Taxonomies of networks from community structure
Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.
2014-01-01
The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: they can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi. PMID:23030977
Taxonomies of networks from community structure
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Fenn, Daniel J.; Reid, Stephen; Porter, Mason A.; Mucha, Peter J.; Fricker, Mark D.; Jones, Nick S.
2012-09-01
The study of networks has become a substantial interdisciplinary endeavor that encompasses myriad disciplines in the natural, social, and information sciences. Here we introduce a framework for constructing taxonomies of networks based on their structural similarities. These networks can arise from any of numerous sources: They can be empirical or synthetic, they can arise from multiple realizations of a single process (either empirical or synthetic), they can represent entirely different systems in different disciplines, etc. Because mesoscopic properties of networks are hypothesized to be important for network function, we base our comparisons on summaries of network community structures. Although we use a specific method for uncovering network communities, much of the introduced framework is independent of that choice. After introducing the framework, we apply it to construct a taxonomy for 746 networks and demonstrate that our approach usefully identifies similar networks. We also construct taxonomies within individual categories of networks, and we thereby expose nontrivial structure. For example, we create taxonomies for similarity networks constructed from both political voting data and financial data. We also construct network taxonomies to compare the social structures of 100 Facebook networks and the growth structures produced by different types of fungi.
Comparisons of topological properties in autism for the brain network construction methods
NASA Astrophysics Data System (ADS)
Lee, Min-Hee; Kim, Dong Youn; Lee, Sang Hyeon; Kim, Jin Uk; Chung, Moo K.
2015-03-01
Structural brain networks can be constructed from the white matter fiber tractography of diffusion tensor imaging (DTI), and the structural characteristics of the brain can be analyzed from its networks. When brain networks are constructed by the parcellation method, their network structures change according to the parcellation scale selection and arbitrary thresholding. To overcome these issues, we modified the Ɛ -neighbor construction method proposed by Chung et al. (2011). The purpose of this study was to construct brain networks for 14 control subjects and 16 subjects with autism using both the parcellation and the Ɛ-neighbor construction method and to compare their topological properties between two methods. As the number of nodes increased, connectedness decreased in the parcellation method. However in the Ɛ-neighbor construction method, connectedness remained at a high level even with the rising number of nodes. In addition, statistical analysis for the parcellation method showed significant difference only in the path length. However, statistical analysis for the Ɛ-neighbor construction method showed significant difference with the path length, the degree and the density.
Constructing Robust Cooperative Networks using a Multi-Objective Evolutionary Algorithm
Wang, Shuai; Liu, Jing
2017-01-01
The design and construction of network structures oriented towards different applications has attracted much attention recently. The existing studies indicated that structural heterogeneity plays different roles in promoting cooperation and robustness. Compared with rewiring a predefined network, it is more flexible and practical to construct new networks that satisfy the desired properties. Therefore, in this paper, we study a method for constructing robust cooperative networks where the only constraint is that the number of nodes and links is predefined. We model this network construction problem as a multi-objective optimization problem and propose a multi-objective evolutionary algorithm, named MOEA-Netrc, to generate the desired networks from arbitrary initializations. The performance of MOEA-Netrc is validated on several synthetic and real-world networks. The results show that MOEA-Netrc can construct balanced candidates and is insensitive to the initializations. MOEA-Netrc can find the Pareto fronts for networks with different levels of cooperation and robustness. In addition, further investigation of the robustness of the constructed networks revealed the impact on other aspects of robustness during the construction process. PMID:28134314
Structural and robustness properties of smart-city transportation networks
NASA Astrophysics Data System (ADS)
Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song
2015-09-01
The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).
Kandel, Benjamin M; Wang, Danny J J; Gee, James C; Avants, Brian B
2014-01-01
Although much attention has recently been focused on single-subject functional networks, using methods such as resting-state functional MRI, methods for constructing single-subject structural networks are in their infancy. Single-subject cortical networks aim to describe the self-similarity across the cortical structure, possibly signifying convergent developmental pathways. Previous methods for constructing single-subject cortical networks have used patch-based correlations and distance metrics based on curvature and thickness. We present here a method for constructing similarity-based cortical structural networks that utilizes a rotation-invariant representation of structure. The resulting graph metrics are closely linked to age and indicate an increasing degree of closeness throughout development in nearly all brain regions, perhaps corresponding to a more regular structure as the brain matures. The derived graph metrics demonstrate a four-fold increase in power for detecting age as compared to cortical thickness. This proof of concept study indicates that the proposed metric may be useful in identifying biologically relevant cortical patterns.
Universal partitioning of the hierarchical fold network of 50-residue segments in proteins
Ito, Jun-ichi; Sonobe, Yuki; Ikeda, Kazuyoshi; Tomii, Kentaro; Higo, Junichi
2009-01-01
Background Several studies have demonstrated that protein fold space is structured hierarchically and that power-law statistics are satisfied in relation between the numbers of protein families and protein folds (or superfamilies). We examined the internal structure and statistics in the fold space of 50 amino-acid residue segments taken from various protein folds. We used inter-residue contact patterns to measure the tertiary structural similarity among segments. Using this similarity measure, the segments were classified into a number (Kc) of clusters. We examined various Kc values for the clustering. The special resolution to differentiate the segment tertiary structures increases with increasing Kc. Furthermore, we constructed networks by linking structurally similar clusters. Results The network was partitioned persistently into four regions for Kc ≥ 1000. This main partitioning is consistent with results of earlier studies, where similar partitioning was reported in classifying protein domain structures. Furthermore, the network was partitioned naturally into several dozens of sub-networks (i.e., communities). Therefore, intra-sub-network clusters were mutually connected with numerous links, although inter-sub-network ones were rarely done with few links. For Kc ≥ 1000, the major sub-networks were about 40; the contents of the major sub-networks were conserved. This sub-partitioning is a novel finding, suggesting that the network is structured hierarchically: Segments construct a cluster, clusters form a sub-network, and sub-networks constitute a region. Additionally, the network was characterized by non-power-law statistics, which is also a novel finding. Conclusion Main findings are: (1) The universe of 50 residue segments found here was characterized by non-power-law statistics. Therefore, the universe differs from those ever reported for the protein domains. (2) The 50-residue segments were partitioned persistently and universally into some dozens (ca. 40) of major sub-networks, irrespective of the number of clusters. (3) These major sub-networks encompassed 90% of all segments. Consequently, the protein tertiary structure is constructed using the dozens of elements (sub-networks). PMID:19454039
Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks
Hosseini, S. M. Hadi; Kesler, Shelli R.
2013-01-01
In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672
Social network models predict movement and connectivity in ecological landscapes
Fletcher, R.J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, W.M.
2011-01-01
Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.
A character network study of two Sci-Fi TV series
NASA Astrophysics Data System (ADS)
Tan, M. S. A.; Ujum, E. A.; Ratnavelu, K.
2014-03-01
This work is an analysis of the character networks in two science fiction television series: Stargate and Star Trek. These networks are constructed on the basis of scene co-occurrence between characters to indicate the presence of a connection. Global network structure measures such as the average path length, graph density, network diameter, average degree, median degree, maximum degree, and average clustering coefficient are computed as well as individual node centrality scores. The two fictional networks constructed are found to be quite similar in structure which is astonishing given that Stargate only ran for 18 years in comparison to the 48 years for Star Trek.
Construction of ontology augmented networks for protein complex prediction.
Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian
2013-01-01
Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.
The network of concepts in written texts
NASA Astrophysics Data System (ADS)
Caldeira, S. M. G.; Petit Lobão, T. C.; Andrade, R. F. S.; Neme, A.; Miranda, J. G. V.
2006-02-01
Complex network theory is used to investigate the structure of meaningful concepts in written texts of individual authors. Networks have been constructed after a two phase filtering, where words with less meaning contents are eliminated and all remaining words are set to their canonical form, without any number, gender or time flexion. Each sentence in the text is added to the network as a clique. A large number of written texts have been scrutinised, and it is found that texts have small-world as well as scale-free structures. The growth process of these networks has also been investigated, and a universal evolution of network quantifiers have been found among the set of texts written by distinct authors. Further analyses, based on shuffling procedures taken either on the texts or on the constructed networks, provide hints on the role played by the word frequency and sentence length distributions to the network structure.
Shirakigawa, Nana; Takei, Takayuki; Ijima, Hiroyuki
2013-12-01
Reconstructed liver has been desired as a liver substitute for transplantation. However, reconstruction of a whole liver has not been achieved because construction of a vascular network at an organ scale is very difficult. We focused on decellularized liver (DC-liver) as an artificial scaffold for the construction of a hierarchical vascular network. In this study, we obtained DC-liver and the tubular network structure in which both portal vein and hepatic vein systems remained intact. Furthermore, endothelialization of the tubular structure in DC-liver was achieved, which prevented blood leakage from the tubular structure. In addition, hepatocytes suspended in a collagen sol were injected from the surroundings using a syringe as a suitable procedure for liver cell inoculation. In summary, we developed a base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Common quandaries and their practical solutions in Bayesian network modeling
Bruce G. Marcot
2017-01-01
Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many common problems remain. Here, I summarize key problems in BN model construction and interpretation,along with suggested practical solutions. Problems in BN model construction include parameterizing probability values, variable definition, complex network structures,...
Properties of healthcare teaming networks as a function of network construction algorithms.
Zand, Martin S; Trayhan, Melissa; Farooq, Samir A; Fucile, Christopher; Ghoshal, Gourab; White, Robert J; Quill, Caroline M; Rosenberg, Alexander; Barbosa, Hugo Serrano; Bush, Kristen; Chafi, Hassan; Boudreau, Timothy
2017-01-01
Network models of healthcare systems can be used to examine how providers collaborate, communicate, refer patients to each other, and to map how patients traverse the network of providers. Most healthcare service network models have been constructed from patient claims data, using billing claims to link a patient with a specific provider in time. The data sets can be quite large (106-108 individual claims per year), making standard methods for network construction computationally challenging and thus requiring the use of alternate construction algorithms. While these alternate methods have seen increasing use in generating healthcare networks, there is little to no literature comparing the differences in the structural properties of the generated networks, which as we demonstrate, can be dramatically different. To address this issue, we compared the properties of healthcare networks constructed using different algorithms from 2013 Medicare Part B outpatient claims data. Three different algorithms were compared: binning, sliding frame, and trace-route. Unipartite networks linking either providers or healthcare organizations by shared patients were built using each method. We find that each algorithm produced networks with substantially different topological properties, as reflected by numbers of edges, network density, assortativity, clustering coefficients and other structural measures. Provider networks adhered to a power law, while organization networks were best fit by a power law with exponential cutoff. Censoring networks to exclude edges with less than 11 shared patients, a common de-identification practice for healthcare network data, markedly reduced edge numbers and network density, and greatly altered measures of vertex prominence such as the betweenness centrality. Data analysis identified patterns in the distance patients travel between network providers, and a striking set of teaming relationships between providers in the Northeast United States and Florida, likely due to seasonal residence patterns of Medicare beneficiaries. We conclude that the choice of network construction algorithm is critical for healthcare network analysis, and discuss the implications of our findings for selecting the algorithm best suited to the type of analysis to be performed.
Constructing financial network based on PMFG and threshold method
NASA Astrophysics Data System (ADS)
Nie, Chun-Xiao; Song, Fu-Tie
2018-04-01
Based on planar maximally filtered graph (PMFG) and threshold method, we introduced a correlation-based network named PMFG-based threshold network (PTN). We studied the community structure of PTN and applied ISOMAP algorithm to represent PTN in low-dimensional Euclidean space. The results show that the community corresponds well to the cluster in the Euclidean space. Further, we studied the dynamics of the community structure and constructed the normalized mutual information (NMI) matrix. Based on the real data in the market, we found that the volatility of the market can lead to dramatic changes in the community structure, and the structure is more stable during the financial crisis.
Construction of multi-scale consistent brain networks: methods and applications.
Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.
Jiang, Wenyu; Li, Jianping; Chen, Xuemei; Ye, Wei; Zheng, Jinou
2017-01-01
Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.
A statistical analysis of UK financial networks
NASA Astrophysics Data System (ADS)
Chu, J.; Nadarajah, S.
2017-04-01
In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.
Construction of stable capillary networks using a microfluidic device.
Sudo, Ryo
2015-01-01
Construction of stable capillary networks is required to provide sufficient oxygen and nutrients to the deep region of thick tissues, which is important in the context of 3D tissue engineering. Although conventional in vitro culture models have been used to investigate the mechanism of capillary formation, recent advances in microfluidics technologies allowed us to control biophysical and biochemical culture environments more precisely, which led to the construction of functional and stable capillary networks. In this study, endothelial cells and mesenchymal stem cells were co-cultured in microfluidic devices to construct stable capillary networks, which resulted in the construction of luminal structures covered by pericytes. Interactions between endothelial cells and mesenchymal stem cells are also discussed in the context of capillary formation.
Properties of healthcare teaming networks as a function of network construction algorithms
Trayhan, Melissa; Farooq, Samir A.; Fucile, Christopher; Ghoshal, Gourab; White, Robert J.; Quill, Caroline M.; Rosenberg, Alexander; Barbosa, Hugo Serrano; Bush, Kristen; Chafi, Hassan; Boudreau, Timothy
2017-01-01
Network models of healthcare systems can be used to examine how providers collaborate, communicate, refer patients to each other, and to map how patients traverse the network of providers. Most healthcare service network models have been constructed from patient claims data, using billing claims to link a patient with a specific provider in time. The data sets can be quite large (106–108 individual claims per year), making standard methods for network construction computationally challenging and thus requiring the use of alternate construction algorithms. While these alternate methods have seen increasing use in generating healthcare networks, there is little to no literature comparing the differences in the structural properties of the generated networks, which as we demonstrate, can be dramatically different. To address this issue, we compared the properties of healthcare networks constructed using different algorithms from 2013 Medicare Part B outpatient claims data. Three different algorithms were compared: binning, sliding frame, and trace-route. Unipartite networks linking either providers or healthcare organizations by shared patients were built using each method. We find that each algorithm produced networks with substantially different topological properties, as reflected by numbers of edges, network density, assortativity, clustering coefficients and other structural measures. Provider networks adhered to a power law, while organization networks were best fit by a power law with exponential cutoff. Censoring networks to exclude edges with less than 11 shared patients, a common de-identification practice for healthcare network data, markedly reduced edge numbers and network density, and greatly altered measures of vertex prominence such as the betweenness centrality. Data analysis identified patterns in the distance patients travel between network providers, and a striking set of teaming relationships between providers in the Northeast United States and Florida, likely due to seasonal residence patterns of Medicare beneficiaries. We conclude that the choice of network construction algorithm is critical for healthcare network analysis, and discuss the implications of our findings for selecting the algorithm best suited to the type of analysis to be performed. PMID:28426795
On the topological structure of multinationals network
NASA Astrophysics Data System (ADS)
Joyez, Charlie
2017-05-01
This paper uses a weighted network analysis to examine the structure of multinationals' implantation countries network. Based on French firm-level dataset of multinational enterprises (MNEs) the network analysis provides information on each country position in the network and in internationalization strategies of French MNEs through connectivity preferences among the nodes. The paper also details network-wide features and their recent evolution toward a more decentralized structure. While much has been said on international trade network, this paper shows that multinational firms' studies would also benefit from network analysis, notably by investigating the sensitivity of the network construction to firm heterogeneity.
Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.
Gao, Zhongke; Jin, Ningde
2009-06-01
The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.
Protein complex prediction in large ontology attributed protein-protein interaction networks.
Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo
2013-01-01
Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.
Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang
2013-01-01
Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.
Liu, Zhenqiu; Sun, Fengzhu; Braun, Jonathan; McGovern, Dermot P B; Piantadosi, Steven
2015-04-01
Identifying disease associated taxa and constructing networks for bacteria interactions are two important tasks usually studied separately. In reality, differentiation of disease associated taxa and correlation among taxa may affect each other. One genus can be differentiated because it is highly correlated with another highly differentiated one. In addition, network structures may vary under different clinical conditions. Permutation tests are commonly used to detect differences between networks in distinct phenotypes, and they are time-consuming. In this manuscript, we propose a multilevel regularized regression method to simultaneously identify taxa and construct networks. We also extend the framework to allow construction of a common network and differentiated network together. An efficient algorithm with dual formulation is developed to deal with the large-scale n ≪ m problem with a large number of taxa (m) and a small number of samples (n) efficiently. The proposed method is regularized with a general Lp (p ∈ [0, 2]) penalty and models the effects of taxa abundance differentiation and correlation jointly. We demonstrate that it can identify both true and biologically significant genera and network structures. Software MLRR in MATLAB is available at http://biostatistics.csmc.edu/mlrr/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiaoran, E-mail: sxr0806@gmail.com; School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009; Small, Michael, E-mail: michael.small@uwa.edu.au
In this work, we propose a novel method to transform a time series into a weighted and directed network. For a given time series, we first generate a set of segments via a sliding window, and then use a doubly symbolic scheme to characterize every windowed segment by combining absolute amplitude information with an ordinal pattern characterization. Based on this construction, a network can be directly constructed from the given time series: segments corresponding to different symbol-pairs are mapped to network nodes and the temporal succession between nodes is represented by directed links. With this conversion, dynamics underlying the timemore » series has been encoded into the network structure. We illustrate the potential of our networks with a well-studied dynamical model as a benchmark example. Results show that network measures for characterizing global properties can detect the dynamical transitions in the underlying system. Moreover, we employ a random walk algorithm to sample loops in our networks, and find that time series with different dynamics exhibits distinct cycle structure. That is, the relative prevalence of loops with different lengths can be used to identify the underlying dynamics.« less
NASA Astrophysics Data System (ADS)
Yashchenko, Vitaliy A.
2000-03-01
On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.
Modular and hierarchical structure of social contact networks
NASA Astrophysics Data System (ADS)
Ge, Yuanzheng; Song, Zhichao; Qiu, Xiaogang; Song, Hongbin; Wang, Yong
2013-10-01
Social contact networks exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated nature. We propose a mixing pattern of modular and growing hierarchical structures to reconstruct social contact networks by using an individual’s geospatial distribution information in the real world. The hierarchical structure of social contact networks is defined based on the spatial distance between individuals, and edges among individuals are added in turn from the modular layer to the highest layer. It is a gradual process to construct the hierarchical structure: from the basic modular model up to the global network. The proposed model not only shows hierarchically increasing degree distribution and large clustering coefficients in communities, but also exhibits spatial clustering features of individual distributions. As an evaluation of the method, we reconstruct a hierarchical contact network based on the investigation data of a university. Transmission experiments of influenza H1N1 are carried out on the generated social contact networks, and results show that the constructed network is efficient to reproduce the dynamic process of an outbreak and evaluate interventions. The reproduced spread process exhibits that the spatial clustering of infection is accordant with the clustering of network topology. Moreover, the effect of individual topological character on the spread of influenza is analyzed, and the experiment results indicate that the spread is limited by individual daily contact patterns and local clustering topology rather than individual degree.
Multilayer network of language: A unified framework for structural analysis of linguistic subsystems
NASA Astrophysics Data System (ADS)
Martinčić-Ipšić, Sanda; Margan, Domagoj; Meštrović, Ana
2016-09-01
Recently, the focus of complex networks' research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena - multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we introduce the multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax and co-occurrence) and a subword-level (syllables and graphemes) network layers, from four variations of original text (in the modeled language). The analysis and comparison of layers at the word and subword-levels are employed in order to determine the mechanism of the structural influences between linguistic units and subsystems. The obtained results suggest that there are substantial differences between the networks' structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword-level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems simultaneously and hence to provide a more unified view on language.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsugaki, Naohiro; Yamada, Yusuke; Igarashi, Noriyuki
2007-01-19
A private network, physically separated from the facility network, was designed and constructed which covered all the four protein crystallography beamlines at the Photon Factory (PF) and Structural Biology Research Center (SBRC). Connecting all the beamlines in the same network allows for simple authentication and a common working environment for a user who uses multiple beamlines. Giga-bit Ethernet wire-speed was achieved for the communication among the beamlines and SBRC buildings.
Low-rank network decomposition reveals structural characteristics of small-world networks
NASA Astrophysics Data System (ADS)
Barranca, Victor J.; Zhou, Douglas; Cai, David
2015-12-01
Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.
Constructing a Watts-Strogatz network from a small-world network with symmetric degree distribution.
Menezes, Mozart B C; Kim, Seokjin; Huang, Rongbing
2017-01-01
Though the small-world phenomenon is widespread in many real networks, it is still challenging to replicate a large network at the full scale for further study on its structure and dynamics when sufficient data are not readily available. We propose a method to construct a Watts-Strogatz network using a sample from a small-world network with symmetric degree distribution. Our method yields an estimated degree distribution which fits closely with that of a Watts-Strogatz network and leads into accurate estimates of network metrics such as clustering coefficient and degree of separation. We observe that the accuracy of our method increases as network size increases.
On the Reliability of Individual Brain Activity Networks.
Cassidy, Ben; Bowman, F DuBois; Rae, Caroline; Solo, Victor
2018-02-01
There is intense interest in fMRI research on whole-brain functional connectivity, and however, two fundamental issues are still unresolved: the impact of spatiotemporal data resolution (spatial parcellation and temporal sampling) and the impact of the network construction method on the reliability of functional brain networks. In particular, the impact of spatiotemporal data resolution on the resulting connectivity findings has not been sufficiently investigated. In fact, a number of studies have already observed that functional networks often give different conclusions across different parcellation scales. If the interpretations from functional networks are inconsistent across spatiotemporal scales, then the whole validity of the functional network paradigm is called into question. This paper investigates the consistency of resting state network structure when using different temporal sampling or spatial parcellation, or different methods for constructing the networks. To pursue this, we develop a novel network comparison framework based on persistent homology from a topological data analysis. We use the new network comparison tools to characterize the spatial and temporal scales under which consistent functional networks can be constructed. The methods are illustrated on Human Connectome Project data, showing that the DISCOH 2 network construction method outperforms other approaches at most data spatiotemporal resolutions.
NASA Astrophysics Data System (ADS)
Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen
2015-11-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.
Evolutionary Construction of Block-Based Neural Networks in Consideration of Failure
NASA Astrophysics Data System (ADS)
Takamori, Masahito; Koakutsu, Seiichi; Hamagami, Tomoki; Hirata, Hironori
In this paper we propose a modified gene coding and an evolutionary construction in consideration of failure in evolutionary construction of Block-Based Neural Networks. In the modified gene coding, we arrange the genes of weights on a chromosome in consideration of the position relation of the genes of weight and structure. By the modified gene coding, the efficiency of search by crossover is increased. Thereby, it is thought that improvement of the convergence rate of construction and shortening of construction time can be performed. In the evolutionary construction in consideration of failure, the structure which is adapted for failure is built in the state where failure occured. Thereby, it is thought that BBNN can be reconstructed in a short time at the time of failure. To evaluate the proposed method, we apply it to pattern classification and autonomous mobile robot control problems. The computational experiments indicate that the proposed method can improve convergence rate of construction and shorten of construction and reconstruction time.
[Delineation of ecological security pattern based on ecological network].
Fu, Qiang; Gu, Chao Lin
2017-03-18
Ecological network can be used to describe and assess the relationship between spatial organization of landscapes and species survival under the condition of the habitat fragmentation. Taking Qingdao City as the research area, woodland and wetland ecological networks in 2005 were simulated based on least cost path method, and the ecological networks were classified by their corridors' cumulative cost value. We made importance distinction of ecological network structure elements such as patches and corridors using betweenness centrality index and correlation length-percentage of importance of omitted patches index, and then created the structure system of ecological network. Considering the effects brought by the newly-added construction land from 2005 to 2013, we proposed the ecological security pattern for construction land change of Qingdao City. The results showed that based on ecological network framework, graph theory based methods could be used to quantify both attributes of specific ecological land (e.g., the area of an ecological network patch) and functional connection between ecological lands. Between 2005 and 2013, large area of wetlands had been destroyed by newly-added construction land, while the role of specific woodland and wetland played in the connection of the whole network had not been considered. The delineation of ecological security pattern based on ecological network could optimize regional ecological basis, provide accurate spatial explicit decision for ecological conservation and restoration, and meanwhile provide scientific and reasonable space guidance for urban spatial expansion.
Structure and formation of ant transportation networks
Latty, Tanya; Ramsch, Kai; Ito, Kentaro; Nakagaki, Toshiyuki; Sumpter, David J. T.; Middendorf, Martin; Beekman, Madeleine
2011-01-01
Many biological systems use extensive networks for the transport of resources and information. Ants are no exception. How do biological systems achieve efficient transportation networks in the absence of centralized control and without global knowledge of the environment? Here, we address this question by studying the formation and properties of inter-nest transportation networks in the Argentine ant (Linepithema humile). We find that the formation of inter-nest networks depends on the number of ants involved in the construction process. When the number of ants is sufficient and networks do form, they tend to have short total length but a low level of robustness. These networks are topologically similar to either minimum spanning trees or Steiner networks. The process of network formation involves an initial construction of multiple links followed by a pruning process that reduces the number of trails. Our study thus illuminates the conditions under and the process by which minimal biological transport networks can be constructed. PMID:21288958
Composing Music with Complex Networks
NASA Astrophysics Data System (ADS)
Liu, Xiaofan; Tse, Chi K.; Small, Michael
In this paper we study the network structure in music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurrences. We analyze sample compositions from Bach, Mozart, Chopin, as well as other types of music including Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. Power-law exponents of degree distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be created by using a biased random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. The newly created music from complex networks will be played in the presentation.
Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui
2017-01-01
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli, and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs. PMID:29113310
Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui
2017-10-06
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.
Network Structure and the Risk for HIV Transmission Among Rural Drug Users
Young, A. M.; Jonas, A. B.; Mullins, U. L.; Halgin, D. S.
2012-01-01
Research suggests that structural properties of drug users’ social networks can have substantial effects on HIV risk. The purpose of this study was to investigate if the structural properties of Appalachian drug users’ risk networks could lend insight into the potential for HIV transmission in this population. Data from 503 drug users recruited through respondent-driven sampling were used to construct a sociometric risk network. Network ties represented relationships in which partners had engaged in unprotected sex and/or shared injection equipment. Compared to 1,000 randomly generated networks, the observed network was found to have a larger main component and exhibit more cohesiveness and centralization than would be expected at random. Thus, the risk network structure in this sample has many structural characteristics shown to be facilitative of HIV transmission. This underscores the importance of primary prevention in this population and prompts further investigation into the epidemiology of HIV in the region. PMID:23184464
NASA Astrophysics Data System (ADS)
Yashima, Kenta; Ito, Kana; Nakamura, Kazuyuki
2013-03-01
When an Infectious disease where to prevail throughout the population, epidemic parameters such as the basic reproduction ratio, initial point of infection etc. are estimated from the time series data of infected population. However, it is unclear how does the structure of host population affects this estimation accuracy. In other words, what kind of city is difficult to estimate its epidemic parameters? To answer this question, epidemic data are simulated by constructing a commuting network with different network structure and running the infection process over this network. From the given time series data for each network structure, we would like to analyzed estimation accuracy of epidemic parameters.
Structural Bridges through Fold Space.
Edwards, Hannah; Deane, Charlotte M
2015-09-01
Several protein structure classification schemes exist that partition the protein universe into structural units called folds. Yet these schemes do not discuss how these units sit relative to each other in a global structure space. In this paper we construct networks that describe such global relationships between folds in the form of structural bridges. We generate these networks using four different structural alignment methods across multiple score thresholds. The networks constructed using the different methods remain a similar distance apart regardless of the probability threshold defining a structural bridge. This suggests that at least some structural bridges are method specific and that any attempt to build a picture of structural space should not be reliant on a single structural superposition method. Despite these differences all representations agree on an organisation of fold space into five principal community structures: all-α, all-β sandwiches, all-β barrels, α/β and α + β. We project estimated fold ages onto the networks and find that not only are the pairings of unconnected folds associated with higher age differences than bridged folds, but this difference increases with the number of networks displaying an edge. We also examine different centrality measures for folds within the networks and how these relate to fold age. While these measures interpret the central core of fold space in varied ways they all identify the disposition of ancestral folds to fall within this core and that of the more recently evolved structures to provide the peripheral landscape. These findings suggest that evolutionary information is encoded along these structural bridges. Finally, we identify four highly central pivotal folds representing dominant topological features which act as key attractors within our landscapes.
Multi-frequency complex network from time series for uncovering oil-water flow structure.
Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan
2015-02-04
Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.
Relationship between microscopic dynamics in traffic flow and complexity in networks.
Li, Xin-Gang; Gao, Zi-You; Li, Ke-Ping; Zhao, Xiao-Mei
2007-07-01
Complex networks are constructed in the evolution process of traffic flow, and the states of traffic flow are represented by nodes in the network. The traffic dynamics can then be studied by investigating the statistical properties of those networks. According to Kerner's three-phase theory, there are two different phases in congested traffic, synchronized flow and wide moving jam. In the framework of this theory, we study different properties of synchronized flow and moving jam in relation to complex network. Scale-free network is constructed in stop-and-go traffic, i.e., a sequence of moving jams [Chin. Phys. Lett. 10, 2711 (2005)]. In this work, the networks generated in synchronized flow are investigated in detail. Simulation results show that the degree distribution of the networks constructed in synchronized flow has two power law regions, so the distinction in topological structure can really reflect the different dynamics in traffic flow. Furthermore, the real traffic data are investigated by this method, and the results are consistent with the simulations.
An evolutionary algorithm that constructs recurrent neural networks.
Angeline, P J; Saunders, G M; Pollack, J B
1994-01-01
Standard methods for simultaneously inducing the structure and weights of recurrent neural networks limit every task to an assumed class of architectures. Such a simplification is necessary since the interactions between network structure and function are not well understood. Evolutionary computations, which include genetic algorithms and evolutionary programming, are population-based search methods that have shown promise in many similarly complex tasks. This paper argues that genetic algorithms are inappropriate for network acquisition and describes an evolutionary program, called GNARL, that simultaneously acquires both the structure and weights for recurrent networks. GNARL's empirical acquisition method allows for the emergence of complex behaviors and topologies that are potentially excluded by the artificial architectural constraints imposed in standard network induction methods.
Molecular ecological network analyses.
Deng, Ye; Jiang, Yi-Huei; Yang, Yunfeng; He, Zhili; Luo, Feng; Zhou, Jizhong
2012-05-30
Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open-accessible now (http://ieg2.ou.edu/MENA). The RMT-based molecular ecological network analysis provides powerful tools to elucidate network interactions in microbial communities and their responses to environmental changes, which are fundamentally important for research in microbial ecology and environmental microbiology.
A network analysis of the Chinese stock market
NASA Astrophysics Data System (ADS)
Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang
2009-07-01
In many practical important cases, a massive dataset can be represented as a very large network with certain attributes associated with its vertices and edges. Stock markets generate huge amounts of data, which can be use for constructing the network reflecting the market’s behavior. In this paper, we use a threshold method to construct China’s stock correlation network and then study the network’s structural properties and topological stability. We conduct a statistical analysis of this network and show that it follows a power-law model. We also detect components, cliques and independent sets in this network. These analyses allows one to apply a new data mining technique of classifying financial instruments based on stock price data, which provides a deeper insight into the internal structure of the stock market. Moreover, we test the topological stability of this network and find that it displays a topological robustness against random vertex failures, but it is also fragile to intentional attacks. Such a network stability property would be also useful for portfolio investment and risk management.
Uni10: an open-source library for tensor network algorithms
NASA Astrophysics Data System (ADS)
Kao, Ying-Jer; Hsieh, Yun-Da; Chen, Pochung
2015-09-01
We present an object-oriented open-source library for developing tensor network algorithms written in C++ called Uni10. With Uni10, users can build a symmetric tensor from a collection of bonds, while the bonds are constructed from a list of quantum numbers associated with different quantum states. It is easy to label and permute the indices of the tensors and access a block associated with a particular quantum number. Furthermore a network class is used to describe arbitrary tensor network structure and to perform network contractions efficiently. We give an overview of the basic structure of the library and the hierarchy of the classes. We present examples of the construction of a spin-1 Heisenberg Hamiltonian and the implementation of the tensor renormalization group algorithm to illustrate the basic usage of the library. The library described here is particularly well suited to explore and fast prototype novel tensor network algorithms and to implement highly efficient codes for existing algorithms.
A proposal of fuzzy connective with learning function and its application to fuzzy retrieval system
NASA Technical Reports Server (NTRS)
Hayashi, Isao; Naito, Eiichi; Ozawa, Jun; Wakami, Noboru
1993-01-01
A new fuzzy connective and a structure of network constructed by fuzzy connectives are proposed to overcome a drawback of conventional fuzzy retrieval systems. This network represents a retrieval query and the fuzzy connectives in networks have a learning function to adjust its parameters by data from a database and outputs of a user. The fuzzy retrieval systems employing this network are also constructed. Users can retrieve results even with a query whose attributes do not exist in a database schema and can get satisfactory results for variety of thinkings by learning function.
Construction and manipulation of functional three-dimensional droplet networks.
Wauer, Tobias; Gerlach, Holger; Mantri, Shiksha; Hill, Jamie; Bayley, Hagan; Sapra, K Tanuj
2014-01-28
Previously, we reported the manual assembly of lipid-coated aqueous droplets in oil to form two-dimensional (2D) networks in which the droplets are connected through single lipid bilayers. Here we assemble lipid-coated droplets in robust, freestanding 3D geometries: for example, a 14-droplet pyramidal assembly. The networks are designed, and each droplet is placed in a designated position. When protein pores are inserted in the bilayers between specific constituent droplets, electrical and chemical communication pathways are generated. We further describe an improved means to construct 3D droplet networks with defined organizations by the manipulation of aqueous droplets containing encapsulated magnetic beads. The droplets are maneuvered in a magnetic field to form simple construction modules, which are then used to form larger 2D and 3D structures including a 10-droplet pyramid. A methodology to construct freestanding, functional 3D droplet networks is an important step toward the programmed and automated manufacture of synthetic minimal tissues.
Structure and evolution of a European Parliament via a network and correlation analysis
NASA Astrophysics Data System (ADS)
Puccio, Elena; Pajala, Antti; Piilo, Jyrki; Tumminello, Michele
2016-11-01
We present a study of the network of relationships among elected members of the Finnish parliament, based on a quantitative analysis of initiative co-signatures, and its evolution over 16 years. To understand the structure of the parliament, we constructed a statistically validated network of members, based on the similarity between the patterns of initiatives they signed. We looked for communities within the network and characterized them in terms of members' attributes, such as electoral district and party. To gain insight on the nested structure of communities, we constructed a hierarchical tree of members from the correlation matrix. Afterwards, we studied parliament dynamics yearly, with a focus on correlations within and between parties, by also distinguishing between government and opposition. Finally, we investigated the role played by specific individuals, at a local level. In particular, whether they act as proponents who gather consensus, or as signers. Our results provide a quantitative background to current theories in political science. From a methodological point of view, our network approach has proven able to highlight both local and global features of a complex social system.
Fault-Tolerant Algorithms for Connectivity Restoration in Wireless Sensor Networks.
Zeng, Yali; Xu, Li; Chen, Zhide
2015-12-22
As wireless sensor network (WSN) is often deployed in a hostile environment, nodes in the networks are prone to large-scale failures, resulting in the network not working normally. In this case, an effective restoration scheme is needed to restore the faulty network timely. Most of existing restoration schemes consider more about the number of deployed nodes or fault tolerance alone, but fail to take into account the fact that network coverage and topology quality are also important to a network. To address this issue, we present two algorithms named Full 2-Connectivity Restoration Algorithm (F2CRA) and Partial 3-Connectivity Restoration Algorithm (P3CRA), which restore a faulty WSN in different aspects. F2CRA constructs the fan-shaped topology structure to reduce the number of deployed nodes, while P3CRA constructs the dual-ring topology structure to improve the fault tolerance of the network. F2CRA is suitable when the restoration cost is given the priority, and P3CRA is suitable when the network quality is considered first. Compared with other algorithms, these two algorithms ensure that the network has stronger fault-tolerant function, larger coverage area and better balanced load after the restoration.
Yang, Pingping; Xie, Jiale; Guo, Chunxian; Li, Chang Ming
2017-01-01
Soft-material PEDOT is used to network hard Co 3 O 4 nanowires for constructing both ion- and electron-conductive hierarchical porous structure Co 3 O 4 /PEDOT to greatly boost the capacitor energy density than sum of that of plain Co 3 O 4 nanowires and PEDOT film. Specifically, the networked hierarchical porous structure of Co 3 O 4 /PEDOT is synthesized and tailored through hydrothermal method and post-electrochemical polymerization method for the PEDOT coating onto Co 3 O 4 nanowires. Typically, Co 3 O 4 /PEDOT supercapacitor gets a highest areal capacitance of 160mFcm -2 at a current density of 0.2mAcm -2 , which is about 2.2 times larger than the sum of that of plain Co 3 O 4 NWs (0.92mFcm -2 ) and PEDOT film (69.88mFcm -2 ). Besides, if only PEDOT as active mass is counted, Co 3 O 4 /PEDOT cell can achieve a highest capacitance of 567.21Fg -1 , this is the highest capacitance value obtained by PEDOT-based supercapacitors. Furthermore, this soft-hard network porous structure also achieves a high cycling stability of 93% capacitance retention after the 20,000th cycle. This work demonstrates a new approach to constructing both ion and electron conductive hierarchical porous structure to significantly boost energy density of a supercapacitor. Copyright © 2016 Elsevier Inc. All rights reserved.
Surveying traffic congestion based on the concept of community structure of complex networks
NASA Astrophysics Data System (ADS)
Ma, Lili; Zhang, Zhanli; Li, Meng
2016-07-01
In this paper, taking the traffic of Beijing city as an instance, we study city traffic states, especially traffic congestion, based on the concept of network community structure. Concretely, using the floating car data (FCD) information of vehicles gained from the intelligent transport system (ITS) of the city, we construct a new traffic network model which is with floating cars as network nodes and time-varying. It shows that this traffic network has Gaussian degree distributions at different time points. Furthermore, compared with free traffic situations, our simulations show that the traffic network generally has more obvious community structures with larger values of network fitness for congested traffic situations, and through the GPSspg web page, we show that all of our results are consistent with the reality. Then, it indicates that network community structure should be an available way for investigating city traffic congestion problems.
Complex network structure of musical compositions: Algorithmic generation of appealing music
NASA Astrophysics Data System (ADS)
Liu, Xiao Fan; Tse, Chi K.; Small, Michael
2010-01-01
In this paper we construct networks for music and attempt to compose music artificially. Networks are constructed with nodes and edges corresponding to musical notes and their co-occurring connections. We analyze classical music from Bach, Mozart, Chopin, as well as other types of music such as Chinese pop music. We observe remarkably similar properties in all networks constructed from the selected compositions. We conjecture that preserving the universal network properties is a necessary step in artificial composition of music. Power-law exponents of node degree, node strength and/or edge weight distributions, mean degrees, clustering coefficients, mean geodesic distances, etc. are reported. With the network constructed, music can be composed artificially using a controlled random walk algorithm, which begins with a randomly chosen note and selects the subsequent notes according to a simple set of rules that compares the weights of the edges, weights of the nodes, and/or the degrees of nodes. By generating a large number of compositions, we find that this algorithm generates music which has the necessary qualities to be subjectively judged as appealing.
A network model of the interbank market
NASA Astrophysics Data System (ADS)
Li, Shouwei; He, Jianmin; Zhuang, Yaming
2010-12-01
This work introduces a network model of an interbank market based on interbank credit lending relationships. It generates some network features identified through empirical analysis. The critical issue to construct an interbank network is to decide the edges among banks, which is realized in this paper based on the interbank’s degree of trust. Through simulation analysis of the interbank network model, some typical structural features are identified in our interbank network, which are also proved to exist in real interbank networks. They are namely, a low clustering coefficient and a relatively short average path length, community structures, and a two-power-law distribution of out-degree and in-degree.
Lin, Naibo; Liu, Xiang Yang
2015-11-07
This review examines how the concepts and ideas of crystallization can be extended further and applied to the field of mesoscopic soft materials. It concerns the structural characteristics vs. the macroscopic performance, and the formation mechanism of crystal networks. Although this subject can be discussed in a broad sense across the area of mesoscopic soft materials, our main focus is on supramolecular materials, spider and silkworm silks, and biominerals. First, the occurrence of a hierarchical structure, i.e. crystal network and domain network structures, will facilitate the formation kinetics of mesoscopic phases and boost up the macroscopic performance of materials in some cases (i.e. spider silk fibres). Second, the structure and performance of materials can be correlated in some way by the four factors: topology, correlation length, symmetry/ordering, and strength of association of crystal networks. Moreover, four different kinetic paths of crystal network formation are identified, namely, one-step process of assembly, two-step process of assembly, mixed mode of assembly and foreign molecule mediated assembly. Based on the basic mechanisms of crystal nucleation and growth, the formation of crystal networks, such as crystallographic mismatch (or noncrystallographic) branching (tip branching and fibre side branching) and fibre/polymeric side merging, are reviewed. This facilitates the rational design and construction of crystal networks in supramolecular materials. In this context, the (re-)construction of a hierarchical crystal network structure can be implemented by thermal, precipitate, chemical, and sonication stimuli. As another important class of soft materials, the unusual mechanical performance of spider and silkworm silk fibres are reviewed in comparison with the regenerated silk protein derivatives. It follows that the considerably larger breaking stress and unusual breaking strain of spider silk fibres vs. silkworm silk fibres can be interpreted according to the synergistically correlated hierarchical structures of the domain and crystal networks, which can be quantified by the hierarchical structural correlation and the four structural parameters. Based on the concept of crystal networks, the new understanding acquired will transfer the research and engineering of mesoscopic materials, particularly, soft functional materials, to a new phase.
Tree tensor network approach to simulating Shor's algorithm
NASA Astrophysics Data System (ADS)
Dumitrescu, Eugene
2017-12-01
Constructively simulating quantum systems furthers our understanding of qualitative and quantitative features which may be analytically intractable. In this paper, we directly simulate and explore the entanglement structure present in the paradigmatic example for exponential quantum speedups: Shor's algorithm. To perform our simulation, we construct a dynamic tree tensor network which manifestly captures two salient circuit features for modular exponentiation. These are the natural two-register bipartition and the invariance of entanglement with respect to permutations of the top-register qubits. Our construction help identify the entanglement entropy properties, which we summarize by a scaling relation. Further, the tree network is efficiently projected onto a matrix product state from which we efficiently execute the quantum Fourier transform. Future simulation of quantum information states with tensor networks exploiting circuit symmetries is discussed.
Phylogeny of metabolic networks: a spectral graph theoretical approach.
Deyasi, Krishanu; Banerjee, Anirban; Deb, Bony
2015-10-01
Many methods have been developed for finding the commonalities between different organisms in order to study their phylogeny. The structure of metabolic networks also reveals valuable insights into metabolic capacity of species as well as into the habitats where they have evolved. We constructed metabolic networks of 79 fully sequenced organisms and compared their architectures. We used spectral density of normalized Laplacian matrix for comparing the structure of networks. The eigenvalues of this matrix reflect not only the global architecture of a network but also the local topologies that are produced by different graph evolutionary processes like motif duplication or joining. A divergence measure on spectral densities is used to quantify the distances between various metabolic networks, and a split network is constructed to analyse the phylogeny from these distances. In our analysis, we focused on the species that belong to different classes, but appear more related to each other in the phylogeny. We tried to explore whether they have evolved under similar environmental conditions or have similar life histories. With this focus, we have obtained interesting insights into the phylogenetic commonality between different organisms.
Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong
2017-10-01
Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A new method for constructing networks from binary data
NASA Astrophysics Data System (ADS)
van Borkulo, Claudia D.; Borsboom, Denny; Epskamp, Sacha; Blanken, Tessa F.; Boschloo, Lynn; Schoevers, Robert A.; Waldorp, Lourens J.
2014-08-01
Network analysis is entering fields where network structures are unknown, such as psychology and the educational sciences. A crucial step in the application of network models lies in the assessment of network structure. Current methods either have serious drawbacks or are only suitable for Gaussian data. In the present paper, we present a method for assessing network structures from binary data. Although models for binary data are infamous for their computational intractability, we present a computationally efficient model for estimating network structures. The approach, which is based on Ising models as used in physics, combines logistic regression with model selection based on a Goodness-of-Fit measure to identify relevant relationships between variables that define connections in a network. A validation study shows that this method succeeds in revealing the most relevant features of a network for realistic sample sizes. We apply our proposed method to estimate the network of depression and anxiety symptoms from symptom scores of 1108 subjects. Possible extensions of the model are discussed.
Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics
NASA Astrophysics Data System (ADS)
Chen, Yu-Zhong; Lai, Ying-Cheng
2018-03-01
Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.
Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics.
Chen, Yu-Zhong; Lai, Ying-Cheng
2018-03-01
Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.
Ohtana, Yuki; Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Huang, Ming; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Horai, Hisayuki; Nakamura, Yukiko; Morita Hirai, Aki; Lange, Klaus W; Kibinge, Nelson K; Katsuragi, Tetsuo; Shirai, Tsuyoshi; Kanaya, Shigehiko
2014-12-01
Developing database systems connecting diverse species based on omics is the most important theme in big data biology. To attain this purpose, we have developed KNApSAcK Family Databases, which are utilized in a number of researches in metabolomics. In the present study, we have developed a network-based approach to analyze relationships between 3D structure and biological activity of metabolites consisting of four steps as follows: construction of a network of metabolites based on structural similarity (Step 1), classification of metabolites into structure groups (Step 2), assessment of statistically significant relations between structure groups and biological activities (Step 3), and 2-dimensional clustering of the constructed data matrix based on statistically significant relations between structure groups and biological activities (Step 4). Applying this method to a data set consisting of 2072 secondary metabolites and 140 biological activities reported in KNApSAcK Metabolite Activity DB, we obtained 983 statistically significant structure group-biological activity pairs. As a whole, we systematically analyzed the relationship between 3D-chemical structures of metabolites and biological activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, Renping; Zhang, Han; An, Le; Chen, Xiaobo; Wei, Zhihui; Shen, Dinggang
2017-01-01
Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l1-norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a “connectivity strength-weighted sparse group constraint.” In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. PMID:28150897
Vertex centrality as a measure of information flow in Italian Corporate Board Networks
NASA Astrophysics Data System (ADS)
Grassi, Rosanna
2010-06-01
The aim of this article is to investigate the governance models of companies listed on the Italian Stock Exchange by using a network approach, which describes the interlinks between boards of directors. Following mainstream literature, I construct a weighted graph representing the listed companies (vertices) and their relationships (weighted edges), the Corporate Board Network; I then apply three different vertex centrality measures: degree, betweenness and flow betweenness. What emerges from the network construction and by applying the degree centrality is a structure with a large number of connections but not particularly dense, where the presence of a small number of highly connected nodes (hubs) is evident. Then I focus on betweenness and flow betweenness; indeed I expect that these centrality measures may give a representation of the intensity of the relationship between companies, capturing the volume of information flowing from one vertex to another. Finally, I investigate the possible scale-free structure of the network.
NASA Astrophysics Data System (ADS)
Chorozoglou, D.; Kugiumtzis, D.; Papadimitriou, E.
2018-06-01
The seismic hazard assessment in the area of Greece is attempted by studying the earthquake network structure, such as small-world and random. In this network, a node represents a seismic zone in the study area and a connection between two nodes is given by the correlation of the seismic activity of two zones. To investigate the network structure, and particularly the small-world property, the earthquake correlation network is compared with randomized ones. Simulations on multivariate time series of different length and number of variables show that for the construction of randomized networks the method randomizing the time series performs better than methods randomizing directly the original network connections. Based on the appropriate randomization method, the network approach is applied to time series of earthquakes that occurred between main shocks in the territory of Greece spanning the period 1999-2015. The characterization of networks on sliding time windows revealed that small-world structure emerges in the last time interval, shortly before the main shock.
A computational geometry approach to pore network construction for granular packings
NASA Astrophysics Data System (ADS)
van der Linden, Joost H.; Sufian, Adnan; Narsilio, Guillermo A.; Russell, Adrian R.; Tordesillas, Antoinette
2018-03-01
Pore network construction provides the ability to characterize and study the pore space of inhomogeneous and geometrically complex granular media in a range of scientific and engineering applications. Various approaches to the construction have been proposed, however subtle implementational details are frequently omitted, open access to source code is limited, and few studies compare multiple algorithms in the context of a specific application. This study presents, in detail, a new pore network construction algorithm, and provides a comprehensive comparison with two other, well-established Delaunay triangulation-based pore network construction methods. Source code is provided to encourage further development. The proposed algorithm avoids the expensive non-linear optimization procedure in existing Delaunay approaches, and is robust in the presence of polydispersity. Algorithms are compared in terms of structural, geometrical and advanced connectivity parameters, focusing on the application of fluid flow characteristics. Sensitivity of the various networks to permeability is assessed through network (Stokes) simulations and finite-element (Navier-Stokes) simulations. Results highlight strong dependencies of pore volume, pore connectivity, throat geometry and fluid conductance on the degree of tetrahedra merging and the specific characteristics of the throats targeted by the merging algorithm. The paper concludes with practical recommendations on the applicability of the three investigated algorithms.
Orlando, Lori A; Sperber, Nina R; Voils, Corrine; Nichols, Marshall; Myers, Rachel A; Wu, R Ryanne; Rakhra-Burris, Tejinder; Levy, Kenneth D; Levy, Mia; Pollin, Toni I; Guan, Yue; Horowitz, Carol R; Ramos, Michelle; Kimmel, Stephen E; McDonough, Caitrin W; Madden, Ebony B; Damschroder, Laura J
2018-06-01
PurposeImplementation research provides a structure for evaluating the clinical integration of genomic medicine interventions. This paper describes the Implementing Genomics in Practice (IGNITE) Network's efforts to promote (i) a broader understanding of genomic medicine implementation research and (ii) the sharing of knowledge generated in the network.MethodsTo facilitate this goal, the IGNITE Network Common Measures Working Group (CMG) members adopted the Consolidated Framework for Implementation Research (CFIR) to guide its approach to identifying constructs and measures relevant to evaluating genomic medicine as a whole, standardizing data collection across projects, and combining data in a centralized resource for cross-network analyses.ResultsCMG identified 10 high-priority CFIR constructs as important for genomic medicine. Of those, eight did not have standardized measurement instruments. Therefore, we developed four survey tools to address this gap. In addition, we identified seven high-priority constructs related to patients, families, and communities that did not map to CFIR constructs. Both sets of constructs were combined to create a draft genomic medicine implementation model.ConclusionWe developed processes to identify constructs deemed valuable for genomic medicine implementation and codified them in a model. These resources are freely available to facilitate knowledge generation and sharing across the field.
Signalling Network Construction for Modelling Plant Defence Response
Miljkovic, Dragana; Stare, Tjaša; Mozetič, Igor; Podpečan, Vid; Petek, Marko; Witek, Kamil; Dermastia, Marina; Lavrač, Nada; Gruden, Kristina
2012-01-01
Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for modelling other biological systems, given that an adequate vocabulary is provided. PMID:23272172
An Asymmetrical Network Model of the Japanese EFL Learner's Mental Lexicon
ERIC Educational Resources Information Center
Aotani, Noriko; Sugino, Naoki; Fraser, Simon; Koga, Yuya; Shojima, Kojiro
2016-01-01
The aim of this study is to construct a model of a simple lexical network showing the strength and asymmetry of the connections between vocabulary items in the L2 mental lexicon of Japanese learners. The study focuses on eight nouns and investigates how they are networked, and whether the existing network structure formed by these nouns would be…
ERIC Educational Resources Information Center
Travis, Timothy J.
2015-01-01
Instructional rounds are an emerging network structure with processes and protocols designed to develop superintendents' knowledge and skills in leading large-scale improvement, to enable superintendents to build an infrastructure that supports the work of improvement, to assist superintendents in distributing leadership throughout their district,…
Distributed Sensing and Processing: A Graphical Model Approach
2005-11-30
that Ramanujan graph toplogies maximize the convergence rate of distributed detection consensus algorithms, improving over three orders of...small world type network designs. 14. SUBJECT TERMS Ramanujan graphs, sensor network topology, sensor network...that Ramanujan graphs, for which there are explicit algebraic constructions, have large eigenratios, converging much faster than structured graphs
A General Map of Iron Metabolism and Tissue-specific Subnetworks
Hower, Valerie; Mendes, Pedro; Torti, Frank M.; Laubenbacher, Reinhard; Akman, Steven; Shulaev, Vladmir; Torti, Suzy V.
