Science.gov

Sample records for network-based fuzzy inference

  1. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system

    SciTech Connect

    Djukanovic, M.B.; Calovic, M.S.; Vesovic, B.V.; Sobajic, D.J.

    1997-12-01

    This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.

  2. Adaptive network based on fuzzy inference system for equilibrated urea concentration prediction.

    PubMed

    Azar, Ahmad Taher

    2013-09-01

    Post-dialysis urea rebound (PDUR) has been attributed mostly to redistribution of urea from different compartments, which is determined by variations in regional blood flows and transcellular urea mass transfer coefficients. PDUR occurs after 30-90min of short or standard hemodialysis (HD) sessions and after 60min in long 8-h HD sessions, which is inconvenient. This paper presents adaptive network based on fuzzy inference system (ANFIS) for predicting intradialytic (Cint) and post-dialysis urea concentrations (Cpost) in order to predict the equilibrated (Ceq) urea concentrations without any blood sampling from dialysis patients. The accuracy of the developed system was prospectively compared with other traditional methods for predicting equilibrated urea (Ceq), post dialysis urea rebound (PDUR) and equilibrated dialysis dose (eKt/V). This comparison is done based on root mean squares error (RMSE), normalized mean square error (NRMSE), and mean absolute percentage error (MAPE). The ANFIS predictor for Ceq achieved mean RMSE values of 0.3654 and 0.4920 for training and testing, respectively. The statistical analysis demonstrated that there is no statistically significant difference found between the predicted and the measured values. The percentage of MAE and RMSE for testing phase is 0.63% and 0.96%, respectively. PMID:23806679

  3. Seasonal rainfall forecasting by adaptive network-based fuzzy inference system (ANFIS) using large scale climate signals

    NASA Astrophysics Data System (ADS)

    Mekanik, F.; Imteaz, M. A.; Talei, A.

    2016-05-01

    Accurate seasonal rainfall forecasting is an important step in the development of reliable runoff forecast models. The large scale climate modes affecting rainfall in Australia have recently been proven useful in rainfall prediction problems. In this study, adaptive network-based fuzzy inference systems (ANFIS) models are developed for the first time for southeast Australia in order to forecast spring rainfall. The models are applied in east, center and west Victoria as case studies. Large scale climate signals comprising El Nino Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Inter-decadal Pacific Ocean (IPO) are selected as rainfall predictors. Eight models are developed based on single climate modes (ENSO, IOD, and IPO) and combined climate modes (ENSO-IPO and ENSO-IOD). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson correlation coefficient (r) and root mean square error in probability (RMSEP) skill score are used to evaluate the performance of the proposed models. The predictions demonstrate that ANFIS models based on individual IOD index perform superior in terms of RMSE, MAE and r to the models based on individual ENSO indices. It is further discovered that IPO is not an effective predictor for the region and the combined ENSO-IOD and ENSO-IPO predictors did not improve the predictions. In order to evaluate the effectiveness of the proposed models a comparison is conducted between ANFIS models and the conventional Artificial Neural Network (ANN), the Predictive Ocean Atmosphere Model for Australia (POAMA) and climatology forecasts. POAMA is the official dynamic model used by the Australian Bureau of Meteorology. The ANFIS predictions certify a superior performance for most of the region compared to ANN and climatology forecasts. POAMA performs better in regards to RMSE and MAE in east and part of central Victoria, however, compared to ANFIS it shows weaker results in west Victoria in terms of prediction errors and RMSEP skill

  4. An Adaptive Network-based Fuzzy Inference System for the detection of thermal and TEC anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake of 11 August 2012

    NASA Astrophysics Data System (ADS)

    Akhoondzadeh, M.

    2013-09-01

    Anomaly detection is extremely important for forecasting the date, location and magnitude of an impending earthquake. In this paper, an Adaptive Network-based Fuzzy Inference System (ANFIS) has been proposed to detect the thermal and Total Electron Content (TEC) anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake jolted in 11 August 2012 NW Iran. ANFIS is the famous hybrid neuro-fuzzy network for modeling the non-linear complex systems. In this study, also the detected thermal and TEC anomalies using the proposed method are compared to the results dealing with the observed anomalies by applying the classical and intelligent methods including Interquartile, Auto-Regressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN) and Support Vector Machine (SVM) methods. The duration of the dataset which is comprised from Aqua-MODIS Land Surface Temperature (LST) night-time snapshot images and also Global Ionospheric Maps (GIM), is 62 days. It can be shown that, if the difference between the predicted value using the ANFIS method and the observed value, exceeds the pre-defined threshold value, then the observed precursor value in the absence of non seismic effective parameters could be regarded as precursory anomaly. For two precursors of LST and TEC, the ANFIS method shows very good agreement with the other implemented classical and intelligent methods and this indicates that ANFIS is capable of detecting earthquake anomalies. The applied methods detected anomalous occurrences 1 and 2 days before the earthquake. This paper indicates that the detection of the thermal and TEC anomalies derive their credibility from the overall efficiencies and potentialities of the five integrated methods.

  5. Evaluation of fuzzy inference systems using fuzzy least squares

    NASA Technical Reports Server (NTRS)

    Barone, Joseph M.

    1992-01-01

    Efforts to develop evaluation methods for fuzzy inference systems which are not based on crisp, quantitative data or processes (i.e., where the phenomenon the system is built to describe or control is inherently fuzzy) are just beginning. This paper suggests that the method of fuzzy least squares can be used to perform such evaluations. Regressing the desired outputs onto the inferred outputs can provide both global and local measures of success. The global measures have some value in an absolute sense, but they are particularly useful when competing solutions (e.g., different numbers of rules, different fuzzy input partitions) are being compared. The local measure described here can be used to identify specific areas of poor fit where special measures (e.g., the use of emphatic or suppressive rules) can be applied. Several examples are discussed which illustrate the applicability of the method as an evaluation tool.

  6. Research on target recognition techniques of radar networking based on fuzzy mathematics

    NASA Astrophysics Data System (ADS)

    Guan, Chengbin; Wang, Guohong; Guan, Chengzhun; Pan, Jinshan

    2007-11-01

    Nowadays there are more and more targets, so it is more difficult for radar networking to track the important targets. To reduce the pressure on radar networking and the waste of ammunition, it is very necessary for radar networking to recognize the targets. Two target recognition approaches of radar networking based on fuzzy mathematics are proposed in this paper, which are multi-level fuzzy synthetical evaluation technique and lattice approaching degree technique. By analyzing the principles, the application techniques are given, the merits and shortcomings are also analyzed, and applying environments are advised. Another emphasis is the compare between the multiple mono-level fuzzy synthetical evaluation and the multi-level fuzzy synthetical evaluation, an instance is carried out to illuminate the problem, then the results are analyzed in theory, the conclusions are gotten which can be instructions for application in engineering.

  7. Optimal fuzzy inference for short-term load forecasting

    SciTech Connect

    Mori, Hiroyuki; Kobayashi, Hidenori

    1996-02-01

    This paper proposes an optimal fuzzy inference method for short-term load forecasting. The proposed method constructs an optimal structure of the simplified fuzzy inference that minimizes model errors and the number of the membership functions to grasp nonlinear behavior of power system short-term loads. The model is identified by simulated annealing and the steepest descent method. The proposed method is demonstrated in examples.

  8. Optimal fuzzy inference for short-term load forecasting

    SciTech Connect

    Mori, Hiroyuki; Kobayashi, Hidenori

    1995-12-31

    This paper proposes an optimal fuzzy inference method for short-term load forecasting. The proposed method constructs an optimal structure of the simplified fuzzy inference that minimizes model errors and the number of the membership functions to grasp nonlinear behavior of power system short-term loads. The model is identified by simulated annealing and the steepest descent method. The proposed method is demonstrated in examples.

  9. Streamflow Forecasting Using Nuero-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Nanduri, U. V.; Swain, P. C.

    2005-12-01

    Neuro-Fuzzy model is developed to forecast ten-daily flows into the Hirakud reservoir on River Mahanadi in the state of Orissa in India. Correlation analysis is carried out to find out the most influential variables on the ten daily flow at Hirakud. Based on this analysis, four variables, namely, flow during the previous time period, ql1, rainfall during the previous two time periods, rl1 and rl2, and flow during the same period in previous year, qpy, are identified as the most influential variables to forecast the ten daily flow. Performance measures such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and coefficient of efficiency R2 are computed for training and testing phases of the model to evaluate its performance. The results indicate that the ten-daily forecasting model is efficient in predicting the high and medium flows with reasonable accuracy. The forecast of low flows is associated with less efficiency. REFERENCES Jang, J.S.R. (1993). "ANFIS: Adaptive - network- based fuzzy inference system." IEEE Trans. on Systems, Man and Cybernetics, 23 (3), 665-685. Shamseldin, A.Y. (1997). "Application of a neural network technique to rainfall-runoff modeling." Journal of Hydrology, 199, 272-294. World Meteorological Organization (1975). Intercomparison of conceptual models used in operational hydrological forecasting. World Meteorological Organization, Technical Report No.429, Geneva, Switzerland.

  10. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    PubMed

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  11. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    PubMed

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  12. Inference of Gene Regulatory Network Based on Local Bayesian Networks

    PubMed Central

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Chen, Luonan

    2016-01-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  13. Fuzzy inference of soil patterns: Implications for watershed modeling

    NASA Astrophysics Data System (ADS)

    Zhu, A.-Xing

    A fuzzy inference scheme for inferring and representing detailed soil spatial information is first reviewed. This scheme consists of two major components: a fuzzy logic-based model (called a similarity model) and a set of inference techniques. Under the similarity model the soil landscape is perceived as a continuum in both its parameter space and geographic space so that detailed spatial variation of soil information can be represented. A set of inference techniques were used to populate this similarity model by combining the knowledge of soil experts with data on soil formative environment. The provision of this detailed soil spatial information represented under this similarity model has significant implications for watershed modeling, particularly for solute transport modeling in the vadose zone. It was found that the characterization of a key soil parameter (solum depth) based on the soil spatial information derived from the fuzzy inference scheme differs significantly from that derived from the conventional soil map for watershed modeling using a lumped-parameter approach. It was also found that the provision of this detailed soil spatial information allows the realistic characterization of the spatial covariation of landscape parameters for distributed modeling at the watershed scale. Specifically, the within-land-unit variation of solum depth is more realistically characterized using the inferred soil spatial information than using the conventional soil map.

  14. Seizure prediction using adaptive neuro-fuzzy inference system.

    PubMed

    Rabbi, Ahmed F; Azinfar, Leila; Fazel-Rezai, Reza

    2013-01-01

    In this study, we present a neuro-fuzzy approach of seizure prediction from invasive Electroencephalogram (EEG) by applying adaptive neuro-fuzzy inference system (ANFIS). Three nonlinear seizure predictive features were extracted from a patient's data obtained from the European Epilepsy Database, one of the most comprehensive EEG database for epilepsy research. A total of 36 hours of recordings including 7 seizures was used for analysis. The nonlinear features used in this study were similarity index, phase synchronization, and nonlinear interdependence. We designed an ANFIS classifier constructed based on these features as input. Fuzzy if-then rules were generated by the ANFIS classifier using the complex relationship of feature space provided during training. The membership function optimization was conducted based on a hybrid learning algorithm. The proposed method achieved highest sensitivity of 80% with false prediction rate as low as 0.46 per hour. PMID:24110134

  15. Structure identification in fuzzy inference using reinforcement learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1993-01-01

    In our previous work on the GARIC architecture, we have shown that the system can start with surface structure of the knowledge base (i.e., the linguistic expression of the rules) and learn the deep structure (i.e., the fuzzy membership functions of the labels used in the rules) by using reinforcement learning. Assuming the surface structure, GARIC refines the fuzzy membership functions used in the consequents of the rules using a gradient descent procedure. This hybrid fuzzy logic and reinforcement learning approach can learn to balance a cart-pole system and to backup a truck to its docking location after a few trials. In this paper, we discuss how to do structure identification using reinforcement learning in fuzzy inference systems. This involves identifying both surface as well as deep structure of the knowledge base. The term set of fuzzy linguistic labels used in describing the values of each control variable must be derived. In this process, splitting a label refers to creating new labels which are more granular than the original label and merging two labels creates a more general label. Splitting and merging of labels directly transform the structure of the action selection network used in GARIC by increasing or decreasing the number of hidden layer nodes.

