison M.; Vashkevich, Anastasia; Rosas, Diana; Schwab, Kristin; Leemans, Alexander; Biessels, Geert-Jan; Rosand, Jonathan; Johnson, Keith A.; Viswanathan, Anand; Gurol, M. Edip
2015-01-01
Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small spatially distributed lesions affect cognition through disruption of brain connectivity. We therefore compared the structural brain network in patients with cerebral amyloid angiopathy to healthy control subjects and examined the relationship between markers of cerebral amyloid angiopathy-related brain injury, network efficiency, and potential clinical consequences. Structural brain networks were reconstructed from diffusion-weighted magnetic resonance imaging in 38 non-demented patients with probable cerebral amyloid angiopathy (69 ± 10 years) and 29 similar aged control participants. The efficiency of the brain network was characterized using graph theory and brain amyloid deposition was quantified by Pittsburgh compound B retention on positron emission tomography imaging. Global efficiency of the brain network was reduced in patients compared to controls (0.187 ± 0.018 and 0.201 ± 0.015, respectively, P < 0.001). Network disturbances were most pronounced in the occipital, parietal, and posterior temporal lobes. Among patients, lower global network efficiency was related to higher cortical amyloid load (r = −0.52; P = 0.004), and to magnetic resonance imaging markers of small-vessel disease including increased white matter hyperintensity volume (P < 0.001), lower total brain volume (P = 0.02), and number of microbleeds (trend P = 0.06). Lower global network efficiency was also related to worse performance on tests of processing speed (r = 0.58, P < 0.001), executive functioning (r = 0.54, P = 0.001), gait velocity (r = 0.41, P = 0.02), but not memory. Correlations with cognition were independent of age, sex, education level, and other magnetic resonance imaging markers of small-vessel disease. These findings suggest that reduced structural brain network efficiency might mediate the relationship between advanced cerebral amyloid angiopathy and neurologic dysfunction and that such large-scale brain network measures may represent useful outcome markers for tracking disease progression. PMID:25367025
Women in the "Old Boy Network."
ERIC Educational Resources Information Center
Natale, Samuel M.
1982-01-01
The author finds that women will reshape the corporate organization, if only because there will be more women working. He discusses how the basic structure of professions affects and limits women's participation, how the mentor-protege system works, and how style and attitudes toward roles differ between male and female executives. (CT)
Wikberg, Eva C; Ting, Nelson; Sicotte, Pascale
2014-03-01
Kinship shapes female social networks in many primate populations in which females remain in their natal group to breed. In contrast, it is unclear to which extent kinship affects the social networks in populations with female dispersal. Female Colobus vellerosus show routine facultative dispersal (i.e., some females remain philopatric and others disperse). This dispersal pattern allowed us to evaluate if facultative dispersed females form social networks shaped by an attraction to kin, to social partners with a high resource holding potential, or to similar social partners in terms of maturational stage, dominance rank, and residency status. During 2008 and 2009, we collected behavioral data via focal and ad libitum sampling of 61 females residing in eight groups at Boabeng-Fiema, Ghana. We determined kinship based on partial pedigrees and genotypes at 17 short tandem repeat loci. Kinship influenced coalition and affiliation networks in three groups consisting of long-term resident females with access to a relatively high number of female kin. In contrast, similar residency status was more important than kinship in structuring the affiliation network in one of two groups that contained recent female immigrants. In populations with female dispersal, the occurrence of kin structured social networks may not only depend on the kin composition of groups but also on how long the female kin have resided together. We found no consistent support for females biasing affiliation toward partners with high resource holding potential, possibly due to low levels of contest competition and small inter-individual differences in resource holding potential. Copyright © 2013 Wiley Periodicals, Inc.
Advancing reversible shape memory by tuning the polymer network architecture
Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...
2016-02-02
Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K –1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less
Brughmans, Tom; de Waal, Maaike S; Hofman, Corinne L; Brandes, Ulrik
2018-01-01
This paper presents a study of the visual properties of natural and Amerindian cultural landscapes in late pre-colonial East-Guadeloupe and of how these visual properties affected social interactions. Through a review of descriptive and formal visibility studies in Caribbean archaeology, it reveals that the ability of visual properties to affect past human behaviour is frequently evoked but the more complex of these hypotheses are rarely studied formally. To explore such complex hypotheses, the current study applies a range of techniques: total viewsheds, cumulative viewsheds, visual neighbourhood configurations and visibility networks. Experiments were performed to explore the control of seascapes, the functioning of hypothetical smoke signalling networks, the correlation of these visual properties with stylistic similarities of material culture found at sites and the change of visual properties over time. The results of these experiments suggest that only few sites in Eastern Guadeloupe are located in areas that are particularly suitable to visually control possible sea routes for short- and long-distance exchange; that visual control over sea areas was not a factor of importance for the existence of micro-style areas; that during the early phase of the Late Ceramic Age networks per landmass are connected and dense and that they incorporate all sites, a structure that would allow hypothetical smoke signalling networks; and that the visual properties of locations of the late sites Morne Souffleur and Morne Cybèle-1 were not ideal for defensive purposes. These results led us to propose a multi-scalar hypothesis for how lines of sight between settlements in the Lesser Antilles could have structured past human behaviour: short-distance visibility networks represent the structuring of navigation and communication within landmasses, whereas the landmasses themselves served as focal points for regional navigation and interaction. We conclude by emphasising that since our archaeological theories about visual properties usually take a multi-scalar landscape perspective, there is a need for this perspective to be reflected in our formal visibility methods as is made possible by the methods used in this paper.
Hein, Tyler C; Monk, Christopher S
2017-03-01
Child maltreatment is common and has long-term consequences for affective function. Investigations of neural consequences of maltreatment have focused on the amygdala. However, developmental neuroscience indicates that other brain regions are also likely to be affected by child maltreatment, particularly in the social information processing network (SIPN). We conducted a quantitative meta-analysis to: confirm that maltreatment is related to greater bilateral amygdala activation in a large sample that was pooled across studies; investigate other SIPN structures that are likely candidates for altered function; and conduct a data-driven examination to identify additional regions that show altered activation in maltreated children, teens, and adults. We conducted an activation likelihood estimation analysis with 1,733 participants across 20 studies of emotion processing in maltreated individuals. Maltreatment is associated with increased bilateral amygdala activation to emotional faces. One SIPN structure is altered: superior temporal gyrus, of the detection node, is hyperactive in maltreated individuals. The results of the whole-brain corrected analysis also show hyperactivation of the parahippocampal gyrus and insula in maltreated individuals. The meta-analysis confirms that maltreatment is related to increased bilateral amygdala reactivity and also shows that maltreatment affects multiple additional structures in the brain that have received little attention in the literature. Thus, although the majority of studies examining maltreatment and brain function have focused on the amygdala, these findings indicate that the neural consequences of child maltreatment involve a broader network of structures. © 2016 Association for Child and Adolescent Mental Health.
Wu, Huawang; Sun, Hui; Wang, Chao; Yu, Lin; Li, Yilan; Peng, Hongjun; Lu, Xiaobing; Hu, Qingmao; Ning, Yuping; Jiang, Tianzi; Xu, Jinping; Wang, Jiaojian
2017-01-01
Major depressive disorder (MDD) is a common psychiatric disorder that is characterized by cognitive deficits and affective symptoms. To date, an increasing number of neuroimaging studies have focused on emotion regulation and have consistently shown that emotion dysregulation is one of the central features and underlying mechanisms of MDD. Although gray matter morphological abnormalities in regions within emotion regulation networks have been identified in MDD, the interactions and relationships between these gray matter structures remain largely unknown. Thus, in this study, we adopted a structural covariance method based on gray matter volume to investigate the brain morphological abnormalities within the emotion regulation networks in a large cohort of 65 MDD patients and 65 age- and gender-matched healthy controls. A permutation test with p < 0.05 was used to identify the significant changes in covariance connectivity strengths between MDD patients and healthy controls. The structural covariance analysis revealed an increased correlation strength of gray matter volume between the left angular gyrus and the left amygdala and between the right angular gyrus and the right amygdala, as well as a decreased correlation strength of the gray matter volume between the right angular gyrus and the posterior cingulate cortex in MDD. Our findings support the notion that emotion dysregulation is an underlying mechanism of MDD by revealing disrupted structural covariance patterns in the emotion regulation network. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Huiyuan; Wang, Junjing; Seger, Carol; Lu, Min; Deng, Feng; Wu, Xiaoyan; He, Yuan; Niu, Chen; Wang, Jun; Huang, Ruiwang
2018-01-01
Long-term intensive gymnastic training can induce brain structural and functional reorganization. Previous studies have identified structural and functional network differences between world class gymnasts (WCGs) and non-athletes at the whole-brain level. However, it is still unclear how interactions within and between functional networks are affected by long-term intensive gymnastic training. We examined both intra- and inter-network functional connectivity of gymnasts relative to non-athletes using resting-state fMRI (R-fMRI). R-fMRI data were acquired from 13 WCGs and 14 non-athlete controls. Group-independent component analysis (ICA) was adopted to decompose the R-fMRI data into spatial independent components and associated time courses. An automatic component identification method was used to identify components of interest associated with resting-state networks (RSNs). We identified nine RSNs, the basal ganglia network (BG), sensorimotor network (SMN), cerebellum (CB), anterior and posterior default mode networks (aDMN/pDMN), left and right fronto-parietal networks (lFPN/rFPN), primary visual network (PVN), and extrastriate visual network (EVN). Statistical analyses revealed that the intra-network functional connectivity was significantly decreased within the BG, aDMN, lFPN, and rFPN, but increased within the EVN in the WCGs compared to the controls. In addition, the WCGs showed uniformly decreased inter-network functional connectivity between SMN and BG, CB, and PVN, BG and PVN, and pDMN and rFPN compared to the controls. We interpret this generally weaker intra- and inter-network functional connectivity in WCGs during the resting state as a result of greater efficiency in the WCGs' brain associated with long-term motor skill training.
Evolution of cooperation under social pressure in multiplex networks
NASA Astrophysics Data System (ADS)
Pereda, María
2016-09-01
In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.
Epidemic spreading on evolving signed networks
NASA Astrophysics Data System (ADS)
Saeedian, M.; Azimi-Tafreshi, N.; Jafari, G. R.; Kertesz, J.
2017-02-01
Most studies of disease spreading consider the underlying social network as obtained without the contagion, though epidemic influences people's willingness to contact others: A "friendly" contact may be turned to "unfriendly" to avoid infection. We study the susceptible-infected disease-spreading model on signed networks, in which each edge is associated with a positive or negative sign representing the friendly or unfriendly relation between its end nodes. In a signed network, according to Heider's theory, edge signs evolve such that finally a state of structural balance is achieved, corresponding to no frustration in physics terms. However, the danger of infection affects the evolution of its edge signs. To describe the coupled problem of the sign evolution and disease spreading, we generalize the notion of structural balance by taking into account the state of the nodes. We introduce an energy function and carry out Monte Carlo simulations on complete networks to test the energy landscape, where we find local minima corresponding to the so-called jammed states. We study the effect of the ratio of initial friendly to unfriendly connections on the propagation of disease. The steady state can be balanced or a jammed state such that a coexistence occurs between susceptible and infected nodes in the system.
Evolution of cooperation under social pressure in multiplex networks.
Pereda, María
2016-09-01
In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence that a particular form of social pressure, "being watched," has on the evolution of cooperative behavior. We study how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner's dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of being vigilant. We analyze these processes on different duplex networks structures and assess the influence of the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex structure, specifically the degree correlations between layers is determinant. Our results give further quantitative insights in the promotion of cooperation under social pressure.
Doherty, Irene A; Serre, Marc L; Gesink, Dionne; Adimora, Adaora A; Muth, Stephen Q; Leone, Peter A; Miller, William C
2012-11-01
Sexually transmitted infections (STIs) spread along sexual networks whose structural characteristics promote transmission that routine surveillance may not capture. Cases who have partners from multiple localities may operate as spatial network bridges, thereby facilitating geographical dissemination. We investigated how surveillance, sexual networks, and spatial bridges relate to each other for syphilis outbreaks in rural counties of North Carolina. We selected from the state health department's surveillance database cases diagnosed with primary, secondary, or early latent syphilis during October 1998 to December 2002 and who resided in central and southeastern North Carolina, along with their sex partners and their social contacts irrespective of infection status. We applied matching algorithms to eliminate duplicate names and create a unique roster of partnerships from which networks were compiled and graphed. Network members were differentiated by disease status and county of residence. In the county most affected by the outbreak, densely connected networks indicative of STI outbreaks were consistent with increased incidence and a large case load. In other counties, the case loads were low with fluctuating incidence, but network structures suggested the presence of outbreaks. In a county with stable, low incidence and a high number of cases, the networks were sparse and dendritic, indicative of endemic spread. Outbreak counties exhibited densely connected networks within well-defined geographic boundaries and low connectivity between counties; spatial bridges did not seem to facilitate transmission. Simple visualization of sexual networks can provide key information to identify communities most in need of resources for outbreak investigation and disease control.
Seasonal change of topology and resilience of ecological networks in wetlandscapes
NASA Astrophysics Data System (ADS)
Bin, Kim; Park, Jeryang
2017-04-01
Wetlands distributed in a landscape provide various ecosystem services including habitat for flora and fauna, hydrologic controls, and biogeochemical processes. Hydrologic regime of each wetland at a given landscape varies by hydro-climatic and geological conditions as well as the bathymetry, forming a certain pattern in the wetland area distribution and spatial organization. However, its large-scale pattern also changes over time as this wetland complex is subject to stochastic hydro-climatic forcing in various temporal scales. Consequently, temporal variation in the spatial structure of wetlands inevitably affects the dispersal ability of species depending on those wetlands as habitat. Here, we numerically show (1) the spatiotemporal variation of wetlandscapes by forcing seasonally changing stochastic rainfall and (2) the corresponding ecological networks which either deterministically or stochastically forming the dispersal ranges. We selected four vernal pool regions with distinct climate conditions in California. The results indicate that the spatial structure of wetlands in a landscape by measuring the wetland area frequency distribution changes by seasonal hydro-climatic condition but eventually recovers to the initial state. However, the corresponding ecological networks, which the structure and function change by the change of distances between wetlands, and measured by degree distribution and network efficiency, may not recover to the initial state especially in the regions with high seasonal dryness index. Moreover, we observed that the changes in both the spatial structure of wetlands in a landscape and the corresponding ecological networks exhibit hysteresis over seasons. Our analysis indicates that the hydrologic and ecological resilience of a wetlandcape may be low in a dry region with seasonal hydro-climatic forcing. Implications of these results for modelling ecological networks depending on hydrologic systems especially for conservation purposes are discussed.
[Stochastic model of infectious diseases transmission].
Ruiz-Ramírez, Juan; Hernández-Rodríguez, Gabriela Eréndira
2009-01-01
Propose a mathematic model that shows how population structure affects the size of infectious disease epidemics. This study was conducted during 2004 at the University of Colima. It used generalized small-world network topology to represent contacts that occurred within and between families. To that end, two programs in MATLAB were conducted to calculate the efficiency of the network. The development of a program in the C programming language was also required, that represents the stochastic susceptible-infectious-removed model, and simultaneous results were obtained for the number of infected people. An increased number of families connected by meeting sites impacted the size of the infectious diseases by roughly 400%. Population structure influences the rapid spread of infectious diseases, reaching epidemic effects.
Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu
2007-01-01
This paper proposes a graph-based evolutionary algorithm called Genetic Network Programming (GNP). Our goal is to develop GNP, which can deal with dynamic environments efficiently and effectively, based on the distinguished expression ability of the graph (network) structure. The characteristics of GNP are as follows. 1) GNP programs are composed of a number of nodes which execute simple judgment/processing, and these nodes are connected by directed links to each other. 2) The graph structure enables GNP to re-use nodes, thus the structure can be very compact. 3) The node transition of GNP is executed according to its node connections without any terminal nodes, thus the past history of the node transition affects the current node to be used and this characteristic works as an implicit memory function. These structural characteristics are useful for dealing with dynamic environments. Furthermore, we propose an extended algorithm, "GNP with Reinforcement Learning (GNPRL)" which combines evolution and reinforcement learning in order to create effective graph structures and obtain better results in dynamic environments. In this paper, we applied GNP to the problem of determining agents' behavior to evaluate its effectiveness. Tileworld was used as the simulation environment. The results show some advantages for GNP over conventional methods.
Hart, Thomas; Dider, Shihab; Han, Weiwei; Xu, Hua; Zhao, Zhongming; Xie, Lei
2016-01-01
Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a novel structural systems pharmacology approach to elucidate metformin’s molecular basis and genetic biomarkers of action. We integrated structural proteome-scale drug target identification with network biology analysis by combining structural genomic, functional genomic, and interactomic data. Through searching the human structural proteome, we identified twenty putative metformin binding targets and their interaction models. We experimentally verified the interactions between metformin and our top-ranked kinase targets. Notably, kinases, particularly SGK1 and EGFR were identified as key molecular targets of metformin. Subsequently, we linked these putative binding targets to genes that do not directly bind to metformin but whose expressions are altered by metformin through protein-protein interactions, and identified network biomarkers of phenotypic response of metformin. The molecular targets and the key nodes in genetic networks are largely consistent with the existing experimental evidence. Their interactions can be affected by the observed cancer mutations. This study will shed new light into repurposing metformin for safe, effective, personalized therapies. PMID:26841718
NASA Astrophysics Data System (ADS)
Wu, Zikai; Hou, Baoyu; Zhang, Hongjuan; Jin, Feng
2014-04-01
Deterministic network models have been attractive media for discussing dynamical processes' dependence on network structural features. On the other hand, the heterogeneity of weights affect dynamical processes taking place on networks. In this paper, we present a family of weighted expanded Koch networks based on Koch networks. They originate from a r-polygon, and each node of current generation produces m r-polygons including the node and whose weighted edges are scaled by factor w in subsequent evolutionary step. We derive closed-form expressions for average weighted shortest path length (AWSP). In large network, AWSP stays bounded with network order growing (0 < w < 1). Then, we focus on a special random walks and trapping issue on the networks. In more detail, we calculate exactly the average receiving time (ART). ART exhibits a sub-linear dependence on network order (0 < w < 1), which implies that nontrivial weighted expanded Koch networks are more efficient than un-weighted expanded Koch networks in receiving information. Besides, efficiency of receiving information at hub nodes is also dependent on parameters m and r. These findings may pave the way for controlling information transportation on general weighted networks.
Effects of multiple spreaders in community networks
NASA Astrophysics Data System (ADS)
Hu, Zhao-Long; Ren, Zhuo-Ming; Yang, Guang-Yong; Liu, Jian-Guo
2014-12-01
Human contact networks exhibit the community structure. Understanding how such community structure affects the epidemic spreading could provide insights for preventing the spreading of epidemics between communities. In this paper, we explore the spreading of multiple spreaders in community networks. A network based on the clustering preferential mechanism is evolved, whose communities are detected by the Girvan-Newman (GN) algorithm. We investigate the spreading effectiveness by selecting the nodes as spreaders in the following ways: nodes with the largest degree in each community (community hubs), the same number of nodes with the largest degree from the global network (global large-degree) and randomly selected one node within each community (community random). The experimental results on the SIR model show that the spreading effectiveness based on the global large-degree and community hubs methods is the same in the early stage of the infection and the method of community random is the worst. However, when the infection rate exceeds the critical value, the global large-degree method embodies the worst spreading effectiveness. Furthermore, the discrepancy of effectiveness for the three methods will decrease as the infection rate increases. Therefore, we should immunize the hubs in each community rather than those hubs in the global network to prevent the outbreak of epidemics.
Intrinsic network activity in tinnitus investigated using functional MRI
Leaver, Amber M.; Turesky, Ted K.; Seydell-Greenwald, Anna; Morgan, Susan; Kim, Hung J.; Rauschecker, Josef P.
2016-01-01
Tinnitus is an increasingly common disorder in which patients experience phantom auditory sensations, usually ringing or buzzing in the ear. Tinnitus pathophysiology has been repeatedly shown to involve both auditory and non-auditory brain structures, making network-level studies of tinnitus critical. In this magnetic resonance imaging (MRI) study, we used two resting-state functional connectivity (RSFC) approaches to better understand functional network disturbances in tinnitus. First, we demonstrated tinnitus-related reductions in RSFC between specific brain regions and resting-state networks (RSNs), defined by independent components analysis (ICA) and chosen for their overlap with structures known to be affected in tinnitus. Then, we restricted ICA to data from tinnitus patients, and identified one RSN not apparent in control data. This tinnitus RSN included auditory-sensory regions like inferior colliculus and medial Heschl’s gyrus, as well as classically non-auditory regions like the mediodorsal nucleus of the thalamus, striatum, lateral prefrontal and orbitofrontal cortex. Notably, patients’ reported tinnitus loudness was positively correlated with RSFC between the mediodorsal nucleus and the tinnitus RSN, indicating that this network may underlie the auditory-sensory experience of tinnitus. These data support the idea that tinnitus involves network dysfunction, and further stress the importance of communication between auditory-sensory and fronto-striatal circuits in tinnitus pathophysiology. PMID:27091485
Impairment of a parieto-premotor network specialized for handwriting in writer's cramp
Najee-ullah, Muslimah 'Ali; Hallett, Mark
2016-01-01
Handwriting with the dominant hand is a highly skilled task singularly acquired in humans. This skill is the isolated deficit in patients with writer's cramp (WC), a form of dystonia with maladaptive plasticity, acquired through intensive and repetitive motor practice. When a skill is highly trained, a motor program is created in the brain to execute the same movement kinematics regardless of the effector used for the task. The task- and effector-specific symptoms in WC suggest that a problem particularly occurs in the brain when the writing motor program is carried out by the dominant hand. In the present MRI study involving 12 WC patients (with symptoms only affecting the right dominant hand during writing) and 15 age matched unaffected controls we showed that: (1) the writing program recruited the same network regardless of the effector used to write in both groups; (2) dominant handwriting recruited a segregated parieto-premotor network only in the control group; (3) local structural alteration of the premotor area, the motor component of this network, predicted functional connectivity deficits during dominant handwriting and symptom duration in the patient group. Dysfunctions and structural abnormalities of a segregated parieto-premotor network in WC patients suggest that network specialization in focal brain areas is crucial for well-learned motor skill. PMID:27466043
An improved game-theoretic approach to uncover overlapping communities
NASA Astrophysics Data System (ADS)
Sun, Hong-Liang; Ch'Ng, Eugene; Yong, Xi; Garibaldi, Jonathan M.; See, Simon; Chen, Duan-Bing
How can we uncover overlapping communities from complex networks to understand the inherent structures and functions? Chen et al. firstly proposed a community game (Game) to study this problem, and the overlapping communities have been discovered when the game is convergent. It is based on the assumption that each vertex of the underlying network is a rational game player to maximize its utility. In this paper, we investigate how similar vertices affect the formation of community game. The Adamic-Adar Index (AA Index) has been employed to define the new utility function. This novel method has been evaluated on both synthetic and real-world networks. Experimental study shows that it has significant improvement of accuracy (from 4.8% to 37.6%) compared with the Game on 10 real networks. It is more efficient on Facebook networks (FN) and Amazon co-purchasing networks than on other networks. This result implicates that “friend circles of friends” of Facebook are valuable to understand the overlapping community division.