2009-01-01
Iron is required for survival of mammalian cells. Recently, understanding of iron metabolism and trafficking has increased dramatically, revealing a complex, interacting network largely unknown just a few years ago. This provides an excellent model for systems biology development and analysis. The first step in such an analysis is the construction of a structural network of iron metabolism, which we present here. This network was created using CellDesigner version 3.5.2 and includes reactions occurring in mammalian cells of numerous tissue types. The iron metabolic network contains 151 chemical species and 107 reactions and transport steps. Starting from this general model, we construct iron networks for specific tissues and cells that are fundamental to maintaining body iron homeostasis. We include subnetworks for cells of the intestine and liver, tissues important in iron uptake and storage, respectively; as well as the reticulocyte and macrophage, key cells in iron utilization and recycling. The addition of kinetic information to our structural network will permit the simulation of iron metabolism in different tissues as well as in health and disease. PMID:19381358
Integrated cellular network of transcription regulations and protein-protein interactions
2010-01-01
Background With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. Results In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. Conclusions We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology. PMID:20211003
Integrated cellular network of transcription regulations and protein-protein interactions.
Wang, Yu-Chao; Chen, Bor-Sen
2010-03-08
With the accumulation of increasing omics data, a key goal of systems biology is to construct networks at different cellular levels to investigate cellular machinery of the cell. However, there is currently no satisfactory method to construct an integrated cellular network that combines the gene regulatory network and the signaling regulatory pathway. In this study, we integrated different kinds of omics data and developed a systematic method to construct the integrated cellular network based on coupling dynamic models and statistical assessments. The proposed method was applied to S. cerevisiae stress responses, elucidating the stress response mechanism of the yeast. From the resulting integrated cellular network under hyperosmotic stress, the highly connected hubs which are functionally relevant to the stress response were identified. Beyond hyperosmotic stress, the integrated network under heat shock and oxidative stress were also constructed and the crosstalks of these networks were analyzed, specifying the significance of some transcription factors to serve as the decision-making devices at the center of the bow-tie structure and the crucial role for rapid adaptation scheme to respond to stress. In addition, the predictive power of the proposed method was also demonstrated. We successfully construct the integrated cellular network which is validated by literature evidences. The integration of transcription regulations and protein-protein interactions gives more insight into the actual biological network and is more predictive than those without integration. The method is shown to be powerful and flexible and can be used under different conditions and for different species. The coupling dynamic models of the whole integrated cellular network are very useful for theoretical analyses and for further experiments in the fields of network biology and synthetic biology.
Cross-Cultural Validation of the Five-Factor Structure of Social Goals: A Filipino Investigation
ERIC Educational Resources Information Center
King, Ronnel B.; Watkins, David A.
2012-01-01
The aim of the present study was to test the cross-cultural validity of the five-factor structure of social goals that Dowson and McInerney proposed. Using both between-network and within-network approaches to construct validation, 1,147 Filipino high school students participated in the study. Confirmatory factor analysis indicated that the…
Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.
2016-01-01
A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229
Polymer-based platform for microfluidic systems
Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA
2009-10-13
A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.
Monitoring system of arch bridge for safety network management
NASA Astrophysics Data System (ADS)
Joo, Bong Chul; Yoo, Young Jun; Lee, Chin Hyung; Park, Ki Tae; Hwang, Yoon Koog
2010-03-01
Korea has constructed the safety management network monitoring test systems for the civil infrastructure since 2006 which includes airport structure, irrigation structure, railroad structure, road structure, and underground structure. Bridges among the road structure include the various superstructure types which are Steel box girder bridge, suspension bridge, PSC-box-girder bridge, and arch bridge. This paper shows the process of constructing the real-time monitoring system for the arch bridge and the measured result by the system. The arch type among various superstructure types has not only the structural efficiency but the visual beauty, because the arch type superstructure makes full use of the feature of curve. The main measuring points of arch bridges composited by curved members make a difference to compare with the system of girder bridges composited by straight members. This paper also shows the method to construct the monitoring system that considers the characteristic of the arch bridge. The system now includes strain gauges and thermometers, and it will include various sensor types such as CCTV, accelerometers and so on additionally. For the long term and accuracy monitoring, the latest optical sensors and equipments are applied to the system.
Impact of network structure on the capacity of wireless multihop ad hoc communication
NASA Astrophysics Data System (ADS)
Krause, Wolfram; Glauche, Ingmar; Sollacher, Rudolf; Greiner, Martin
2004-07-01
As a representative of a complex technological system, the so-called wireless multihop ad hoc communication networks are discussed. They represent an infrastructure-less generalization of todays wireless cellular phone networks. Lacking a central control authority, the ad hoc nodes have to coordinate themselves such that the overall network performs in an optimal way. A performance indicator is the end-to-end throughput capacity. Various models, generating differing ad hoc network structure via differing transmission power assignments, are constructed and characterized. They serve as input for a generic data traffic simulation as well as some semi-analytic estimations. The latter reveal that due to the most-critical-node effect the end-to-end throughput capacity sensitively depends on the underlying network structure, resulting in differing scaling laws with respect to network size.
Contact Trees: Network Visualization beyond Nodes and Edges
Sallaberry, Arnaud; Fu, Yang-chih; Ho, Hwai-Chung; Ma, Kwan-Liu
2016-01-01
Node-Link diagrams make it possible to take a quick glance at how nodes (or actors) in a network are connected by edges (or ties). A conventional network diagram of a “contact tree” maps out a root and branches that represent the structure of nodes and edges, often without further specifying leaves or fruits that would have grown from small branches. By furnishing such a network structure with leaves and fruits, we reveal details about “contacts” in our ContactTrees upon which ties and relationships are constructed. Our elegant design employs a bottom-up approach that resembles a recent attempt to understand subjective well-being by means of a series of emotions. Such a bottom-up approach to social-network studies decomposes each tie into a series of interactions or contacts, which can help deepen our understanding of the complexity embedded in a network structure. Unlike previous network visualizations, ContactTrees highlight how relationships form and change based upon interactions among actors, as well as how relationships and networks vary by contact attributes. Based on a botanical tree metaphor, the design is easy to construct and the resulting tree-like visualization can display many properties at both tie and contact levels, thus recapturing a key ingredient missing from conventional techniques of network visualization. We demonstrate ContactTrees using data sets consisting of up to three waves of 3-month contact diaries over the 2004-2012 period, and discuss how this design can be applied to other types of datasets. PMID:26784350
Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach
NASA Astrophysics Data System (ADS)
Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin
2017-08-01
Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.
Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.
Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak
2006-06-06
To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence information. This method may yield further information about biological evolution, such as the history of horizontal transfer of each gene, by studying the detailed structure of the phylogenetic tree constructed by the kernel-based method.
Stationary and structural control in gene regulatory networks: basic concepts
NASA Astrophysics Data System (ADS)
Dougherty, Edward R.; Pal, Ranadip; Qian, Xiaoning; Bittner, Michael L.; Datta, Aniruddha
2010-01-01
A major reason for constructing gene regulatory networks is to use them as models for determining therapeutic intervention strategies by deriving ways of altering their long-run dynamics in such a way as to reduce the likelihood of entering undesirable states. In general, two paradigms have been taken for gene network intervention: (1) stationary external control is based on optimally altering the status of a control gene (or genes) over time to drive network dynamics; and (2) structural intervention involves an optimal one-time change of the network structure (wiring) to beneficially alter the long-run behaviour of the network. These intervention approaches have mainly been developed within the context of the probabilistic Boolean network model for gene regulation. This article reviews both types of intervention and applies them to reducing the metastatic competence of cells via intervention in a melanoma-related network.
Taylor, Duncan; Biedermann, Alex; Hicks, Tacha; Champod, Christophe
2018-03-01
The hierarchy of propositions has been accepted amongst the forensic science community for some time. It is also accepted that the higher up the hierarchy the propositions are, against which the scientist are competent to evaluate their results, the more directly useful the testimony will be to the court. Because each case represents a unique set of circumstances and findings, it is difficult to come up with a standard structure for evaluation. One common tool that assists in this task is Bayesian networks (BNs). There is much diversity in the way that BN can be constructed. In this work, we develop a template for BN construction that allows sufficient flexibility to address most cases, but enough commonality and structure that the flow of information in the BN is readily recognised at a glance. We provide seven steps that can be used to construct BNs within this structure and demonstrate how they can be applied, using a case example. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Navigable networks as Nash equilibria of navigation games.
Gulyás, András; Bíró, József J; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri
2015-07-03
Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.
Protein Secondary Structure Prediction Using AutoEncoder Network and Bayes Classifier
NASA Astrophysics Data System (ADS)
Wang, Leilei; Cheng, Jinyong
2018-03-01
Protein secondary structure prediction is belong to bioinformatics,and it's important in research area. In this paper, we propose a new prediction way of protein using bayes classifier and autoEncoder network. Our experiments show some algorithms including the construction of the model, the classification of parameters and so on. The data set is a typical CB513 data set for protein. In terms of accuracy, the method is the cross validation based on the 3-fold. Then we can get the Q3 accuracy. Paper results illustrate that the autoencoder network improved the prediction accuracy of protein secondary structure.
HBNG: Graph theory based visualization of hydrogen bond networks in protein structures.
Tiwari, Abhishek; Tiwari, Vivek
2007-07-09
HBNG is a graph theory based tool for visualization of hydrogen bond network in 2D. Digraphs generated by HBNG facilitate visualization of cooperativity and anticooperativity chains and rings in protein structures. HBNG takes hydrogen bonds list files (output from HBAT, HBEXPLORE, HBPLUS and STRIDE) as input and generates a DOT language script and constructs digraphs using freeware AT and T Graphviz tool. HBNG is useful in the enumeration of favorable topologies of hydrogen bond networks in protein structures and determining the effect of cooperativity and anticooperativity on protein stability and folding. HBNG can be applied to protein structure comparison and in the identification of secondary structural regions in protein structures. Program is available from the authors for non-commercial purposes.
Yu, Renping; Zhang, Han; An, Le; Chen, Xiaobo; Wei, Zhihui; Shen, Dinggang
2017-05-01
Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l 1 -norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a "connectivity strength-weighted sparse group constraint." In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. Hum Brain Mapp 38:2370-2383, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Kumar, Girijesh; Gupta, Rajeev
2013-10-07
The present work shows the utilization of Co(3+) complexes appended with either para- or meta-arylcarboxylic acid groups as the molecular building blocks for the construction of three-dimensional {Co(3+)-Zn(2+)} and {Co(3+)-Cd(2+)} heterobimetallic networks. The structural characterizations of these networks show several interesting features including well-defined pores and channels. These networks function as heterogeneous and reusable catalysts for the regio- and stereoselective ring-opening reactions of various epoxides and size-selective cyanation reactions of assorted aldehydes.
Valdés, Julio J; Barton, Alan J
2007-05-01
A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.
Hydrogels for Engineering of Perfusable Vascular Networks
Liu, Juan; Zheng, Huaiyuan; Poh, Patrina S. P.; Machens, Hans-Günther; Schilling, Arndt F.
2015-01-01
Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation. PMID:26184185
Geometrical structure of Neural Networks: Geodesics, Jeffrey's Prior and Hyper-ribbons
NASA Astrophysics Data System (ADS)
Hayden, Lorien; Alemi, Alex; Sethna, James
2014-03-01
Neural networks are learning algorithms which are employed in a host of Machine Learning problems including speech recognition, object classification and data mining. In practice, neural networks learn a low dimensional representation of high dimensional data and define a model manifold which is an embedding of this low dimensional structure in the higher dimensional space. In this work, we explore the geometrical structure of a neural network model manifold. A Stacked Denoising Autoencoder and a Deep Belief Network are trained on handwritten digits from the MNIST database. Construction of geodesics along the surface and of slices taken from the high dimensional manifolds reveal a hierarchy of widths corresponding to a hyper-ribbon structure. This property indicates that neural networks fall into the class of sloppy models, in which certain parameter combinations dominate the behavior. Employing this information could prove valuable in designing both neural network architectures and training algorithms. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No . DGE-1144153.
Constructing Neuronal Network Models in Massively Parallel Environments.
Ippen, Tammo; Eppler, Jochen M; Plesser, Hans E; Diesmann, Markus
2017-01-01
Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers.
Constructing Neuronal Network Models in Massively Parallel Environments
Ippen, Tammo; Eppler, Jochen M.; Plesser, Hans E.; Diesmann, Markus
2017-01-01
Recent advances in the development of data structures to represent spiking neuron network models enable us to exploit the complete memory of petascale computers for a single brain-scale network simulation. In this work, we investigate how well we can exploit the computing power of such supercomputers for the creation of neuronal networks. Using an established benchmark, we divide the runtime of simulation code into the phase of network construction and the phase during which the dynamical state is advanced in time. We find that on multi-core compute nodes network creation scales well with process-parallel code but exhibits a prohibitively large memory consumption. Thread-parallel network creation, in contrast, exhibits speedup only up to a small number of threads but has little overhead in terms of memory. We further observe that the algorithms creating instances of model neurons and their connections scale well for networks of ten thousand neurons, but do not show the same speedup for networks of millions of neurons. Our work uncovers that the lack of scaling of thread-parallel network creation is due to inadequate memory allocation strategies and demonstrates that thread-optimized memory allocators recover excellent scaling. An analysis of the loop order used for network construction reveals that more complex tests on the locality of operations significantly improve scaling and reduce runtime by allowing construction algorithms to step through large networks more efficiently than in existing code. The combination of these techniques increases performance by an order of magnitude and harnesses the increasingly parallel compute power of the compute nodes in high-performance clusters and supercomputers. PMID:28559808
A neural network for controlling the configuration of frame structure with elastic members
NASA Technical Reports Server (NTRS)
Tsutsumi, Kazuyoshi
1989-01-01
A neural network for controlling the configuration of frame structure with elastic members is proposed. In the present network, the structure is modeled not by using the relative angles of the members but by using the distances between the joint locations alone. The relationship between the environment and the joints is also defined by their mutual distances. The analog neural network attains the reaching motion of the manipulator as a minimization problem of the energy constructed by the distances between the joints, the target, and the obstacles. The network can generate not only the final but also the transient configurations and the trajectory. This framework with flexibility and parallelism is very suitable for controlling the Space Telerobotic systems with many degrees of freedom.
Advanced functional network analysis in the geosciences: The pyunicorn package
NASA Astrophysics Data System (ADS)
Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen
2013-04-01
Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra
2009-03-01
In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.
Wu, Chia-Chou; Lin, Chih-Lung; Chen, Ting-Shou
2015-01-01
Hepatocellular carcinoma (HCC) is a major liver tumor (~80%), besides hepatoblastomas, angiosarcomas, and cholangiocarcinomas. In this study, we used a systems biology approach to construct protein-protein interaction networks (PPINs) for early-stage and late-stage liver cancer. By comparing the networks of these two stages, we found that the two networks showed some common mechanisms and some significantly different mechanisms. To obtain differential network structures between cancer and noncancer PPINs, we constructed cancer PPIN and noncancer PPIN network structures for the two stages of liver cancer by systems biology method using NGS data from cancer cells and adjacent noncancer cells. Using carcinogenesis relevance values (CRVs), we identified 43 and 80 significant proteins and their PPINs (network markers) for early-stage and late-stage liver cancer. To investigate the evolution of network biomarkers in the carcinogenesis process, a primary pathway analysis showed that common pathways of the early and late stages were those related to ordinary cancer mechanisms. A pathway specific to the early stage was the mismatch repair pathway, while pathways specific to the late stage were the spliceosome pathway, lysine degradation pathway, and progesterone-mediated oocyte maturation pathway. This study provides a new direction for cancer-targeted therapies at different stages. PMID:26366411
Navigable networks as Nash equilibria of navigation games
Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri
2015-01-01
Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277
Detection of core-periphery structure in networks based on 3-tuple motifs
NASA Astrophysics Data System (ADS)
Ma, Chuang; Xiang, Bing-Bing; Chen, Han-Shuang; Small, Michael; Zhang, Hai-Feng
2018-05-01
Detecting mesoscale structure, such as community structure, is of vital importance for analyzing complex networks. Recently, a new mesoscale structure, core-periphery (CP) structure, has been identified in many real-world systems. In this paper, we propose an effective algorithm for detecting CP structure based on a 3-tuple motif. In this algorithm, we first define a 3-tuple motif in terms of the patterns of edges as well as the property of nodes, and then a motif adjacency matrix is constructed based on the 3-tuple motif. Finally, the problem is converted to find a cluster that minimizes the smallest motif conductance. Our algorithm works well in different CP structures: including single or multiple CP structure, and local or global CP structures. Results on the synthetic and the empirical networks validate the high performance of our method.
Improvement of the SEP protocol based on community structure of node degree
NASA Astrophysics Data System (ADS)
Li, Donglin; Wei, Suyuan
2017-05-01
Analyzing the Stable election protocol (SEP) in wireless sensor networks and aiming at the problem of inhomogeneous cluster-heads distribution and unreasonable cluster-heads selectivity and single hop transmission in the SEP, a SEP Protocol based on community structure of node degree (SEP-CSND) is proposed. In this algorithm, network node deployed by using grid deployment model, and the connection between nodes established by setting up the communication threshold. The community structure constructed by node degree, then cluster head is elected in the community structure. On the basis of SEP, the node's residual energy and node degree is added in cluster-heads election. The information is transmitted with mode of multiple hops between network nodes. The simulation experiments showed that compared to the classical LEACH and SEP, this algorithm balances the energy consumption of the entire network and significantly prolongs network lifetime.
NASA Astrophysics Data System (ADS)
Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen
2016-04-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].
Understanding sexual harassment using aggregate construct models.
Nye, Christopher D; Brummel, Bradley J; Drasgow, Fritz
2014-11-01
Sexual harassment has received a substantial amount of empirical attention over the past few decades, and this research has consistently shown that experiencing these behaviors has a detrimental effect on employees' well-being, job attitudes, and behaviors at work. However, these findings, and the conclusions that are drawn from them, make the implicit assumption that the empirical models used to examine sexual harassment are properly specified. This article presents evidence that properly specified aggregate construct models are more consistent with theoretical structures and definitions of sexual harassment and can result in different conclusions about the nomological network of harassment. Results from 3 large samples, 2 military and 1 from a civilian population, are used to illustrate the differences between aggregate construct and reflective indicator models of sexual harassment. These analyses suggested that the factor structure and the nomological network of sexual harassment differ when modeling harassment as an aggregate construct. The implications of these results for the continued study of sexual harassment are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Hong, X; Harris, C J
2000-01-01
This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.
Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach.
Steggles, L Jason; Banks, Richard; Shaw, Oliver; Wipat, Anil
2007-02-01
New developments in post-genomic technology now provide researchers with the data necessary to study regulatory processes in a holistic fashion at multiple levels of biological organization. One of the major challenges for the biologist is to integrate and interpret these vast data resources to gain a greater understanding of the structure and function of the molecular processes that mediate adaptive and cell cycle driven changes in gene expression. In order to achieve this biologists require new tools and techniques to allow pathway related data to be modelled and analysed as network structures, providing valuable insights which can then be validated and investigated in the laboratory. We propose a new technique for constructing and analysing qualitative models of genetic regulatory networks based on the Petri net formalism. We take as our starting point the Boolean network approach of treating genes as binary switches and develop a new Petri net model which uses logic minimization to automate the construction of compact qualitative models. Our approach addresses the shortcomings of Boolean networks by providing access to the wide range of existing Petri net analysis techniques and by using non-determinism to cope with incomplete and inconsistent data. The ideas we present are illustrated by a case study in which the genetic regulatory network controlling sporulation in the bacterium Bacillus subtilis is modelled and analysed. The Petri net model construction tool and the data files for the B. subtilis sporulation case study are available at http://bioinf.ncl.ac.uk/gnapn.
Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing
2016-01-01
Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371
Ammenwerth, Elske; Hackl, Werner O
2017-01-01
Learning as a constructive process works best in interaction with other learners. Support of social interaction processes is a particular challenge within online learning settings due to the spatial and temporal distribution of participants. It should thus be carefully monitored. We present structural network analysis and related indicators to analyse and visualize interaction patterns of participants in online learning settings. We validate this approach in two online courses and show how the visualization helps to monitor interaction and to identify activity profiles of learners. Structural network analysis is a feasible approach for an analysis of the intensity and direction of interaction in online learning settings.
Park, Hyo Seon; Shin, Yunah; Choi, Se Woon; Kim, Yousok
2013-01-01
In this study, a practical and integrative SHM system was developed and applied to a large-scale irregular building under construction, where many challenging issues exist. In the proposed sensor network, customized energy-efficient wireless sensing units (sensor nodes, repeater nodes, and master nodes) were employed and comprehensive communications from the sensor node to the remote monitoring server were conducted through wireless communications. The long-term (13-month) monitoring results recorded from a large number of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) indicated that the construction event exhibiting the largest influence on structural behavior was the removal of bents that were temporarily installed to support the free end of the cantilevered members during their construction. The safety of each member could be confirmed based on the quantitative evaluation of each response. Furthermore, it was also confirmed that the relation between these responses (i.e., deflection, strain, and inclination) can provide information about the global behavior of structures induced from specific events. Analysis of the measurement results demonstrates the proposed sensor network system is capable of automatic and real-time monitoring and can be applied and utilized for both the safety evaluation and precise implementation of buildings under construction. PMID:23860317
Yang, Liang; Jin, Di; He, Dongxiao; Fu, Huazhu; Cao, Xiaochun; Fogelman-Soulie, Francoise
2017-03-29
Due to the importance of community structure in understanding network and a surge of interest aroused on community detectability, how to improve the community identification performance with pairwise prior information becomes a hot topic. However, most existing semi-supervised community detection algorithms only focus on improving the accuracy but ignore the impacts of priors on speeding detection. Besides, they always require to tune additional parameters and cannot guarantee pairwise constraints. To address these drawbacks, we propose a general, high-speed, effective and parameter-free semi-supervised community detection framework. By constructing the indivisible super-nodes according to the connected subgraph of the must-link constraints and by forming the weighted super-edge based on network topology and cannot-link constraints, our new framework transforms the original network into an equivalent but much smaller Super-Network. Super-Network perfectly ensures the must-link constraints and effectively encodes cannot-link constraints. Furthermore, the time complexity of super-network construction process is linear in the original network size, which makes it efficient. Meanwhile, since the constructed super-network is much smaller than the original one, any existing community detection algorithm is much faster when using our framework. Besides, the overall process will not introduce any additional parameters, making it more practical.
Regenerating time series from ordinal networks.
McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael
2017-03-01
Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.
Regenerating time series from ordinal networks
NASA Astrophysics Data System (ADS)
McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael
2017-03-01
Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.
Zhang, Xiaomeng; Shao, Bin; Wu, Yangle; Qi, Ouyang
2013-01-01
One of the major objectives in systems biology is to understand the relation between the topological structures and the dynamics of biological regulatory networks. In this context, various mathematical tools have been developed to deduct structures of regulatory networks from microarray expression data. In general, from a single data set, one cannot deduct the whole network structure; additional expression data are usually needed. Thus how to design a microarray expression experiment in order to get the most information is a practical problem in systems biology. Here we propose three methods, namely, maximum distance method, trajectory entropy method, and sampling method, to derive the optimal initial conditions for experiments. The performance of these methods is tested and evaluated in three well-known regulatory networks (budding yeast cell cycle, fission yeast cell cycle, and E. coli. SOS network). Based on the evaluation, we propose an efficient strategy for the design of microarray expression experiments.
Shin, Jeong-Hyeon; Um, Yu Hyun; Lee, Chang Uk; Lim, Hyun Kook; Seong, Joon-Kyung
2018-03-15
Coordinated and pattern-wise changes in large scale gray matter structural networks reflect neural circuitry dysfunction in late life depression (LLD), which in turn is associated with emotional dysregulation and cognitive impairments. However, due to methodological limitations, there have been few attempts made to identify individual-level structural network properties or sub-networks that are involved in important brain functions in LLD. In this study, we sought to construct individual-level gray matter structural networks using average cortical thicknesses of several brain areas to investigate the characteristics of the gray matter structural networks in normal controls and LLD patients. Additionally, we investigated the structural sub-networks correlated with several clinical measurements including cognitive impairment and depression severity. We observed that small worldness, clustering coefficients, global and local efficiency, and hub structures in the brains of LLD patients were significantly different from healthy controls. We further found that a sub-network including the anterior cingulate, dorsolateral prefrontal cortex and superior prefrontal cortex is significantly associated with attention control and executive function. The severity of depression was associated with the sub-networks comprising the salience network, including the anterior cingulate and insula. We investigated cortico-cortical connectivity, but omitted the subcortical structures such as the striatum and thalamus. We report differences in patterns between several clinical measurements and sub-networks from large-scale and individual-level cortical thickness networks in LLD. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rubtsov, Anatoliy E.; Ushakova, Elena V.; Chirkova, Tamara V.
2018-03-01
Basing on the analysis of the enterprise (construction organization) structure and infrastructure of the entire logistics system in which this enterprise (construction organization) operates, this article proposes an approach to solve the problems of structural optimization and a set of calculation tasks, based on customer orders as well as on the required levels of insurance stocks, transit stocks and other types of stocks in the distribution network, modes of operation of the in-company transport and storage complex and a number of other factors.
NASA Astrophysics Data System (ADS)
Kapalova, N.; Haumen, A.
2018-05-01
This paper addresses to structures and properties of the cryptographic information protection algorithm model based on NPNs and constructed on an SP-network. The main task of the research is to increase the cryptostrength of the algorithm. In the paper, the transformation resulting in the improvement of the cryptographic strength of the algorithm is described in detail. The proposed model is based on an SP-network. The reasons for using the SP-network in this model are the conversion properties used in these networks. In the encryption process, transformations based on S-boxes and P-boxes are used. It is known that these transformations can withstand cryptanalysis. In addition, in the proposed model, transformations that satisfy the requirements of the "avalanche effect" are used. As a result of this work, a computer program that implements an encryption algorithm model based on the SP-network has been developed.
Robustness of spatial micronetworks
NASA Astrophysics Data System (ADS)
McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.
2015-04-01
Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.
Effects of global financial crisis on network structure in a local stock market
NASA Astrophysics Data System (ADS)
Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo
2014-08-01
This study considers the effects of the 2008 global financial crisis on threshold networks of a local Korean financial market around the time of the crisis. Prices of individual stocks belonging to KOSPI 200 (Korea Composite Stock Price Index 200) are considered for three time periods, namely before, during, and after the crisis. Threshold networks are constructed from fully connected cross-correlation networks, and thresholds of cross-correlation coefficients are assigned to obtain threshold networks. At the high threshold, only one large cluster consisting of firms in the financial sector, heavy industry, and construction is observed during the crisis. However, before and after the crisis, there are several fragmented clusters belonging to various sectors. The power law of the degree distribution in threshold networks is observed within the limited range of thresholds. Threshold networks are fatter during the crisis than before or after the crisis. The clustering coefficient of the threshold network follows the power law in the scaling range.
NASA Astrophysics Data System (ADS)
Huang, Darong; Bai, Xing-Rong
Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.
Impact of mobility structure on optimization of small-world networks of mobile agents
NASA Astrophysics Data System (ADS)
Lee, Eun; Holme, Petter
2016-06-01
In ad hoc wireless networking, units are connected to each other rather than to a central, fixed, infrastructure. Constructing and maintaining such networks create several trade-off problems between robustness, communication speed, power consumption, etc., that bridges engineering, computer science and the physics of complex systems. In this work, we address the role of mobility patterns of the agents on the optimal tuning of a small-world type network construction method. By this method, the network is updated periodically and held static between the updates. We investigate the optimal updating times for different scenarios of the movement of agents (modeling, for example, the fat-tailed trip distances, and periodicities, of human travel). We find that these mobility patterns affect the power consumption in non-trivial ways and discuss how these effects can best be handled.
New methodologies for multi-scale time-variant reliability analysis of complex lifeline networks
NASA Astrophysics Data System (ADS)
Kurtz, Nolan Scot
The cost of maintaining existing civil infrastructure is enormous. Since the livelihood of the public depends on such infrastructure, its state must be managed appropriately using quantitative approaches. Practitioners must consider not only which components are most fragile to hazard, e.g. seismicity, storm surge, hurricane winds, etc., but also how they participate on a network level using network analysis. Focusing on particularly damaged components does not necessarily increase network functionality, which is most important to the people that depend on such infrastructure. Several network analyses, e.g. S-RDA, LP-bounds, and crude-MCS, and performance metrics, e.g. disconnection bounds and component importance, are available for such purposes. Since these networks are existing, the time state is also important. If networks are close to chloride sources, deterioration may be a major issue. Information from field inspections may also have large impacts on quantitative models. To address such issues, hazard risk analysis methodologies for deteriorating networks subjected to seismicity, i.e. earthquakes, have been created from analytics. A bridge component model has been constructed for these methodologies. The bridge fragilities, which were constructed from data, required a deeper level of analysis as these were relevant for specific structures. Furthermore, chloride-induced deterioration network effects were investigated. Depending on how mathematical models incorporate new information, many approaches are available, such as Bayesian model updating. To make such procedures more flexible, an adaptive importance sampling scheme was created for structural reliability problems. Additionally, such a method handles many kinds of system and component problems with singular or multiple important regions of the limit state function. These and previously developed analysis methodologies were found to be strongly sensitive to the network size. Special network topologies may be more or less computationally difficult, while the resolution of the network also has large affects. To take advantage of some types of topologies, network hierarchical structures with super-link representation have been used in the literature to increase the computational efficiency by analyzing smaller, densely connected networks; however, such structures were based on user input and subjective at times. To address this, algorithms must be automated and reliable. These hierarchical structures may indicate the structure of the network itself. This risk analysis methodology has been expanded to larger networks using such automated hierarchical structures. Component importance is the most important objective from such network analysis; however, this may only provide the information of which bridges to inspect/repair earliest and little else. High correlations influence such component importance measures in a negative manner. Additionally, a regional approach is not appropriately modelled. To investigate a more regional view, group importance measures based on hierarchical structures have been created. Such structures may also be used to create regional inspection/repair approaches. Using these analytical, quantitative risk approaches, the next generation of decision makers may make both component and regional-based optimal decisions using information from both network function and further effects of infrastructure deterioration.
Modeling cascading failures with the crisis of trust in social networks
NASA Astrophysics Data System (ADS)
Yi, Chengqi; Bao, Yuanyuan; Jiang, Jingchi; Xue, Yibo
2015-10-01
In social networks, some friends often post or disseminate malicious information, such as advertising messages, informal overseas purchasing messages, illegal messages, or rumors. Too much malicious information may cause a feeling of intense annoyance. When the feeling exceeds a certain threshold, it will lead social network users to distrust these friends, which we call the crisis of trust. The crisis of trust in social networks has already become a universal concern and an urgent unsolved problem. As a result of the crisis of trust, users will cut off their relationships with some of their untrustworthy friends. Once a few of these relationships are made unavailable, it is likely that other friends will decline trust, and a large portion of the social network will be influenced. The phenomenon in which the unavailability of a few relationships will trigger the failure of successive relationships is known as cascading failure dynamics. To our best knowledge, no one has formally proposed cascading failures dynamics with the crisis of trust in social networks. In this paper, we address this potential issue, quantify the trust between two users based on user similarity, and model the minimum tolerance with a nonlinear equation. Furthermore, we construct the processes of cascading failures dynamics by considering the unique features of social networks. Based on real social network datasets (Sina Weibo, Facebook and Twitter), we adopt two attack strategies (the highest trust attack (HT) and the lowest trust attack (LT)) to evaluate the proposed dynamics and to further analyze the changes of the topology, connectivity, cascading time and cascade effect under the above attacks. We numerically find that the sparse and inhomogeneous network structure in our cascading model can better improve the robustness of social networks than the dense and homogeneous structure. However, the network structure that seems like ripples is more vulnerable than the other two network structures. Our findings will be useful in further guiding the construction of social networks to effectively avoid the cascading propagation with the crisis of trust. Some research results can help social network service providers to avoid severe cascading failures.
Persistent homology analysis of ion aggregations and hydrogen-bonding networks.
Xia, Kelin
2018-05-16
Despite the great advancement of experimental tools and theoretical models, a quantitative characterization of the microscopic structures of ion aggregates and their associated water hydrogen-bonding networks still remains a challenging problem. In this paper, a newly-invented mathematical method called persistent homology is introduced, for the first time, to quantitatively analyze the intrinsic topological properties of ion aggregation systems and hydrogen-bonding networks. The two most distinguishable properties of persistent homology analysis of assembly systems are as follows. First, it does not require a predefined bond length to construct the ion or hydrogen-bonding network. Persistent homology results are determined by the morphological structure of the data only. Second, it can directly measure the size of circles or holes in ion aggregates and hydrogen-bonding networks. To validate our model, we consider two well-studied systems, i.e., NaCl and KSCN solutions, generated from molecular dynamics simulations. They are believed to represent two morphological types of aggregation, i.e., local clusters and extended ion networks. It has been found that the two aggregation types have distinguishable topological features and can be characterized by our topological model very well. Further, we construct two types of networks, i.e., O-networks and H2O-networks, for analyzing the topological properties of hydrogen-bonding networks. It is found that for both models, KSCN systems demonstrate much more dramatic variations in their local circle structures with a concentration increase. A consistent increase of large-sized local circle structures is observed and the sizes of these circles become more and more diverse. In contrast, NaCl systems show no obvious increase of large-sized circles. Instead a consistent decline of the average size of the circle structures is observed and the sizes of these circles become more and more uniform with a concentration increase. As far as we know, these unique intrinsic topological features in ion aggregation systems have never been pointed out before. More importantly, our models can be directly used to quantitatively analyze the intrinsic topological invariants, including circles, loops, holes, and cavities, of any network-like structures, such as nanomaterials, colloidal systems, biomolecular assemblies, among others. These topological invariants cannot be described by traditional graph and network models.
The application of the multi-alternative approach in active neural network models
NASA Astrophysics Data System (ADS)
Podvalny, S.; Vasiljev, E.
2017-02-01
The article refers to the construction of intelligent systems based artificial neuron networks are used. We discuss the basic properties of the non-compliance of artificial neuron networks and their biological prototypes. It is shown here that the main reason for these discrepancies is the structural immutability of the neuron network models in the learning process, that is, their passivity. Based on the modern understanding of the biological nervous system as a structured ensemble of nerve cells, it is proposed to abandon the attempts to simulate its work at the level of the elementary neurons functioning processes and proceed to the reproduction of the information structure of data storage and processing on the basis of the general enough evolutionary principles of multialternativity, i.e. the multi-level structural model, diversity and modularity. The implementation method of these principles is offered, using the faceted memory organization in the neuron network with the rearranging active structure. An example of the implementation of the active facet-type neuron network in the intellectual decision-making system in the conditions of critical events development in the electrical distribution system.
A novel approach for detection of anomalies using measurement data of the Ironton-Russell bridge
NASA Astrophysics Data System (ADS)
Zhang, Fan; Norouzi, Mehdi; Hunt, Victor; Helmicki, Arthur
2015-04-01
Data models have been increasingly used in recent years for documenting normal behavior of structures and hence detect and classify anomalies. Large numbers of machine learning algorithms were proposed by various researchers to model operational and functional changes in structures; however, a limited number of studies were applied to actual measurement data due to limited access to the long term measurement data of structures and lack of access to the damaged states of structures. By monitoring the structure during construction and reviewing the effect of construction events on the measurement data, this study introduces a new approach to detect and eventually classify anomalies during construction and after construction. First, the implementation procedure of the sensory network that develops while the bridge is being built and its current status will be detailed. Second, the proposed anomaly detection algorithm will be applied on the collected data and finally, detected anomalies will be validated against the archived construction events.
Synchronization in dynamical networks with unconstrained structure switching
NASA Astrophysics Data System (ADS)
del Genio, Charo I.; Romance, Miguel; Criado, Regino; Boccaletti, Stefano
2015-12-01
We provide a rigorous solution to the problem of constructing a structural evolution for a network of coupled identical dynamical units that switches between specified topologies without constraints on their structure. The evolution of the structure is determined indirectly from a carefully built transformation of the eigenvector matrices of the coupling Laplacians, which are guaranteed to change smoothly in time. In turn, this allows one to extend the master stability function formalism, which can be used to assess the stability of a synchronized state. This approach is independent from the particular topologies that the network visits, and is not restricted to commuting structures. Also, it does not depend on the time scale of the evolution, which can be faster than, comparable to, or even secular with respect to the dynamics of the units.
Describing spatial pattern in stream networks: A practical approach
Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.
2005-01-01
The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.
A geostatistical approach for describing spatial pattern in stream networks
Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.
2005-01-01
The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.
NASA Astrophysics Data System (ADS)
Curme, Chester
Technological advances have provided scientists with large high-dimensional datasets that describe the behaviors of complex systems: from the statistics of energy levels in complex quantum systems, to the time-dependent transcription of genes, to price fluctuations among assets in a financial market. In this environment, where it may be difficult to infer the joint distribution of the data, network science has flourished as a way to gain insight into the structure and organization of such systems by focusing on pairwise interactions. This work focuses on a particular setting, in which a system is described by multivariate time series data. We consider time-lagged correlations among elements in this system, in such a way that the measured interactions among elements are asymmetric. Finally, we allow these interactions to be characteristically weak, so that statistical uncertainties may be important to consider when inferring the structure of the system. We introduce a methodology for constructing statistically validated networks to describe such a system, extend the methodology to accommodate interactions with a periodic component, and show how consideration of bipartite community structures in these networks can aid in the construction of robust statistical models. An example of such a system is a financial market, in which high frequency returns data may be used to describe contagion, or the spreading of shocks in price among assets. These data provide the experimental testing ground for our methodology. We study NYSE data from both the present day and one decade ago, examine the time scales over which the validated lagged correlation networks exist, and relate differences in the topological properties of the networks to an increasing economic efficiency. We uncover daily periodicities in the validated interactions, and relate our findings to explanations of the Epps Effect, an empirical phenomenon of financial time series. We also study bipartite community structures in networks composed of market returns and news sentiment signals for 40 countries. We compare the degrees to which markets anticipate news, and news anticipate markets, and use the community structures to construct a recommender system for inputs to prediction models. Finally, we complement this work with novel investigations of the exogenous news items that may drive the financial system using topic models. This includes an analysis of how investors and the general public may interact with these news items using Internet search data, and how the diversity of stories in the news both responds to and influences market movements.
Energy Spectral Behaviors of Communication Networks of Open-Source Communities
Yang, Jianmei; Yang, Huijie; Liao, Hao; Wang, Jiangtao; Zeng, Jinqun
2015-01-01
Large-scale online collaborative production activities in open-source communities must be accompanied by large-scale communication activities. Nowadays, the production activities of open-source communities, especially their communication activities, have been more and more concerned. Take CodePlex C # community for example, this paper constructs the complex network models of 12 periods of communication structures of the community based on real data; then discusses the basic concepts of quantum mapping of complex networks, and points out that the purpose of the mapping is to study the structures of complex networks according to the idea of quantum mechanism in studying the structures of large molecules; finally, according to this idea, analyzes and compares the fractal features of the spectra in different quantum mappings of the networks, and concludes that there are multiple self-similarity and criticality in the communication structures of the community. In addition, this paper discusses the insights and application conditions of different quantum mappings in revealing the characteristics of the structures. The proposed quantum mapping method can also be applied to the structural studies of other large-scale organizations. PMID:26047331
Caudell, Thomas P; Xiao, Yunhai; Healy, Michael J
2003-01-01
eLoom is an open source graph simulation software tool, developed at the University of New Mexico (UNM), that enables users to specify and simulate neural network models. Its specification language and libraries enables users to construct and simulate arbitrary, potentially hierarchical network structures on serial and parallel processing systems. In addition, eLoom is integrated with UNM's Flatland, an open source virtual environments development tool to provide real-time visualizations of the network structure and activity. Visualization is a useful method for understanding both learning and computation in artificial neural networks. Through 3D animated pictorially representations of the state and flow of information in the network, a better understanding of network functionality is achieved. ART-1, LAPART-II, MLP, and SOM neural networks are presented to illustrate eLoom and Flatland's capabilities.
Abell, Jackie; Kirzinger, Morgan W B; Gordon, Yvonne; Kirk, Jacqui; Kokeŝ, Rae; Lynas, Kirsty; Mandinyenya, Bob; Youldon, David
2013-01-01
Animal conservation practices include the grouping of captive related and unrelated individuals to form a social structure which is characteristic of that species in the wild. In response to the rapid decline of wild African lion (Panthera leo) populations, an array of conservational strategies have been adopted. Ex situ reintroduction of the African lion requires the construction of socially cohesive pride structures prior to wild release. This pilot study adopted a social network theory approach to quantitatively assess a captive pride's social structure and the relationships between individuals within them. Group composition (who is present in a group) and social interaction data (social licking, greeting, play) was observed and recorded to assess social cohesion within a released semi-wild pride. UCINET and SOCPROG software was utilised to represent and analyse these social networks. Results indicate that the pride is socially cohesive, does not exhibit random associations, and the role of socially influential keystone individuals is important for maintaining social bondedness within a lion pride. These results are potentially informative for the structure of lion prides, in captivity and in the wild, and could have implications for captive and wild-founder reintroductions.
Network structure of subway passenger flows
NASA Astrophysics Data System (ADS)
Xu, Q.; Mao, B. H.; Bai, Y.
2016-03-01
The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.
An exploration of the Facebook social networks of smokers and non-smokers.
Fu, Luella; Jacobs, Megan A; Brookover, Jody; Valente, Thomas W; Cobb, Nathan K; Graham, Amanda L
2017-01-01
Social networks influence health behavior, including tobacco use and cessation. To date, little is known about whether and how the networks of online smokers and non-smokers may differ, or the potential implications of such differences with regards to intervention efforts. Understanding how social networks vary by smoking status could inform public health efforts to accelerate cessation or slow the adoption of tobacco use. These secondary analyses explore the structure of ego networks of both smokers and non-smokers collected as part of a randomized control trial conducted within Facebook. During the trial, a total of 14,010 individuals installed a Facebook smoking cessation app: 9,042 smokers who were randomized in the trial, an additional 2,881 smokers who did not meet full eligibility criteria, and 2,087 non-smokers. The ego network for all individuals was constructed out to second-degree connections. Four kinds of networks were constructed: friendship, family, photo, and group networks. From these networks we measured edges, isolates, density, mean betweenness, transitivity, and mean closeness. We also measured diameter, clustering, and modularity without ego and isolates. Logistic regressions were performed with smoking status as the response and network metrics as the primary independent variables and demographics and Facebook utilization metrics as covariates. The four networks had different characteristics, indicated by different multicollinearity issues and by logistic regression output. Among Friendship networks, the odds of smoking were higher in networks with lower betweenness (p = 0.00), lower transitivity (p = 0.00), and larger diameter (p = 0.00). Among Family networks, the odds of smoking were higher in networks with more vertices (p = .01), less transitivity (p = .04), and fewer isolates (p = .01). Among Photo networks, none of the network metrics were predictive of smoking status. Among Group networks, the odds of smoking were higher when diameter was smaller (p = .04). Together, these findings suggested that compared to non-smokers, smokers in this sample had less connected, more dispersed Facebook Friendship networks; larger but more fractured Family networks with fewer isolates; more compact Group networks; and Photo networks that were similar in network structure to those of non-smokers. This study illustrates the importance of examining structural differences in online social networks as a critical component for network-based interventions and lays the foundation for future research that examines the ways that social networks differ based on individual health behavior. Interventions that seek to target the behavior of individuals in the context of their social environment would be well served to understand social network structures of participants.
An exploration of the Facebook social networks of smokers and non-smokers
2017-01-01
Background Social networks influence health behavior, including tobacco use and cessation. To date, little is known about whether and how the networks of online smokers and non-smokers may differ, or the potential implications of such differences with regards to intervention efforts. Understanding how social networks vary by smoking status could inform public health efforts to accelerate cessation or slow the adoption of tobacco use. Objectives These secondary analyses explore the structure of ego networks of both smokers and non-smokers collected as part of a randomized control trial conducted within Facebook. Methods During the trial, a total of 14,010 individuals installed a Facebook smoking cessation app: 9,042 smokers who were randomized in the trial, an additional 2,881 smokers who did not meet full eligibility criteria, and 2,087 non-smokers. The ego network for all individuals was constructed out to second-degree connections. Four kinds of networks were constructed: friendship, family, photo, and group networks. From these networks we measured edges, isolates, density, mean betweenness, transitivity, and mean closeness. We also measured diameter, clustering, and modularity without ego and isolates. Logistic regressions were performed with smoking status as the response and network metrics as the primary independent variables and demographics and Facebook utilization metrics as covariates. Results The four networks had different characteristics, indicated by different multicollinearity issues and by logistic regression output. Among Friendship networks, the odds of smoking were higher in networks with lower betweenness (p = 0.00), lower transitivity (p = 0.00), and larger diameter (p = 0.00). Among Family networks, the odds of smoking were higher in networks with more vertices (p = .01), less transitivity (p = .04), and fewer isolates (p = .01). Among Photo networks, none of the network metrics were predictive of smoking status. Among Group networks, the odds of smoking were higher when diameter was smaller (p = .04). Together, these findings suggested that compared to non-smokers, smokers in this sample had less connected, more dispersed Facebook Friendship networks; larger but more fractured Family networks with fewer isolates; more compact Group networks; and Photo networks that were similar in network structure to those of non-smokers. Conclusions This study illustrates the importance of examining structural differences in online social networks as a critical component for network-based interventions and lays the foundation for future research that examines the ways that social networks differ based on individual health behavior. Interventions that seek to target the behavior of individuals in the context of their social environment would be well served to understand social network structures of participants. PMID:29095958
3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor.
Ball, Owen; Nguyen, Bao-Ngoc B; Placone, Jesse K; Fisher, John P
2016-12-01
There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state.
3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor
Ball, Owen; Nguyen, Bao-Ngoc B.; Placone, Jesse K.; Fisher, John P.
2016-01-01
There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state. PMID:27272210
Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi
2018-05-04
End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.
On the Control of Consensus Networks: Theory and Applications
NASA Astrophysics Data System (ADS)
Hudoba de Badyn, Mathias
Signed networks allow the study of positive and negative interactions between agents. In this thesis, three papers are presented that address controllability of networked dynamics. First, controllability of signed consensus networks is approached from a symmetry perspective, for both linear and nonlinear consensus protocols. It is shown that the graph-theoretic property of signed networks known as structural balance renders the consensus protocol uncontrollable when coupled with a certain type of symmetry. Stabilizability and output controllability of signed linear consensus is also examined, as well as a data-driven approach to finding bipartite consensus stemming from structural balance for signed nonlinear consensus. Second, an algorithm is constructed that allows one to grow a network while preserving controllability, and some generalizations of this algorithm are presented. Submodular optimization is used to analyze a second algorithm that adds nodes to a network to maximize the network connectivity.
A multilayer network analysis of hashtags in twitter via co-occurrence and semantic links
NASA Astrophysics Data System (ADS)
Türker, Ilker; Sulak, Eyüb Ekmel
2018-02-01
Complex network studies, as an interdisciplinary framework, span a large variety of subjects including social media. In social networks, several mechanisms generate miscellaneous structures like friendship networks, mention networks, tag networks, etc. Focusing on tag networks (namely, hashtags in twitter), we made a two-layer analysis of tag networks from a massive dataset of Twitter entries. The first layer is constructed by converting the co-occurrences of these tags in a single entry (tweet) into links, while the second layer is constructed converting the semantic relations of the tags into links. We observed that the universal properties of the real networks like small-world property, clustering and power-law distributions in various network parameters are also evident in the multilayer network of hashtags. Moreover, we outlined that co-occurrences of hashtags in tweets are mostly coupled with semantic relations, whereas a small number of semantically unrelated, therefore random links reduce node separation and network diameter in the co-occurrence network layer. Together with the degree distributions, the power-law consistencies of degree difference, edge weight and cosine similarity distributions in both layers are also appealing forms of Zipf’s law evident in nature.
Research on FBG-Based CFRP Structural Damage Identification Using BP Neural Network
NASA Astrophysics Data System (ADS)
Geng, Xiangyi; Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Lv, Shanshan; Xiao, Hang; Jia, Yuxi; Jia, Lei
2018-06-01
A damage identification system of carbon fiber reinforced plastics (CFRP) structures is investigated using fiber Bragg grating (FBG) sensors and back propagation (BP) neural network. FBG sensors are applied to construct the sensing network to detect the structural dynamic response signals generated by active actuation. The damage identification model is built based on the BP neural network. The dynamic signal characteristics extracted by the Fourier transform are the inputs, and the damage states are the outputs of the model. Besides, damages are simulated by placing lumped masses with different weights instead of inducing real damages, which is confirmed to be feasible by finite element analysis (FEA). At last, the damage identification system is verified on a CFRP plate with 300 mm × 300 mm experimental area, with the accurate identification of varied damage states. The system provides a practical way for CFRP structural damage identification.
TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating
NASA Astrophysics Data System (ADS)
Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan; Xie, Xi
2017-12-01
Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials.
TiO2 nanowire-templated hierarchical nanowire network as water-repelling coating
Hang, Tian; Chen, Hui-Jiuan; Xiao, Shuai; Yang, Chengduan; Chen, Meiwan; Tao, Jun; Shieh, Han-ping; Yang, Bo-ru; Liu, Chuan
2017-01-01
Extraordinary water-repelling properties of superhydrophobic surfaces make them novel candidates for a great variety of potential applications. A general approach to achieve superhydrophobicity requires low-energy coating on the surface and roughness on nano- and micrometre scale. However, typical construction of superhydrophobic surfaces with micro-nano structure through top-down fabrication is restricted by sophisticated fabrication techniques and limited choices of substrate materials. Micro-nanoscale topographies templated by conventional microparticles through surface coating may produce large variations in roughness and uncontrollable defects, resulting in poorly controlled surface morphology and wettability. In this work, micro-nanoscale hierarchical nanowire network was fabricated to construct self-cleaning coating using one-dimensional TiO2 nanowires as microscale templates. Hierarchical structure with homogeneous morphology was achieved by branching ZnO nanowires on the TiO2 nanowire backbones through hydrothermal reaction. The hierarchical nanowire network displayed homogeneous micro/nano-topography, in contrast to hierarchical structure templated by traditional microparticles. This hierarchical nanowire network film exhibited high repellency to both water and cell culture medium after functionalization with fluorinated organic molecules. The hierarchical structure templated by TiO2 nanowire coating significantly increased the surface superhydrophobicity compared to vertical ZnO nanowires with nanotopography alone. Our results demonstrated a promising strategy of using nanowires as microscale templates for the rational design of hierarchical coatings with desired superhydrophobicity that can also be applied to various substrate materials. PMID:29308265
Research on Network Defense Strategy Based on Honey Pot Technology
NASA Astrophysics Data System (ADS)
Hong, Jianchao; Hua, Ying
2018-03-01
As a new network security technology of active defense, The honeypot technology has become a very effective and practical method of decoy attackers. The thesis discusses the theory, structure, characteristic, design and implementation of Honeypot in detail. Aiming at the development of means of attack, put forward a kind of network defense technology based on honeypot technology, constructing a virtual Honeypot demonstrate the honeypot’s functions.
Network Analysis of Earth's Co-Evolving Geosphere and Biosphere
NASA Astrophysics Data System (ADS)
Hazen, R. M.; Eleish, A.; Liu, C.; Morrison, S. M.; Meyer, M.; Consortium, K. D.