  16. Fuzzy neural-network-based segmentation of multispectral magnetic-resonance brain images

    NASA Astrophysics Data System (ADS)

    Blonda, Palma N.; Bennardo, A.; Satalino, Giuseppe; Pasquariello, Guido; De Blasi, Roberto A.; Milella, D.

    1996-06-01

    This study investigates the applicability of a multimodular neuro-fuzzy system in the multispectral analysis of magnetic resonance (MR) images of the human brain. The system consists of two components: an unsupervised neural module for image segmentation in tissue regions and a supervised module for tissue labeling. The former is the fuzzy Kohonen clustering network (FKCN). The latter is a feed-forward network based on the back-propagation learning rule. The results obtained with the FKCN have been compared with those extracted by a self organizing map (SOM). The system has been used to analyze the multispectral MR brain images of a healthy volunteer. The data set included the proton density (PD), T2, T1 weighted spin-echo (SE) bands and a new T1- weighted three dimensional sequence, i.e. the magnetization- prepared rapid gradient echo (MP-RAGE). One of the main objectives of this study has been to evaluate the usefulness of brain imaging with the MP-RAGE sequence in view of automatic tissue classification. To this purpose, a quantitative evaluation has been provided on the base of some labeled areas selected interactively by a neuro- radiologist from the input raw images. Quantitative results seem to indicate that the MP-RAGE sequence may provide higher tissue separability than the T1-weighted SE sequence.

  17. Statistical, connectionist, and fuzzy inference techniques for image classification

    NASA Astrophysics Data System (ADS)

    Israel, Steven A.; Kasabov, Nikola K.

    1997-07-01

    A spectral classification comparison was performed using four different classifiers, the parametric maximum likelihood classifier and three nonparametric classifiers: neural networks, fuzzy rules, and fuzzy neural networks. The input image data is a System Pour l'Observation de la Terre (SPOT) satellite image of Otago Harbour near Dunedin, New Zealand. The SPOT image data contains three spectral bands in the green, red, and visible infrared portions of the electromagnetic spectrum. The specific area contains intertidal vegetation species above and below the waterline. Of specific interest is eelgrass (Zostera novazelandica), which is a biotic indicator of environmental health. The mixed covertypes observed in an in situ field survey are difficult to classify because of subjectivity and water's preferential absorption of the visible infrared spectrum. In this analysis, each of the classifiers were applied to the data in two different testing procedures. In the first test procedure, the reference data was divided into training and test by area. Although this is an efficient data handling technique, the classifier is not presented with all of the subtle microclimate variations. In the second test procedure, the same reference areas were amalgamated and randomly sorted into training and test data. The amalgamation and sorting were performed external to the analysis software. For the first testing procedure, the highest testing accuracy was obtained through the use of fuzzy inferences at 89%. In the second testing procedure, the maximum likelihood classifier and the fuzzy neural networks provided the best results. Although the testing accuracy for the maximum likelihood classifier and the fuzzy neural networks provided the best results. Although the testing accuracy for the maximum likelihood classifier and the fuzzy neural networks were simulator, the latter algorithm has additional features, such as rules extraction, explanation, and fine tuning of individual classes.

  18. Comments on "Functional equivalence between radial basis function networks and fuzzy inference systems".

    PubMed

    Anderson, H C; Lotfi, A; Westphal, L C; Jang, J R

    1998-01-01

    The above paper claims that under a set of minor restrictions radial basis function networks and fuzzy inference systems are functionally equivalent. The purpose of this letter is to show that this set of restrictions is incomplete and that, when it is completed, the said functional equivalence applies only to a small range of fuzzy inference systems. In addition, a modified set of restrictions is proposed which is applicable for a much wider range of fuzzy inference systems.

  19. Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference

    PubMed Central

    Jiang, Jing; Lu, Weiqiang; Li, Weihua; Liu, Guixia; Zhou, Weixing; Huang, Jin; Tang, Yun

    2012-01-01

    Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning. PMID:22589709

  20. Modeling urban air pollution with optimized hierarchical fuzzy inference system.

    PubMed

    Tashayo, Behnam; Alimohammadi, Abbas

    2016-10-01

    Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.

  1. An evolutionary approach toward dynamic self-generated fuzzy inference systems.

    PubMed

    Zhou, Yi; Er, Meng Joo

    2008-08-01

    An evolutionary approach toward automatic generation of fuzzy inference systems (FISs), termed evolutionary dynamic self-generated fuzzy inference systems (EDSGFISs), is proposed in this paper. The structure and parameters of an FIS are generated through reinforcement learning, whereas an action set for training the consequents of the FIS is evolved via genetic algorithms (GAs). The proposed EDSGFIS algorithm can automatically create, delete, and adjust fuzzy rules according to the performance of the entire system, as well as evaluation of individual fuzzy rules. Simulation studies on a wall-following task by a mobile robot show that the proposed EDSGFIS approach is superior to other related methods.

  2. Fuzzy knowledge base construction through belief networks based on Lukasiewicz logic

    NASA Technical Reports Server (NTRS)

    Lara-Rosano, Felipe

    1992-01-01

    In this paper, a procedure is proposed to build a fuzzy knowledge base founded on fuzzy belief networks and Lukasiewicz logic. Fuzzy procedures are developed to do the following: to assess the belief values of a consequent, in terms of the belief values of its logical antecedents and the belief value of the corresponding logical function; and to update belief values when new evidence is available.

  3. Non-linear system control using a recurrent fuzzy neural network based on improved particle swarm optimisation

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Jian; Lee, Chi-Yung

    2010-04-01

    This article introduces a recurrent fuzzy neural network based on improved particle swarm optimisation (IPSO) for non-linear system control. An IPSO method which consists of the modified evolutionary direction operator (MEDO) and the Particle Swarm Optimisation (PSO) is proposed in this article. A MEDO combining the evolutionary direction operator and the migration operation is also proposed. The MEDO will improve the global search solution. Experimental results have shown that the proposed IPSO method controls the magnetic levitation system and the planetary train type inverted pendulum system better than the traditional PSO and the genetic algorithm methods.

  4. Network-Based Output Tracking Control for a Class of T-S Fuzzy Systems That Can Not Be Stabilized by Nondelayed Output Feedback Controllers.

    PubMed

    Zhang, Dawei; Han, Qing-Long; Jia, Xinchun

    2015-08-01

    This paper investigates network-based output tracking control for a T-S fuzzy system that can not be stabilized by a nondelayed fuzzy static output feedback controller, but can be stabilized by a delayed fuzzy static output feedback controller. By intentionally introducing a communication network that produces proper network-induced delays in the feedback control loop, a stable and satisfactory tracking control can be ensured for the T-S fuzzy system. Due to the presence of network-induced delays, the fuzzy system and the fuzzy tracking controller operate in an asynchronous way. Taking the asynchronous operation and network-induced delays into consideration, the network-based tracking control system is modeled as an asynchronous T-S fuzzy system with an interval time-varying delay. A new delay-dependent criterion for L2 -gain tracking performance is derived by using the deviation bounds of asynchronous normalized membership functions and a complete Lyapunov-Krasovskii functional. Applying a particle swarm optimization technique with the feasibility of the derived criterion, a novel design algorithm is presented to determine the minimum L2 -gain tracking performance and control gains simultaneously. The effectiveness of the proposed method is illustrated by performing network-based output tracking control of a Duffing-Van der Pol's oscillator. PMID:25222965

  5. Simulation of worms transmission in computer network based on SIRS fuzzy epidemic model

    NASA Astrophysics Data System (ADS)

    Darti, I.; Suryanto, A.; Yustianingsih, M.

    2015-03-01

    In this paper we study numerically the behavior of worms transmission in a computer network. The model of worms transmission is derived by modifying a SIRS epidemic model. In this case, we consider that the transmission rate, recovery rate and rate of susceptible after recovery follows fuzzy membership functions, rather than constants. To study the transmission of worms in a computer network, we solve the model using the fourth order Runge-Kutta method. Our numerical results show that the fuzzy transmission rate and fuzzy recovery rate may lead to a changing of basic reproduction number which therefore also changes the stability properties of equilibrium points.

  6. Annual Rainfall Forecasting by Using Mamdani Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Fallah-Ghalhary, G.-A.; Habibi Nokhandan, M.; Mousavi Baygi, M.

    2009-04-01

    Long-term rainfall prediction is very important to countries thriving on agro-based economy. In general, climate and rainfall are highly non-linear phenomena in nature giving rise to what is known as "butterfly effect". The parameters that are required to predict the rainfall are enormous even for a short period. Soft computing is an innovative approach to construct computationally intelligent systems that are supposed to possess humanlike expertise within a specific domain, adapt themselves and learn to do better in changing environments, and explain how they make decisions. Unlike conventional artificial intelligence techniques the guiding principle of soft computing is to exploit tolerance for imprecision, uncertainty, robustness, partial truth to achieve tractability, and better rapport with reality. In this paper, 33 years of rainfall data analyzed in khorasan state, the northeastern part of Iran situated at latitude-longitude pairs (31°-38°N, 74°- 80°E). this research attempted to train Fuzzy Inference System (FIS) based prediction models with 33 years of rainfall data. For performance evaluation, the model predicted outputs were compared with the actual rainfall data. Simulation results reveal that soft computing techniques are promising and efficient. The test results using by FIS model showed that the RMSE was obtained 52 millimeter.

  7. Stereo viewing 3-component, planar PIV utilizing fuzzy inference

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1996-01-01

    An all electronic 3-D Digital Particle Image Velocimetry (DPIV) system has been developed for use in high velocity (supersonic) flows. Two high resolution CCD cameras mounted in a stereo viewing configuration are used to determine the out-of-plane velocity component from the difference of the in-plane velocity measurements. Double exposure image frames are acquired and Fuzzy inference techniques are used to maximize the validity of the velocity estimates obtained from the auto-correlation analysis. The CCD cameras are tilted relative to their respective lens axes to satisfy Scheimpflug's condition. Tilting the camera film plane ensures that the entire image plane is in focus. Perspective distortion still results, but can be corrected by proper calibration of the optical system. A calibration fixture is used to determine the experimental setup parameters and to assess the accuracy to which the z-plane displacements can be estimated. The details of the calibration fixture and procedure are discussed in the text. A pair of pulsed Nd:YAG lasers operating at 532 nm are used to illuminate the seeded flow from a convergent nozzle operated in an underexpanded condition. The light sheet was oriented perpendicular to the nozzle flow, yielding planar cross-sections of the 3-component velocity field at several axial stations. The key features of the supersonic jet are readily observed in the cross-plane vector plots.

  8. Automated interpretation of LIBS spectra using a fuzzy logic inference engine.

    PubMed

    Hatch, Jeremy J; McJunkin, Timothy R; Hanson, Cynthia; Scott, Jill R

    2012-03-01

    Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. Fuzzy logic inference rules were developed using methodology that includes data mining methods and operator expertise to differentiate between various copper-containing and stainless steel alloys as well as unknowns. Results using the fuzzy logic inference engine indicate a high degree of confidence in spectral assignment.

  9. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    NASA Astrophysics Data System (ADS)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  10. Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Akhavan, P.; Karimi, M.; Pahlavani, P.

    2014-10-01

    Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.

  11. Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions

    NASA Astrophysics Data System (ADS)

    Khoury, Mehdi; Liu, Honghai

    This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.

  12. Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System

    PubMed Central

    Hosseini, Monireh Sheikh; Zekri, Maryam

    2012-01-01

    Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054

  13. Extending the functional equivalence of radial basis function networks and fuzzy inference systems.

    PubMed

    Hunt, K J; Haas, R; Murray-Smith, R

    1996-01-01

    We establish the functional equivalence of a generalized class of Gaussian radial basis function (RBFs) networks and the full Takagi-Sugeno model (1983) of fuzzy inference. This generalizes an existing result which applies to the standard Gaussian RBF network and a restricted form of the Takagi-Sugeno fuzzy system. The more general framework allows the removal of some of the restrictive conditions of the previous result.

  14. Towards a Fuzzy Bayesian Network Based Approach for Safety Risk Analysis of Tunnel-Induced Pipeline Damage.

    PubMed

    Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli

    2016-02-01

    Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment. PMID:26224125

  15. A Design of Fuzzy Neural Network Based Robust Gain Scheduling Controllers

    NASA Astrophysics Data System (ADS)

    Sato, Yoshishige

    This paper propose robust gain scheduling control design by intelligent control which uses Fuzzy-Neural Network without model. Proposal methods are as follows, To constitute a robust and capable of automatically gain controlling against the conventional fixed PID control system. To build the Neural Network which learns inverse dynamics as feed forward compensation, and to build 2 degrees freedom control which is the feedback compensation. To propose the control system which adaptively adjusts the gain according to the changes of target errors, and to verified the effectiveness of the proposed method.