Modeling complexity in engineered infrastructure system: Water distribution network as an example
NASA Astrophysics Data System (ADS)
Zeng, Fang; Li, Xiang; Li, Ke
2017-02-01
The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.
Extending Stability Through Hierarchical Clusters in Echo State Networks
Jarvis, Sarah; Rotter, Stefan; Egert, Ulrich
2009-01-01
Echo State Networks (ESN) are reservoir networks that satisfy well-established criteria for stability when constructed as feedforward networks. Recent evidence suggests that stability criteria are altered in the presence of reservoir substructures, such as clusters. Understanding how the reservoir architecture affects stability is thus important for the appropriate design of any ESN. To quantitatively determine the influence of the most relevant network parameters, we analyzed the impact of reservoir substructures on stability in hierarchically clustered ESNs, as they allow a smooth transition from highly structured to increasingly homogeneous reservoirs. Previous studies used the largest eigenvalue of the reservoir connectivity matrix (spectral radius) as a predictor for stable network dynamics. Here, we evaluate the impact of clusters, hierarchy and intercluster connectivity on the predictive power of the spectral radius for stability. Both hierarchy and low relative cluster sizes extend the range of spectral radius values, leading to stable networks, while increasing intercluster connectivity decreased maximal spectral radius. PMID:20725523
Getting support in polarized societies: income, social networks, and socioeconomic context.
Letki, Natalia; Mieriņa, Inta
2015-01-01
This paper explores how unequal resources and social and economic polarization affects the size of social networks and their use to access resources. We argue that individual resource position generates divergent expectations with regard to the impact of polarization on the size of networks on one hand, and their usefulness for accessing resources on the other. Social and economic polarization encourages reliance on informal networks, but those at the bottom of the social structure are forced to rely on more extensive networks than the wealthy to compensate for their isolated and underprivileged position. At the same time, social and economic polarization limits the resources the poor can access through their networks. We provide evidence consistent with these propositions, based on data derived from the International Social Survey Programme 2001 "Social Networks" dataset combined with contextual information on the levels of economic inequality in particular countries along with whether they experienced postcommunism. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Coupling of active motion and advection shapes intracellular cargo transport.
Khuc Trong, Philipp; Guck, Jochen; Goldstein, Raymond E
2012-07-13
Intracellular cargo transport can arise from passive diffusion, active motor-driven transport along cytoskeletal filament networks, and passive advection by fluid flows entrained by such cargo-motor motion. Active and advective transport are thus intrinsically coupled as related, yet different representations of the same underlying network structure. A reaction-advection-diffusion system is used here to show that this coupling affects the transport and localization of a passive tracer in a confined geometry. For sufficiently low diffusion, cargo localization to a target zone is optimized either by low reaction kinetics and decoupling of bound and unbound states, or by a mostly disordered cytoskeletal network with only weak directional bias. These generic results may help to rationalize subtle features of cytoskeletal networks, for example as observed for microtubules in fly oocytes.
How heart rate variability affects emotion regulation brain networks.
Mather, Mara; Thayer, Julian
2018-02-01
Individuals with high heart rate variability tend to have better emotional well-being than those with low heart rate variability, but the mechanisms of this association are not yet clear. In this paper, we propose the novel hypothesis that by inducing oscillatory activity in the brain, high amplitude oscillations in heart rate enhance functional connectivity in brain networks associated with emotion regulation. Recent studies using daily biofeedback sessions to increase the amplitude of heart rate oscillations suggest that high amplitude physiological oscillations have a causal impact on emotional well-being. Because blood flow timing helps determine brain network structure and function, slow oscillations in heart rate have the potential to strengthen brain network dynamics, especially in medial prefrontal regulatory regions that are particularly sensitive to physiological oscillations.
NASA Astrophysics Data System (ADS)
Munn, Lance
2009-11-01
``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure and function, provides a tool for identifying the structural and functional determinants of tumor vessel normalization.
NETWORK POSITION AND SEXUAL DYSFUNCTION: IMPLICATIONS OF PARTNER BETWEENNESS FOR MEN*
Cornwell, Benjamin; Laumann, Edward O.
2013-01-01
This paper combines relational perspectives on gender identity with social network structural perspectives on health to understand men’s sexual functioning. We argue that network positions that afford independence and control over social resources are consistent with traditional masculine roles and may therefore affect men’s sexual performance. For example, when a heterosexual man’s female partner has more frequent contact with his confidants than he does–a situation that we refer to as partner betweenness – his relational autonomy, privacy, and control are constrained. Analyses of data from the National Social Life, Health, and Aging Project (NSHAP) show that about a quarter of men experience partner betweenness, and that these men are 92 percent more likely to report problems getting and/or maintaining an erection (95% CI: 1.274, 2.881). This association is strongest among the youngest men in the sample, which may reflect changing conceptions of masculinity in later life. We close by considering several explanations for these findings, and urge additional research on the linkages between health, gender, and network structure. PMID:22003520
A Strategy Based on Protein-Protein Interface Motifs May Help in Identifying Drug Off-Targets
Engin, H. Billur; Keskin, Ozlem; Nussinov, Ruth; Gursoy, Attila
2014-01-01
Networks are increasingly used to study the impact of drugs at the systems level. From the algorithmic standpoint, a drug can ‘attack’ nodes or edges of a protein-protein interaction network. In this work, we propose a new network strategy, “The Interface Attack”, based on protein-protein interfaces. Similar interface architectures can occur between unrelated proteins. Consequently, in principle, a drug that binds to one has a certain probability of binding others. The interface attack strategy simultaneously removes from the network all interactions that consist of similar interface motifs. This strategy is inspired by network pharmacology and allows inferring potential off-targets. We introduce a network model which we call “Protein Interface and Interaction Network (P2IN)”, which is the integration of protein-protein interface structures and protein interaction networks. This interface-based network organization clarifies which protein pairs have structurally similar interfaces, and which proteins may compete to bind the same surface region. We built the P2IN of p53 signaling network and performed network robustness analysis. We show that (1) ‘hitting’ frequent interfaces (a set of edges distributed around the network) might be as destructive as eleminating high degree proteins (hub nodes); (2) frequent interfaces are not always topologically critical elements in the network; and (3) interface attack may reveal functional changes in the system better than attack of single proteins. In the off-target detection case study, we found that drugs blocking the interface between CDK6 and CDKN2D may also affect the interaction between CDK4 and CDKN2D. PMID:22817115
Optical fiber-fault surveillance for passive optical networks in S-band operation window
NASA Astrophysics Data System (ADS)
Yeh, Chien-Hung; Chi, Sien
2005-07-01
An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.
Optical fiber-fault surveillance for passive optical networks in S-band operation window.
Yeh, Chien-Hung; Chi, Sien
2005-07-11
An S-band (1470 to 1520 nm) fiber laser scheme, which uses multiple fiber Bragg grating (FBG) elements as feedback elements on each passive branch, is proposed and described for in-service fault identification in passive optical networks (PONs). By tuning a wavelength selective filter located within the laser cavity over a gain bandwidth, the fiber-fault of each branch can be monitored without affecting the in-service channels. In our experiment, an S-band four-branch monitoring tree-structured PON system is demonstrated and investigated experimentally.
Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model
NASA Astrophysics Data System (ADS)
Speidel, Leo; Klemm, Konstantin; Eguíluz, Víctor M.; Masuda, Naoki
2016-07-01
Data of physical contacts and face-to-face communications suggest temporally varying networks as the media on which infections take place among humans and animals. Epidemic processes on temporal networks are complicated by complexity of both network structure and temporal dimensions. Theoretical approaches are much needed for identifying key factors that affect dynamics of epidemics. In particular, what factors make some temporal networks stronger media of infection than other temporal networks is under debate. We develop a theory to understand the susceptible-infected-susceptible epidemic model on arbitrary temporal networks, where each contact is used for a finite duration. We show that temporality of networks lessens the epidemic threshold such that infections persist more easily in temporal networks than in their static counterparts. We further show that the Lie commutator bracket of the adjacency matrices at different times is a key determinant of the epidemic threshold in temporal networks. The effect of temporality on the epidemic threshold, which depends on a data set, is approximately predicted by the magnitude of a commutator norm.
Representing perturbed dynamics in biological network models
NASA Astrophysics Data System (ADS)
Stoll, Gautier; Rougemont, Jacques; Naef, Felix
2007-07-01
We study the dynamics of gene activities in relatively small size biological networks (up to a few tens of nodes), e.g., the activities of cell-cycle proteins during the mitotic cell-cycle progression. Using the framework of deterministic discrete dynamical models, we characterize the dynamical modifications in response to structural perturbations in the network connectivities. In particular, we focus on how perturbations affect the set of fixed points and sizes of the basins of attraction. Our approach uses two analytical measures: the basin entropy H and the perturbation size Δ , a quantity that reflects the distance between the set of fixed points of the perturbed network and that of the unperturbed network. Applying our approach to the yeast-cell-cycle network introduced by Li [Proc. Natl. Acad. Sci. U.S.A. 101, 4781 (2004)] provides a low-dimensional and informative fingerprint of network behavior under large classes of perturbations. We identify interactions that are crucial for proper network function, and also pinpoint functionally redundant network connections. Selected perturbations exemplify the breadth of dynamical responses in this cell-cycle model.
Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach
Senior, Alistair M.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.
2016-01-01
Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments. PMID:26858671
Scientific Networks on Data Landscapes: Question Difficulty, Epistemic Success, and Convergence
Grim, Patrick; Singer, Daniel J.; Fisher, Steven; Bramson, Aaron; Berger, William J.; Reade, Christopher; Flocken, Carissa; Sales, Adam
2014-01-01
A scientific community can be modeled as a collection of epistemic agents attempting to answer questions, in part by communicating about their hypotheses and results. We can treat the pathways of scientific communication as a network. When we do, it becomes clear that the interaction between the structure of the network and the nature of the question under investigation affects epistemic desiderata, including accuracy and speed to community consensus. Here we build on previous work, both our own and others’, in order to get a firmer grasp on precisely which features of scientific communities interact with which features of scientific questions in order to influence epistemic outcomes. Here we introduce a measure on the landscape meant to capture some aspects of the difficulty of answering an empirical question. We then investigate both how different communication networks affect whether the community finds the best answer and the time it takes for the community to reach consensus on an answer. We measure these two epistemic desiderata on a continuum of networks sampled from the Watts-Strogatz spectrum. It turns out that finding the best answer and reaching consensus exhibit radically different patterns. The time it takes for a community to reach a consensus in these models roughly tracks mean path length in the network. Whether a scientific community finds the best answer, on the other hand, tracks neither mean path length nor clustering coefficient. PMID:24683416
Scientific Networks on Data Landscapes: Question Difficulty, Epistemic Success, and Convergence.
Grim, Patrick; Singer, Daniel J; Fisher, Steven; Bramson, Aaron; Berger, William J; Reade, Christopher; Flocken, Carissa; Sales, Adam
2013-12-01
A scientific community can be modeled as a collection of epistemic agents attempting to answer questions, in part by communicating about their hypotheses and results. We can treat the pathways of scientific communication as a network. When we do, it becomes clear that the interaction between the structure of the network and the nature of the question under investigation affects epistemic desiderata, including accuracy and speed to community consensus. Here we build on previous work, both our own and others', in order to get a firmer grasp on precisely which features of scientific communities interact with which features of scientific questions in order to influence epistemic outcomes. Here we introduce a measure on the landscape meant to capture some aspects of the difficulty of answering an empirical question. We then investigate both how different communication networks affect whether the community finds the best answer and the time it takes for the community to reach consensus on an answer. We measure these two epistemic desiderata on a continuum of networks sampled from the Watts-Strogatz spectrum. It turns out that finding the best answer and reaching consensus exhibit radically different patterns. The time it takes for a community to reach a consensus in these models roughly tracks mean path length in the network. Whether a scientific community finds the best answer, on the other hand, tracks neither mean path length nor clustering coefficient.
Campbell Grant, Evan H.
2011-01-01
Spatial complexity in metacommunities can be separated into 3 main components: size (i.e., number of habitat patches), spatial arrangement of habitat patches (network topology), and diversity of habitat patch types. Much attention has been paid to lattice-type networks, such as patch-based metapopulations, but interest in understanding ecological networks of alternative geometries is building. Dendritic ecological networks (DENs) include some increasingly threatened ecological systems, such as caves and streams. The restrictive architecture of dendritic ecological networks might have overriding implications for species persistence. I used a modeling approach to investigate how number and spatial arrangement of habitat patches influence metapopulation extinction risk in 2 DENs of different size and topology. Metapopulation persistence was higher in larger networks, but this relationship was mediated by network topology and the dispersal pathways used to navigate the network. Larger networks, especially those with greater topological complexity, generally had lower extinction risk than smaller and less-complex networks, but dispersal bias and magnitude affected the shape of this relationship. Applying these general results to real systems will require empirical data on the movement behavior of organisms and will improve our understanding of the implications of network complexity on population and community patterns and processes.
Structural investigation of new vanadium-bismuth-phosphate glasses by IR and ESR spectroscopy
NASA Astrophysics Data System (ADS)
Vedeanu, N.; Cozar, O.; Stanescu, R.; Cozar, I. B.; Ardelean, I.
2013-07-01
IR spectra changes of the xV2O5(1 - x)[0.8P2O5ṡ0.2Bi2O3] glass system with 0 ⩽ x ⩽ 50 mol% show that vanadium oxide acts as a network modifier at low concentration (x ⩽ 5 mol%), affecting especially the Bi2O3 network. In the same time the phosphate groups (structures) impose their presence by themselves, fact which is illustrated by the increasing of the intensity of characteristic 910, 1040, 1230 cm-1 bands. The IR bands belonging to the phosphate groups are strongly reduced for x ⩾ 10 mol% due to the phosphate network depolymerization and to the appearance of new vibrations characteristic for POV and VOV linkages, showing the network former role of V2O5. In the same time the changes observed in the ESR spectra of these glasses are explained supposing the superposition of two signals, one with a well-resolved hyperfine structure typical for isolated V4+ ions and a broad line characteristic for clustered ions. The line width dependence versus V2O5 content shows that dipole-dipole interactions exist between vanadium ions until x = 5 mol% and the superexchange interactions prevail at high content (x ⩾ 10 mol%).
Information flow through threespine stickleback networks without social transmission
Atton, N.; Hoppitt, W.; Webster, M. M.; Galef, B. G.; Laland, K. N.
2012-01-01
Social networks can result in directed social transmission of learned information, thus influencing how innovations spread through populations. Here we presented shoals of threespine sticklebacks (Gasterosteous aculeatus) with two identical foraging tasks and applied network-based diffusion analysis (NBDA) to determine whether the order in which individuals in a social group contacted and solved the tasks was affected by the group's network structure. We found strong evidence for a social effect on discovery of the foraging tasks with individuals tending to discover a task sooner when others in their group had previously done so, and with the spread of discovery of the foraging tasks influenced by groups' social networks. However, the same patterns of association did not reliably predict spread of solution to the tasks, suggesting that social interactions affected the time at which the tasks were discovered, but not the latency to its solution following discovery. The present analysis, one of the first applications of NBDA to a natural animal system, illustrates how NBDA can lead to insight into the mechanisms supporting behaviour acquisition that more conventional statistical approaches might miss. Importantly, we provide the first compelling evidence that the spread of novel behaviours can result from social learning in the absence of social transmission, a phenomenon that we refer to as an untransmitted social effect on learning. PMID:22896644
Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael
2016-01-01
Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.
Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael
2016-01-01
Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271
Convergent evolution of modularity in metabolic networks through different community structures.
Zhou, Wanding; Nakhleh, Luay
2012-09-14
It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxonomy. We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism's metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations.
Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks.
Emer, Carine; Venticinque, Eduardo Martins; Fonseca, Carlos Roberto
2013-08-01
Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant-myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant-myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant-myrmecophyte networks differ among dam-induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant-myrmecophyte networks on islands. Ant-myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant-plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant-myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal-plant mutualistic networks. © 2013 Society for Conservation Biology.
Urbanism, Neighborhood Context, and Social Networks.
Cornwell, Erin York; Behler, Rachel L
2015-09-01
Theories of urbanism suggest that the urban context erodes individuals' strong social ties with friends and family. Recent research has narrowed focus to the neighborhood context, emphasizing how localized structural disadvantage affects community-level cohesion and social capital. In this paper, we argue that neighborhood context also shapes social ties with friends and family- particularly for community-dwelling seniors. We hypothesize that neighborhood disadvantage, residential instability, and disorder restrict residents' abilities to cultivate close relationships with neighbors and non-neighbor friends and family. Using data from the National Social Life, Health, and Aging Project (NSHAP), we find that older adults who live in disadvantaged neighborhoods have smaller social networks. Neighborhood disadvantage is also associated with less close network ties and less frequent interaction - but only among men. Furthermore, residents of disordered neighborhoods have smaller networks and weaker ties. We urge scholars to pay greater attention to how neighborhood context contributes to disparities in network-based access to resources.
Urbanism, Neighborhood Context, and Social Networks
Cornwell, Erin York; Behler, Rachel L.
2017-01-01
Theories of urbanism suggest that the urban context erodes individuals’ strong social ties with friends and family. Recent research has narrowed focus to the neighborhood context, emphasizing how localized structural disadvantage affects community-level cohesion and social capital. In this paper, we argue that neighborhood context also shapes social ties with friends and family– particularly for community-dwelling seniors. We hypothesize that neighborhood disadvantage, residential instability, and disorder restrict residents’ abilities to cultivate close relationships with neighbors and non-neighbor friends and family. Using data from the National Social Life, Health, and Aging Project (NSHAP), we find that older adults who live in disadvantaged neighborhoods have smaller social networks. Neighborhood disadvantage is also associated with less close network ties and less frequent interaction – but only among men. Furthermore, residents of disordered neighborhoods have smaller networks and weaker ties. We urge scholars to pay greater attention to how neighborhood context contributes to disparities in network-based access to resources. PMID:28819338
Mining protein-protein interaction networks: denoising effects
NASA Astrophysics Data System (ADS)
Marras, Elisabetta; Capobianco, Enrico
2009-01-01
A typical instrument to pursue analysis in complex network studies is the analysis of the statistical distributions. They are usually computed for measures which characterize network topology, and are aimed at capturing both structural and dynamics aspects. Protein-protein interaction networks (PPIN) have also been studied through several measures. It is in general observed that a power law is expected to characterize scale-free networks. However, mixing the original noise cover with outlying information and other system-dependent fluctuations makes the empirical detection of the power law a difficult task. As a result the uncertainty level increases when looking at the observed sample; in particular, one may wonder whether the computed features may be sufficient to explain the interactome. We then address noise problems by implementing both decomposition and denoising techniques that reduce the impact of factors known to affect the accuracy of power law detection.
Jeon, Haesang; Lubben, James
The current cross-cultural study examines the pathways underlying different formations of social networks and social support systems, which affect depression symptoms among older Korean immigrants and non-Hispanic Whites in the United States. Data for this study came from a panel survey of 223 older Korean American immigrants and 201 non-Hispanic White older adults 65 years of age and older living in Los Angeles. Structural equation modeling (SEM) is used to test the proposed conceptual model designed to explain the direct and indirect relationships between social networks and social support on depression symptoms. Empirical evidence from this study indicated different effect of one's social networks and social support on depression by race/ethnicity. The work discussed in this article pointed to the need to recognize the role of culture in assessing the relationships between social networks, social support, and health among older adults.
The spatial scaling of species interaction networks.
Galiana, Nuria; Lurgi, Miguel; Claramunt-López, Bernat; Fortin, Marie-Josée; Leroux, Shawn; Cazelles, Kevin; Gravel, Dominique; Montoya, José M
2018-05-01
Species-area relationships (SARs) are pivotal to understand the distribution of biodiversity across spatial scales. We know little, however, about how the network of biotic interactions in which biodiversity is embedded changes with spatial extent. Here we develop a new theoretical framework that enables us to explore how different assembly mechanisms and theoretical models affect multiple properties of ecological networks across space. We present a number of testable predictions on network-area relationships (NARs) for multi-trophic communities. Network structure changes as area increases because of the existence of different SARs across trophic levels, the preferential selection of generalist species at small spatial extents and the effect of dispersal limitation promoting beta-diversity. Developing an understanding of NARs will complement the growing body of knowledge on SARs with potential applications in conservation ecology. Specifically, combined with further empirical evidence, NARs can generate predictions of potential effects on ecological communities of habitat loss and fragmentation in a changing world.
Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.
Chen, Jinmiao; Chaudhari, Narendra
2007-01-01
Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.
Optimal community structure for social contagions
NASA Astrophysics Data System (ADS)
Su, Zhen; Wang, Wei; Li, Lixiang; Stanley, H. Eugene; Braunstein, Lidia A.
2018-05-01
Community structure is an important factor in the behavior of real-world networks because it strongly affects the stability and thus the phase transition order of the spreading dynamics. We here propose a reversible social contagion model of community networks that includes the factor of social reinforcement. In our model an individual adopts a social contagion when the number of received units of information exceeds its adoption threshold. We use mean-field approximation to describe our proposed model, and the results agree with numerical simulations. The numerical simulations and theoretical analyses both indicate that there is a first-order phase transition in the spreading dynamics, and that a hysteresis loop emerges in the system when there is a variety of initially adopted seeds. We find an optimal community structure that maximizes spreading dynamics. We also find a rich phase diagram with a triple point that separates the no-diffusion phase from the two diffusion phases.