2017-12-01
A fundamental goal of Earth science is the deep understanding of Earth's dynamic, co-evolving geosphere and biosphere through deep time. Network analysis of geo- and bio- `big data' provides an interactive, quantitative, and predictive visualization framework to explore complex and otherwise hidden high-dimension features of diversity, distribution, and change in the evolution of Earth's geochemistry, mineralogy, paleobiology, and biochemistry [1]. Networks also facilitate quantitative comparison of different geological time periods, tectonic settings, and geographical regions, as well as different planets and moons, through network metrics, including density, centralization, diameter, and transitivity.We render networks by employing data related to geographical, paragenetic, environmental, or structural relationships among minerals, fossils, proteins, and microbial taxa. An important recent finding is that the topography of many networks reflects parameters not explicitly incorporated in constructing the network. For example, networks for minerals, fossils, and protein structures reveal embedded qualitative time axes, with additional network geometries possibly related to extinction and/or other punctuation events (see Figure). Other axes related to chemical activities and volatile fugacities, as well as pressure and/or depth of formation, may also emerge from network analysis. These patterns provide new insights into the way planets evolve, especially Earth's co-evolving geosphere and biosphere. 1. Morrison, S.M. et al. (2017) Network analysis of mineralogical systems. American Mineralogist 102, in press. Figure Caption: A network of Phanerozoic Era fossil animals from the past 540 million years includes blue, red, and black circles (nodes) representing family-level taxa and grey lines (links) between coexisting families. Age information was not used in the construction of this network; nevertheless an intrinsic timeline is embedded in the network topology. In addition, two mass extinction events appear as "pinch points" in the network.
Rosenthal, Gideon; Váša, František; Griffa, Alessandra; Hagmann, Patric; Amico, Enrico; Goñi, Joaquín; Avidan, Galia; Sporns, Olaf
2018-06-05
Connectomics generates comprehensive maps of brain networks, represented as nodes and their pairwise connections. The functional roles of nodes are defined by their direct and indirect connectivity with the rest of the network. However, the network context is not directly accessible at the level of individual nodes. Similar problems in language processing have been addressed with algorithms such as word2vec that create embeddings of words and their relations in a meaningful low-dimensional vector space. Here we apply this approach to create embedded vector representations of brain networks or connectome embeddings (CE). CE can characterize correspondence relations among brain regions, and can be used to infer links that are lacking from the original structural diffusion imaging, e.g., inter-hemispheric homotopic connections. Moreover, we construct predictive deep models of functional and structural connectivity, and simulate network-wide lesion effects using the face processing system as our application domain. We suggest that CE offers a novel approach to revealing relations between connectome structure and function.
Understanding and planning ecological restoration of plant-pollinator networks.
Devoto, Mariano; Bailey, Sallie; Craze, Paul; Memmott, Jane
2012-04-01
Theory developed from studying changes in the structure and function of communities during natural or managed succession can guide the restoration of particular communities. We constructed 30 quantitative plant-flower visitor networks along a managed successional gradient to identify the main drivers of change in network structure. We then applied two alternative restoration strategies in silico (restoring for functional complementarity or redundancy) to data from our early successional plots to examine whether different strategies affected the restoration trajectories. Changes in network structure were explained by a combination of age, tree density and variation in tree diameter, even when variance explained by undergrowth structure was accounted for first. A combination of field data, a network approach and numerical simulations helped to identify which species should be given restoration priority in the context of different restoration targets. This combined approach provides a powerful tool for directing management decisions, particularly when management seeks to restore or conserve ecosystem function. © 2012 Blackwell Publishing Ltd/CNRS.
[International focuses in the studies of chronic pelvic pain syndrome: A social network analysis].
Wen, Li-Jie; Pan, Xian-Wei; Yang, Bo
2016-10-01
To analyze the internationally published literature relevant to chronic pelvic pain syndrome (CPPS) using bibliometrics and social network analysis, and investigate the current status and focuses of CPPS studies. We identified 692 publications on CPPS by searching PubMed up to December 2015, extracted their subject headings, calculated the frequencies of the headings, and constructed a co-occurrence network of the high-frequency (≥10) subject headings. Then we studied the features and structure of the co-occurrence network by analyzing its attributes and topological structure. The density of the constructed co-occurrence network was 0.111, with an average distance of 2.886 and a clustering coefficient of 0.685. Its low density, long average distance and high clustering coefficient indicated that it was a sparse network, with a slow speed of information spreading among nodes but a strong potential coherence, which suggested that the current topics in the study of CPPS were scattered and weakly correlated, with a high possibility of being integrated. Based on the topological structure of the co-occurrence network, the topics in the study of CPPS were divided into six aspects: diagnosis and classification, drug therapy, treatment, etiology, microbiology, psychology, and epidemiology, the more important of which were diagnosis and classification, drug therapy, treatment and etiology. A system has been formed in the studies of CPPS, focusing on the diagnosis, drug therapy, and etiology of the disease. However, the research topics are relatively scattered and frequently repeated. Therefore, more attention should be paid to the macrocosmic guidance and rational coordination of the researches on CPPS.
A recurrent self-organizing neural fuzzy inference network.
Juang, C F; Lin, C T
1999-01-01
A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some feedback connections representing the memory elements to a feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has its own meaning and represents a special element in a fuzzy rule. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially in the RSONFIN. They are created on-line via concurrent structure identification (the construction of dynamic fuzzy if-then rules) and parameter identification (the tuning of the free parameters of membership functions). The structure learning together with the parameter learning forms a fast learning algorithm for building a small, yet powerful, dynamic neural fuzzy network. Two major characteristics of the RSONFIN can thus be seen: 1) the recurrent property of the RSONFIN makes it suitable for dealing with temporal problems and 2) no predetermination, like the number of hidden nodes, must be given, since the RSONFIN can find its optimal structure and parameters automatically and quickly. Moreover, to reduce the number of fuzzy rules generated, a flexible input partition method, the aligned clustering-based algorithm, is proposed. Various simulations on temporal problems are done and performance comparisons with some existing recurrent networks are also made. Efficiency of the RSONFIN is verified from these results.
Scale-Free Distribution of Avian Influenza Outbreaks
NASA Astrophysics Data System (ADS)
Small, Michael; Walker, David M.; Tse, Chi Kong
2007-11-01
Using global case data for the period from 25 November 2003 to 10 March 2007, we construct a network of plausible transmission pathways for the spread of avian influenza among domestic and wild birds. The network structure we obtain is complex and exhibits scale-free (although not necessarily small-world) properties. Communities within this network are connected with a distribution of links with infinite variance. Hence, the disease transmission model does not exhibit a threshold and so the infection will continue to propagate even with very low transmissibility. Consequentially, eradication with methods applicable to locally homogeneous populations is not possible. Any control measure needs to focus explicitly on the hubs within this network structure.
Exploring network operations for data and information networks
NASA Astrophysics Data System (ADS)
Yao, Bing; Su, Jing; Ma, Fei; Wang, Xiaomin; Zhao, Xiyang; Yao, Ming
2017-01-01
Barabási and Albert, in 1999, formulated scale-free models based on some real networks: World-Wide Web, Internet, metabolic and protein networks, language or sexual networks. Scale-free networks not only appear around us, but also have high qualities in the world. As known, high quality information networks can transfer feasibly and efficiently data, clearly, their topological structures are very important for data safety. We build up network operations for constructing large scale of dynamic networks from smaller scale of network models having good property and high quality. We focus on the simplest operators to formulate complex operations, and are interesting on the closeness of operations to desired network properties.
Co-occurrence network analysis of Chinese and English poems
NASA Astrophysics Data System (ADS)
Liang, Wei; Wang, Yanli; Shi, Yuming; Chen, Guanrong
2015-02-01
A total of 572 co-occurrence networks of Chinese characters and words as well as English words are constructed from both Chinese and English poems. It is found that most of the networks have small-world features; more Chinese networks have scale-free properties and hierarchical structures as compared with the English networks; all the networks are disassortative, and the disassortativeness of the Chinese word networks is more prominent than those of the English networks; the spectral densities of the Chinese word networks and English networks are similar, but they are different from those of the ER, BA, and WS networks. For the above observed phenomena, analysis is provided with interpretation from a linguistic perspective.
A study of EMR-based medical knowledge network and its applications.
Zhao, Chao; Jiang, Jingchi; Xu, Zhiming; Guan, Yi
2017-05-01
Electronic medical records (EMRs) contain an amount of medical knowledge which can be used for clinical decision support. We attempt to integrate this medical knowledge into a complex network, and then implement a diagnosis model based on this network. The dataset of our study contains 992 records which are uniformly sampled from different departments of the hospital. In order to integrate the knowledge of these records, an EMR-based medical knowledge network (EMKN) is constructed. This network takes medical entities as nodes, and co-occurrence relationships between the two entities as edges. Selected properties of this network are analyzed. To make use of this network, a basic diagnosis model is implemented. Seven hundred records are randomly selected to re-construct the network, and the remaining 292 records are used as test records. The vector space model is applied to illustrate the relationships between diseases and symptoms. Because there may exist more than one actual disease in a record, the recall rate of the first ten results, and the average precision are adopted as evaluation measures. Compared with a random network of the same size, this network has a similar average length but a much higher clustering coefficient. Additionally, it can be observed that there are direct correlations between the community structure and the real department classes in the hospital. For the diagnosis model, the vector space model using disease as a base obtains the best result. At least one accurate disease can be obtained in 73.27% of the records in the first ten results. We constructed an EMR-based medical knowledge network by extracting the medical entities. This network has the small-world and scale-free properties. Moreover, the community structure showed that entities in the same department have a tendency to be self-aggregated. Based on this network, a diagnosis model was proposed. This model uses only the symptoms as inputs and is not restricted to a specific disease. The experiments conducted demonstrated that EMKN is a simple and universal technique to integrate different medical knowledge from EMRs, and can be used for clinical decision support. Copyright © 2017 Elsevier B.V. All rights reserved.
Construction and analysis of gene-gene dynamics influence networks based on a Boolean model.
Mazaya, Maulida; Trinh, Hung-Cuong; Kwon, Yung-Keun
2017-12-21
Identification of novel gene-gene relations is a crucial issue to understand system-level biological phenomena. To this end, many methods based on a correlation analysis of gene expressions or structural analysis of molecular interaction networks have been proposed. They have a limitation in identifying more complicated gene-gene dynamical relations, though. To overcome this limitation, we proposed a measure to quantify a gene-gene dynamical influence (GDI) using a Boolean network model and constructed a GDI network to indicate existence of a dynamical influence for every ordered pair of genes. It represents how much a state trajectory of a target gene is changed by a knockout mutation subject to a source gene in a gene-gene molecular interaction (GMI) network. Through a topological comparison between GDI and GMI networks, we observed that the former network is denser than the latter network, which implies that there exist many gene pairs of dynamically influencing but molecularly non-interacting relations. In addition, a larger number of hub genes were generated in the GDI network. On the other hand, there was a correlation between these networks such that the degree value of a node was positively correlated to each other. We further investigated the relationships of the GDI value with structural properties and found that there are negative and positive correlations with the length of a shortest path and the number of paths, respectively. In addition, a GDI network could predict a set of genes whose steady-state expression is affected in E. coli gene-knockout experiments. More interestingly, we found that the drug-targets with side-effects have a larger number of outgoing links than the other genes in the GDI network, which implies that they are more likely to influence the dynamics of other genes. Finally, we found biological evidences showing that the gene pairs which are not molecularly interacting but dynamically influential can be considered for novel gene-gene relationships. Taken together, construction and analysis of the GDI network can be a useful approach to identify novel gene-gene relationships in terms of the dynamical influence.
Construction of a multimedia application on public network
NASA Astrophysics Data System (ADS)
Liu, Jang; Wang, Chwan-Huei; Tseng, Ming-Yu; Hsiao, Sun-Lang; Luo, Wen-Hen; Tseng, Yung-Mean; Hung, Feng-Yue
1994-04-01
This paper describes our perception of current developments in networking, telecommunication and technology of multimedia. As such, we have taken a constructive view. From this standpoint, we devised a client server architecture that veils servers from their customers. It adheres to our conviction that network and location independence for serve access is a future trend. We have constructed an on-line KARAOKE on an existing CVS (Chinese Videotex System) to test the workability of this architecture and it works well. We are working on a prototype multimedia service network which is a miniature client server structure of our proposal. A specially designed protocol is described. Through this protocol, an one-to-many connection can be set up and to provide for multimedia applications, new connections can be established within a basic connection. So continuous media may have their own connections without being interrupted by other media, at least from the view of an application. We have advanced a constructive view which is not a framework itself. But it is tantamount to a framework, in building systems as assembly of methods, technics, designs, and ideas. This is what a framework does with more flexibility and availability.
ERIC Educational Resources Information Center
Katz-Gerro, Tally; Talmud, Ilan
2005-01-01
This paper proposes a new analysis of consumption inequality using relational methods, derived from network images of social structure. We combine structural analysis with theoretical concerns in consumer research to propose a relational theory of consumption space, to construct a stratification indicator, and to demonstrate its analytical…
Cascading failures in complex networks with community structure
NASA Astrophysics Data System (ADS)
Lin, Guoqiang; di, Zengru; Fan, Ying
2014-12-01
Much empirical evidence shows that when attacked with cascading failures, scale-free or even random networks tend to collapse more extensively when the initially deleted node has higher betweenness. Meanwhile, in networks with strong community structure, high-betweenness nodes tend to be bridge nodes that link different communities, and the removal of such nodes will reduce only the connections among communities, leaving the networks fairly stable. Understanding what will affect cascading failures and how to protect or attack networks with strong community structure is therefore of interest. In this paper, we have constructed scale-free Community Networks (SFCN) and Random Community Networks (RCN). We applied these networks, along with the Lancichinett-Fortunato-Radicchi (LFR) benchmark, to the cascading-failure scenario to explore their vulnerability to attack and the relationship between cascading failures and the degree distribution and community structure of a network. The numerical results show that when the networks are of a power-law distribution, a stronger community structure will result in the failure of fewer nodes. In addition, the initial removal of the node with the highest betweenness will not lead to the worst cascading, i.e. the largest avalanche size. The Betweenness Overflow (BOF), an index that we developed, is an effective indicator of this tendency. The RCN, however, display a different result. In addition, the avalanche size of each node can be adopted as an index to evaluate the importance of the node.
Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R
2012-01-01
In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.
Murder by structure: dominance relations and the social structure of gang homicide.
Papachristos, Andrew V
2009-07-01
Most sociological theories consider murder an outcome of the differential distribution of individual, neighborhood, or social characteristics. And while such studies explain variation in aggregate homicide rates, they do not explain the social order of murder, that is, who kills whom, when, where, and for what reason. This article argues that gang murder is best understood not by searching for its individual determinants but by examining the social networks of action and reaction that create it. In short, the social structure of gang murder is defined by the manner in which social networks are constructed and by people's placement in them. The author uses a network approach and incident-level homicide records to recreate and analyze the structure of gang murders in Chicago. Findings demonstrate that individual murders between gangs create an institutionalized network of group conflict, net of any individual's participation or motive. Within this network, murders spread through an epidemic-like process of social contagion as gangs evaluate the highly visible actions of others in their local networks and negotiate dominance considerations that arise during violent incidents.
Inferring the mesoscale structure of layered, edge-valued, and time-varying networks
NASA Astrophysics Data System (ADS)
Peixoto, Tiago P.
2015-10-01
Many network systems are composed of interdependent but distinct types of interactions, which cannot be fully understood in isolation. These different types of interactions are often represented as layers, attributes on the edges, or as a time dependence of the network structure. Although they are crucial for a more comprehensive scientific understanding, these representations offer substantial challenges. Namely, it is an open problem how to precisely characterize the large or mesoscale structure of network systems in relation to these additional aspects. Furthermore, the direct incorporation of these features invariably increases the effective dimension of the network description, and hence aggravates the problem of overfitting, i.e., the use of overly complex characterizations that mistake purely random fluctuations for actual structure. In this work, we propose a robust and principled method to tackle these problems, by constructing generative models of modular network structure, incorporating layered, attributed and time-varying properties, as well as a nonparametric Bayesian methodology to infer the parameters from data and select the most appropriate model according to statistical evidence. We show that the method is capable of revealing hidden structure in layered, edge-valued, and time-varying networks, and that the most appropriate level of granularity with respect to the additional dimensions can be reliably identified. We illustrate our approach on a variety of empirical systems, including a social network of physicians, the voting correlations of deputies in the Brazilian national congress, the global airport network, and a proximity network of high-school students.
Privacy Breach Analysis in Social Networks
NASA Astrophysics Data System (ADS)
Nagle, Frank
This chapter addresses various aspects of analyzing privacy breaches in social networks. We first review literature that defines three types of privacy breaches in social networks: interactive, active, and passive. We then survey the various network anonymization schemes that have been constructed to address these privacy breaches. After exploring these breaches and anonymization schemes, we evaluate a measure for determining the level of anonymity inherent in a network graph based on its topological structure. Finally, we close by emphasizing the difficulty of anonymizing social network data while maintaining usability for research purposes and offering areas for future work.
Endogenous network of firms and systemic risk
NASA Astrophysics Data System (ADS)
Ma, Qianting; He, Jianmin; Li, Shouwei
2018-02-01
We construct an endogenous network characterized by commercial credit relationships connecting the upstream and downstream firms. Simulation results indicate that the endogenous network model displays a scale-free property which exists in real-world firm systems. In terms of the network structure, with the expansion of the scale of network nodes, the systemic risk increases significantly, while the heterogeneities of network nodes have no effect on systemic risk. As for firm micro-behaviors, including the selection range of trading partners, actual output, labor requirement, price of intermediate products and employee salaries, increase of all these parameters will lead to higher systemic risk.
Network structure of production
Atalay, Enghin; Hortaçsu, Ali; Roberts, James; Syverson, Chad
2011-01-01
Complex social networks have received increasing attention from researchers. Recent work has focused on mechanisms that produce scale-free networks. We theoretically and empirically characterize the buyer–supplier network of the US economy and find that purely scale-free models have trouble matching key attributes of the network. We construct an alternative model that incorporates realistic features of firms’ buyer–supplier relationships and estimate the model’s parameters using microdata on firms’ self-reported customers. This alternative framework is better able to match the attributes of the actual economic network and aids in further understanding several important economic phenomena. PMID:21402924
Thermodynamic characterization of synchronization-optimized oscillator networks
NASA Astrophysics Data System (ADS)
Yanagita, Tatsuo; Ichinomiya, Takashi
2014-12-01
We consider a canonical ensemble of synchronization-optimized networks of identical oscillators under external noise. By performing a Markov chain Monte Carlo simulation using the Kirchhoff index, i.e., the sum of the inverse eigenvalues of the Laplacian matrix (as a graph Hamiltonian of the network), we construct more than 1 000 different synchronization-optimized networks. We then show that the transition from star to core-periphery structure depends on the connectivity of the network, and is characterized by the node degree variance of the synchronization-optimized ensemble. We find that thermodynamic properties such as heat capacity show anomalies for sparse networks.
On the design of a hierarchical SS7 network: A graph theoretical approach
NASA Astrophysics Data System (ADS)
Krauss, Lutz; Rufa, Gerhard
1994-04-01
This contribution is concerned with the design of Signaling System No. 7 networks based on graph theoretical methods. A hierarchical network topology is derived by combining the advantage of the hierarchical network structure with the realization of node disjoint routes between nodes of the network. By using specific features of this topology, we develop an algorithm to construct circle-free routing data and to assure bidirectionality also in case of failure situations. The methods described are based on the requirements that the network topology, as well as the routing data, may be easily changed.
Complexity analysis on public transport networks of 97 large- and medium-sized cities in China
NASA Astrophysics Data System (ADS)
Tian, Zhanwei; Zhang, Zhuo; Wang, Hongfei; Ma, Li
2018-04-01
The traffic situation in Chinese urban areas is continuing to deteriorate. To make a better planning and designing of the public transport system, it is necessary to make profound research on the structure of urban public transport networks (PTNs). We investigate 97 large- and medium-sized cities’ PTNs in China, construct three types of network models — bus stop network, bus transit network and bus line network, then analyze the structural characteristics of them. It is revealed that bus stop network is small-world and scale-free, bus transit network and bus line network are both small-world. Betweenness centrality of each city’s PTN shows similar distribution pattern, although these networks’ size is various. When classifying cities according to the characteristics of PTNs or economic development level, the results are similar. It means that the development of cities’ economy and transport network has a strong correlation, PTN expands in a certain model with the development of economy.
Structure and Evolution of the Foreign Exchange Networks
NASA Astrophysics Data System (ADS)
Kwapień, J.; Gworek, S.; Drożdż, S.
2009-01-01
We investigate topology and temporal evolution of the foreign currency exchange market viewed from a weighted network perspective. Based on exchange rates for a set of 46 currencies (including precious metals), we construct different representations of the FX network depending on a choice of the base currency. Our results show that the network structure is not stable in time, but there are main clusters of currencies, which persist for a long period of time despite the fact that their size and content are variable. We find a long-term trend in the network's evolution which affects the USD and EUR nodes. In all the network representations, the USD node gradually loses its centrality, while, on contrary, the EUR node has become slightly more central than it used to be in its early years. Despite this directional trend, the overall evolution of the network is noisy.
Spectra of English evolving word co-occurrence networks
NASA Astrophysics Data System (ADS)
Liang, Wei
2017-02-01
Spectral analysis is a powerful tool that provides global measures of the network properties. In this paper, 200 English articles are collected. A word co-occurrence network is constructed from each single article (denoted by single network). Furthermore, 5 large English word co-occurrence networks are constructed (denoted by large network). Spectra of their adjacency matrices are computed. The largest eigenvalue, λ1, depends on the network size N and the number of edges E as λ1 ∝N0.66 and λ1 ∝E0.54, respectively. The number of different eigenvalues, Nλ, increase in the manner of Nλ ∝N0.58 and Nλ ∝E0.47. The middle part of the spectral distribution can be fitted by a line with slope - 0.01 in each of the large networks, whereas two segments with the same slope - 0.03 for 0 ≪ N < 260 and - 0.02 for 260 < N < 2800 are needed for the single networks. An "M"-shape distribution appears in each of the spectral densities of the large networks. These and other results can provide useful insight into the structural properties of English linguistic networks.
Evaluation model of distribution network development based on ANP and grey correlation analysis
NASA Astrophysics Data System (ADS)
Ma, Kaiqiang; Zhan, Zhihong; Zhou, Ming; Wu, Qiang; Yan, Jun; Chen, Genyong
2018-06-01
The existing distribution network evaluation system cannot scientifically and comprehensively reflect the distribution network development status. Furthermore, the evaluation model is monotonous and it is not suitable for horizontal analysis of many regional power grids. For these reason, this paper constructs a set of universal adaptability evaluation index system and model of distribution network development. Firstly, distribution network evaluation system is set up by power supply capability, power grid structure, technical equipment, intelligent level, efficiency of the power grid and development benefit of power grid. Then the comprehensive weight of indices is calculated by combining the AHP with the grey correlation analysis. Finally, the index scoring function can be obtained by fitting the index evaluation criterion to the curve, and then using the multiply plus operator to get the result of sample evaluation. The example analysis shows that the model can reflect the development of distribution network and find out the advantages and disadvantages of distribution network development. Besides, the model provides suggestions for the development and construction of distribution network.
NASA Astrophysics Data System (ADS)
Gu, Jinghe; Li, Qiyun; Zeng, Pan; Meng, Yulin; Zhang, Xiukui; Wu, Ping; Zhou, Yiming
2017-08-01
Micro/nano-architectured transition-metal@C hybrids possess unique structural and compositional features toward lithium storage, and are thus expected to manifest ideal anodic performances in advanced lithium-ion batteries (LIBs). Herein, we propose a facile and scalable solid-state coordination and subsequent pyrolysis route for the formation of a novel type of micro/nano-architectured transition-metal@C hybrid (i.e., Ni@C nanosheet-assembled hierarchical network, Ni@C network). Moreover, this coordination-pyrolysis route has also been applied for the construction of bare carbon network using zinc salts instead of nickel salts as precursors. When applied as potential anodic materials in LIBs, the Ni@C network exhibits Ni-content-dependent electrochemical performances, and the partially-etched Ni@C network manifests markedly enhanced Li-storage performances in terms of specific capacities, cycle life, and rate capability than the pristine Ni@C network and carbon network. The proposed solid-state coordination and pyrolysis strategy would open up new opportunities for constructing micro/nano-architectured transition-metal@C hybrids as advanced anode materials for LIBs.
Structural covariance networks across healthy young adults and their consistency.
Guo, Xiaojuan; Wang, Yan; Guo, Taomei; Chen, Kewei; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li
2015-08-01
To investigate structural covariance networks (SCNs) as measured by regional gray matter volumes with structural magnetic resonance imaging (MRI) from healthy young adults, and to examine their consistency and stability. Two independent cohorts were included in this study: Group 1 (82 healthy subjects aged 18-28 years) and Group 2 (109 healthy subjects aged 20-28 years). Structural MRI data were acquired at 3.0T and 1.5T using a magnetization prepared rapid-acquisition gradient echo sequence for these two groups, respectively. We applied independent component analysis (ICA) to construct SCNs and further applied the spatial overlap ratio and correlation coefficient to evaluate the spatial consistency of the SCNs between these two datasets. Seven and six independent components were identified for Group 1 and Group 2, respectively. Moreover, six SCNs including the posterior default mode network, the visual and auditory networks consistently existed across the two datasets. The overlap ratios and correlation coefficients of the visual network reached the maximums of 72% and 0.71. This study demonstrates the existence of consistent SCNs corresponding to general functional networks. These structural covariance findings may provide insight into the underlying organizational principles of brain anatomy. © 2014 Wiley Periodicals, Inc.
Shortcomings with Tree-Structured Edge Encodings for Neural Networks
NASA Technical Reports Server (NTRS)
Hornby, Gregory S.
2004-01-01
In evolutionary algorithms a common method for encoding neural networks is to use a tree structured assembly procedure for constructing them. Since node operators have difficulties in specifying edge weights and these operators are execution-order dependent, an alternative is to use edge operators. Here we identify three problems with edge operators: in the initialization phase most randomly created genotypes produce an incorrect number of inputs and outputs; variation operators can easily change the number of input/output (I/O) units; and units have a connectivity bias based on their order of creation. Instead of creating I/O nodes as part of the construction process we propose using parameterized operators to connect to preexisting I/O units. Results from experiments show that these parameterized operators greatly improve the probability of creating and maintaining networks with the correct number of I/O units, remove the connectivity bias with I/O units and produce better controllers for a goal-scoring task.
2008-12-01
1979; Wasserman and Faust, 1994). SNA thus relies heavily on graph theory to make predictions about network structure and thus social behavior...becomes a tool for increasing the specificity of theory , thinking through the theoretical implications, and generating testable predictions. In...to summarize Construct and its roots in constructural sociological theory . We discover that the (LPM) provides a mathematical bridge between
Learning polynomial feedforward neural networks by genetic programming and backpropagation.
Nikolaev, N Y; Iba, H
2003-01-01
This paper presents an approach to learning polynomial feedforward neural networks (PFNNs). The approach suggests, first, finding the polynomial network structure by means of a population-based search technique relying on the genetic programming paradigm, and second, further adjustment of the best discovered network weights by an especially derived backpropagation algorithm for higher order networks with polynomial activation functions. These two stages of the PFNN learning process enable us to identify networks with good training as well as generalization performance. Empirical results show that this approach finds PFNN which outperform considerably some previous constructive polynomial network algorithms on processing benchmark time series.
Yi, Wen; Miao, Mengyi; Zhang, Lei
2018-01-01
The construction industry has been recognized, for many years, as among those having a high likelihood of accidents, injuries and occupational illnesses. Such risks of construction workers can lead to low productivity and social problems. As a result, construction workers’ well-being should be highly addressed to improve construction workers’ efficiency and productivity. Meanwhile, the social support from a social network and capital (SNC) of construction workers has been considered as an effective approach to promote construction workers’ physical and mental health (P&M health), as well as their work efficiency and productivity. Based on a comprehensive literature review, a conceptual model, which aims to improve construction workers’ efficiency and productivity from the perspective of health and SNC, was proposed. A questionnaire survey was conducted to investigate the construction workers’ health, SNC and work efficiency and productivity in Nanjing, China. A structural equation model (SEM) was employed to test the three hypothetical relationships among construction workers’ P&M health, SNC and work efficiency and productivity. The results indicated that the direct impacts from construction workers’ P&M health on work efficiency and productivity were more significant than that from the SNC. In addition, the construction workers’ social capital and the network can indirectly influence the work efficiency and productivity by affecting the construction workers’ P&M health. Therefore, strategies for enhancing construction workers’ efficiency and productivity were proposed. Furthermore, many useable suggestions can be drawn from the research findings from the perspective of a government. The identified indicators and relationships would contribute to the construction work efficiency and productivity assessment and health management from the perspective of the construction workers. PMID:29462861
Yuan, Jingfeng; Yi, Wen; Miao, Mengyi; Zhang, Lei
2018-02-15
The construction industry has been recognized, for many years, as among those having a high likelihood of accidents, injuries and occupational illnesses. Such risks of construction workers can lead to low productivity and social problems. As a result, construction workers' well-being should be highly addressed to improve construction workers' efficiency and productivity. Meanwhile, the social support from a social network and capital (SNC) of construction workers has been considered as an effective approach to promote construction workers' physical and mental health (P&M health), as well as their work efficiency and productivity. Based on a comprehensive literature review, a conceptual model, which aims to improve construction workers' efficiency and productivity from the perspective of health and SNC, was proposed. A questionnaire survey was conducted to investigate the construction workers' health, SNC and work efficiency and productivity in Nanjing, China. A structural equation model (SEM) was employed to test the three hypothetical relationships among construction workers' P&M health, SNC and work efficiency and productivity. The results indicated that the direct impacts from construction workers' P&M health on work efficiency and productivity were more significant than that from the SNC. In addition, the construction workers' social capital and the network can indirectly influence the work efficiency and productivity by affecting the construction workers' P&M health. Therefore, strategies for enhancing construction workers' efficiency and productivity were proposed. Furthermore, many useable suggestions can be drawn from the research findings from the perspective of a government. The identified indicators and relationships would contribute to the construction work efficiency and productivity assessment and health management from the perspective of the construction workers.
Research on Risk Manage of Power Construction Project Based on Bayesian Network
NASA Astrophysics Data System (ADS)
Jia, Zhengyuan; Fan, Zhou; Li, Yong
With China's changing economic structure and increasingly fierce competition in the market, the uncertainty and risk factors in the projects of electric power construction are increasingly complex, the projects will face huge risks or even fail if we don't consider or ignore these risk factors. Therefore, risk management in the projects of electric power construction plays an important role. The paper emphatically elaborated the influence of cost risk in electric power projects through study overall risk management and the behavior of individual in risk management, and introduced the Bayesian network to the project risk management. The paper obtained the order of key factors according to both scene analysis and causal analysis for effective risk management.
Neural networks for structural design - An integrated system implementation
NASA Technical Reports Server (NTRS)
Berke, Laszlo; Hafez, Wassim; Pao, Yoh-Han
1992-01-01
The development of powerful automated procedures to aid the creative designer is becoming increasingly critical for complex design tasks. In the work described here Artificial Neural Nets are applied to acquire structural analysis and optimization domain expertise. Based on initial instructions from the user an automated procedure generates random instances of structural analysis and/or optimization 'experiences' that cover a desired domain. It extracts training patterns from the created instances, constructs and trains an appropriate network architecture and checks the accuracy of net predictions. The final product is a trained neural net that can estimate analysis and/or optimization results instantaneously.
Stochastic flux analysis of chemical reaction networks
2013-01-01
Background Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. Results We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. Conclusions We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network. PMID:24314153
Stochastic flux analysis of chemical reaction networks.
Kahramanoğulları, Ozan; Lynch, James F
2013-12-07
Chemical reaction networks provide an abstraction scheme for a broad range of models in biology and ecology. The two common means for simulating these networks are the deterministic and the stochastic approaches. The traditional deterministic approach, based on differential equations, enjoys a rich set of analysis techniques, including a treatment of reaction fluxes. However, the discrete stochastic simulations, which provide advantages in some cases, lack a quantitative treatment of network fluxes. We describe a method for flux analysis of chemical reaction networks, where flux is given by the flow of species between reactions in stochastic simulations of the network. Extending discrete event simulation algorithms, our method constructs several data structures, and thereby reveals a variety of statistics about resource creation and consumption during the simulation. We use these structures to quantify the causal interdependence and relative importance of the reactions at arbitrary time intervals with respect to the network fluxes. This allows us to construct reduced networks that have the same flux-behavior, and compare these networks, also with respect to their time series. We demonstrate our approach on an extended example based on a published ODE model of the same network, that is, Rho GTP-binding proteins, and on other models from biology and ecology. We provide a fully stochastic treatment of flux analysis. As in deterministic analysis, our method delivers the network behavior in terms of species transformations. Moreover, our stochastic analysis can be applied, not only at steady state, but at arbitrary time intervals, and used to identify the flow of specific species between specific reactions. Our cases study of Rho GTP-binding proteins reveals the role played by the cyclic reverse fluxes in tuning the behavior of this network.
Mapping uncharted territory in ice from zeolite networks to ice structures.
Engel, Edgar A; Anelli, Andrea; Ceriotti, Michele; Pickard, Chris J; Needs, Richard J
2018-06-05
Ice is one of the most extensively studied condensed matter systems. Yet, both experimentally and theoretically several new phases have been discovered over the last years. Here we report a large-scale density-functional-theory study of the configuration space of water ice. We geometry optimise 74,963 ice structures, which are selected and constructed from over five million tetrahedral networks listed in the databases of Treacy, Deem, and the International Zeolite Association. All prior knowledge of ice is set aside and we introduce "generalised convex hulls" to identify configurations stabilised by appropriate thermodynamic constraints. We thereby rediscover all known phases (I-XVII, i, 0 and the quartz phase) except the metastable ice IV. Crucially, we also find promising candidates for ices XVIII through LI. Using the "sketch-map" dimensionality-reduction algorithm we construct an a priori, navigable map of configuration space, which reproduces similarity relations between structures and highlights the novel candidates. By relating the known phases to the tractably small, yet structurally diverse set of synthesisable candidate structures, we provide an excellent starting point for identifying formation pathways.
The relevance of network micro-structure for neural dynamics.
Pernice, Volker; Deger, Moritz; Cardanobile, Stefano; Rotter, Stefan
2013-01-01
The activity of cortical neurons is determined by the input they receive from presynaptic neurons. Many previous studies have investigated how specific aspects of the statistics of the input affect the spike trains of single neurons and neurons in recurrent networks. However, typically very simple random network models are considered in such studies. Here we use a recently developed algorithm to construct networks based on a quasi-fractal probability measure which are much more variable than commonly used network models, and which therefore promise to sample the space of recurrent networks in a more exhaustive fashion than previously possible. We use the generated graphs as the underlying network topology in simulations of networks of integrate-and-fire neurons in an asynchronous and irregular state. Based on an extensive dataset of networks and neuronal simulations we assess statistical relations between features of the network structure and the spiking activity. Our results highlight the strong influence that some details of the network structure have on the activity dynamics of both single neurons and populations, even if some global network parameters are kept fixed. We observe specific and consistent relations between activity characteristics like spike-train irregularity or correlations and network properties, for example the distributions of the numbers of in- and outgoing connections or clustering. Exploiting these relations, we demonstrate that it is possible to estimate structural characteristics of the network from activity data. We also assess higher order correlations of spiking activity in the various networks considered here, and find that their occurrence strongly depends on the network structure. These results provide directions for further theoretical studies on recurrent networks, as well as new ways to interpret spike train recordings from neural circuits.
Wild cricket social networks show stability across generations.
Fisher, David N; Rodríguez-Muñoz, Rolando; Tregenza, Tom
2016-07-27
A central part of an animal's environment is its interactions with conspecifics. There has been growing interest in the potential to capture these interactions in the form of a social network. Such networks can then be used to examine how relationships among individuals affect ecological and evolutionary processes. However, in the context of selection and evolution, the utility of this approach relies on social network structures persisting across generations. This is an assumption that has been difficult to test because networks spanning multiple generations have not been available. We constructed social networks for six annual generations over a period of eight years for a wild population of the cricket Gryllus campestris. Through the use of exponential random graph models (ERGMs), we found that the networks in any given year were able to predict the structure of networks in other years for some network characteristics. The capacity of a network model of any given year to predict the networks of other years did not depend on how far apart those other years were in time. Instead, the capacity of a network model to predict the structure of a network in another year depended on the similarity in population size between those years. Our results indicate that cricket social network structure resists the turnover of individuals and is stable across generations. This would allow evolutionary processes that rely on network structure to take place. The influence of network size may indicate that scaling up findings on social behaviour from small populations to larger ones will be difficult. Our study also illustrates the utility of ERGMs for comparing networks, a task for which an effective approach has been elusive.
Seismic waveform inversion using neural networks
NASA Astrophysics Data System (ADS)
De Wit, R. W.; Trampert, J.
2012-12-01
Full waveform tomography aims to extract all available information on Earth structure and seismic sources from seismograms. The strongly non-linear nature of this inverse problem is often addressed through simplifying assumptions for the physical theory or data selection, thus potentially neglecting valuable information. Furthermore, the assessment of the quality of the inferred model is often lacking. This calls for the development of methods that fully appreciate the non-linear nature of the inverse problem, whilst providing a quantification of the uncertainties in the final model. We propose to invert seismic waveforms in a fully non-linear way by using artificial neural networks. Neural networks can be viewed as powerful and flexible non-linear filters. They are very common in speech, handwriting and pattern recognition. Mixture Density Networks (MDN) allow us to obtain marginal posterior probability density functions (pdfs) of all model parameters, conditioned on the data. An MDN can approximate an arbitrary conditional pdf as a linear combination of Gaussian kernels. Seismograms serve as input, Earth structure parameters are the so-called targets and network training aims to learn the relationship between input and targets. The network is trained on a large synthetic data set, which we construct by drawing many random Earth models from a prior model pdf and solving the forward problem for each of these models, thus generating synthetic seismograms. As a first step, we aim to construct a 1D Earth model. Training sets are constructed using the Mineos package, which computes synthetic seismograms in a spherically symmetric non-rotating Earth by summing normal modes. We train a network on the body waveforms present in these seismograms. Once the network has been trained, it can be presented with new unseen input data, in our case the body waves in real seismograms. We thus obtain the posterior pdf which represents our final state of knowledge given the information in the training set and the real data.
Biological network motif detection and evaluation
2011-01-01
Background Molecular level of biological data can be constructed into system level of data as biological networks. Network motifs are defined as over-represented small connected subgraphs in networks and they have been used for many biological applications. Since network motif discovery involves computationally challenging processes, previous algorithms have focused on computational efficiency. However, we believe that the biological quality of network motifs is also very important. Results We define biological network motifs as biologically significant subgraphs and traditional network motifs are differentiated as structural network motifs in this paper. We develop five algorithms, namely, EDGEGO-BNM, EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-BNM and VOLTAGE-BNM, for efficient detection of biological network motifs, and introduce several evaluation measures including motifs included in complex, motifs included in functional module and GO term clustering score in this paper. Experimental results show that EDGEGO-BNM and EDGEBETWEENNESS-BNM perform better than existing algorithms and all of our algorithms are applicable to find structural network motifs as well. Conclusion We provide new approaches to finding network motifs in biological networks. Our algorithms efficiently detect biological network motifs and further improve existing algorithms to find high quality structural network motifs, which would be impossible using existing algorithms. The performances of the algorithms are compared based on our new evaluation measures in biological contexts. We believe that our work gives some guidelines of network motifs research for the biological networks. PMID:22784624
Constructing networks from a dynamical system perspective for multivariate nonlinear time series.
Nakamura, Tomomichi; Tanizawa, Toshihiro; Small, Michael
2016-03-01
We describe a method for constructing networks for multivariate nonlinear time series. We approach the interaction between the various scalar time series from a deterministic dynamical system perspective and provide a generic and algorithmic test for whether the interaction between two measured time series is statistically significant. The method can be applied even when the data exhibit no obvious qualitative similarity: a situation in which the naive method utilizing the cross correlation function directly cannot correctly identify connectivity. To establish the connectivity between nodes we apply the previously proposed small-shuffle surrogate (SSS) method, which can investigate whether there are correlation structures in short-term variabilities (irregular fluctuations) between two data sets from the viewpoint of deterministic dynamical systems. The procedure to construct networks based on this idea is composed of three steps: (i) each time series is considered as a basic node of a network, (ii) the SSS method is applied to verify the connectivity between each pair of time series taken from the whole multivariate time series, and (iii) the pair of nodes is connected with an undirected edge when the null hypothesis cannot be rejected. The network constructed by the proposed method indicates the intrinsic (essential) connectivity of the elements included in the system or the underlying (assumed) system. The method is demonstrated for numerical data sets generated by known systems and applied to several experimental time series.
Social and place-focused communities in location-based online social networks
NASA Astrophysics Data System (ADS)
Brown, Chloë; Nicosia, Vincenzo; Scellato, Salvatore; Noulas, Anastasios; Mascolo, Cecilia
2013-06-01
Thanks to widely available, cheap Internet access and the ubiquity of smartphones, millions of people around the world now use online location-based social networking services. Understanding the structural properties of these systems and their dependence upon users' habits and mobility has many potential applications, including resource recommendation and link prediction. Here, we construct and characterise social and place-focused graphs by using longitudinal information about declared social relationships and about users' visits to physical places collected from a popular online location-based social service. We show that although the social and place-focused graphs are constructed from the same data set, they have quite different structural properties. We find that the social and location-focused graphs have different global and meso-scale structure, and in particular that social and place-focused communities have negligible overlap. Consequently, group inference based on community detection performed on the social graph alone fails to isolate place-focused groups, even though these do exist in the network. By studying the evolution of tie structure within communities, we show that the time period over which location data are aggregated has a substantial impact on the stability of place-focused communities, and that information about place-based groups may be more useful for user-centric applications than that obtained from the analysis of social communities alone.
Abell, Jackie; Kirzinger, Morgan W. B.; Gordon, Yvonne; Kirk, Jacqui; Kokeŝ, Rae; Lynas, Kirsty; Mandinyenya, Bob; Youldon, David
2013-01-01
Animal conservation practices include the grouping of captive related and unrelated individuals to form a social structure which is characteristic of that species in the wild. In response to the rapid decline of wild African lion (Panthera leo) populations, an array of conservational strategies have been adopted. Ex situ reintroduction of the African lion requires the construction of socially cohesive pride structures prior to wild release. This pilot study adopted a social network theory approach to quantitatively assess a captive pride’s social structure and the relationships between individuals within them. Group composition (who is present in a group) and social interaction data (social licking, greeting, play) was observed and recorded to assess social cohesion within a released semi-wild pride. UCINET and SOCPROG software was utilised to represent and analyse these social networks. Results indicate that the pride is socially cohesive, does not exhibit random associations, and the role of socially influential keystone individuals is important for maintaining social bondedness within a lion pride. These results are potentially informative for the structure of lion prides, in captivity and in the wild, and could have implications for captive and wild-founder reintroductions. PMID:24376544
Orlando, Lori A.; Sperber, Nina R.; Voils, Corrine; Nichols, Marshall; Myers, Rachel A.; Wu, R. Ryanne; Rakhra-Burris, Tejinder; Levy, Kenneth D.; Levy, Mia; Pollin, Toni I.; Guan, Yue; Horowitz, Carol R.; Ramos, Michelle; Kimmel, Stephen E.; McDonough, Caitrin W.; Madden, Ebony B.; Damschroder, Laura J.
2017-01-01
Purpose Implementation research provides a structure for evaluating the clinical integration of genomic medicine interventions. This paper describes the Implementing GeNomics In PracTicE (IGNITE) Network’s efforts to promote: 1) a broader understanding of genomic medicine implementation research; and 2) the sharing of knowledge generated in the network. Methods To facilitate this goal the IGNITE Network Common Measures Working Group (CMG) members adopted the Consolidated Framework for Implementation Research (CFIR) to guide their approach to: identifying constructs and measures relevant to evaluating genomic medicine as a whole, standardizing data collection across projects, and combining data in a centralized resource for cross network analyses. Results CMG identified ten high-priority CFIR constructs as important for genomic medicine. Of those, eight didn’t have standardized measurement instruments. Therefore, we developed four survey tools to address this gap. In addition, we identified seven high-priority constructs related to patients, families, and communities that did not map to CFIR constructs. Both sets of constructs were combined to create a draft genomic medicine implementation model. Conclusion We developed processes to identify constructs deemed valuable for genomic medicine implementation and codified them in a model. These resources are freely available to facilitate knowledge generation and sharing across the field. PMID:28914267
English and Chinese languages as weighted complex networks
NASA Astrophysics Data System (ADS)
Sheng, Long; Li, Chunguang
2009-06-01
In this paper, we analyze statistical properties of English and Chinese written human language within the framework of weighted complex networks. The two language networks are based on an English novel and a Chinese biography, respectively, and both of the networks are constructed in the same way. By comparing the intensity and density of connections between the two networks, we find that high weight connections in Chinese language networks prevail more than those in English language networks. Furthermore, some of the topological and weighted quantities are compared. The results display some differences in the structural organizations between the two language networks. These observations indicate that the two languages may have different linguistic mechanisms and different combinatorial natures.
Empirical Reference Distributions for Networks of Different Size
Smith, Anna; Calder, Catherine A.; Browning, Christopher R.
2016-01-01
Network analysis has become an increasingly prevalent research tool across a vast range of scientific fields. Here, we focus on the particular issue of comparing network statistics, i.e. graph-level measures of network structural features, across multiple networks that differ in size. Although “normalized” versions of some network statistics exist, we demonstrate via simulation why direct comparison is often inappropriate. We consider normalizing network statistics relative to a simple fully parameterized reference distribution and demonstrate via simulation how this is an improvement over direct comparison, but still sometimes problematic. We propose a new adjustment method based on a reference distribution constructed as a mixture model of random graphs which reflect the dependence structure exhibited in the observed networks. We show that using simple Bernoulli models as mixture components in this reference distribution can provide adjusted network statistics that are relatively comparable across different network sizes but still describe interesting features of networks, and that this can be accomplished at relatively low computational expense. Finally, we apply this methodology to a collection of ecological networks derived from the Los Angeles Family and Neighborhood Survey activity location data. PMID:27721556
Force Field for Water Based on Neural Network.
Wang, Hao; Yang, Weitao
2018-05-18
We developed a novel neural network based force field for water based on training with high level ab initio theory. The force field was built based on electrostatically embedded many-body expansion method truncated at binary interactions. Many-body expansion method is a common strategy to partition the total Hamiltonian of large systems into a hierarchy of few-body terms. Neural networks were trained to represent electrostatically embedded one-body and two-body interactions, which require as input only one and two water molecule calculations at the level of ab initio electronic structure method CCSD/aug-cc-pVDZ embedded in the molecular mechanics water environment, making it efficient as a general force field construction approach. Structural and dynamic properties of liquid water calculated with our force field show good agreement with experimental results. We constructed two sets of neural network based force fields: non-polarizable and polarizable force fields. Simulation results show that the non-polarizable force field using fixed TIP3P charges has already behaved well, since polarization effects and many-body effects are implicitly included due to the electrostatic embedding scheme. Our results demonstrate that the electrostatically embedded many-body expansion combined with neural network provides a promising and systematic way to build the next generation force fields at high accuracy and low computational costs, especially for large systems.
Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.
Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich
2004-03-01
By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix-loop-helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks emerging through single-gene duplications, the dominant importance of molecular modularity in the bottom-up construction of complex biological entities, and the convergent evolution of networks.
A novel constructive-optimizer neural network for the traveling salesman problem.
Saadatmand-Tarzjan, Mahdi; Khademi, Morteza; Akbarzadeh-T, Mohammad-R; Moghaddam, Hamid Abrishami
2007-08-01
In this paper, a novel constructive-optimizer neural network (CONN) is proposed for the traveling salesman problem (TSP). CONN uses a feedback structure similar to Hopfield-type neural networks and a competitive training algorithm similar to the Kohonen-type self-organizing maps (K-SOMs). Consequently, CONN is composed of a constructive part, which grows the tour and an optimizer part to optimize it. In the training algorithm, an initial tour is created first and introduced to CONN. Then, it is trained in the constructive phase for adding a number of cities to the tour. Next, the training algorithm switches to the optimizer phase for optimizing the current tour by displacing the tour cities. After convergence in this phase, the training algorithm switches to the constructive phase anew and is continued until all cities are added to the tour. Furthermore, we investigate a relationship between the number of TSP cities and the number of cities to be added in each constructive phase. CONN was tested on nine sets of benchmark TSPs from TSPLIB to demonstrate its performance and efficiency. It performed better than several typical Neural networks (NNs), including KNIES_TSP_Local, KNIES_TSP_Global, Budinich's SOM, Co-Adaptive Net, and multivalued Hopfield network as wall as computationally comparable variants of the simulated annealing algorithm, in terms of both CPU time and accuracy. Furthermore, CONN converged considerably faster than expanding SOM and evolved integrated SOM and generated shorter tours compared to KNIES_DECOMPOSE. Although CONN is not yet comparable in terms of accuracy with some sophisticated computationally intensive algorithms, it converges significantly faster than they do. Generally speaking, CONN provides the best compromise between CPU time and accuracy among currently reported NNs for TSP.
Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
Smith, Robert W; van Sluijs, Bob; Fleck, Christian
2017-12-02
Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused on finding optimal network structures and reaction rates that respond to pulses or produce stable oscillations. In this work we present a generalised in silico evolutionary algorithm that simultaneously finds network structures and reaction rates (genotypes) that can satisfy multiple defined objectives (phenotypes). The key step to our approach is to translate a schema/binary-based description of biological networks into systems of ordinary differential equations (ODEs). The ODEs can then be solved numerically to provide dynamic information about an evolved networks functionality. Initially we benchmark algorithm performance by finding optimal networks that can recapitulate concentration time-series data and perform parameter optimisation on oscillatory dynamics of the Repressilator. We go on to show the utility of our algorithm by finding new designs for robust synthetic oscillators, and by performing multi-objective optimisation to find a set of oscillators and feed-forward loops that are optimal at balancing different system properties. In sum, our results not only confirm and build on previous observations but we also provide new designs of synthetic oscillators for experimental construction. In this work we have presented and tested an evolutionary algorithm that can design a biological network to produce desired output. Given that previous designs of synthetic networks have been limited to subregions of network- and parameter-space, the use of our evolutionary optimisation algorithm will enable Synthetic Biologists to construct new systems with the potential to display a wider range of complex responses.
Chen, Yaojing; Chen, Kewei; Zhang, Junying; Li, Xin; Shu, Ni; Wang, Jun; Zhang, Zhanjun; Reiman, Eric M
2015-03-13
As the Apolipoprotein E (APOE) ɛ4 allele is a major genetic risk factor for sporadic Alzheimer's disease (AD), which has been suggested as a disconnection syndrome manifested by the disruption of white matter (WM) integrity and functional connectivity (FC), elucidating the subtle brain structural and functional network changes in cognitively normal ɛ4 carriers is essential for identifying sensitive neuroimaging based biomarkers and understanding the preclinical AD-related abnormality development. We first constructed functional network on the basis of resting-state functional magnetic resonance imaging and a structural network on the basis of diffusion tensor image. Using global, local and nodal efficiencies of these two networks, we then examined (i) the differences of functional and WM structural network between cognitively normal ɛ4 carriers and non-carriers simultaneously, (ii) the sensitivity of these indices as biomarkers, and (iii) their relationship to behavior measurements, as well as to cholesterol level. For ɛ4 carriers, we found reduced global efficiency significantly in WM and marginally in FC, regional FC dysfunctions mainly in medial temporal areas, and more widespread for WM network. Importantly, the right parahippocampal gyrus (PHG.R) was the only region with simultaneous functional and structural damage, and the nodal efficiency of PHG.R in WM network mediates the APOE ɛ4 effect on memory function. Finally, the cholesterol level correlated with WM network differently than with the functional network in ɛ4 carriers. Our results demonstrated ɛ4-specific abnormal structural and functional patterns, which may potentially serve as biomarkers for early detection before the onset of the disease.
A financial network perspective of financial institutions' systemic risk contributions
NASA Astrophysics Data System (ADS)
Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang; Uryasev, Stan
2016-08-01
This study considers the effects of the financial institutions' local topology structure in the financial network on their systemic risk contribution using data from the Chinese stock market. We first measure the systemic risk contribution with the Conditional Value-at-Risk (CoVaR) which is estimated by applying dynamic conditional correlation multivariate GARCH model (DCC-MVGARCH). Financial networks are constructed from dynamic conditional correlations (DCC) with graph filtering method of minimum spanning trees (MSTs). Then we investigate dynamics of systemic risk contributions of financial institution. Also we study dynamics of financial institution's local topology structure in the financial network. Finally, we analyze the quantitative relationships between the local topology structure and systemic risk contribution with panel data regression analysis. We find that financial institutions with greater node strength, larger node betweenness centrality, larger node closeness centrality and larger node clustering coefficient tend to be associated with larger systemic risk contributions.
Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations.
Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen
2016-11-09
Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.
Topological data analysis of contagion maps for examining spreading processes on networks.
Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J
2015-07-21
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Topological data analysis of contagion maps for examining spreading processes on networks
NASA Astrophysics Data System (ADS)
Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.
2015-07-01
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
ERIC Educational Resources Information Center
Zaniboni, Sara; Fraccaroli, Franco; Truxillo, Donald M.; Bertolino, Marilena; Bauer, Talya N.
2011-01-01
Purpose: The purpose of this study is to validate, in an Italian sample, a multidimensional training motivation measure (T-VIES-it) based on expectancy (VIE) theory, and to examine the nomological network surrounding the construct. Design/methodology/approach: Using a cross-sectional design study, 258 public sector employees in Northeast Italy…
Data identification for improving gene network inference using computational algebra.
Dimitrova, Elena; Stigler, Brandilyn
2014-11-01
Identification of models of gene regulatory networks is sensitive to the amount of data used as input. Considering the substantial costs in conducting experiments, it is of value to have an estimate of the amount of data required to infer the network structure. To minimize wasted resources, it is also beneficial to know which data are necessary to identify the network. Knowledge of the data and knowledge of the terms in polynomial models are often required a priori in model identification. In applications, it is unlikely that the structure of a polynomial model will be known, which may force data sets to be unnecessarily large in order to identify a model. Furthermore, none of the known results provides any strategy for constructing data sets to uniquely identify a model. We provide a specialization of an existing criterion for deciding when a set of data points identifies a minimal polynomial model when its monomial terms have been specified. Then, we relax the requirement of the knowledge of the monomials and present results for model identification given only the data. Finally, we present a method for constructing data sets that identify minimal polynomial models.
Structure constrained by metadata in networks of chess players.
Almeira, Nahuel; Schaigorodsky, Ana L; Perotti, Juan I; Billoni, Orlando V
2017-11-09
Chess is an emblematic sport that stands out because of its age, popularity and complexity. It has served to study human behavior from the perspective of a wide number of disciplines, from cognitive skills such as memory and learning, to aspects like innovation and decision-making. Given that an extensive documentation of chess games played throughout history is available, it is possible to perform detailed and statistically significant studies about this sport. Here we use one of the most extensive chess databases in the world to construct two networks of chess players. One of the networks includes games that were played over-the-board and the other contains games played on the Internet. We study the main topological characteristics of the networks, such as degree distribution and correlations, transitivity and community structure. We complement the structural analysis by incorporating players' level of play as node metadata. Although both networks are topologically different, we show that in both cases players gather in communities according to their expertise and that an emergent rich-club structure, composed by the top-rated players, is also present.
The origin of asymmetric behavior of money flow in the business firm network
NASA Astrophysics Data System (ADS)
Miura, W.; Takayasu, H.; Takayasu, M.
2012-09-01
In the business firm network, the number of in-degrees and out-degrees show the same scale-free property, however, the distribution of authorities and hubs show asymmetric behavior. Here we show the result of an analysis of the two-link structure of the network to find the origin of this asymmetric behavior. We find the tendency for big construction firms intermediating small subcontracting firms to have higher hub degrees. By measuring the strength of preferential attachment rate of new companies, we also find a abnormally strong preferential attachment for which the exponent is 1.4 with respect to out-degree when a new company forms a business partnership with a construction company. We propose a new model that reproduces the asymmetric behavior of the degrees of authorities and hubs by changing the preferential attachment rate between the in-degree and the out-degree in the business firm network.
Inferring the interplay between network structure and market effects in Bitcoin
NASA Astrophysics Data System (ADS)
Kondor, Dániel; Csabai, István; Szüle, János; Pósfai, Márton; Vattay, Gábor
2014-12-01
A main focus in economics research is understanding the time series of prices of goods and assets. While statistical models using only the properties of the time series itself have been successful in many aspects, we expect to gain a better understanding of the phenomena involved if we can model the underlying system of interacting agents. In this article, we consider the history of Bitcoin, a novel digital currency system, for which the complete list of transactions is available for analysis. Using this dataset, we reconstruct the transaction network between users and analyze changes in the structure of the subgraph induced by the most active users. Our approach is based on the unsupervised identification of important features of the time variation of the network. Applying the widely used method of Principal Component Analysis to the matrix constructed from snapshots of the network at different times, we are able to show how structural changes in the network accompany significant changes in the exchange price of bitcoins.
Network marketing on a small-world network
NASA Astrophysics Data System (ADS)
Kim, Beom Jun; Jun, Tackseung; Kim, Jeong-Yoo; Choi, M. Y.
2006-02-01
We investigate a dynamic model of network marketing in a small-world network structure artificially constructed similarly to the Watts-Strogatz network model. Different from the traditional marketing, consumers can also play the role of the manufacturer's selling agents in network marketing, which is stimulated by the referral fee the manufacturer offers. As the wiring probability α is increased from zero to unity, the network changes from the one-dimensional regular directed network to the star network where all but one player are connected to one consumer. The price p of the product and the referral fee r are used as free parameters to maximize the profit of the manufacturer. It is observed that at α=0 the maximized profit is constant independent of the network size N while at α≠0, it increases linearly with N. This is in parallel to the small-world transition. It is also revealed that while the optimal value of p stays at an almost constant level in a broad range of α, that of r is sensitive to a change in the network structure. The consumer surplus is also studied and discussed.
Synchronization in a noise-driven developing neural network
NASA Astrophysics Data System (ADS)
Lin, I.-H.; Wu, R.-K.; Chen, C.-M.
2011-11-01
We use computer simulations to investigate the structural and dynamical properties of a developing neural network whose activity is driven by noise. Structurally, the constructed neural networks in our simulations exhibit the small-world properties that have been observed in several neural networks. The dynamical change of neuronal membrane potential is described by the Hodgkin-Huxley model, and two types of learning rules, including spike-timing-dependent plasticity (STDP) and inverse STDP, are considered to restructure the synaptic strength between neurons. Clustered synchronized firing (SF) of the network is observed when the network connectivity (number of connections/maximal connections) is about 0.75, in which the firing rate of neurons is only half of the network frequency. At the connectivity of 0.86, all neurons fire synchronously at the network frequency. The network SF frequency increases logarithmically with the culturing time of a growing network and decreases exponentially with the delay time in signal transmission. These conclusions are consistent with experimental observations. The phase diagrams of SF in a developing network are investigated for both learning rules.
The Ordered Network Structure and Prediction Summary for M≥7 Earthquakes in Xinjiang Region of China
NASA Astrophysics Data System (ADS)
Men, Ke-Pei; Zhao, Kai
2014-12-01
M ≥7 earthquakes have showed an obvious commensurability and orderliness in Xinjiang of China and its adjacent region since 1800. The main orderly values are 30 a × k (k = 1,2,3), 11 12 a, 41 43 a, 18 19 a, and 5 6 a. In the guidance of the information forecasting theory of Wen-Bo Weng, based on previous research results, combining ordered network structure analysis with complex network technology, we focus on the prediction summary of M ≥ 7 earthquakes by using the ordered network structure, and add new information to further optimize network, hence construct the 2D- and 3D-ordered network structure of M ≥ 7 earthquakes. In this paper, the network structure revealed fully the regularity of seismic activity of M ≥ 7 earthquakes in the study region during the past 210 years. Based on this, the Karakorum M7.1 earthquake in 1996, the M7.9 earthquake on the frontier of Russia, Mongol, and China in 2003, and two Yutian M7.3 earthquakes in 2008 and 2014 were predicted successfully. At the same time, a new prediction opinion is presented that the future two M ≥ 7 earthquakes will probably occur around 2019 - 2020 and 2025 - 2026 in this region. The results show that large earthquake occurred in defined region can be predicted. The method of ordered network structure analysis produces satisfactory results for the mid-and-long term prediction of M ≥ 7 earthquakes.
Network Analysis on Attitudes: A Brief Tutorial.
Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L J
2017-07-01
In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs.
Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L. J.
2017-01-01
In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs. PMID:28919944
Characterizing air quality data from complex network perspective.
Fan, Xinghua; Wang, Li; Xu, Huihui; Li, Shasha; Tian, Lixin
2016-02-01
Air quality depends mainly on changes in emission of pollutants and their precursors. Understanding its characteristics is the key to predicting and controlling air quality. In this study, complex networks were built to analyze topological characteristics of air quality data by correlation coefficient method. Firstly, PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) indexes of eight monitoring sites in Beijing were selected as samples from January 2013 to December 2014. Secondly, the C-C method was applied to determine the structure of phase space. Points in the reconstructed phase space were considered to be nodes of the network mapped. Then, edges were determined by nodes having the correlation greater than a critical threshold. Three properties of the constructed networks, degree distribution, clustering coefficient, and modularity, were used to determine the optimal value of the critical threshold. Finally, by analyzing and comparing topological properties, we pointed out that similarities and difference in the constructed complex networks revealed influence factors and their different roles on real air quality system.
2013-01-01
Background The idea that knowledge flows through social networks is implicit in research on traditional knowledge, but researchers have paid scant attention to the role of social networks in shaping its distribution. We bridge those two bodies of research and investigate a) the structure of network of exchange of plant propagation material (germplasm) and b) the relation between a person’s centrality in such network and his/her agroecological knowledge. Methods We study 10 networks of germplasm exchange (n = 363) in mountain regions of the Iberian Peninsula. Data were collected through participant observation, semi-structured interviews, and a survey. Results The networks display some structural characteristics (i.e., decentralization, presence of external actors) that could enhance the flow of knowledge and germplasm but also some characteristics that do not favor such flow (i.e., low density and fragmentation). We also find that a measure that captures the number of contacts of an individual in the germplasm exchange network is associated with the person’s agroecological knowledge. Conclusion Our findings highlight the importance of social relations in the construction of traditional knowledge. PMID:23883296
Gehrig, Nicolas; Dragotti, Pier Luigi
2009-03-01
In this paper, we study the sampling and the distributed compression of the data acquired by a camera sensor network. The effective design of these sampling and compression schemes requires, however, the understanding of the structure of the acquired data. To this end, we show that the a priori knowledge of the configuration of the camera sensor network can lead to an effective estimation of such structure and to the design of effective distributed compression algorithms. For idealized scenarios, we derive the fundamental performance bounds of a camera sensor network and clarify the connection between sampling and distributed compression. We then present a distributed compression algorithm that takes advantage of the structure of the data and that outperforms independent compression algorithms on real multiview images.
A complex network for studying the transmission mechanisms in stock market
NASA Astrophysics Data System (ADS)
Long, Wen; Guan, Lijing; Shen, Jiangjian; Song, Linqiu; Cui, Lingxiao
2017-10-01
This paper introduces a new complex network to describe the volatility transmission mechanisms in stock market. The network can not only endogenize stock market's volatility but also figure out the direction of volatility spillover. In this model, we first use BEKK-GARCH to estimate the volatility spillover effects among Chinese 18 industry sectors. Then, based on the ARCH coefficients and GARCH coefficients, the directional shock networks and variance networks in different stages are constructed separately. We find that the spillover effects and network structures changes in different stages. The results of the topological stability test demonstrate that the connectivity of networks becomes more fragile to selective attacks than stochastic attacks.
NASA Astrophysics Data System (ADS)
Butov, Vladimir; Timchenko, Sergey; Ushakov, Ivan; Golovkov, Nikita; Poberezhnikov, Andrey
2018-03-01
Single gas centrifuge (GC) is generally used for the separation of binary mixtures of isotopes. Processes taking place within the centrifuge are complex and non-linear. Their characteristics can change over time with long-term operation due to wear of the main structural elements of the GC construction. The paper is devoted to the determination of basic operation parameters of the centrifuge with the help of neural networks. We have developed a method for determining the parameters of the industrial GC operation by processing statistical data. In this work, we have constructed a neural network that is capable of determining the main hydraulic and separation characteristics of the gas centrifuge, depending on the geometric dimensions of the gas centrifuge, load value, and rotor speed.
Koda, Satoru; Onda, Yoshihiko; Matsui, Hidetoshi; Takahagi, Kotaro; Yamaguchi-Uehara, Yukiko; Shimizu, Minami; Inoue, Komaki; Yoshida, Takuhiro; Sakurai, Tetsuya; Honda, Hiroshi; Eguchi, Shinto; Nishii, Ryuei; Mochida, Keiichi
2017-01-01
We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon . To reveal the diurnal changes in the transcriptome in B. distachyon , we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon . On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon , aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.
Park, Chihyun; Yun, So Jeong; Ryu, Sung Jin; Lee, Soyoung; Lee, Young-Sam; Yoon, Youngmi; Park, Sang Chul
2017-03-15
Cellular senescence irreversibly arrests growth of human diploid cells. In addition, recent studies have indicated that senescence is a multi-step evolving process related to important complex biological processes. Most studies analyzed only the genes and their functions representing each senescence phase without considering gene-level interactions and continuously perturbed genes. It is necessary to reveal the genotypic mechanism inferred by affected genes and their interaction underlying the senescence process. We suggested a novel computational approach to identify an integrative network which profiles an underlying genotypic signature from time-series gene expression data. The relatively perturbed genes were selected for each time point based on the proposed scoring measure denominated as perturbation scores. Then, the selected genes were integrated with protein-protein interactions to construct time point specific network. From these constructed networks, the conserved edges across time point were extracted for the common network and statistical test was performed to demonstrate that the network could explain the phenotypic alteration. As a result, it was confirmed that the difference of average perturbation scores of common networks at both two time points could explain the phenotypic alteration. We also performed functional enrichment on the common network and identified high association with phenotypic alteration. Remarkably, we observed that the identified cell cycle specific common network played an important role in replicative senescence as a key regulator. Heretofore, the network analysis from time series gene expression data has been focused on what topological structure was changed over time point. Conversely, we focused on the conserved structure but its context was changed in course of time and showed it was available to explain the phenotypic changes. We expect that the proposed method will help to elucidate the biological mechanism unrevealed by the existing approaches.
Development of Human Brain Structural Networks Through Infancy and Childhood
Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong
2015-01-01
During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033
A method for exploring implicit concept relatedness in biomedical knowledge network.
Bai, Tian; Gong, Leiguang; Wang, Ye; Wang, Yan; Kulikowski, Casimir A; Huang, Lan
2016-07-19
Biomedical information and knowledge, structural and non-structural, stored in different repositories can be semantically connected to form a hybrid knowledge network. How to compute relatedness between concepts and discover valuable but implicit information or knowledge from it effectively and efficiently is of paramount importance for precision medicine, and a major challenge facing the biomedical research community. In this study, a hybrid biomedical knowledge network is constructed by linking concepts across multiple biomedical ontologies as well as non-structural biomedical knowledge sources. To discover implicit relatedness between concepts in ontologies for which potentially valuable relationships (implicit knowledge) may exist, we developed a Multi-Ontology Relatedness Model (MORM) within the knowledge network, for which a relatedness network (RN) is defined and computed across multiple ontologies using a formal inference mechanism of set-theoretic operations. Semantic constraints are designed and implemented to prune the search space of the relatedness network. Experiments to test examples of several biomedical applications have been carried out, and the evaluation of the results showed an encouraging potential of the proposed approach to biomedical knowledge discovery.
Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A
2018-07-01
Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.
Best practices for quality management of stormwater pipe construction : [summary].
DOT National Transportation Integrated Search
2014-02-01
Although largely unseen, stormwater pipe : systems are integral and important features : of the transportation network. Stormwater : systems support the safety and integrity of : roadways by directing stormwater away from : roadway structures to disc...
Synaptic Impairment and Robustness of Excitatory Neuronal Networks with Different Topologies
Mirzakhalili, Ehsan; Gourgou, Eleni; Booth, Victoria; Epureanu, Bogdan
2017-01-01
Synaptic deficiencies are a known hallmark of neurodegenerative diseases, but the diagnosis of impaired synapses on the cellular level is not an easy task. Nonetheless, changes in the system-level dynamics of neuronal networks with damaged synapses can be detected using techniques that do not require high spatial resolution. This paper investigates how the structure/topology of neuronal networks influences their dynamics when they suffer from synaptic loss. We study different neuronal network structures/topologies by specifying their degree distributions. The modes of the degree distribution can be used to construct networks that consist of rich clubs and resemble small world networks, as well. We define two dynamical metrics to compare the activity of networks with different structures: persistent activity (namely, the self-sustained activity of the network upon removal of the initial stimulus) and quality of activity (namely, percentage of neurons that participate in the persistent activity of the network). Our results show that synaptic loss affects the persistent activity of networks with bimodal degree distributions less than it affects random networks. The robustness of neuronal networks enhances when the distance between the modes of the degree distribution increases, suggesting that the rich clubs of networks with distinct modes keep the whole network active. In addition, a tradeoff is observed between the quality of activity and the persistent activity. For a range of distributions, both of these dynamical metrics are considerably high for networks with bimodal degree distribution compared to random networks. We also propose three different scenarios of synaptic impairment, which may correspond to different pathological or biological conditions. Regardless of the network structure/topology, results demonstrate that synaptic loss has more severe effects on the activity of the network when impairments are correlated with the activity of the neurons. PMID:28659765
Guthke, Reinhard; Möller, Ulrich; Hoffmann, Martin; Thies, Frank; Töpfer, Susanne
2005-04-15
The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. Reinhard.Guthke@hki-jena.de.
Complex networks under dynamic repair model
NASA Astrophysics Data System (ADS)
Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao
2018-01-01
Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.
Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao
2018-06-01
Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.
Khambhati, Ankit N.; Davis, Kathryn A.; Oommen, Brian S.; Chen, Stephanie H.; Lucas, Timothy H.; Litt, Brian; Bassett, Danielle S.
2015-01-01
The epileptic network is characterized by pathologic, seizure-generating ‘foci’ embedded in a web of structural and functional connections. Clinically, seizure foci are considered optimal targets for surgery. However, poor surgical outcome suggests a complex relationship between foci and the surrounding network that drives seizure dynamics. We developed a novel technique to objectively track seizure states from dynamic functional networks constructed from intracranial recordings. Each dynamical state captures unique patterns of network connections that indicate synchronized and desynchronized hubs of neural populations. Our approach suggests that seizures are generated when synchronous relationships near foci work in tandem with rapidly changing desynchronous relationships from the surrounding epileptic network. As seizures progress, topographical and geometrical changes in network connectivity strengthen and tighten synchronous connectivity near foci—a mechanism that may aid seizure termination. Collectively, our observations implicate distributed cortical structures in seizure generation, propagation and termination, and may have practical significance in determining which circuits to modulate with implantable devices. PMID:26680762
Evolving phenotypic networks in silico.
François, Paul
2014-11-01
Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.
Healthcare Worker Contact Networks and the Prevention of Hospital-Acquired Infections
Curtis, Donald E.; Hlady, Christopher S.; Kanade, Gaurav; Pemmaraju, Sriram V.; Polgreen, Philip M.; Segre, Alberto M.
2013-01-01
We present a comprehensive approach to using electronic medical records (EMR) for constructing contact networks of healthcare workers in a hospital. This approach is applied at the University of Iowa Hospitals and Clinics (UIHC) – a 3.2 million square foot facility with 700 beds and about 8,000 healthcare workers – by obtaining 19.8 million EMR data points, spread over more than 21 months. We use these data to construct 9,000 different healthcare worker contact networks, which serve as proxies for patterns of actual healthcare worker contacts. Unlike earlier approaches, our methods are based on large-scale data and do not make any a priori assumptions about edges (contacts) between healthcare workers, degree distributions of healthcare workers, their assignment to wards, etc. Preliminary validation using data gathered from a 10-day long deployment of a wireless sensor network in the Medical Intensive Care Unit suggests that EMR logins can serve as realistic proxies for hospital-wide healthcare worker movement and contact patterns. Despite spatial and job-related constraints on healthcare worker movement and interactions, analysis reveals a strong structural similarity between the healthcare worker contact networks we generate and social networks that arise in other (e.g., online) settings. Furthermore, our analysis shows that disease can spread much more rapidly within the constructed contact networks as compared to random networks of similar size and density. Using the generated contact networks, we evaluate several alternate vaccination policies and conclude that a simple policy that vaccinates the most mobile healthcare workers first, is robust and quite effective relative to a random vaccination policy. PMID:24386075
Goekoop, Rutger; Goekoop, Jaap G.; Scholte, H. Steven
2012-01-01
Introduction Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. Aim To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). Methods 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. Results At facet level, NCS showed a best match (96.2%) with a ‘confirmatory’ 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with ‘confirmatory’ 5-FS and ‘exploratory’ 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. Conclusion We present the first optimized network graph of personality traits according to the NEO-PI-R: a ‘Personality Web’. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network. PMID:23284713
Goekoop, Rutger; Goekoop, Jaap G; Scholte, H Steven
2012-01-01
Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. At facet level, NCS showed a best match (96.2%) with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.
Lu, Yi; Shen, Zonglin; Cheng, Yuqi; Yang, Hui; He, Bo; Xie, Yue; Wen, Liang; Zhang, Zhenguang; Sun, Xuejin; Zhao, Wei; Xu, Xiufeng; Han, Dan
2017-01-01
It is crucial to explore the pathogenesis of major depressive disorder (MDD) at the early stage for the better diagnostic and treatment strategies. It was suggested that MDD might be involving in functional or structural alternations at the brain network level. However, at the onset of MDD, whether the whole brain white matter (WM) alterations at network level are already evident still remains unclear. In the present study, diffusion MRI scanning was adopt to depict the unique WM structural network topology across the entire brain at the early stage of MDD. Twenty-one first episode, short duration (<1 year) and drug-naïve depression patients, and 25 healthy control (HC) subjects were recruited. To construct the WM structural network, atlas-based brain regions were used for nodes, and the value of multiplying fiber number by the mean fractional anisotropy along the fiber bundles connected a pair of brain regions were used for edges. The structural network was analyzed by graph theoretic and network-based statistic methods. Pearson partial correlation analysis was also performed to evaluate their correlation with the clinical variables. Compared with HCs, the MDD patients had a significant decrease in the small-worldness (σ). Meanwhile, the MDD patients presented a significantly decreased subnetwork, which mainly involved in the frontal-subcortical and limbic regions. Our results suggested that the abnormal structural network of the orbitofrontal cortex and thalamus, involving the imbalance with the limbic system, might be a key pathology in early stage drug-naive depression. And the structural network analysis might be potential in early detection and diagnosis of MDD.
Lu, Yi; Shen, Zonglin; Cheng, Yuqi; Yang, Hui; He, Bo; Xie, Yue; Wen, Liang; Zhang, Zhenguang; Sun, Xuejin; Zhao, Wei; Xu, Xiufeng; Han, Dan
2017-01-01
It is crucial to explore the pathogenesis of major depressive disorder (MDD) at the early stage for the better diagnostic and treatment strategies. It was suggested that MDD might be involving in functional or structural alternations at the brain network level. However, at the onset of MDD, whether the whole brain white matter (WM) alterations at network level are already evident still remains unclear. In the present study, diffusion MRI scanning was adopt to depict the unique WM structural network topology across the entire brain at the early stage of MDD. Twenty-one first episode, short duration (<1 year) and drug-naïve depression patients, and 25 healthy control (HC) subjects were recruited. To construct the WM structural network, atlas-based brain regions were used for nodes, and the value of multiplying fiber number by the mean fractional anisotropy along the fiber bundles connected a pair of brain regions were used for edges. The structural network was analyzed by graph theoretic and network-based statistic methods. Pearson partial correlation analysis was also performed to evaluate their correlation with the clinical variables. Compared with HCs, the MDD patients had a significant decrease in the small-worldness (σ). Meanwhile, the MDD patients presented a significantly decreased subnetwork, which mainly involved in the frontal–subcortical and limbic regions. Our results suggested that the abnormal structural network of the orbitofrontal cortex and thalamus, involving the imbalance with the limbic system, might be a key pathology in early stage drug-naive depression. And the structural network analysis might be potential in early detection and diagnosis of MDD. PMID:29118724
JSOU and NDIA SO/LIC Division Essays (2007)
2007-04-01
Create several content-rich Darknet environments—a private virtual network where users connect only to people they trust7—that offer e-mail, file...chat rooms, and Darknets ). Moon: Cyber-Herding Cyber-Herding Nodes and Relationship Network Gatherer Construction Demolition Structure of Cyber-Herding...the extrem- ist messages, concentrating Web sites, and developing Darknets . A visual illustration of the entire process follows Phase 7. Phase 5
Goekoop, Rutger; Goekoop, Jaap G
2014-01-01
The vast number of psychopathological syndromes that can be observed in clinical practice can be described in terms of a limited number of elementary syndromes that are differentially expressed. Previous attempts to identify elementary syndromes have shown limitations that have slowed progress in the taxonomy of psychiatric disorders. To examine the ability of network community detection (NCD) to identify elementary syndromes of psychopathology and move beyond the limitations of current classification methods in psychiatry. 192 patients with unselected mental disorders were tested on the Comprehensive Psychopathological Rating Scale (CPRS). Principal component analysis (PCA) was performed on the bootstrapped correlation matrix of symptom scores to extract the principal component structure (PCS). An undirected and weighted network graph was constructed from the same matrix. Network community structure (NCS) was optimized using a previously published technique. In the optimal network structure, network clusters showed a 89% match with principal components of psychopathology. Some 6 network clusters were found, including "Depression", "Mania", "Anxiety", "Psychosis", "Retardation", and "Behavioral Disorganization". Network metrics were used to quantify the continuities between the elementary syndromes. We present the first comprehensive network graph of psychopathology that is free from the biases of previous classifications: a 'Psychopathology Web'. Clusters within this network represent elementary syndromes that are connected via a limited number of bridge symptoms. Many problems of previous classifications can be overcome by using a network approach to psychopathology.
A biological approach to assembling tissue modules through endothelial capillary network formation.
Riesberg, Jeremiah J; Shen, Wei
2015-09-01
To create functional tissues having complex structures, bottom-up approaches to assembling small tissue modules into larger constructs have been emerging. Most of these approaches are based on chemical reactions or physical interactions at the interface between tissue modules. Here we report a biological assembly approach to integrate small tissue modules through endothelial capillary network formation. When adjacent tissue modules contain appropriate extracellular matrix materials and cell types that support robust endothelial capillary network formation, capillary tubules form and grow across the interface, resulting in assembly of the modules into a single, larger construct. It was shown that capillary networks formed in modules of dense fibrin gels seeded with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs); adjacent modules were firmly assembled into an integrated construct having a strain to failure of 117 ± 26%, a tensile strength of 2208 ± 83 Pa and a Young's modulus of 2548 ± 574 Pa. Under the same culture conditions, capillary networks were absent in modules of dense fibrin gels seeded with either HUVECs or MSCs alone; adjacent modules disconnected even when handled gently. This biological assembly approach eliminates the need for chemical reactions or physical interactions and their associated limitations. In addition, the integrated constructs are prevascularized, and therefore this bottom-up assembly approach may also help address the issue of vascularization, another key challenge in tissue engineering. Copyright © 2015 John Wiley & Sons, Ltd.
Aging and social networks in Spain: the importance of pubs and churches.
Buz, José; Sanchez, Marta; Levenson, Michael R; Aldwin, Carolyn M
2014-01-01
We examined whether the social convoy model and socioemotional selectivity theory apply in collectivistic cultures by examining the contextual factors which are hypothesized to mediate age-related differences in social support in a collectivist European country. Five hundred Spanish community-dwelling older adults (Mean age = 74.78, SD = 7.76, range = 60-93) were interviewed to examine structural aspects of their social networks. We found that age showed highly complex relationships with network size and frequency of interaction, depending on the network circle and the mediation of cultural factors. Family structure was important for social relations in the inner circle, while pubs and churches were important for peripheral relations. Surprisingly, pub attendance was the most important variable for maintenance of social support of peripheral network members. In general, the results support the applicability of the social convoy and socioemotional selectivity constructs to social support among Spanish older adults.
PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.
Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein
2016-05-01
The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chang, Chiung-Chih; Chang, Ya-Ting; Huang, Chi-Wei; Tsai, Shih-Jen; Hsu, Shih-Wei; Huang, Shu-Hua; Lee, Chen-Chang; Chang, Wen-Neng; Lui, Chun-Chung; Lien, Chia-Yi
2018-02-08
Alzheimer's disease (AD) is a complex neurodegenerative disease, and genetic differences may mediate neuronal degeneration. In humans, a single-nucleotide polymorphism in the B-cell chronic lymphocytic leukemia/lymphoma-2 (Bcl-2) gene, rs956572, has been found to significantly modulate Bcl-2 protein expression in the brain. The Bcl-2 AA genotype has been associated with reduced Bcl-2 levels and lower gray matter volume in healthy populations. We hypothesized that different Bcl-2 genotype groups may modulate large-scale brain networks that determine neurobehavioral test scores. Gray matter structural covariance networks (SCNs) were constructed in 104 patients with AD using T1-weighted magnetic resonance imaging with seed-based correlation analysis. The patients were stratified into two genotype groups on the basis of Bcl-2 expression (G carriers, n = 76; A homozygotes, n = 28). Four SCNs characteristic of AD were constructed from seeds in the default mode network, salience network, and executive control network, and cognitive test scores served as the major outcome factor. For the G carriers, influences of the SCNs were observed mostly in the default mode network, of which the peak clusters anchored by the posterior cingulate cortex seed determined the cognitive test scores. In contrast, genetic influences in the A homozygotes were found mainly in the executive control network, and both the dorsolateral prefrontal cortex seed and the interconnected peak clusters were correlated with the clinical scores. Despite a small number of cases, the A homozygotes showed greater covariance strength than the G carriers among all four SCNs. Our results suggest that the Bcl-2 rs956572 polymorphism is associated with different strengths of structural covariance in AD that determine clinical outcomes. The greater covariance strength in the four SCNs shown in the A homozygotes suggests that different Bcl-2 polymorphisms play different modulatory roles.
2017-01-01
In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718
Finding overlapping communities in multilayer networks
Liu, Weiyi; Suzumura, Toyotaro; Ji, Hongyu; Hu, Guangmin
2018-01-01
Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks. PMID:29694387
Finding overlapping communities in multilayer networks.
Liu, Weiyi; Suzumura, Toyotaro; Ji, Hongyu; Hu, Guangmin
2018-01-01
Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks.
NASA Astrophysics Data System (ADS)
Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Zhang, Jishui; Peng, Yun; He, Huiguang
2016-03-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of multiple motor and vocal tics. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of action. The aim of our work is to select topological characteristics of structural network which were most efficient for estimating the classification models to identify early TS children. Here we employed the diffusion tensor imaging (DTI) and deterministic tractography to construct the structural networks of 44 TS children and 48 age and gender matched healthy children. We calculated four different connection matrices (fiber number, mean FA, averaged fiber length weighted and binary matrices) and then applied graph theoretical methods to extract the regional nodal characteristics of structural network. For each weighted or binary network, nodal degree, nodal efficiency and nodal betweenness were selected as features. Support Vector Machine Recursive Feature Extraction (SVM-RFE) algorithm was used to estimate the best feature subset for classification. The accuracy of 88.26% evaluated by a nested cross validation was achieved on combing best feature subset of each network characteristic. The identified discriminative brain nodes mostly located in the basal ganglia and frontal cortico-cortical networks involved in TS children which was associated with tic severity. Our study holds promise for early identification and predicting prognosis of TS children.
Robust neural network with applications to credit portfolio data analysis.
Feng, Yijia; Li, Runze; Sudjianto, Agus; Zhang, Yiyun
2010-01-01
In this article, we study nonparametric conditional quantile estimation via neural network structure. We proposed an estimation method that combines quantile regression and neural network (robust neural network, RNN). It provides good smoothing performance in the presence of outliers and can be used to construct prediction bands. A Majorization-Minimization (MM) algorithm was developed for optimization. Monte Carlo simulation study is conducted to assess the performance of RNN. Comparison with other nonparametric regression methods (e.g., local linear regression and regression splines) in real data application demonstrate the advantage of the newly proposed procedure.
NASA Astrophysics Data System (ADS)
Liu, Derong; Huang, Yuzhu; Wang, Ding; Wei, Qinglai
2013-09-01
In this paper, an observer-based optimal control scheme is developed for unknown nonlinear systems using adaptive dynamic programming (ADP) algorithm. First, a neural-network (NN) observer is designed to estimate system states. Then, based on the observed states, a neuro-controller is constructed via ADP method to obtain the optimal control. In this design, two NN structures are used: a three-layer NN is used to construct the observer which can be applied to systems with higher degrees of nonlinearity and without a priori knowledge of system dynamics, and a critic NN is employed to approximate the value function. The optimal control law is computed using the critic NN and the observer NN. Uniform ultimate boundedness of the closed-loop system is guaranteed. The actor, critic, and observer structures are all implemented in real-time, continuously and simultaneously. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsobrook, Andera N.; Hauser, B. G.; Hupp, Joseph T.
2010-11-01
Four heterobimetallic U(VI)/M(II) (M = Mn, Co, Cd) carboxyphosphonates have been synthesized. M 2[(UO 2) 6(PO 3CH 2CO 2) 3O 3(OH)(H 2O) 2]·16H 2O (M = Mn(II), Co(II), and Cd(II)) adopt cubic three-dimensional network structures with large cavities approximately 16 Å in diameter that are filled with co-crystallized water molecules. [Cd 3(UO 2) 6(PO 3CH 2CO 2) 6(H 2O) 13]·6H 2 O forms a rhombohedral channel structure with hydrated Cd(II) within the channels. The cubic compound (Co) displays differential gas absorption with a surface area for CO 2 uptake of 40 m 2 g -1 at 273 K, and nomore » uptake of N 2 at 77 K.« less
Zhang, Tao; Yan, Hongqiang; Peng, Mao; Wang, Lili; Ding, Hongliang; Fang, Zhengping
2013-04-07
A new flame retardant nanocoating has been constructed by the alternate adsorption of polyelectrolyte amino-functionalized multiwall carbon nanotube (MWNT-NH2) and ammonium polyphosphate (APP) onto flexible and porous ramie fabric. Scanning electron microscopy indicates that the adsorbed carbon nanotube coating is a randomly oriented and overlapped network structure, which is a promising candidate for flame retardancy applications. Attenuated total reflection Fourier transform infrared spectroscopy and energy-dispersive X-ray analysis confirm that the APP is successfully incorporated into the multilayers sequentially. Assessment of the thermal and flammability properties for the pristine and nanocoated ramie fabrics shows that the thermal stability, flame retardancy and residual char are enhanced as the concentration of MWNT-NH2 suspension and number of deposition cycles increases. The enhancements are mostly attributed to the barrier effect of intumescent network structure, which is composed of MWNT-NH2 and the absorbed APP.
VanderWaal, Kimberly L; Atwill, Edward R; Isbell, Lynne A; McCowan, Brenda
2014-03-01
Although network analysis has drawn considerable attention as a promising tool for disease ecology, empirical research has been hindered by limitations in detecting the occurrence of pathogen transmission (who transmitted to whom) within social networks. Using a novel approach, we utilize the genetics of a diverse microbe, Escherichia coli, to infer where direct or indirect transmission has occurred and use these data to construct transmission networks for a wild giraffe population (Giraffe camelopardalis). Individuals were considered to be a part of the same transmission chain and were interlinked in the transmission network if they shared genetic subtypes of E. coli. By using microbial genetics to quantify who transmits to whom independently from the behavioural data on who is in contact with whom, we were able to directly investigate how the structure of contact networks influences the structure of the transmission network. To distinguish between the effects of social and environmental contact on transmission dynamics, the transmission network was compared with two separate contact networks defined from the behavioural data: a social network based on association patterns, and a spatial network based on patterns of home-range overlap among individuals. We found that links in the transmission network were more likely to occur between individuals that were strongly linked in the social network. Furthermore, individuals that had more numerous connections or that occupied 'bottleneck' positions in the social network tended to occupy similar positions in the transmission network. No similar correlations were observed between the spatial and transmission networks. This indicates that an individual's social network position is predictive of transmission network position, which has implications for identifying individuals that function as super-spreaders or transmission bottlenecks in the population. These results emphasize the importance of association patterns in understanding transmission dynamics, even for environmentally transmitted microbes like E. coli. This study is the first to use microbial genetics to construct and analyse transmission networks in a wildlife population and highlights the potential utility of an approach integrating microbial genetics with network analysis. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations
Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen
2016-01-01
Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future. PMID:28774030
Sisjord, M K
2012-02-01
The article focuses on women snowboarders' networking and relationships with national snowboard associations and commercial organizers. The study was conducted at an International Women Snowboard Camp, which attracted women snowboarders from five different countries. A qualitative interview was undertaken with participants from each country, eight in total, plus an interview with one of the organizers (a woman). The results indicate that participants from the Nordic countries adopt a more proactive stand to promote snowboarding by organizing specific groups in relation to national associations, particularly the Norwegians and the Finnish. Furthermore, some collaboration across national boarders appeared. The only Swedish participant was associated with several snowboarding communities; whereas the Italian (only one) and the Latvian snowboarders had links with commercial organizers, apparently male dominated in structure. The findings are discussed in the light of Castells' network theory and identity construction in social movements, and gender perspectives. The participants' doing/undoing gender reveals different strategies in negotiating hegemonic masculinity and the power structure in the organizations. Narratives from the Nordic participants reflect undoing gender that impacts on identity constructions in terms of project and/or resistance identity. The Italians and Latvians seemingly do gender while undertaking a subordinate position in the male-dominated structure. © 2010 John Wiley & Sons A/S.
Multiscale Embedded Gene Co-expression Network Analysis
Song, Won-Min; Zhang, Bin
2015-01-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778
Multiscale Embedded Gene Co-expression Network Analysis.
Song, Won-Min; Zhang, Bin
2015-11-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.
Electron tomography reveals the fibril structure and lipid interactions in amyloid deposits
Kollmer, Marius; Meinhardt, Katrin; Haupt, Christian; Liberta, Falk; Wulff, Melanie; Linder, Julia; Handl, Lisa; Heinrich, Liesa; Loos, Cornelia; Schmidt, Matthias; Syrovets, Tatiana; Simmet, Thomas; Westermark, Per; Westermark, Gunilla T.; Horn, Uwe; Schmidt, Volker; Walther, Paul; Fändrich, Marcus
2016-01-01
Electron tomography is an increasingly powerful method to study the detailed architecture of macromolecular complexes or cellular structures. Applied to amyloid deposits formed in a cell culture model of systemic amyloid A amyloidosis, we could determine the structural morphology of the fibrils directly in the deposit. The deposited fibrils are arranged in different networks, and depending on the relative fibril orientation, we can distinguish between fibril meshworks, fibril bundles, and amyloid stars. These networks are frequently infiltrated by vesicular lipid inclusions that may originate from the death of the amyloid-forming cells. Our data support the role of nonfibril components for constructing fibril deposits and provide structural views of different types of lipid–fibril interactions. PMID:27140609
NASA Astrophysics Data System (ADS)
Martínez, Darwin; Mahalingam, Jamuna J.; Soddu, Andrea; Franco, Hugo; Lepore, Natasha; Laureys, Steven; Gómez, Francisco
2015-01-01
Disorders of consciousness (DOC) are a consequence of a variety of severe brain injuries. DOC commonly results in anatomical brain modifications, which can affect cortical and sub-cortical brain structures. Postmortem studies suggest that severity of brain damage correlates with level of impairment in DOC. In-vivo studies in neuroimaging mainly focus in alterations on single structures. Recent evidence suggests that rather than one, multiple brain regions can be simultaneously affected by this condition. In other words, DOC may be linked to an underlying cerebral network of structural damage. Recently, geometrical spatial relationships among key sub-cortical brain regions, such as left and right thalamus and brain stem, have been used for the characterization of this network. This approach is strongly supported on automatic segmentation processes, which aim to extract regions of interests without human intervention. Nevertheless, patients with DOC usually present massive structural brain changes. Therefore, segmentation methods may highly influence the characterization of the underlying cerebral network structure. In this work, we evaluate the level of characterization obtained by using the spatial relationships as descriptor of a sub-cortical cerebral network (left and right thalamus) in patients with DOC, when different segmentation approaches are used (FSL, Free-surfer and manual segmentation). Our results suggest that segmentation process may play a critical role for the construction of robust and reliable structural characterization of DOC conditions.
Community Evolution in International Migration Top1 Networks.
Peres, Mihaela; Xu, Helian; Wu, Gang
2016-01-01
Focusing on each country's topmost destination/origin migration relation with other countries, this study builds top1 destination networks and top1 origin networks in order to understand their skeletal construction and community dynamics. Each top1 network covers approximately 50% of the complete migrant network stock for each decade between 1960 and 2000. We investigate the community structure by implementing the Girvan-Newman algorithm and compare the number of components and communities to illustrate their differences. We find that (i) both top1 networks (origin and destination) exhibited communities with a clear structure and a surprising evolution, although 80% edges persist between each decade; (ii) top1 destination networks focused on developed countries exhibiting shorter paths and preferring more advance countries, while top1 origin networks focused both on developed as well as more substantial developing nations that presented a longer path and more stable groups; (iii) only few countries have a decisive influence on community evolution of both top1 networks. USA took the leading position as a destination country in top1 destination networks, while China and India were the main Asian emigration countries in top1 origin networks; European countries and the Russian Federation played an important role in both.
Community Evolution in International Migration Top1 Networks
Xu, Helian
2016-01-01
Focusing on each country’s topmost destination/origin migration relation with other countries, this study builds top1 destination networks and top1 origin networks in order to understand their skeletal construction and community dynamics. Each top1 network covers approximately 50% of the complete migrant network stock for each decade between 1960 and 2000. We investigate the community structure by implementing the Girvan-Newman algorithm and compare the number of components and communities to illustrate their differences. We find that (i) both top1 networks (origin and destination) exhibited communities with a clear structure and a surprising evolution, although 80% edges persist between each decade; (ii) top1 destination networks focused on developed countries exhibiting shorter paths and preferring more advance countries, while top1 origin networks focused both on developed as well as more substantial developing nations that presented a longer path and more stable groups; (iii) only few countries have a decisive influence on community evolution of both top1 networks. USA took the leading position as a destination country in top1 destination networks, while China and India were the main Asian emigration countries in top1 origin networks; European countries and the Russian Federation played an important role in both. PMID:26859406
Impact of Degree Heterogeneity on Attack Vulnerability of Interdependent Networks
NASA Astrophysics Data System (ADS)
Sun, Shiwen; Wu, Yafang; Ma, Yilin; Wang, Li; Gao, Zhongke; Xia, Chengyi
2016-09-01
The study of interdependent networks has become a new research focus in recent years. We focus on one fundamental property of interdependent networks: vulnerability. Previous studies mainly focused on the impact of topological properties upon interdependent networks under random attacks, the effect of degree heterogeneity on structural vulnerability of interdependent networks under intentional attacks, however, is still unexplored. In order to deeply understand the role of degree distribution and in particular degree heterogeneity, we construct an interdependent system model which consists of two networks whose extent of degree heterogeneity can be controlled simultaneously by a tuning parameter. Meanwhile, a new quantity, which can better measure the performance of interdependent networks after attack, is proposed. Numerical simulation results demonstrate that degree heterogeneity can significantly increase the vulnerability of both single and interdependent networks. Moreover, it is found that interdependent links between two networks make the entire system much more fragile to attacks. Enhancing coupling strength between networks can greatly increase the fragility of both networks against targeted attacks, which is most evident under the case of max-max assortative coupling. Current results can help to deepen the understanding of structural complexity of complex real-world systems.
Alagapan, Sankaraleengam; Franca, Eric; Pan, Liangbin; Leondopulos, Stathis; Wheeler, Bruce C; DeMarse, Thomas B
2016-01-01
In this study, we created four network topologies composed of living cortical neurons and compared resultant structural-functional dynamics including the nature and quality of information transmission. Each living network was composed of living cortical neurons and were created using microstamping of adhesion promoting molecules and each was "designed" with different levels of convergence embedded within each structure. Networks were cultured over a grid of electrodes that permitted detailed measurements of neural activity at each node in the network. Of the topologies we tested, the "Random" networks in which neurons connect based on their own intrinsic properties transmitted information embedded within their spike trains with higher fidelity relative to any other topology we tested. Within our patterned topologies in which we explicitly manipulated structure, the effect of convergence on fidelity was dependent on both topology and time-scale (rate vs. temporal coding). A more detailed examination using tools from network analysis revealed that these changes in fidelity were also associated with a number of other structural properties including a node's degree, degree-degree correlations, path length, and clustering coefficients. Whereas information transmission was apparent among nodes with few connections, the greatest transmission fidelity was achieved among the few nodes possessing the highest number of connections (high degree nodes or putative hubs). These results provide a unique view into the relationship between structure and its affect on transmission fidelity, at least within these small neural populations with defined network topology. They also highlight the potential role of tools such as microstamp printing and microelectrode array recordings to construct and record from arbitrary network topologies to provide a new direction in which to advance the study of structure-function relationships.
Assessing transfer property and reliability of urban bus network based on complex network theory
NASA Astrophysics Data System (ADS)
Zhang, Hui; Zhuge, Cheng-Xiang; Zhao, Xiang; Song, Wen-Bo
Transfer reliability has an important impact on the urban bus network. The proportion of zero and one transfer time is a key indicator to measure the connectivity of bus networks. However, it is hard to calculate the transfer time between nodes because of the complicated network structure. In this paper, the topological structures of urban bus network in Jinan are constructed by space L and space P. A method to calculate transfer times between stations has been proposed by reachable matrix under space P. The result shows that it is efficient to calculate the transfer time between nodes in large networks. In order to test the transfer reliability, a node failure process has been built according to degree, clustering coefficient and betweenness centrality under space L and space P. The results show that the deliberate attack by betweenness centrality under space P is more effective compared with other five attack modes. This research could provide a power tool to find hub stations in bus networks and give a help for traffic manager to guarantee the normal operation of urban bus systems.
Complex networks untangle competitive advantage in Australian football
NASA Astrophysics Data System (ADS)
Braham, Calum; Small, Michael
2018-05-01
We construct player-based complex network models of Australian football teams for the 2014 Australian Football League season; modelling the passes between players as weighted, directed edges. We show that analysis of these measures can give an insight into the underlying structure and strategy of Australian football teams, quantitatively distinguishing different playing styles. The relationships observed between network properties and match outcomes suggest that successful teams exhibit well-connected passing networks with the passes distributed between all 22 players as evenly as possible. Linear regression models of team scores and match margins show significant improvements in R2 and Bayesian information criterion when network measures are added to models that use conventional measures, demonstrating that network analysis measures contain useful, extra information. Several measures, particularly the mean betweenness centrality, are shown to be useful in predicting the outcomes of future matches, suggesting they measure some aspect of the intrinsic strength of teams. In addition, several local centrality measures are shown to be useful in analysing individual players' differing contributions to the team's structure.
Complex networks untangle competitive advantage in Australian football.
Braham, Calum; Small, Michael
2018-05-01
We construct player-based complex network models of Australian football teams for the 2014 Australian Football League season; modelling the passes between players as weighted, directed edges. We show that analysis of these measures can give an insight into the underlying structure and strategy of Australian football teams, quantitatively distinguishing different playing styles. The relationships observed between network properties and match outcomes suggest that successful teams exhibit well-connected passing networks with the passes distributed between all 22 players as evenly as possible. Linear regression models of team scores and match margins show significant improvements in R 2 and Bayesian information criterion when network measures are added to models that use conventional measures, demonstrating that network analysis measures contain useful, extra information. Several measures, particularly the mean betweenness centrality, are shown to be useful in predicting the outcomes of future matches, suggesting they measure some aspect of the intrinsic strength of teams. In addition, several local centrality measures are shown to be useful in analysing individual players' differing contributions to the team's structure.
Relating ASD symptoms to well-being: moving across different construct levels.
Deserno, M K; Borsboom, D; Begeer, S; Geurts, H M
2018-05-01
Little is known about the specific factors that contribute to the well-being (WB) of individuals with autism spectrum disorder (ASD). A plausible hypothesis is that ASD symptomatology has a direct negative effect on WB. In the current study, the emerging tools of network analysis allow to explore the functional interdependencies between specific symptoms of ASD and domains of WB in a multivariate framework. We illustrate how studying both higher-order (total score) and lower-order (subscale) representations of ASD symptomatology can clarify the interrelations of factors relevant for domains of WB. We estimated network structures on three different construct levels for ASD symptomatology, as assessed with the Adult Social Behavior Questionnaire (item, subscale, total score), relating them to daily functioning (DF) and subjective WB in 323 adult individuals with clinically identified ASD (aged 17-70 years). For these networks, we assessed the importance of specific factors in the network structure. When focusing on the highest representation level of ASD symptomatology (i.e. a total score), we found a negative connection between ASD symptom severity and domains of WB. However, zooming in on lower representation levels of ASD symptomatology revealed that this connection was mainly funnelled by ASD symptoms related to insistence on sameness and experiencing reduced contact and that those symptom scales, in turn, impact different domains of WB. Zooming in across construct levels of ASD symptom severity into subscales of ASD symptoms can provide us with important insights into how specific domains of ASD symptoms relate to specific domains of DF and WB.
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
Spencer, Matt; Eickholt, Jesse; Cheng, Jianlin
2014-01-01
Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80% and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test data set of 198 proteins, achieving a Q3 accuracy of 80.7% and a Sov accuracy of 74.2%. PMID:25750595
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.
Spencer, Matt; Eickholt, Jesse; Jianlin Cheng
2015-01-01
Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.
Animal transportation networks
Perna, Andrea; Latty, Tanya
2014-01-01
Many group-living animals construct transportation networks of trails, galleries and burrows by modifying the environment to facilitate faster, safer or more efficient movement. Animal transportation networks can have direct influences on the fitness of individuals, whereas the shape and structure of transportation networks can influence community dynamics by facilitating contacts between different individuals and species. In this review, we discuss three key areas in the study of animal transportation networks: the topological properties of networks, network morphogenesis and growth, and the behaviour of network users. We present a brief primer on elements of network theory, and then discuss the different ways in which animal groups deal with the fundamental trade-off between the competing network properties of travel efficiency, robustness and infrastructure cost. We consider how the behaviour of network users can impact network efficiency, and call for studies that integrate both network topology and user behaviour. We finish with a prospectus for future research. PMID:25165598
NASA Astrophysics Data System (ADS)
Li, Ming-Xia; Palchykov, Vasyl; Jiang, Zhi-Qiang; Kaski, Kimmo; Kertész, János; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.
2014-08-01
Big data open up unprecedented opportunities for investigating complex systems, including society. In particular, communication data serve as major sources for computational social sciences, but they have to be cleaned and filtered as they may contain spurious information due to recording errors as well as interactions, like commercial and marketing activities, not directly related to the social network. The network constructed from communication data can only be considered as a proxy for the network of social relationships. Here we apply a systematic method, based on multiple-hypothesis testing, to statistically validate the links and then construct the corresponding Bonferroni network, generalized to the directed case. We study two large datasets of mobile phone records, one from Europe and the other from China. For both datasets we compare the raw data networks with the corresponding Bonferroni networks and point out significant differences in the structures and in the basic network measures. We show evidence that the Bonferroni network provides a better proxy for the network of social interactions than the original one. Using the filtered networks, we investigated the statistics and temporal evolution of small directed 3-motifs and concluded that closed communication triads have a formation time scale, which is quite fast and typically intraday. We also find that open communication triads preferentially evolve into other open triads with a higher fraction of reciprocated calls. These stylized facts were observed for both datasets.
Implementing an Integrated Network Defense Construct
2013-06-01
hierarchical structure under the Air Defence of Great Britain initiative ( Checkland and Holwell, 1998). This implementation was the earliest concept...Framework for Detecting and Defending against Insider IT Attacks. Auerbach Publications. 2008. Checkland , Peter and Holwell, Sue. "Information, Systems
Longitudinal decline in structural networks predicts dementia in cerebral small vessel disease
Lawrence, Andrew J.; Zeestraten, Eva A.; Benjamin, Philip; Lambert, Christian P.; Morris, Robin G.; Barrick, Thomas R.