  16. Search by Fuzzy Inference in a Children's Dictionary

    ERIC Educational Resources Information Center

    St-Jacques, Claude; Barriere, Caroline

    2005-01-01

    This research aims at promoting the usage of an online children's dictionary within a context of reading comprehension and vocabulary acquisition. Inspired by document retrieval approaches developed in the area of information retrieval (IR) research, we adapt a particular IR strategy, based on fuzzy logic, to a search in the electronic dictionary.…

  17. Fuzzy-rule emulated networks, based on reinforcement learning for nonlinear discrete-time controllers.

    PubMed

    Treesatayapun, Chidentree

    2008-10-01

    This article introduces an adaptive controller for a class of nonlinear discrete-time systems, based on self adjustable networks called Multi-Input Fuzzy Rules Emulated Networks (MIFRENs), and its reinforcement learning algorithm. Because of the universal function approximation of MIFREN, the first MIFREN called MIFREN(c) is used to estimate a long-term cost function, which demonstrates as a performance index for the tuning procedure. Another network or MIFREN(a) is designed as a direct controller via the human knowledge through defined If-Then rules. The selection procedure for any system parameters, such as learning rates and some constant parameters, is represented by the proof of proposed theorems. The system's performance is demonstrated by computer simulations via selected nonlinear discrete-time systems, and comparison results with other controllers to validate theoretical development.

  18. Fuzzy inference game approach to uncertainty in business decisions and market competitions.

    PubMed

    Oderanti, Festus Oluseyi

    2013-01-01

    The increasing challenges and complexity of business environments are making business decisions and operations more difficult for entrepreneurs to predict the outcomes of these processes. Therefore, we developed a decision support scheme that could be used and adapted to various business decision processes. These involve decisions that are made under uncertain situations such as business competition in the market or wage negotiation within a firm. The scheme uses game strategies and fuzzy inference concepts to effectively grasp the variables in these uncertain situations. The games are played between human and fuzzy players. The accuracy of the fuzzy rule base and the game strategies help to mitigate the adverse effects that a business may suffer from these uncertain factors. We also introduced learning which enables the fuzzy player to adapt over time. We tested this scheme in different scenarios and discover that it could be an invaluable tool in the hand of entrepreneurs that are operating under uncertain and competitive business environments. PMID:24109562

  19. An Extended Method of SIRMs Connected Fuzzy Inference Method Using Kernel Method

    NASA Astrophysics Data System (ADS)

    Seki, Hirosato; Mizuguchi, Fuhito; Watanabe, Satoshi; Ishii, Hiroaki; Mizumoto, Masaharu

    The single input rule modules connected fuzzy inference method (SIRMs method) by Yubazaki et al. can decrease the number of fuzzy rules drastically in comparison with the conventional fuzzy inference methods. Moreover, Seki et al. have proposed a functional-type SIRMs method which generalizes the consequent part of the SIRMs method to function. However, these SIRMs methods can not be applied to XOR (Exclusive OR). In this paper, we propose a “kernel-type SIRMs method” which uses the kernel trick to the SIRMs method, and show that this method can treat XOR. Further, a learning algorithm of the proposed SIRMs method is derived by using the steepest descent method, and compared with the one of conventional SIRMs method and kernel perceptron by applying to identification of nonlinear functions, medical diagnostic system and discriminant analysis of Iris data.

  20. A novel fuzzy logic inference system for decision support in weaning from mechanical ventilation.

    PubMed

    Kilic, Yusuf Alper; Kilic, Ilke

    2010-12-01

    Weaning from mechanical ventilation represents one of the most challenging issues in management of critically ill patients. Currently used weaning predictors ignore many important dimensions of weaning outcome and have not been uniformly successful. A fuzzy logic inference system that uses nine variables, and five rule blocks within two layers, has been designed and implemented over mathematical simulations and random clinical scenarios, to compare its behavior and performance in predicting expert opinion with those for rapid shallow breathing index (RSBI), pressure time index and Jabour' weaning index. RSBI has failed to predict expert opinion in 52% of scenarios. Fuzzy logic inference system has shown the best discriminative power (ROC: 0.9288), and RSBI the worst (ROC: 0.6556) in predicting expert opinion. Fuzzy logic provides an approach which can handle multi-attribute decision making, and is a very powerful tool to overcome the weaknesses of currently used weaning predictors.

  1. Real-time fuzzy inference based robot path planning

    NASA Technical Reports Server (NTRS)

    Pacini, Peter J.; Teichrow, Jon S.

    1990-01-01

    This project addresses the problem of adaptive trajectory generation for a robot arm. Conventional trajectory generation involves computing a path in real time to minimize a performance measure such as expended energy. This method can be computationally intensive, and it may yield poor results if the trajectory is weakly constrained. Typically some implicit constraints are known, but cannot be encoded analytically. The alternative approach used here is to formulate domain-specific knowledge, including implicit and ill-defined constraints, in terms of fuzzy rules. These rules utilize linguistic terms to relate input variables to output variables. Since the fuzzy rulebase is determined off-line, only high-level, computationally light processing is required in real time. Potential applications for adaptive trajectory generation include missile guidance and various sophisticated robot control tasks, such as automotive assembly, high speed electrical parts insertion, stepper alignment, and motion control for high speed parcel transfer systems.

  2. Landslide Susceptibility Assessment Through Fuzzy Logic Inference System (flis)

    NASA Astrophysics Data System (ADS)

    Bibi, T.; Gul, Y.; Rahman, A. Abdul; Riaz, M.

    2016-09-01

    Landslide is among one of the most important natural hazards that lead to modification of the environment. It is a regular feature of a rapidly growing district Mansehra, Pakistan. This caused extensive loss of life and property in the district located at the foothills of Himalaya. Keeping in view the situation it is concluded that besides structural approaches the non-structural approaches such as hazard and risk assessment maps are effective tools to reduce the intensity of damage. A landslide susceptibility map is base for engineering geologists and geomorphologists. However, it is not easy to produce a reliable susceptibility map due to complex nature of landslides. Since 1980s, several mathematical models have been developed to map landslide susceptibility and hazard. Among various models this paper is discussing the effectiveness of fuzzy logic approach for landslide susceptibility mapping in District Mansehra, Pakistan. The factor maps were modified as landslide susceptibility and fuzzy membership functions were assessed for each class. Likelihood ratios are obtained for each class of contributing factors by considering the expert opinion. The fuzzy operators are applied to generate landslide susceptibility maps. According to this map, 17% of the study area is classified as high susceptibility, 32% as moderate susceptibility, 51% as low susceptibility and areas. From the results it is found that the fuzzy model can integrate effectively with various spatial data for landslide hazard mapping, suggestions in this study are hope to be helpful to improve the applications including interpretation, and integration phases in order to obtain an accurate decision supporting layer.

  3. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    PubMed

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).

  4. Design of a Software Sensor for Feedwater Flow Measurement Using a Fuzzy Inference System

    SciTech Connect

    Na, Man Gyun; Shin, Sun Ho; Jung, Dong Won

    2005-06-15

    Venturi meters are used to measure the feedwater flow rate in most current pressurized water reactors. These meters can decrease the thermal performance of nuclear power plants because the feedwater flow rate can be overmeasured due to their fouling phenomena that make corrosion products caused by long-term operation accumulate in the feedwater flow meters. Therefore, in this paper, a software sensor using a fuzzy inference system is developed in order to increase the thermal efficiency by accurately estimating online the feedwater flow rate. The fuzzy inference system to be used for black-box modeling of the feedwater system is equipped with an automatic design algorithm that automates the selection of the input signals to the fuzzy inference system and its fuzzy rule generation including parameter optimization. The proposed algorithm was verified by using the numerical simulation data of the MARS code for Kori Nuclear Power Plant Unit 1 and also the real plant data of Yonggwang Nuclear Power Plant Unit 3. In the simulations using numerical simulation data and real plant data, the relative 2{sigma} errors and the relative maximum error are small enough. The proposed method can be applied successfully to validate and monitor the existing feedwater flow meters.

  5. Automated Interpretation of LIBS Spectra using a Fuzzy Logic Inference Engine

    SciTech Connect

    Jeremy J. Hatch; Timothy R. McJunkin; Cynthia Hanson; Jill R. Scott

    2012-02-01

    Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. A fuzzy logic inference engine (FLIE) was used to differentiate between various copper containing and stainless steel alloys as well as unknowns. Results using FLIE indicate a high degree of confidence in spectral assignment.

  6. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  7. State of the Art of Fuzzy Methods for Gene Regulatory Networks Inference

    PubMed Central

    Al Qazlan, Tuqyah Abdullah; Kara-Mohamed, Chafia

    2015-01-01

    To address one of the most challenging issues at the cellular level, this paper surveys the fuzzy methods used in gene regulatory networks (GRNs) inference. GRNs represent causal relationships between genes that have a direct influence, trough protein production, on the life and the development of living organisms and provide a useful contribution to the understanding of the cellular functions as well as the mechanisms of diseases. Fuzzy systems are based on handling imprecise knowledge, such as biological information. They provide viable computational tools for inferring GRNs from gene expression data, thus contributing to the discovery of gene interactions responsible for specific diseases and/or ad hoc correcting therapies. Increasing computational power and high throughput technologies have provided powerful means to manage these challenging digital ecosystems at different levels from cell to society globally. The main aim of this paper is to report, present, and discuss the main contributions of this multidisciplinary field in a coherent and structured framework. PMID:25879048

  8. Crop parameters estimation by fuzzy inference system using X-band scatterometer data

    NASA Astrophysics Data System (ADS)

    Pandey, Abhishek; Prasad, R.; Singh, V. P.; Jha, S. K.; Shukla, K. K.

    2013-03-01

    Learning fuzzy rule based systems with microwave remote sensing can lead to very useful applications in solving several problems in the field of agriculture. Fuzzy logic provides a simple way to arrive at a definite conclusion based upon imprecise, ambiguous, vague, noisy or missing input information. In the present paper, a subtractive based fuzzy inference system is introduced to estimate the potato crop parameters like biomass, leaf area index, plant height and soil moisture. Scattering coefficient for HH- and VV-polarizations were used as an input in the Fuzzy network. The plant height, biomass, and leaf area index of potato crop and soil moisture measured at its various growth stages were used as the target variables during the training and validation of the network. The estimated values of crop/soil parameters by this methodology are much closer to the experimental values. The present work confirms the estimation abilities of fuzzy subtractive clustering in potato crop parameters estimation. This technique may be useful for the other crops cultivated over regional or continental level.

  9. Asymmetric subsethood-product fuzzy neural inference system (ASuPFuNIS).

    PubMed

    Velayutham, C Shunmuga; Kumar, Satish

    2005-01-01

    This paper presents an asymmetric subsethood-product fuzzy neural inference system (ASuPFuNIS) that directly extends the SuPFuNIS model by permitting signal and weight fuzzy sets to be modeled by asymmetric Gaussian membership functions. The asymmetric subsethood-product network admits both numeric as well as linguistic inputs. Input nodes, which act as tunable feature fuzzifiers, fuzzify numeric inputs with asymmetric Gaussian fuzzy sets; and linguistic inputs are presented as is. The antecedent and consequent labels of standard fuzzy if-then rules are represented as asymmetric Gaussian fuzzy connection weights of the network. The model uses mutual subsethood based activation spread and a product aggregation operator that works in conjunction with volume defuzzification in a gradient descent learning framework. Despite the increase in the number of free parameters, the proposed model performs better than SuPFuNIS, on various benchmarking problems, both in terms of the performance accuracy and architectural economy and compares excellently with other various existing models with a performance better than most of them.

  10. Functional equivalence between radial basis function networks and fuzzy inference systems.

    PubMed

    Jang, J R; Sun, C T

    1993-01-01

    It is shown that, under some minor restrictions, the functional behavior of radial basis function networks (RBFNs) and that of fuzzy inference systems are actually equivalent. This functional equivalence makes it possible to apply what has been discovered (learning rule, representational power, etc.) for one of the models to the other, and vice versa. It is of interest to observe that two models stemming from different origins turn out to be functionally equivalent.

  11. Fuzzy logic and adaptive neuro-fuzzy inference system for characterization of contaminant exposure through selected biomarkers in African catfish.