Modification of β-Sheet Forming Peptide Hydrophobic Face: Effect on Self-Assembly and Gelation
2016-01-01
β-Sheet forming peptides have attracted significant interest for the design of hydrogels for biomedical applications. One of the main challenges is the control and understanding of the correlations between peptide molecular structure, the morphology, and topology of the fiber and network formed as well as the macroscopic properties of the hydrogel obtained. In this work, we have investigated the effect that functionalizing these peptides through their hydrophobic face has on their self-assembly and gelation. Our results show that the modification of the hydrophobic face results in a partial loss of the extended β-sheet conformation of the peptide and a significant change in fiber morphology from straight to kinked. As a consequence, the ability of these fibers to associate along their length and form large bundles is reduced. These structural changes (fiber structure and network topology) significantly affect the mechanical properties of the hydrogels (shear modulus and elasticity). PMID:27089379
Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields
ERIC Educational Resources Information Center
Thun, Tim Von
2013-01-01
Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…
Behavioral Consequences of Embeddedness: Effects of the Underlying Forms of Exchange
ERIC Educational Resources Information Center
Molm, Linda D.; Melamed, David; Whitham, Monica M.
2013-01-01
Network structures have strong effects on the frequency and terms of negotiated exchanges, shaping who exchanges with whom and who fares better or worse. In this study we ask how exchange patterns of commitment and inequality are affected when negotiated exchanges are combined with reciprocal exchanges in more complex relationships of…
Knowledge Structures of Entering Computer Networking Students and Their Instructors
ERIC Educational Resources Information Center
DiCerbo, Kristen E.
2007-01-01
Students bring prior knowledge to their learning experiences. This prior knowledge is known to affect how students encode and later retrieve new information learned. Teachers and content developers can use information about students' prior knowledge to create more effective lessons and materials. In many content areas, particularly the sciences,…
Gender and Race, Online Communities, and Composition Classrooms
ERIC Educational Resources Information Center
Morris, Jill
2011-01-01
As the culmination of a two-year long Internet ethnographic study of three separate sites, I use examples of women and minorities fighting against discrimination online to explore the power structures inherent to networks and how these might affect classroom practice. I will show how our ordinary assumptions in rhetoric and composition as well as…
Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri
2018-01-01
Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n = 65, included in final analyses: n = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.
Foley, Elaine; Rippon, Gina; Thai, Ngoc Jade; Longe, Olivia; Senior, Carl
2012-02-01
Very little is known about the neural structures involved in the perception of realistic dynamic facial expressions. In the present study, a unique set of naturalistic dynamic facial emotional expressions was created. Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend Haxby et al.'s [Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. The distributed human neural system for face perception. Trends in Cognitive Science, 4, 223-233, 2000] distributed neural system for face perception. This network includes early visual regions, such as the inferior occipital gyrus, which is identified as insensitive to motion or affect but sensitive to the visual stimulus, the STS, identified as specifically sensitive to motion, and the amygdala, recruited to process affect. Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as the inferior occipital gyrus and the STS, along with coupling between the STS and the amygdala, as well as the inferior frontal gyrus. These findings support the presence of a distributed network of cortical regions that mediate the perception of different dynamic facial expressions.
Valk, Sofie L; Bernhardt, Boris C; Trautwein, Fynn-Mathis; Böckler, Anne; Kanske, Philipp; Guizard, Nicolas; Collins, D Louis; Singer, Tania
2017-10-01
Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation.
Valk, Sofie L.; Bernhardt, Boris C.; Trautwein, Fynn-Mathis; Böckler, Anne; Kanske, Philipp; Guizard, Nicolas; Collins, D. Louis; Singer, Tania
2017-01-01
Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation. PMID:28983507
O'Dwyer, Gisele; Konder, Mariana Teixeira; Reciputti, Luciano Pereira; Macedo, Cesar; Lopes, Monica Guimarães Macau
2017-08-07
The Mobile Emergency Medical Service (SAMU) was the first component of the National Policy for Emergency Care implemented in Brazil in the early 2000. The article analyzed the implementation of mobile pre-hospital emergency care in Brazil. The methods included document analysis, interviews with state emergency care coordinators, and an expert panel. The theoretical reference was the strategic conduct analysis from Giddens' Structuration Theory. The results showed uneven implementation of the SAMU between states and regions of Brazil, identifying six patterns of implementation, considering the states' capacity to expand the population coverage and regionalize the service. Structural difficulties included physician retention, poorly equipped dispatch centers, and shortage of ambulances. The North and Northeast were the country's most heavily affected regions. SAMU is formatted as a structuring strategy in the emergency care network, but its performance suffered the impact of limited participation by primary care in the emergency network and especially the lack of hospital beds.
NASA Astrophysics Data System (ADS)
Hadzibeganovic, Tarik; Stauffer, Dietrich; Han, Xiao-Pu
2018-04-01
Cooperation is fundamental for the long-term survival of biological, social, and technological networks. Previously, mechanisms for the enhancement of cooperation, such as network reciprocity, have largely been studied in isolation and with often inconclusive findings. Here, we present an evolutionary, multiagent-based, and spatially explicit computer model to specifically address the interactive interplay between such mechanisms. We systematically investigate the effects of phenotypic diversity, network structure, and rewards on cooperative behavior emerging in a population of reproducing artificial decision makers playing tag-mediated evolutionary games. Cooperative interactions are rewarded such that both the benefits of recipients and costs of donators are affected by the reward size. The reward size is determined by the number of cooperative acts occurring within a given reward time frame. Our computational experiments reveal that small reward frames promote unconditional cooperation in populations with both low and high diversity, whereas large reward frames lead to cycles of conditional and unconditional strategies at high but not at low diversity. Moreover, an interaction between rewards and spatial structure shows that relative to small reward frames, there is a strong difference between the frequency of conditional cooperators populating rewired versus non-rewired networks when the reward frame is large. Notably, in a less diverse population, the total number of defections is comparable across different network topologies, whereas in more diverse environments defections become more frequent in a regularly structured than in a rewired, small-world network of contacts. Acknowledging the importance of such interaction effects in social dilemmas will have inevitable consequences for the future design of cooperation-enhancing protocols in large-scale, distributed, and decentralized systems such as peer-to-peer networks.
Osaka, Kengo; Toriumi, Fujio; Sugawara, Toshihauru
2017-01-01
Social networking services (SNSs) are widely used as communicative tools for a variety of purposes. SNSs rely on the users' individual activities associated with some cost and effort, and thus it is not known why users voluntarily continue to participate in SNSs. Because the structures of SNSs are similar to that of the public goods (PG) game, some studies have focused on why voluntary activities emerge as an optimal strategy by modifying the PG game. However, their models do not include direct reciprocity between users, even though reciprocity is a key mechanism that evolves and sustains cooperation in human society. We developed an abstract SNS model called the reciprocity rewards and meta-rewards games that include direct reciprocity by extending the existing models. Then, we investigated how direct reciprocity in an SNS facilitates cooperation that corresponds to participation in SNS by posting articles and comments and how the structure of the networks of users exerts an influence on the strategies of users using the reciprocity rewards game. We run reciprocity rewards games on various complex networks and an instance network of Facebook and found that two types of stable cooperation emerged. First, reciprocity slightly improves the rate of cooperation in complete graphs but the improvement is insignificant because of the instability of cooperation. However, this instability can be avoided by making two assumptions: high degree of fun, i.e. articles are read with high probability, and different attitudes to reciprocal and non-reciprocal agents. We then propose the concept of half free riders to explain what strategy sustains cooperation-dominant situations. Second, we indicate that a certain WS network structure affects users' optimal strategy and facilitates stable cooperation without any extra assumptions. We give a detailed analysis of the different characteristics of the two types of cooperation-dominant situations and the effect of the memory of reciprocal agents on cooperation.
McHugh, J E; Lawlor, B A
2012-10-01
Personality affects psychological wellbeing, and social support networks may mediate this effect. This may be particularly pertinent in later life, when social structures change significantly, and can lead to a decline in psychological wellbeing. To examine, in an older population, whether the relationships between neuroticism and extraversion and mental wellbeing are moderated by available social support networks. We gathered information from 536 community-dwelling older adults, regarding personality, social support networks, depressive symptomatology, anxiety and perceived stress, as well as controlling for age and gender. Neuroticism and extraversion interacted with social support networks to determine psychological wellbeing (depression, stress and anxiety). High scores on the social support networks measure appear to be protective against the deleterious effects of high scores on the neuroticism scale on psychological wellbeing. Meanwhile, individuals high in extraversion appear to require large social support networks in order to maintain psychological wellbeing. Large familial and friendship social support networks are associated with good psychological wellbeing. To optimise psychological wellbeing in older adults, improving social support networks may be differentially effective for different personality types.
Hasmi, Laila; Drukker, Marjan; Guloksuz, Sinan; Menne-Lothmann, Claudia; Decoster, Jeroen; van Winkel, Ruud; Collip, Dina; Delespaul, Philippe; De Hert, Marc; Derom, Catherine; Thiery, Evert; Jacobs, Nele; Rutten, Bart P. F.; Wichers, Marieke; van Os, Jim
2017-01-01
Background: The network analysis of intensive time series data collected using the Experience Sampling Method (ESM) may provide vital information in gaining insight into the link between emotion regulation and vulnerability to psychopathology. The aim of this study was to apply the network approach to investigate whether genetic liability (GL) to psychopathology and childhood trauma (CT) are associated with the network structure of the emotions “cheerful,” “insecure,” “relaxed,” “anxious,” “irritated,” and “down”—collected using the ESM method. Methods: Using data from a population-based sample of twin pairs and siblings (704 individuals), we examined whether momentary emotion network structures differed across strata of CT and GL. GL was determined empirically using the level of psychopathology in monozygotic and dizygotic co-twins. Network models were generated using multilevel time-lagged regression analysis and were compared across three strata (low, medium, and high) of CT and GL, respectively. Permutations were utilized to calculate p values and compare regressions coefficients, density, and centrality indices. Regression coefficients were presented as connections, while variables represented the nodes in the network. Results: In comparison to the low GL stratum, the high GL stratum had significantly denser overall (p = 0.018) and negative affect network density (p < 0.001). The medium GL stratum also showed a directionally similar (in-between high and low GL strata) but statistically inconclusive association with network density. In contrast to GL, the results of the CT analysis were less conclusive, with increased positive affect density (p = 0.021) and overall density (p = 0.042) in the high CT stratum compared to the medium CT stratum but not to the low CT stratum. The individual node comparisons across strata of GL and CT yielded only very few significant results, after adjusting for multiple testing. Conclusions: The present findings demonstrate that the network approach may have some value in understanding the relation between established risk factors for mental disorders (particularly GL) and the dynamic interplay between emotions. The present finding partially replicates an earlier analysis, suggesting it may be instructive to model negative emotional dynamics as a function of genetic influence. PMID:29163289
Fox, Christopher J.; Moon, So Young; Iaria, Giuseppe; Barton, Jason J.S.
2009-01-01
The recognition of facial identity and expression are distinct tasks, with current models hypothesizing anatomic segregation of processing within a face-processing network. Using fMRI adaptation and a region-of-interest approach, we assessed how the perception of identity and expression changes in morphed stimuli affected the signal within this network, by contrasting (a) changes that crossed categorical boundaries of identity or expression with those that did not, and (b) changes that subjects perceived as causing identity or expression to change, versus changes that they perceived as not affecting the category of identity or expression. The occipital face area (OFA) was sensitive to any structural change in a face, whether it was identity or expression, but its signal did not correlate with whether subjects perceived a change or not. Both the fusiform face area (FFA) and the posterior superior temporal sulcus (pSTS) showed release from adaptation when subjects perceived a change in either identity or expression, although in the pSTS this effect only occurred when subjects were explicitly attending to expression. The middle superior temporal sulcus (mSTS) showed release from adaptation for expression only, and the precuneus for identity only. The data support models where the OFA is involved in the early perception of facial structure. However, evidence for a functional overlap in the FFA and pSTS, with both identity and expression signals in both areas, argues against a complete independence of identity and expression processing in these regions of the core face-processing network. PMID:18852053
Fox, Christopher J; Moon, So Young; Iaria, Giuseppe; Barton, Jason J S
2009-01-15
The recognition of facial identity and expression are distinct tasks, with current models hypothesizing anatomic segregation of processing within a face-processing network. Using fMRI adaptation and a region-of-interest approach, we assessed how the perception of identity and expression changes in morphed stimuli affected the signal within this network, by contrasting (a) changes that crossed categorical boundaries of identity or expression with those that did not, and (b) changes that subjects perceived as causing identity or expression to change, versus changes that they perceived as not affecting the category of identity or expression. The occipital face area (OFA) was sensitive to any structural change in a face, whether it was identity or expression, but its signal did not correlate with whether subjects perceived a change or not. Both the fusiform face area (FFA) and the posterior superior temporal sulcus (pSTS) showed release from adaptation when subjects perceived a change in either identity or expression, although in the pSTS this effect only occurred when subjects were explicitly attending to expression. The middle superior temporal sulcus (mSTS) showed release from adaptation for expression only, and the precuneus for identity only. The data support models where the OFA is involved in the early perception of facial structure. However, evidence for a functional overlap in the FFA and pSTS, with both identity and expression signals in both areas, argues against a complete independence of identity and expression processing in these regions of the core face-processing network.
Schomburg, A; Schilling, O S; Guenat, C; Schirmer, M; Le Bayon, R C; Brunner, P
2018-10-15
Ecosystem services provided by floodplains are strongly controlled by the structural stability of soils. The development of a stable structure in floodplain soils is affected by a complex and poorly understood interplay of hydrological, physico-chemical and biological processes. This paper aims at analysing relations between fluctuating groundwater levels, soil physico-chemical and biological parameters on soil structure stability in a restored floodplain. Water level fluctuations in the soil are modelled using a numerical surface-water-groundwater flow model and correlated to soil physico-chemical parameters and abundances of plants and earthworms. Causal relations and multiple interactions between the investigated parameters are tested through structural equation modelling (SEM). Fluctuating water levels in the soil did not directly affect the topsoil structure stability, but indirectly through affecting plant roots and soil parameters that in turn determine topsoil structure stability. These relations remain significant for mean annual days of complete and partial (>25%) water saturation. Ecosystem functioning of a restored floodplain might already be affected by the fluctuation of groundwater levels alone, and not only through complete flooding by surface water during a flood period. Surprisingly, abundances of earthworms did not show any relation to other variables in the SEM. These findings emphasise that earthworms have efficiently adapted to periodic stress and harsh environmental conditions. Variability of the topsoil structure stability is thus stronger driven by the influence of fluctuating water levels on plants than by the abundance of earthworms. This knowledge about the functional network of soil engineering organisms, soil parameters and fluctuating water levels and how they affect soil structural stability is of fundamental importance to define management strategies of near-natural or restored floodplains in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Interplay of network dynamics and heterogeneity of ties on spreading dynamics.
Ferreri, Luca; Bajardi, Paolo; Giacobini, Mario; Perazzo, Silvia; Venturino, Ezio
2014-07-01
The structure of a network dramatically affects the spreading phenomena unfolding upon it. The contact distribution of the nodes has long been recognized as the key ingredient in influencing the outbreak events. However, limited knowledge is currently available on the role of the weight of the edges on the persistence of a pathogen. At the same time, recent works showed a strong influence of temporal network dynamics on disease spreading. In this work we provide an analytical understanding, corroborated by numerical simulations, about the conditions for infected stable state in weighted networks. In particular, we reveal the role of heterogeneity of edge weights and of the dynamic assignment of weights on the ties in the network in driving the spread of the epidemic. In this context we show that when weights are dynamically assigned to ties in the network, a heterogeneous distribution is able to hamper the diffusion of the disease, contrary to what happens when weights are fixed in time.
Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks
NASA Astrophysics Data System (ADS)
Granell, Clara; Gómez, Sergio; Arenas, Alex
2013-09-01
We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.
Dynamical interplay between awareness and epidemic spreading in multiplex networks.
Granell, Clara; Gómez, Sergio; Arenas, Alex
2013-09-20
We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.
Evolving dynamics of trading behavior based on coordination game in complex networks
NASA Astrophysics Data System (ADS)
Bian, Yue-tang; Xu, Lu; Li, Jin-sheng
2016-05-01
This work concerns the modeling of evolvement of trading behavior in stock markets. Based on the assumption of the investors' limited rationality, the evolution mechanism of trading behavior is modeled according to the investment strategy of coordination game in network, that investors are prone to imitate their neighbors' activity through comprehensive analysis on the risk dominance degree of certain investment behavior, the network topology of their relationship and its heterogeneity. We investigate by mean-field analysis and extensive simulations the evolution of investors' trading behavior in various typical networks under different risk dominance degree of investment behavior. Our results indicate that the evolution of investors' behavior is affected by the network structure of stock market and the effect of risk dominance degree of investment behavior; the stability of equilibrium states of investors' behavior dynamics is directly related with the risk dominance degree of some behavior; connectivity and heterogeneity of the network plays an important role in the evolution of the investment behavior in stock market.
Spatio-temporal statistical models for river monitoring networks.
Clement, L; Thas, O; Vanrolleghem, P A; Ottoy, J P
2006-01-01
When introducing new wastewater treatment plants (WWTP), investors and policy makers often want to know if there indeed is a beneficial effect of the installation of a WWTP on the river water quality. Such an effect can be established in time as well as in space. Since both temporal and spatial components affect the output of a monitoring network, their dependence structure has to be modelled. River water quality data typically come from a river monitoring network for which the spatial dependence structure is unidirectional. Thus the traditional spatio-temporal models are not appropriate, as they cannot take advantage of this directional information. In this paper, a state-space model is presented in which the spatial dependence of the state variable is represented by a directed acyclic graph, and the temporal dependence by a first-order autoregressive process. The state-space model is extended with a linear model for the mean to estimate the effect of the activation of a WWTP on the dissolved oxygen concentration downstream.
Gender asymmetry in concurrent partnerships and HIV prevalence.
Leung, Ka Yin; Powers, Kimberly A; Kretzschmar, Mirjam
2017-06-01
The structure of the sexual network of a population plays an essential role in the transmission of HIV. Concurrent partnerships, i.e. partnerships that overlap in time, are important in determining this network structure. Men and women may differ in their concurrent behavior, e.g. in the case of polygyny where women are monogamous while men may have concurrent partnerships. Polygyny has been shown empirically to be negatively associated with HIV prevalence, but the epidemiological impacts of other forms of gender-asymmetric concurrency have not been formally explored. Here we investigate how gender asymmetry in concurrency, including polygyny, can affect the disease dynamics. We use a model for a dynamic network where individuals may have concurrent partners. The maximum possible number of simultaneous partnerships can differ for men and women, e.g. in the case of polygyny. We control for mean partnership duration, mean lifetime number of partners, mean degree, and sexually active lifespan. We assess the effects of gender asymmetry in concurrency on two epidemic phase quantities (R 0 and the contribution of the acute HIV stage to R 0 ) and on the endemic HIV prevalence. We find that gender asymmetry in concurrent partnerships is associated with lower levels of all three epidemiological quantities, especially in the polygynous case. This effect on disease transmission can be attributed to changes in network structure, where increasing asymmetry leads to decreasing network connectivity. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kamkar, Milad; Aliabadian, Ehsan; Shayesteh Zeraati, Ali; Sundararaj, Uttandaraman
2018-02-01
Carbon nanotube (CNT)/polymer nanocomposites exhibit excellent electrical properties by forming a percolated network. Adding a secondary filler can significantly affect the CNTs' network, resulting in changing the electrical properties. In this work, we investigated the effect of adding manganese dioxide nanowires (MnO2NWs) as a secondary nanofiller on the CNTs' network structure inside a poly(vinylidene fluoride) (PVDF) matrix. Incorporating MnO2NWs to PVDF/CNT samples produced a better state of dispersion of CNTs, as corroborated by light microscopy and transmission electron microscopy. The steady shear and oscillatory shear flows were employed to obtain a better insight into the nanofiller structure and viscoelastic behavior of the nanocomposites. The transient response under steady shear flow revealed that the stress overshoot of hybrid nanocomposites (two-fillers), PVDF/CNT/MnO2NWs, increased dramatically in comparison to binary nanocomposites (single-filler), PVDF/CNT and PVDF/MnO2NWs. This can be attributed to microstructural changes. Large amplitude oscillatory shear characterization was also performed to further investigate the effect of the secondary nanofiller on the nonlinear viscoelastic behavior of the samples. The nonlinear rheological observations were explained using quantitative nonlinear parameters [strain-stiffening ratio (S) and shear-thickening ratio (T)] and Lissajous-Bowditch plots. Results indicated that a more rigid nanofiller network was formed for the hybrid nanocomposites due to the better dispersion state of CNTs and this led to a more nonlinear viscoelastic behavior.
NASA Astrophysics Data System (ADS)
Zhang, Bijun; Vogt, Martin; Maggiora, Gerald M.; Bajorath, Jürgen
2015-07-01
Chemical space networks (CSNs) have recently been introduced as a conceptual alternative to coordinate-based representations of chemical space. CSNs were initially designed as threshold networks using the Tanimoto coefficient as a continuous similarity measure. The analysis of CSNs generated from sets of bioactive compounds revealed that many statistical properties were strongly dependent on their edge density. While it was difficult to compare CSNs at pre-defined similarity threshold values, CSNs with constant edge density were directly comparable. In the current study, alternative CSN representations were constructed by applying the matched molecular pair (MMP) formalism as a substructure-based similarity criterion. For more than 150 compound activity classes, MMP-based CSNs (MMP-CSNs) were compared to corresponding threshold CSNs (THR-CSNs) at a constant edge density by applying different parameters from network science, measures of community structure distributions, and indicators of structure-activity relationship (SAR) information content. MMP-CSNs were found to be an attractive alternative to THR-CSNs, yielding low edge densities and well-resolved topologies. MMP-CSNs and corresponding THR-CSNs often had similar topology and closely corresponding community structures, although there was only limited overlap in similarity relationships. The homophily principle from network science was shown to affect MMP-CSNs and THR-CSNs in different ways, despite the presence of conserved topological features. Moreover, activity cliff distributions in alternative CSN designs markedly differed, which has important implications for SAR analysis.
NASA Astrophysics Data System (ADS)
Liu, Xuan; Jiang, Shan; Chen, Hsinchun; Larson, Catherine A.; Roco, Mihail C.