2018-01-01
Objective To determine whether longitudinal change in white matter structural network integrity predicts dementia and future cognitive decline in cerebral small vessel disease (SVD). To investigate whether network disruption has a causal role in cognitive decline and mediates the association between conventional MRI markers of SVD with both cognitive decline and dementia. Methods In the prospective longitudinal SCANS (St George's Cognition and Neuroimaging in Stroke) Study, 97 dementia-free individuals with symptomatic lacunar stroke were followed with annual MRI for 3 years and annual cognitive assessment for 5 years. Conversion to dementia was recorded. Structural networks were constructed from diffusion tractography using a longitudinal registration pipeline, and network global efficiency was calculated. Linear mixed-effects regression was used to assess change over time. Results Seventeen individuals (17.5%) converted to dementia, and significant decline in global cognition occurred (p = 0.0016). Structural network measures declined over the 3-year MRI follow-up, but the degree of change varied markedly between individuals. The degree of reductions in network global efficiency was associated with conversion to dementia (B = −2.35, odds ratio = 0.095, p = 0.00056). Change in network global efficiency mediated much of the association of conventional MRI markers of SVD with cognitive decline and progression to dementia. Conclusions Network disruption has a central role in the pathogenesis of cognitive decline and dementia in SVD. It may be a useful disease marker to identify that subgroup of patients with SVD who progress to dementia. PMID:29695593
The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness
Mangus, J Michael; Turner, Benjamin O
2017-01-01
Abstract While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. PMID:29140500
Social power and opinion formation in complex networks
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2013-02-01
In this paper we investigate the effects of social power on the evolution of opinions in model networks as well as in a number of real social networks. A continuous opinion formation model is considered and the analysis is performed through numerical simulation. Social power is given to a proportion of agents selected either randomly or based on their degrees. As artificial network structures, we consider scale-free networks constructed through preferential attachment and Watts-Strogatz networks. Numerical simulations show that scale-free networks with degree-based social power on the hub nodes have an optimal case where the largest number of the nodes reaches a consensus. However, given power to a random selection of nodes could not improve consensus properties. Introducing social power in Watts-Strogatz networks could not significantly change the consensus profile.
Optimizing topological cascade resilience based on the structure of terrorist networks.
Gutfraind, Alexander
2010-11-10
Complex socioeconomic networks such as information, finance and even terrorist networks need resilience to cascades--to prevent the failure of a single node from causing a far-reaching domino effect. We show that terrorist and guerrilla networks are uniquely cascade-resilient while maintaining high efficiency, but they become more vulnerable beyond a certain threshold. We also introduce an optimization method for constructing networks with high passive cascade resilience. The optimal networks are found to be based on cells, where each cell has a star topology. Counterintuitively, we find that there are conditions where networks should not be modified to stop cascades because doing so would come at a disproportionate loss of efficiency. Implementation of these findings can lead to more cascade-resilient networks in many diverse areas.
Structural factoring approach for analyzing stochastic networks
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
Gadelkarim, Johnson J; Ajilore, Olusola; Schonfeld, Dan; Zhan, Liang; Thompson, Paul M; Feusner, Jamie D; Kumar, Anand; Altshuler, Lori L; Leow, Alex D
2014-05-01
In this article, we present path length associated community estimation (PLACE), a comprehensive framework for studying node-level community structure. Instead of the well-known Q modularity metric, PLACE utilizes a novel metric, Ψ(PL), which measures the difference between intercommunity versus intracommunity path lengths. We compared community structures in human healthy brain networks generated using these two metrics and argued that Ψ(PL) may have theoretical advantages. PLACE consists of the following: (1) extracting community structure using top-down hierarchical binary trees, where a branch at each bifurcation denotes a collection of nodes that form a community at that level, (2) constructing and assessing mean group community structure, and (3) detecting node-level changes in community between groups. We applied PLACE and investigated the structural brain networks obtained from a sample of 25 euthymic bipolar I subjects versus 25 gender- and age-matched healthy controls. Results showed community structural differences in posterior default mode network regions, with the bipolar group exhibiting left-right decoupling. Copyright © 2013 Wiley Periodicals, Inc.
Development of human brain structural networks through infancy and childhood.
Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong
2015-05-01
During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Huang, Chi-Wei; Hsu, Shih-Wei; Tsai, Shih-Jen; Chen, Nai-Ching; Liu, Mu-En; Lee, Chen-Chang; Huang, Shu-Hua; Chang, Weng-Neng; Chang, Ya-Ting; Tsai, Wan-Chen; Chang, Chiung-Chih
2017-01-18
Inflammatory processes play a pivotal role in the degenerative process of Alzheimer's disease. In humans, a biallelic (C/T) polymorphism in the promoter region (position-511) (rs16944) of the interleukin-1 beta gene has been significantly associated with differences in the secretory capacity of interleukin-1 beta. In this study, we investigated whether this functional polymorphism mediates the brain networks in patients with Alzheimer's disease. We enrolled a total of 135 patients with Alzheimer's disease (65 males, 70 females), and investigated their gray matter structural covariance networks using 3D T1 magnetic resonance imaging and their white matter macro-structural integrities using fractional anisotropy. The patients were classified into two genotype groups: C-carriers (n = 108) and TT-carriers (n = 27), and the structural covariance networks were constructed using seed-based analysis focusing on the default mode network medial temporal or dorsal medial subsystem, salience network and executive control network. Neurobehavioral scores were used as the major outcome factors for clinical correlations. There were no differences between the two genotype groups in the cognitive test scores, seed, or peak cluster volumes and white matter fractional anisotropy. The covariance strength showing C-carriers > TT-carriers was the entorhinal-cingulum axis. There were two peak clusters (Brodmann 6 and 10) in the salience network and four peak clusters (superior prefrontal, precentral, fusiform, and temporal) in the executive control network that showed C-carriers < TT-carriers in covariance strength. The salience network and executive control network peak clusters in the TT group and the default mode network peak clusters in the C-carriers strongly predicted the cognitive test scores. Interleukin-1 beta C-511 T polymorphism modulates the structural covariance strength on the anterior brain network and entorhinal-interconnected network which were independent of the white matter tract integrity. Depending on the specific C-511 T genotype, different network clusters could predict the cognitive tests.
Shapiro, Mark; Silva, Susan G; Compton, Scott; Chrisman, Allan; DeVeaugh-Geiss, Joseph; Breland-Noble, Alfiee; Kondo, Douglas; Kirchner, Jerry; March, John S
2009-01-01
Background In 2003, the National Institute of Mental Health funded the Child and Adolescent Psychiatry Trials Network (CAPTN) under the Advanced Center for Services and Intervention Research (ACSIR) mechanism. At the time, CAPTN was believed to be both a highly innovative undertaking and a highly speculative one. One reviewer even suggested that CAPTN was "unlikely to succeed, but would be a valuable learning experience for the field." Objective To describe valuable lessons learned in building a clinical research network in pediatric psychiatry, including innovations intended to decrease barriers to research participation. Methods The CAPTN Team has completed construction of the CAPTN network infrastructure, conducted a large, multi-center psychometric study of a novel adverse event reporting tool, and initiated a large antidepressant safety registry and linked pharmacogenomic study focused on severe adverse events. Specific challenges overcome included establishing structures for network organization and governance; recruiting over 150 active CAPTN participants and 15 child psychiatry training programs; developing and implementing procedures for site contracts, regulatory compliance, indemnification and malpractice coverage, human subjects protection training and IRB approval; and constructing an innovative electronic casa report form (eCRF) running on a web-based electronic data capture system; and, finally, establishing procedures for audit trail oversight requirements put forward by, among others, the Food and Drug Administration (FDA). Conclusion Given stable funding for network construction and maintenance, our experience demonstrates that judicious use of web-based technologies for profiling investigators, investigator training, and capturing clinical trials data, when coupled to innovative approaches to network governance, data management and site management, can reduce the costs and burden and improve the feasibility of incorporating clinical research into routine clinical practice. Having successfully achieved its initial aim of constructing a network infrastructure, CAPTN is now a capable platform for large safety registries, pharmacogenetic studies, and randomized practical clinical trials in pediatric psychiatry. PMID:19320979
Smooth information flow in temperature climate network reflects mass transport
NASA Astrophysics Data System (ADS)
Hlinka, Jaroslav; Jajcay, Nikola; Hartman, David; Paluš, Milan
2017-03-01
A directed climate network is constructed by Granger causality analysis of air temperature time series from a regular grid covering the whole Earth. Using winner-takes-all network thresholding approach, a structure of a smooth information flow is revealed, hidden to previous studies. The relevance of this observation is confirmed by comparison with the air mass transfer defined by the wind field. Their close relation illustrates that although the information transferred due to the causal influence is not a physical quantity, the information transfer is tied to the transfer of mass and energy.
NASA Astrophysics Data System (ADS)
Xue, Jingxin
The article aims to completely, systematically and objectively analyze the current situation of Entrepreneurship Education in China with Ecological Systems Theory. From this perspective, the author discusses the structure, function and its basic features of higher education entrepreneur services network system, and puts forward the opinion that every entrepreneurship organization in higher education institution does not limited to only one platform. Different functional supporting platforms should be combined closed through composite functional organization to form an integrated network system, in which each unit would impels others' development.
Network structures between strategies in iterated prisoners' dilemma games
NASA Astrophysics Data System (ADS)
Kim, Young Jin; Roh, Myungkyoon; Son, Seung-Woo
2014-02-01
We use replicator dynamics to study an iterated prisoners' dilemma game with memory. In this study, we investigate the characteristics of all 32 possible strategies with a single-step memory by observing the results when each strategy encounters another one. Based on these results, we define similarity measures between the 32 strategies and perform a network analysis of the relationship between the strategies by constructing a strategies network. Interestingly, we find that a win-lose circulation, like rock-paper-scissors, exists between strategies and that the circulation results from one unusual strategy.
The convergence of maturational change and structural covariance in human cortical networks.
Alexander-Bloch, Aaron; Raznahan, Armin; Bullmore, Ed; Giedd, Jay
2013-02-13
Large-scale covariance of cortical thickness or volume in distributed brain regions has been consistently reported by human neuroimaging studies. The mechanism of this population covariance of regional cortical anatomy has been hypothetically related to synchronized maturational changes in anatomically connected neuronal populations. Brain regions that grow together, i.e., increase or decrease in volume at the same rate over the course of years in the same individual, are thus expected to demonstrate strong structural covariance or anatomical connectivity across individuals. To test this prediction, we used a structural MRI dataset on healthy young people (N = 108; aged 9-22 years at enrollment), comprising 3-6 longitudinal scans on each participant over 6-12 years of follow-up. At each of 360 regional nodes, and for each participant, we estimated the following: (1) the cortical thickness in the median scan and (2) the linear rate of change in cortical thickness over years of serial scanning. We constructed structural and maturational association matrices and networks from these measurements. Both structural and maturational networks shared similar global and nodal topological properties, as well as mesoscopic features including a modular community structure, a relatively small number of highly connected hub regions, and a bias toward short distance connections. Using resting-state functional magnetic resonance imaging data on a subset of the sample (N = 32), we also demonstrated that functional connectivity and network organization was somewhat predictable by structural/maturational networks but demonstrated a stronger bias toward short distance connections and greater topological segregation. Brain structural covariance networks are likely to reflect synchronized developmental change in distributed cortical regions.
Amidi, Ali; Hosseini, S M Hadi; Leemans, Alexander; Kesler, Shelli R; Agerbæk, Mads; Wu, Lisa M; Zachariae, Robert
2017-12-01
Cisplatin-based chemotherapy may have neurotoxic effects within the central nervous system. The aims of this study were 1) to longitudinally investigate the impact of cisplatin-based chemotherapy on whole-brain networks in testicular cancer patients undergoing treatment and 2) to explore whether possible changes are related to decline in cognitive functioning. Sixty-four newly orchiectomized TC patients underwent structural magnetic resonance imaging (T1-weighted and diffusion-weighted imaging) and cognitive testing at baseline prior to further treatment and again at a six-month follow-up. At follow-up, 22 participants had received cisplatin-based chemotherapy (CT) while 42 were in active surveillance (S). Brain structural networks were constructed for each participant, and network properties were investigated using graph theory and longitudinally compared across groups. Cognitive functioning was evaluated using standardized neuropsychological tests. All statistical tests were two-sided. Compared with the S group, the CT group demonstrated altered global and local brain network properties from baseline to follow-up as evidenced by decreases in important brain network properties such as small-worldness (P = .04), network clustering (P = .04), and local efficiency (P = .02). In the CT group, poorer overall cognitive performance was associated with decreased small-worldness (r = -0.46, P = .04) and local efficiency (r = -0.51, P = .02), and verbal fluency was associated with decreased local efficiency (r = -0.55, P = .008). Brain structural networks may be disrupted following treatment with cisplatin-based chemotherapy. Impaired brain networks may underlie poorer performance over time on both specific and nonspecific cognitive functions in patients undergoing chemotherapy. To the best of our knowledge, this is the first study to longitudinally investigate changes in structural brain networks in a cancer population, providing novel insights regarding the neurobiological mechanisms of cancer-related cognitive impairment.
Wen, Hongwei; Liu, Yue; Rekik, Islem; Wang, Shengpei; Zhang, Jishui; Zhang, Yue; Peng, Yun; He, Huiguang
2017-08-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. Although previous TS studies revealed structural abnormalities in distinct corticobasal ganglia circuits, the topological alterations of the whole-brain white matter (WM) structural networks remain poorly understood. Here, we used diffusion MRI probabilistic tractography and graph theoretical analysis to investigate the topological organization of WM networks in 44 drug-naive TS children and 41 age- and gender-matched healthy children. The WM networks were constructed by estimating inter-regional connectivity probability and the topological properties were characterized using graph theory. We found that both TS and control groups showed an efficient small-world organization in WM networks. However, compared to controls, TS children exhibited decreased global and local efficiency, increased shortest path length and small worldness, indicating a disrupted balance between local specialization and global integration in structural networks. Although both TS and control groups showed highly similar hub distributions, TS children exhibited significant decreased nodal efficiency, mainly distributed in the default mode, language, visual, and sensorimotor systems. Furthermore, two separate networks showing significantly decreased connectivity in TS group were identified using network-based statistical (NBS) analysis, primarily composed of the parieto-occipital cortex, precuneus, and paracentral lobule. Importantly, we combined support vector machine and multiple kernel learning frameworks to fuse multiple levels of network topological features for classification of individuals, achieving high accuracy of 86.47%. Together, our study revealed the disrupted topological organization of structural networks related to pathophysiology of TS, and the discriminative topological features for classification are potential quantitative neuroimaging biomarkers for clinical TS diagnosis. Hum Brain Mapp 38:3988-4008, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Highly dynamic animal contact network and implications on disease transmission
Chen, Shi; White, Brad J.; Sanderson, Michael W.; Amrine, David E.; Ilany, Amiyaal; Lanzas, Cristina
2014-01-01
Contact patterns among hosts are considered as one of the most critical factors contributing to unequal pathogen transmission. Consequently, networks have been widely applied in infectious disease modeling. However most studies assume static network structure due to lack of accurate observation and appropriate analytic tools. In this study we used high temporal and spatial resolution animal position data to construct a high-resolution contact network relevant to infectious disease transmission. The animal contact network aggregated at hourly level was highly variable and dynamic within and between days, for both network structure (network degree distribution) and individual rank of degree distribution in the network (degree order). We integrated network degree distribution and degree order heterogeneities with a commonly used contact-based, directly transmitted disease model to quantify the effect of these two sources of heterogeneity on the infectious disease dynamics. Four conditions were simulated based on the combination of these two heterogeneities. Simulation results indicated that disease dynamics and individual contribution to new infections varied substantially among these four conditions under both parameter settings. Changes in the contact network had a greater effect on disease dynamics for pathogens with smaller basic reproduction number (i.e. R0 < 2). PMID:24667241
Wagner, Andreas
2014-07-07
Networks of evolving genotypes can be constructed from the worldwide time-resolved genotyping of pathogens like influenza viruses. Such genotype networks are graphs where neighbouring vertices (viral strains) differ in a single nucleotide or amino acid. A rich trove of network analysis methods can help understand the evolutionary dynamics reflected in the structure of these networks. Here, I analyse a genotype network comprising hundreds of influenza A (H3N2) haemagglutinin genes. The network is rife with cycles that reflect non-random parallel or convergent (homoplastic) evolution. These cycles also show patterns of sequence change characteristic for strong and local evolutionary constraints, positive selection and mutation-limited evolution. Such cycles would not be visible on a phylogenetic tree, illustrating that genotype network analysis can complement phylogenetic analyses. The network also shows a distinct modular or community structure that reflects temporal more than spatial proximity of viral strains, where lowly connected bridge strains connect different modules. These and other organizational patterns illustrate that genotype networks can help us study evolution in action at an unprecedented level of resolution. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
A Systems' Biology Approach to Study MicroRNA-Mediated Gene Regulatory Networks
Kunz, Manfred; Vera, Julio; Wolkenhauer, Olaf
2013-01-01
MicroRNAs (miRNAs) are potent effectors in gene regulatory networks where aberrant miRNA expression can contribute to human diseases such as cancer. For a better understanding of the regulatory role of miRNAs in coordinating gene expression, we here present a systems biology approach combining data-driven modeling and model-driven experiments. Such an approach is characterized by an iterative process, including biological data acquisition and integration, network construction, mathematical modeling and experimental validation. To demonstrate the application of this approach, we adopt it to investigate mechanisms of collective repression on p21 by multiple miRNAs. We first construct a p21 regulatory network based on data from the literature and further expand it using algorithms that predict molecular interactions. Based on the network structure, a detailed mechanistic model is established and its parameter values are determined using data. Finally, the calibrated model is used to study the effect of different miRNA expression profiles and cooperative target regulation on p21 expression levels in different biological contexts. PMID:24350286
Exact sampling of graphs with prescribed degree correlations
NASA Astrophysics Data System (ADS)
Bassler, Kevin E.; Del Genio, Charo I.; Erdős, Péter L.; Miklós, István; Toroczkai, Zoltán
2015-08-01
Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree and conversely, in biological and technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, requires the sampling of networks with a specified set of constraints. We present a solution to the sampling problem when the constraints imposed are the degree correlations. In particular, we develop an exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus completely specifying all pairwise degree correlations, and additionally, the degree sequence itself. Our algorithm always produces independent samples without backtracking. The complexity of the graph construction algorithm is {O}({NM}) where N is the number of nodes and M is the number of edges.
Parrondo's games based on complex networks and the paradoxical effect.
Ye, Ye; Wang, Lu; Xie, Nenggang
2013-01-01
Parrondo's games were first constructed using a simple tossing scenario, which demonstrates the following paradoxical situation: in sequences of games, a winning expectation may be obtained by playing the games in a random order, although each game (game A or game B) in the sequence may result in losing when played individually. The available Parrondo's games based on the spatial niche (the neighboring environment) are applied in the regular networks. The neighbors of each node are the same in the regular graphs, whereas they are different in the complex networks. Here, Parrondo's model based on complex networks is proposed, and a structure of game B applied in arbitrary topologies is constructed. The results confirm that Parrondo's paradox occurs. Moreover, the size of the region of the parameter space that elicits Parrondo's paradox depends on the heterogeneity of the degree distributions of the networks. The higher heterogeneity yields a larger region of the parameter space where the strong paradox occurs. In addition, we use scale-free networks to show that the network size has no significant influence on the region of the parameter space where the strong or weak Parrondo's paradox occurs. The region of the parameter space where the strong Parrondo's paradox occurs reduces slightly when the average degree of the network increases.
Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2016-07-01
The human brain can be modelled as a complex networked structure with brain regions as individual nodes and their anatomical/functional links as edges. Functional brain networks are constructed by first extracting weighted connectivity matrices, and then binarizing them to minimize the noise level. Different methods have been used to estimate the dependency values between the nodes and to obtain a binary network from a weighted connectivity matrix. In this work we study topological properties of EEG-based functional networks in Alzheimer’s Disease (AD). To estimate the connectivity strength between two time series, we use Pearson correlation, coherence, phase order parameter and synchronization likelihood. In order to binarize the weighted connectivity matrices, we use Minimum Spanning Tree (MST), Minimum Connected Component (MCC), uniform threshold and density-preserving methods. We find that the detected AD-related abnormalities highly depend on the methods used for dependency estimation and binarization. Topological properties of networks constructed using coherence method and MCC binarization show more significant differences between AD and healthy subjects than the other methods. These results might explain contradictory results reported in the literature for network properties specific to AD symptoms. The analysis method should be seriously taken into account in the interpretation of network-based analysis of brain signals.
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Cai, Qing; Dong, Na; Zhang, Shan-Shan; Bo, Yun; Zhang, Jie
2016-10-01
Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.
Cartographic generalization of urban street networks based on gravitational field theory
NASA Astrophysics Data System (ADS)
Liu, Gang; Li, Yongshu; Li, Zheng; Guo, Jiawei
2014-05-01
The automatic generalization of urban street networks is a constant and important aspect of geographical information science. Previous studies show that the dual graph for street-street relationships more accurately reflects the overall morphological properties and importance of streets than do other methods. In this study, we construct a dual graph to represent street-street relationship and propose an approach to generalize street networks based on gravitational field theory. We retain the global structural properties and topological connectivity of an original street network and borrow from gravitational field theory to define the gravitational force between nodes. The concept of multi-order neighbors is introduced and the gravitational force is taken as the measure of the importance contribution between nodes. The importance of a node is defined as the result of the interaction between a given node and its multi-order neighbors. Degree distribution is used to evaluate the level of maintaining the global structure and topological characteristics of a street network and to illustrate the efficiency of the suggested method. Experimental results indicate that the proposed approach can be used in generalizing street networks and retaining their density characteristics, connectivity and global structure.
Skeleton of weighted social network
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhu, J.
2013-03-01
In the literature of social networks, understanding topological structure is an important scientific issue. In this paper, we construct a network from mobile phone call records and use the cumulative number of calls as a measure of the weight of a social tie. We extract skeletons from the weighted social network on the basis of the weights of ties, and we study their properties. We find that strong ties can support the skeleton in the network by studying the percolation characters. We explore the centrality of w-skeletons based on the correlation between some centrality measures and the skeleton index w of a vertex, and we find that the average centrality of a w-skeleton increases as w increases. We also study the cumulative degree distribution of the successive w-skeletons and find that as w increases, the w-skeleton tends to become more self-similar. Furthermore, fractal characteristics appear in higher w-skeletons. We also explore the global information diffusion efficiency of w-skeletons using simulations, from which we can see that the ties in the high w-skeletons play important roles in information diffusion. Identifying such a simple structure of a w-skeleton is a step forward toward understanding and representing the topological structure of weighted social networks.
Beckett, Stephen J.; Williams, Hywel T. P.
2013-01-01
Phage and their bacterial hosts are the most diverse and abundant biological entities in the oceans, where their interactions have a major impact on marine ecology and ecosystem function. The structure of interaction networks for natural phage–bacteria communities offers insight into their coevolutionary origin. At small phylogenetic scales, observed communities typically show a nested structure, in which both hosts and phages can be ranked by their range of resistance and infectivity, respectively. A qualitatively different multi-scale structure is seen at larger phylogenetic scales; a natural assemblage sampled from the Atlantic Ocean displays large-scale modularity and local nestedness within each module. Here, we show that such ‘nested-modular’ interaction networks can be produced by a simple model of host–phage coevolution in which infection depends on genetic matching. Negative frequency-dependent selection causes diversification of hosts (to escape phages) and phages (to track their evolving hosts). This creates a diverse community of bacteria and phage, maintained by kill-the-winner ecological dynamics. When the resulting communities are visualized as bipartite networks of who infects whom, they show the nested-modular structure characteristic of the Atlantic sample. The statistical significance and strength of this observation varies depending on whether the interaction networks take into account the density of the interacting strains, with implications for interpretation of interaction networks constructed by different methods. Our results suggest that the apparently complex community structures associated with marine bacteria and phage may arise from relatively simple coevolutionary origins. PMID:24516719
Goekoop, Rutger; Goekoop, Jaap G.
2014-01-01
Introduction The vast number of psychopathological syndromes that can be observed in clinical practice can be described in terms of a limited number of elementary syndromes that are differentially expressed. Previous attempts to identify elementary syndromes have shown limitations that have slowed progress in the taxonomy of psychiatric disorders. Aim To examine the ability of network community detection (NCD) to identify elementary syndromes of psychopathology and move beyond the limitations of current classification methods in psychiatry. Methods 192 patients with unselected mental disorders were tested on the Comprehensive Psychopathological Rating Scale (CPRS). Principal component analysis (PCA) was performed on the bootstrapped correlation matrix of symptom scores to extract the principal component structure (PCS). An undirected and weighted network graph was constructed from the same matrix. Network community structure (NCS) was optimized using a previously published technique. Results In the optimal network structure, network clusters showed a 89% match with principal components of psychopathology. Some 6 network clusters were found, including "DEPRESSION", "MANIA", “ANXIETY”, "PSYCHOSIS", "RETARDATION", and "BEHAVIORAL DISORGANIZATION". Network metrics were used to quantify the continuities between the elementary syndromes. Conclusion We present the first comprehensive network graph of psychopathology that is free from the biases of previous classifications: a ‘Psychopathology Web’. Clusters within this network represent elementary syndromes that are connected via a limited number of bridge symptoms. Many problems of previous classifications can be overcome by using a network approach to psychopathology. PMID:25427156
Ma, Hong-Wu; Zhao, Xue-Ming; Yuan, Ying-Jin; Zeng, An-Ping
2004-08-12
Metabolic networks are organized in a modular, hierarchical manner. Methods for a rational decomposition of the metabolic network into relatively independent functional subsets are essential to better understand the modularity and organization principle of a large-scale, genome-wide network. Network decomposition is also necessary for functional analysis of metabolism by pathway analysis methods that are often hampered by the problem of combinatorial explosion due to the complexity of metabolic network. Decomposition methods proposed in literature are mainly based on the connection degree of metabolites. To obtain a more reasonable decomposition, the global connectivity structure of metabolic networks should be taken into account. In this work, we use a reaction graph representation of a metabolic network for the identification of its global connectivity structure and for decomposition. A bow-tie connectivity structure similar to that previously discovered for metabolite graph is found also to exist in the reaction graph. Based on this bow-tie structure, a new decomposition method is proposed, which uses a distance definition derived from the path length between two reactions. An hierarchical classification tree is first constructed from the distance matrix among the reactions in the giant strong component of the bow-tie structure. These reactions are then grouped into different subsets based on the hierarchical tree. Reactions in the IN and OUT subsets of the bow-tie structure are subsequently placed in the corresponding subsets according to a 'majority rule'. Compared with the decomposition methods proposed in literature, ours is based on combined properties of the global network structure and local reaction connectivity rather than, primarily, on the connection degree of metabolites. The method is applied to decompose the metabolic network of Escherichia coli. Eleven subsets are obtained. More detailed investigations of the subsets show that reactions in the same subset are really functionally related. The rational decomposition of metabolic networks, and subsequent studies of the subsets, make it more amenable to understand the inherent organization and functionality of metabolic networks at the modular level. http://genome.gbf.de/bioinformatics/
Playing distributed two-party quantum games on quantum networks
NASA Astrophysics Data System (ADS)
Liu, Bo-Yang; Dai, Hong-Yi; Zhang, Ming
2017-12-01
This paper investigates quantum games between two remote players on quantum networks. We propose two schemes for distributed remote quantum games: the client-server scheme based on states transmission between nodes of the network and the peer-to-peer scheme devised upon remote quantum operations. Following these schemes, we construct two designs of the distributed prisoners' dilemma game on quantum entangling networks, where concrete methods are employed for teleportation and nonlocal two-qubits unitary gates, respectively. It seems to us that the requirement for playing distributed quantum games on networks is still an open problem. We explore this problem by comparing and characterizing the two schemes from the viewpoints of network structures, quantum and classical operations, experimental realization and simplification.
Equity venture capital platform model based on complex network
NASA Astrophysics Data System (ADS)
Guo, Dongwei; Zhang, Lanshu; Liu, Miao
2018-05-01
This paper uses the small-world network and the random-network to simulate the relationship among the investors, construct the network model of the equity venture capital platform to explore the impact of the fraud rate and the bankruptcy rate on the robustness of the network model while observing the impact of the average path length and the average agglomeration coefficient of the investor relationship network on the income of the network model. The study found that the fraud rate and bankruptcy rate exceeded a certain threshold will lead to network collapse; The bankruptcy rate has a great influence on the income of the platform; The risk premium exists, and the average return is better under a certain range of bankruptcy risk; The structure of the investor relationship network has no effect on the income of the investment model.
Creating wi-fi bluetooth mesh network for crisis management applications
NASA Astrophysics Data System (ADS)
Al-Tekreeti, Safa; Adams, Christopher; Al-Jawad, Naseer
2010-04-01
This paper proposes a wireless mesh network implementation consisting of both Wi-Fi Ad-Hoc networks as well as Bluetooth Piconet/Scatternet networks, organised in an energy and throughput efficient structure. This type of networks can be easily constructed for Crises management applications, for example in an Earthquake disaster. The motivation of this research is to form mesh network from the mass availability of WiFi and Bluetooth enabled electronic devices such as mobile phones and PC's that are normally present in most regions were major crises occurs. The target of this study is to achieve an effective solution that will enable Wi-Fi and/or Bluetooth nodes to seamlessly configure themselves to act as a bridge between their own network and that of the other network to achieve continuous routing for our proposed mesh networks.
Weng, Ling; Xie, Qiuyou; Zhao, Ling; Zhang, Ruibin; Ma, Qing; Wang, Junjing; Jiang, Wenjie; He, Yanbin; Chen, Yan; Li, Changhong; Ni, Xiaoxiao; Xu, Qin; Yu, Ronghao; Huang, Ruiwang
2017-05-01
Consciousness loss in patients with severe brain injuries is associated with reduced functional connectivity of the default mode network (DMN), fronto-parietal network, and thalamo-cortical network. However, it is still unclear if the brain white matter connectivity between the above mentioned networks is changed in patients with disorders of consciousness (DOC). In this study, we collected diffusion tensor imaging (DTI) data from 13 patients and 17 healthy controls, constructed whole-brain white matter (WM) structural networks with probabilistic tractography. Afterward, we estimated and compared topological properties, and revealed an altered structural organization in the patients. We found a disturbance in the normal balance between segregation and integration in brain structural networks and detected significantly decreased nodal centralities primarily in the basal ganglia and thalamus in the patients. A network-based statistical analysis detected a subnetwork with uniformly significantly decreased structural connections between the basal ganglia, thalamus, and frontal cortex in the patients. Further analysis indicated that along the WM fiber tracts linking the basal ganglia, thalamus, and frontal cortex, the fractional anisotropy was decreased and the radial diffusivity was increased in the patients compared to the controls. Finally, using the receiver operating characteristic method, we found that the structural connections within the NBS-derived component that showed differences between the groups demonstrated high sensitivity and specificity (>90%). Our results suggested that major consciousness deficits in DOC patients may be related to the altered WM connections between the basal ganglia, thalamus, and frontal cortex. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flow networks for Ocean currents
NASA Astrophysics Data System (ADS)
Tupikina, Liubov; Molkenthin, Nora; Marwan, Norbert; Kurths, Jürgen
2014-05-01
Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e., by its high computational complexity, we here introduce a new, discrete construction of flow-networks, which is then applied to static and dynamic velocity fields. Analyzing the flow-networks of prototypical flows we find that our approach can highlight the zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. We also apply the method to time series data of the Equatorial Pacific Ocean Current and the Gulf Stream ocean current for the changing velocity fields, which could not been done before, and analyse the properties of the dynamical system. Flow-networks can be powerful tools to theoretically understand the step from system's dynamics to network's topology that can be analyzed using network measures and is used for shading light on different climatic phenomena.
Structural Network Disorganization in Subjects at Clinical High Risk for Psychosis.
Schmidt, André; Crossley, Nicolas A; Harrisberger, Fabienne; Smieskova, Renata; Lenz, Claudia; Riecher-Rössler, Anita; Lang, Undine E; McGuire, Philip; Fusar-Poli, Paolo; Borgwardt, Stefan
2017-05-01
Previous network studies in chronic schizophrenia patients revealed impaired structural organization of the brain's rich-club members, a set of highly interconnected hub regions that play an important integrative role for global brain communication. Moreover, impaired rich-club connectivity has also been found in unaffected siblings of schizophrenia patients, suggesting that abnormal rich-club connectivity is related to familiar, possibly reflecting genetic, vulnerability for schizophrenia. However, no study has yet investigated whether structural rich-club organization is also impaired in individuals with a clinical risk syndrome for psychosis. Diffusion tensor imaging and probabilistic tractography was used to construct structural whole-brain networks in 24 healthy controls and 24 subjects with an at-risk mental state (ARMS). Graph theory was applied to quantify the structural rich-club organization and global network properties. ARMS subjects revealed a significantly altered structural rich-club organization compared with the control group. The disruption of rich-club organization was associated with the severity of negative psychotic symptoms and led to an elevated level of modularity in ARMS subjects. This study shows that abnormal structural rich-club organization is already evident in clinical high-risk subjects for psychosis and further demonstrates the impact of rich-club disorganization on global network communication. Together with previous evidence in chronic schizophrenia patients and unaffected siblings, our findings suggest that abnormal structural rich-club organization may reflect an endophenotypic marker of psychosis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.
Liu, Feng; Tian, Hongjun; Li, Jie; Li, Shen; Zhuo, Chuanjun
2018-05-04
Previous seed- and atlas-based structural covariance/connectivity analyses have demonstrated that patients with schizophrenia is accompanied by aberrant structural connection and abnormal topological organization. However, it remains unclear whether this disruption is present in unbiased whole-brain voxel-wise structural covariance networks (SCNs) and whether brain genetic expression variations are linked with network alterations. In this study, ninety-five patients with schizophrenia and 95 matched healthy controls were recruited and gray matter volumes were extracted from high-resolution structural magnetic resonance imaging scans. Whole-brain voxel-wise gray matter SCNs were constructed at the group level and were further analyzed by using graph theory method. Nonparametric permutation tests were employed for group comparisons. In addition, regression modes along with random effect analysis were utilized to explore the associations between structural network changes and gene expression from the Allen Human Brain Atlas. Compared with healthy controls, the patients with schizophrenia showed significantly increased structural covariance strength (SCS) in the right orbital part of superior frontal gyrus and bilateral middle frontal gyrus, while decreased SCS in the bilateral superior temporal gyrus and precuneus. The altered SCS showed reproducible correlations with the expression profiles of the gene classes involved in therapeutic targets and neurodevelopment. Overall, our findings not only demonstrate that the topological architecture of whole-brain voxel-wise SCNs is impaired in schizophrenia, but also provide evidence for the possible role of therapeutic targets and neurodevelopment-related genes in gray matter structural brain networks in schizophrenia.
Complementary molecular information changes our perception of food web structure
Wirta, Helena K.; Hebert, Paul D. N.; Kaartinen, Riikka; Prosser, Sean W.; Várkonyi, Gergely; Roslin, Tomas
2014-01-01
How networks of ecological interactions are structured has a major impact on their functioning. However, accurately resolving both the nodes of the webs and the links between them is fraught with difficulties. We ask whether the new resolution conferred by molecular information changes perceptions of network structure. To probe a network of antagonistic interactions in the High Arctic, we use two complementary sources of molecular data: parasitoid DNA sequenced from the tissues of their hosts and host DNA sequenced from the gut of adult parasitoids. The information added by molecular analysis radically changes the properties of interaction structure. Overall, three times as many interaction types were revealed by combining molecular information from parasitoids and hosts with rearing data, versus rearing data alone. At the species level, our results alter the perceived host specificity of parasitoids, the parasitoid load of host species, and the web-wide role of predators with a cryptic lifestyle. As the northernmost network of host–parasitoid interactions quantified, our data point exerts high leverage on global comparisons of food web structure. However, how we view its structure will depend on what information we use: compared with variation among networks quantified at other sites, the properties of our web vary as much or much more depending on the techniques used to reconstruct it. We thus urge ecologists to combine multiple pieces of evidence in assessing the structure of interaction webs, and suggest that current perceptions of interaction structure may be strongly affected by the methods used to construct them. PMID:24449902
NASA Astrophysics Data System (ADS)
Wen, Hongwei; Liu, Yue; Wang, Shengpei; Li, Zuoyong; Zhang, Jishui; Peng, Yun; He, Huiguang
2017-03-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. To date, TS is still misdiagnosed due to its varied presentation and lacking of obvious clinical symptoms. Therefore, studies of objective imaging biomarkers are of great importance for early TS diagnosis. As tic generation has been linked to disturbed structural networks, and many efforts have been made recently to investigate brain functional or structural networks using machine learning methods, for the purpose of disease diagnosis. However, few studies were related to TS and some drawbacks still existed in them. Therefore, we propose a novel classification framework integrating a multi-threshold strategy and a network fusion scheme to address the preexisting drawbacks. Here we used diffusion MRI probabilistic tractography to construct the structural networks of 44 TS children and 48 healthy children. We ameliorated the similarity network fusion algorithm specially to fuse the multi-threshold structural networks. Graph theoretical analysis was then implemented, and nodal degree, nodal efficiency and nodal betweenness centrality were selected as features. Finally, support vector machine recursive feature extraction (SVM-RFE) algorithm was used for feature selection, and then optimal features are fed into SVM to automatically discriminate TS children from controls. We achieved a high accuracy of 89.13% evaluated by a nested cross validation, demonstrated the superior performance of our framework over other comparison methods. The involved discriminative regions for classification primarily located in the basal ganglia and frontal cortico-cortical networks, all highly related to the pathology of TS. Together, our study may provide potential neuroimaging biomarkers for early-stage TS diagnosis.
Buchanan, Colin R; Pettit, Lewis D; Storkey, Amos J; Abrahams, Sharon; Bastin, Mark E
2015-05-01
To investigate white matter structural connectivity changes associated with amyotrophic lateral sclerosis (ALS) using network analysis and compare the results with those obtained using standard voxel-based methods, specifically Tract-based Spatial Statistics (TBSS). MRI data were acquired from 30 patients with ALS and 30 age-matched healthy controls. For each subject, 85 grey matter regions (network nodes) were identified from high resolution structural MRI, and network connections formed from the white matter tracts generated by diffusion MRI and probabilistic tractography. Whole-brain networks were constructed using strong constraints on anatomical plausibility and a weighting reflecting tract-averaged fractional anisotropy (FA). Analysis using Network-based Statistics (NBS), without a priori selected regions, identified an impaired motor-frontal-subcortical subnetwork (10 nodes and 12 bidirectional connections), consistent with upper motor neuron pathology, in the ALS group compared with the controls (P = 0.020). Reduced FA in three of the impaired network connections, which involved fibers of the corticospinal tract, correlated with rate of disease progression (P ≤ 0.024). A novel network-tract comparison revealed that the connections involved in the affected network had a strong correspondence (mean overlap of 86.2%) with white matter tracts identified as having reduced FA compared with the control group using TBSS. These findings suggest that white matter degeneration in ALS is strongly linked to the motor cortex, and that impaired structural networks identified using NBS have a strong correspondence to affected white matter tracts identified using more conventional voxel-based methods. © 2014 Wiley Periodicals, Inc.
Evolution of network architecture in a granular material under compression
NASA Astrophysics Data System (ADS)
Bassett, Danielle
As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. However, capturing and characterizing the dynamic nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. Here, we utilize multilayer networks as a framework for directly quantifying the evolution of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and inter-particle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the reconfiguration and evolution of this structure throughout the compression process. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be done by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than consideration of the local inter-particle forces alone. The results discussed throughout this study suggest that these novel network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup. National Science Foundation (BCS-1441502, PHY-1554488, and BCS-1631550).
Complex networks as an emerging property of hierarchical preferential attachment.
Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J
2015-12-01
Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.
Complex networks as an emerging property of hierarchical preferential attachment
NASA Astrophysics Data System (ADS)
Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.
2015-12-01
Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.
NASA Astrophysics Data System (ADS)
Erkol, Şirag; Yücel, Gönenç
In this study, the problem of seed selection is investigated. This problem is mainly treated as an optimization problem, which is proved to be NP-hard. There are several heuristic approaches in the literature which mostly use algorithmic heuristics. These approaches mainly focus on the trade-off between computational complexity and accuracy. Although the accuracy of algorithmic heuristics are high, they also have high computational complexity. Furthermore, in the literature, it is generally assumed that complete information on the structure and features of a network is available, which is not the case in most of the times. For the study, a simulation model is constructed, which is capable of creating networks, performing seed selection heuristics, and simulating diffusion models. Novel metric-based seed selection heuristics that rely only on partial information are proposed and tested using the simulation model. These heuristics use local information available from nodes in the synthetically created networks. The performances of heuristics are comparatively analyzed on three different network types. The results clearly show that the performance of a heuristic depends on the structure of a network. A heuristic to be used should be selected after investigating the properties of the network at hand. More importantly, the approach of partial information provided promising results. In certain cases, selection heuristics that rely only on partial network information perform very close to similar heuristics that require complete network data.
Understanding multi-scale structural evolution in granular systems through gMEMS
NASA Astrophysics Data System (ADS)
Walker, David M.; Tordesillas, Antoinette
2013-06-01
We show how the rheological response of a material to applied loads can be systematically coded, analyzed and succinctly summarized, according to an individual grain's property (e.g. kinematics). Individual grains are considered as their own smart sensor akin to microelectromechanical systems (e.g. gyroscopes, accelerometers), each capable of recognizing their evolving role within self-organizing building block structures (e.g. contact cycles and force chains). A symbolic time series is used to represent their participation in such self-assembled building blocks and a complex network summarizing their interrelationship with other grains is constructed. In particular, relationships between grain time series are determined according to the information theory Hamming distance or the metric Euclidean distance. We then use topological distance to find network communities enabling groups of grains at remote physical metric distances in the material to share a classification. In essence grains with similar structural and functional roles at different scales are identified together. This taxonomy distills the dissipative structural rearrangements of grains down to its essential features and thus provides pointers for objective physics-based internal variable formalisms used in the construction of robust predictive continuum models.
Self-assembly programming of DNA polyominoes.
Ong, Hui San; Syafiq-Rahim, Mohd; Kasim, Noor Hayaty Abu; Firdaus-Raih, Mohd; Ramlan, Effirul Ikhwan
2016-10-20
Fabrication of functional DNA nanostructures operating at a cellular level has been accomplished through molecular programming techniques such as DNA origami and single-stranded tiles (SST). During implementation, restrictive and constraint dependent designs are enforced to ensure conformity is attainable. We propose a concept of DNA polyominoes that promotes flexibility in molecular programming. The fabrication of complex structures is achieved through self-assembly of distinct heterogeneous shapes (i.e., self-organised optimisation among competing DNA basic shapes) with total flexibility during the design and assembly phases. In this study, the plausibility of the approach is validated using the formation of multiple 3×4 DNA network fabricated from five basic DNA shapes with distinct configurations (monomino, tromino and tetrominoes). Computational tools to aid the design of compatible DNA shapes and the structure assembly assessment are presented. The formations of the desired structures were validated using Atomic Force Microscopy (AFM) imagery. Five 3×4 DNA networks were successfully constructed using combinatorics of these five distinct DNA heterogeneous shapes. Our findings revealed that the construction of DNA supra-structures could be achieved using a more natural-like orchestration as compared to the rigid and restrictive conventional approaches adopted previously. Copyright © 2016 Elsevier B.V. All rights reserved.
Romero-Garcia, Rafael; Whitaker, Kirstie J; Váša, František; Seidlitz, Jakob; Shinn, Maxwell; Fonagy, Peter; Dolan, Raymond J; Jones, Peter B; Goodyer, Ian M; Bullmore, Edward T; Vértes, Petra E
2018-05-01
Complex network topology is characteristic of many biological systems, including anatomical and functional brain networks (connectomes). Here, we first constructed a structural covariance network from MRI measures of cortical thickness on 296 healthy volunteers, aged 14-24 years. Next, we designed a new algorithm for matching sample locations from the Allen Brain Atlas to the nodes of the SCN. Subsequently we used this to define, transcriptomic brain networks by estimating gene co-expression between pairs of cortical regions. Finally, we explored the hypothesis that transcriptional networks and structural MRI connectomes are coupled. A transcriptional brain network (TBN) and a structural covariance network (SCN) were correlated across connection weights and showed qualitatively similar complex topological properties: assortativity, small-worldness, modularity, and a rich-club. In both networks, the weight of an edge was inversely related to the anatomical (Euclidean) distance between regions. There were differences between networks in degree and distance distributions: the transcriptional network had a less fat-tailed degree distribution and a less positively skewed distance distribution than the SCN. However, cortical areas connected to each other within modules of the SCN had significantly higher levels of whole genome co-expression than expected by chance. Nodes connected in the SCN had especially high levels of expression and co-expression of a human supragranular enriched (HSE) gene set that has been specifically located to supragranular layers of human cerebral cortex and is known to be important for large-scale, long-distance cortico-cortical connectivity. This coupling of brain transcriptome and connectome topologies was largely but not entirely accounted for by the common constraint of physical distance on both networks. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Theoretical predictions of a bucky-diamond SiC cluster.
Yu, Ming; Jayanthi, C S; Wu, S Y
2012-06-15
A study of structural relaxations of Si(n)C(m) clusters corresponding to different compositions, different relative arrangements of Si/C atoms, and different types of initial structure, reveals that the Si(n)C(m) bucky-diamond structure can be obtained for an initial network structure constructed from a truncated bulk 3C-SiC for a magic composition corresponding to n = 68 and m = 79. This study was performed using a semi-empirical Hamiltonian (SCED-LCAO) since it allowed an extensive search of different types of initial structures. However, the bucky-diamond structure predicted by this method was also confirmed by a more accurate density functional theory (DFT) based method. The bucky-diamond structure exhibited by a SiC-based system represents an interesting paradigm where a Si atom can form three-coordinated as well as four-coordinated networks with carbon atoms and vice versa and with both types of network co-existing in the same structure. Specifically, the bucky-diamond structure of the Si(68)C(79) cluster consists of a 35-atom diamond-like inner core (four-atom coordinations) suspended inside a 112-atom fullerene-like shell (three-atom coordinations).
Disrupted white matter structure underlies cognitive deficit in hypertensive patients.
Li, Xin; Ma, Chao; Sun, Xuan; Zhang, Junying; Chen, Yaojing; Chen, Kewei; Zhang, Zhanjun
2016-09-01
Hypertension is considered a risk factor of cognitive impairments and could result in white matter changes. Current studies on hypertension-related white matter (WM) changes focus only on regional changes, and the information about global changes in WM structure network is limited. We assessed the cognitive function in 39 hypertensive patients and 37 healthy controls with a battery of neuropsychological tests. The WM structural networks were constructed by utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. The direct and indirect correlations among cognitive impairments, brain WM network disruptions and hypertension were analyzed with structural equation modelling (SEM). Hypertensive patients showed deficits in executive function, memory and attention compared with controls. An aberrant connectivity of WM networks was found in the hypertensive patients (P Eglob = 0.005, P Lp = 0.005), especially in the frontal and parietal regions. Importantly, SEM analysis showed that the decline of executive function resulted from aberrant WM networks in hypertensive patients (p = 0.3788, CFI = 0.99). These results suggest that the cognitive decline in hypertensive patients was due to frontal and parietal WM disconnections. Our findings highlight the importance of brain protection in hypertension patients. • Hypertension has a negative effect on the performance of the cognitive domains • Reduced efficiencies of white matter networks were shown in hypertension • Disrupted white matter networks are responsible for poor cognitive function in hypertension.
NASA Astrophysics Data System (ADS)
Pusuluri, Sai Teja
Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features. These results show how the static landscape features can be controlled by adjusting the correlations between patterns. Finally, I explore the dynamical features of landscapes generated using neural network models such as the stability of minima and the transition rates between minima. The results from this project show that the stability depends on the correlations between patterns. It is also found that the transition rates between minima strongly depend on the type of bias applied and the correlation between patterns. The results from this part of the dissertation can be useful in engineering an energy landscape without even having the complete information about the associated minima of the landscape.
Saito, Rintaro; Suzuki, Harukazu; Hayashizaki, Yoshihide
2003-04-12
Recent screening techniques have made large amounts of protein-protein interaction data available, from which biologically important information such as the function of uncharacterized proteins, the existence of novel protein complexes, and novel signal-transduction pathways can be discovered. However, experimental data on protein interactions contain many false positives, making these discoveries difficult. Therefore computational methods of assessing the reliability of each candidate protein-protein interaction are urgently needed. We developed a new 'interaction generality' measure (IG2) to assess the reliability of protein-protein interactions using only the topological properties of their interaction-network structure. Using yeast protein-protein interaction data, we showed that reliable protein-protein interactions had significantly lower IG2 values than less-reliable interactions, suggesting that IG2 values can be used to evaluate and filter interaction data to enable the construction of reliable protein-protein interaction networks.
Zhao, Hang; Bai, Jinbo
2015-05-13
The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.
Analysis on the hot spot and trend of the foreign assembly building research
NASA Astrophysics Data System (ADS)
Bi, Xiaoqing; Luo, Yanbing
2017-03-01
First of all, the paper analyzes the research on the front of the assembly building in the past 15 years. This article mainly adopts the method of CO word analysis, construct the co word matrix, correlation matrix, and then into a dissimilarity matrix, and on this basis, using factor analysis, cluster analysis and multi scale analysis method to study the structure of prefabricated construction field display. Finally, the results of the analysis are discussed, and summarized the current research focus of foreign prefabricated construction mainly concentrated in 7 aspects: embankment construction, wood construction, bridge construction, crane layout, PCM wall and glass system, based on neural network test, energy saving and recycling, and forecast the future trend of development study.
Shao, Quan; Jia, Meng
2015-03-18
Since the outbreak of pandemics, influenza has caused extensive attention in the field of public health. It is actually hard to distinguish what is the most effective method to control the influenza transmission within airport terminal. The purpose of this study was to quantitatively evaluate the influences of passenger source, immunity difference and social relation structure on the influenza transmission in terminal. A method combining hierarchical structure of personal contact network with agent-based SEIR model was proposed to analyze the characteristics of influenza diffusion within terminal. Based on the spatial distance between individuals, the hierarchical structure of personal contact network was defined to construct a complex relationship of passengers in the real world. Moreover, the agent-based SEIR model was improved by considering the individual level of influenza spread characteristics. To evaluate the method, this process was fused in simulation based on the constructed personal contact network. In the terminal we investigated, personal contact network was defined by following four layers: social relation structure, procedure partition, procedure area, and the whole terminal. With the growing of layer, the degree distribution curves move right. The value of degree distribution p(k) reached a peak at a specific value, and then back down. Besides, with the increase of layer α, the clustering coefficients presented a tendency to exponential decay. Based on the influenza transmission experiments, the main infected areas were concluded when considering different factors. Moreover, partition of passenger sources was found to impact a lot in departure, while social relation structure imposed a great influence in arrival. Besides, immunity difference exerted no obvious effect on the spread of influenza in the transmission process both in departure and arrival. The proposed method is efficient to reproduce the evolution process of influenza transmission, and exhibits various roles of each factor in different processes, also better reflects the effect of passenger topological character on influenza spread. It contributes to proposing effective influenza measures by airport relevant department and improving the efficiency and ability of epidemic prevention on the public health.
Litwin, Howard
2011-08-01
Although social network relationships are linked to mental health in late life, it is still unclear whether it is the structure of social networks or their perceived quality that matters. The current study regressed a dichotomous 8-item version of the Center for Epidemiological Studies Depression Scale (CESD-8) score on measures of social network relationships among Americans, aged 65-85 years, from the first wave of the National Social Life, Health and Aging Project. The network indicators included a structural variable - social network type - and a series of relationship quality indicators: perceived positive and negative ties with family, friends and spouse/ partner. Multivariate logistic regression analyses controlled for age, gender, education, income, race/ethnicity, religious affiliation, functional health and physical health. The perceived social network quality variables were unrelated to the presence of a high level of depressive symptoms, but social network type maintained an association with this mental health outcome even after controlling for confounders. Respondents embedded in resourceful social network types in terms of social capital--"diverse," "friend" and "congregant" networks--reported less presence of depressive symptoms, to varying degrees. The results show that the structure of the network seems to matter more than the perceived quality of the ties as an indicator of depressive symptoms. Moreover, the composite network type variable stands out in capturing the differences in mental state. The construct of network type should be incorporated in mental health screening among older people who reside in the community. One's social network type can be an important initial indicator that one is at risk.