    PubMed

    Karami, Ali; Keiter, Steffen; Hollert, Henner; Courtenay, Simon C

    2013-03-01

    This study represents a first attempt at applying a fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference system (ANFIS) to the field of aquatic biomonitoring for classification of the dosage and time of benzo[a]pyrene (BaP) injection through selected biomarkers in African catfish (Clarias gariepinus). Fish were injected either intramuscularly (i.m.) or intraperitoneally (i.p.) with BaP. Hepatic glutathione S-transferase (GST) activities, relative visceral fat weights (LSI), and four biliary fluorescent aromatic compounds (FACs) concentrations were used as the inputs in the modeling study. Contradictory rules in FIS and ANFIS models appeared after conversion of bioassay results into human language (rule-based system). A "data trimming" approach was proposed to eliminate the conflicts prior to fuzzification. However, the model produced was relevant only to relatively low exposures to BaP, especially through the i.m. route of exposure. Furthermore, sensitivity analysis was unable to raise the classification rate to an acceptable level. In conclusion, FIS and ANFIS models have limited applications in the field of fish biomarker studies.

  12. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    PubMed

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639

  13. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System

    PubMed Central

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639

  14. AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection

    PubMed Central

    Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying

    2015-01-01

    Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280

  15. Subsethood-product fuzzy neural inference system (SuPFuNIS).

    PubMed

    Paul, S; Kumar, S

    2002-01-01

    A new subsethood-product fuzzy neural inference system (SuPFuNIS) is presented in this paper. It has the flexibility to handle both numeric and linguistic inputs simultaneously. Numeric inputs are fuzzified by input nodes which act as tunable feature fuzzifiers. Rule based knowledge is easily translated directly into a network architecture. Connections in the network are represented by Gaussian fuzzy sets. The novelty of the model lies in a combination of tunable input feature fuzzifiers; fuzzy mutual subsethood-based activation spread in the network; use of the product operator to compute the extent of firing of a rule; and a volume-defuzzification process to produce a numeric output. Supervised gradient descent is employed to train the centers and spreads of individual fuzzy connections. A subsethood-based method for rule generation from the trained network is also suggested. SuPFuNIS can be applied in a variety of application domains. The model has been tested on Mackey-Glass time series prediction, Iris data classification, Hepatitis medical diagnosis, and function approximation benchmark problems. We also use a standard truck backer-upper control problem to demonstrate how expert knowledge can be used to augment the network. The performance of SuPFuNIS compares excellently with other various existing models.

  16. Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier.

    PubMed

    Ibrahim, Sulaimon; Chowriappa, Pradeep; Dua, Sumeet; Acharya, U Rajendra; Noronha, Kevin; Bhandary, Sulatha; Mugasa, Hatwib

    2015-12-01

    Prolonged diabetes retinopathy leads to diabetes maculopathy, which causes gradual and irreversible loss of vision. It is important for physicians to have a decision system that detects the early symptoms of the disease. This can be achieved by building a classification model using machine learning algorithms. Fuzzy logic classifiers group data elements with a degree of membership in multiple classes by defining membership functions for each attribute. Various methods have been proposed to determine the partitioning of membership functions in a fuzzy logic inference system. A clustering method partitions the membership functions by grouping data that have high similarity into clusters, while an equalized universe method partitions data into predefined equal clusters. The distribution of each attribute determines its partitioning as fine or coarse. A simple grid partitioning partitions each attribute equally and is therefore not effective in handling varying distribution amongst the attributes. A data-adaptive method uses a data frequency-driven approach to partition each attribute based on the distribution of data in that attribute. A data-adaptive neuro-fuzzy inference system creates corresponding rules for both finely distributed and coarsely distributed attributes. This method produced more useful rules and a more effective classification system. We obtained an overall accuracy of 98.55%.

  17. A Neuro-Fuzzy Inference System Combining Wavelet Denoising, Principal Component Analysis, and Sequential Probability Ratio Test for Sensor Monitoring

    SciTech Connect

    Na, Man Gyun; Oh, Seungrohk

    2002-11-15

    A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.

  18. Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer.

    PubMed

    Ubeyli, Elif Derya

    2009-10-01

    This paper intends to an integrated view of implementing adaptive neuro-fuzzy inference system (ANFIS) for breast cancer detection. The Wisconsin breast cancer database contained records of patients with known diagnosis. The ANFIS classifiers learned how to differentiate a new case in the domain by given a training set of such records. The ANFIS classifier was used to detect the breast cancer when nine features defining breast cancer indications were used as inputs. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the impacts of features on the detection of breast cancer were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performances and classification accuracies and the results confirmed that the proposed ANFIS model has potential in detecting the breast cancer. PMID:19827261

  19. Image Analysis of Endosocopic Ultrasonography in Submucosal Tumor Using Fuzzy Inference

    PubMed Central

    Kim, Kwang Baek; Kim, Gwang Ha

    2013-01-01

    Endoscopists usually make a diagnosis in the submucosal tumor depending on the subjective evaluation about general images obtained by endoscopic ultrasonography. In this paper, we propose a method to extract areas of gastrointestinal stromal tumor (GIST) and lipoma automatically from the ultrasonic image to assist those specialists. We also propose an algorithm to differentiate GIST from non-GIST by fuzzy inference from such images after applying ROC curve with mean and standard deviation of brightness information. In experiments using real images that medical specialists use, we verify that our method is sufficiently helpful for such specialists for efficient classification of submucosal tumors. PMID:24024188

  20. Measure of librarian pressure using fuzzy inference system: A case study in Longyan University

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Jing

    2014-10-01

    As the hierarchy of middle managers in college's librarian. They may own much work pressure from their mind. How to adapt psychological problem, control the emotion and keep a good relationship in their work place, it becomes an important issue. Especially, they work in China mainland environment. How estimate the librarians work pressure and improve the quality of service in college libraries. Those are another serious issues. In this article, the authors would like discuss how can we use fuzzy inference to test librarian work pressure.

  1. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.

    PubMed

    Heddam, Salim

    2014-01-01

    This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling.

  2. Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study.

    PubMed

    Heddam, Salim

    2014-01-01

    This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling. PMID:24057665

  3. A Boolean Consistent Fuzzy Inference System for Diagnosing Diseases and Its Application for Determining Peritonitis Likelihood

    PubMed Central

    Dragović, Ivana; Turajlić, Nina; Pilčević, Dejan; Petrović, Bratislav; Radojević, Dragan

    2015-01-01

    Fuzzy inference systems (FIS) enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD). Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis) the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated), when medical experts are not close at hand. PMID:27069500

  4. Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.

    PubMed

    Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir

    2015-01-01

    Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems. PMID:25607665

  5. Modelling Dissolved Pollutants in Krishna River Using Adaptive Neuro Fuzzy Inference Systems

    NASA Astrophysics Data System (ADS)

    Matli, C. S.; Umamahesh, N. V.

    2014-01-01

    Water quality models are used to describe the discharge concentration relationships in the river. Number of models exists to simulate the pollutant loads in a river, of which some of them are based on simple cause effect relationships and others on highly sophisticated physical and mathematical approaches that require extensive data inputs. Fuzzy rule based modeling extensively used in other disciplines, is attempted in the present study for modeling water quality with respect of dissolved pollutants in Krishna river flowing in Southern part of India. Adaptive Neuro Fuzzy Inference Systems (ANFIS), a recent development in the area of neuro-computing, based on the concept of fuzzy sets is used to model highly non-linear relationships and are capable of adaptive learning. This paper presents the results of the application of ANFIS for modeling dissolved pollutants in the Krishna River. The application and validation of the models is carried out using water quality and flow data obtained from the monitoring stations on the river. The results indicate that the models are quite successful in simulating the physical processes of the relationships between discharge and concentrations.

  6. A Boolean Consistent Fuzzy Inference System for Diagnosing Diseases and Its Application for Determining Peritonitis Likelihood.

    PubMed

    Dragović, Ivana; Turajlić, Nina; Pilčević, Dejan; Petrović, Bratislav; Radojević, Dragan

    2015-01-01

    Fuzzy inference systems (FIS) enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD). Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis) the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated), when medical experts are not close at hand.

  7. Determining geophysical properties from well log data using artificial neural networks and fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Chang, Hsien-Cheng

    Two novel synergistic systems consisting of artificial neural networks and fuzzy inference systems are developed to determine geophysical properties by using well log data. These systems are employed to improve the determination accuracy in carbonate rocks, which are generally more complex than siliciclastic rocks. One system, consisting of a single adaptive resonance theory (ART) neural network and three fuzzy inference systems (FISs), is used to determine the permeability category. The other system, which is composed of three ART neural networks and a single FIS, is employed to determine the lithofacies. The geophysical properties studied in this research, permeability category and lithofacies, are treated as categorical data. The permeability values are transformed into a "permeability category" to account for the effects of scale differences between core analyses and well logs, and heterogeneity in the carbonate rocks. The ART neural networks dynamically cluster the input data sets into different groups. The FIS is used to incorporate geologic experts' knowledge, which is usually in linguistic forms, into systems. These synergistic systems thus provide viable alternative solutions to overcome the effects of heterogeneity, the uncertainties of carbonate rock depositional environments, and the scarcity of well log data. The results obtained in this research show promising improvements over backpropagation neural networks. For the permeability category, the prediction accuracies are 68.4% and 62.8% for the multiple-single ART neural network-FIS and a single backpropagation neural network, respectively. For lithofacies, the prediction accuracies are 87.6%, 79%, and 62.8% for the single-multiple ART neural network-FIS, a single ART neural network, and a single backpropagation neural network, respectively. The sensitivity analysis results show that the multiple-single ART neural networks-FIS and a single ART neural network possess the same matching trends in

  8. Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference system application.

    PubMed

    Fernandes, Fabiano C; Rigden, Daniel J; Franco, Octavio L

    2012-01-01

    Antimicrobial peptides (AMPs) are widely distributed defense molecules and represent a promising alternative for solving the problem of antibiotic resistance. Nevertheless, the experimental time required to screen putative AMPs makes computational simulations based on peptide sequence analysis and/or molecular modeling extremely attractive. Artificial intelligence methods acting as simulation and prediction tools are of great importance in helping to efficiently discover and design novel AMPs. In the present study, state-of-the-art published outcomes using different prediction methods and databases were compared to an adaptive neuro-fuzzy inference system (ANFIS) model. Data from our study showed that ANFIS obtained an accuracy of 96.7% and a Matthew's Correlation Coefficient (MCC) of0.936, which proved it to be an efficient model for pattern recognition in antimicrobial peptide prediction. Furthermore, a lower number of input parameters were needed for the ANFIS model, improving the speed and ease of prediction. In summary, due to the fuzzy nature ofAMP physicochemical properties, the ANFIS approach presented here can provide an efficient solution for screening putative AMP sequences and for exploration of properties characteristic of AMPs. PMID:23193592

  9. Adaptive neuro-fuzzy inference system for classification of ECG signals using Lyapunov exponents.

    PubMed

    Ubeyli, Elif Derya

    2009-03-01

    This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for classification of electrocardiogram (ECG) signals. Decision making was performed in two stages: feature extraction by computation of Lyapunov exponents and classification by the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. Four types of ECG beats (normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat, and atrial fibrillation beat) obtained from the PhysioBank database were classified by four ANFIS classifiers. To improve diagnostic accuracy, the fifth ANFIS classifier (combining ANFIS) was trained using the outputs of the four ANFIS classifiers as input data. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the saliency of features on classification of the ECG signals were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the ECG signals. PMID:19084286

  10. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS)

    NASA Astrophysics Data System (ADS)

    Kakar, Manish; Nyström, Håkan; Rye Aarup, Lasse; Jakobi Nøttrup, Trine; Rune Olsen, Dag

    2005-10-01

    The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude.

  11. Genetic-algorithm-based multiple regression with fuzzy inference system for detection of nocturnal hypoglycemic episodes.