2014-09-01
Given the global increase in public funding for nanotechnology research and development, it is even more important to support projects with promising return on investment. A main return is the benefit to other researchers and to the entire field through knowledge diffusion, invention, and innovation. The social network of researchers is one of the channels through which this happens. This study considers the scientific publication network in the field of nanotechnology, and evaluates how knowledge diffusion through coauthorship and citations is affected in large institutions by the location and connectivity of individual researchers in the network. The relative position and connectivity of a researcher is measured by various social network metrics, including degree centrality, Bonacich Power centrality, structural holes, and betweenness centrality. Leveraging the Cox regression model, we analyzed the temporal relationships between knowledge diffusion and social network measures of researchers in five leading universities in the United States using papers published from 2000 to 2010. The results showed that the most significant effects on knowledge diffusion in the field of nanotechnology were from the structural holes of the network and the degree centrality of individual researchers. The data suggest that a researcher has potential to perform better in knowledge creation and diffusion on boundary-spanning positions between different communities and when he or she has a high level of connectivity in the knowledge network. These observations may lead to improved strategies in planning, conducting, and evaluating multidisciplinary nanotechnology research. The paper also identifies the researchers who made most significant contributions to nanotechnology knowledge diffusion in the networks of five leading U.S. universities.
SUSTAIN: a network model of category learning.
Love, Bradley C; Medin, Douglas L; Gureckis, Todd M
2004-04-01
SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.
Altered Synchronizations among Neural Networks in Geriatric Depression
Wang, Lihong; Chou, Ying-Hui; Potter, Guy G.; Steffens, David C.
2015-01-01
Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression. PMID:26180795
Altered Synchronizations among Neural Networks in Geriatric Depression.
Wang, Lihong; Chou, Ying-Hui; Potter, Guy G; Steffens, David C
2015-01-01
Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression.
Guo, Hao; Liu, Lei; Chen, Junjie; Xu, Yong; Jie, Xiang
2017-01-01
Functional magnetic resonance imaging (fMRI) is one of the most useful methods to generate functional connectivity networks of the brain. However, conventional network generation methods ignore dynamic changes of functional connectivity between brain regions. Previous studies proposed constructing high-order functional connectivity networks that consider the time-varying characteristics of functional connectivity, and a clustering method was performed to decrease computational cost. However, random selection of the initial clustering centers and the number of clusters negatively affected classification accuracy, and the network lost neurological interpretability. Here we propose a novel method that introduces the minimum spanning tree method to high-order functional connectivity networks. As an unbiased method, the minimum spanning tree simplifies high-order network structure while preserving its core framework. The dynamic characteristics of time series are not lost with this approach, and the neurological interpretation of the network is guaranteed. Simultaneously, we propose a multi-parameter optimization framework that involves extracting discriminative features from the minimum spanning tree high-order functional connectivity networks. Compared with the conventional methods, our resting-state fMRI classification method based on minimum spanning tree high-order functional connectivity networks greatly improved the diagnostic accuracy for Alzheimer's disease. PMID:29249926
Frick, Andreas; Gingnell, Malin; Marquand, Andre F.; Howner, Katarina; Fischer, Håkan; Kristiansson, Marianne; Williams, Steven C.R.; Fredrikson, Mats; Furmark, Tomas
2014-01-01
Functional neuroimaging of social anxiety disorder (SAD) support altered neural activation to threat-provoking stimuli focally in the fear network, while structural differences are distributed over the temporal and frontal cortices as well as limbic structures. Previous neuroimaging studies have investigated the brain at the voxel level using mass-univariate methods which do not enable detection of more complex patterns of activity and structural alterations that may separate SAD from healthy individuals. Support vector machine (SVM) is a supervised machine learning method that capitalizes on brain activation and structural patterns to classify individuals. The aim of this study was to investigate if it is possible to discriminate SAD patients (n = 14) from healthy controls (n = 12) using SVM based on (1) functional magnetic resonance imaging during fearful face processing and (2) regional gray matter volume. Whole brain and region of interest (fear network) SVM analyses were performed for both modalities. For functional scans, significant classifications were obtained both at whole brain level and when restricting the analysis to the fear network while gray matter SVM analyses correctly classified participants only when using the whole brain search volume. These results support that SAD is characterized by aberrant neural activation to affective stimuli in the fear network, while disorder-related alterations in regional gray matter volume are more diffusely distributed over the whole brain. SVM may thus be useful for identifying imaging biomarkers of SAD. PMID:24239689
Movement of feeder-using songbirds: the influence of urban features.
Cox, Daniel T C; Inger, Richard; Hancock, Steven; Anderson, Karen; Gaston, Kevin J
2016-11-23
Private gardens provide vital opportunities for people to interact with nature. The most popular form of interaction is through garden bird feeding. Understanding how landscape features and seasons determine patterns of movement of feeder-using songbirds is key to maximising the well-being benefits they provide. To determine these patterns we established three networks of automated data loggers along a gradient of greenspace fragmentation. Over a 12-month period we tracked 452 tagged blue tits Cyantistes caeruleus and great tits Parus major moving between feeder pairs 9,848 times, to address two questions: (i) Do urban features within different forms, and season, influence structural (presence-absence of connections between feeders by birds) and functional (frequency of these connections) connectivity? (ii) Are there general patterns of structural and functional connectivity across forms? Vegetation cover increased connectivity in all three networks, whereas the presence of road gaps negatively affected functional but not structural connectivity. Across networks structural connectivity was lowest in the summer when birds maintain breeding territories, however patterns of functional connectivity appeared to vary with habitat fragmentation. Using empirical data this study shows how key urban features and season influence movement of feeder-using songbirds, and we provide evidence that this is related to greenspace fragmentation.
Importance of interlayer H bonding structure to the stability of layered minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Michele; Soltis, Jennifer A.; Wittman, Rick S.
Layered (oxy) hydroxide minerals often possess out-of-plane hydrogen atoms that form hydrogen bonding networks which stabilize the layered structure. However, less is known about how the ordering of these bonds affects the structural stability and solubility of these minerals. Here, we report a new strategy that uses the focused electron beam to probe the effect of differences in hydrogen bonding networks on mineral solubility. In this regard, the dissolution behavior of boehmite (γ-AlOOH) and gibbsite (γ-Al(OH)3) were compared and contrasted in real time via liquid cell electron microscopy. Under identical such conditions, 2D-nanosheets of boehmite (γ-AlOOH) exfoliated from the bulkmore » and then rapidly dissolved, whereas gibbsite was stable. Further, substitution of only 1% Fe(III) for Al(III) in the structure of boehmite inhibited delamination and dissolution. Factors such as pH, radiolytic species, and knock on damage were systematically studied and eliminated as proximal causes for boehmite dissolution. Instead, the creation of electron/hole pairs was considered to be the mechanism that drove dissolution. The widely disparate behaviors of boehmite, gibbsite, and Fe-doped boehmite are discussed in the context of differences in the OH bond strengths, hydrogen bonding networks, and the presence or absence of electron/hole recombination centers.« less
Importance of interlayer H bonding structure to the stability of layered minerals
Conroy, Michele; Soltis, Jennifer A.; Wittman, Rick S.; ...
2017-10-16
Layered (oxy) hydroxide minerals often possess out-of-plane hydrogen atoms that form hydrogen bonding networks which stabilize the layered structure. However, less is known about how the ordering of these bonds affects the structural stability and solubility of these minerals. Here, we report a new strategy that uses the focused electron beam to probe the effect of differences in hydrogen bonding networks on mineral solubility. In this regard, the dissolution behavior of boehmite (γ-AlOOH) and gibbsite (γ-Al(OH)3) were compared and contrasted in real time via liquid cell electron microscopy. Under identical such conditions, 2D-nanosheets of boehmite (γ-AlOOH) exfoliated from the bulkmore » and then rapidly dissolved, whereas gibbsite was stable. Further, substitution of only 1% Fe(III) for Al(III) in the structure of boehmite inhibited delamination and dissolution. Factors such as pH, radiolytic species, and knock on damage were systematically studied and eliminated as proximal causes for boehmite dissolution. Instead, the creation of electron/hole pairs was considered to be the mechanism that drove dissolution. The widely disparate behaviors of boehmite, gibbsite, and Fe-doped boehmite are discussed in the context of differences in the OH bond strengths, hydrogen bonding networks, and the presence or absence of electron/hole recombination centers.« less
Macfadyen, Sarina; Gibson, Rachel; Polaszek, Andrew; Morris, Rebecca J; Craze, Paul G; Planqué, Robert; Symondson, William O C; Memmott, Jane
2009-03-01
While many studies have demonstrated that organic farms support greater levels of biodiversity, it is not known whether this translates into better provision of ecosystem services. Here we use a food-web approach to analyse the community structure and function at the whole-farm scale. Quantitative food webs from 10 replicate pairs of organic and conventional farms showed that organic farms have significantly more species at three trophic levels (plant, herbivore and parasitoid) and significantly different network structure. Herbivores on organic farms were attacked by more parasitoid species on organic farms than on conventional farms. However, differences in network structure did not translate into differences in robustness to simulated species loss and we found no difference in percentage parasitism (natural pest control) across a variety of host species. Furthermore, a manipulative field experiment demonstrated that the higher species richness of parasitoids on the organic farms did not increase mortality of a novel herbivore used to bioassay ecosystem service. The explanation for these differences is likely to include inherent differences in management strategies and landscape structure between the two farming systems.
Impairment of a parieto-premotor network specialized for handwriting in writer's cramp.
Gallea, Cecile; Horovitz, Silvina G; Najee-Ullah, Muslimah 'Ali; Hallett, Mark
2016-12-01
Handwriting with the dominant hand is a highly skilled task singularly acquired in humans. This skill is the isolated deficit in patients with writer's cramp (WC), a form of dystonia with maladaptive plasticity, acquired through intensive and repetitive motor practice. When a skill is highly trained, a motor program is created in the brain to execute the same movement kinematics regardless of the effector used for the task. The task- and effector-specific symptoms in WC suggest that a problem particularly occurs in the brain when the writing motor program is carried out by the dominant hand. In this MRI study involving 12 WC patients (with symptoms only affecting the right dominant hand during writing) and 15 age matched unaffected controls we showed that: (1) the writing program recruited the same network regardless of the effector used to write in both groups; (2) dominant handwriting recruited a segregated parieto-premotor network only in the control group; (3) local structural alteration of the premotor area, the motor component of this network, predicted functional connectivity deficits during dominant handwriting and symptom duration in the patient group. Dysfunctions and structural abnormalities of a segregated parieto-premotor network in WC patients suggest that network specialization in focal brain areas is crucial for well-learned motor skill. Hum Brain Mapp 37:4363-4375, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Vigil, Jacob M; Rowell, Lauren N; Chouteau, Simone; Chavez, Alexandre; Jaramillo, Elisa; Neal, Michael; Waid, David
2013-01-01
This is the first study to examine how both structural and functional components of individuals' social networks may moderate the association between biological sex and experimental pain sensitivity. One hundred and fifty-two healthy adults (mean age = 22yrs., 53% males) were measured for cold pressor task (CPT) pain sensitivity (i.e., intensity ratings) and core aspects of social networks (e.g., proportion of friends vs. family, affection, affirmation, and aid). Results showed consistent sex differences in how social network structures and intimate relationship functioning modulated pain sensitivity. Females showed higher pain sensitivity when their social networks consisted of a higher proportion of intimate types of relationship partners (e.g., kin vs. non kin), when they had known their network partners for a longer period of time, and when they reported higher levels of logistical support from their significant other (e.g., romantic partner). Conversely, males showed distinct patterns in the opposite direction, including an association between higher levels of logistical support from one's significant other and lower CPT pain intensity. These findings show for the first time that the direction of sex differences in exogenous pain sensitivity is likely dependent on fundamental components of the individual's social environment. The utility of a social-signaling perspective of pain behaviors for examining, comparing, and interpreting individual and group differences in experimental and clinical pain reports is discussed.
Vigil, Jacob M.; Rowell, Lauren N.; Chouteau, Simone; Chavez, Alexandre; Jaramillo, Elisa; Neal, Michael; Waid, David
2013-01-01
This is the first study to examine how both structural and functional components of individuals’ social networks may moderate the association between biological sex and experimental pain sensitivity. One hundred and fifty-two healthy adults (mean age = 22yrs., 53% males) were measured for cold pressor task (CPT) pain sensitivity (i.e., intensity ratings) and core aspects of social networks (e.g., proportion of friends vs. family, affection, affirmation, and aid). Results showed consistent sex differences in how social network structures and intimate relationship functioning modulated pain sensitivity. Females showed higher pain sensitivity when their social networks consisted of a higher proportion of intimate types of relationship partners (e.g., kin vs. non kin), when they had known their network partners for a longer period of time, and when they reported higher levels of logistical support from their significant other (e.g., romantic partner). Conversely, males showed distinct patterns in the opposite direction, including an association between higher levels of logistical support from one’s significant other and lower CPT pain intensity. These findings show for the first time that the direction of sex differences in exogenous pain sensitivity is likely dependent on fundamental components of the individual’s social environment. The utility of a social-signaling perspective of pain behaviors for examining, comparing, and interpreting individual and group differences in experimental and clinical pain reports is discussed. PMID:24223836
Zhao, Wei; Fan, Jian; Song, You; Kawaguchi, Hiroyuki; Okamura, Taka-aki; Sun, Wei-Yin; Ueyama, Norikazu
2005-04-21
Three novel metal-organic frameworks (MOFs), [Cu(1)SO4].H2O (4), [Cu2(2)2(SO4)2].4H2O (5) and [Cu(3)(H2O)]SO4.5.5H2O (6), were obtained by hydrothermal reactions of CuSO4.5H2O with the corresponding ligands, which have different flexibility. The structures of the synthesized complexes were determined by single-crystal X-ray diffraction analyses. Complex 4 has a 2D network structure with two types of metallacycles. Complex 5 also has a 2D network structure in which each independent 2D sheet contains two sub-layers bridged by oxygen atoms of the sulfate anions. Complex 6 has a 2D puckered structure in which the sulfate anions serve as counter anions, which are different from those in complexes 4 (terminators) and 5 (bridges). The different structures of complexes 4, 5 and 6 indicate that the nature of organic ligands affected the structures of the assemblies greatly. The magnetic behavior of complex 5 and anion-exchange properties of complex 6 were investigated.
Fialko, Kristina
2018-05-01
Does variation in the environment in which a signal is presented affect the components of a complex, ritualized animal display? Using a signal phenotype network, Rosenthal et al. (2018) found that light and female presence alter the structure of wolf spider courtship displays, providing evidence that complex signaling behaviors may be modified depending on the social and environmental context. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Saeedi, Alireza; Jannesari, Mostafa; Gharibzadeh, Shahriar; Bakouie, Fatemeh
2018-04-01
Self-organized criticality (SOC) and stochastic oscillations (SOs) are two theoretically contradictory phenomena that are suggested to coexist in the brain. Recently it has been shown that an accumulation-release process like sandpile dynamics can generate SOC and SOs simultaneously. We considered the effect of the network structure on this coexistence and showed that the sandpile dynamics on a small-world network can produce two power law regimes along with two groups of SOs-two peaks in the power spectrum of the generated signal simultaneously. We also showed that external stimuli in the sandpile dynamics do not affect the coexistence of SOC and SOs but increase the frequency of SOs, which is consistent with our knowledge of the brain.
Reif, Andrew G.
2004-01-01
Biological, chemical, and habitat data have been collected from a network of sites in Chester County, Pa., from 1970 to 2003 to assess stream quality. Forty sites in 6 major stream basins were sampled between 1998 and 2000. Biological data were used to determine levels of impairment in the benthic-macroinvertebrate community in Chester County streams and relate the impairment, in conjunction with chemical and habitat data, to overall stream quality. Biological data consisted of benthic-macroinvertebrate samples that were collected annually in the fall. Water-chemistry samples were collected and instream habitat was assessed in support of the biological sampling.Most sites in the network were designated as nonimpacted or slightly impacted by human activities or extreme climatic conditions on the basis of biological-metric analysis of benthic-macroinvertebrate data. Impacted sites were affected by factors, such as nutrient enrichment, erosion and sedimentation, point discharges, and droughts and floods. Streams in the Schuylkill River, Delaware River, and East Branch Brandywine Creek Basins in Chester County generally had low nutrient concentrations, except in areas affected by wastewater-treatment discharges, and stream habitat that was affected by erosion. Streams in the West Branch Brandywine, Christina, Big Elk, and Octoraro Creek Basins in Chester County generally had elevated nutrient concentrations and streambottom habitat that was affected by sediment deposition.Macroinvertebrate communities identified in samples from French Creek, Pigeon Creek (Schuylkill River Basin), and East Branch Brandywine Creek at Glenmoore consistently indicate good stream conditions and were the best conditions measured in the network. Macroinvertebrate communities identified in samples from Trout Creek (site 61), West Branch Red Clay Creek (site 55) (Christina River Basin), and Valley Creek near Atglen (site 34) (Octoraro Creek Basin) indicated fair to poor stream conditions and were the worst conditions measured in the network. Trout Creek is heavily impacted due to erosion, and Valley Creek near Atglen and West Branch Red Clay Creek are influenced by wastewater discharges. Hydrologic conditions in 1999, including a prolonged drought and a flood, influenced chemical concentrations and macroinvertebrate community structure throughout the county. Concentrations of nutrients and ions were lower in 1999 when compared to 1998 and 2000 concentrations. Macroinvertebrate communities identified in samples from 1999 contained lower numbers of individuals when compared to 1998 and 2000 but had similar community structure. Results from chemical and biological sampling in 2000 indicated that the benthic-macroinvertebrate community structure and the concentrations of nutrients and ions recovered to pre-1999 levels.
Griffiths, Emily C.; Pedersen, Amy B.; Fenton, Andy; Petchey, Owen L.
2014-01-01
Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three levels comprising parasites, the resources they consume and the immune responses they elicit, connected by potential, observed and experimentally proved links. Pairs of parasite species had most potential to interact indirectly through shared resources, rather than through immune responses or other parasites. In addition, the network comprised 10 tightly knit groups, eight of which were associated with particular body parts, and seven of which were dominated by parasite–resource links. Reported co-infection in humans is therefore structured by physical location within the body, with bottom-up, resource-mediated processes most often influencing how, where and which co-infecting parasites interact. The many indirect interactions show how treating an infection could affect other infections in co-infected patients, but the compartmentalized structure of the network will limit how far these indirect effects are likely to spread. PMID:24619434
Griffiths, Emily C; Pedersen, Amy B; Fenton, Andy; Petchey, Owen L
2014-05-07
Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three levels comprising parasites, the resources they consume and the immune responses they elicit, connected by potential, observed and experimentally proved links. Pairs of parasite species had most potential to interact indirectly through shared resources, rather than through immune responses or other parasites. In addition, the network comprised 10 tightly knit groups, eight of which were associated with particular body parts, and seven of which were dominated by parasite-resource links. Reported co-infection in humans is therefore structured by physical location within the body, with bottom-up, resource-mediated processes most often influencing how, where and which co-infecting parasites interact. The many indirect interactions show how treating an infection could affect other infections in co-infected patients, but the compartmentalized structure of the network will limit how far these indirect effects are likely to spread.
The Quality of Life of Young Men with Asperger Syndrome: A Brief Report
ERIC Educational Resources Information Center
Jennes-Coussens, Marieke; Magill-Evans, Joyce; Koning, Cyndie
2006-01-01
Factors influencing quality of life for persons with Asperger syndrome are not yet understood. Men, ages 18 to 21, completed the World Health Organization Quality Of Life measure, the Perceived Support Network Inventory, and a semi-structured interview. Asperger syndrome affects quality of life beyond the obvious social impact. The 12 men with…
Effect of the interconnected network structure on the epidemic threshold.
Wang, Huijuan; Li, Qian; D'Agostino, Gregorio; Havlin, Shlomo; Stanley, H Eugene; Van Mieghem, Piet
2013-08-01
Most real-world networks are not isolated. In order to function fully, they are interconnected with other networks, and this interconnection influences their dynamic processes. For example, when the spread of a disease involves two species, the dynamics of the spread within each species (the contact network) differs from that of the spread between the two species (the interconnected network). We model two generic interconnected networks using two adjacency matrices, A and B, in which A is a 2N×2N matrix that depicts the connectivity within each of two networks of size N, and B a 2N×2N matrix that depicts the interconnections between the two. Using an N-intertwined mean-field approximation, we determine that a critical susceptible-infected-susceptible (SIS) epidemic threshold in two interconnected networks is 1/λ(1)(A+αB), where the infection rate is β within each of the two individual networks and αβ in the interconnected links between the two networks and λ(1)(A+αB) is the largest eigenvalue of the matrix A+αB. In order to determine how the epidemic threshold is dependent upon the structure of interconnected networks, we analytically derive λ(1)(A+αB) using a perturbation approximation for small and large α, the lower and upper bound for any α as a function of the adjacency matrix of the two individual networks, and the interconnections between the two and their largest eigenvalues and eigenvectors. We verify these approximation and boundary values for λ(1)(A+αB) using numerical simulations, and determine how component network features affect λ(1)(A+αB). We note that, given two isolated networks G(1) and G(2) with principal eigenvectors x and y, respectively, λ(1)(A+αB) tends to be higher when nodes i and j with a higher eigenvector component product x(i)y(j) are interconnected. This finding suggests essential insights into ways of designing interconnected networks to be robust against epidemics.
Effect of the interconnected network structure on the epidemic threshold
NASA Astrophysics Data System (ADS)
Wang, Huijuan; Li, Qian; D'Agostino, Gregorio; Havlin, Shlomo; Stanley, H. Eugene; Van Mieghem, Piet
2013-08-01
Most real-world networks are not isolated. In order to function fully, they are interconnected with other networks, and this interconnection influences their dynamic processes. For example, when the spread of a disease involves two species, the dynamics of the spread within each species (the contact network) differs from that of the spread between the two species (the interconnected network). We model two generic interconnected networks using two adjacency matrices, A and B, in which A is a 2N×2N matrix that depicts the connectivity within each of two networks of size N, and B a 2N×2N matrix that depicts the interconnections between the two. Using an N-intertwined mean-field approximation, we determine that a critical susceptible-infected-susceptible (SIS) epidemic threshold in two interconnected networks is 1/λ1(A+αB), where the infection rate is β within each of the two individual networks and αβ in the interconnected links between the two networks and λ1(A+αB) is the largest eigenvalue of the matrix A+αB. In order to determine how the epidemic threshold is dependent upon the structure of interconnected networks, we analytically derive λ1(A+αB) using a perturbation approximation for small and large α, the lower and upper bound for any α as a function of the adjacency matrix of the two individual networks, and the interconnections between the two and their largest eigenvalues and eigenvectors. We verify these approximation and boundary values for λ1(A+αB) using numerical simulations, and determine how component network features affect λ1(A+αB). We note that, given two isolated networks G1 and G2 with principal eigenvectors x and y, respectively, λ1(A+αB) tends to be higher when nodes i and j with a higher eigenvector component product xiyj are interconnected. This finding suggests essential insights into ways of designing interconnected networks to be robust against epidemics.