Yun, Ruijuan; Lin, Chung-Chih; Wu, Shuicai; Huang, Chu-Chung; Lin, Ching-Po; Chao, Yi-Ping
2013-01-01
In this study, we employed diffusion tensor imaging (DTI) to construct brain structural network and then derive the connection matrices from 96 healthy elderly subjects. The correlation analysis between these topological properties of network based on graph theory and the Cognitive Abilities Screening Instrument (CASI) index were processed to extract the significant network characteristics. These characteristics were then integrated to estimate the models by various machine-learning algorithms to predict user's cognitive performance. From the results, linear regression model and Gaussian processes model showed presented better abilities with lower mean absolute errors of 5.8120 and 6.25 to predict the cognitive performance respectively. Moreover, these extracted topological properties of brain structural network derived from DTI also could be regarded as the bio-signatures for further evaluation of brain degeneration in healthy aged and early diagnosis of mild cognitive impairment (MCI).
Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function.
Reimann, Michael W; Nolte, Max; Scolamiero, Martina; Turner, Katharine; Perin, Rodrigo; Chindemi, Giuseppe; Dłotko, Paweł; Levi, Ran; Hess, Kathryn; Markram, Henry
2017-01-01
The lack of a formal link between neural network structure and its emergent function has hampered our understanding of how the brain processes information. We have now come closer to describing such a link by taking the direction of synaptic transmission into account, constructing graphs of a network that reflect the direction of information flow, and analyzing these directed graphs using algebraic topology. Applying this approach to a local network of neurons in the neocortex revealed a remarkably intricate and previously unseen topology of synaptic connectivity. The synaptic network contains an abundance of cliques of neurons bound into cavities that guide the emergence of correlated activity. In response to stimuli, correlated activity binds synaptically connected neurons into functional cliques and cavities that evolve in a stereotypical sequence toward peak complexity. We propose that the brain processes stimuli by forming increasingly complex functional cliques and cavities.
DETERMINANTS OF NETWORK OUTCOMES: THE IMPACT OF MANAGEMENT STRATEGIES
YSA, TAMYKO; SIERRA, VICENTA; ESTEVE, MARC
2014-01-01
The literature on network management is extensive. However, it generally explores network structures, neglecting the impact of management strategies. In this article we assess the effect of management strategies on network outcomes, providing empirical evidence from 119 urban revitalization networks. We go beyond current work by testing a path model for the determinants of network outcomes and considering the interactions between the constructs: management strategies, trust, complexity, and facilitative leadership. Our results suggest that management strategies have a strong effect on network outcomes and that they enhance the level of trust. We also found that facilitative leadership has a positive impact on network management as well as on trust in the network. Our findings also show that complexity has a negative impact on trust. A key finding of our research is that managers may wield more influence on network dynamics than previously theorized. PMID:25520529
DETERMINANTS OF NETWORK OUTCOMES: THE IMPACT OF MANAGEMENT STRATEGIES.
Ysa, Tamyko; Sierra, Vicenta; Esteve, Marc
2014-09-01
The literature on network management is extensive. However, it generally explores network structures, neglecting the impact of management strategies. In this article we assess the effect of management strategies on network outcomes, providing empirical evidence from 119 urban revitalization networks. We go beyond current work by testing a path model for the determinants of network outcomes and considering the interactions between the constructs: management strategies, trust, complexity, and facilitative leadership. Our results suggest that management strategies have a strong effect on network outcomes and that they enhance the level of trust. We also found that facilitative leadership has a positive impact on network management as well as on trust in the network. Our findings also show that complexity has a negative impact on trust. A key finding of our research is that managers may wield more influence on network dynamics than previously theorized.
NASA Astrophysics Data System (ADS)
Kagawa, Yuki; Takamatsu, Atsuko
2009-04-01
To reveal the relation between network structures found in two-dimensional biological systems, such as protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investigated their dynamics. Results showed that the distribution of edge weights in the networks strongly affects (i) the propensity for global synchronization and (ii) emerging ratios of oscillation patterns, such as traveling and concentric waves, even if the total weight is fixed. In-phase locking, traveling wave, and concentric wave patterns were, respectively, observed most frequently in uniformly weighted, center weighted treelike, and periphery weighted ring-shaped networks. Controlling the global spatiotemporal patterns with the weight distribution given by the local weighting (coupling) rules might be useful in biological network systems including the plasmodial networks and neural networks in the brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001; Gupta, Shikha
Robust global models capable of discriminating positive and non-positive carcinogens; and predicting carcinogenic potency of chemicals in rodents were developed. The dataset of 834 structurally diverse chemicals extracted from Carcinogenic Potency Database (CPDB) was used which contained 466 positive and 368 non-positive carcinogens. Twelve non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals and nonlinearity in the data were evaluated using Tanimoto similarity index and Brock–Dechert–Scheinkman statistics. Probabilistic neural network (PNN) and generalized regression neural network (GRNN) models were constructed for classification and function optimization problems using the carcinogenicity end point in rat. Validation of the models wasmore » performed using the internal and external procedures employing a wide series of statistical checks. PNN constructed using five descriptors rendered classification accuracy of 92.09% in complete rat data. The PNN model rendered classification accuracies of 91.77%, 80.70% and 92.08% in mouse, hamster and pesticide data, respectively. The GRNN constructed with nine descriptors yielded correlation coefficient of 0.896 between the measured and predicted carcinogenic potency with mean squared error (MSE) of 0.44 in complete rat data. The rat carcinogenicity model (GRNN) applied to the mouse and hamster data yielded correlation coefficient and MSE of 0.758, 0.71 and 0.760, 0.46, respectively. The results suggest for wide applicability of the inter-species models in predicting carcinogenic potency of chemicals. Both the PNN and GRNN (inter-species) models constructed here can be useful tools in predicting the carcinogenicity of new chemicals for regulatory purposes. - Graphical abstract: Figure (a) shows classification accuracies (positive and non-positive carcinogens) in rat, mouse, hamster, and pesticide data yielded by optimal PNN model. Figure (b) shows generalization and predictive abilities of the interspecies GRNN model to predict the carcinogenic potency of diverse chemicals. - Highlights: • Global robust models constructed for carcinogenicity prediction of diverse chemicals. • Tanimoto/BDS test revealed structural diversity of chemicals and nonlinearity in data. • PNN/GRNN successfully predicted carcinogenicity/carcinogenic potency of chemicals. • Developed interspecies PNN/GRNN models for carcinogenicity prediction. • Proposed models can be used as tool to predict carcinogenicity of new chemicals.« less
Stetz, Gabrielle; Verkhivker, Gennady M.
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. PMID:28095400
Stetz, Gabrielle; Verkhivker, Gennady M
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms.
Novel carboxamides as potential mosquito reprellents.
USDA-ARS?s Scientific Manuscript database
A model was developed using 167 carboxamide compounds, from the US Department of Agriculture archival database, that were tested as arthropod repellents over the past 60 years. An artificial neural network utilizing CODESSA PRO descriptors was used to construct a Quantitative Structure-Activity Re...
Lin, Chin-Teng; Wu, Rui-Cheng; Chang, Jyh-Yeong; Liang, Sheng-Fu
2004-02-01
In this paper, a new technique for the Chinese text-to-speech (TTS) system is proposed. Our major effort focuses on the prosodic information generation. New methodologies for constructing fuzzy rules in a prosodic model simulating human's pronouncing rules are developed. The proposed Recurrent Fuzzy Neural Network (RFNN) is a multilayer recurrent neural network (RNN) which integrates a Self-cOnstructing Neural Fuzzy Inference Network (SONFIN) into a recurrent connectionist structure. The RFNN can be functionally divided into two parts. The first part adopts the SONFIN as a prosodic model to explore the relationship between high-level linguistic features and prosodic information based on fuzzy inference rules. As compared to conventional neural networks, the SONFIN can always construct itself with an economic network size in high learning speed. The second part employs a five-layer network to generate all prosodic parameters by directly using the prosodic fuzzy rules inferred from the first part as well as other important features of syllables. The TTS system combined with the proposed method can behave not only sandhi rules but also the other prosodic phenomena existing in the traditional TTS systems. Moreover, the proposed scheme can even find out some new rules about prosodic phrase structure. The performance of the proposed RFNN-based prosodic model is verified by imbedding it into a Chinese TTS system with a Chinese monosyllable database based on the time-domain pitch synchronous overlap add (TD-PSOLA) method. Our experimental results show that the proposed RFNN can generate proper prosodic parameters including pitch means, pitch shapes, maximum energy levels, syllable duration, and pause duration. Some synthetic sounds are online available for demonstration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weighill, Deborah A; Jacobson, Daniel A
We explore the use of a network meta-modeling approach to compare the effects of similarity metrics used to construct biological networks on the topology of the resulting networks. This work reviews various similarity metrics for the construction of networks and various topology measures for the characterization of resulting network topology, demonstrating the use of these metrics in the construction and comparison of phylogenomic and transcriptomic networks.
A new algorithm to construct phylogenetic networks from trees.
Wang, J
2014-03-06
Developing appropriate methods for constructing phylogenetic networks from tree sets is an important problem, and much research is currently being undertaken in this area. BIMLR is an algorithm that constructs phylogenetic networks from tree sets. The algorithm can construct a much simpler network than other available methods. Here, we introduce an improved version of the BIMLR algorithm, QuickCass. QuickCass changes the selection strategy of the labels of leaves below the reticulate nodes, i.e., the nodes with an indegree of at least 2 in BIMLR. We show that QuickCass can construct simpler phylogenetic networks than BIMLR. Furthermore, we show that QuickCass is a polynomial-time algorithm when the output network that is constructed by QuickCass is binary.
Network Structure as a Modulator of Disturbance Impacts in Streams
NASA Astrophysics Data System (ADS)
Warner, S.; Tullos, D. D.
2017-12-01
This study examines how river network structure affects the propagation of geomorphic and anthropogenic disturbances through streams. Geomorphic processes such as debris flows can alter channel morphology and modify habitat for aquatic biota. Anthropogenic disturbances such as road construction can interact with the geomorphology and hydrology of forested watersheds to change sediment and water inputs to streams. It was hypothesized that the network structure of streams within forested watersheds would influence the location and magnitude of the impacts of debris flows and road construction on sediment size and channel width. Longitudinal surveys were conducted every 50 meters for 11 kilometers of third-to-fifth order streams in the H.J. Andrews Experimental Forest in the Western Cascade Range of Oregon. Particle counts and channel geometry measurements were collected to characterize the geomorphic impacts of road crossings and debris flows as disturbances. Sediment size distributions and width measurements were plotted against the distance of survey locations through the network to identify variations in longitudinal trends of channel characteristics. Thresholds for the background variation in sediment size and channel width, based on the standard deviations of sample points, were developed for sampled stream segments characterized by location as well as geomorphic and land use history. Survey locations were classified as "disturbed" when they deviated beyond the reference thresholds in expected sediment sizes and channel widths, as well as flow-connected proximity to debris flows and road crossings. River network structure was quantified by drainage density and centrality of nodes upstream of survey locations. Drainage density and node centrality were compared between survey locations with similar channel characteristic classifications. Cluster analysis was used to assess the significance of survey location, proximity of survey location to debris flows and road crossings, drainage density and node centrality in predicting sediment size and channel width classifications for locations within the watershed. Results contribute to the understanding of susceptibility and responses of streams supporting critical habitat for aquatic species to debris flows and forest road disturbances.
García Arroyo, Jose Luis; García Zapirain, Begoña
2014-01-01
By means of this study, a detection algorithm for the "pigment network" in dermoscopic images is presented, one of the most relevant indicators in the diagnosis of melanoma. The design of the algorithm consists of two blocks. In the first one, a machine learning process is carried out, allowing the generation of a set of rules which, when applied over the image, permit the construction of a mask with the pixels candidates to be part of the pigment network. In the second block, an analysis of the structures over this mask is carried out, searching for those corresponding to the pigment network and making the diagnosis, whether it has pigment network or not, and also generating the mask corresponding to this pattern, if any. The method was tested against a database of 220 images, obtaining 86% sensitivity and 81.67% specificity, which proves the reliability of the algorithm. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
Newman, Aaron J; Supalla, Ted; Fernandez, Nina; Newport, Elissa L; Bavelier, Daphne
2015-09-15
Sign languages used by deaf communities around the world possess the same structural and organizational properties as spoken languages: In particular, they are richly expressive and also tightly grammatically constrained. They therefore offer the opportunity to investigate the extent to which the neural organization for language is modality independent, as well as to identify ways in which modality influences this organization. The fact that sign languages share the visual-manual modality with a nonlinguistic symbolic communicative system-gesture-further allows us to investigate where the boundaries lie between language and symbolic communication more generally. In the present study, we had three goals: to investigate the neural processing of linguistic structure in American Sign Language (using verbs of motion classifier constructions, which may lie at the boundary between language and gesture); to determine whether we could dissociate the brain systems involved in deriving meaning from symbolic communication (including both language and gesture) from those specifically engaged by linguistically structured content (sign language); and to assess whether sign language experience influences the neural systems used for understanding nonlinguistic gesture. The results demonstrated that even sign language constructions that appear on the surface to be similar to gesture are processed within the left-lateralized frontal-temporal network used for spoken languages-supporting claims that these constructions are linguistically structured. Moreover, although nonsigners engage regions involved in human action perception to process communicative, symbolic gestures, signers instead engage parts of the language-processing network-demonstrating an influence of experience on the perception of nonlinguistic stimuli.
Liang, Yuting; Zhao, Huihui; Deng, Ye; Zhou, Jizhong; Li, Guanghe; Sun, Bo
2016-01-01
With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001). Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors) were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential “keystone” genes, defined as either “hubs” or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions. PMID:26870020
DeDaL: Cytoscape 3 app for producing and morphing data-driven and structure-driven network layouts.
Czerwinska, Urszula; Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei
2015-08-14
Visualization and analysis of molecular profiling data together with biological networks are able to provide new mechanistic insights into biological functions. Currently, it is possible to visualize high-throughput data on top of pre-defined network layouts, but they are not always adapted to a given data analysis task. A network layout based simultaneously on the network structure and the associated multidimensional data might be advantageous for data visualization and analysis in some cases. We developed a Cytoscape app, which allows constructing biological network layouts based on the data from molecular profiles imported as values of node attributes. DeDaL is a Cytoscape 3 app, which uses linear and non-linear algorithms of dimension reduction to produce data-driven network layouts based on multidimensional data (typically gene expression). DeDaL implements several data pre-processing and layout post-processing steps such as continuous morphing between two arbitrary network layouts and aligning one network layout with respect to another one by rotating and mirroring. The combination of all these functionalities facilitates the creation of insightful network layouts representing both structural network features and correlation patterns in multivariate data. We demonstrate the added value of applying DeDaL in several practical applications, including an example of a large protein-protein interaction network. DeDaL is a convenient tool for applying data dimensionality reduction methods and for designing insightful data displays based on data-driven layouts of biological networks, built within Cytoscape environment. DeDaL is freely available for downloading at http://bioinfo-out.curie.fr/projects/dedal/.
Attalla, R; Ling, C; Selvaganapathy, P
2016-02-01
The lack of a simple and effective method to integrate vascular network with engineered scaffolds and tissue constructs remains one of the biggest challenges in true 3D tissue engineering. Here, we detail the use of a commercially available, low-cost, open-source 3D printer modified with a microfluidic print-head in order to develop a method for the generation of instantly perfusable vascular network integrated with gel scaffolds seeded with cells. The print-head features an integrated coaxial nozzle that allows the fabrication of hollow, calcium-polymerized alginate tubes that can be easily patterned using 3D printing techniques. The diameter of the hollow channel can be precisely controlled and varied between 500 μm - 2 mm by changing applied flow rates or print-head speed. These channels are integrated into gel layers with a thickness of 800 μm - 2.5 mm. The structural rigidity of these constructs allows the fabrication of multi-layered structures without causing the collapse of hollow channels in lower layers. The 3D printing method was fully characterized at a range of operating speeds (0-40 m/min) and corresponding flow rates (1-30 mL/min) were identified to produce precise definition. This microfluidic design also allows the incorporation of a wide range of scaffold materials as well as biological constituents such as cells, growth factors, and ECM material. Media perfusion of the channels causes a significant viability increase in the bulk of cell-laden structures over the long-term. With this setup, gel constructs with embedded arrays of hollow channels can be created and used as a potential substitute for blood vessel networks.
Fronto-Parietal Subnetworks Flexibility Compensates For Cognitive Decline Due To Mental Fatigue.
Taya, Fumihiko; Dimitriadis, Stavros I; Dragomir, Andrei; Lim, Julian; Sun, Yu; Wong, Kian Foong; Thakor, Nitish V; Bezerianos, Anastasios
2018-04-24
Fronto-parietal subnetworks were revealed to compensate for cognitive decline due to mental fatigue by community structure analysis. Here, we investigate changes in topology of subnetworks of resting-state fMRI networks due to mental fatigue induced by prolonged performance of a cognitively demanding task, and their associations with cognitive decline. As it is well established that brain networks have modular organization, community structure analyses can provide valuable information about mesoscale network organization and serve as a bridge between standard fMRI approaches and brain connectomics that quantify the topology of whole brain networks. We developed inter- and intramodule network metrics to quantify topological characteristics of subnetworks, based on our hypothesis that mental fatigue would impact on functional relationships of subnetworks. Functional networks were constructed with wavelet correlation and a data-driven thresholding scheme based on orthogonal minimum spanning trees, which allowed detection of communities with weak connections. A change from pre- to posttask runs was found for the intermodule density between the frontal and the temporal subnetworks. Seven inter- or intramodule network metrics, mostly at the frontal or the parietal subnetworks, showed significant predictive power of individual cognitive decline, while the network metrics for the whole network were less effective in the predictions. Our results suggest that the control-type fronto-parietal networks have a flexible topological architecture to compensate for declining cognitive ability due to mental fatigue. This community structure analysis provides valuable insight into connectivity dynamics under different cognitive states including mental fatigue. © 2018 Wiley Periodicals, Inc.
Iida, Shoko; Shimba, Kenta; Sakai, Koji; Kotani, Kiyoshi; Jimbo, Yasuhiko
2018-06-18
The balance between glutamate-mediated excitation and GABA-mediated inhibition is critical to cortical functioning. However, the contribution of network structure consisting of the both neurons to cortical functioning has not been elucidated. We aimed to evaluate the relationship between the network structure and functional activity patterns in vitro. We used mouse induced pluripotent stem cells (iPSCs) to construct three types of neuronal populations; excitatory-rich (Exc), inhibitory-rich (Inh), and control (Cont). Then, we analyzed the activity patterns of these neuronal populations using microelectrode arrays (MEAs). Inhibitory synaptic densities differed between the three types of iPSC-derived neuronal populations, and the neurons showed spontaneously synchronized bursting activity with functional maturation for one month. Moreover, different firing patterns were observed between the three populations; Exc demonstrated the highest firing rates, including frequent, long, and dominant bursts. In contrast, Inh demonstrated the lowest firing rates and the least dominant bursts. Synchronized bursts were enhanced by disinhibition via GABA A receptor blockade. The present study, using iPSC-derived neurons and MEAs, for the first time show that synchronized bursting of cortical networks in vitro depends on the network structure consisting of excitatory and inhibitory neurons. Copyright © 2018 Elsevier Inc. All rights reserved.
Community detection in sequence similarity networks based on attribute clustering
Chowdhary, Janamejaya; Loeffler, Frank E.; Smith, Jeremy C.
2017-07-24
Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here in this paper, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs,more » for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments« less
The persuasion network is modulated by drug-use risk and predicts anti-drug message effectiveness.
Huskey, Richard; Mangus, J Michael; Turner, Benjamin O; Weber, René
2017-12-01
While a persuasion network has been proposed, little is known about how network connections between brain regions contribute to attitude change. Two possible mechanisms have been advanced. One hypothesis predicts that attitude change results from increased connectivity between structures implicated in affective and executive processing in response to increases in argument strength. A second functional perspective suggests that highly arousing messages reduce connectivity between structures implicated in the encoding of sensory information, which disrupts message processing and thereby inhibits attitude change. However, persuasion is a multi-determined construct that results from both message features and audience characteristics. Therefore, persuasive messages should lead to specific functional connectivity patterns among a priori defined structures within the persuasion network. The present study exposed 28 subjects to anti-drug public service announcements where arousal, argument strength, and subject drug-use risk were systematically varied. Psychophysiological interaction analyses provide support for the affective-executive hypothesis but not for the encoding-disruption hypothesis. Secondary analyses show that video-level connectivity patterns among structures within the persuasion network predict audience responses in independent samples (one college-aged, one nationally representative). We propose that persuasion neuroscience research is best advanced by considering network-level effects while accounting for interactions between message features and target audience characteristics. © The Author (2017). Published by Oxford University Press.
Community detection in sequence similarity networks based on attribute clustering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhary, Janamejaya; Loeffler, Frank E.; Smith, Jeremy C.
Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here in this paper, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs,more » for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments« less
Bioprinting for vascular and vascularized tissue biofabrication.
Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T
2017-03-15
Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision, which holds a great promise in fabrication of vascular or vascularized tissues for transplantation use. Although a great progress has recently been made on building perfusable tissues and branched vascular network, a comprehensive review on the state-of-the-art in vascular and vascularized tissue bioprinting has not reported so far. This contribution is thus significant because it discusses the use of three major bioprinting modalities in vascular tissue biofabrication for the first time in the literature and compares their strengths and limitations in details. Moreover, the use of scaffold-based and scaffold-free bioprinting is expounded within the domain of vascular tissue fabrication. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Structural Bioinformatics of the Interactome
Petrey, Donald; Honig, Barry
2014-01-01
The last decade has seen a dramatic expansion in the number and range of techniques available to obtain genome-wide information, and to analyze this information so as to infer both the function of individual molecules and how they interact to modulate the behavior of biological systems. Here we review these techniques, focusing on the construction of physical protein-protein interaction networks, and highlighting approaches that incorporate protein structure which is becoming an increasingly important component of systems-level computational techniques. We also discuss how network analyses are being applied to enhance the basic understanding of biological systems and their disregulation, and how they are being applied in drug development. PMID:24895853
Communities and classes in symmetric fractals
NASA Astrophysics Data System (ADS)
Krawczyk, Małgorzata J.
2015-07-01
Two aspects of fractal networks are considered: the community structure and the class structure, where classes of nodes appear as a consequence of a local symmetry of nodes. The analyzed systems are the networks constructed for two selected symmetric fractals: the Sierpinski triangle and the Koch curve. Communities are searched for by means of a set of differential equations. Overlapping nodes which belong to two different communities are identified by adding some noise to the initial connectivity matrix. Then, a node can be characterized by a spectrum of probabilities of belonging to different communities. Our main goal is that the overlapping nodes with the same spectra belong to the same class.
The embedded operating system project
NASA Technical Reports Server (NTRS)
Campbell, R. H.
1984-01-01
This progress report describes research towards the design and construction of embedded operating systems for real-time advanced aerospace applications. The applications concerned require reliable operating system support that must accommodate networks of computers. The report addresses the problems of constructing such operating systems, the communications media, reconfiguration, consistency and recovery in a distributed system, and the issues of realtime processing. A discussion is included on suitable theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based systems. In particular, this report addresses: atomic actions, fault tolerance, operating system structure, program development, reliability and availability, and networking issues. This document reports the status of various experiments designed and conducted to investigate embedded operating system design issues.
NASA Astrophysics Data System (ADS)
Ghaderi, A. H.; Darooneh, A. H.
The behavior of nonlinear systems can be analyzed by artificial neural networks. Air temperature change is one example of the nonlinear systems. In this work, a new neural network method is proposed for forecasting maximum air temperature in two cities. In this method, the regular graph concept is used to construct some partially connected neural networks that have regular structures. The learning results of fully connected ANN and networks with proposed method are compared. In some case, the proposed method has the better result than conventional ANN. After specifying the best network, the effect of input pattern numbers on the prediction is studied and the results show that the increase of input patterns has a direct effect on the prediction accuracy.
Social networks of patients with chronic skin lesions: nursing care.
Bandeira, Luciana Alves; Santos, Maxuel Cruz Dos; Duarte, Êrica Rosalba Mallmann; Bandeira, Andrea Gonçalves; Riquinho, Deise Lisboa; Vieira, Letícia Becker
2018-01-01
To describe the social networks of patients with chronic skin damages. A qualitative study conducted through semi-structured interviews with nine subjects with chronic skin lesions from June 2016 to March 2017; we used the theoretical-methodological framework of Lia Sanicola's Social Network. The analysis of the relational maps revealed that the primary network was formed mainly by relatives and neighbors; its characteristics, such as: reduced size, low density and few exchanges/relationships, configures fragility in these links. The secondary network was essentially described by health services, and the nurse was cited as a linker in the therapeutic process. Faced with the fragility of the links and social isolation, the primary health care professionals are fundamental foundations for the construction of networks of social support and care for patients with chronic skin lesions.
Yenilmez, Firdes; Düzgün, Sebnem; Aksoy, Aysegül
2015-01-01
In this study, kernel density estimation (KDE) was coupled with ordinary two-dimensional kriging (OK) to reduce the number of sampling locations in measurement and kriging of dissolved oxygen (DO) concentrations in Porsuk Dam Reservoir (PDR). Conservation of the spatial correlation structure in the DO distribution was a target. KDE was used as a tool to aid in identification of the sampling locations that would be removed from the sampling network in order to decrease the total number of samples. Accordingly, several networks were generated in which sampling locations were reduced from 65 to 10 in increments of 4 or 5 points at a time based on kernel density maps. DO variograms were constructed, and DO values in PDR were kriged. Performance of the networks in DO estimations were evaluated through various error metrics, standard error maps (SEM), and whether the spatial correlation structure was conserved or not. Results indicated that smaller number of sampling points resulted in loss of information in regard to spatial correlation structure in DO. The minimum representative sampling points for PDR was 35. Efficacy of the sampling location selection method was tested against the networks generated by experts. It was shown that the evaluation approach proposed in this study provided a better sampling network design in which the spatial correlation structure of DO was sustained for kriging.
a New Dynamic Community Model for Social Networks
NASA Astrophysics Data System (ADS)
Lu, Zhe-Ming; Wu, Zhen; Guo, Shi-Ze; Chen, Zhe; Song, Guang-Hua
2014-09-01
In this paper, based on the phenomenon that individuals join into and jump from the organizations in the society, we propose a dynamic community model to construct social networks. Two parameters are adopted in our model, one is the communication rate Pa that denotes the connection strength in the organization and the other is the turnover rate Pb, that stands for the frequency of jumping among the organizations. Based on simulations, we analyze not only the degree distribution, the clustering coefficient, the average distance and the network diameter but also the group distribution which is closely related to their community structure. Moreover, we discover that the networks generated by the proposed model possess the small-world property and can well reproduce the networks of social contacts.
Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.
An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao
2017-07-25
Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.
Agnew, Douglas W.; Gembicky, Milan; Moore, Curtis E.; ...
2016-11-01
Here, the preparation of 3D and 2D Cu(I) coordination networks using ditopic m-terphenyl isocyanides is described. The incorporation of sterically encumbering substituents enables the controlled, solid-state preparation of Cu(I) tris-isocyanide nodes with a labile solvent ligand in a manner mirroring solution-phase chemistry of monomeric complexes. The protection afforded by the m-terphenyl groups is also shown to engender significant stability towards heat as well as acidic or basic conditions, resulting in robust single-metal-node networks that can transition from 3D to 2D extended structures.
Mapping the semantic structure of cognitive neuroscience.
Beam, Elizabeth; Appelbaum, L Gregory; Jack, Jordynn; Moody, James; Huettel, Scott A
2014-09-01
Cognitive neuroscience, as a discipline, links the biological systems studied by neuroscience to the processing constructs studied by psychology. By mapping these relations throughout the literature of cognitive neuroscience, we visualize the semantic structure of the discipline and point to directions for future research that will advance its integrative goal. For this purpose, network text analyses were applied to an exhaustive corpus of abstracts collected from five major journals over a 30-month period, including every study that used fMRI to investigate psychological processes. From this, we generate network maps that illustrate the relationships among psychological and anatomical terms, along with centrality statistics that guide inferences about network structure. Three terms--prefrontal cortex, amygdala, and anterior cingulate cortex--dominate the network structure with their high frequency in the literature and the density of their connections with other neuroanatomical terms. From network statistics, we identify terms that are understudied compared with their importance in the network (e.g., insula and thalamus), are underspecified in the language of the discipline (e.g., terms associated with executive function), or are imperfectly integrated with other concepts (e.g., subdisciplines like decision neuroscience that are disconnected from the main network). Taking these results as the basis for prescriptive recommendations, we conclude that semantic analyses provide useful guidance for cognitive neuroscience as a discipline, both by illustrating systematic biases in the conduct and presentation of research and by identifying directions that may be most productive for future research.
Structure, function, and control of the human musculoskeletal network
Murphy, Andrew C.; Muldoon, Sarah F.; Baker, David; Lastowka, Adam; Bennett, Brittany; Yang, Muzhi
2018-01-01
The human body is a complex organism, the gross mechanical properties of which are enabled by an interconnected musculoskeletal network controlled by the nervous system. The nature of musculoskeletal interconnection facilitates stability, voluntary movement, and robustness to injury. However, a fundamental understanding of this network and its control by neural systems has remained elusive. Here we address this gap in knowledge by utilizing medical databases and mathematical modeling to reveal the organizational structure, predicted function, and neural control of the musculoskeletal system. We constructed a highly simplified whole-body musculoskeletal network in which single muscles connect to multiple bones via both origin and insertion points. We demonstrated that, using this simplified model, a muscle’s role in this network could offer a theoretical prediction of the susceptibility of surrounding components to secondary injury. Finally, we illustrated that sets of muscles cluster into network communities that mimic the organization of control modules in primary motor cortex. This novel formalism for describing interactions between the muscular and skeletal systems serves as a foundation to develop and test therapeutic responses to injury, inspiring future advances in clinical treatments. PMID:29346370
NASA Astrophysics Data System (ADS)
QingJie, Wei; WenBin, Wang
2017-06-01
In this paper, the image retrieval using deep convolutional neural network combined with regularization and PRelu activation function is studied, and improves image retrieval accuracy. Deep convolutional neural network can not only simulate the process of human brain to receive and transmit information, but also contains a convolution operation, which is very suitable for processing images. Using deep convolutional neural network is better than direct extraction of image visual features for image retrieval. However, the structure of deep convolutional neural network is complex, and it is easy to over-fitting and reduces the accuracy of image retrieval. In this paper, we combine L1 regularization and PRelu activation function to construct a deep convolutional neural network to prevent over-fitting of the network and improve the accuracy of image retrieval
"Time-dependent flow-networks"
NASA Astrophysics Data System (ADS)
Tupikina, Liubov; Molkentin, Nora; Lopez, Cristobal; Hernandez-Garcia, Emilio; Marwan, Norbert; Kurths, Jürgen
2015-04-01
Complex networks have been successfully applied to various systems such as society, technology, and recently climate. Links in a climate network are defined between two geographical locations if the correlation between the time series of some climate variable is higher than a threshold. Therefore, network links are considered to imply information or heat exchange. However, the relationship between the oceanic and atmospheric flows and the climate network's structure is still unclear. Recently, a theoretical approach verifying the correlation between ocean currents and surface air temperature networks has been introduced, where the Pearson correlation networks were constructed from advection-diffusion dynamics on an underlying flow. Since the continuous approach has its limitations, i.e. high computational complexity and fixed variety of the flows in the underlying system, we introduce a new, method of flow-networks for changing in time velocity fields including external forcing in the system, noise and temperature-decay. Method of the flow-network construction can be divided into several steps: first we obtain the linear recursive equation for the temperature time-series. Then we compute the correlation matrix for time-series averaging the tensor product over all realizations of the noise, which we interpret as a weighted adjacency matrix of the flow-network and analyze using network measures. We apply the method to different types of moving flows with geographical relevance such as meandering flow. Analyzing the flow-networks using network measures we find that our approach can highlight zones of high velocity by degree and transition zones by betweenness, while the combination of these network measures can uncover how the flow propagates within time. Flow-networks can be powerful tool to understand the connection between system's dynamics and network's topology analyzed using network measures in order to shed light on different climatic phenomena.
Ecological consequences of colony structure in dynamic ant nest networks.
Ellis, Samuel; Franks, Daniel W; Robinson, Elva J H
2017-02-01
Access to resources depends on an individual's position within the environment. This is particularly important to animals that invest heavily in nest construction, such as social insects. Many ant species have a polydomous nesting strategy: a single colony inhabits several spatially separated nests, often exchanging resources between the nests. Different nests in a polydomous colony potentially have differential access to resources, but the ecological consequences of this are unclear. In this study, we investigate how nest survival and budding in polydomous wood ant ( Formica lugubris ) colonies are affected by being part of a multi-nest system. Using field data and novel analytical approaches combining survival models with dynamic network analysis, we show that the survival and budding of nests within a polydomous colony are affected by their position in the nest network structure. Specifically, we find that the flow of resources through a nest, which is based on its position within the wider nest network, determines a nest's likelihood of surviving and of founding new nests. Our results highlight how apparently disparate entities in a biological system can be integrated into a functional ecological unit. We also demonstrate how position within a dynamic network structure can have important ecological consequences.
Ecological Network Analysis for a Low-Carbon and High-Tech Industrial Park
Lu, Yi; Su, Meirong; Liu, Gengyuan; Chen, Bin; Zhou, Shiyi; Jiang, Meiming
2012-01-01
Industrial sector is one of the indispensable contributors in global warming. Even if the occurrence of ecoindustrial parks (EIPs) seems to be a good improvement in saving ecological crises, there is still a lack of definitional clarity and in-depth researches on low-carbon industrial parks. In order to reveal the processes of carbon metabolism in a low-carbon high-tech industrial park, we selected Beijing Development Area (BDA) International Business Park in Beijing, China as case study, establishing a seven-compartment- model low-carbon metabolic network based on the methodology of Ecological Network Analysis (ENA). Integrating the Network Utility Analysis (NUA), Network Control Analysis (NCA), and system-wide indicators, we compartmentalized system sectors into ecological structure and analyzed dependence and control degree based on carbon metabolism. The results suggest that indirect flows reveal more mutuality and exploitation relation between system compartments and they are prone to positive sides for the stability of the whole system. The ecological structure develops well as an approximate pyramidal structure, and the carbon metabolism of BDA proves self-mutualistic and sustainable. Construction and waste management were found to be two active sectors impacting carbon metabolism, which was mainly regulated by internal and external environment. PMID:23365516
2008-02-01
FINAL ENVIRONMENTAL ASSESSMENT February 2008 Malmstrom ® AFB WIDE AREA COVERAGE CONSTRUCT LAND MOBILE NETWORK COMMUNICATIONS INFRASTRUCTURE...Wide Area Coverage Construct Land Mobile Network Communications Infrastructure Malmstrom Air Force Base, Montana 5a. CONTRACT NUMBER 5b. GRANT...SIGNIFICANT IMPACT WIDE AREA COVERAGE CONSTRUCT LAND MOBILE NETWORK COMMUNICATIONS INFRASTRUCTURE MALMSTROM AIR FORCE BASE, MONTANA The
Evolution of network architecture in a granular material under compression
NASA Astrophysics Data System (ADS)
Papadopoulos, Lia; Puckett, James G.; Daniels, Karen E.; Bassett, Danielle S.
2016-09-01
As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying the progression of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and interparticle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the changes in this structure throughout the compression process. We separately consider the network of normal and tangential forces, and find that they display a different progression throughout compression. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be achieved by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than a purely local measure of interparticle forces alone. The results discussed throughout this study suggest that these network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup.
Temporal evolution of the spatial covariability of rainfall in South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja
2017-10-01
The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.
QuateXelero: An Accelerated Exact Network Motif Detection Algorithm
Khakabimamaghani, Sahand; Sharafuddin, Iman; Dichter, Norbert; Koch, Ina; Masoudi-Nejad, Ali
2013-01-01
Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain more knowledge about these networks’ structure and function. However, this task is very computationally demanding, because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the algorithm from scratch based on the input network. PMID:23874498
Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography
Liu, Yaou; Duan, Yunyun; Li, Kuncheng
2015-01-01
The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535
Madore, Kevin P.; Szpunar, Karl K.; Addis, Donna Rose; Schacter, Daniel L.
2016-01-01
Recent behavioral work suggests that an episodic specificity induction—brief training in recollecting the details of a past experience—enhances performance on subsequent tasks that rely on episodic retrieval, including imagining future experiences, solving open-ended problems, and thinking creatively. Despite these far-reaching behavioral effects, nothing is known about the neural processes impacted by an episodic specificity induction. Related neuroimaging work has linked episodic retrieval with a core network of brain regions that supports imagining future experiences. We tested the hypothesis that key structures in this network are influenced by the specificity induction. Participants received the specificity induction or one of two control inductions and then generated future events and semantic object comparisons during fMRI scanning. After receiving the specificity induction compared with the control, participants exhibited significantly more activity in several core network regions during the construction of imagined events over object comparisons, including the left anterior hippocampus, right inferior parietal lobule, right posterior cingulate cortex, and right ventral precuneus. Induction-related differences in the episodic detail of imagined events significantly modulated induction-related differences in the construction of imagined events in the left anterior hippocampus and right inferior parietal lobule. Resting-state functional connectivity analyses with hippocampal and inferior parietal lobule seed regions and the rest of the brain also revealed significantly stronger core network coupling following the specificity induction compared with the control. These findings provide evidence that an episodic specificity induction selectively targets episodic processes that are commonly linked to key core network regions, including the hippocampus. PMID:27601666
A hybrid linear/nonlinear training algorithm for feedforward neural networks.
McLoone, S; Brown, M D; Irwin, G; Lightbody, A
1998-01-01
This paper presents a new hybrid optimization strategy for training feedforward neural networks. The algorithm combines gradient-based optimization of nonlinear weights with singular value decomposition (SVD) computation of linear weights in one integrated routine. It is described for the multilayer perceptron (MLP) and radial basis function (RBF) networks and then extended to the local model network (LMN), a new feedforward structure in which a global nonlinear model is constructed from a set of locally valid submodels. Simulation results are presented demonstrating the superiority of the new hybrid training scheme compared to second-order gradient methods. It is particularly effective for the LMN architecture where the linear to nonlinear parameter ratio is large.
Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations
Beleva Guthrie, Violeta; Masica, David L; Fraser, Andrew; Federico, Joseph; Fan, Yunfan; Camps, Manel; Karchin, Rachel
2018-01-01
Abstract The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure. PMID:29522102
Thermodynamic characterization of networks using graph polynomials
NASA Astrophysics Data System (ADS)
Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.
2015-09-01
In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.
Opinion formation and distribution in a bounded-confidence model on various networks
NASA Astrophysics Data System (ADS)
Meng, X. Flora; Van Gorder, Robert A.; Porter, Mason A.
2018-02-01
In the social, behavioral, and economic sciences, it is important to predict which individual opinions eventually dominate in a large population, whether there will be a consensus, and how long it takes for a consensus to form. Such ideas have been studied heavily both in physics and in other disciplines, and the answers depend strongly both on how one models opinions and on the network structure on which opinions evolve. One model that was created to study consensus formation quantitatively is the Deffuant model, in which the opinion distribution of a population evolves via sequential random pairwise encounters. To consider heterogeneity of interactions in a population along with social influence, we study the Deffuant model on various network structures (deterministic synthetic networks, random synthetic networks, and social networks constructed from Facebook data). We numerically simulate the Deffuant model and conduct regression analyses to investigate the dependence of the time to reach steady states on various model parameters, including a confidence bound for opinion updates, the number of participating entities, and their willingness to compromise. We find that network structure and parameter values both have important effects on the convergence time and the number of steady-state opinion groups. For some network architectures, we observe that the relationship between the convergence time and model parameters undergoes a transition at a critical value of the confidence bound. For some networks, the steady-state opinion distribution also changes from consensus to multiple opinion groups at this critical value.
Process-based network decomposition reveals backbone motif structure
Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen
2010-01-01
A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated). PMID:20498084
NASA Astrophysics Data System (ADS)
Lee, Yujin; You, Eun-Ah; Ha, Young-Geun
2018-07-01
Despite the considerable demand for bioinspired superhydrophobic surfaces with highly transparent, self-cleaning, and self-healable properties, a facile and scalable fabrication method for multifunctional superhydrophobic films with strong chemical networks has rarely been established. Here, we report a rationally designed facile one-step construction of covalently networked, transparent, self-cleaning, and self-healable superhydrophobic films via a one-step preparation and single-reaction process of multi-components. As coating materials for achieving the one-step fabrication of multifunctional superhydrophobic films, we included two different sizes of Al2O3 nanoparticles for hierarchical micro/nano dual-scale structures and transparent films, fluoroalkylsilane for both low surface energy and covalent binding functions, and aluminum nitrate for aluminum oxide networked films. On the basis of stability tests for the robust film composition, the optimized, covalently linked superhydrophobic composite films with a high water contact angle (>160°) and low sliding angle (<1°) showed excellent thermal stability (up to 400 °C), transparency (≈80%), self-healing, self-cleaning, and waterproof abilities. Therefore, the rationally designed, covalently networked superhydrophobic composite films, fabricated via a one-step solution-based process, can be further utilized for various optical and optoelectronic applications.
Alanis-Lobato, Gregorio
2015-01-01
High-throughput detection of protein interactions has had a major impact in our understanding of the intricate molecular machinery underlying the living cell, and has permitted the construction of very large protein interactomes. The protein networks that are currently available are incomplete and a significant percentage of their interactions are false positives. Fortunately, the structural properties observed in good quality social or technological networks are also present in biological systems. This has encouraged the development of tools, to improve the reliability of protein networks and predict new interactions based merely on the topological characteristics of their components. Since diseases are rarely caused by the malfunction of a single protein, having a more complete and reliable interactome is crucial in order to identify groups of inter-related proteins involved in disease etiology. These system components can then be targeted with minimal collateral damage. In this article, an important number of network mining tools is reviewed, together with resources from which reliable protein interactomes can be constructed. In addition to the review, a few representative examples of how molecular and clinical data can be integrated to deepen our understanding of pathogenesis are discussed.
Evaluating structural connectomics in relation to different Q-space sampling techniques.
Rodrigues, Paulo; Prats-Galino, Alberto; Gallardo-Pujol, David; Villoslada, Pablo; Falcon, Carles; Prckovska, Vesna
2013-01-01
Brain networks are becoming forefront research in neuroscience. Network-based analysis on the functional and structural connectomes can lead to powerful imaging markers for brain diseases. However, constructing the structural connectome can be based upon different acquisition and reconstruction techniques whose information content and mutual differences has not yet been properly studied in a unified framework. The variations of the structural connectome if not properly understood can lead to dangerous conclusions when performing these type of studies. In this work we present evaluation of the structural connectome by analysing and comparing graph-based measures on real data acquired by the three most important Diffusion Weighted Imaging techniques: DTI, HARDI and DSI. We thus come to several important conclusions demonstrating that even though the different techniques demonstrate differences in the anatomy of the reconstructed fibers the respective connectomes show variations of 20%.
Developmental changes in organization of structural brain networks.
Khundrakpam, Budhachandra S; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C
2013-09-01
Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.
Nanocarbon networks for advanced rechargeable lithium batteries.
Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun
2012-10-16
Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting network for alloy anodes, such as Si and Ge, to accelerate electron transport, alleviate volume change, and prevent the agglomeration of active nanoparticles. Finally, we describe the power of nanocarbon networks for the next generation rechargeable lithium batteries, including Li-S, Li-O(2), and Li-organic batteries, and provide insights into the design of ideal nanocarbon networks for these devices. In addition, we address the ways in which nanocarbon networks can expand the applications of rechargeable lithium batteries into the emerging fields of stationary energy storage and transportation.
Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites.
Tan, Wei; Twomey, John; Guo, Dongjie; Madhavan, Krishna; Li, Min
2010-06-01
Collagen I is an essential structural and mechanical building block of various tissues, and it is often used as tissue-engineering scaffolds. However, collagen-based constructs reconstituted in vitro often lacks robust fiber structure, mechanical stability, and molecule binding capability. To enhance these performances, the present study developed 3-D collagen-nanotube composite constructs with two types of functionalized carbon nanotubes, carboxylated nanotubes and covalently functionalized nanotubes (CFNTs). The influences of nanotube functionalization and loading concentration on the collagen fiber structure, mechanical property, biocompatibility, and molecule binding were examined. Results revealed that surface modification and loading concentration of nanotubes determined the interactions between nanotubes and collagen fibrils, thus altering the structure and property of nanotube-collagen composites. Scanning electron microscopy and confocal microscopy revealed that the incorporation of CFNT in collagen-based constructs was an effective means of restructuring collagen fibrils because CFNT strongly bound to collagen molecules inducing the formation of larger fibril bundles. However, increased nanotube loading concentration caused the formation of denser fibril network and larger aggregates. Static stress-strain tests under compression showed that the addition of nanotube into collagen-based constructs did not significantly increase static compressive moduli. Creep/recovery testing under compression revealed that CFNT-collagen constructs showed improved mechanical stability under continuous loading. Testing with endothelial cells showed that biocompatibility was highly dependent on nanotube loading concentration. At a low loading level, CFNT-collagen showed higher endothelial coverage than the other tested constructs or materials. Additionally, CFNT-collagen showed capability of binding to other biomolecules to enhance the construct functionality. In conclusion, functionalized nanotube-collagen composites, particularly CFNT-collagen composites, could be promising materials, which provide structural support showing bundled fibril structure, biocompatibility, multifunctionality, and mechanical stability, but rigorous control over chemical modification, loading concentration, and nanotube dispersion are needed.
Self-organized topology of recurrence-based complex networks
NASA Astrophysics Data System (ADS)
Yang, Hui; Liu, Gang
2013-12-01
With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.
Self-organized topology of recurrence-based complex networks.
Yang, Hui; Liu, Gang
2013-12-01
With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.
Self-organized topology of recurrence-based complex networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hui, E-mail: huiyang@usf.edu; Liu, Gang
With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article ismore » to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.« less
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inferring general relations between network characteristics from specific network ensembles.
Cardanobile, Stefano; Pernice, Volker; Deger, Moritz; Rotter, Stefan
2012-01-01
Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their ability to generate networks with large structural variability. In particular, we consider the statistical constraints which the respective construction scheme imposes on the generated networks. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This makes it possible to infer global features from local ones using regression models trained on networks with high generalization power. Our results confirm and extend previous findings regarding the synchronization properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks in good approximation. Finally, we demonstrate on three different data sets (C. elegans neuronal network, R. prowazekii metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models.
Ugulu, Ilker; Aydin, Halil
2016-01-01
We propose an approach to clustering and visualization of students' cognitive structural models. We use the self-organizing map (SOM) combined with Ward's clustering to conduct cluster analysis. In the study carried out on 100 subjects, a conceptual understanding test consisting of open-ended questions was used as a data collection tool. The results of analyses indicated that students constructed the aliveness concept by associating it predominantly with human. Motion appeared as the most frequently associated term with the aliveness concept. The results suggest that the aliveness concept has been constructed using anthropocentric and animistic cognitive structures. In the next step, we used the data obtained from the conceptual understanding test for training the SOM. Consequently, we propose a visualization method about cognitive structure of the aliveness concept. PMID:26819579
Driving the brain towards creativity and intelligence: A network control theory analysis.
Kenett, Yoed N; Medaglia, John D; Beaty, Roger E; Chen, Qunlin; Betzel, Richard F; Thompson-Schill, Sharon L; Qiu, Jiang
2018-01-04
High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, including cognitive control processes. Recent neurocognitive research on these constructs highlight the importance of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control contributes to creativity and intelligence? To address this question, we apply a computational network control theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that intelligence is related to the ability to "drive" the brain system into easy to reach neural states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also find that creativity is related to the ability to "drive" the brain system into difficult to reach states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas. Furthermore, we found that different facets of creativity-fluency, flexibility, and originality-relate to generally similar but not identical network controllability processes. We relate our findings to general theories on intelligence and creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Ming-Xia; Jiang, Zhi-Qiang; Xie, Wen-Jie; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing
2015-02-01
Traders develop and adopt different trading strategies attempting to maximize their profits in financial markets. These trading strategies not only result in specific topological structures in trading networks, which connect the traders with the pairwise buy-sell relationships, but also have potential impacts on market dynamics. Here, we present a detailed analysis on how the market behaviors are correlated with the structures of traders in trading networks based on audit trail data for the Baosteel stock and its warrant at the transaction level from 22 August 2005 to 23 August 2006. In our investigation, we divide each trade day into 48 rolling time windows with a length of 5 min, construct a trading network within each window, and obtain a time series of over 11,600 trading networks. We find that there are strongly simultaneous correlations between the topological metrics (including network centralization, assortative index, and average path length) of trading networks that characterize the patterns of order execution and the financial variables (including return, volatility, intertrade duration, and trading volume) for the stock and its warrant. Our analysis may shed new lights on how the microscopic interactions between elements within complex system affect the system's performance.
AST: Activity-Security-Trust driven modeling of time varying networks.
Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen
2016-02-18
Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents' interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes.
Ding, Fan; Zhang, Qianru; Ung, Carolina Oi Lam; Wang, Yitao; Han, Yifan; Hu, Yuanjia; Qi, Jin
2015-01-01
As a complex system, the complicated interactions between chemical ingredients, as well as the potential rules of interactive associations among chemical ingredients of traditional Chinese herbal formulae are not yet fully understood by modern science. On the other hand, network analysis is emerging as a powerful approach focusing on processing complex interactive data. By employing network approach in selected Chinese herbal formulae for the treatment of coronary heart disease (CHD), this article aims to construct and analyze chemical ingredients network of herbal formulae, and provide candidate herbs, chemical constituents, and ingredient groups for further investigation. As a result, chemical ingredients network composed of 1588 ingredients from 36 herbs used in 8 core formulae for the treatment of CHD was produced based on combination associations in herbal formulae. In this network, 9 communities with relative dense internal connections are significantly associated with 14 kinds of chemical structures with P<0.001. Moreover, chemical structural fingerprints of network communities were detected, while specific centralities of chemical ingredients indicating different levels of importance in the network were also measured. Finally, several distinct herbs, chemical ingredients, and ingredient groups with essential position in the network or high centrality value are recommended for further pharmacology study in the context of new drug development. PMID:25658855
Brain Anatomical Network and Intelligence
Li, Jun; Qin, Wen; Li, Kuncheng; Yu, Chunshui; Jiang, Tianzi
2009-01-01
Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. PMID:19492086
Coupling effects on turning points of infectious diseases epidemics in scale-free networks.
Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung
2017-05-31
Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.
Ding, Junhua; Chen, Keliang; Zhang, Weibin; Li, Ming; Chen, Yan; Yang, Qing; Lv, Yingru; Guo, Qihao; Han, Zaizhu
2017-01-01
Semantic dementia (SD) is characterized by a selective decline in semantic processing. Although the neuropsychological pattern of this disease has been identified, its topological global alterations and symptom-relevant modules in the whole-brain anatomical network have not been fully elucidated. This study aims to explore the topological alteration of anatomical network in SD and reveal the modules associated with semantic deficits in this disease. We first constructed the whole-brain white-matter networks of 20 healthy controls and 19 patients with SD. Then, the network metrics of graph theory were compared between these two groups. Finally, we separated the network of SD patients into different modules and correlated the structural integrity of each module with the severity of the semantic deficits across patients. The network of the SD patients presented a significantly reduced global efficiency, indicating that the long-distance connections were damaged. The network was divided into the following four distinctive modules: the left temporal/occipital/parietal, frontal, right temporal/occipital, and frontal/parietal modules. The first two modules were associated with the semantic deficits of SD. These findings illustrate the skeleton of the neuroanatomical network of SD patients and highlight the key role of the left temporal/occipital/parietal module and the left frontal module in semantic processing.
Learning multivariate distributions by competitive assembly of marginals.
Sánchez-Vega, Francisco; Younes, Laurent; Geman, Donald
2013-02-01
We present a new framework for learning high-dimensional multivariate probability distributions from estimated marginals. The approach is motivated by compositional models and Bayesian networks, and designed to adapt to small sample sizes. We start with a large, overlapping set of elementary statistical building blocks, or "primitives," which are low-dimensional marginal distributions learned from data. Each variable may appear in many primitives. Subsets of primitives are combined in a Lego-like fashion to construct a probabilistic graphical model; only a small fraction of the primitives will participate in any valid construction. Since primitives can be precomputed, parameter estimation and structure search are separated. Model complexity is controlled by strong biases; we adapt the primitives to the amount of training data and impose rules which restrict the merging of them into allowable compositions. The likelihood of the data decomposes into a sum of local gains, one for each primitive in the final structure. We focus on a specific subclass of networks which are binary forests. Structure optimization corresponds to an integer linear program and the maximizing composition can be computed for reasonably large numbers of variables. Performance is evaluated using both synthetic data and real datasets from natural language processing and computational biology.