    PubMed

    Ling, Steve S H; Nguyen, Hung T

    2011-03-01

    Hypoglycemia or low blood glucose is dangerous and can result in unconsciousness, seizures, and even death. It is a common and serious side effect of insulin therapy in patients with diabetes. Hypoglycemic monitor is a noninvasive monitor that measures some physiological parameters continuously to provide detection of hypoglycemic episodes in type 1 diabetes mellitus patients (T1DM). Based on heart rate (HR), corrected QT interval of the ECG signal, change of HR, and the change of corrected QT interval, we develop a genetic algorithm (GA)-based multiple regression with fuzzy inference system (FIS) to classify the presence of hypoglycemic episodes. GA is used to find the optimal fuzzy rules and membership functions of FIS and the model parameters of regression method. From a clinical study of 16 children with T1DM, natural occurrence of nocturnal hypoglycemic episodes is associated with HRs and corrected QT intervals. The overall data were organized into a training set (eight patients) and a testing set (another eight patients) randomly selected. The results show that the proposed algorithm performs a good sensitivity with an acceptable specificity. PMID:21349796

  12. Multiple Adaptive Neuro-Fuzzy Inference System with Automatic Features Extraction Algorithm for Cervical Cancer Recognition

    PubMed Central

    Subhi Al-batah, Mohammad; Mat Isa, Nor Ashidi; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316

  13. Multiple adaptive neuro-fuzzy inference system with automatic features extraction algorithm for cervical cancer recognition.

    PubMed

    Al-batah, Mohammad Subhi; Isa, Nor Ashidi Mat; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi

    2014-01-01

    To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316

  14. Adaptive neuro-fuzzy inference system for analysis of Doppler signals.

    PubMed

    Ubeyli, Elif Derya

    2006-01-01

    In this study, a new approach based on adaptive neuro-fuzzy inference system (ANFIS) was presented for detection of ophthalmic artery stenosis. Decision making was performed in two stages: feature extraction using the wavelet transform (WT) and the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. The ophthalmic arterial Doppler signals were recorded from 128 subjects that 62 of them had suffered from ophthalmic artery stenosis and the rest of them had been healthy subjects. Some conclusions concerning the impacts of features on the detection of ophthalmic artery stenosis were obtained through analysis of the ANFIS. The performance of the ANFIS classifier was evaluated in terms of training performance and classification accuracies (total classification accuracy was 97.59%) and the results confirmed that the proposed ANFIS classifier has potential in detecting the ophthalmic artery stenosis. PMID:17945697

  15. Application of fuzzy logic-neural network based reinforcement learning to proximity and docking operations: Translational controller results

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant

    1992-01-01

    The reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we also use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use two terms interchangeable to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS). This report is the deliverable D3 in our project activity and provides the test results of the fuzzy learning translational controller. This report is organized in six sections. Based on our experience and analysis with the attitude controller, we have modified the basic configuration of the reinforcement learning algorithm in ARIC as described in section 2. The shuttle translational controller and its implementation in fuzzy learning architecture is described in section 3. Two test cases that we have performed are described in section 4. Our results and conclusions are discussed in section 5, and section 6 provides future plans and summary for the project.

  16. Inference of dynamical gene-regulatory networks based on time-resolved multi-stimuli multi-experiment data applying NetGenerator V2.0

    PubMed Central

    2013-01-01

    Background Inference of gene-regulatory networks (GRNs) is important for understanding behaviour and potential treatment of biological systems. Knowledge about GRNs gained from transcriptome analysis can be increased by multiple experiments and/or multiple stimuli. Since GRNs are complex and dynamical, appropriate methods and algorithms are needed for constructing models describing these dynamics. Algorithms based on heuristic approaches reduce the effort in parameter identification and computation time. Results The NetGenerator V2.0 algorithm, a heuristic for network inference, is proposed and described. It automatically generates a system of differential equations modelling structure and dynamics of the network based on time-resolved gene expression data. In contrast to a previous version, the inference considers multi-stimuli multi-experiment data and contains different methods for integrating prior knowledge. The resulting significant changes in the algorithmic procedures are explained in detail. NetGenerator is applied to relevant benchmark examples evaluating the inference for data from experiments with different stimuli. Also, the underlying GRN of chondrogenic differentiation, a real-world multi-stimulus problem, is inferred and analysed. Conclusions NetGenerator is able to determine the structure and parameters of GRNs and their dynamics. The new features of the algorithm extend the range of possible experimental set-ups, results and biological interpretations. Based upon benchmarks, the algorithm provides good results in terms of specificity, sensitivity, efficiency and model fit. PMID:23280066

  17. Fuzzy-neural network based short term peak and average load forecasting (STPA LF) system with network security

    SciTech Connect

    Mandal, S.K.; Agrawal, A.

    1997-12-31

    In this paper an attempt is made to forecast load using fuzzy neural network (FNN) for an integrated power system. Here, the proposed system uses a two stage FNN for a short term peak and average load forecasting (STPALF). The first stage FNN deals with the load forecasting and the second stage algorithm can be worked independently for network security. This technique is used to forecast load accurately on week days as well as holidays, weekends and some special occasions considering historical data of load and weather information and also take necessary control action for network security.

  18. Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data

    PubMed Central

    Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie

    2016-01-01

    Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine. PMID:27774993

  19. Video-based cargo fire verification system with fuzzy inference engine for commercial aircraft

    NASA Astrophysics Data System (ADS)

    Sadok, Mokhtar; Zakrzewski, Radek; Zeliff, Bob

    2005-02-01

    Conventional smoke detection systems currently installed onboard aircraft are often subject to high rates of false alarms. Under current procedures, whenever an alarm is issued the pilot is obliged to release fire extinguishers and to divert to the nearest airport. Aircraft diversions are costly and dangerous in some situations. A reliable detection system that minimizes false-alarm rate and allows continuous monitoring of cargo compartments is highly desirable. A video-based system has been recently developed by Goodrich Corporation to address this problem. The Cargo Fire Verification System (CFVS) is a multi camera system designed to provide live stream video to the cockpit crew and to perform hotspot, fire, and smoke detection in aircraft cargo bays. In addition to video frames, the CFVS uses other sensor readings to discriminate between genuine events such as fire or smoke and nuisance alarms such as fog or dust. A Mamdani-type fuzzy inference engine is developed to provide approximate reasoning for decision making. In one implementation, Gaussian membership functions for frame intensity-based features, relative humidity, and temperature are constructed using experimental data to form the system inference engine. The CFVS performed better than conventional aircraft smoke detectors in all standardized tests.

  20. Application of fuzzy logic-neural network based reinforcement learning to proximity and docking operations: Attitude control results

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant

    1992-01-01

    As part of the RICIS activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This report is deliverable D2 Altitude Control Results and provides the status of the project after four months of activities and outlines the future plans. In section 2 we describe the Fuzzy-Learner system for the attitude control functions. In section 3, we provide the description of test cases and results in a chronological order. In section 4, we have summarized our results and conclusions. Our future plans and recommendations are provided in section 5.

  1. Fuzzy logic inference-based Pavement Friction Management and real-time slippery warning systems: A proof of concept study.

    PubMed

    Najafi, Shahriar; Flintsch, Gerardo W; Khaleghian, Seyedmeysam

    2016-05-01

    Minimizing roadway crashes and fatalities is one of the primary objectives of highway engineers, and can be achieved in part through appropriate maintenance practices. Maintaining an appropriate level of friction is a crucial maintenance practice, due to the effect it has on roadway safety. This paper presents a fuzzy logic inference system that predicts the rate of vehicle crashes based on traffic level, speed limit, and surface friction. Mamdani and Sugeno fuzzy controllers were used to develop the model. The application of the proposed fuzzy control system in a real-time slippery road warning system is demonstrated as a proof of concept. The results of this study provide a decision support model for highway agencies to monitor their network's friction and make appropriate judgments to correct deficiencies based on crash risk. Furthermore, this model can be implemented in the connected vehicle environment to warn drivers of potentially slippery locations. PMID:26914521

  2. Fuzzy logic inference-based Pavement Friction Management and real-time slippery warning systems: A proof of concept study.

    PubMed

    Najafi, Shahriar; Flintsch, Gerardo W; Khaleghian, Seyedmeysam

    2016-05-01

    Minimizing roadway crashes and fatalities is one of the primary objectives of highway engineers, and can be achieved in part through appropriate maintenance practices. Maintaining an appropriate level of friction is a crucial maintenance practice, due to the effect it has on roadway safety. This paper presents a fuzzy logic inference system that predicts the rate of vehicle crashes based on traffic level, speed limit, and surface friction. Mamdani and Sugeno fuzzy controllers were used to develop the model. The application of the proposed fuzzy control system in a real-time slippery road warning system is demonstrated as a proof of concept. The results of this study provide a decision support model for highway agencies to monitor their network's friction and make appropriate judgments to correct deficiencies based on crash risk. Furthermore, this model can be implemented in the connected vehicle environment to warn drivers of potentially slippery locations.

  3. Functional characterization of somatic mutations in cancer using network-based inference of protein activity | Office of Cancer Genomics

    Cancer.gov

    Identifying the multiple dysregulated oncoproteins that contribute to tumorigenesis in a given patient is crucial for developing personalized treatment plans. However, accurate inference of aberrant protein activity in biological samples is still challenging as genetic alterations are only partially predictive and direct measurements of protein activity are generally not feasible.

  4. Genetic algorithm optimized rainfall-runoff fuzzy inference system for row crop watersheds with claypan soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fuzzy logic algorithm has the ability to describe knowledge in a descriptive human-like manner in the form of simple rules using linguistic variables, and provides a new way of modeling uncertain or naturally fuzzy hydrological processes like non-linear rainfall-runoff relationships. Fuzzy infe...

  5. Prediction analysis and comparison between agriculture and mining stocks in Indonesia by using adaptive neuro-fuzzy inference system (ANFIS)

    NASA Astrophysics Data System (ADS)

    Mahandrio, Irsantyo; Budi, Andriantama; Liong, The Houw; Purqon, Acep

    2015-09-01

    The growing patterns in cultural and mining sectors are interesting particularly in developed country such as in Indonesia. Here, we investigate the local characteristics of stocks between the sectors of agriculture and mining which si representing two leading companies and two common companies in these sectors. We analyze the prediction by using Adaptive Neuro Fuzzy Inference System (ANFIS). The type of Fuzzy Inference System (FIS) is Sugeno type with Generalized Bell membership function (Gbell). Our results show that ANFIS is a proper method to predicting the stock market with the RMSE : 0.14% for AALI and 0.093% for SGRO representing the agriculture sectors, meanwhile, 0.073% for ANTM and 0.1107% for MDCO representing the mining sectors.

  6. Air Quality Analysis by Using Fuzzy Inference System and Fuzzy C-mean Clustering in Tehran, Iran from 2009–2013

    PubMed Central

    HAMEDIAN, Amir Abbas; JAVID, Allahbakhsh; MOTESADDI ZARANDI, Saeed; RASHIDI, Yousef; MAJLESI, Monireh

    2016-01-01

    Background: Since the industrial revolution, the rate of industrialization and urbanization has increased dramatically. Regarding this issue, specific regions mostly located in developing countries have been confronted with serious problems, particularly environmental problems among which air pollution is of high importance. Methods: Eleven parameters, including CO, SO2, PM10, PM2.5, O3, NO2, benzene, toluene, ethyl-benzene, xylene, and 1,3-butadiene, have been accounted over a period of two years (2011–2012) from five monitoring stations located at Tehran, Iran, were assessed by using fuzzy inference system and fuzzy c-mean clustering. Results: These tools showed that the quality of criteria pollutants between the year 2011 and 2012 did not as much effect the public health as the other pollutants did. Conclusion: Using the air EPA AQI, the quality of air, and also the managerial plans required to improve the quality can be misled. PMID:27516999

  7. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping

    NASA Astrophysics Data System (ADS)

    Park, Inhye; Choi, Jaewon; Jin Lee, Moung; Lee, Saro

    2012-11-01

    We constructed hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok City, Korea, using an adaptive neuro-fuzzy inference system (ANFIS) and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, and ground subsidence maps. An attribute database was also constructed from field investigations and reports on existing ground subsidence areas at the study site. Five major factors causing ground subsidence were extracted: (1) depth of drift; (2) distance from drift; (3) slope gradient; (4) geology; and (5) land use. The adaptive ANFIS model with different types of membership functions (MFs) was then applied for ground subsidence hazard mapping in the study area. Two ground subsidence hazard maps were prepared using the different MFs. Finally, the resulting ground subsidence hazard maps were validated using the ground subsidence test data which were not used for training the ANFIS. The validation results showed 95.12% accuracy using the generalized bell-shaped MF model and 94.94% accuracy using the Sigmoidal2 MF model. These accuracy results show that an ANFIS can be an effective tool in ground subsidence hazard mapping. Analysis of ground subsidence with the ANFIS model suggests that quantitative analysis of ground subsidence near AUCMs is possible.

  8. Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system.