Seunarine, Kiran K.; Razi, Adeel; Cole, James H.; Gregory, Sarah; Durr, Alexandra; Roos, Raymund A. C.; Stout, Julie C.; Landwehrmeyer, Bernhard; Scahill, Rachael I.; Clark, Chris A.; Rees, Geraint
2015-01-01
Huntington’s disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic level. The ‘rich club’ is a pattern of organization established in healthy human brains, where specific hub ‘rich club’ brain regions are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington’s disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study of 50 premanifest and 38 manifest Huntington’s disease participants compared with 47 healthy controls. Consistent with our hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest Huntington’s disease participants compared with controls. We found progressive network changes across controls, premanifest Huntington’s disease and manifest Huntington’s disease characterized by increased network segregation in the premanifest stage and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a potential mechanism that results in a characteristic pattern of structural connectivity loss targeting highly connected brain regions with high network traffic and low clustering of neighbouring regions. Our findings highlight the role of the rich club as a substrate for the structural connectivity loss seen in Huntington’s disease and have broader implications for understanding the connection between molecular and systems level pathology in neurodegenerative disease. PMID:26384928
McColgan, Peter; Seunarine, Kiran K; Razi, Adeel; Cole, James H; Gregory, Sarah; Durr, Alexandra; Roos, Raymund A C; Stout, Julie C; Landwehrmeyer, Bernhard; Scahill, Rachael I; Clark, Chris A; Rees, Geraint; Tabrizi, Sarah J
2015-11-01
Huntington's disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic level. The 'rich club' is a pattern of organization established in healthy human brains, where specific hub 'rich club' brain regions are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington's disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study of 50 premanifest and 38 manifest Huntington's disease participants compared with 47 healthy controls. Consistent with our hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest Huntington's disease participants compared with controls. We found progressive network changes across controls, premanifest Huntington's disease and manifest Huntington's disease characterized by increased network segregation in the premanifest stage and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a potential mechanism that results in a characteristic pattern of structural connectivity loss targeting highly connected brain regions with high network traffic and low clustering of neighbouring regions. Our findings highlight the role of the rich club as a substrate for the structural connectivity loss seen in Huntington's disease and have broader implications for understanding the connection between molecular and systems level pathology in neurodegenerative disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Measuring distance through dense weighted networks: The case of hospital-associated pathogens
Smieszek, Timo; Henderson, Katherine L.; Johnson, Alan P.
2017-01-01
Hospital networks, formed by patients visiting multiple hospitals, affect the spread of hospital-associated infections, resulting in differences in risks for hospitals depending on their network position. These networks are increasingly used to inform strategies to prevent and control the spread of hospital-associated pathogens. However, many studies only consider patients that are received directly from the initial hospital, without considering the effect of indirect trajectories through the network. We determine the optimal way to measure the distance between hospitals within the network, by reconstructing the English hospital network based on shared patients in 2014–2015, and simulating the spread of a hospital-associated pathogen between hospitals, taking into consideration that each intermediate hospital conveys a delay in the further spread of the pathogen. While the risk of transferring a hospital-associated pathogen between directly neighbouring hospitals is a direct reflection of the number of shared patients, the distance between two hospitals far-away in the network is determined largely by the number of intermediate hospitals in the network. Because the network is dense, most long distance transmission chains in fact involve only few intermediate steps, spreading along the many weak links. The dense connectivity of hospital networks, together with a strong regional structure, causes hospital-associated pathogens to spread from the initial outbreak in a two-step process: first, the directly surrounding hospitals are affected through the strong connections, second all other hospitals receive introductions through the multitude of weaker links. Although the strong connections matter for local spread, weak links in the network can offer ideal routes for hospital-associated pathogens to travel further faster. This hold important implications for infection prevention and control efforts: if a local outbreak is not controlled in time, colonised patients will appear in other regions, irrespective of the distance to the initial outbreak, making import screening ever more difficult. PMID:28771581
Anishchenko, Anastasia; Treves, Alessandro
2006-10-01
The metric structure of synaptic connections is obviously an important factor in shaping the properties of neural networks, in particular the capacity to retrieve memories, with which are endowed autoassociative nets operating via attractor dynamics. Qualitatively, some real networks in the brain could be characterized as 'small worlds', in the sense that the structure of their connections is intermediate between the extremes of an orderly geometric arrangement and of a geometry-independent random mesh. Small worlds can be defined more precisely in terms of their mean path length and clustering coefficient; but is such a precise description useful for a better understanding of how the type of connectivity affects memory retrieval? We have simulated an autoassociative memory network of integrate-and-fire units, positioned on a ring, with the network connectivity varied parametrically between ordered and random. We find that the network retrieves previously stored memory patterns when the connectivity is close to random, and displays the characteristic behavior of ordered nets (localized 'bumps' of activity) when the connectivity is close to ordered. Recent analytical work shows that these two behaviors can coexist in a network of simple threshold-linear units, leading to localized retrieval states. We find that they tend to be mutually exclusive behaviors, however, with our integrate-and-fire units. Moreover, the transition between the two occurs for values of the connectivity parameter which are not simply related to the notion of small worlds.
Network analysis reveals multiscale controls on streamwater chemistry
McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.
Network analysis reveals multiscale controls on streamwater chemistry
McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks. PMID:24753575
Network analysis reveals multiscale controls on streamwater chemistry.
McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W
2014-05-13
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.
van Duinkerken, Eelco; Ijzerman, Richard G; Klein, Martin; Moll, Annette C; Snoek, Frank J; Scheltens, Philip; Pouwels, Petra J W; Barkhof, Frederik; Diamant, Michaela; Tijms, Betty M
2016-03-01
Type 1 diabetes mellitus (T1DM) patients, especially with concomitant microvascular disease, such as proliferative retinopathy, have an increased risk of cognitive deficits. Local cortical gray matter volume reductions only partially explain these cognitive dysfunctions, possibly because volume reductions do not take into account the complex connectivity structure of the brain. This study aimed to identify gray matter network alterations in relation to cognition in T1DM. We investigated if subject-specific structural gray matter network properties, constructed from T1-weighted MRI scans, were different between T1DM patients with (n = 51) and without (n = 53) proliferative retinopathy versus controls (n = 49), and were associated to cognitive decrements and fractional anisotropy, as measured by voxel-based TBSS. Global normalized and local (45 bilateral anatomical regions) clustering coefficient and path length were assessed. These network properties measure how the organization of connections in a network differs from that of randomly connected networks. Global gray matter network topology was more randomly organized in both T1DM patient groups versus controls, with the largest effects seen in patients with proliferative retinopathy. Lower local path length values were widely distributed throughout the brain. Lower local clustering was observed in the middle frontal, postcentral, and occipital areas. Complex network topology explained up to 20% of the variance of cognitive decrements, beyond other predictors. Exploratory analyses showed that lower fractional anisotropy was associated with a more random gray matter network organization. T1DM and proliferative retinopathy affect cortical network organization that may consequently contribute to clinically relevant changes in cognitive functioning in these patients. © 2015 Wiley Periodicals, Inc.
Park, Chihyun; Yun, So Jeong; Ryu, Sung Jin; Lee, Soyoung; Lee, Young-Sam; Yoon, Youngmi; Park, Sang Chul
2017-03-15
Cellular senescence irreversibly arrests growth of human diploid cells. In addition, recent studies have indicated that senescence is a multi-step evolving process related to important complex biological processes. Most studies analyzed only the genes and their functions representing each senescence phase without considering gene-level interactions and continuously perturbed genes. It is necessary to reveal the genotypic mechanism inferred by affected genes and their interaction underlying the senescence process. We suggested a novel computational approach to identify an integrative network which profiles an underlying genotypic signature from time-series gene expression data. The relatively perturbed genes were selected for each time point based on the proposed scoring measure denominated as perturbation scores. Then, the selected genes were integrated with protein-protein interactions to construct time point specific network. From these constructed networks, the conserved edges across time point were extracted for the common network and statistical test was performed to demonstrate that the network could explain the phenotypic alteration. As a result, it was confirmed that the difference of average perturbation scores of common networks at both two time points could explain the phenotypic alteration. We also performed functional enrichment on the common network and identified high association with phenotypic alteration. Remarkably, we observed that the identified cell cycle specific common network played an important role in replicative senescence as a key regulator. Heretofore, the network analysis from time series gene expression data has been focused on what topological structure was changed over time point. Conversely, we focused on the conserved structure but its context was changed in course of time and showed it was available to explain the phenotypic changes. We expect that the proposed method will help to elucidate the biological mechanism unrevealed by the existing approaches.
Axial and radial nanostructures in electrospun polymer fibers
NASA Astrophysics Data System (ADS)
Greenfeld, Israel; Camposeo, Andrea; Tantussi, Francesco; Pagliara, Stefano; Fuso, Francesco; Allegrini, Maria; Pisignano, Dario; Zussman, Eyal
2013-03-01
The high tensional stresses during electrospinning of semidilute polymer solutions affect the dynamic conformation of the polymer network within the liquid jet, leaving a distinctive trace in the molecular structure after solidification. We investigated such effects in electrospun nanofibers made of conjugated polymers. Modeling the polymer network evolution during electrospinning showed that as the network stretches axially, it contracts towards the jet core. The model represents the semi-flexible conjugated polymer chains as flexible freely-jointed chains, whose joints are bonding defects. Using the conjugated polymer MEH-PPV dissolved in a mixture of THF and DMF solvents, and taking advantage of its unique photophysical characteristics, we investigated optically the variations in the density and orientation of the polymer macromolecules in electrospun nanofibers. In agreement with our model, we found higher density and axial orientation at the fiber core, while lower density and radial orientation closer to the fiber surface. The non-uniformity of the resulting molecular structure can be tuned and exploited in diverse optical and structural applications. We acknowledge: V. Fasano, G. Potente, S. Girardo and E. Caldi for assistance in measurements; United States-Israel BSF, RBNI Institute, and the Israel Science Foundation for financial support.
Peng, Tzu-Ju Ann; Lo, Fang-Yi; Lin, Chin-Shien; Yu, Chwo-Ming Joseph
2006-01-01
At issue is whether network resources imply some resources available to all members in networks or available only to those occupying structurally central positions in networks. In this article, two conceptual models, the additive and interaction models of the firm, are empirically tested regarding the impact of hospital resources, network resources, and centrality on hospital performance in the Taiwan health care industry. The results demonstrate that: (1) in the additive model, hospital resources and centrality independently affect performance, whereas network resources do not; and (2) no evidence supports the interaction effect of centrality and resources on performance. Based on our findings in Taiwanese practices, the extent to which the resources are acquired externally from networks, we suggest that while adopting interorganizational strategies, hospitals should clearly identify those important resources that reside in-house and those transferred from network partners. How hospitals access resources from central positions is more important than what network resources can hospitals acquire from networks. Hospitals should improve performance by exploiting its in-house resources rather than obtaining network resources externally. In addition, hospitals should not only invest in hospital resources for better performance but should also move to central positions in networks to benefit from collaborations.
Daianu, Madelaine; Jahanshad, Neda; Villalon-Reina, Julio E.; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Joshi, Aditi; Barsuglia, Joseph; Thompson, Paul M.
2015-01-01
Diffusion imaging and brain connectivity analyses can reveal the underlying organizational patterns of the human brain, described as complex networks of densely interlinked regions. Here, we analyzed 1.5-Tesla whole-brain diffusion-weighted images from 64 participants – 15 patients with behavioral variant frontotemporal (bvFTD) dementia, 19 with early-onset Alzheimer’s disease (EOAD), and 30 healthy elderly controls. Based on whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We examined how bvFTD and EOAD disrupt the weighted ‘rich club’ – a network property where high-degree network nodes are more interconnected than expected by chance. bvFTD disrupts both the nodal and global organization of the network in both low- and high-degree regions of the brain. EOAD targets the global connectivity of the brain, mainly affecting the fiber density of high-degree (highly connected) regions that form the rich club network. These rich club analyses suggest distinct patterns of disruptions among different forms of dementia. PMID:26161050
Exacerbated vulnerability of coupled socio-economic risk in complex networks
NASA Astrophysics Data System (ADS)
Zhang, Xin; Feng, Ling; Berman, Yonatan; Hu, Ning; Stanley, H. Eugene
2016-10-01
The study of risk contagion in economic networks has most often focused on the financial liquidities of institutions and assets. In practice the agents in a network affect each other through social contagion, i.e., through herd behavior and the tendency to follow leaders. We study the coupled risk between social and economic contagion and find it significantly more severe than when economic risk is considered alone. Using the empirical network from the China venture capital market we find that the system exhibits an extreme risk of abrupt phase transition and large-scale damage, which is in clear contrast to the smooth phase transition traditionally observed in economic contagion alone. We also find that network structure impacts market resilience and that the randomization of the social network of the market participants can reduce system fragility when there is herd behavior. Our work indicates that under coupled contagion mechanisms network resilience can exhibit a fundamentally different behavior, i.e., an abrupt transition. It also reveals the extreme risk when a system has coupled socio-economic risks, and this could be of interest to both policy makers and market practitioners.
The social network of international health aid.
Han, Lu; Koenig-Archibugi, Mathias; Opsahl, Tore
2018-06-01
International development assistance for health generates an emergent social network in which policy makers in recipient countries are connected to numerous bilateral and multilateral aid agencies and to other aid recipients. Ties in this global network are channels for the transmission of knowledge, norms and influence in addition to material resources, and policy makers in centrally situated governments receive information faster and are exposed to a more diverse range of sources and perspectives. Since diversity of perspectives improves problem-solving capacity, the structural position of aid-receiving governments in the health aid network can affect the health outcomes that those governments are able to attain. We apply a recently developed Social Network Analysis measure to health aid data for 1990-2010 to investigate the relationship between country centrality in the health aid network and improvements in child health. A generalized method of moments (GMM) analysis indicates that, controlling for the volume of health aid and other factors, higher centrality in the health aid network is associated with better child survival rates in a sample of 110 low and middle income countries. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Walley, Yasmin; Tunnicliffe, Jon; Brierley, Gary
2018-04-01
Lateral inputs from hillslopes and tributaries exert a variable impact upon the longitudinal connectivity of sediment transfer in river systems with differing drainage network configurations. Network topology influences channel slope and confinement at confluence zones, thereby affecting patterns of sediment storage and the conveyance of sediments through catchments. Rates of disturbance response, patterns of sediment propagation, and the implications for connectivity and recovery were assessed in two neighbouring catchments with differing network configurations on the East Cape of New Zealand. Both catchments were subject to forest clearing in the late 1940s and a major cyclonic storm in 1988. However, reconstruction of landslide runout pathways, and characterization of connectivity using a Tokunaga framework, demonstrates different patterns and rates of sediment transfer and storage in a dendritic network relative to a more elongate, herringbone drainage network. The dendritic network has a higher rate of sediment transfer between storage sites in successive Strahler orders, whereas longitudinal connectivity along the fourth-order mainstem is disrupted by lateral sediment inputs from multiple low-order tributaries in the more elongate, herringbone network. In both cases the most dynamic ('hotspot') reaches are associated with a high degree of network side-branching.
Microstructural properties and evolution of nanoclusters in liquid Si during a rapid cooling process
NASA Astrophysics Data System (ADS)
Gao, T.; Hu, X.; Li, Y.; Tian, Z.; Xie, Q.; Chen, Q.; Liang, Y.; Luo, X.; Ren, L.; Luo, J.
2017-11-01
The formation of amorphous structures in Si during the rapid quenching process was studied based on molecular dynamics simulation by using the Stillinger-Weber potential. The evolution characteristics of nanoclusters during the solidification were analyzed by several structural analysis methods. The amorphous Si has been formed with many tetrahedral clusters and few nanoclusters. During the solidification, tetrahedral polyhedrons affect the local structures by their different positions and connection modes. The main kinds of polyhedrons randomly linked with one another to form an amorphous network structures in the system. The structural evolution of crystal nanocluster demonstrates that the nanocluster has difficulty to growth because of the high cooling rate of 1012 K/s.
Image-based corrosion recognition for ship steel structures
NASA Astrophysics Data System (ADS)
Ma, Yucong; Yang, Yang; Yao, Yuan; Li, Shengyuan; Zhao, Xuefeng
2018-03-01
Ship structures are subjected to corrosion inevitably in service. Existed image-based methods are influenced by the noises in images because they recognize corrosion by extracting features. In this paper, a novel method of image-based corrosion recognition for ship steel structures is proposed. The method utilizes convolutional neural networks (CNN) and will not be affected by noises in images. A CNN used to recognize corrosion was designed through fine-turning an existing CNN architecture and trained by datasets built using lots of images. Combining the trained CNN classifier with a sliding window technique, the corrosion zone in an image can be recognized.
[The Application of Magnetic Resonance Imaging in Alzheimer's Disease].
Matsuda, Hiroshi
2017-07-01
In Alzheimer's disease (AD), magnetic resonance imaging (MRI) is essential for early diagnosis, differential diagnosis, and evaluation of disease progression. In structural MRI, the automatic diagnosis of atrophy by computers, even when it is not visually noticeable, is possible in daily clinical practice. Furthermore, subfield volumetric measurements of the medial temporal structures, as well as longitudinal volume measurements with high accuracy, have been developed and are useful for calculating the needed sample size in clinical trials. In addition to detecting local atrophy, graph theory has been applied to structural MRI for evaluation of alterations of the brain networks potentially affected in AD.
NASA Astrophysics Data System (ADS)
Maiti, A.; Weisgraber, T.; Dinh, L. N.; Gee, R. H.; Wilson, T.; Chinn, S.; Maxwell, R. S.
2011-03-01
Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation, thermal, and electrical barriers. External factors such as mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a materials science point of view it is highly desirable to understand, affect, and manipulate such property changes in a controlled manner. Unfortunately, that has not yet been possible due to the lack of experimental characterization of such networks under controlled environments. In this work we expose a known rubber material to controlled dosages of γ radiation and utilize a newly developed multiquantum nuclear-magnetic-resonance technique to characterize the MWD as a function of radiation. We show that such data along with mechanical stress-strain measurements are amenable to accurate analysis by simple network models and yield important insights into radiation-induced molecular-level processes.
Forecasting Influenza Outbreaks in Boroughs and Neighborhoods of New York City.
Yang, Wan; Olson, Donald R; Shaman, Jeffrey
2016-11-01
The ideal spatial scale, or granularity, at which infectious disease incidence should be monitored and forecast has been little explored. By identifying the optimal granularity for a given disease and host population, and matching surveillance and prediction efforts to this scale, response to emergent and recurrent outbreaks can be improved. Here we explore how granularity and representation of spatial structure affect influenza forecast accuracy within New York City. We develop network models at the borough and neighborhood levels, and use them in conjunction with surveillance data and a data assimilation method to forecast influenza activity. These forecasts are compared to an alternate system that predicts influenza for each borough or neighborhood in isolation. At the borough scale, influenza epidemics are highly synchronous despite substantial differences in intensity, and inclusion of network connectivity among boroughs generally improves forecast accuracy. At the neighborhood scale, we observe much greater spatial heterogeneity among influenza outbreaks including substantial differences in local outbreak timing and structure; however, inclusion of the network model structure generally degrades forecast accuracy. One notable exception is that local outbreak onset, particularly when signal is modest, is better predicted with the network model. These findings suggest that observation and forecast at sub-municipal scales within New York City provides richer, more discriminant information on influenza incidence, particularly at the neighborhood scale where greater heterogeneity exists, and that the spatial spread of influenza among localities can be forecast.
Integrating social networks and human social motives to achieve social influence at scale
Contractor, Noshir S.; DeChurch, Leslie A.
2014-01-01
The innovations of science often point to ideas and behaviors that must spread and take root in communities to have impact. Ideas, practices, and behaviors need to go from accepted truths on the part of a few scientists to commonplace beliefs and norms in the minds of the many. Moving from scientific discoveries to public good requires social influence. We introduce a structured influence process (SIP) framework to explain how social networks (i.e., the structure of social influence) and human social motives (i.e., the process of social influence wherein one person’s attitudes and behaviors affect another’s) are used collectively to enact social influence within a community. The SIP framework advances the science of scientific communication by positing social influence events that consider both the “who” and the “how” of social influence. This framework synthesizes core ideas from two bodies of research on social influence. The first is network research on social influence structures, which identifies who are the opinion leaders and who among their network of peers shapes their attitudes and behaviors. The second is research on social influence processes in psychology, which explores how human social motives such as the need for accuracy or the need for affiliation stimulate behavior change. We illustrate the practical implications of the SIP framework by applying it to the case of reducing neonatal mortality in India. PMID:25225373
Integrating social networks and human social motives to achieve social influence at scale.
Contractor, Noshir S; DeChurch, Leslie A
2014-09-16
The innovations of science often point to ideas and behaviors that must spread and take root in communities to have impact. Ideas, practices, and behaviors need to go from accepted truths on the part of a few scientists to commonplace beliefs and norms in the minds of the many. Moving from scientific discoveries to public good requires social influence. We introduce a structured influence process (SIP) framework to explain how social networks (i.e., the structure of social influence) and human social motives (i.e., the process of social influence wherein one person's attitudes and behaviors affect another's) are used collectively to enact social influence within a community. The SIP framework advances the science of scientific communication by positing social influence events that consider both the "who" and the "how" of social influence. This framework synthesizes core ideas from two bodies of research on social influence. The first is network research on social influence structures, which identifies who are the opinion leaders and who among their network of peers shapes their attitudes and behaviors. The second is research on social influence processes in psychology, which explores how human social motives such as the need for accuracy or the need for affiliation stimulate behavior change. We illustrate the practical implications of the SIP framework by applying it to the case of reducing neonatal mortality in India.
Young, April M.; Halgin, Daniel S.; DiClemente, Ralph J.; Sterk, Claire E.; Havens, Jennifer R.