NASA Astrophysics Data System (ADS)
Kómár, P.; Kessler, E. M.; Bishof, M.; Jiang, L.; Sørensen, A. S.; Ye, J.; Lukin, M. D.
2014-08-01
The development of precise atomic clocks plays an increasingly important role in modern society. Shared timing information constitutes a key resource for navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System. By combining precision metrology and quantum networks, we propose a quantum, cooperative protocol for operating a network of geographically remote optical atomic clocks. Using nonlocal entangled states, we demonstrate an optimal utilization of global resources, and show that such a network can be operated near the fundamental precision limit set by quantum theory. Furthermore, the internal structure of the network, combined with quantum communication techniques, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy.
Complex network approach to classifying classical piano compositions
NASA Astrophysics Data System (ADS)
Xin, Chen; Zhang, Huishu; Huang, Jiping
2016-10-01
Complex network has been regarded as a useful tool handling systems with vague interactions. Hence, numerous applications have arised. In this paper we construct complex networks for 770 classical piano compositions of Mozart, Beethoven and Chopin based on musical note pitches and lengths. We find prominent distinctions among network edges of different composers. Some stylized facts can be explained by such parameters of network structures and topologies. Further, we propose two classification methods for music styles and genres according to the discovered distinctions. These methods are easy to implement and the results are sound. This work suggests that complex network could be a decent way to analyze the characteristics of musical notes, since it could provide a deep view into understanding of the relationships among notes in musical compositions and evidence for classification of different composers, styles and genres of music.
Distributed Hypothesis Testing in Distributed Sensor Networks
1984-07-01
single structure(, object Is Itself an important task in many applica- tions. At least at he conceptual level, there is no dlffculty in treating targets...First, we need to provide a modeling framwork within which the models of the various nodes, constructed as discussed above, can be embedded. It is within
2004-05-01
grounded in structuration theory (Giddens, 1984), social information processing theory (Salancik and Pfeffer, 1978) and symbolic interactionism (Manis...and B. N. Meltzer. Symbolic interaction: A reader in social psychology. Boston: Allyn & Bacon. 1978 Mcpherson, J. M. and L. Smith-Lovin
Carbon nanotube-templated assembly of regioregular poly(3-alkylthiophene) in solution
NASA Astrophysics Data System (ADS)
Zhu, Jiahua; Stevens, Eric; He, Youjun; Hong, Kunlun; Ivanov, Ilia
2016-09-01
Control of structural heterogeneity by rationally encoding of the molecular assemblies is a key enabling design of hierarchical, multifunctional materials of the future. Here we report the strategies to gain such control using solution- based assembly to construct a hybrid nano-assembly and a network hybrid structure of regioregular poly(3- alkylthiophene) - carbon nanotube (P3AT-CNT). The opto-electronic performance of conjugated polymer (P3AT) is defined by the structure of the aggregate in solution and in the solid film. Control of P3AT aggregation would allow formation of broad range of morphologies with very distinct electro-optical. We utilize interactive templating to confine the assembly behavior of conjugated polymers, replacing poorly controlled solution processing approach. Perfect crystalline surface of the single-walled and multi-walled carbon nanotube (SWCNT/MWCNT) acts as a template, seeding P3AT aggregation of the surface of the nanotube. The seed continues directional growth through pi-pi stacking leading to the formation of to well-defined P3AT-CNT morphologies, including comb-like nano-assemblies, super- structures and gel networks. Interconnected, highly-branched network structure of P3AT-CNT hybrids is of particular interest to enable efficient, long-range, balanced charge carrier transport. The structure and opto-electionic function of the intermediate assemblies and networks of P3AT/CNT hybrids are characterized by transmission election microscopy and UV-vis absorption.
The Regional Structure of Technical Innovation
NASA Astrophysics Data System (ADS)
O'Neale, Dion
2014-03-01
There is strong evidence that the productivity per capita of cities and regions increases with population. One likely explanation for this phenomenon is that densely populated regions bring together otherwise unlikely combinations of individuals and organisations with diverse, specialised capabilities, leading to increased innovation and productivity. We have used the REGPAT patent database to construct a bipartite network of geographic regions and the patent classes for which those regions display a revealed comparative advantage. By analysing this network, we can infer relationships between different types of patent classes - and hence the structure of (patentable) technology. The network also provides a novel perspective for studying the combinations of technical capabilities in different geographic regions. We investigate measures such as the diversity and ubiquity of innovations within regions and find that diversity (resp. ubiquity) is positively (resp. negatively) correlated with population. We also find evidence of a nested structure for technical innovation. That is, specialised innovations tend to occur only when other more general innovations are already present.
NASA Astrophysics Data System (ADS)
Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood
2015-10-01
Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.
Project Report: Design and Analysis for the Deep Space Network BWG Type 2 Antenna Feed Platform
NASA Technical Reports Server (NTRS)
Crawford, Andrew
2011-01-01
The following report explains in detail the solid modeling design process and structural analysis of the LNA (Low Noise Amplifier) feed platform to be constructed and installed on the new BWG (Beam Wave Guide) Type-2 tracking antenna in Canberra, Australia, as well as all future similar BWG Type-2 antennas builds. The Deep Space Networks new BWG Type-2 antennas use beam waveguides to funnel and 'extract' the desired signals received from spacecraft, and the feed platform supports and houses the LNA(Low Noise Amplifier) feed-cone and cryogenic cooling equipment used in the signal transmission and receiving process. The mandated design and construction of this platform to be installed on the new tracking antenna will be used and incorporated on all future similar antenna builds.
Terai, Asuka; Nakagawa, Masanori
2007-08-01
The purpose of this paper is to construct a model that represents the human process of understanding metaphors, focusing specifically on similes of the form an "A like B". Generally speaking, human beings are able to generate and understand many sorts of metaphors. This study constructs the model based on a probabilistic knowledge structure for concepts which is computed from a statistical analysis of a large-scale corpus. Consequently, this model is able to cover the many kinds of metaphors that human beings can generate. Moreover, the model implements the dynamic process of metaphor understanding by using a neural network with dynamic interactions. Finally, the validity of the model is confirmed by comparing model simulations with the results from a psychological experiment.
NASA Astrophysics Data System (ADS)
Komar, Peter; Kessler, Eric; Bishof, Michael; Jiang, Liang; Sorensen, Anders; Ye, Jun; Lukin, Mikhail
2014-05-01
Shared timing information constitutes a key resource for positioning and navigation with a direct correspondence between timing accuracy and precision in applications such as the Global Positioning System (GPS). By combining precision metrology and quantum networks, we propose here a quantum, cooperative protocol for the operation of a network consisting of geographically remote optical atomic clocks. Using non-local entangled states, we demonstrate an optimal utilization of the global network resources, and show that such a network can be operated near the fundamental limit set by quantum theory yielding an ultra-precise clock signal. Furthermore, the internal structure of the network, combined with basic techniques from quantum communication, guarantees security both from internal and external threats. Realization of such a global quantum network of clocks may allow construction of a real-time single international time scale (world clock) with unprecedented stability and accuracy. See also: Komar et al. arXiv:1310.6045 (2013) and Kessler et al. arXiv:1310.6043 (2013).
Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario
2018-03-01
Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.
Grierson, Claire S.
2018-01-01
Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli. Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution. PMID:29670941
Pore network extraction from pore space images of various porous media systems
NASA Astrophysics Data System (ADS)
Yi, Zhixing; Lin, Mian; Jiang, Wenbin; Zhang, Zhaobin; Li, Haishan; Gao, Jian
2017-04-01
Pore network extraction, which is defined as the transformation from irregular pore space to a simplified network in the form of pores connected by throats, is significant to microstructure analysis and network modeling. A physically realistic pore network is not only a representation of the pore space in the sense of topology and morphology, but also a good tool for predicting transport properties accurately. We present a method to extract pore network by employing the centrally located medial axis to guide the construction of maximal-balls-like skeleton where the pores and throats are defined and parameterized. To validate our method, various rock samples including sand pack, sandstones, and carbonates were used to extract pore networks. The pore structures were compared quantitatively with the structures extracted by medial axis method or maximal ball method. The predicted absolute permeability and formation factor were verified against the theoretical solutions obtained by lattice Boltzmann method and finite volume method, respectively. The two-phase flow was simulated through the networks extracted from homogeneous sandstones, and the generated relative permeability curves were compared with the data obtained from experimental method and other numerical models. The results show that the accuracy of our network is higher than that of other networks for predicting transport properties, so the presented method is more reliable for extracting physically realistic pore network.
Dimond, Dennis; Ishaque, Abdullah; Chenji, Sneha; Mah, Dennell; Chen, Zhang; Seres, Peter; Beaulieu, Christian; Kalra, Sanjay
2017-03-01
Research in amyotrophic lateral sclerosis (ALS) suggests that executive dysfunction, a prevalent cognitive feature of the disease, is associated with abnormal structural connectivity and white matter integrity. In this exploratory study, we investigated the white matter constructs of executive dysfunction, and attempted to detect structural abnormalities specific to cognitively impaired ALS patients. Eighteen ALS patients and 22 age and education matched healthy controls underwent magnetic resonance imaging on a 4.7 Tesla scanner and completed neuropsychometric testing. ALS patients were categorized into ALS cognitively impaired (ALSci, n = 9) and ALS cognitively competent (ALScc, n = 5) groups. Tract-based spatial statistics and connectomics were used to compare white matter integrity and structural connectivity of ALSci and ALScc patients. Executive function performance was correlated with white matter FA and network metrics within the ALS group. Executive function performance in the ALS group correlated with global and local network properties, as well as FA, in regions throughout the brain, with a high predilection for the frontal lobe. ALSci patients displayed altered local connectivity and structural integrity in these same frontal regions that correlated with executive dysfunction. Our results suggest that executive dysfunction in ALS is related to frontal network disconnectivity, which potentially mediates domain-specific, or generalized cognitive impairment, depending on the degree of global network disruption. Furthermore, reported co-localization of decreased network connectivity and diminished white matter integrity suggests white matter pathology underlies this topological disruption. We conclude that executive dysfunction in ALSci is associated with frontal and global network disconnectivity, underlined by diminished white matter integrity. Hum Brain Mapp 38:1249-1268, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kossakowski, Jolanda J; Epskamp, Sacha; Kieffer, Jacobien M; van Borkulo, Claudia D; Rhemtulla, Mijke; Borsboom, Denny
2016-04-01
Health-Related Quality of Life (HRQoL) research has typically adopted either a formative approach, in which HRQoL is the common effect of its observables, or a reflective approach--defining HRQoL as a latent variable that determines observable characteristics of HRQoL. Both approaches, however, do not take into account the complex organization of these characteristics. The objective of this study was to introduce a new approach for analyzing HRQoL data, namely a network model (NM). An NM, as opposed to traditional research strategies, accounts for interactions among observables and offers a complementary analytic approach. We applied the NM to samples of Dutch cancer patients (N = 485) and Dutch healthy adults (N = 1742) who completed the 36-item Short Form Health Survey (SF-36). Networks were constructed for both samples separately and for a combined sample with diagnostic status added as an extra variable. We assessed the network structures and compared the structures of the two separate samples on the item and domain levels. The relative importance of individual items in the network structures was determined using centrality analyses. We found that the global structure of the SF-36 is dominant in all networks, supporting the validity of questionnaire's subscales. Furthermore, results suggest that the network structure of both samples was highly similar. Centrality analyses revealed that maintaining a daily routine despite one's physical health predicts HRQoL levels best. We concluded that the NM provides a fruitful alternative to classical approaches used in the psychometric analysis of HRQoL data.
Wen, Tzai-Hung; Chin, Wei Chien Benny
2015-04-14
Respiratory diseases mainly spread through interpersonal contact. Class suspension is the most direct strategy to prevent the spread of disease through elementary or secondary schools by blocking the contact network. However, as university students usually attend courses in different buildings, the daily contact patterns on a university campus are complicated, and once disease clusters have occurred, suspending classes is far from an efficient strategy to control disease spread. The purpose of this study is to propose a methodological framework for generating campus location networks from a routine administration database, analyzing the community structure of the network, and identifying the critical links and nodes for blocking respiratory disease transmission. The data comes from the student enrollment records of a major comprehensive university in Taiwan. We combined the social network analysis and spatial interaction model to establish a geo-referenced community structure among the classroom buildings. We also identified the critical links among the communities that were acting as contact bridges and explored the changes in the location network after the sequential removal of the high-risk buildings. Instead of conducting a questionnaire survey, the study established a standard procedure for constructing a location network on a large-scale campus from a routine curriculum database. We also present how a location network structure at a campus could function to target the high-risk buildings as the bridges connecting communities for blocking disease transmission.
A comparative analysis of the statistical properties of large mobile phone calling networks.
Li, Ming-Xia; Jiang, Zhi-Qiang; Xie, Wen-Jie; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N
2014-05-30
Mobile phone calling is one of the most widely used communication methods in modern society. The records of calls among mobile phone users provide us a valuable proxy for the understanding of human communication patterns embedded in social networks. Mobile phone users call each other forming a directed calling network. If only reciprocal calls are considered, we obtain an undirected mutual calling network. The preferential communication behavior between two connected users can be statistically tested and it results in two Bonferroni networks with statistically validated edges. We perform a comparative analysis of the statistical properties of these four networks, which are constructed from the calling records of more than nine million individuals in Shanghai over a period of 110 days. We find that these networks share many common structural properties and also exhibit idiosyncratic features when compared with previously studied large mobile calling networks. The empirical findings provide us an intriguing picture of a representative large social network that might shed new lights on the modelling of large social networks.
Global Efficiency of Structural Networks Mediates Cognitive Control in Mild Cognitive Impairment
Berlot, Rok; Metzler-Baddeley, Claudia; Ikram, M. Arfan; Jones, Derek K.; O’Sullivan, Michael J.
2016-01-01
Background: Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. Objective: To determine the contribution of both localized white matter tract damage and disruption of global network architecture to cognitive control, in older age and Mild Cognitive Impairment (MCI). Materials and Methods: Twenty-five patients with MCI and 20 age, sex, and intelligence-matched healthy volunteers were investigated with 3 Tesla structural magnetic resonance imaging (MRI). Cognitive control and episodic memory were evaluated with established tests. Structural network graphs were constructed from diffusion MRI-based whole-brain tractography. Their global measures were calculated using graph theory. Regression models utilized both global network metrics and microstructure of specific connections, known to be critical for each domain, to predict cognitive scores. Results: Global efficiency and the mean clustering coefficient of networks were reduced in MCI. Cognitive control was associated with global network topology. Episodic memory, in contrast, correlated with individual temporal tracts only. Relationships between cognitive control and network topology were attenuated by addition of single tract measures to regression models, consistent with a partial mediation effect. The mediation effect was stronger in MCI than healthy volunteers, explaining 23-36% of the effect of cingulum microstructure on cognitive control performance. Network clustering was a significant mediator in the relationship between tract microstructure and cognitive control in both groups. Conclusion: The status of critical connections and large-scale network topology are both important for maintenance of cognitive control in MCI. Mediation via large-scale networks is more important in patients with MCI than healthy volunteers. This effect is domain-specific, and true for cognitive control but not for episodic memory. Interventions to improve cognitive control will need to address both dysfunction of local circuitry and global network architecture to be maximally effective. PMID:28018208
McCabe, Collin M; Nunn, Charles L
2018-01-01
The transmission of infectious disease through a population is often modeled assuming that interactions occur randomly in groups, with all individuals potentially interacting with all other individuals at an equal rate. However, it is well known that pairs of individuals vary in their degree of contact. Here, we propose a measure to account for such heterogeneity: effective network size (ENS), which refers to the size of a maximally complete network (i.e., unstructured, where all individuals interact with all others equally) that corresponds to the outbreak characteristics of a given heterogeneous, structured network. We simulated susceptible-infected (SI) and susceptible-infected-recovered (SIR) models on maximally complete networks to produce idealized outbreak duration distributions for a disease on a network of a given size. We also simulated the transmission of these same diseases on random structured networks and then used the resulting outbreak duration distributions to predict the ENS for the group or population. We provide the methods to reproduce these analyses in a public R package, "enss." Outbreak durations of simulations on randomly structured networks were more variable than those on complete networks, but tended to have similar mean durations of disease spread. We then applied our novel metric to empirical primate networks taken from the literature and compared the information represented by our ENSs to that by other established social network metrics. In AICc model comparison frameworks, group size and mean distance proved to be the metrics most consistently associated with ENS for SI simulations, while group size, centralization, and modularity were most consistently associated with ENS for SIR simulations. In all cases, ENS was shown to be associated with at least two other independent metrics, supporting its use as a novel metric. Overall, our study provides a proof of concept for simulation-based approaches toward constructing metrics of ENS, while also revealing the conditions under which this approach is most promising.
Wu, Qiong; Gao, Yang; Liu, Ai-Shi; Xie, Li-Zhi; Qian, Long; Yang, Xiao-Guang
2018-01-01
To date, the most frequently reported neuroimaging biomarkers in Parkinson's disease (PD) are direct brain imaging measurements focusing on local disrupted regions. However, the notion that PD is related to abnormal functional and structural connectivity has received support in the past few years. Here, we employed graph theory to analyze the structural co-variance networks derived from 50 PD patients and 48 normal controls (NC). Then, the small world properties of brain networks were assessed in the structural networks that were constructed based on cortical volume data. Our results showed that both the PD and NC groups had a small world architecture in brain structural networks. However, the PD patients had a higher characteristic path length and clustering coefficients compared with the NC group. With regard to the nodal centrality, 11 regions, including 3 association cortices, 5 paralimbic cortices, and 3 subcortical regions were identified as hubs in the PD group. In contrast, 10 regions, including 7 association cortical regions, 2 paralimbic cortical regions, and the primary motor cortex region, were identified as hubs. Moreover, the regional centrality was profoundly affected in PD patients, including decreased nodal centrality in the right inferior occipital gyrus and the middle temporal gyrus and increased nodal centrality in the right amygdala, the left caudate and the superior temporal gyrus. In addition, the structural cortical network of PD showed reduced topological stability for targeted attacks. Together, this study shows that the coordinated patterns of cortical volume network are widely altered in PD patients with a decrease in the efficiency of parallel information processing. These changes provide structural evidence to support the concept that the core pathophysiology of PD is associated with disruptive alterations in the coordination of large-scale brain networks that underlie high-level cognition. Copyright © 2017. Published by Elsevier B.V.
Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali
2013-09-01
The research aims to develop global modeling tools capable of categorizing structurally diverse chemicals in various toxicity classes according to the EEC and European Community directives, and to predict their acute toxicity in fathead minnow using set of selected molecular descriptors. Accordingly, artificial intelligence approach based classification and regression models, such as probabilistic neural networks (PNN), generalized regression neural networks (GRNN), multilayer perceptron neural network (MLPN), radial basis function neural network (RBFN), support vector machines (SVM), gene expression programming (GEP), and decision tree (DT) were constructed using the experimental toxicity data. Diversity and non-linearity in the chemicals' data were tested using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. Predictive and generalization abilities of various models constructed here were compared using several statistical parameters. PNN and GRNN models performed relatively better than MLPN, RBFN, SVM, GEP, and DT. Both in two and four category classifications, PNN yielded a considerably high accuracy of classification in training (95.85 percent and 90.07 percent) and validation data (91.30 percent and 86.96 percent), respectively. GRNN rendered a high correlation between the measured and model predicted -log LC50 values both for the training (0.929) and validation (0.910) data and low prediction errors (RMSE) of 0.52 and 0.49 for two sets. Efficiency of the selected PNN and GRNN models in predicting acute toxicity of new chemicals was adequately validated using external datasets of different fish species (fathead minnow, bluegill, trout, and guppy). The PNN and GRNN models showed good predictive and generalization abilities and can be used as tools for predicting toxicities of structurally diverse chemical compounds. Copyright © 2013 Elsevier Inc. All rights reserved.
Research on Application of Automatic Weather Station Based on Internet of Things
NASA Astrophysics Data System (ADS)
Jianyun, Chen; Yunfan, Sun; Chunyan, Lin
2017-12-01
In this paper, the Internet of Things is briefly introduced, and then its application in the weather station is studied. A method of data acquisition and transmission based on NB-iot communication mode is proposed, Introduction of Internet of things technology, Sensor digital and independent power supply as the technical basis, In the construction of Automatic To realize the intelligent interconnection of the automatic weather station, and then to form an automatic weather station based on the Internet of things. A network structure of automatic weather station based on Internet of things technology is constructed to realize the independent operation of intelligent sensors and wireless data transmission. Research on networking data collection and dissemination of meteorological data, through the data platform for data analysis, the preliminary work of meteorological information publishing standards, networking of meteorological information receiving terminal provides the data interface, to the wisdom of the city, the wisdom of the purpose of the meteorological service.
Signalling maps in cancer research: construction and data analysis
Kondratova, Maria; Sompairac, Nicolas; Barillot, Emmanuel; Zinovyev, Andrei
2018-01-01
Abstract Generation and usage of high-quality molecular signalling network maps can be augmented by standardizing notations, establishing curation workflows and application of computational biology methods to exploit the knowledge contained in the maps. In this manuscript, we summarize the major aims and challenges of assembling information in the form of comprehensive maps of molecular interactions. Mainly, we share our experience gained while creating the Atlas of Cancer Signalling Network. In the step-by-step procedure, we describe the map construction process and suggest solutions for map complexity management by introducing a hierarchical modular map structure. In addition, we describe the NaviCell platform, a computational technology using Google Maps API to explore comprehensive molecular maps similar to geographical maps and explain the advantages of semantic zooming principles for map navigation. We also provide the outline to prepare signalling network maps for navigation using the NaviCell platform. Finally, several examples of cancer high-throughput data analysis and visualization in the context of comprehensive signalling maps are presented. PMID:29688383
Xu, Man; Tan, Xiangliang; Zhang, Xinyuan; Guo, Yihao; Mei, Yingjie; Feng, Qianjin; Xu, Yikai; Feng, Yanqiu
2017-01-01
Systemic lupus erythematosus (SLE) is a chronic inflammatory female-predominant autoimmune disease that can affect the central nervous system and exhibit neuropsychiatric symptoms. In SLE patients without neuropsychiatric symptoms (non-NPSLE), recent diffusion tensor imaging studies showed white matter abnormalities in their brains. The present study investigated the entire brain white matter structural connectivity in non-NPSLE patients by using probabilistic tractography and connectivity-based analyses. Whole-brain structural networks of 29 non-NPSLE patients and 29 healthy controls (HCs) were examined. The structural networks were constructed with interregional probabilistic connectivity. Graph theory analysis was performed to investigate the topological properties, and network-based statistic was employed to assess the alterations of the interregional connections among non-NPSLE patients and controls. Compared with HCs, non-NPSLE patients demonstrated significantly decreased global and local network efficiencies and showed increased characteristic path length. This finding suggests that the global integration and local specialization were impaired. Moreover, the regional properties (nodal efficiency and degree) in the frontal, occipital, and cingulum regions of the non-NPSLE patients were significantly changed and negatively correlated with the disease activity index. The distribution pattern of the hubs measured by nodal degree was altered in the patient group. Finally, the non-NPSLE group exhibited decreased structural connectivity in the left median cingulate-centered component and increased connectivity in the left precuneus-centered component and right middle temporal lobe-centered component. This study reveals an altered topological organization of white matter networks in non-NPSLE patients. Furthermore, this research provides new insights into the structural disruptions underlying the functional and neurocognitive deficits in non-NPSLE patients.
Cao, Qingjiu; Shu, Ni; An, Li; Wang, Peng; Sun, Li; Xia, Ming-Rui; Wang, Jin-Hui; Gong, Gao-Lang; Zang, Yu-Feng; Wang, Yu-Feng; He, Yong
2013-06-26
Attention-deficit/hyperactivity disorder (ADHD), which is characterized by core symptoms of inattention and hyperactivity/impulsivity, is one of the most common neurodevelopmental disorders of childhood. Neuroimaging studies have suggested that these behavioral disturbances are associated with abnormal functional connectivity among brain regions. However, the alterations in the structural connections that underlie these behavioral and functional deficits remain poorly understood. Here, we used diffusion magnetic resonance imaging and probabilistic tractography method to examine whole-brain white matter (WM) structural connectivity in 30 drug-naive boys with ADHD and 30 healthy controls. The WM networks of the human brain were constructed by estimating inter-regional connectivity probability. The topological properties of the resultant networks (e.g., small-world and network efficiency) were then analyzed using graph theoretical approaches. Nonparametric permutation tests were applied for between-group comparisons of these graphic metrics. We found that both the ADHD and control groups showed an efficient small-world organization in the whole-brain WM networks, suggesting a balance between structurally segregated and integrated connectivity patterns. However, relative to controls, patients with ADHD exhibited decreased global efficiency and increased shortest path length, with the most pronounced efficiency decreases in the left parietal, frontal, and occipital cortices. Intriguingly, the ADHD group showed decreased structural connectivity in the prefrontal-dominant circuitry and increased connectivity in the orbitofrontal-striatal circuitry, and these changes significantly correlated with the inattention and hyperactivity/impulsivity symptoms, respectively. The present study shows disrupted topological organization of large-scale WM networks in ADHD, extending our understanding of how structural disruptions of neuronal circuits underlie behavioral disturbances in patients with ADHD.
Yang, Yali; Valentine, Megan T
2013-01-01
The microtubule (MT) cytoskeleton is essential in maintaining the shape, strength, and organization of cells. Its spatiotemporal organization is fundamental for numerous dynamic biological processes, and mechanical stress within the MT cytoskeleton provides an important signaling mechanism in mitosis and neural development. This raises important questions about the relationships between structure and mechanics in complex MT structures. In vitro, reconstituted cytoskeletal networks provide a minimal model of cell mechanics while also providing a testing ground for the fundamental polymer physics of stiff polymer gels. Here, we describe our development and implementation of a broad tool kit to study structure-mechanics relationships in reconstituted MT networks, including protocols for the assembly of entangled and cross-linked MT networks, fluorescence imaging, microstructure characterization, construction and calibration of magnetic tweezers devices, and mechanical data collection and analysis. In particular, we present the design and assembly of three neodymium iron boron (NdFeB)-based magnetic tweezers devices optimized for use with MT networks: (1) high-force magnetic tweezers devices that enable the application of nano-Newton forces and possible meso- to macroscale materials characterization; (2) ring-shaped NdFeB-based magnetic tweezers devices that enable oscillatory microrheology measurements; and (3) portable magnetic tweezers devices that enable direct visualization of microscale deformation in soft materials under applied force. Copyright © 2013 Elsevier Inc. All rights reserved.
Fundamental Activity Constraints Lead to Specific Interpretations of the Connectome.
Schuecker, Jannis; Schmidt, Maximilian; van Albada, Sacha J; Diesmann, Markus; Helias, Moritz
2017-02-01
The continuous integration of experimental data into coherent models of the brain is an increasing challenge of modern neuroscience. Such models provide a bridge between structure and activity, and identify the mechanisms giving rise to experimental observations. Nevertheless, structurally realistic network models of spiking neurons are necessarily underconstrained even if experimental data on brain connectivity are incorporated to the best of our knowledge. Guided by physiological observations, any model must therefore explore the parameter ranges within the uncertainty of the data. Based on simulation results alone, however, the mechanisms underlying stable and physiologically realistic activity often remain obscure. We here employ a mean-field reduction of the dynamics, which allows us to include activity constraints into the process of model construction. We shape the phase space of a multi-scale network model of the vision-related areas of macaque cortex by systematically refining its connectivity. Fundamental constraints on the activity, i.e., prohibiting quiescence and requiring global stability, prove sufficient to obtain realistic layer- and area-specific activity. Only small adaptations of the structure are required, showing that the network operates close to an instability. The procedure identifies components of the network critical to its collective dynamics and creates hypotheses for structural data and future experiments. The method can be applied to networks involving any neuron model with a known gain function.
Construction schedule simulation of a diversion tunnel based on the optimized ventilation time.
Wang, Xiaoling; Liu, Xuepeng; Sun, Yuefeng; An, Juan; Zhang, Jing; Chen, Hongchao
2009-06-15
Former studies, the methods for estimating the ventilation time are all empirical in construction schedule simulation. However, in many real cases of construction schedule, the many factors have impact on the ventilation time. Therefore, in this paper the 3D unsteady quasi-single phase models are proposed to optimize the ventilation time with different tunneling lengths. The effect of buoyancy is considered in the momentum equation of the CO transport model, while the effects of inter-phase drag, lift force, and virtual mass force are taken into account in the momentum source of the dust transport model. The prediction by the present model for airflow in a diversion tunnel is confirmed by the experimental values reported by Nakayama [Nakayama, In-situ measurement and simulation by CFD of methane gas distribution at a heading faces, Shigen-to-Sozai 114 (11) (1998) 769-775]. The construction ventilation of the diversion tunnel of XinTangfang power station in China is used as a case. The distributions of airflow, CO and dust in the diversion tunnel are analyzed. A theory method for GIS-based dynamic visual simulation for the construction processes of underground structure groups is presented that combines cyclic operation network simulation, system simulation, network plan optimization, and GIS-based construction processes' 3D visualization. Based on the ventilation time the construction schedule of the diversion tunnel is simulated by the above theory method.
Credit Default Swaps networks and systemic risk
Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano
2014-01-01
Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities. PMID:25366654
Credit Default Swaps networks and systemic risk.
Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano
2014-11-04
Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities.
Credit Default Swaps networks and systemic risk
NASA Astrophysics Data System (ADS)
Puliga, Michelangelo; Caldarelli, Guido; Battiston, Stefano
2014-11-01
Credit Default Swaps (CDS) spreads should reflect default risk of the underlying corporate debt. Actually, it has been recognized that CDS spread time series did not anticipate but only followed the increasing risk of default before the financial crisis. In principle, the network of correlations among CDS spread time series could at least display some form of structural change to be used as an early warning of systemic risk. Here we study a set of 176 CDS time series of financial institutions from 2002 to 2011. Networks are constructed in various ways, some of which display structural change at the onset of the credit crisis of 2008, but never before. By taking these networks as a proxy of interdependencies among financial institutions, we run stress-test based on Group DebtRank. Systemic risk before 2008 increases only when incorporating a macroeconomic indicator reflecting the potential losses of financial assets associated with house prices in the US. This approach indicates a promising way to detect systemic instabilities.
Takamatsu, Atsuko; Takaba, Eri; Takizawa, Ginjiro
2009-01-07
Branching network growth patterns, depending on environmental conditions, in plasmodium of true slime mold Physarum polycephalum were investigated. Surprisingly, the patterns resemble those in bacterial colonies even though the biological mechanisms differ greatly. Bacterial colonies are collectives of microorganisms in which individual organisms have motility and interact through nutritious and chemical fields. In contrast, the plasmodium is a giant amoeba-like multinucleated unicellular organism that forms a network of tubular structures through which protoplasm streams. The cell motility of the plasmodium is generated by oscillation phenomena observed in the partial bodies, which interact through the tubular structures. First, we analyze characteristics of the morphology quantitatively, then we abstract local rules governing the growing process to construct a simple network growth model. This model is independent of specific systems, in which only two rules are applied. Finally, we discuss the mechanism of commonly observed biological pattern formations through comparison with the system of bacterial colonies.
The optimal community detection of software based on complex networks
NASA Astrophysics Data System (ADS)
Huang, Guoyan; Zhang, Peng; Zhang, Bing; Yin, Tengteng; Ren, Jiadong
2016-02-01
The community structure is important for software in terms of understanding the design patterns, controlling the development and the maintenance process. In order to detect the optimal community structure in the software network, a method Optimal Partition Software Network (OPSN) is proposed based on the dependency relationship among the software functions. First, by analyzing the information of multiple execution traces of one software, we construct Software Execution Dependency Network (SEDN). Second, based on the relationship among the function nodes in the network, we define Fault Accumulation (FA) to measure the importance of the function node and sort the nodes with measure results. Third, we select the top K(K=1,2,…) nodes as the core of the primal communities (only exist one core node). By comparing the dependency relationships between each node and the K communities, we put the node into the existing community which has the most close relationship. Finally, we calculate the modularity with different initial K to obtain the optimal division. With experiments, the method OPSN is verified to be efficient to detect the optimal community in various softwares.
Short-term prediction of chaotic time series by using RBF network with regression weights.
Rojas, I; Gonzalez, J; Cañas, A; Diaz, A F; Rojas, F J; Rodriguez, M
2000-10-01
We propose a framework for constructing and training a radial basis function (RBF) neural network. The structure of the gaussian functions is modified using a pseudo-gaussian function (PG) in which two scaling parameters sigma are introduced, which eliminates the symmetry restriction and provides the neurons in the hidden layer with greater flexibility with respect to function approximation. We propose a modified PG-BF (pseudo-gaussian basis function) network in which the regression weights are used to replace the constant weights in the output layer. For this purpose, a sequential learning algorithm is presented to adapt the structure of the network, in which it is possible to create a new hidden unit and also to detect and remove inactive units. A salient feature of the network systems is that the method used for calculating the overall output is the weighted average of the output associated with each receptive field. The superior performance of the proposed PG-BF system over the standard RBF are illustrated using the problem of short-term prediction of chaotic time series.
Network representation of protein interactions: Theory of graph description and analysis.
Kurzbach, Dennis
2016-09-01
A methodological framework is presented for the graph theoretical interpretation of NMR data of protein interactions. The proposed analysis generalizes the idea of network representations of protein structures by expanding it to protein interactions. This approach is based on regularization of residue-resolved NMR relaxation times and chemical shift data and subsequent construction of an adjacency matrix that represents the underlying protein interaction as a graph or network. The network nodes represent protein residues. Two nodes are connected if two residues are functionally correlated during the protein interaction event. The analysis of the resulting network enables the quantification of the importance of each amino acid of a protein for its interactions. Furthermore, the determination of the pattern of correlations between residues yields insights into the functional architecture of an interaction. This is of special interest for intrinsically disordered proteins, since the structural (three-dimensional) architecture of these proteins and their complexes is difficult to determine. The power of the proposed methodology is demonstrated at the example of the interaction between the intrinsically disordered protein osteopontin and its natural ligand heparin. © 2016 The Protein Society.
Nagasaki, Masao; Yamaguchi, Rui; Yoshida, Ryo; Imoto, Seiya; Doi, Atsushi; Tamada, Yoshinori; Matsuno, Hiroshi; Miyano, Satoru; Higuchi, Tomoyuki
2006-01-01
We propose an automatic construction method of the hybrid functional Petri net as a simulation model of biological pathways. The problems we consider are how we choose the values of parameters and how we set the network structure. Usually, we tune these unknown factors empirically so that the simulation results are consistent with biological knowledge. Obviously, this approach has the limitation in the size of network of interest. To extend the capability of the simulation model, we propose the use of data assimilation approach that was originally established in the field of geophysical simulation science. We provide genomic data assimilation framework that establishes a link between our simulation model and observed data like microarray gene expression data by using a nonlinear state space model. A key idea of our genomic data assimilation is that the unknown parameters in simulation model are converted as the parameter of the state space model and the estimates are obtained as the maximum a posteriori estimators. In the parameter estimation process, the simulation model is used to generate the system model in the state space model. Such a formulation enables us to handle both the model construction and the parameter tuning within a framework of the Bayesian statistical inferences. In particular, the Bayesian approach provides us a way of controlling overfitting during the parameter estimations that is essential for constructing a reliable biological pathway. We demonstrate the effectiveness of our approach using synthetic data. As a result, parameter estimation using genomic data assimilation works very well and the network structure is suitably selected.
The structure and resilience of financial market networks
NASA Astrophysics Data System (ADS)
Kauê Dal'Maso Peron, Thomas; da Fontoura Costa, Luciano; Rodrigues, Francisco A.
2012-03-01
Financial markets can be viewed as a highly complex evolving system that is very sensitive to economic instabilities. The complex organization of the market can be represented in a suitable fashion in terms of complex networks, which can be constructed from stock prices such that each pair of stocks is connected by a weighted edge that encodes the distance between them. In this work, we propose an approach to analyze the topological and dynamic evolution of financial networks based on the stock correlation matrices. An entropy-related measurement is adopted to quantify the robustness of the evolving financial market organization. It is verified that the network topological organization suffers strong variation during financial instabilities and the networks in such periods become less robust. A statistical robust regression model is proposed to quantity the relationship between the network structure and resilience. The obtained coefficients of such model indicate that the average shortest path length is the measurement most related to network resilience coefficient. This result indicates that a collective behavior is observed between stocks during financial crisis. More specifically, stocks tend to synchronize their price evolution, leading to a high correlation between pair of stock prices, which contributes to the increase in distance between them and, consequently, decrease the network resilience.
NASA Astrophysics Data System (ADS)
van der Linden, Joost H.; Narsilio, Guillermo A.; Tordesillas, Antoinette
2016-08-01
We present a data-driven framework to study the relationship between fluid flow at the macroscale and the internal pore structure, across the micro- and mesoscales, in porous, granular media. Sphere packings with varying particle size distribution and confining pressure are generated using the discrete element method. For each sample, a finite element analysis of the fluid flow is performed to compute the permeability. We construct a pore network and a particle contact network to quantify the connectivity of the pores and particles across the mesoscopic spatial scales. Machine learning techniques for feature selection are employed to identify sets of microstructural properties and multiscale complex network features that optimally characterize permeability. We find a linear correlation (in log-log scale) between permeability and the average closeness centrality of the weighted pore network. With the pore network links weighted by the local conductance, the average closeness centrality represents a multiscale measure of efficiency of flow through the pore network in terms of the mean geodesic distance (or shortest path) between all pore bodies in the pore network. Specifically, this study objectively quantifies a hypothesized link between high permeability and efficient shortest paths that thread through relatively large pore bodies connected to each other by high conductance pore throats, embodying connectivity and pore structure.
Schwarz, Adam J; Gozzi, Alessandro; Bifone, Angelo
2009-08-01
In the study of functional connectivity, fMRI data can be represented mathematically as a network of nodes and links, where image voxels represent the nodes and the connections between them reflect a degree of correlation or similarity in their response. Here we show that, within this framework, functional imaging data can be partitioned into 'communities' of tightly interconnected voxels corresponding to maximum modularity within the overall network. We evaluated this approach systematically in application to networks constructed from pharmacological MRI (phMRI) of the rat brain in response to acute challenge with three different compounds with distinct mechanisms of action (d-amphetamine, fluoxetine, and nicotine) as well as vehicle (physiological saline). This approach resulted in bilaterally symmetric sub-networks corresponding to meaningful anatomical and functional connectivity pathways consistent with the purported mechanism of action of each drug. Interestingly, common features across all three networks revealed two groups of tightly coupled brain structures that responded as functional units independent of the specific neurotransmitter systems stimulated by the drug challenge, including a network involving the prefrontal cortex and sub-cortical regions extending from the striatum to the amygdala. This finding suggests that each of these networks includes general underlying features of the functional organization of the rat brain.
Inference and Analysis of Population Structure Using Genetic Data and Network Theory
Greenbaum, Gili; Templeton, Alan R.; Bar-David, Shirli
2016-01-01
Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition’s modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). PMID:26888080
Inference and Analysis of Population Structure Using Genetic Data and Network Theory.
Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli
2016-04-01
Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). Copyright © 2016 by the Genetics Society of America.
Digging into construction: social networks and their potential impact on knowledge transfer.
Carlan, N A; Kramer, D M; Bigelow, P; Wells, R; Garritano, E; Vi, P
2012-01-01
A six-year study is exploring the most effective ways to disseminate ideas to reduce musculoskeletal disorders (MSDs) in the construction sector. The sector was targeted because MSDs account for 35% of all lost time injuries. This paper reports on the organization of the construction sector, and maps potential pathways of communication, including social networks, to set the stage for future dissemination. The managers, health and safety specialists, union health and safety representatives, and 28 workers from small, medium and large construction companies participated. Over a three-year period, data were collected from 47 qualitative interviews. Questions were guided by the PARIHS (Promoting Action on Research Implementation in Health Services) knowledge-transfer conceptual framework and adapted for the construction sector. The construction sector is a complex and dynamic sector, with non-linear reporting relationships, and divided and diluted responsibilities. Four networks were identified that can potentially facilitate the dissemination of new knowledge: worksite-project networks; union networks; apprenticeship program networks; and networks established by the Construction Safety Association/Infrastructure Health and Safety Association. Flexible and multi-directional lines of communication must be used in this complex environment. This has implications for the future choice of knowledge transfer strategies.
Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures
Fu, Jinglin; Liu, Minghui; Liu, Yan; Yan, Hao
2013-01-01
Conspectus Living systems have evolved a variety of nanostructures to control the molecular interactions that mediate many functions including the recognition of targets by receptors, the binding of enzymes to substrates, and the regulation of enzymatic activity. Mimicking these structures outside of the cell requires methods that offer nanoscale control over the organization of individual network components. Advances in DNA nanotechnology have enabled the design and fabrication of sophisticated one-, two- and three-dimensional (1D, 2D and 3D) nanostructures that utilize spontaneous and sequence specific DNA hybridization. Compared to other self-assembling biopolymers, DNA nanostructures offer predictable and programmable interactions, and surface features to which other nanoparticles and bio-molecules can be precisely positioned. The ability to control the spatial arrangement of the components while constructing highly-organized networks will lead to various applications of these systems. For example, DNA nanoarrays with surface displays of molecular probes can sense noncovalent hybridization interactions with DNA, RNA, and proteins and covalent chemical reactions. DNA nanostructures can also align external molecules into well-defined arrays, which may improve the resolution of many structural determination methods, such as X-ray diffraction, cryo-EM, NMR, and super-resolution fluorescence. Moreover, by constraining target entities to specific conformations, self-assembled DNA nanostructures can serve as molecular rulers to evaluate conformation-dependent activities. This Account describes the most recent advances in the DNA nanostructure directed assembly of biomolecular networks and explores the possibility of applying this technology to other fields of study. Recently, several reports have demonstrated the DNA nanostructure directed assembly of spatially-interactive biomolecular networks. For example, researchers have constructed synthetic multi-enzyme cascades by organizing the position of the components using DNA nanoscaffolds in vitro, or by utilizing RNA matrices in vivo. These structures display enhanced efficiency compared to the corresponding unstructured enzyme mixtures. Such systems are designed to mimic cellular function, where substrate diffusion between enzymes is facilitated and reactions are catalyzed with high efficiency and specificity. In addition, researchers have assembled multiple choromophores into arrays using a DNA nanoscaffold that optimizes the relative distance between the dyes and their spatial organization. The resulting artificial light harvesting system exhibits efficient cascading energy transfers. Finally, DNA nanostructures have been used as assembly templates to construct nanodevices that execute rationally-designed behaviors, including cargo loading, transportation and route control. PMID:22642503
Developing Visualization Techniques for Semantics-based Information Networks
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Hall, David R.
2003-01-01
Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.
Estimating the epidemic threshold on networks by deterministic connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Kezan, E-mail: lkzzr@sohu.com; Zhu, Guanghu; Fu, Xinchu
2014-12-15
For many epidemic networks some connections between nodes are treated as deterministic, while the remainder are random and have different connection probabilities. By applying spectral analysis to several constructed models, we find that one can estimate the epidemic thresholds of these networks by investigating information from only the deterministic connections. Nonetheless, in these models, generic nonuniform stochastic connections and heterogeneous community structure are also considered. The estimation of epidemic thresholds is achieved via inequalities with upper and lower bounds, which are found to be in very good agreement with numerical simulations. Since these deterministic connections are easier to detect thanmore » those stochastic connections, this work provides a feasible and effective method to estimate the epidemic thresholds in real epidemic networks.« less
Networks’ Characteristics Matter for Systems Biology
Rider, Andrew K.; Milenković, Tijana; Siwo, Geoffrey H.; Pinapati, Richard S.; Emrich, Scott J.; Ferdig, Michael T.; Chawla, Nitesh V.
2015-01-01
A fundamental goal of systems biology is to create models that describe relationships between biological components. Networks are an increasingly popular approach to this problem. However, a scientist interested in modeling biological (e.g., gene expression) data as a network is quickly confounded by the fundamental problem: how to construct the network? It is fairly easy to construct a network, but is it the network for the problem being considered? This is an important problem with three fundamental issues: How to weight edges in the network in order to capture actual biological interactions? What is the effect of the type of biological experiment used to collect the data from which the network is constructed? How to prune the weighted edges (or what cut-off to apply)? Differences in the construction of networks could lead to different biological interpretations. Indeed, we find that there are statistically significant dissimilarities in the functional content and topology between gene co-expression networks constructed using different edge weighting methods, data types, and edge cut-offs. We show that different types of known interactions, such as those found through Affinity Capture-Luminescence or Synthetic Lethality experiments, appear in significantly varying amounts in networks constructed in different ways. Hence, we demonstrate that different biological questions may be answered by the different networks. Consequently, we posit that the approach taken to build a network can be matched to biological questions to get targeted answers. More study is required to understand the implications of different network inference approaches and to draw reliable conclusions from networks used in the field of systems biology. PMID:26500772
Persistent homology of time-dependent functional networks constructed from coupled time series
NASA Astrophysics Data System (ADS)
Stolz, Bernadette J.; Harrington, Heather A.; Porter, Mason A.
2017-04-01
We use topological data analysis to study "functional networks" that we construct from time-series data from both experimental and synthetic sources. We use persistent homology with a weight rank clique filtration to gain insights into these functional networks, and we use persistence landscapes to interpret our results. Our first example uses time-series output from networks of coupled Kuramoto oscillators. Our second example consists of biological data in the form of functional magnetic resonance imaging data that were acquired from human subjects during a simple motor-learning task in which subjects were monitored for three days during a five-day period. With these examples, we demonstrate that (1) using persistent homology to study functional networks provides fascinating insights into their properties and (2) the position of the features in a filtration can sometimes play a more vital role than persistence in the interpretation of topological features, even though conventionally the latter is used to distinguish between signal and noise. We find that persistent homology can detect differences in synchronization patterns in our data sets over time, giving insight both on changes in community structure in the networks and on increased synchronization between brain regions that form loops in a functional network during motor learning. For the motor-learning data, persistence landscapes also reveal that on average the majority of changes in the network loops take place on the second of the three days of the learning process.
Influence of the time scale on the construction of financial networks.
Emmert-Streib, Frank; Dehmer, Matthias
2010-09-30
In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis.
Analyses of the structure of group correlations in Korean financial markets
NASA Astrophysics Data System (ADS)
Ko, Jeung Su; Lim, Gyuchang; Kim, Kyungsik
2012-12-01
In this paper, we construct and analyze the structure of cross-correlations in two Korean stock markets, the Korea Composite Stock Price Index (KOSPI) and the Korea Securities Dealers Automated Quotation (KOSDAQ). We investigate a remarkable agreement between the theoretical prediction and the empirical data concerning the density of eigenvalues in the KOSPI and the KOSDAQ. We estimate daily cross-correlations with respect to price fluctuations of 629 KOSPI and 650 KOSDAQ stock entities for the period from 2006 to 2010. The research for the structure of group correlations undress the market-wide effect by using the Markowitz multi-factor model and network-based approach. We find stock entities that involve the same business sectors and verify the structure of group correlations by applying a network-based approach. In particular, the KOSPI has a dense correlation besides overall group correlations for stock entities, whereas both correlations are less for the KOSDAQ than for the KOSPI.
Luo, Shitao; Zhang, Fengming; Ruan, Yingfei; Li, Jie; Zhang, Zheng; Sun, Yan; Deng, Shixiong; Peng, Rui
2018-06-01
Photomorphogenesis and heat shock are critical biological processes of plants. A recent research constructed the transcriptional regulatory networks (TRNs) of Arabidopsis thaliana during these processes using DNase-seq. In this study, by strong decomposition, we revealed that each of these TRNs can be represented as a similar bowtie structure with only one non-trivial and distinct strong component. We further identified distinct patterns of variation of a few light-related genes in these bowtie structures during photomorphogenesis. These results suggest that bowtie structure may be a common property of TRNs of plants, and distinct variation patterns of genes in bowtie structures of TRNs during biological processes may reflect distinct functions. Overall, our study provides an insight into the molecular mechanisms underlying photomorphogenesis and heat shock, and emphasizes the necessity to investigate the strong connectivity structures while studying TRNs. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Imbriale, W. A.; Moore, M.; Rochblatt, D. J.; Veruttipong, W.
1995-01-01
At the NASA Deep Space Network (DSN) Goldstone Complex, a 34-meter- diameter beam-waveguide antenna, DSS-13, was constructed in 1988-1990 and has become an integral part of an advanced systems program and a test bed for technologies being developed to introduce Ka-band (32 GHz) frequencies into the DSN. A method for compensating the gravity- induced structural deformations in this large antenna is presented.
Strategy of thunderstorm measurement with super dense ground-based observation network
NASA Astrophysics Data System (ADS)
Takahashi, Y.; Sato, M.
2014-12-01
It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a new super dense observation network with simple and low cost sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge. This sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure well smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.
Prettejohn, Brenton J.; Berryman, Matthew J.; McDonnell, Mark D.
2011-01-01
Many simulations of networks in computational neuroscience assume completely homogenous random networks of the Erdös–Rényi type, or regular networks, despite it being recognized for some time that anatomical brain networks are more complex in their connectivity and can, for example, exhibit the “scale-free” and “small-world” properties. We review the most well known algorithms for constructing networks with given non-homogeneous statistical properties and provide simple pseudo-code for reproducing such networks in software simulations. We also review some useful mathematical results and approximations associated with the statistics that describe these network models, including degree distribution, average path length, and clustering coefficient. We demonstrate how such results can be used as partial verification and validation of implementations. Finally, we discuss a sometimes overlooked modeling choice that can be crucially important for the properties of simulated networks: that of network directedness. The most well known network algorithms produce undirected networks, and we emphasize this point by highlighting how simple adaptations can instead produce directed networks. PMID:21441986
Baltoumas, Fotis A; Theodoropoulou, Margarita C; Hamodrakas, Stavros J
2016-06-01
A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.
NASA Astrophysics Data System (ADS)
Baltoumas, Fotis A.; Theodoropoulou, Margarita C.; Hamodrakas, Stavros J.
2016-06-01
A significant amount of experimental evidence suggests that G-protein coupled receptors (GPCRs) do not act exclusively as monomers but also form biologically relevant dimers and oligomers. However, the structural determinants, stoichiometry and functional importance of GPCR oligomerization remain topics of intense speculation. In this study we attempted to evaluate the nature and dynamics of GPCR oligomeric interactions. A representative set of GPCR homodimers were studied through Coarse-Grained Molecular Dynamics simulations, combined with interface analysis and concepts from network theory for the construction and analysis of dynamic structural networks. Our results highlight important structural determinants that seem to govern receptor dimer interactions. A conserved dynamic behavior was observed among different GPCRs, including receptors belonging in different GPCR classes. Specific GPCR regions were highlighted as the core of the interfaces. Finally, correlations of motion were observed between parts of the dimer interface and GPCR segments participating in ligand binding and receptor activation, suggesting the existence of mechanisms through which dimer formation may affect GPCR function. The results of this study can be used to drive experiments aimed at exploring GPCR oligomerization, as well as in the study of transmembrane protein-protein interactions in general.
Zheng, Chen-Xi; Sui, Bing-Dong; Hu, Cheng-Hu; Qiu, Xin-Yu; Zhao, Pan; Jin, Yan
2018-04-27
Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes. Copyright © 2018 John Wiley & Sons, Ltd.
Revealing the Effect of Irradiation on Cement Hydrates: Evidence of a Topological Self-Organization.