    PubMed

    Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise

    2016-05-01

    In a new approach based on adaptive neuro-fuzzy inference systems (ANFIS), field heart rate (HR) measurements were used to classify work rate into four categories: very light, light, moderate, and heavy. Inter-participant variability (physiological and physical differences) was considered. Twenty-eight participants performed Meyer and Flenghi's step-test and a maximal treadmill test, during which heart rate and oxygen consumption (VO2) were measured. Results indicated that heart rate monitoring (HR, HRmax, and HRrest) and body weight are significant variables for classifying work rate. The ANFIS classifier showed superior sensitivity, specificity, and accuracy compared to current practice using established work rate categories based on percent heart rate reserve (%HRR). The ANFIS classifier showed an overall 29.6% difference in classification accuracy and a good balance between sensitivity (90.7%) and specificity (95.2%) on average. With its ease of implementation and variable measurement, the ANFIS classifier shows potential for widespread use by practitioners for work rate assessment. PMID:26851475

  9. A Context-Aware Interactive Health Care System Based on Ontology and Fuzzy Inference.

    PubMed

    Chiang, Tzu-Chiang; Liang, Wen-Hua

    2015-09-01

    In the present society, most families are double-income families, and as the long-term care is seriously short of manpower, it contributes to the rapid development of tele-homecare equipment, and the smart home care system gradually emerges, which assists the elderly or patients with chronic diseases in daily life. This study aims at interaction between persons under care and the system in various living spaces, as based on motion-sensing interaction, and the context-aware smart home care system is proposed. The system stores the required contexts in knowledge ontology, including the physiological information and environmental information of the person under care, as the database of decision. The motion-sensing device enables the person under care to interact with the system through gestures. By the inference mechanism of fuzzy theory, the system can offer advice and rapidly execute service, thus, implementing the EHA. In addition, the system is integrated with the functions of smart phone, tablet PC, and PC, in order that users can implement remote operation and share information regarding the person under care. The health care system constructed in this study enables the decision making system to probe into the health risk of each person under care; then, from the view of preventive medicine, and through a composing system and simulation experimentation, tracks the physiological trend of the person under care, and provides early warning service, thus, promoting smart home care. PMID:26265236

  10. Prediction of grain size of nanocrystalline nickel coatings using adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Hayati, M.; Rashidi, A. M.; Rezaei, A.

    2011-01-01

    This paper presents application of adaptive neuro-fuzzy inference system (ANFIS) for prediction of the grain size of nanocrystalline nickel coatings as a function of current density, saccharin concentration and bath temperature. For developing ANFIS model, the current density, saccharin concentration and bath temperature are taken as input, and the resulting grain size of the nanocrystalline coating as the output of the model. In order to provide a consistent set of experimental data, the nanocrystalline nickel coatings have been deposited from Watts-type bath using direct current electroplating within a large range of process parameters i.e., current density, saccharin concentration and bath temperature. Variation of the grain size because of the electroplating parameters has been modeled using ANFIS, and the experimental results and theoretical approaches have been compared to each other as well. Also, we have compared the proposed ANFIS model with artificial neural network (ANN) approach. The results have shown that the ANFIS model is more accurate and reliable compared to the ANN approach.

  11. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  12. Inference of S-wave velocities from well logs using a Neuro-Fuzzy Logic (NFL) approach

    NASA Astrophysics Data System (ADS)

    Aldana, Milagrosa; Coronado, Ronal; Hurtado, Nuri

    2010-05-01

    The knowledge of S-wave velocity values is important for a complete characterization and understanding of reservoir rock properties. It could help in determining fracture propagation and also to improve porosity prediction (Cuddy and Glover, 2002). Nevertheless the acquisition of S-wave velocity data is rather expensive; hence, for most reservoirs usually this information is not available. In the present work we applied a hybrid system, that combines Neural Networks and Fuzzy Logic, in order to infer S-wave velocities from porosity (φ), water saturation (Sw) and shale content (Vsh) logs. The Neuro-Fuzzy Logic (NFL) technique was tested in two wells from the Guafita oil field, Apure Basin, Venezuela. We have trained the system using 50% of the data randomly taken from one of the wells, in order to obtain the inference equations (Takani-Sugeno-Kang (TSK) fuzzy model). Equations using just one of the parameters as input (i.e. φ, Sw or Vsh), combined by pairs and all together were obtained. These equations were tested in the whole well. The results indicate that the best inference (correlation between inferred and experimental data close to 80%) is obtained when all the parameters are considered as input data. An increase of the equation number of the TSK model, when one or just two parameters are used, does not improve the performance of the NFL. The best set of equations was tested in a nearby well. The results suggest that the large difference in the petrophysical and lithological characteristics between these two wells, avoid a good inference of S-wave velocities in the tested well and allowed us to analyze the limitations of the method.

  13. Data mining in forecasting PVT correlations of crude oil systems based on Type1 fuzzy logic inference systems

    NASA Astrophysics Data System (ADS)

    El-Sebakhy, Emad A.

    2009-09-01

    Pressure-volume-temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson-Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.

  14. A fuzzy inference system for modelling streamflow: Case of Letaba River, South Africa

    NASA Astrophysics Data System (ADS)

    Katambara, Zacharia; Ndiritu, John

    Streamflow modelling of Letaba River in South Africa is complicated by several factors including the existence of dams and other storage structures whose releases are intermittent and based on rules of thumb depending on the irrigation demands and the need to maintain the flow required in the Kruger National park (KNP). The KNP is located about a hundred kilometres downstream of the main storage and water flows through an alluvial aquifer where complex surface-groundwater interactions occur. Farmers abstract water intermittently along the route directly from the river or indirectly from the alluvial aquifer complicating the flow patterns even more. Consequently, the streamflow series in the river shows very little similarity to what would be considered as natural. The actual abstractions are not measured and only monthly estimates of the abstractions currently exist. Like in many other basins in South Africa, streamflow, groundwater level, rainfall and evaporation data in Letaba is sparse and not very reliable. The Takagi-Sugeno fuzzy inference system using subtractive clustering, an approach which are capable of dealing with vague and inadequate information and data has therefore been used to develop a daily streamflow model for Letaba River. In order to take into account the spatial variability and to maximize the use of the available data, the model is applied in a semi-distributed manner consisting of three river reaches. The shuffled complex evolution (SCE-UA) optimizer has been used to calibrate the model. Six years of data from March 2002 to April 2008 has been used for model calibration and verification. To maximize the Nash-Sutcliffe efficiency, the minimum number of clusters required was found to be 10 for 1000 data points in calibration. An analysis of the location of the cluster centers, the coefficients relating the inputs with the simulated streamflow, and the degrees of membership indicates that no single cluster can be associated to the simulation

  15. Single-trial lambda wave identification using a fuzzy inference system and predictive statistical diagnosis

    NASA Astrophysics Data System (ADS)

    Saatchi, R.

    2004-03-01

    The aim of the study was to automate the identification of a saccade-related visual evoked potential (EP) called the lambda wave. The lambda waves were extracted from single trials of electroencephalogram (EEG) waveforms using independent component analysis (ICA). A trial was a set of EEG waveforms recorded from 64 scalp electrode locations while a saccade was performed. Forty saccade-related EEG trials (recorded from four normal subjects) were used in the study. The number of waveforms per trial was reduced from 64 to 22 by pre-processing. The application of ICA to the resulting waveforms produced 880 components (i.e. 4 subjects × 10 trials per subject × 22 components per trial). The components were divided into 373 lambda and 507 nonlambda waves by visual inspection and then they were represented by one spatial and two temporal features. The classification performance of a Bayesian approach called predictive statistical diagnosis (PSD) was compared with that of a fuzzy logic approach called a fuzzy inference system (FIS). The outputs from the two classification approaches were then combined and the resulting discrimination accuracy was evaluated. For each approach, half the data from the lambda and nonlambda wave categories were used to determine the operating parameters of the classification schemes while the rest (i.e. the validation set) were used to evaluate their classification accuracies. The sensitivity and specificity values when the classification approaches were applied to the lambda wave validation data set were as follows: for the PSD 92.51% and 91.73% respectively, for the FIS 95.72% and 89.76% respectively, and for the combined FIS and PSD approach 97.33% and 97.24% respectively (classification threshold was 0.5). The devised signal processing techniques together with the classification approaches provided for an effective extraction and classification of the single-trial lambda waves. However, as only four subjects were included, it will be

  16. An approach for environmental risk assessment of engineered nanomaterials using Analytical Hierarchy Process (AHP) and fuzzy inference rules.

    PubMed

    Topuz, Emel; van Gestel, Cornelis A M

    2016-01-01

    The usage of Engineered Nanoparticles (ENPs) in consumer products is relatively new and there is a need to conduct environmental risk assessment (ERA) to evaluate their impacts on the environment. However, alternative approaches are required for ERA of ENPs because of the huge gap in data and knowledge compared to conventional pollutants and their unique properties that make it difficult to apply existing approaches. This study aims to propose an ERA approach for ENPs by integrating Analytical Hierarchy Process (AHP) and fuzzy inference models which provide a systematic evaluation of risk factors and reducing uncertainty about the data and information, respectively. Risk is assumed to be the combination of occurrence likelihood, exposure potential and toxic effects in the environment. A hierarchy was established to evaluate the sub factors of these components. Evaluation was made with fuzzy numbers to reduce uncertainty and incorporate the expert judgements. Overall score of each component was combined with fuzzy inference rules by using expert judgements. Proposed approach reports the risk class and its membership degree such as Minor (0.7). Therefore, results are precise and helpful to determine the risk management strategies. Moreover, priority weights calculated by comparing the risk factors based on their importance for the risk enable users to understand which factor is effective on the risk. Proposed approach was applied for Ag (two nanoparticles with different coating) and TiO2 nanoparticles for different case studies. Results verified the proposed benefits of the approach. PMID:27131016

  17. Adaptive neuro-fuzzy inference system for acoustic analysis of 4-channel phonocardiograms using empirical mode decomposition.

    PubMed

    Becerra, Miguel A; Orrego, Diana A; Delgado-Trejos, Edilson

    2013-01-01

    The heart's mechanical activity can be appraised by auscultation recordings, taken from the 4-Standard Auscultation Areas (4-SAA), one for each cardiac valve, as there are invisible murmurs when a single area is examined. This paper presents an effective approach for cardiac murmur detection based on adaptive neuro-fuzzy inference systems (ANFIS) over acoustic representations derived from Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) of 4-channel phonocardiograms (4-PCG). The 4-PCG database belongs to the National University of Colombia. Mel-Frequency Cepstral Coefficients (MFCC) and statistical moments of HHT were estimated on the combination of different intrinsic mode functions (IMFs). A fuzzy-rough feature selection (FRFS) was applied in order to reduce complexity. An ANFIS network was implemented on the feature space, randomly initialized, adjusted using heuristic rules and trained using a hybrid learning algorithm made up by least squares and gradient descent. Global classification for 4-SAA was around 98.9% with satisfactory sensitivity and specificity, using a 50-fold cross-validation procedure (70/30 split). The representation capability of the EMD technique applied to 4-PCG and the neuro-fuzzy inference of acoustic features offered a high performance to detect cardiac murmurs. PMID:24109851

  18. Adaptive neuro-fuzzy inference system for acoustic analysis of 4-channel phonocardiograms using empirical mode decomposition.

    PubMed

    Becerra, Miguel A; Orrego, Diana A; Delgado-Trejos, Edilson

    2013-01-01

    The heart's mechanical activity can be appraised by auscultation recordings, taken from the 4-Standard Auscultation Areas (4-SAA), one for each cardiac valve, as there are invisible murmurs when a single area is examined. This paper presents an effective approach for cardiac murmur detection based on adaptive neuro-fuzzy inference systems (ANFIS) over acoustic representations derived from Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) of 4-channel phonocardiograms (4-PCG). The 4-PCG database belongs to the National University of Colombia. Mel-Frequency Cepstral Coefficients (MFCC) and statistical moments of HHT were estimated on the combination of different intrinsic mode functions (IMFs). A fuzzy-rough feature selection (FRFS) was applied in order to reduce complexity. An ANFIS network was implemented on the feature space, randomly initialized, adjusted using heuristic rules and trained using a hybrid learning algorithm made up by least squares and gradient descent. Global classification for 4-SAA was around 98.9% with satisfactory sensitivity and specificity, using a 50-fold cross-validation procedure (70/30 split). The representation capability of the EMD technique applied to 4-PCG and the neuro-fuzzy inference of acoustic features offered a high performance to detect cardiac murmurs.