2014-01-01
Background An HIV vaccine could substantially impact the epidemic. However, risk compensation (RC), or post-vaccination increase in risk behavior, could present a major challenge. The methodology used in previous studies of risk compensation has been almost exclusively individual-level in focus, and has not explored how increased risk behavior could affect the connectivity of risk networks. This study examined the impact of anticipated HIV vaccine-related RC on the structure of high-risk drug users' sexual and injection risk network. Methods A sample of 433 rural drug users in the US provided data on their risk relationships (i.e., those involving recent unprotected sex and/or injection equipment sharing). Dyad-specific data were collected on likelihood of increasing/initiating risk behavior if they, their partner, or they and their partner received an HIV vaccine. Using these data and social network analysis, a "post-vaccination network" was constructed and compared to the current network on measures relevant to HIV transmission, including network size, cohesiveness (e.g., diameter, component structure, density), and centrality. Results Participants reported 488 risk relationships. Few reported an intention to decrease condom use or increase equipment sharing (4% and 1%, respectively). RC intent was reported in 30 existing risk relationships and vaccination was anticipated to elicit the formation of five new relationships. RC resulted in a 5% increase in risk network size (n = 142 to n = 149) and a significant increase in network density. The initiation of risk relationships resulted in the connection of otherwise disconnected network components, with the largest doubling in size from five to ten. Conclusions This study demonstrates a new methodological approach to studying RC and reveals that behavior change following HIV vaccination could potentially impact risk network connectivity. These data will be valuable in parameterizing future network models that can determine if network-level change precipitated by RC would appreciably impact the vaccine's population-level effectiveness. PMID:24992659
Multidimensional adaptive evolution of a feed-forward network and the illusion of compensation
Bullaughey, Kevin
2016-01-01
When multiple substitutions affect a trait in opposing ways, they are often assumed to be compensatory, not only with respect to the trait, but also with respect to fitness. This type of compensatory evolution has been suggested to underlie the evolution of protein structures and interactions, RNA secondary structures, and gene regulatory modules and networks. The possibility for compensatory evolution results from epistasis. Yet if epistasis is widespread, then it is also possible that the opposing substitutions are individually adaptive. I term this possibility an adaptive reversal. Although possible for arbitrary phenotype-fitness mappings, it has not yet been investigated whether such epistasis is prevalent in a biologically-realistic setting. I investigate a particular regulatory circuit, the type I coherent feed-forward loop, which is ubiquitous in natural systems and is accurately described by a simple mathematical model. I show that such reversals are common during adaptive evolution, can result solely from the topology of the fitness landscape, and can occur even when adaptation follows a modest environmental change and the network was well adapted to the original environment. The possibility of adaptive reversals warrants a systems perspective when interpreting substitution patterns in gene regulatory networks. PMID:23289561
Dimensionality and entropy of spontaneous and evoked rate activity
NASA Astrophysics Data System (ADS)
Engelken, Rainer; Wolf, Fred
Cortical circuits exhibit complex activity patterns both spontaneously and evoked by external stimuli. Finding low-dimensional structure in population activity is a challenge. What is the diversity of the collective neural activity and how is it affected by an external stimulus? Using concepts from ergodic theory, we calculate the attractor dimensionality and dynamical entropy production of these networks. We obtain these two canonical measures of the collective network dynamics from the full set of Lyapunov exponents. We consider a randomly-wired firing-rate network that exhibits chaotic rate fluctuations for sufficiently strong synaptic weights. We show that dynamical entropy scales logarithmically with synaptic coupling strength, while the attractor dimensionality saturates. Thus, despite the increasing uncertainty, the diversity of collective activity saturates for strong coupling. We find that a time-varying external stimulus drastically reduces both entropy and dimensionality. Finally, we analytically approximate the full Lyapunov spectrum in several limiting cases by random matrix theory. Our study opens a novel avenue to characterize the complex dynamics of rate networks and the geometric structure of the corresponding high-dimensional chaotic attractor. received funding from Evangelisches Studienwerk Villigst, DFG through CRC 889 and Volkswagen Foundation.
Community detection, link prediction, and layer interdependence in multilayer networks.
De Bacco, Caterina; Power, Eleanor A; Larremore, Daniel B; Moore, Cristopher
2017-04-01
Complex systems are often characterized by distinct types of interactions between the same entities. These can be described as a multilayer network where each layer represents one type of interaction. These layers may be interdependent in complicated ways, revealing different kinds of structure in the network. In this work we present a generative model, and an efficient expectation-maximization algorithm, which allows us to perform inference tasks such as community detection and link prediction in this setting. Our model assumes overlapping communities that are common between the layers, while allowing these communities to affect each layer in a different way, including arbitrary mixtures of assortative, disassortative, or directed structure. It also gives us a mathematically principled way to define the interdependence between layers, by measuring how much information about one layer helps us predict links in another layer. In particular, this allows us to bundle layers together to compress redundant information and identify small groups of layers which suffice to predict the remaining layers accurately. We illustrate these findings by analyzing synthetic data and two real multilayer networks, one representing social support relationships among villagers in South India and the other representing shared genetic substring material between genes of the malaria parasite.
[Construction and evaluation of ecological network in Poyang Lake Eco-economic Zone, China.
Chen, Xiao Ping; Chen, Wen Bo
2016-05-01
Large-scale ecological patches play an important role in regional biodiversity conservation. However, with the rapid progress of China's urbanization, human disturbance on the environment is becoming stronger. Large-scale ecological patches will degrade not only in quantity, but also in quality, threatening the connections among them due to isolation and seriously affecting the biodiversity protection. Taking Poyang Lake Eco-economic Zone as a case, this paper established the potential ecological corridors by minimum cost model and GIS technique taking the impacts of landscape types, slope and human disturbance into consideration. Then, based on gravity quantitative model, we analyzed the intensity of ecological interactions between patches, and the potential ecological corridors were divided into two classes for sake of protection. Finally, the important ecological nodes and breaking points were identified, and the structure of the potential ecological network was analyzed. The results showed that forest and cropland were the main landscape types of ecological corridor composition, interaction between ecological patches differed obviously and the structure of the composed regional ecological network was complex with high connectivity and closure. It might provide a scientific basis for the protection of biodiversity and ecological network optimization in Poyang Lake Eco-economic Zone.
Community detection, link prediction, and layer interdependence in multilayer networks
NASA Astrophysics Data System (ADS)
De Bacco, Caterina; Power, Eleanor A.; Larremore, Daniel B.; Moore, Cristopher
2017-04-01
Complex systems are often characterized by distinct types of interactions between the same entities. These can be described as a multilayer network where each layer represents one type of interaction. These layers may be interdependent in complicated ways, revealing different kinds of structure in the network. In this work we present a generative model, and an efficient expectation-maximization algorithm, which allows us to perform inference tasks such as community detection and link prediction in this setting. Our model assumes overlapping communities that are common between the layers, while allowing these communities to affect each layer in a different way, including arbitrary mixtures of assortative, disassortative, or directed structure. It also gives us a mathematically principled way to define the interdependence between layers, by measuring how much information about one layer helps us predict links in another layer. In particular, this allows us to bundle layers together to compress redundant information and identify small groups of layers which suffice to predict the remaining layers accurately. We illustrate these findings by analyzing synthetic data and two real multilayer networks, one representing social support relationships among villagers in South India and the other representing shared genetic substring material between genes of the malaria parasite.
Development of a real-time bridge structural monitoring and warning system: a case study in Thailand
NASA Astrophysics Data System (ADS)
Khemapech, I.; Sansrimahachai, W.; Toachoodee, M.
2017-04-01
Regarded as one of the physical aspects under societal and civil development and evolution, engineering structure is required to support growth of the nation. It also impacts life quality and safety of the civilian. Despite of its own weight (dead load) and live load, structural members are also significantly affected by disaster and environment. Proper inspection and detection are thus crucial both during regular and unsafe events. An Enhanced Structural Health Monitoring System Using Stream Processing and Artificial Neural Network Techniques (SPANNeT) has been developed and is described in this paper. SPANNeT applies wireless sensor network, real-time data stream processing and artificial neural network based upon the measured bending strains. Major contributions include an effective, accurate and energy-aware data communication and damage detection of the engineering structure. Strain thresholds have been defined according to computer simulation results and the AASHTO (American Association of State Highway and Transportation Officials) LRFD (Load and Resistance Factor Design) Bridge Design specifications for launching several warning levels. SPANNeT has been tested and evaluated by means of computer-based simulation and on-site levels. According to the measurements, the observed maximum values are 25 to 30 microstrains during normal operation. The given protocol provided at least 90% of data communication reliability. SPANNeT is capable of real-time data report, monitoring and warning efficiently conforming to the predefined thresholds which can be adjusted regarding user's requirements and structural engineering characteristics.
Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.
2016-01-01
Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794
Batalle, Dafnis; Muñoz-Moreno, Emma; Arbat-Plana, Ariadna; Illa, Miriam; Figueras, Francesc; Eixarch, Elisenda; Gratacos, Eduard
2014-10-15
Characterization of brain changes produced by intrauterine growth restriction (IUGR) is among the main challenges of modern fetal medicine and pediatrics. This condition affects 5-10% of all pregnancies and is associated with a wide range of neurodevelopmental disorders. Better understanding of the brain reorganization produced by IUGR opens a window of opportunity to find potential imaging biomarkers in order to identify the infants with a high risk of having neurodevelopmental problems and apply therapies to improve their outcomes. Structural brain networks obtained from diffusion magnetic resonance imaging (MRI) is a promising tool to study brain reorganization and to be used as a biomarker of neurodevelopmental alterations. In the present study this technique is applied to a rabbit animal model of IUGR, which presents some advantages including a controlled environment and the possibility to obtain high quality MRI with long acquisition times. Using a Q-Ball diffusion model, and a previously published rabbit brain MRI atlas, structural brain networks of 15 IUGR and 14 control rabbits at 70 days of age (equivalent to pre-adolescence human age) were obtained. The analysis of graph theory features showed a decreased network infrastructure (degree and binary global efficiency) associated with IUGR condition and a set of generalized fractional anisotropy (GFA) weighted measures associated with abnormal neurobehavior. Interestingly, when assessing the brain network organization independently of network infrastructure by means of normalized networks, IUGR showed increased global and local efficiencies. We hypothesize that this effect could reflect a compensatory response to reduced infrastructure in IUGR. These results present new evidence on the long-term persistence of the brain reorganization produced by IUGR that could underlie behavioral and developmental alterations previously described. The described changes in network organization have the potential to be used as biomarkers to monitor brain changes produced by experimental therapies in IUGR animal model. Copyright © 2014 Elsevier Inc. All rights reserved.
Maruyama, Pietro Kiyoshi; Vizentin-Bugoni, Jeferson; Dalsgaard, Bo; Sazima, Ivan; Sazima, Marlies
2015-07-01
Interactions between flowers and their visitors span the spectrum from mutualism to antagonism. The literature is rich in studies focusing on mutualism, but nectar robbery has mostly been investigated using phytocentric approaches focused on only a few plant species. To fill this gap, we studied the interactions between a nectar-robbing hermit hummingbird, Phaethornis ruber, and the array of flowers it visits. First, based on a literature review of the interactions involving P. ruber, we characterized the association of floral larceny to floral phenotype. We then experimentally examined the effects of nectar robbing on nectar standing crop and number of visits of the pollinators to the flowers of Canna paniculata. Finally, we asked whether the incorporation of illegitimate interactions into the analysis affects plant-hummingbird network structure. We identified 97 plant species visited by P. ruber and found that P. ruber engaged in floral larceny in almost 30% of these species. Nectar robbery was especially common in flowers with longer corolla. In terms of the effect on C. paniculata, the depletion of nectar due to robbery by P. ruber was associated with decreased visitation rates of legitimate pollinators. At the community level, the inclusion of the illegitimate visits of P. ruber resulted in modifications of how modules within the network were organized, notably giving rise to a new module consisting of P. ruber and mostly robbed flowers. However, although illegitimate visits constituted approximately 9% of all interactions in the network, changes in nestedness, modularity, and network-level specialization were minor. Our results indicate that although a flower robber may have a strong effect on the pollination of a particular plant species, the inclusion of its illegitimate interactions has limited capacity to change overall network structure.
Saetnan, Eli Rudinow; Kipling, Richard Philip
In order to maintain food security and sustainability of production under climate change, interdisciplinary and international collaboration in research is essential. In the EU, knowledge hubs are important funding instruments for the development of an interconnected European Research Area. Here, network analysis was used to assess whether the pilot knowledge hub MACSUR has affected interdisciplinary collaboration, using co-authorship of peer reviewed articles as a measure of collaboration. The broad community of all authors identified as active in the field of agriculture and climate change was increasingly well connected over the period studied. Between knowledge hub members, changes in network parameters suggest an increase in collaborative interaction beyond that expected due to network growth, and greater than that found in the broader community. Given that interdisciplinary networks often take several years to have an impact on research outputs, these changes within the relatively new MACSUR community provide evidence that the knowledge hub structure has been effective in stimulating collaboration. However, analysis showed that knowledge hub partners were initially well-connected, suggesting that the initiative may have gathered together researchers with particular resources or inclinations towards collaborative working. Long term, consistent funding and ongoing reflection to improve networking structures may be necessary to sustain the early positive signs from MACSUR, to extend its success to a wider community of researchers, or to repeat it in less connected fields of science. Tackling complex challenges such as climate change will require research structures that can effectively support and utilise the diversity of talents beyond the already well-connected core of scientists at major research institutes. But network research shows that this core, well-connected group are vital brokers in achieving wider integration.
Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong
2017-10-01
Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Brain Connectivity Networks and the Aesthetic Experience of Music.
Reybrouck, Mark; Vuust, Peter; Brattico, Elvira
2018-06-12
Listening to music is above all a human experience, which becomes an aesthetic experience when an individual immerses himself/herself in the music, dedicating attention to perceptual-cognitive-affective interpretation and evaluation. The study of these processes where the individual perceives, understands, enjoys and evaluates a set of auditory stimuli has mainly been focused on the effect of music on specific brain structures, as measured with neurophysiology and neuroimaging techniques. The very recent application of network science algorithms to brain research allows an insight into the functional connectivity between brain regions. These studies in network neuroscience have identified distinct circuits that function during goal-directed tasks and resting states. We review recent neuroimaging findings which indicate that music listening is traceable in terms of network connectivity and activations of target regions in the brain, in particular between the auditory cortex, the reward brain system and brain regions active during mind wandering.
NASA Astrophysics Data System (ADS)
Tripathi, Shubham; Deem, Michael W.
2015-02-01
Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 AML patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is non-trivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis.
Systemic delay propagation in the US airport network
Fleurquin, Pablo; Ramasco, José J.; Eguiluz, Victor M.
2013-01-01
Technologically driven transport systems are characterized by a networked structure connecting operation centers and by a dynamics ruled by pre-established schedules. Schedules impose serious constraints on the timing of the operations, condition the allocation of resources and define a baseline to assess system performance. Here we study the performance of an air transportation system in terms of delays. Technical, operational or meteorological issues affecting some flights give rise to primary delays. When operations continue, such delays can propagate, magnify and eventually involve a significant part of the network. We define metrics able to quantify the level of network congestion and introduce a model that reproduces the delay propagation patterns observed in the U.S. performance data. Our results indicate that there is a non-negligible risk of systemic instability even under normal operating conditions. We also identify passenger and crew connectivity as the most relevant internal factor contributing to delay spreading. PMID:23362459
Mutations close to a hub residue affect the distant active site of a GH1 β-glucosidase.
Souza, Valquiria P; Ikegami, Cecília M; Arantes, Guilherme M; Marana, Sandro R
2018-01-01
The tertiary structure of proteins has been represented as a network, in which residues are nodes and their contacts are edges. Protein structure networks contain residues, called hubs or central, which are essential to form short connection pathways between any pair of nodes. Hence hub residues may effectively spread structural perturbations through the protein. To test whether modifications nearby to hub residues could affect the enzyme active site, mutations were introduced in the β-glycosidase Sfβgly (PDB-ID: 5CG0) directed to residues that form an α-helix (260-265) and a β-strand (335-337) close to one of its main hub residues, F251, which is approximately 14 Å from the Sfβgly active site. Replacement of residues A263 and A264, which side-chains project from the α-helix towards F251, decreased the rate of substrate hydrolysis. Mutation A263F was shown to weaken noncovalent interactions involved in transition state stabilization within the Sfβgly active site. Mutations placed on the opposite side of the same α-helix did not show these effects. Consistently, replacement of V336, which side-chain protrudes from a β-strand face towards F251, inactivated Sfβgly. Next to V336, mutation S337F also caused a decrease in noncovalent interactions involved in transition state stabilization. Therefore, we suggest that mutations A263F, A264F, V336F and S337F may directly perturb the position of the hub F251, which could propagate these perturbations into the Sfβgly active site through short connection pathways along the protein network.
Modeling and dynamical topology properties of VANET based on complex networks theory
NASA Astrophysics Data System (ADS)
Zhang, Hong; Li, Jie
2015-01-01
Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate and control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What's more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.
Modeling and dynamical topology properties of VANET based on complex networks theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong; Li, Jie, E-mail: prof.li@foxmail.com
2015-01-15
Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate andmore » control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What’s more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.« less
Enhancing the Functional Content of Eukaryotic Protein Interaction Networks
Pandey, Gaurav; Arora, Sonali; Manocha, Sahil; Whalen, Sean
2014-01-01
Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks. PMID:25275489
Sectoral networks and macroeconomic tail risks in an emerging economy.
Romero, Pedro P; López, Ricardo; Jiménez, Carlos
2018-01-01
This paper aims to explain the macroeconomic volatility due to microeconomic shocks to one or several sectors, recognizing the non-symmetrical relation in the interaction among the Ecuadorian economic sectors. To grasp the economic structure of this emerging economy, a statistical analysis of network data is applied to the respective input-output matrix of Ecuador from 1975 until 2012. We find periods wherein the production of domestic inputs is concentrated in a few suppliers; for example, in 2010, the concentration significantly affects sectors and their downstream providers, thus influencing aggregate volatility. Compared to the US productive structure, this emerging economy presents fewer sectors and degree distributions with less extreme fat-tail behavior. In this simpler economy, we continue to find a link between microeconomic shocks and aggregate volatility. Two new theoretical propositions are introduced to formalize our results.
Sectoral networks and macroeconomic tail risks in an emerging economy
López, Ricardo; Jiménez, Carlos
2018-01-01
This paper aims to explain the macroeconomic volatility due to microeconomic shocks to one or several sectors, recognizing the non-symmetrical relation in the interaction among the Ecuadorian economic sectors. To grasp the economic structure of this emerging economy, a statistical analysis of network data is applied to the respective input-output matrix of Ecuador from 1975 until 2012. We find periods wherein the production of domestic inputs is concentrated in a few suppliers; for example, in 2010, the concentration significantly affects sectors and their downstream providers, thus influencing aggregate volatility. Compared to the US productive structure, this emerging economy presents fewer sectors and degree distributions with less extreme fat-tail behavior. In this simpler economy, we continue to find a link between microeconomic shocks and aggregate volatility. Two new theoretical propositions are introduced to formalize our results. PMID:29293567
Stage structure alters how complexity affects stability of ecological networks
Rudolf, V.H.W.; Lafferty, Kevin D.
2011-01-01
Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.
Neural correlates of nondual awareness in meditation.
Josipovic, Zoran
2014-01-01
Dualities such as self versus other, good versus bad, and in-group versus out-group are pervasive features of human experience, structuring the majority of cognitive and affective processes. Yet, an entirely different way of experiencing, one in which such dualities are relaxed rather than fortified, is also available. It depends on recognizing, within the stream of our consciousness, the nondual awareness (NDA)--a background awareness that precedes conceptualization and intention and that can contextualize various perceptual, affective, or cognitive contents without fragmenting the field of experience into habitual dualities. This paper introduces NDA as experienced in Tibetan Buddhist meditation and reviews the results of our study on the influence of NDA on anticorrelated intrinsic and extrinsic networks in the brain. Also discussed are preliminary data from a current study of NDA with minimized phenomenal content that points to involvement of a precuneus network in NDA. © 2013 New York Academy of Sciences.
Compartments in a marine food web associated with phylogeny, body mass, and habitat structure.
Rezende, Enrico L; Albert, Eva M; Fortuna, Miguel A; Bascompte, Jordi
2009-08-01
A long-standing question in community ecology is whether food webs are organized in compartments, where species within the same compartment interact frequently among themselves, but show fewer interactions with species from other compartments. Finding evidence for this community organization is important since compartmentalization may strongly affect food web robustness to perturbation. However, few studies have found unequivocal evidence of compartments, and none has quantified the suite of mechanisms generating such a structure. Here, we combine computational tools from the physics of complex networks with phylogenetic statistical methods to show that a large marine food web is organized in compartments, and that body size, phylogeny, and spatial structure are jointly associated with such a compartmentalized structure. Sharks account for the majority of predatory interactions within their compartments. Phylogenetically closely related shark species tend to occupy different compartments and have divergent trophic levels, suggesting that competition may play an important role structuring some of these compartments. Current overfishing of sharks has the potential to change the structural properties, which might eventually affect the stability of the food web.
NASA Astrophysics Data System (ADS)
Rosati, Dora P.; Molina, Chai; Earn, David J. D.
2015-12-01
Human behaviour and disease dynamics can greatly influence each other. In particular, people often engage in self-protective behaviours that affect epidemic patterns (e.g., vaccination, use of barrier precautions, isolation, etc.). Self-protective measures usually have a mitigating effect on an epidemic [16], but can in principle have negative impacts at the population level [12,15,18]. The structure of underlying social and biological contact networks can significantly influence the specific ways in which population-level effects are manifested. Using a different contact network in a disease dynamics model-keeping all else equal-can yield very different epidemic patterns. For example, it has been shown that when individuals imitate their neighbours' vaccination decisions with some probability, this can lead to herd immunity in some networks [9], yet for other networks it can preserve clusters of susceptible individuals that can drive further outbreaks of infectious disease [12].
Effects of fundamentals acquisition and strategy switch on stock price dynamics
NASA Astrophysics Data System (ADS)
Wu, Songtao; He, Jianmin; Li, Shouwei
2018-02-01
An agent-based artificial stock market is developed to simulate trading behavior of investors. In the market, acquisition and employment of information about fundamentals and strategy switch are investigated to explain stock price dynamics. Investors could obtain the information from both market and neighbors resided on their social networks. Depending on information status and performances of different strategies, an informed investor may switch to the strategy of fundamentalist. This in turn affects the information acquisition process, since fundamentalists are more inclined to search and spread the information than chartists. Further investigation into price dynamics generated from three typical networks, i.e. regular lattice, small-world network and random graph, are conducted after general relation between network structures and price dynamics is revealed. In each network, integrated effects of different combinations of information efficiency and switch intensity are investigated. Results have shown that, along with increasing switch intensity, market and social information efficiency play different roles in the formation of price distortion, standard deviation and kurtosis of returns.