Krishnan, N M Anoop; Wang, Bu; Sant, Gaurav; Phillips, James C; Bauchy, Mathieu
2017-09-20
Despite the crucial role of concrete in the construction of nuclear power plants, the effects of radiation exposure (i.e., in the form of neutrons) on the calcium-silicate-hydrate (C-S-H, i.e., the glue of concrete) remain largely unknown. Using molecular dynamics simulations, we systematically investigate the effects of irradiation on the structure of C-S-H across a range of compositions. Expectedly, although C-S-H is more resistant to irradiation than typical crystalline silicates, such as quartz, we observe that radiation exposure affects C-S-H's structural order, silicate mean chain length, and the amount of molecular water that is present in the atomic network. By topological analysis, we show that these "structural effects" arise from a self-organization of the atomic network of C-S-H upon irradiation. This topological self-organization is driven by the (initial) presence of atomic eigenstress in the C-S-H network and is facilitated by the presence of water in the network. Overall, we show that C-S-H exhibits an optimal resistance to radiation damage when its atomic network is isostatic (at Ca/Si = 1.5). Such an improved understanding of the response of C-S-H to irradiation can pave the way to the design of durable concrete for radiation applications.
Cortical Dynamics in Presence of Assemblies of Densely Connected Weight-Hub Neurons
Setareh, Hesam; Deger, Moritz; Petersen, Carl C. H.; Gerstner, Wulfram
2017-01-01
Experimental measurements of pairwise connection probability of pyramidal neurons together with the distribution of synaptic weights have been used to construct randomly connected model networks. However, several experimental studies suggest that both wiring and synaptic weight structure between neurons show statistics that differ from random networks. Here we study a network containing a subset of neurons which we call weight-hub neurons, that are characterized by strong inward synapses. We propose a connectivity structure for excitatory neurons that contain assemblies of densely connected weight-hub neurons, while the pairwise connection probability and synaptic weight distribution remain consistent with experimental data. Simulations of such a network with generalized integrate-and-fire neurons display regular and irregular slow oscillations akin to experimentally observed up/down state transitions in the activity of cortical neurons with a broad distribution of pairwise spike correlations. Moreover, stimulation of a model network in the presence or absence of assembly structure exhibits responses similar to light-evoked responses of cortical layers in optogenetically modified animals. We conclude that a high connection probability into and within assemblies of excitatory weight-hub neurons, as it likely is present in some but not all cortical layers, changes the dynamics of a layer of cortical microcircuitry significantly. PMID:28690508
NASA Astrophysics Data System (ADS)
Papadopoulos, Lia; Kim, Jason Z.; Kurths, Jürgen; Bassett, Danielle S.
2017-07-01
Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule—which preserves connections between more out-of-phase oscillators while rewiring connections between more in-phase oscillators—can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by considering a time-dependent interplay between structure and dynamics, this work offers a mechanism through which emergent phenomena and organization can arise in complex systems utilizing local rules.
Health level seven interoperability strategy: big data, incrementally structured.
Dolin, R H; Rogers, B; Jaffe, C
2015-01-01
Describe how the HL7 Clinical Document Architecture (CDA), a foundational standard in US Meaningful Use, contributes to a "big data, incrementally structured" interoperability strategy, whereby data structured incrementally gets large amounts of data flowing faster. We present cases showing how this approach is leveraged for big data analysis. To support the assertion that semi-structured narrative in CDA format can be a useful adjunct in an overall big data analytic approach, we present two case studies. The first assesses an organization's ability to generate clinical quality reports using coded data alone vs. coded data supplemented by CDA narrative. The second leverages CDA to construct a network model for referral management, from which additional observations can be gleaned. The first case shows that coded data supplemented by CDA narrative resulted in significant variances in calculated performance scores. In the second case, we found that the constructed network model enables the identification of differences in patient characteristics among different referral work flows. The CDA approach goes after data indirectly, by focusing first on the flow of narrative, which is then incrementally structured. A quantitative assessment of whether this approach will lead to a greater flow of data and ultimately a greater flow of structured data vs. other approaches is planned as a future exercise. Along with growing adoption of CDA, we are now seeing the big data community explore the standard, particularly given its potential to supply analytic en- gines with volumes of data previously not possible.
Customizable 3D Printed ‘Plug and Play’ Millifluidic Devices for Programmable Fluidics
Tsuda, Soichiro; Jaffery, Hussain; Doran, David; Hezwani, Mohammad; Robbins, Phillip J.; Yoshida, Mari; Cronin, Leroy
2015-01-01
Three dimensional (3D) printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM)-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O) droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves. PMID:26558389
A Model Comparison for Characterizing Protein Motions from Structure
NASA Astrophysics Data System (ADS)
David, Charles; Jacobs, Donald
2011-10-01
A comparative study is made using three computational models that characterize native state dynamics starting from known protein structures taken from four distinct SCOP classifications. A geometrical simulation is performed, and the results are compared to the elastic network model and molecular dynamics. The essential dynamics is quantified by a direct analysis of a mode subspace constructed from ANM and a principal component analysis on both the FRODA and MD trajectories using root mean square inner product and principal angles. Relative subspace sizes and overlaps are visualized using the projection of displacement vectors on the model modes. Additionally, a mode subspace is constructed from PCA on an exemplar set of X-ray crystal structures in order to determine similarly with respect to the generated ensembles. Quantitative analysis reveals there is significant overlap across the three model subspaces and the model independent subspace. These results indicate that structure is the key determinant for native state dynamics.
NASA Astrophysics Data System (ADS)
Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei
2017-07-01
Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.
Integrating Entropy and Closed Frequent Pattern Mining for Social Network Modelling and Analysis
NASA Astrophysics Data System (ADS)
Adnan, Muhaimenul; Alhajj, Reda; Rokne, Jon
The recent increase in the explicitly available social networks has attracted the attention of the research community to investigate how it would be possible to benefit from such a powerful model in producing effective solutions for problems in other domains where the social network is implicit; we argue that social networks do exist around us but the key issue is how to realize and analyze them. This chapter presents a novel approach for constructing a social network model by an integrated framework that first preparing the data to be analyzed and then applies entropy and frequent closed patterns mining for network construction. For a given problem, we first prepare the data by identifying items and transactions, which arc the basic ingredients for frequent closed patterns mining. Items arc main objects in the problem and a transaction is a set of items that could exist together at one time (e.g., items purchased in one visit to the supermarket). Transactions could be analyzed to discover frequent closed patterns using any of the well-known techniques. Frequent closed patterns have the advantage that they successfully grab the inherent information content of the dataset and is applicable to a broader set of domains. Entropies of the frequent closed patterns arc used to keep the dimensionality of the feature vectors to a reasonable size; it is a kind of feature reduction process. Finally, we analyze the dynamic behavior of the constructed social network. Experiments were conducted on a synthetic dataset and on the Enron corpus email dataset. The results presented in the chapter show that social networks extracted from a feature set as frequent closed patterns successfully carry the community structure information. Moreover, for the Enron email dataset, we present an analysis to dynamically indicate the deviations from each user's individual and community profile. These indications of deviations can be very useful to identify unusual events.
Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue
2017-07-04
This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.
Early development of structural networks and the impact of prematurity on brain connectivity.
Batalle, Dafnis; Hughes, Emer J; Zhang, Hui; Tournier, J-Donald; Tusor, Nora; Aljabar, Paul; Wali, Luqman; Alexander, Daniel C; Hajnal, Joseph V; Nosarti, Chiara; Edwards, A David; Counsell, Serena J
2017-04-01
Preterm infants are at high risk of neurodevelopmental impairment, which may be due to altered development of brain connectivity. We aimed to (i) assess structural brain development from 25 to 45 weeks gestational age (GA) using graph theoretical approaches and (ii) test the hypothesis that preterm birth results in altered white matter network topology. Sixty-five infants underwent MRI between 25 +3 and 45 +6 weeks GA. Structural networks were constructed using constrained spherical deconvolution tractography and were weighted by measures of white matter microstructure (fractional anisotropy, neurite density and orientation dispersion index). We observed regional differences in brain maturation, with connections to and from deep grey matter showing most rapid developmental changes during this period. Intra-frontal, frontal to cingulate, frontal to caudate and inter-hemispheric connections matured more slowly. We demonstrated a core of key connections that was not affected by GA at birth. However, local connectivity involving thalamus, cerebellum, superior frontal lobe, cingulate gyrus and short range cortico-cortical connections was related to the degree of prematurity and contributed to altered global topology of the structural brain network. The relative preservation of core connections at the expense of local connections may support more effective use of impaired white matter reserve following preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Introduction to bioinformatics.
Can, Tolga
2014-01-01
Bioinformatics is an interdisciplinary field mainly involving molecular biology and genetics, computer science, mathematics, and statistics. Data intensive, large-scale biological problems are addressed from a computational point of view. The most common problems are modeling biological processes at the molecular level and making inferences from collected data. A bioinformatics solution usually involves the following steps: Collect statistics from biological data. Build a computational model. Solve a computational modeling problem. Test and evaluate a computational algorithm. This chapter gives a brief introduction to bioinformatics by first providing an introduction to biological terminology and then discussing some classical bioinformatics problems organized by the types of data sources. Sequence analysis is the analysis of DNA and protein sequences for clues regarding function and includes subproblems such as identification of homologs, multiple sequence alignment, searching sequence patterns, and evolutionary analyses. Protein structures are three-dimensional data and the associated problems are structure prediction (secondary and tertiary), analysis of protein structures for clues regarding function, and structural alignment. Gene expression data is usually represented as matrices and analysis of microarray data mostly involves statistics analysis, classification, and clustering approaches. Biological networks such as gene regulatory networks, metabolic pathways, and protein-protein interaction networks are usually modeled as graphs and graph theoretic approaches are used to solve associated problems such as construction and analysis of large-scale networks.
Bipartite graphs as models of population structures in evolutionary multiplayer games.
Peña, Jorge; Rochat, Yannick
2012-01-01
By combining evolutionary game theory and graph theory, "games on graphs" study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner's dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner's dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures.
Zhong, Suyu; He, Yong; Gong, Gaolang
2015-05-01
Using diffusion MRI, a number of studies have investigated the properties of whole-brain white matter (WM) networks with differing network construction methods (node/edge definition). However, how the construction methods affect individual differences of WM networks and, particularly, if distinct methods can provide convergent or divergent patterns of individual differences remain largely unknown. Here, we applied 10 frequently used methods to construct whole-brain WM networks in a healthy young adult population (57 subjects), which involves two node definitions (low-resolution and high-resolution) and five edge definitions (binary, FA weighted, fiber-density weighted, length-corrected fiber-density weighted, and connectivity-probability weighted). For these WM networks, individual differences were systematically analyzed in three network aspects: (1) a spatial pattern of WM connections, (2) a spatial pattern of nodal efficiency, and (3) network global and local efficiencies. Intriguingly, we found that some of the network construction methods converged in terms of individual difference patterns, but diverged with other methods. Furthermore, the convergence/divergence between methods differed among network properties that were adopted to assess individual differences. Particularly, high-resolution WM networks with differing edge definitions showed convergent individual differences in the spatial pattern of both WM connections and nodal efficiency. For the network global and local efficiencies, low-resolution and high-resolution WM networks for most edge definitions consistently exhibited a highly convergent pattern in individual differences. Finally, the test-retest analysis revealed a decent temporal reproducibility for the patterns of between-method convergence/divergence. Together, the results of the present study demonstrated a measure-dependent effect of network construction methods on the individual difference of WM network properties. © 2015 Wiley Periodicals, Inc.
A neural-network potential through charge equilibration for WS2: From clusters to sheets
NASA Astrophysics Data System (ADS)
Hafizi, Roohollah; Ghasemi, S. Alireza; Hashemifar, S. Javad; Akbarzadeh, Hadi
2017-12-01
In the present work, we use a machine learning method to construct a high-dimensional potential for tungsten disulfide using a charge equilibration neural-network technique. A training set of stoichiometric WS2 clusters is prepared in the framework of density functional theory. After training the neural-network potential, the reliability and transferability of the potential are verified by performing a crystal structure search on bulk phases of WS2 and by plotting energy-area curves of two different monolayers. Then, we use the potential to investigate various triangular nano-clusters and nanotubes of WS2. In the case of nano-structures, we argue that 2H atomic configurations with sulfur rich edges are thermodynamically more stable than the other investigated configurations. We also studied a number of WS2 nanotubes which revealed that 1T tubes with armchair chirality exhibit lower bending stiffness.
Community Structure in Social Networks: Applications for Epidemiological Modelling
Kitchovitch, Stephan; Liò, Pietro
2011-01-01
During an infectious disease outbreak people will often change their behaviour to reduce their risk of infection. Furthermore, in a given population, the level of perceived risk of infection will vary greatly amongst individuals. The difference in perception could be due to a variety of factors including varying levels of information regarding the pathogen, quality of local healthcare, availability of preventative measures, etc. In this work we argue that we can split a social network, representing a population, into interacting communities with varying levels of awareness of the disease. We construct a theoretical population and study which such communities suffer most of the burden of the disease and how their awareness affects the spread of infection. We aim to gain a better understanding of the effects that community-structured networks and variations in awareness, or risk perception, have on the disease dynamics and to promote more community-resolved modelling in epidemiology. PMID:21789238
Socio-contextual Network Mining for User Assistance in Web-based Knowledge Gathering Tasks
NASA Astrophysics Data System (ADS)
Rajendran, Balaji; Kombiah, Iyakutti
Web-based Knowledge Gathering (WKG) is a specialized and complex information seeking task carried out by many users on the web, for their various learning, and decision-making requirements. We construct a contextual semantic structure by observing the actions of the users involved in WKG task, in order to gain an understanding of their task and requirement. We also build a knowledge warehouse in the form of a master Semantic Link Network (SLX) that accommodates and assimilates all the contextual semantic structures. This master SLX, which is a socio-contextual network, is then mined to provide contextual inputs to the current users through their agents. We validated our approach through experiments and analyzed the benefits to the users in terms of resource explorations and the time saved. The results are positive enough to motivate us to implement in a larger scale.
Fournier, Bertrand; Mouly, Arnaud; Gillet, François
2016-01-01
Understanding the factors underlying the co-occurrence of multiple species remains a challenge in ecology. Biotic interactions, environmental filtering and neutral processes are among the main mechanisms evoked to explain species co-occurrence. However, they are most often studied separately or even considered as mutually exclusive. This likely hampers a more global understanding of species assembly. Here, we investigate the general hypothesis that the structure of co-occurrence networks results from multiple assembly rules and its potential implications for grassland ecosystems. We surveyed orthopteran and plant communities in 48 permanent grasslands of the French Jura Mountains and gathered functional and phylogenetic data for all species. We constructed a network of plant and orthopteran species co-occurrences and verified whether its structure was modular or nested. We investigated the role of all species in the structure of the network (modularity and nestedness). We also investigated the assembly rules driving the structure of the plant-orthopteran co-occurrence network by using null models on species functional traits, phylogenetic relatedness and environmental conditions. We finally compared our results to abundance-based approaches. We found that the plant-orthopteran co-occurrence network had a modular organization. Community assembly rules differed among modules for plants while interactions with plants best explained the distribution of orthopterans into modules. Few species had a disproportionately high positive contribution to this modular organization and are likely to have a key importance to modulate future changes. The impact of agricultural practices was restricted to some modules (3 out of 5) suggesting that shifts in agricultural practices might not impact the entire plant-orthopteran co-occurrence network. These findings support our hypothesis that multiple assembly rules drive the modular structure of the plant-orthopteran network. This modular structure is likely to play a key role in the response of grassland ecosystems to future changes by limiting the impact of changes in agricultural practices such as intensification to some modules leaving species from other modules poorly impacted. The next step is to understand the importance of this modular structure for the long-term maintenance of grassland ecosystem structure and functions as well as to develop tools to integrate network structure into models to improve their capacity to predict future changes. PMID:27582754
Latent geometry of bipartite networks
NASA Astrophysics Data System (ADS)
Kitsak, Maksim; Papadopoulos, Fragkiskos; Krioukov, Dmitri
2017-03-01
Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.
Developmental Changes in Organization of Structural Brain Networks
Khundrakpam, Budhachandra S.; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C.; Ball, William S.; Byars, Anna Weber; Schapiro, Mark; Bommer, Wendy; Carr, April; German, April; Dunn, Scott; Rivkin, Michael J.; Waber, Deborah; Mulkern, Robert; Vajapeyam, Sridhar; Chiverton, Abigail; Davis, Peter; Koo, Julie; Marmor, Jacki; Mrakotsky, Christine; Robertson, Richard; McAnulty, Gloria; Brandt, Michael E.; Fletcher, Jack M.; Kramer, Larry A.; Yang, Grace; McCormack, Cara; Hebert, Kathleen M.; Volero, Hilda; Botteron, Kelly; McKinstry, Robert C.; Warren, William; Nishino, Tomoyuki; Robert Almli, C.; Todd, Richard; Constantino, John; McCracken, James T.; Levitt, Jennifer; Alger, Jeffrey; O'Neil, Joseph; Toga, Arthur; Asarnow, Robert; Fadale, David; Heinichen, Laura; Ireland, Cedric; Wang, Dah-Jyuu; Moss, Edward; Zimmerman, Robert A.; Bintliff, Brooke; Bradford, Ruth; Newman, Janice; Evans, Alan C.; Arnaoutelis, Rozalia; Bruce Pike, G.; Louis Collins, D.; Leonard, Gabriel; Paus, Tomas; Zijdenbos, Alex; Das, Samir; Fonov, Vladimir; Fu, Luke; Harlap, Jonathan; Leppert, Ilana; Milovan, Denise; Vins, Dario; Zeffiro, Thomas; Van Meter, John; Lange, Nicholas; Froimowitz, Michael P.; Botteron, Kelly; Robert Almli, C.; Rainey, Cheryl; Henderson, Stan; Nishino, Tomoyuki; Warren, William; Edwards, Jennifer L.; Dubois, Diane; Smith, Karla; Singer, Tish; Wilber, Aaron A.; Pierpaoli, Carlo; Basser, Peter J.; Chang, Lin-Ching; Koay, Chen Guan; Walker, Lindsay; Freund, Lisa; Rumsey, Judith; Baskir, Lauren; Stanford, Laurence; Sirocco, Karen; Gwinn-Hardy, Katrina; Spinella, Giovanna; McCracken, James T.; Alger, Jeffry R.; Levitt, Jennifer; O'Neill, Joseph
2013-01-01
Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8–8.4 year; late childhood: 8.5–11.3 year; early adolescence: 11.4–14.7 year; late adolescence: 14.8–18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces. PMID:22784607
Fractal Analysis of Drainage Basins on Mars
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Marinova, M. M.; McGovern, P. J.; Clifford, S. M.
2002-01-01
We used statistical properties of drainage networks on Mars as a measure of martian landscape morphology and an indicator of landscape evolution processes. We utilize the Mars Orbiter Laser Altimeter (MOLA) data to construct digital elevation maps (DEMs) of several, mostly ancient, martian terrains. Drainage basins and channel networks are computationally extracted from DEMs and their structures are analyzed and compared to drainage networks extracted from terrestrial and lunar DEMs. We show that martian networks are self-affine statistical fractals with planar properties similar to terrestrial networks, but vertical properties similar to lunar networks. The uniformity of martian drainage density is between those for terrestrial and lunar landscapes. Our results are consistent with the roughening of ancient martian terrains by combination of rainfall-fed erosion and impacts, although roughening by other fluvial processes cannot be excluded. The notion of sustained rainfall in recent Mars history is inconsistent with our findings.
Chimera states in brain networks: Empirical neural vs. modular fractal connectivity
NASA Astrophysics Data System (ADS)
Chouzouris, Teresa; Omelchenko, Iryna; Zakharova, Anna; Hlinka, Jaroslav; Jiruska, Premysl; Schöll, Eckehard
2018-04-01
Complex spatiotemporal patterns, called chimera states, consist of coexisting coherent and incoherent domains and can be observed in networks of coupled oscillators. The interplay of synchrony and asynchrony in complex brain networks is an important aspect in studies of both the brain function and disease. We analyse the collective dynamics of FitzHugh-Nagumo neurons in complex networks motivated by its potential application to epileptology and epilepsy surgery. We compare two topologies: an empirical structural neural connectivity derived from diffusion-weighted magnetic resonance imaging and a mathematically constructed network with modular fractal connectivity. We analyse the properties of chimeras and partially synchronized states and obtain regions of their stability in the parameter planes. Furthermore, we qualitatively simulate the dynamics of epileptic seizures and study the influence of the removal of nodes on the network synchronizability, which can be useful for applications to epileptic surgery.
Exploring the patterns and evolution of self-organized urban street networks through modeling
NASA Astrophysics Data System (ADS)
Rui, Yikang; Ban, Yifang; Wang, Jiechen; Haas, Jan
2013-03-01
As one of the most important subsystems in cities, urban street networks have recently been well studied by using the approach of complex networks. This paper proposes a growing model for self-organized urban street networks. The model involves a competition among new centers with different values of attraction radius and a local optimal principle of both geometrical and topological factors. We find that with the model growth, the local optimization in the connection process and appropriate probability for the loop construction well reflect the evolution strategy in real-world cities. Moreover, different values of attraction radius in centers competition process lead to morphological change in patterns including urban network, polycentric and monocentric structures. The model succeeds in reproducing a large diversity of road network patterns by varying parameters. The similarity between the properties of our model and empirical results implies that a simple universal growth mechanism exists in self-organized cities.
ERIC Educational Resources Information Center
Tirado, Ramón; Hernando, Ángel; Aguaded, José Ignacio
2015-01-01
Interactive relationships in online learning communities can influence the process and quality of knowledge building. The aim of this study is to empirically investigate the relationships between network structures and social knowledge building in an asynchronous writing environment through discussion forums in a learning management system. The…
ERIC Educational Resources Information Center
Tirado, Ramon; Hernando, Angel; Aguaded, Jose Ignacio
2012-01-01
Interactive relationships in online learning communities can influence the process and quality of knowledge building. The aim of this study is to empirically investigate the relationships between network structures and social knowledge building in an asynchronous writing environment through discussion forums in a learning management system. The…
NASA Technical Reports Server (NTRS)
Cochran, D. R.; Ishikawa, M. K.; Paulson, R. E.; Ramsey, H. R.
1975-01-01
A user guide for the Programming Language for Allocation and Network Scheduling (PLANS) is presented. Information is included for the construction of PLANS programs. The basic philosophy of PLANS is discussed, and access and update reference techniques are described along with the use of tree structures.
Jiang, Li; Tetrick, Lois E
2016-09-01
The present study introduced a preliminary measure of employee safety motivation based on the definition of self-determination theory from Fleming (2012) research and validated the structure of self-determined safety motivation (SDSM) by surveying 375 employees in a Chinese high-risk organization. First, confirmatory factor analysis (CFA) was used to examine the factor structure of SDSM, and indices of five-factor model CFA met the requirements. Second, a nomological network was examined to provide evidence of the construct validity of SDSM. Beyond construct validity, the analysis also produced some interesting results concerning the relationship between leadership antecedents and safety motivation, and between safety motivation and safety behavior. Autonomous motivation was positively related to transformational leadership, negatively related to abusive supervision, and positively related to safety behavior. Controlled motivation with the exception of introjected regulation was negatively related to transformational leadership, positively related to abusive supervision, and negatively related to safety behavior. The unique role of introjected regulation and future research based on self-determination theory were discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Luo, Xuan; Duan, Yuanling; Huang, Yanping; Zhang, Nanxi; Zhao, Liyan; Wu, Jie
2017-08-01
Two new inorganic-organic hybrid materials [Cu(enMe)2]2{(As2Mo6O26) [Cu(enMe)2]}·4H2O (1) and [As2Mo6(OH)2O24][Cu(H2O)2(phen)]2 (2) (enMe = 1,2'-propanediamine, phen = 1,10'-phenanthroline) based on [As2Mo6O26]6- building blocks, denoted as [As2Mo6], have been obtained by hydrothermal methods. 1 shows a 1-D straight chain structure constructed form [As2Mo6] building blocks and [Cu(enMe)2] complexes, and then extended to 3-D supramolecular network by lattice water via hydrogen bonds interactions. 2 exhibits a new 1-D covalent ribbon with large rectangular grids formed from [As2Mo6] building blocks connected by [Cu(H2O)2(phen)] complexes, then extended into 3-D supramolecular network via hydrogen bonds and π···π interactions. In additional, the photocatalytic activity for methylene blue degradation under visible-light irradiation of 2 was investigated.
Time-dependent breakdown of fiber networks: Uncertainty of lifetime
NASA Astrophysics Data System (ADS)
Mattsson, Amanda; Uesaka, Tetsu
2017-05-01
Materials often fail when subjected to stresses over a prolonged period. The time to failure, also called the lifetime, is known to exhibit large variability of many materials, particularly brittle and quasibrittle materials. For example, a coefficient of variation reaches 100% or even more. Its distribution shape is highly skewed toward zero lifetime, implying a large number of premature failures. This behavior contrasts with that of normal strength, which shows a variation of only 4%-10% and a nearly bell-shaped distribution. The fundamental cause of this large and unique variability of lifetime is not well understood because of the complex interplay between stochastic processes taking place on the molecular level and the hierarchical and disordered structure of the material. We have constructed fiber network models, both regular and random, as a paradigm for general material structures. With such networks, we have performed Monte Carlo simulations of creep failure to establish explicit relationships among fiber characteristics, network structures, system size, and lifetime distribution. We found that fiber characteristics have large, sometimes dominating, influences on the lifetime variability of a network. Among the factors investigated, geometrical disorders of the network were found to be essential to explain the large variability and highly skewed shape of the lifetime distribution. With increasing network size, the distribution asymptotically approaches a double-exponential form. The implication of this result is that, so-called "infant mortality," which is often predicted by the Weibull approximation of the lifetime distribution, may not exist for a large system.
Chang, Chiung-Chih; Tsai, Shih-Jen; Chen, Nai-Ching; Huang, Chi-Wei; Hsu, Shih-Wei; Chang, Ya-Ting; Liu, Mu-En; Chang, Wen-Neng; Tsai, Wan-Chen; Lee, Chen-Chang
2018-06-01
The catechol-O-methyltransferase enzyme metabolizes dopamine in the prefrontal axis, and its genetic polymorphism (rs4680; Val158Met) is a known determinant of dopamine signaling. In this study, we investigated the possible structural covariance networks that may be modulated by this functional polymorphism in patients with Alzheimer's disease. Structural covariance networks were constructed by 3D T1 magnetic resonance imaging. The patients were divided into two groups: Met-carriers (n = 91) and Val-homozygotes (n = 101). Seed-based analysis was performed focusing on triple-network models and six striatal networks. Neurobehavioral scores served as the major outcome factors. The role of seed or peak cluster volumes, or a covariance strength showing Met-carriers > Val-homozygotes were tested for the effect on dopamine. Clinically, the Met-carriers had higher mental manipulation and hallucination scores than the Val-homozygotes. The volume-score correlations suggested the significance of the putaminal seed in the Met-carriers and caudate seed in the Val-homozygotes. Only the dorsal-rostral and dorsal-caudal putamen interconnected peak clusters showed covariance strength interactions (Met-carriers > Val-homozygotes), and the peak clusters also correlated with the neurobehavioral scores. Although the triple-network model is important for a diagnosis of Alzheimer's disease, our results validated the role of the dorsal-putaminal-anchored network by the catechol-O-methyltransferase Val158Met polymorphism in predicting the severity of cognitive and behavior in subjects with Alzheimer's disease.
BIMLR: a method for constructing rooted phylogenetic networks from rooted phylogenetic trees.
Wang, Juan; Guo, Maozu; Xing, Linlin; Che, Kai; Liu, Xiaoyan; Wang, Chunyu
2013-09-15
Rooted phylogenetic trees constructed from different datasets (e.g. from different genes) are often conflicting with one another, i.e. they cannot be integrated into a single phylogenetic tree. Phylogenetic networks have become an important tool in molecular evolution, and rooted phylogenetic networks are able to represent conflicting rooted phylogenetic trees. Hence, the development of appropriate methods to compute rooted phylogenetic networks from rooted phylogenetic trees has attracted considerable research interest of late. The CASS algorithm proposed by van Iersel et al. is able to construct much simpler networks than other available methods, but it is extremely slow, and the networks it constructs are dependent on the order of the input data. Here, we introduce an improved CASS algorithm, BIMLR. We show that BIMLR is faster than CASS and less dependent on the input data order. Moreover, BIMLR is able to construct much simpler networks than almost all other methods. BIMLR is available at http://nclab.hit.edu.cn/wangjuan/BIMLR/. © 2013 Elsevier B.V. All rights reserved.
Network analysis of Chinese provincial economies
NASA Astrophysics Data System (ADS)
Sun, Xiaoqi; An, Haizhong; Liu, Xiaojia
2018-02-01
Global economic system is a huge network formed by national subnetworks that contains the provincial networks. As the second largest world economy, China has "too big to fail" impact on the interconnected global economy. Detecting the critical sectors and vital linkages inside Chinese economic network is meaningful for understanding the origin of this Chinese impact. Different from tradition network research at national level, this paper focuses on the provincial networks and inter-provincial network. Using Chinese inter-regional input-output table to construct 30 provincial input-output networks and one inter-provincial input-output network, we identify central sectors and vital linkages, as well as analyze economic structure similarity. Results show that (1) Communication Devices sector in Guangdong and that in Jiangsu, Transportation and Storage sector in Shanghai play critical roles in Chinese economy. (2) Advanced manufactures and services industry occupy the central positions in eastern provincial economies, while Construction sector, Heavy industry, and Wholesale and Retail Trades sector are influential in middle and western provinces. (3) The critical monetary flow paths in Chinese economy are Communication Devices sector to Communication Devices sector in Guangdong, Metals Mining sector to Iron and Steel Smelting sector in Henan, Communication Devices sector to Communication Devices sector in Jiangsu, as well as Petroleum Mining sector in Heilongjiang to Petroleum Processing sector in Liaoning. (4) Collective influence results suggest that Finance sector, Transportation and Storage sector, Production of Electricity and Heat sector, and Rubber and Plastics sector in Hainan are strategic influencers, despite being weakly connected. These sectors and input-output relations are worthy of close attention for monitoring Chinese economy.
Lindner, Michael; Donner, Reik V
2017-03-01
We study the Lagrangian dynamics of passive tracers in a simple model of a driven two-dimensional vortex resembling real-world geophysical flow patterns. Using a discrete approximation of the system's transfer operator, we construct a directed network that describes the exchange of mass between distinct regions of the flow domain. By studying different measures characterizing flow network connectivity at different time-scales, we are able to identify the location of dynamically invariant structures and regions of maximum dispersion. Specifically, our approach allows us to delimit co-existing flow regimes with different dynamics. To validate our findings, we compare several network characteristics to the well-established finite-time Lyapunov exponents and apply a receiver operating characteristic analysis to identify network measures that are particularly useful for unveiling the skeleton of Lagrangian chaos.
Long-term variability of global statistical properties of epileptic brain networks
NASA Astrophysics Data System (ADS)
Kuhnert, Marie-Therese; Elger, Christian E.; Lehnertz, Klaus
2010-12-01
We investigate the influence of various pathophysiologic and physiologic processes on global statistical properties of epileptic brain networks. We construct binary functional networks from long-term, multichannel electroencephalographic data recorded from 13 epilepsy patients, and the average shortest path length and the clustering coefficient serve as global statistical network characteristics. For time-resolved estimates of these characteristics we observe large fluctuations over time, however, with some periodic temporal structure. These fluctuations can—to a large extent—be attributed to daily rhythms while relevant aspects of the epileptic process contribute only marginally. Particularly, we could not observe clear cut changes in network states that can be regarded as predictive of an impending seizure. Our findings are of particular relevance for studies aiming at an improved understanding of the epileptic process with graph-theoretical approaches.
Nie, Jingxin; Li, Gang; Wang, Li; Shi, Feng; Lin, Weili; Gilmore, John H; Shen, Dinggang
2014-08-01
Quantitatively characterizing the development of cortical anatomical networks during the early stage of life plays an important role in revealing the relationship between cortical structural connection and high-level functional development. The development of correlation networks of cortical-thickness, cortical folding, and fiber-density is systematically analyzed in this article to study the relationship between different anatomical properties during the first 2 years of life. Specifically, longitudinal MR images of 73 healthy subjects from birth to 2 year old are used. For each subject at each time point, its measures of cortical thickness, cortical folding, and fiber density are projected to its cortical surface that has been partitioned into 78 cortical regions. Then, the correlation matrices for cortical thickness, cortical folding, and fiber density at each time point can be constructed, respectively, by computing the inter-regional Pearson correlation coefficient (of any pair of ROIs) across all 73 subjects. Finally, the presence/absence pattern (i.e., binary pattern) of the connection network is constructed from each inter-regional correlation matrix, and its statistical and anatomical properties are adopted to analyze the longitudinal development of anatomical networks. The results show that the development of anatomical network could be characterized differently by using different anatomical properties (i.e., using cortical thickness, cortical folding, or fiber density). Copyright © 2013 Wiley Periodicals, Inc.
Optimization of robustness of interdependent network controllability by redundant design
2018-01-01
Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy) or DBS (degree based strategy) for node backup and HDF(high degree first) for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability. PMID:29438426
Flow interaction based propagation model and bursty influence behavior analysis of Internet flows
NASA Astrophysics Data System (ADS)
Wu, Xiao-Yu; Gu, Ren-Tao; Ji, Yue-Feng
2016-11-01
QoS (quality of service) fluctuations caused by Internet bursty flows influence the user experience in the Internet, such as the increment of packet loss and transmission time. In this paper, we establish a mathematical model to study the influence propagation behavior of the bursty flow, which is helpful for developing a deep understanding of the network dynamics in the Internet complex system. To intuitively reflect the propagation process, a data flow interaction network with a hierarchical structure is constructed, where the neighbor order is proposed to indicate the neighborhood relationship between the bursty flow and other flows. The influence spreads from the bursty flow to each order of neighbors through flow interactions. As the influence spreads, the bursty flow has negative effects on the odd order neighbors and positive effects on the even order neighbors. The influence intensity of bursty flow decreases sharply between two adjacent orders and the decreasing degree can reach up to dozens of times in the experimental simulation. Moreover, the influence intensity increases significantly when network congestion situation becomes serious, especially for the 1st order neighbors. Network structural factors are considered to make a further study. Simulation results show that the physical network scale expansion can reduce the influence intensity of bursty flow by decreasing the flow distribution density. Furthermore, with the same network scale, the influence intensity in WS small-world networks is 38.18% and 18.40% lower than that in ER random networks and BA scale-free networks, respectively, due to a lower interaction probability between flows. These results indicate that the macro-structural changes such as network scales and styles will affect the inner propagation behaviors of the bursty flow.
Neural network-based model reference adaptive control system.
Patino, H D; Liu, D
2000-01-01
In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.
AST: Activity-Security-Trust driven modeling of time varying networks
Wang, Jian; Xu, Jiake; Liu, Yanheng; Deng, Weiwen
2016-01-01
Network modeling is a flexible mathematical structure that enables to identify statistical regularities and structural principles hidden in complex systems. The majority of recent driving forces in modeling complex networks are originated from activity, in which an activity potential of a time invariant function is introduced to identify agents’ interactions and to construct an activity-driven model. However, the new-emerging network evolutions are already deeply coupled with not only the explicit factors (e.g. activity) but also the implicit considerations (e.g. security and trust), so more intrinsic driving forces behind should be integrated into the modeling of time varying networks. The agents undoubtedly seek to build a time-dependent trade-off among activity, security, and trust in generating a new connection to another. Thus, we reasonably propose the Activity-Security-Trust (AST) driven model through synthetically considering the explicit and implicit driving forces (e.g. activity, security, and trust) underlying the decision process. AST-driven model facilitates to more accurately capture highly dynamical network behaviors and figure out the complex evolution process, allowing a profound understanding of the effects of security and trust in driving network evolution, and improving the biases induced by only involving activity representations in analyzing the dynamical processes. PMID:26888717
The Network Structure of Symptoms of the Diagnostic and Statistical Manual of Mental Disorders.
Boschloo, Lynn; van Borkulo, Claudia D; Rhemtulla, Mijke; Keyes, Katherine M; Borsboom, Denny; Schoevers, Robert A
2015-01-01
Although current classification systems have greatly contributed to the reliability of psychiatric diagnoses, they ignore the unique role of individual symptoms and, consequently, potentially important information is lost. The network approach, in contrast, assumes that psychopathology results from the causal interplay between psychiatric symptoms and focuses specifically on these symptoms and their complex associations. By using a sophisticated network analysis technique, this study constructed an empirically based network structure of 120 psychiatric symptoms of twelve major DSM-IV diagnoses using cross-sectional data of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC, second wave; N = 34,653). The resulting network demonstrated that symptoms within the same diagnosis showed differential associations and indicated that the strategy of summing symptoms, as in current classification systems, leads to loss of information. In addition, some symptoms showed strong connections with symptoms of other diagnoses, and these specific symptom pairs, which both concerned overlapping and non-overlapping symptoms, may help to explain the comorbidity across diagnoses. Taken together, our findings indicated that psychopathology is very complex and can be more adequately captured by sophisticated network models than current classification systems. The network approach is, therefore, promising in improving our understanding of psychopathology and moving our field forward.
The cognitive structural approach for image restoration
NASA Astrophysics Data System (ADS)
Mardare, Igor; Perju, Veacheslav; Casasent, David
2008-03-01
It is analyzed the important and actual problem of the defective images of scenes restoration. The proposed approach provides restoration of scenes by a system on the basis of human intelligence phenomena reproduction used for restoration-recognition of images. The cognitive models of the restoration process are elaborated. The models are realized by the intellectual processors constructed on the base of neural networks and associative memory using neural network simulator NNToolbox from MATLAB 7.0. The models provides restoration and semantic designing of images of scenes under defective images of the separate objects.
NASA Astrophysics Data System (ADS)
Sliva, Amy L.; Gorman, Joe; Voshell, Martin; Tittle, James; Bowman, Christopher
2016-05-01
The Dual Node Decision Wheels (DNDW) architecture concept was previously described as a novel approach toward integrating analytic and decision-making processes in joint human/automation systems in highly complex sociotechnical settings. In this paper, we extend the DNDW construct with a description of components in this framework, combining structures of the Dual Node Network (DNN) for Information Fusion and Resource Management with extensions on Rasmussen's Decision Ladder (DL) to provide guidance on constructing information systems that better serve decision-making support requirements. The DNN takes a component-centered approach to system design, decomposing each asset in terms of data inputs and outputs according to their roles and interactions in a fusion network. However, to ensure relevancy to and organizational fitment within command and control (C2) processes, principles from cognitive systems engineering emphasize that system design must take a human-centered systems view, integrating information needs and decision making requirements to drive the architecture design and capabilities of network assets. In the current work, we present an approach for structuring and assessing DNDW systems that uses a unique hybrid DNN top-down system design with a human-centered process design, combining DNN node decomposition with artifacts from cognitive analysis (i.e., system abstraction decomposition models, decision ladders) to provide work domain and task-level insights at different levels in an example intelligence, surveillance, and reconnaissance (ISR) system setting. This DNDW structure will ensure not only that the information fusion technologies and processes are structured effectively, but that the resulting information products will align with the requirements of human decision makers and be adaptable to different work settings .
Scale-free effect of substitution networks
NASA Astrophysics Data System (ADS)
Li, Ziyu; Yu, Zhouyu; Xi, Lifeng
2018-02-01
In this paper, we construct the growing networks in terms of substitution rule. Roughly speaking, we replace edges of different colors with different initial graphs. Then the evolving networks are constructed. We obtained the free-scale effect of our substitution networks.
Network evolution induced by asynchronous stimuli through spike-timing-dependent plasticity.
Yuan, Wu-Jie; Zhou, Jian-Fang; Zhou, Changsong
2013-01-01
In sensory neural system, external asynchronous stimuli play an important role in perceptual learning, associative memory and map development. However, the organization of structure and dynamics of neural networks induced by external asynchronous stimuli are not well understood. Spike-timing-dependent plasticity (STDP) is a typical synaptic plasticity that has been extensively found in the sensory systems and that has received much theoretical attention. This synaptic plasticity is highly sensitive to correlations between pre- and postsynaptic firings. Thus, STDP is expected to play an important role in response to external asynchronous stimuli, which can induce segregative pre- and postsynaptic firings. In this paper, we study the impact of external asynchronous stimuli on the organization of structure and dynamics of neural networks through STDP. We construct a two-dimensional spatial neural network model with local connectivity and sparseness, and use external currents to stimulate alternately on different spatial layers. The adopted external currents imposed alternately on spatial layers can be here regarded as external asynchronous stimuli. Through extensive numerical simulations, we focus on the effects of stimulus number and inter-stimulus timing on synaptic connecting weights and the property of propagation dynamics in the resulting network structure. Interestingly, the resulting feedforward structure induced by stimulus-dependent asynchronous firings and its propagation dynamics reflect both the underlying property of STDP. The results imply a possible important role of STDP in generating feedforward structure and collective propagation activity required for experience-dependent map plasticity in developing in vivo sensory pathways and cortices. The relevance of the results to cue-triggered recall of learned temporal sequences, an important cognitive function, is briefly discussed as well. Furthermore, this finding suggests a potential application for examining STDP by measuring neural population activity in a cultured neural network.
Influence of the Time Scale on the Construction of Financial Networks
Emmert-Streib, Frank; Dehmer, Matthias
2010-01-01
Background In this paper we investigate the definition and formation of financial networks. Specifically, we study the influence of the time scale on their construction. Methodology/Principal Findings For our analysis we use correlation-based networks obtained from the daily closing prices of stock market data. More precisely, we use the stocks that currently comprise the Dow Jones Industrial Average (DJIA) and estimate financial networks where nodes correspond to stocks and edges correspond to none vanishing correlation coefficients. That means only if a correlation coefficient is statistically significant different from zero, we include an edge in the network. This construction procedure results in unweighted, undirected networks. By separating the time series of stock prices in non-overlapping intervals, we obtain one network per interval. The length of these intervals corresponds to the time scale of the data, whose influence on the construction of the networks will be studied in this paper. Conclusions/Significance Numerical analysis of four different measures in dependence on the time scale for the construction of networks allows us to gain insights about the intrinsic time scale of the stock market with respect to a meaningful graph-theoretical analysis. PMID:20949124
Spike phase synchronization in multiplex cortical neural networks
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2017-01-01
In this paper we study synchronizability of two multiplex cortical networks: whole-cortex of hermaphrodite C. elegans and posterior cortex in male C. elegans. These networks are composed of two connection layers: network of chemical synapses and the one formed by gap junctions. This work studies the contribution of each layer on the phase synchronization of non-identical spiking Hindmarsh-Rose neurons. The network of male C. elegans shows higher phase synchronization than its randomized version, while it is not the case for hermaphrodite type. The random networks in each layer are constructed such that the nodes have the same degree as the original network, thus providing an unbiased comparison. In male C. elegans, although the gap junction network is sparser than the chemical network, it shows higher contribution in the synchronization phenomenon. This is not the case in hermaphrodite type, which is mainly due to significant less density of gap junction layer (0.013) as compared to chemical layer (0.028). Also, the gap junction network in this type has stronger community structure than the chemical network, and this is another driving factor for its weaker synchronizability.
Minimum complexity echo state network.
Rodan, Ali; Tino, Peter
2011-01-01
Reservoir computing (RC) refers to a new class of state-space models with a fixed state transition structure (the reservoir) and an adaptable readout form the state space. The reservoir is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be exploited by the reservoir-to-output readout mapping. The field of RC has been growing rapidly with many successful applications. However, RC has been criticized for not being principled enough. Reservoir construction is largely driven by a series of randomized model-building stages, with both researchers and practitioners having to rely on a series of trials and errors. To initialize a systematic study of the field, we concentrate on one of the most popular classes of RC methods, namely echo state network, and ask: What is the minimal complexity of reservoir construction for obtaining competitive models and what is the memory capacity (MC) of such simplified reservoirs? On a number of widely used time series benchmarks of different origin and characteristics, as well as by conducting a theoretical analysis we show that a simple deterministically constructed cycle reservoir is comparable to the standard echo state network methodology. The (short-term) MC of linear cyclic reservoirs can be made arbitrarily close to the proved optimal value.
NASA Astrophysics Data System (ADS)
Qi, Xingqin; Song, Huimin; Wu, Jianliang; Fuller, Edgar; Luo, Rong; Zhang, Cun-Quan
2017-09-01
Clustering algorithms for unsigned social networks which have only positive edges have been studied intensively. However, when a network has like/dislike, love/hate, respect/disrespect, or trust/distrust relationships, unsigned social networks with only positive edges are inadequate. Thus we model such kind of networks as signed networks which can have both negative and positive edges. Detecting the cluster structures of signed networks is much harder than for unsigned networks, because it not only requires that positive edges within clusters are as many as possible, but also requires that negative edges between clusters are as many as possible. Currently, we have few clustering algorithms for signed networks, and most of them requires the number of final clusters as an input while it is actually hard to predict beforehand. In this paper, we will propose a novel clustering algorithm called Eb &D for signed networks, where both the betweenness of edges and the density of subgraphs are used to detect cluster structures. A hierarchically nested system will be constructed to illustrate the inclusion relationships of clusters. To show the validity and efficiency of Eb &D, we test it on several classical social networks and also hundreds of synthetic data sets, and all obtain better results compared with other methods. The biggest advantage of Eb &D compared with other methods is that the number of clusters do not need to be known prior.
Hierarchical sequencing of online social graphs
NASA Astrophysics Data System (ADS)
Andjelković, Miroslav; Tadić, Bosiljka; Maletić, Slobodan; Rajković, Milan
2015-10-01
In online communications, patterns of conduct of individual actors and use of emotions in the process can lead to a complex social graph exhibiting multilayered structure and mesoscopic communities. Using simplicial complexes representation of graphs, we investigate in-depth topology of the online social network constructed from MySpace dialogs which exhibits original community structure. A simulation of emotion spreading in this network leads to the identification of two emotion-propagating layers. Three topological measures are introduced, referred to as the structure vectors, which quantify graph's architecture at different dimension levels. Notably, structures emerging through shared links, triangles and tetrahedral faces, frequently occur and range from tree-like to maximal 5-cliques and their respective complexes. On the other hand, the structures which spread only negative or only positive emotion messages appear to have much simpler topology consisting of links and triangles. The node's structure vector represents the number of simplices at each topology level in which the node resides and the total number of such simplices determines what we define as the node's topological dimension. The presented results suggest that the node's topological dimension provides a suitable measure of the social capital which measures the actor's ability to act as a broker in compact communities, the so called Simmelian brokerage. We also generalize the results to a wider class of computer-generated networks. Investigating components of the node's vector over network layers reveals that same nodes develop different socio-emotional relations and that the influential nodes build social capital by combining their connections in different layers.
Tsang, Seng-Su; Chen, Tzu-Yin; Wang, Shih-Fong; Tai, Hsin-Ling
2012-03-01
The nursing workplace imposes significantly more stress on its employees than other workplace settings. Organizational resources, both physical and psychological, have been recognized in prior studies as important alleviators of nursing workplace stress. Whereas physical resources are less difficult to manipulate because of their tangibility, psychological resources, particularly psychological support from colleagues, are typically not deployed to greatest effect. This article investigated the alleviation of nursing work stress using resources already extant in coworker social networks. Researchers conducted a survey in a dialysis department at a medical center located in Taipei City, Taiwan. This survey measured nurse work stress, satisfaction, organizational citizenship behavior (OCB) and social network structures. Researchers employed UCINET to analyze the network structure data, which were in dyadic matrix format to estimate nurse network centralities and used partial least squares analysis to estimate research construct path coefficients and test extrapolated hypotheses. The level of OCB induced by nurse social ties was satisfactory and did not only directly increased work satisfaction but also alleviated work stress, which indirectly boosted work satisfaction. Findings suggest that managers may be able to use social network analysis to identify persons appropriate to conduct the distribution of organizational resources. Choosing those with multiple social connections can help distribute resources effectively and induce higher OCB levels within the organization. In addition, staff with strong friendship network connections may provide appropriate psychological resources (support) to coworkers. If those with high friendship network centrality receive proper counseling training, they should be in a good position to provide assistance when needed.
Grain-Boundary Resistance in Copper Interconnects: From an Atomistic Model to a Neural Network
NASA Astrophysics Data System (ADS)
Valencia, Daniel; Wilson, Evan; Jiang, Zhengping; Valencia-Zapata, Gustavo A.; Wang, Kuang-Chung; Klimeck, Gerhard; Povolotskyi, Michael
2018-04-01
Orientation effects on the specific resistance of copper grain boundaries are studied systematically with two different atomistic tight-binding methods. A methodology is developed to model the specific resistance of grain boundaries in the ballistic limit using the embedded atom model, tight- binding methods, and nonequilibrium Green's functions. The methodology is validated against first-principles calculations for thin films with a single coincident grain boundary, with 6.4% deviation in the specific resistance. A statistical ensemble of 600 large, random structures with grains is studied. For structures with three grains, it is found that the distribution of specific resistances is close to normal. Finally, a compact model for grain-boundary-specific resistance is constructed based on a neural network.
Bi, Dongbin; Ning, Hao; Liu, Shuai; Que, Xinxiang; Ding, Kejia
2015-06-01
To explore molecular mechanisms of bladder cancer (BC), network strategy was used to find biomarkers for early detection and diagnosis. The differentially expressed genes (DEGs) between bladder carcinoma patients and normal subjects were screened using empirical Bayes method of the linear models for microarray data package. Co-expression networks were constructed by differentially co-expressed genes and links. Regulatory impact factors (RIF) metric was used to identify critical transcription factors (TFs). The protein-protein interaction (PPI) networks were constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and clusters were obtained through molecular complex detection (MCODE) algorithm. Centralities analyses for complex networks were performed based on degree, stress and betweenness. Enrichment analyses were performed based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Co-expression networks and TFs (based on expression data of global DEGs and DEGs in different stages and grades) were identified. Hub genes of complex networks, such as UBE2C, ACTA2, FABP4, CKS2, FN1 and TOP2A, were also obtained according to analysis of degree. In gene enrichment analyses of global DEGs, cell adhesion, proteinaceous extracellular matrix and extracellular matrix structural constituent were top three GO terms. ECM-receptor interaction, focal adhesion, and cell cycle were significant pathways. Our results provide some potential underlying biomarkers of BC. However, further validation is required and deep studies are needed to elucidate the pathogenesis of BC. Copyright © 2015 Elsevier Ltd. All rights reserved.
Farrar, Danielle C; Mian, Asim Z; Budson, Andrew E; Moss, Mark B; Koo, Bang Bon; Killiany, Ronald J
2018-01-01
To describe structural network differences in individuals with mild cognitive impairment (MCI) with high versus low executive abilities, as reflected by measures of white matter connectivity using diffusion tensor imaging (DTI). This was a retrospective, cross-sectional study. Of the 128 participants from the Alzheimer's Disease Neuroimaging Initiative database who had both a DTI scan as well as a diagnosis of MCI, we used an executive function score to classify the top 15 scoring patients as high executive ability, and the bottom-scoring 16 patients as low executive ability. Using a regions-of-interest-based analysis, we constructed networks and calculated graph theory measures on the constructed networks. We used automated tractography in order to compare differences in major white matter tracts. The high executive ability group yielded greater network size, density and clustering coefficient. The high executive ability group reflected greater fractional anisotropy bilaterally in the inferior and superior longitudinal fasciculi. The network measures of the high executive ability group demonstrated greater white matter integrity. This suggests that white matter reserve may confer greater protection of executive abilities. Loss of this reserve may lead to greater impairment in the progression to Alzheimer's disease dementia. • The MCI high executive ability group yielded a larger network. • The MCI high executive ability group had greater FA in numerous tracts. • White matter reserve may confer greater protection of executive abilities. • Loss of executive reserve may lead to greater impairment in AD dementia.
Structures, Energetics and Spectroscopic Fingerprints of Water Clusters n=2-24
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Soohaeng; Xantheas, Sotiris S.
This chapter discusses the structures, energetics, and vibrational spectra of the first few (n$24) water clusters obtained from high-level electronic structure calculations. The results are discussed in the perspective of being used to parameterize/assess the accuracy of classical and quantum force fields for water. To this end, a general introduction with the classification of those force fields is presented. Several low-lying families of minima for the medium cluster sizes are considered. The transition from the “all surface” to the “fully coordinated” cluster structures occurring at nD17 and its spectroscopic signature is presented. The various families of minima for nD20 aremore » discussed together with the low energy networks of the pentagonal dodecahedron (H2O)20 water cage. Finally, the low-energy networks of the tetrakaidecahedron (T-cage) (H2O)24 cluster are shown and their significance in the construction of periodic lattices of structure I (sI) of the hydrate lattices is discussed.« less