  19. Integration of process planning and production scheduling with particle swarm optimization (PSO) algorithm and fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Yang, Yahong; Zhao, Fuqing; Hong, Yi; Yu, Dongmei

    2005-12-01

    Integration of process planning with scheduling by considering the manufacturing system's capacity, cost and capacity in its workshop is a critical issue. The concurrency between them can also eliminate the redundant process and optimize the entire production cycle, but most integrated process planning and scheduling methods only consider the time aspects of the alternative machines when constructing schedules. In this paper, a fuzzy inference system (FIS) in choosing alternative machines for integrated process planning and scheduling of a job shop manufacturing system is presented. Instead of choosing alternative machines randomly, machines are being selected based on the machines reliability. The mean time to failure (MTF) values is input in a fuzzy inference mechanism, which outputs the machine reliability. The machine is then being penalized based on the fuzzy output. The most reliable machine will have the higher priority to be chosen. In order to overcome the problem of un-utilization machines, sometimes faced by unreliable machine, the particle swarm optimization (PSO) have been used to balance the load for all the machines. Simulation study shows that the system can be used as an alternative way of choosing machines in integrated process planning and scheduling.

  20. Prediction of Scour Depth around Bridge Piers using Adaptive Neuro-Fuzzy Inference Systems (ANFIS)

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Zhang, Hanqing

    2014-05-01

    Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health of river systems but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the application of a Machine Learning model that has been successfully employed in Water Engineering, namely an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation.

  1. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  2. Error modeling of DEMs from topographic surveys of rivers using fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Bangen, Sara; Hensleigh, James; McHugh, Peter; Wheaton, Joseph

    2016-02-01

    Digital elevation models (DEMs) have become common place in the earth sciences as a tool to characterize surface topography and set modeling boundary conditions. All DEMs have a degree of inherent error that is propagated to subsequent models and analyses. While previous research has shown that DEM error is spatially variable it is often represented as spatially uniform for analytical simplicity. Fuzzy inference systems (FIS) offer a tractable approach for modeling spatially variable DEM error, including flexibility in the number of inputs and calibration of outputs based on survey technique and modeling environment. We compare three FIS error models for DEMs derived from TS surveys of wadeable streams and test them at 34 sites in the Columbia River basin. The models differ in complexity regarding the number/type of inputs and degree of site-specific parameterization. A 2-input FIS uses inputs derived from the topographic point cloud (slope, point density). A 4-input FIS adds interpolation error and 3-D point quality. The 5-input FIS adds bed-surface roughness estimates. Both the 4 and 5-input FIS model output were parameterized to site-specific values. In the wetted channel we found (i) the 5-input FIS resulted in lower mean δz due to including roughness, and (ii) the 4 and 5-input FIS resulted in a higher standard deviation and maximum δz due to the inclusion of site-specific bank heights. All three FIS gave plausible estimates of DEM error, with the two more complicated models offering an improvement in the ability to detect spatially localized areas of DEM uncertainty.

  3. Insight into sorption mechanism of phenanthrene onto gemini modified palygorskite through a multi-level fuzzy-factorial inference approach.

    PubMed

    Zhao, Shan; Huang, Gordon; Wang, Shuo; Wang, Xiuquan; Huang, Wendy

    2016-07-28

    A multi-level fuzzy-factorial inference approach was proposed to examine the sorption behavior of phenanthrene on palygorskite modified with a gemini surfactant. Fuzzy set theory was used to determine five experimentally controlled environmental factors with triangular membership functions, including initial concentration, added humid acid dose, ionic strength, temperature, and pH. The statistical significance of factors and their interactions affecting the sorption process was revealed through a multi-level factorial experiment. Initial concentration, ionic strength, and pH were identified as the most significant factors based on the multi-way ANOVA results. Examination of curvature effects of factors revealed the nonlinear complexity inherent in the sorption process. The potential interactions among experimental factors were detected, which is meaningful for providing a deep insight into the sorption mechanisms under the influences of factors at different levels. PMID:27163726

  4. Information Warfare-Worthy Jamming Attack Detection Mechanism for Wireless Sensor Networks Using a Fuzzy Inference System

    PubMed Central

    Misra, Sudip; Singh, Ranjit; Rohith Mohan, S. V.

    2010-01-01

    The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes. PMID:22319307

  5. Fuzzy inference systems, ASKE, knowledge value added, and Monte Carlo risk simulation for evaluating intangible human capital investments

    NASA Astrophysics Data System (ADS)

    Mun, Johnathan; de Albuquerque, Nelson R.; Liong, Choong-Yeun; Salleh, Abdul Razak

    2013-04-01

    This paper presents the ASKE-Risk method, coupled with Fuzzy Inference Systems, and Monte Carlo Risk Simulation to measure and prioritize Individual Technical Competence of a value chain to assess changes in the human capital of a company. ASKE is an extension of the method Knowledge Value Added, which proposes the use of a proxy variable for measuring the flow of knowledge used in a key process, creating a relationship between the company's financial results and the resources used in each of the business processes.

  6. Fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lofti A.

    1988-01-01

    The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.

  7. Intelligent detection of hypoglycemic episodes in children with type 1 diabetes using adaptive neural-fuzzy inference system.

    PubMed

    San, Phyo Phyo; Ling, Sai Ho; Nguyen, Hung T

    2012-01-01

    Hypoglycemia, or low blood glucose, is the most common complication experienced by Type 1 diabetes mellitus (T1DM) patients. It is dangerous and can result in unconsciousness, seizures and even death. The most common physiological parameter to be effected from hypoglycemic reaction are heart rate (HR) and correct QT interval (QTc) of the electrocardiogram (ECG) signal. Based on physiological parameters, an intelligent diagnostics system, using the hybrid approach of adaptive neural fuzzy inference system (ANFIS), is developed to recognize the presence of hypoglycemia. The proposed ANFIS is characterized by adaptive neural network capabilities and the fuzzy inference system. To optimize the membership functions and adaptive network parameters, a global learning optimization algorithm called hybrid particle swarm optimization with wavelet mutation (HPSOWM) is used. For clinical study, 15 children with Type 1 diabetes volunteered for an overnight study. All the real data sets are collected from the Department of Health, Government of Western Australia. Several experiments were conducted with 5 patients each, for a training set (184 data points), a validation set (192 data points) and a testing set (153 data points), which are randomly selected. The effectiveness of the proposed detection method is found to be satisfactory by giving better sensitivity, 79.09% and acceptable specificity, 51.82%. PMID:23367375

  8. Adaptive neuro-fuzzy inference system to improve the power quality of a split shaft microturbine power generation system

    NASA Astrophysics Data System (ADS)

    Oğuz, Yüksel; Üstün, Seydi Vakkas; Yabanova, İsmail; Yumurtaci, Mehmet; Güney, İrfan

    2012-01-01

    This article presents design of adaptive neuro-fuzzy inference system (ANFIS) for the turbine speed control for purpose of improving the power quality of the power production system of a split shaft microturbine. To improve the operation performance of the microturbine power generation system (MTPGS) and to obtain the electrical output magnitudes in desired quality and value (terminal voltage, operation frequency, power drawn by consumer and production power), a controller depended on adaptive neuro-fuzzy inference system was designed. The MTPGS consists of the microturbine speed controller, a split shaft microturbine, cylindrical pole synchronous generator, excitation circuit and voltage regulator. Modeling of dynamic behavior of synchronous generator driver with a turbine and split shaft turbine was realized by using the Matlab/Simulink and SimPowerSystems in it. It is observed from the simulation results that with the microturbine speed control made with ANFIS, when the MTPGS is operated under various loading situations, the terminal voltage and frequency values of the system can be settled in desired operation values in a very short time without significant oscillation and electrical production power in desired quality can be obtained.

  9. Fuzzy Inference Based Obstacle Avoidance Control of Electric Powered Wheelchair Considering Driving Risk

    NASA Astrophysics Data System (ADS)

    Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu

    This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.

  10. Rule-based fuzzy inference system for estimating the influent COD/N ratio and ammonia load to a sequencing batch reactor.

    PubMed

    Kim, Y J; Bae, H; Ko, J H; Poo, K M; Kim, S; Kim, C W; Woo, H J

    2006-01-01

    A fuzzy inference system using sensor measurements was developed to estimate the influent COD/N ratio and ammonia load. The sensors measured ORP, DO and pH. The sensor profiles had a close relationship with the influent COD/N ratio and ammonia load. To confirm this operational knowledge for constructing a rule set, a correlation analysis was conducted. The results showed that a rule generation method based only on operational knowledge did not generate a sufficiently accurate relationship between sensor measurements and target variables. To compensate for this defect, a decision tree algorithm was used as a standardized method for rule generation. Given a set of inputs, this algorithm was used to determine the output variables. However, the generated rules could not estimate the continuous influent COD/N ratio and ammonia load. Fuzzified rules and the fuzzy inference system were developed to overcome this problem. The fuzzy inference system estimated the influent COD/N ratio and ammonia load quite well. When these results were compared to the results from a predictive polynomial neural network model, the fuzzy inference system was more stable. PMID:16532750

  11. Image haze removal using a hybrid of fuzzy inference system and weighted estimation

    NASA Astrophysics Data System (ADS)

    Wang, Jyun-Guo; Tai, Shen-Chuan; Lin, Cheng-Jian

    2015-05-01

    The attenuation of the light transmitted through air can reduce image quality when taking a photograph outdoors, especially in a hazy environment. Hazy images often lack sufficient information for image recognition systems to operate effectively. In order to solve the aforementioned problems, this study proposes a hybrid method combining fuzzy theory with weighted estimation for the removal of haze from images. A transmission map is first created based on fuzzy theory. According to the transmission map, the proposed method automatically finds the possible atmospheric lights and refines the atmospheric lights by mixing these candidates. Weighted estimation is then employed to generate a refined transmission map, which removes the halo artifact from around the sharp edges. Experimental results demonstrate the superiority of the proposed method over existing methods with regard to contrast, color depth, and the elimination of halo artifacts.

  12. Prediction of Radical Scavenging Activities of Anthocyanins Applying Adaptive Neuro-Fuzzy Inference System (ANFIS) with Quantum Chemical Descriptors

    PubMed Central

    Jhin, Changho; Hwang, Keum Taek

    2014-01-01

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627

  13. Prediction of radical scavenging activities of anthocyanins applying adaptive neuro-fuzzy inference system (ANFIS) with quantum chemical descriptors.

    PubMed

    Jhin, Changho; Hwang, Keum Taek

    2014-01-01

    Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627

  14. Adaptive neuro-fuzzy inference systems for semi-automatic discrimination between seismic events: a study in Tehran region

    NASA Astrophysics Data System (ADS)

    Vasheghani Farahani, Jamileh; Zare, Mehdi; Lucas, Caro

    2012-04-01

    Thisarticle presents an adaptive neuro-fuzzy inference system (ANFIS) for classification of low magnitude seismic events reported in Iran by the network of Tehran Disaster Mitigation and Management Organization (TDMMO). ANFIS classifiers were used to detect seismic events using six inputs that defined the seismic events. Neuro-fuzzy coding was applied using the six extracted features as ANFIS inputs. Two types of events were defined: weak earthquakes and mining blasts. The data comprised 748 events (6289 signals) ranging from magnitude 1.1 to 4.6 recorded at 13 seismic stations between 2004 and 2009. We surveyed that there are almost 223 earthquakes with M ≤ 2.2 included in this database. Data sets from the south, east, and southeast of the city of Tehran were used to evaluate the best short period seismic discriminants, and features as inputs such as origin time of event, distance (source to station), latitude of epicenter, longitude of epicenter, magnitude, and spectral analysis (fc of the Pg wave) were used, increasing the rate of correct classification and decreasing the confusion rate between weak earthquakes and quarry blasts. The performance of the ANFIS model was evaluated for training and classification accuracy. The results confirmed that the proposed ANFIS model has good potential for determining seismic events.

  15. Analysis prediction of Indonesian banks (BCA, BNI, MANDIRI) using adaptive neuro-fuzzy inference system (ANFIS) and investment strategies

    NASA Astrophysics Data System (ADS)

    Trianto, Andriantama Budi; Hadi, I. M.; Liong, The Houw; Purqon, Acep

    2015-09-01

    Indonesian economical development is growing well. It has effect for their invesment in Banks and the stock market. In this study, we perform prediction for the three blue chips of Indonesian bank i.e. BCA, BNI, and MANDIRI by using the method of Adaptive Neuro-Fuzzy Inference System (ANFIS) with Takagi-Sugeno rules and Generalized bell (Gbell) as the membership function. Our results show that ANFIS perform good prediction with RMSE for BCA of 27, BNI of 5.29, and MANDIRI of 13.41, respectively. Furthermore, we develop an active strategy to gain more benefit. We compare between passive strategy versus active strategy. Our results shows that for the passive strategy gains 13 million rupiah, while for the active strategy gains 47 million rupiah in one year. The active investment strategy significantly shows gaining multiple benefit than the passive one.