On-line diagnosis of sequential systems, 3
NASA Technical Reports Server (NTRS)
Sundstrom, R. J.
1975-01-01
A formal model is introduced which can serve as the basis for a theoretical investigation of on-line diagnosis. Within this model a fault of a system S is considered to be a transformation of S into another system S prime at some time tau. The resulting faulty system is taken to be the system which looks like S up to time tau and like S prime thereafter. The on-line diagnosis of systems which are structurally decomposed and represented as a network of smaller systems is also investigated. The fault set considered is the set of unrestricted component faults; namely, the set of faults which only affect one component of the network. A characterization of networks which can be diagnosed using a combinational detector is obtained. It is further shown that any network can be made diagnosable in the above sense through the addition of one component. In addition, a lower bound is obtained on the complexity of any component, the addition of which is sufficient to make a particular network combinationally diagnosable.
On-line diagnosis of sequential systems, 2
NASA Technical Reports Server (NTRS)
Sundstrom, R. J.
1974-01-01
The theory and techniques applicable to the on-line diagnosis of sequential systems, were investigated. A complete model for the study of on-line diagnosis is developed. First an appropriate class of system models is formulated which can serve as a basis for a theoretical study of on-line diagnosis. Then notions of realization, fault, fault-tolerance and diagnosability are formalized which have meaningful interpretations in the the context of on-line diagnosis. The diagnosis of systems which are structurally decomposed and are represented as a network of smaller systems is studied. The fault set considered is the set of faults which only affect one component system is the network. A characterization of those networks which can be diagnosed using a purely combinational detector is achieved. A technique is given which can be used to realize any network by a network which is diagnosable in the above sense. Limits are found on the amount of redundancy involved in any such technique.
Mental Health and Social Networks After Disaster.
Bryant, Richard A; Gallagher, H Colin; Gibbs, Lisa; Pattison, Philippa; MacDougall, Colin; Harms, Louise; Block, Karen; Baker, Elyse; Sinnott, Vikki; Ireton, Greg; Richardson, John; Forbes, David; Lusher, Dean
2017-03-01
Although disasters are a major cause of mental health problems and typically affect large numbers of people and communities, little is known about how social structures affect mental health after a disaster. The authors assessed the extent to which mental health outcomes after disaster are associated with social network structures. In a community-based cohort study of survivors of a major bushfire disaster, participants (N=558) were assessed for probable posttraumatic stress disorder (PTSD) and probable depression. Social networks were assessed by asking participants to nominate people with whom they felt personally close. These nominations were used to construct a social network map that showed each participant's ties to other participants they nominated and also to other participants who nominated them. This map was then analyzed for prevailing patterns of mental health outcomes. Depression risk was higher for participants who reported fewer social connections, were connected to other depressed people, or were connected to people who had left their community. PTSD risk was higher if fewer people reported being connected with the participant, if those who felt close to the participant had higher levels of property loss, or if the participant was linked to others who were themselves not interconnected. Interestingly, being connected to other people who in turn were reciprocally close to each other was associated with a lower risk of PTSD. These findings provide the first evidence of disorder-specific patterns in relation to one's social connections after disaster. Depression appears to co-occur in linked individuals, whereas PTSD risk is increased with social fragmentation. These patterns underscore the need to adopt a sociocentric perspective of postdisaster mental health in order to better understand the potential for societal interventions in the wake of disaster.
Palomero-Gallagher, Nicola; Eickhoff, Simon B; Hoffstaedter, Felix; Schleicher, Axel; Mohlberg, Hartmut; Vogt, Brent A; Amunts, Katrin; Zilles, Karl
2015-07-15
Human subgenual anterior cingulate cortex (sACC) is involved in affective experiences and fear processing. Functional neuroimaging studies view it as a homogeneous cortical entity. However, sACC comprises several distinct cyto- and receptorarchitectonical areas: 25, s24, s32, and the ventral portion of area 33. Thus, we hypothesized that the areas may also be connectionally and functionally distinct. We performed structural post mortem and functional in vivo analyses. We computed probabilistic maps of each area based on cytoarchitectonical analysis of ten post mortem brains. Maps, publicly available via the JuBrain atlas and the Anatomy Toolbox, were used to define seed regions of task-dependent functional connectivity profiles and quantitative functional decoding. sACC areas presented distinct co-activation patterns within widespread networks encompassing cortical and subcortical regions. They shared common functional domains related to emotion, perception and cognition. A more specific analysis of these domains revealed an association of s24 with sadness, and of s32 with fear processing. Both areas were activated during taste evaluation, and co-activated with the amygdala, a key node of the affective network. s32 co-activated with areas of the executive control network, and was associated with tasks probing cognition in which stimuli did not have an emotional component. Area 33 was activated by painful stimuli, and co-activated with areas of the sensorimotor network. These results support the concept of a connectional and functional specificity of the cyto- and receptorarchitectonically defined areas within the sACC, which can no longer be seen as a structurally and functionally homogeneous brain region. Copyright © 2015 Elsevier Inc. All rights reserved.
Neural network connectivity differences in children who stutter
Zhu, David C.
2013-01-01
Affecting 1% of the general population, stuttering impairs the normally effortless process of speech production, which requires precise coordination of sequential movement occurring among the articulatory, respiratory, and resonance systems, all within millisecond time scales. Those afflicted experience frequent disfluencies during ongoing speech, often leading to negative psychosocial consequences. The aetiology of stuttering remains unclear; compared to other neurodevelopmental disorders, few studies to date have examined the neural bases of childhood stuttering. Here we report, for the first time, results from functional (resting state functional magnetic resonance imaging) and structural connectivity analyses (probabilistic tractography) of multimodal neuroimaging data examining neural networks in children who stutter. We examined how synchronized brain activity occurring among brain areas associated with speech production, and white matter tracts that interconnect them, differ in young children who stutter (aged 3–9 years) compared with age-matched peers. Results showed that children who stutter have attenuated connectivity in neural networks that support timing of self-paced movement control. The results suggest that auditory-motor and basal ganglia-thalamocortical networks develop differently in stuttering children, which may in turn affect speech planning and execution processes needed to achieve fluent speech motor control. These results provide important initial evidence of neurological differences in the early phases of symptom onset in children who stutter. PMID:24131593
A theoretical study of diffusional transport over the alveolar surfactant layer.
Aberg, Christoffer; Sparr, Emma; Larsson, Marcus; Wennerström, Håkan
2010-10-06
In this communication, we analyse the passage of oxygen and carbon dioxide over the respiratory membrane. The lung surfactant membrane at the alveolar interface can have a very special arrangement, which affects the diffusional transport. We present a theoretical model for the diffusion of small molecules in membranes with a complex structure, and we specifically compare a membrane composed of a tubular bilayer network with a membrane consisting of a stack of bilayers. Oxygen and carbon dioxide differ in terms of their solubility in the aqueous and the lipid regions of the membrane, and we show that this difference clearly influences their transport properties in the different membrane structures. During normal respiration, the rate-limiting step for carbon dioxide transport is in the gas phase of the different compartments in the lung. For oxygen, on the other hand, the rate is limited by the transport between alveoli and the capillary blood vessels, including the lung surfactant membrane. In a membrane with a structure of a continuous tubular lipid network, oxygen transport is facilitated to a significant extent compared with the structure of aligned lipid bilayers. The model calculations in the present study show that transport of oxygen through the tubular structure is indeed ca 30 per cent faster than transport through a membrane composed of stacked bilayers. The tubular network will also facilitate the transport of apolar substances between the gas phase and the blood. Important examples are ethanol and other volatile liquids that can leave the blood through the lungs, and gaseous anaesthetics or volatile solvents that are inhaled. This exemplifies a new physiological role of a tubular lipid network in the lung surfactant membrane.
Tau pathology does not affect experience-driven single-neuron and network-wide Arc/Arg3.1 responses.
Rudinskiy, Nikita; Hawkes, Jonathan M; Wegmann, Susanne; Kuchibhotla, Kishore V; Muzikansky, Alona; Betensky, Rebecca A; Spires-Jones, Tara L; Hyman, Bradley T
2014-06-10
Intraneuronal neurofibrillary tangles (NFTs) - a characteristic pathological feature of Alzheimer's and several other neurodegenerative diseases - are considered a major target for drug development. Tangle load correlates well with the severity of cognitive symptoms and mouse models of tauopathy are behaviorally impaired. However, there is little evidence that NFTs directly impact physiological properties of host neurons. Here we used a transgenic mouse model of tauopathy to study how advanced tau pathology in different brain regions affects activity-driven expression of immediate-early gene Arc required for experience-dependent consolidation of long-term memories. We demonstrate in vivo that visual cortex neurons with tangles are as likely to express comparable amounts of Arc in response to structured visual stimulation as their neighbors without tangles. Probability of experience-dependent Arc response was not affected by tau tangles in both visual cortex and hippocampal pyramidal neurons as determined postmortem. Moreover, whole brain analysis showed that network-wide activity-driven Arc expression was not affected by tau pathology in any of the brain regions, including brain areas with the highest tangle load. Our findings suggest that intraneuronal NFTs do not affect signaling cascades leading to experience-dependent gene expression required for long-term synaptic plasticity.
ERIC Educational Resources Information Center
Festl, Ruth; Quandt, Thorsten
2013-01-01
Current research indicates that an alarming number of students are affected by cyberbullying. However, most of the empirical research has focused on psychological explanations of the phenomenon. In an explorative survey study based on the reconstruction of 2 complete school networks (N[subscript P] = 408), we expand the explanation strategies of…
A model for managing edge effects in harvest scheduling using spatial optimization
Kai L. Ross; Sándor F. Tóth
2016-01-01
Actively managed forest stands can create new forest edges. If left unchecked over time and across space, forest operations such as clear-cuts can create complex networks of forest edges. Newly created edges alter the landscape and can affect many environmental factors. These altered environmental factors have a variety of impacts on forest growth and structure and can...
Cellular context–mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis
Hellesøy, Monica; Lorens, James B.
2015-01-01
The formation of new blood vessels by sprouting angiogenesis is tightly regulated by contextual cues that affect angiogeneic growth factor signaling. Both constitutive activation and loss of Akt kinase activity in endothelial cells impair angiogenesis, suggesting that Akt dynamics mediates contextual microenvironmental regulation. We explored the temporal regulation of Akt in endothelial cells during formation of capillary-like networks induced by cell–cell contact with vascular smooth muscle cells (vSMCs) and vSMC-associated VEGF. Expression of constitutively active Akt1 strongly inhibited network formation, whereas hemiphosphorylated Akt1 epi-alleles with reduced kinase activity had an intermediate inhibitory effect. Conversely, inhibition of Akt signaling did not affect endothelial cell migration or morphogenesis in vSMC cocultures that generate capillary-like structures. We found that endothelial Akt activity is transiently blocked by proteasomal degradation in the presence of SMCs during the initial phase of capillary-like structure formation. Suppressed Akt activity corresponded to the increased endothelial MAP kinase signaling that was required for angiogenic endothelial morphogenesis. These results reveal a regulatory principle by which cellular context regulates Akt protein dynamics, which determines MAP kinase signaling thresholds necessary drive a morphogenetic program during angiogenesis. PMID:26023089
Zhang, Jun; Shoham, David A.; Tesdahl, Eric
2015-01-01
Objectives. We studied simulated interventions that leveraged social networks to increase physical activity in children. Methods. We studied a real-world social network of 81 children (average age = 7.96 years) who lived in low socioeconomic status neighborhoods, and attended public schools and 1 of 2 structured afterschool programs. The sample was ethnically diverse, and 44% were overweight or obese. We used social network analysis and agent-based modeling simulations to test whether implementing a network intervention would increase children’s physical activity. We tested 3 intervention strategies. Results. The intervention that targeted opinion leaders was effective in increasing the average level of physical activity across the entire network. However, the intervention that targeted the most sedentary children was the best at increasing their physical activity levels. Conclusions. Which network intervention to implement depends on whether the goal is to shift the entire distribution of physical activity or to influence those most adversely affected by low physical activity. Agent-based modeling could be an important complement to traditional project planning tools, analogous to sample size and power analyses, to help researchers design more effective interventions for increasing children’s physical activity. PMID:25689202
Epidemic dynamics on a risk-based evolving social network
NASA Astrophysics Data System (ADS)
Antwi, Shadrack; Shaw, Leah
2013-03-01
Social network models have been used to study how behavior affects the dynamics of an infection in a population. Motivated by HIV, we consider how a trade-off between benefits and risks of sexual connections determine network structure and disease prevalence. We define a stochastic network model with formation and breaking of links as changes in sexual contacts. Each node has an intrinsic benefit its neighbors derive from connecting to it. Nodes' infection status is not apparent to others, but nodes with more connections (higher degree) are assumed more likely to be infected. The probability to form and break links is determined by a payoff computed from the benefit and degree-dependent risk. The disease is represented by a SI (susceptible-infected) model. We study network and epidemic evolution via Monte Carlo simulation and analytically predict the behavior with a heterogeneous mean field approach. The dependence of network connectivity and infection threshold on parameters is determined, and steady state degree distribution and epidemic levels are obtained. We also study a situation where system-wide infection levels alter perception of risk and cause nodes to adjust their behavior. This is a case of an adaptive network, where node status feeds back to change network geometry.
Connectivity and propagule sources composition drive ditch plant metacommunity structure
NASA Astrophysics Data System (ADS)
Favre-Bac, Lisa; Ernoult, Aude; Mony, Cendrine; Rantier, Yann; Nabucet, Jean; Burel, Françoise
2014-11-01
The fragmentation of agricultural landscapes has a major impact on biodiversity. In addition to habitat loss, dispersal limitation increasingly appears as a significant driver of biodiversity decline. Landscape linear elements, like ditches, may reduce the negative impacts of fragmentation by enhancing connectivity for many organisms, in addition to providing refuge habitats. To characterize these effects, we investigated the respective roles of propagule source composition and connectivity at the landscape scale on hydrochorous and non-hydrochorous ditch bank plant metacommunities. Twenty-seven square sites (0.5 km2 each) were selected in an agricultural lowland of northern France. At each site, plant communities were sampled on nine ditch banks (totaling 243 ditches). Variables characterizing propagule sources composition and connectivity were calculated for landscape mosaic and ditch network models. The landscape mosaic influenced only non-hydrochorous species, while the ditch network impacted both hydrochorous and non-hydrochorous species. Non-hydrochorous metacommunities were dependent on a large set of land-use elements, either within the landscape mosaic or adjacent to the ditch network, whereas hydrochorous plant metacommunities were only impacted by the presence of ditches adjacent to crops and roads. Ditch network connectivity also influenced both hydrochorous and non-hydrochorous ditch bank plant metacommunity structure, suggesting that beyond favoring hydrochory, ditches may also enhance plant dispersal by acting on other dispersal vectors. Increasing propagule sources heterogeneity and connectivity appeared to decrease within-metacommunity similarity within landscapes. Altogether, our results suggest that the ditch network's composition and configuration impacts plant metacommunity structure by affecting propagule dispersal possibilities, with contrasted consequences depending on species' dispersal vectors.
Paina, Ligia; Ssengooba, Freddie; Waswa, Douglas; M'imunya, James M; Bennett, Sara
2013-05-20
Whether and how research training programs contribute to research network development is underexplored. The Fogarty International Center (FIC) has supported overseas research training programs for over two decades. FIC programs could provide an entry point in the development of research networks and collaborations. We examine whether FIC's investment in research training contributed to the development of networks and collaborations in two countries with longstanding FIC investments - Uganda and Kenya - and the factors which facilitated this process. As part of two case studies at Uganda's Makerere University and Kenya's University of Nairobi, we conducted 53 semi-structured in-depth interviews and nine focus group discussions. To expand on our case study findings, we conducted a focused bibliometric analysis on two purposively selected topic areas to examine scientific productivity and used online network illustration tools to examine the resulting network structures. FIC support made important contributions to network development. Respondents from both Uganda and Kenya confirmed that FIC programs consistently provided trainees with networking skills and exposure to research collaborations, primarily within the institutions implementing FIC programs. In both countries, networks struggled with inclusiveness, particularly in HIV/AIDS research. Ugandan respondents perceived their networks to be more cohesive than Kenyan respondents did. Network cohesiveness was positively correlated with the magnitude and longevity of FIC's programs. Support from FIC grants to local and regional research network development and networking opportunities, such as conferences, was rare. Synergies between FIC programs and research grants helped to solidify and maintain research collaborations. Networks developed where FIC's programs focused on a particular institution, there was a critical mass of trainees with similar interests, and investments for network development were available from early implementation. Networks were less likely to emerge where FIC efforts were thinly scattered across multiple institutions. The availability of complementary research grants created opportunities for researchers to collaborate in grant writing, research implementation, and publications. FIC experiences in Uganda and Kenya showcase the important role of research training programs in creating and sustaining research networks. FIC programs should consider including support to research networks more systematically in their capacity development agenda.
How spatio-temporal habitat connectivity affects amphibian genetic structure.
Watts, Alexander G; Schlichting, Peter E; Billerman, Shawn M; Jesmer, Brett R; Micheletti, Steven; Fortin, Marie-Josée; Funk, W Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A
2015-01-01
Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.
Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.
Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong
2014-12-01
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.
Major component analysis of dynamic networks of physiologic organ interactions
NASA Astrophysics Data System (ADS)
Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch
2015-09-01
The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.
Analytical Computation of the Epidemic Threshold on Temporal Networks
NASA Astrophysics Data System (ADS)
Valdano, Eugenio; Ferreri, Luca; Poletto, Chiara; Colizza, Vittoria
2015-04-01
The time variation of contacts in a networked system may fundamentally alter the properties of spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic threshold. Despite the great interest in the problem for the physics, applied mathematics, computer science, and epidemiology communities, a full theoretical understanding is still missing and currently limited to the cases where the time-scale separation holds between spreading and network dynamics or to specific temporal network models. We consider a Markov chain description of the susceptible-infectious-susceptible process on an arbitrary temporal network. By adopting a multilayer perspective, we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is confirmed on a set of temporal models and empirical networks and against numerical results. In addition, we explore how the threshold changes when varying the overall time of observation of the temporal network, so as to provide insights on the optimal time window for data collection of empirical temporal networked systems. Our framework is of both fundamental and practical interest, as it offers novel understanding of the interplay between temporal networks and spreading dynamics.
Impact of degree truncation on the spread of a contagious process on networks.
Harling, Guy; Onnela, Jukka-Pekka
2018-03-01
Understanding how person-to-person contagious processes spread through a population requires accurate information on connections between population members. However, such connectivity data, when collected via interview, is often incomplete due to partial recall, respondent fatigue or study design, e.g., fixed choice designs (FCD) truncate out-degree by limiting the number of contacts each respondent can report. Past research has shown how FCD truncation affects network properties, but its implications for predicted speed and size of spreading processes remain largely unexplored. To study the impact of degree truncation on predictions of spreading process outcomes, we generated collections of synthetic networks containing specific properties (degree distribution, degree-assortativity, clustering), and also used empirical social network data from 75 villages in Karnataka, India. We simulated FCD using various truncation thresholds and ran a susceptible-infectious-recovered (SIR) process on each network. We found that spreading processes propagated on truncated networks resulted in slower and smaller epidemics, with a sudden decrease in prediction accuracy at a level of truncation that varied by network type. Our results have implications beyond FCD to truncation due to any limited sampling from a larger network. We conclude that knowledge of network structure is important for understanding the accuracy of predictions of process spread on degree truncated networks.
Stacked competitive networks for noise reduction in low-dose CT
Du, Wenchao; Chen, Hu; Wu, Zhihong; Sun, Huaiqiang; Liao, Peixi
2017-01-01
Since absorption of X-ray radiation has the possibility of inducing cancerous, genetic and other diseases to patients, researches usually attempt to reduce the radiation dose. However, reduction of the radiation dose associated with CT scans will unavoidably increase the severity of noise and artifacts, which can seriously affect diagnostic confidence. Due to the outstanding performance of deep neural networks in image processing, in this paper, we proposed a Stacked Competitive Network (SCN) approach to noise reduction, which stacks several successive Competitive Blocks (CB). The carefully handcrafted design of the competitive blocks was inspired by the idea of multi-scale processing and improvement the network’s capacity. Qualitative and quantitative evaluations demonstrate the competitive performance of the proposed method in noise suppression, structural preservation, and lesion detection. PMID:29267360
Incidence and anatomy of gaze-evoked nystagmus in patients with cerebellar lesions.
Baier, Bernhard; Dieterich, Marianne
2011-01-25
Disorders of gaze-holding--organized by a neural network located in the brainstem or the cerebellum--may lead to nystagmus. Based on previous animal studies it was concluded that one key player of the cerebellar part of this gaze-holding neural network is the flocculus. Up to now, in humans there are no systematic studies in patients with cerebellar lesions examining one of the most common forms of nystagmus: gaze-evoked nystagmus (GEN). The aim of our present study was to clarify which cerebellar structures are involved in the generation of GEN. Twenty-one patients with acute unilateral cerebellar stroke were analyzed by means of modern MRI-based voxel-wise lesion-behavior mapping. Our data indicate that cerebellar structures such as the vermal pyramid, the uvula, and the tonsil, but also parts of the biventer lobule and the inferior semilunar lobule, were affected in horizontal GEN. It seems that these structures are part of a gaze-holding neural integrator control system. Furthermore, GEN might present a diagnostic sign pointing toward ipsilesionally located lesions of midline and lower cerebellar structures.
Influence of C-H···O Hydrogen Bonds on Macroscopic Properties of Supramolecular Assembly.
Ji, Wei; Liu, Guofeng; Li, Zijian; Feng, Chuanliang
2016-03-02
For CH···O hydrogen bonds in assembled structures and the applications, one of the critical issues is how molecular spatial structures affect their interaction modes as well as how to translate the different modes into the macroscopic properties of materials. Herein, coumarin-derived isomeric hydrogelators with different spatial structures are synthesized, where only nitrogen atoms locate at the ortho, meso, or para position in the pyridine ring. The gelators can self-assemble into single crystals and nanofibrous networks through CH···O interactions, which are greatly influenced by nitrogen spatial positions in the pyridine ring, leading to the different self-assembly mechanisms, packing modes, and properties of the nanofibrous networks. Typically, different cell proliferation rates are obtained on the different CH···O bonds driving nanofibrous structures, implying that tiny variation of the stereo-position of nitrogen atoms can be sensitively detected by cells. The study paves a novel way to investigate the influence of isomeric molecular assembly on macroscopic properties and functions of materials.
47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC 79-387...
47 CFR 73.4157 - Network signals which adversely affect affiliate broadcast service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Network signals which adversely affect affiliate broadcast service. 73.4157 Section 73.4157 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....4157 Network signals which adversely affect affiliate broadcast service. See Public Notice, FCC 79-387...
Neural correlates of cognitive intervention in persons at risk of developing Alzheimer’s disease
Hosseini, S. M. Hadi; Kramer, Joel H.; Kesler, Shelli R.
2014-01-01
Cognitive training is an emergent approach that has begun to receive increased attention in recent years as a non-pharmacological, cost-effective intervention for Alzheimer’s disease (AD). There has been increasing behavioral evidence regarding training-related improvement in cognitive performance in early stages of AD. Although these studies provide important insight about the efficacy of cognitive training, neuroimaging studies are crucial to pinpoint changes in brain structure and function associated with training and to examine their overlap with pathology in AD. In this study, we reviewed the existing neuroimaging studies on cognitive training in persons at risk of developing AD to provide an overview of the overlap between neural networks rehabilitated by the current training methods and those affected in AD. The data suggest a consistent training-related increase in brain activity in medial temporal, prefrontal, and posterior default mode networks, as well as increase in gray matter structure in frontoparietal and entorhinal regions. This pattern differs from the observed pattern in healthy older adults that shows a combination of increased and decreased activity in response to training. Detailed investigation of the data suggests that training in persons at risk of developing AD mainly improves compensatory mechanisms and partly restores the affected functions. While current neuroimaging studies are quite helpful in identifying the mechanisms underlying cognitive training, the data calls for future multi-modal neuroimaging studies with focus on multi-domain cognitive training, network level connectivity, and individual differences in response to training. PMID:25206335
A key heterogeneous structure of fractal networks based on inverse renormalization scheme
NASA Astrophysics Data System (ADS)
Bai, Yanan; Huang, Ning; Sun, Lina
2018-06-01
Self-similarity property of complex networks was found by the application of renormalization group theory. Based on this theory, network topologies can be classified into universality classes in the space of configurations. In return, through inverse renormalization scheme, a given primitive structure can grow into a pure fractal network, then adding different types of shortcuts, it exhibits different characteristics of complex networks. However, the effect of primitive structure on networks structural property has received less attention. In this paper, we introduce a degree variance index to measure the dispersion of nodes degree in the primitive structure, and investigate the effect of the primitive structure on network structural property quantified by network efficiency. Numerical simulations and theoretical analysis show a primitive structure is a key heterogeneous structure of generated networks based on inverse renormalization scheme, whether or not adding shortcuts, and the network efficiency is positively correlated with degree variance of the primitive structure.
Convergent evolution of modularity in metabolic networks through different community structures
2012-01-01
Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network communities that better correspond to functional categorizations. PMID:22974099
Artificial neural networks as quantum associative memory
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Schrock, Jonathan; Imam, Neena; Humble, Travis
We present results related to the recall accuracy and capacity of Hopfield networks implemented on commercially available quantum annealers. The use of Hopfield networks and artificial neural networks as content-addressable memories offer robust storage and retrieval of classical information, however, implementation of these models using currently available quantum annealers faces several challenges: the limits of precision when setting synaptic weights, the effects of spurious spin-glass states and minor embedding of densely connected graphs into fixed-connectivity hardware. We consider neural networks which are less than fully-connected, and also consider neural networks which contain multiple sparsely connected clusters. We discuss the effect of weak edge dilution on the accuracy of memory recall, and discuss how the multiple clique structure affects the storage capacity. Our work focuses on storage of patterns which can be embedded into physical hardware containing n < 1000 qubits. This work was supported by the United States Department of Defense and used resources of the Computational Research and Development Programs as Oak Ridge National Laboratory under Contract No. DE-AC0500OR22725 with the U. S. Department of Energy.
Sparse cliques trump scale-free networks in coordination and competition
Gianetto, David A.; Heydari, Babak
2016-01-01
Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner’s Dilemma game. PMID:26899456
Effects of temporal correlations in social multiplex networks.
Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo
2017-08-17
Multi-layered networks represent a major advance in the description of natural complex systems, and their study has shed light on new physical phenomena. Despite its importance, however, the role of the temporal dimension in their structure and function has not been investigated in much detail so far. Here we study the temporal correlations between layers exhibited by real social multiplex networks. At a basic level, the presence of such correlations implies a certain degree of predictability in the contact pattern, as we quantify by an extension of the entropy and mutual information analyses proposed for the single-layer case. At a different level, we demonstrate that temporal correlations are a signature of a 'multitasking' behavior of network agents, characterized by a higher level of switching between different social activities than expected in a uncorrelated pattern. Moreover, temporal correlations significantly affect the dynamics of coupled epidemic processes unfolding on the network. Our work opens the way for the systematic study of temporal multiplex networks and we anticipate it will be of interest to researchers in a broad array of fields.
Sparse cliques trump scale-free networks in coordination and competition
NASA Astrophysics Data System (ADS)
Gianetto, David A.; Heydari, Babak
2016-02-01
Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner’s Dilemma game.
Zubek, Julian; Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.
Denkiewicz, Michał; Barański, Juliusz; Wróblewski, Przemysław; Rączaszek-Leonardi, Joanna; Plewczynski, Dariusz
2017-01-01
This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems. PMID:28809957
Diaconescu, Andreea Oliviana; Kramer, Elisse; Hermann, Carol; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; McIntosh, Anthony Randal; Smith, Gwenn S.
2010-01-01
Variability in the affective and cognitive symptom response to antidepressant treatment has been observed in geriatric depression. The underlying neural circuitry is poorly understood. The current study evaluated the cerebral glucose metabolic effects of citalopram treatment and applied multivariate, functional connectivity analyses to identify brain networks associated with improvements in affective symptoms and cognitive function. Sixteen geriatric depressed patients underwent resting Positron Emission Tomography (PET) studies of cerebral glucose metabolism and assessment of affective symptoms and cognitive function before and after eight weeks of selective serotonin reuptake inhibitor treatment (citalopram). Voxel-wise analyses of the normalized glucose metabolic data showed decreased cerebral metabolism during citalopram treatment in the anterior cingulate gyrus, middle temporal gyrus, precuneus, amygdala, and parahippocampal gyrus. Increased metabolism was observed in the putamen, occipital cortex and cerebellum. Functional connectivity analyses revealed two networks which were uniquely associated with improvement of affective symptoms and cognitive function during treatment. A subcortical-limbic-frontal network was associated with improvement in affect (depression and anxiety), while a medial temporal-parietal-frontal network was associated with improvement in cognition (immediate verbal learning/memory and verbal fluency). The regions that comprise the cognitive network overlap with the regions that are affected in Alzheimer’s dementia. Thus, alterations in specific brain networks associated with improvement of affective symptoms and cognitive function are observed during citalopram treatment in geriatric depression. PMID:20886575
Propagation of crises in the virtual water trade network
NASA Astrophysics Data System (ADS)
Tamea, Stefania; Laio, Francesco; Ridolfi, Luca
2015-04-01
The international trade of agricultural goods is associated to the displacement of the water used to produce such goods and embedded in trade as a factor of production. Water virtually exchanged from producing to consuming countries, named virtual water, defines flows across an international network of 'virtual water trade' which enable the assessment of environmental forcings and implications of trade, such as global water savings or country dependencies on foreign water resources. Given the recent expansion of commodity (and virtual water) trade, in both displaced volumes and network structure, concerns have been raised about the exposure to crises of individuals and societies. In fact, if one country had to markedly decrease its export following a socio-economical or environmental crisis, such as a war or a drought, many -if not all- countries would be affected due to a cascade effect within the trade network. The present contribution proposes a mechanistic model describing the propagation of a local crisis into the virtual water trade network, accounting for the network structure and the virtual water balance of all countries. The model, built on data-based assumptions, is tested on the real case study of the Argentinean crisis in 2008-09, when the internal agricultural production (measured as virtual water volume) decreased by 26% and the virtual water export of Argentina dropped accordingly. Crisis propagation and effects on the virtual water trade are correctly captured, showing the way forward to investigations of crises impact and country vulnerability based on the results of the model proposed.
Towards Determining the Optimal Density of Groundwater Observation Networks under Uncertainty
NASA Astrophysics Data System (ADS)
Langousis, Andreas; Kaleris, Vassilios; Kokosi, Angeliki; Mamounakis, Georgios
2016-04-01
Time series of groundwater level constitute one of the main sources of information when studying the availability of ground water reserves, at a regional level, under changing climatic conditions. To that extent, one needs groundwater observation networks that can provide sufficient information to estimate the hydraulic head at unobserved locations. The density of such networks is largely influenced by the structure of the aquifer, and in particular by the spatial distribution of hydraulic conductivity (i.e. layering), dependencies in the transition rates between different geologic formations, juxtapositional tendencies, etc. In this work, we: 1) use the concept of transition probabilities embedded in a Markov chain setting to conditionally simulate synthetic aquifer structures representative of geologic formations commonly found in the literature (see e.g. Hoeksema and Kitanidis, 1985), and 2) study how the density of observation wells affects the estimation accuracy of hydraulic heads at unobserved locations. The obtained results are promising, pointing towards the direction of establishing design criteria based on the statistical structure of the aquifer, such as the level of dependence in the transition rates of observed lithologies. Reference: Hoeksema, R.J. and P.K. Kitanidis (1985) Analysis of spatial structure of properties of selected aquifers, Water Resources Research, 21(4), 563-572. Acknowledgments: This work is sponsored by the Onassis Foundation under the "Special Grant and Support Program for Scholars' Association Members".
Tagging cortical networks in emotion: a topographical analysis
Keil, Andreas; Costa, Vincent; Smith, J. Carson; Sabatinelli, Dean; McGinnis, E. Menton; Bradley, Margaret M.; Lang, Peter J.
2013-01-01
Viewing emotional pictures is associated with heightened perception and attention, indexed by a relative increase in visual cortical activity. Visual cortical modulation by emotion is hypothesized to reflect re-entrant connectivity originating in higher-order cortical and/or limbic structures. The present study used dense-array electroencephalography and individual brain anatomy to investigate functional coupling between the visual cortex and other cortical areas during affective picture viewing. Participants viewed pleasant, neutral, and unpleasant pictures that flickered at a rate of 10 Hz to evoke steady-state visual evoked potentials (ssVEPs) in the EEG. The spectral power of ssVEPs was quantified using Fourier transform, and cortical sources were estimated using beamformer spatial filters based on individual structural magnetic resonance images. In addition to lower-tier visual cortex, a network of occipito-temporal and parietal (bilateral precuneus, inferior parietal lobules) structures showed enhanced ssVEP power when participants viewed emotional (either pleasant or unpleasant), compared to neutral pictures. Functional coupling during emotional processing was enhanced between the bilateral occipital poles and a network of temporal (left middle/inferior temporal gyrus), parietal (bilateral parietal lobules), and frontal (left middle/inferior frontal gyrus) structures. These results converge with findings from hemodynamic analyses of emotional picture viewing and suggest that viewing emotionally engaging stimuli is associated with the formation of functional links between visual cortex and the cortical regions underlying attention modulation and preparation for action. PMID:21954087
NASA Astrophysics Data System (ADS)
Joshi, Vinayak S.; Garvin, Mona K.; Reinhardt, Joseph M.; Abramoff, Michael D.
2011-03-01
Structural analysis of retinal vessel network has so far served in the diagnosis of retinopathies and systemic diseases. The retinopathies are known to affect the morphologic properties of retinal vessels such as course, shape, caliber, and tortuosity. Whether the arteries and the veins respond to these changes together or in tandem has always been a topic of discussion. However the diseases such as diabetic retinopathy and retinopathy of prematurity have been diagnosed with the morphologic changes specific either to arteries or to veins. Thus a method describing the separation of retinal vessel trees imaged in a two dimensional color fundus image may assist in artery-vein classification and quantitative assessment of morphologic changes particular to arteries or veins. We propose a method based on mathematical morphology and graph search to identify and label the retinal vessel trees, which provides a structural mapping of vessel network in terms of each individual primary vessel, its branches and spatial positions of branching and cross-over points. The method was evaluated on a dataset of 15 fundus images resulting into an accuracy of 92.87 % correctly assigned vessel pixels when compared with the manual labeling of separated vessel trees. Accordingly, the structural mapping method performs well and we are currently investigating its potential in evaluating the characteristic properties specific to arteries or veins.
Connectomics and neuroticism: an altered functional network organization.
Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard C; Ormel, Johan; Riese, Harriëtte; Aleman, André
2015-01-01
The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network organization in neuroticism. To this end, we applied graph theory on resting-state functional magnetic resonance imaging (fMRI) data in 120 women selected based on their neuroticism score. Binary and weighted brain-wide graphs were constructed to examine changes in the functional network structure and functional connectivity strength. Furthermore, graphs were partitioned into modules to specifically investigate connectivity within and between functional subnetworks related to emotion processing and cognitive control. Subsequently, complex network measures (ie, efficiency and modularity) were calculated on the brain-wide graphs and modules, and correlated with neuroticism scores. Compared with low neurotic individuals, high neurotic individuals exhibited a whole-brain network structure resembling more that of a random network and had overall weaker functional connections. Furthermore, in these high neurotic individuals, functional subnetworks could be delineated less clearly and the majority of these subnetworks showed lower efficiency, while the affective subnetwork showed higher efficiency. In addition, the cingulo-operculum subnetwork demonstrated more ties with other functional subnetworks in association with neuroticism. In conclusion, the 'neurotic brain' has a less than optimal functional network organization and shows signs of functional disconnectivity. Moreover, in high compared with low neurotic individuals, emotion and salience subnetworks have a more prominent role in the information exchange, while sensory(-motor) and cognitive control subnetworks have a less prominent role.
Effects of topologies on signal propagation in feedforward networks
NASA Astrophysics Data System (ADS)
Zhao, Jia; Qin, Ying-Mei; Che, Yan-Qiu
2018-01-01
We systematically investigate the effects of topologies on signal propagation in feedforward networks (FFNs) based on the FitzHugh-Nagumo neuron model. FFNs with different topological structures are constructed with same number of both in-degrees and out-degrees in each layer and given the same input signal. The propagation of firing patterns and firing rates are found to be affected by the distribution of neuron connections in the FFNs. Synchronous firing patterns emerge in the later layers of FFNs with identical, uniform, and exponential degree distributions, but the number of synchronous spike trains in the output layers of the three topologies obviously differs from one another. The firing rates in the output layers of the three FFNs can be ordered from high to low according to their topological structures as exponential, uniform, and identical distributions, respectively. Interestingly, the sequence of spiking regularity in the output layers of the three FFNs is consistent with the firing rates, but their firing synchronization is in the opposite order. In summary, the node degree is an important factor that can dramatically influence the neuronal network activity.
Effects of topologies on signal propagation in feedforward networks.
Zhao, Jia; Qin, Ying-Mei; Che, Yan-Qiu
2018-01-01
We systematically investigate the effects of topologies on signal propagation in feedforward networks (FFNs) based on the FitzHugh-Nagumo neuron model. FFNs with different topological structures are constructed with same number of both in-degrees and out-degrees in each layer and given the same input signal. The propagation of firing patterns and firing rates are found to be affected by the distribution of neuron connections in the FFNs. Synchronous firing patterns emerge in the later layers of FFNs with identical, uniform, and exponential degree distributions, but the number of synchronous spike trains in the output layers of the three topologies obviously differs from one another. The firing rates in the output layers of the three FFNs can be ordered from high to low according to their topological structures as exponential, uniform, and identical distributions, respectively. Interestingly, the sequence of spiking regularity in the output layers of the three FFNs is consistent with the firing rates, but their firing synchronization is in the opposite order. In summary, the node degree is an important factor that can dramatically influence the neuronal network activity.
Structural studies of lead lithium borate glasses doped with silver oxide.
Coelho, João; Freire, Cristina; Hussain, N Sooraj
2012-02-01
Silver oxide doped lead lithium borate (LLB) glasses have been prepared and characterized. Structural and composition characterization were accessed by XRD, FTIR, Raman, SEM and EDS. Results from FTIR and Raman spectra indicate that Ag(2)O acts as a network modifier even at small quantities by converting three coordinated to four coordinated boron atoms. Other physical properties, such as density, molar volume and optical basicity are also evaluated. Furthermore, they are also affected by the silver oxide composition. Copyright © 2011 Elsevier B.V. All rights reserved.
Evolution of cooperation on complex networks with synergistic and discounted group interactions
NASA Astrophysics Data System (ADS)
Zhou, Lei; Li, Aming; Wang, Long
2015-06-01
In the real world individuals often engage in group interactions and their payoffs are determined by many factors, including the typical nonlinear interactions, i.e., synergy and discounting. Previous literatures assume that individual payoffs are either synergistically enhanced or discounted with the additional cooperators. Such settings ignore the interplay of these two factors, which is in sharp contrast with the fact that they ubiquitously coexist. Here we investigate how the coexistence and periodical switching of synergistic and discounted group interactions affect the evolution of cooperation on various complex networks. We show that scale-free networks facilitate the emergence of cooperation in terms of fixation probability for group interactions. With nonlinear interactions the heterogeneity of the degree acts as a double-edged sword: below the neutral drift it is the best for cooperation while above the neutral drift it instead provides the least opportunity for cooperators to be fixed. The advantages of the heterogeneity fade as interactive attributes switch between synergy and discounting, which suggests that the heterogeneity of population structures cannot favor cooperators in group interactions even with simple nonlinear interactions. Nonetheless, scale-free networks always guarantee cooperators the fastest rate of fixation. Our work implies that even very simple nonlinear group interactions could greatly shape the fixation probability and fixation time of cooperators in structured populations indicated by complex networks.
TRACTOGRAPHY DENSITY AND NETWORK MEASURES IN ALZHEIMER'S DISEASE.
Prasad, Gautam; Nir, Talia M; Toga, Arthur W; Thompson, Paul M
2013-04-01
Brain connectivity declines in Alzheimer's disease (AD), both functionally and structurally. Connectivity maps and networks derived from diffusion-based tractography offer new ways to track disease progression and to understand how AD affects the brain. Here we set out to identify (1) which fiber network measures show greatest differences between AD patients and controls, and (2) how these effects depend on the density of fibers extracted by the tractography algorithm. We computed brain networks from diffusion-weighted images (DWI) of the brain, in 110 subjects (28 normal elderly, 56 with early and 11 with late mild cognitive impairment, and 15 with AD). We derived connectivity matrices and network topology measures, for each subject, from whole-brain tractography and cortical parcellations. We used an ODF lookup table to speed up fiber extraction, and to exploit the full information in the orientation distribution function (ODF). This made it feasible to compute high density connectivity maps. We used accelerated tractography to compute a large number of fibers to understand what effect fiber density has on network measures and in distinguishing different disease groups in our data. We focused on global efficiency, transitivity, path length, mean degree, density, modularity, small world, and assortativity measures computed from weighted and binary undirected connectivity matrices. Of all these measures, the mean nodal degree best distinguished diagnostic groups. High-density fiber matrices were most helpful for picking up the more subtle clinical differences, e.g. between mild cognitively impaired (MCI) and normals, or for distinguishing subtypes of MCI (early versus late). Care is needed in clinical analyses of brain connectivity, as the density of extracted fibers may affect how well a network measure can pick up differences between patients and controls.
Why do policies change? Institutions, interests, ideas and networks in three cases of policy reform
Shearer, Jessica C; Abelson, Julia; Kouyaté, Bocar; Lavis, John N; Walt, Gill
2016-01-01
Abstract Policy researchers have used various categories of variables to explain why policies change, including those related to institutions, interests and ideas. Recent research has paid growing attention to the role of policy networks—the actors involved in policy-making, their relationships with each other, and the structure formed by those relationships—in policy reform across settings and issues; however, this literature has largely ignored the theoretical integration of networks with other policy theories, including the ‘3Is’ of institutions, interests and ideas. This article proposes a conceptual framework integrating these variables and tests it on three cases of policy change in Burkina Faso, addressing the need for theoretical integration with networks as well as the broader aim of theory-driven health policy analysis research in low- and middle-income countries. We use historical process tracing, a type of comparative case study, to interpret and compare documents and in-depth interview data within and between cases. We found that while network changes were indeed associated with policy reform, this relationship was mediated by one or more of institutions, interests and ideas. In a context of high donor dependency, new donor rules affected the composition and structure of actors in the networks, which enabled the entry and dissemination of new ideas and shifts in the overall balance of interest power ultimately leading to policy change. The case of strategic networking occurred in only one case, by civil society actors, suggesting that network change is rarely the spark that initiates the process towards policy change. This analysis highlights the important role of changes in institutions and ideas to drive policymaking, but hints that network change is a necessary intermediate step in these processes. PMID:27233927
Low-rank network decomposition reveals structural characteristics of small-world networks
NASA Astrophysics Data System (ADS)
Barranca, Victor J.; Zhou, Douglas; Cai, David
2015-12-01
Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.
Kesler, Shelli R; Adams, Marjorie; Packer, Melissa; Rao, Vikram; Henneghan, Ashley M; Blayney, Douglas W; Palesh, Oxana
2017-03-01
Several previous studies have demonstrated that cancer chemotherapy is associated with brain injury and cognitive dysfunction. However, evidence suggests that cancer pathogenesis alone may play a role, even in non-CNS cancers. Using a multimodal neuroimaging approach, we measured structural and functional connectome topology as well as functional network dynamics in newly diagnosed patients with breast cancer. Our study involved a novel, pretreatment assessment that occurred prior to the initiation of any cancer therapies, including surgery with anesthesia. We enrolled 74 patients with breast cancer age 29-65 and 50 frequency-matched healthy female controls who underwent anatomic and resting-state functional MRI as well as cognitive testing. Compared to controls, patients with breast cancer demonstrated significantly lower functional network dynamics ( p = .046) and cognitive functioning ( p < .02, corrected). The breast cancer group also showed subtle alterations in structural local clustering and functional local clustering ( p < .05, uncorrected) as well as significantly increased correlation between structural global clustering and functional global clustering compared to controls ( p = .03). This hyper-correlation between structural and functional topologies was significantly associated with cognitive dysfunction ( p = .005). Our findings could not be accounted for by psychological distress and suggest that non-CNS cancer may directly and/or indirectly affect the brain via mechanisms such as tumor-induced neurogenesis, inflammation, and/or vascular changes, for example. Our results also have broader implications concerning the importance of the balance between structural and functional connectome properties as a potential biomarker of general neurologic deficit.