  16. Adaptive neuro-fuzzy inference system for classification of background EEG signals from ESES patients and controls.

    PubMed

    Yang, Zhixian; Wang, Yinghua; Ouyang, Gaoxiang

    2014-01-01

    Background electroencephalography (EEG), recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES) syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3-9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE) and sample entropy (SampEn) in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS) classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved. PMID:24790547

  17. Adaptive Neuro-Fuzzy Inference System for Classification of Background EEG Signals from ESES Patients and Controls

    PubMed Central

    Yang, Zhixian; Wang, Yinghua; Ouyang, Gaoxiang

    2014-01-01

    Background electroencephalography (EEG), recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES) syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE) and sample entropy (SampEn) in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS) classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved. PMID:24790547

  18. Equipment fault diagnosis system of sequencing batch reactors using rule-based fuzzy inference and on-line sensing data.

    PubMed

    Kim, Y J; Bae, H; Poo, K M; Ko, J H; Kim, B G; Park, T J; Kim, C W

    2006-01-01

    The importance of a detection technique to prevent process deterioration is increasing. For the fast detection of this disturbance, a diagnostic algorithm was developed to determine types of equipment faults by using on-line ORP and DO profile in sequencing batch reactors (SBRs). To develop the rule base for fault diagnosis, the sensor profiles were obtained from a pilot-scale SBR when blower, influent pump and mixer were broken. The rules were generated based on the calculated error between an abnormal profile and a normal profile, e(ORP)(t) and e(DO)(t). To provide intermediate diagnostic results between "normal" and "fault", a fuzzy inference algorithm was incorporated to the rules. Fuzzified rules could present the diagnosis result "need to be checked". The diagnosis showed good performance in detecting and diagnosing various faults. The developed algorithm showed its applicability to detect faults and make possible fast action to correct them. PMID:16722090

  19. Naturally-Emerging Technology-Based Leadership Roles in Three Independent Schools: A Social Network-Based Case Study Using Fuzzy Set Qualitative Comparative Analysis

    ERIC Educational Resources Information Center

    Velastegui, Pamela J.

    2013-01-01

    This hypothesis-generating case study investigates the naturally emerging roles of technology brokers and technology leaders in three independent schools in New York involving 92 school educators. A multiple and mixed method design utilizing Social Network Analysis (SNA) and fuzzy set Qualitative Comparative Analysis (FSQCA) involved gathering…

  20. Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department.

    PubMed

    Azeez, Dhifaf; Ali, Mohd Alauddin Mohd; Gan, Kok Beng; Saiboon, Ismail

    2013-01-01

    Unexpected disease outbreaks and disasters are becoming primary issues facing our world. The first points of contact either at the disaster scenes or emergency department exposed the frontline workers and medical physicians to the risk of infections. Therefore, there is a persuasive demand for the integration and exploitation of heterogeneous biomedical information to improve clinical practice, medical research and point of care. In this paper, a primary triage model was designed using two different methods: an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).When the patient is presented at the triage counter, the system will capture their vital signs and chief complains beside physiology stat and general appearance of the patient. This data will be managed and analyzed in the data server and the patient's emergency status will be reported immediately. The proposed method will help to reduce the queue time at the triage counter and the emergency physician's burden especially duringdisease outbreak and serious disaster. The models have been built with 2223 data set extracted from the Emergency Department of the Universiti Kebangsaan Malaysia Medical Centre to predict the primary triage category. Multilayer feed forward with one hidden layer having 12 neurons has been used for the ANN architecture. Fuzzy subtractive clustering has been used to find the fuzzy rules for the ANFIS model. The results showed that the RMSE, %RME and the accuracy which evaluated by measuring specificity and sensitivity for binary classificationof the training data were 0.14, 5.7 and 99 respectively for the ANN model and 0.85, 32.00 and 96.00 respectively for the ANFIS model. As for unseen data the root mean square error, percentage the root mean square error and the accuracy for ANN is 0.18, 7.16 and 96.7 respectively, 1.30, 49.84 and 94 respectively for ANFIS model. The ANN model was performed better for both training and unseen data than ANFIS model in

  1. Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department.

    PubMed

    Azeez, Dhifaf; Ali, Mohd Alauddin Mohd; Gan, Kok Beng; Saiboon, Ismail

    2013-01-01

    Unexpected disease outbreaks and disasters are becoming primary issues facing our world. The first points of contact either at the disaster scenes or emergency department exposed the frontline workers and medical physicians to the risk of infections. Therefore, there is a persuasive demand for the integration and exploitation of heterogeneous biomedical information to improve clinical practice, medical research and point of care. In this paper, a primary triage model was designed using two different methods: an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).When the patient is presented at the triage counter, the system will capture their vital signs and chief complains beside physiology stat and general appearance of the patient. This data will be managed and analyzed in the data server and the patient's emergency status will be reported immediately. The proposed method will help to reduce the queue time at the triage counter and the emergency physician's burden especially duringdisease outbreak and serious disaster. The models have been built with 2223 data set extracted from the Emergency Department of the Universiti Kebangsaan Malaysia Medical Centre to predict the primary triage category. Multilayer feed forward with one hidden layer having 12 neurons has been used for the ANN architecture. Fuzzy subtractive clustering has been used to find the fuzzy rules for the ANFIS model. The results showed that the RMSE, %RME and the accuracy which evaluated by measuring specificity and sensitivity for binary classificationof the training data were 0.14, 5.7 and 99 respectively for the ANN model and 0.85, 32.00 and 96.00 respectively for the ANFIS model. As for unseen data the root mean square error, percentage the root mean square error and the accuracy for ANN is 0.18, 7.16 and 96.7 respectively, 1.30, 49.84 and 94 respectively for ANFIS model. The ANN model was performed better for both training and unseen data than ANFIS model in

  2. Estimating the DNA strand breakage using a fuzzy inference system and agarose gel electrophoresis, a case study with toothed carp Aphanius sophiae exposed to cypermethrin.

    PubMed

    Poorbagher, Hadi; Moghaddam, Maryam Nasrollahpour; Eagderi, Soheil; Farahmand, Hamid

    2016-07-01

    The DNA breakage has been widely used in ecotoxicological studies to investigate effects of pesticides in fishes. The present study used a fuzzy inference system to quantify the breakage of DNA double strand in Aphanius sophiae exposed to the cypermethrin. The specimens were adapted to different temperatures and salinity for 14 days and then exposed to cypermethrin. DNA of each specimens were extracted, electrophoresed and photographed. A fuzzy system with three input variables and 27 rules were defined. The pixel value curve of DNA on each gel lane was obtained using ImageJ. The DNA breakage was quantified using the pixel value curve and fuzzy system. The defuzzified values were analyzed using a three-way analysis of variance. Cypermethrin had significant effects on DNA breakage. Fuzzy inference systems can be used as a tool to quantify the breakage of double strand DNA. DNA double strand of the gill of A. sophiae is sensitive enough to be used to detect cypermethrin in surface waters in concentrations much lower than those reported in previous studies.

  3. Using adaptive neuro-fuzzy inference system technique for crosstalk correction in simultaneous 99mTc/201Tl SPECT imaging: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Heidary, Saeed; Setayeshi, Saeed

    2015-01-01

    This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous 99mTc/201Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of 201Tl (77±10% keV) and 99mTc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.

  4. Fuzzy inference enhanced information recovery from digital PIV using cross-correlation combined with particle tracking

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1995-01-01

    Particle Image Velocimetry provides a means of measuring the instantaneous 2-component velocity field across a planar region of a seeded flowfield. In this work only two camera, single exposure images are considered where both cameras have the same view of the illumination plane. Two competing techniques which yield unambiguous velocity vector direction information have been widely used for reducing the single exposure, multiple image data: cross-correlation and particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. The correlation technique requires identification of the correlation peak on the correlation plane corresponding to the average displacement of particles across the subregion. Noise on the images and particle dropout contribute to spurious peaks on the correlation plane, leading to misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak on the correlation plane, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus velocity. The advantage of this technique is the

  5. Estimating oxygen consumption from heart rate using adaptive neuro-fuzzy inference system and analytical approaches.

    PubMed

    Kolus, Ahmet; Dubé, Philippe-Antoine; Imbeau, Daniel; Labib, Richard; Dubeau, Denise

    2014-11-01

    In new approaches based on adaptive neuro-fuzzy systems (ANFIS) and analytical method, heart rate (HR) measurements were used to estimate oxygen consumption (VO2). Thirty-five participants performed Meyer and Flenghi's step-test (eight of which performed regeneration release work), during which heart rate and oxygen consumption were measured. Two individualized models and a General ANFIS model that does not require individual calibration were developed. Results indicated the superior precision achieved with individualized ANFIS modelling (RMSE = 1.0 and 2.8 ml/kg min in laboratory and field, respectively). The analytical model outperformed the traditional linear calibration and Flex-HR methods with field data. The General ANFIS model's estimates of VO2 were not significantly different from actual field VO2 measurements (RMSE = 3.5 ml/kg min). With its ease of use and low implementation cost, the General ANFIS model shows potential to replace any of the traditional individualized methods for VO2 estimation from HR data collected in the field. PMID:24793823

  6. Modeling Pb (II) adsorption from aqueous solution by ostrich bone ash using adaptive neural-based fuzzy inference system.

    PubMed

    Amiri, Mohammad J; Abedi-Koupai, Jahangir; Eslamian, Sayed S; Mousavi, Sayed F; Hasheminejad, Hasti

    2013-01-01

    To evaluate the performance of Adaptive Neural-Based Fuzzy Inference System (ANFIS) model in estimating the efficiency of Pb (II) ions removal from aqueous solution by ostrich bone ash, a batch experiment was conducted. Five operational parameters including adsorbent dosage (C(s)), initial concentration of Pb (II) ions (C(o)), initial pH, temperature (T) and contact time (t) were taken as the input data and the adsorption efficiency (AE) of bone ash as the output. Based on the 31 different structures, 5 ANFIS models were tested against the measured adsorption efficiency to assess the accuracy of each model. The results showed that ANFIS5, which used all input parameters, was the most accurate (RMSE = 2.65 and R(2) = 0.95) and ANFIS1, which used only the contact time input, was the worst (RMSE = 14.56 and R(2) = 0.46). In ranking the models, ANFIS4, ANFIS3 and ANFIS2 ranked second, third and fourth, respectively. The sensitivity analysis revealed that the estimated AE is more sensitive to the contact time, followed by pH, initial concentration of Pb (II) ions, adsorbent dosage, and temperature. The results showed that all ANFIS models overestimated the AE. In general, this study confirmed the capabilities of ANFIS model as an effective tool for estimation of AE. PMID:23383640

  7. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids.

    PubMed

    Jhin, Changho; Hwang, Keum Taek

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models. PMID:26474167

  8. Application of adaptive neuro-fuzzy inference system and cuckoo optimization algorithm for analyzing electro chemical machining process

    NASA Astrophysics Data System (ADS)

    Teimouri, Reza; Sohrabpoor, Hamed

    2013-12-01

    Electrochemical machining process (ECM) is increasing its importance due to some of the specific advantages which can be exploited during machining operation. The process offers several special privileges such as higher machining rate, better accuracy and control, and wider range of materials that can be machined. Contribution of too many predominate parameters in the process, makes its prediction and selection of optimal values really complex, especially while the process is programmized for machining of hard materials. In the present work in order to investigate effects of electrolyte concentration, electrolyte flow rate, applied voltage and feed rate on material removal rate (MRR) and surface roughness (SR) the adaptive neuro-fuzzy inference systems (ANFIS) have been used for creation predictive models based on experimental observations. Then the ANFIS 3D surfaces have been plotted for analyzing effects of process parameters on MRR and SR. Finally, the cuckoo optimization algorithm (COA) was used for selection solutions in which the process reaches maximum material removal rate and minimum surface roughness simultaneously. Results indicated that the ANFIS technique has superiority in modeling of MRR and SR with high prediction accuracy. Also, results obtained while applying of COA have been compared with those derived from confirmatory experiments which validate the applicability and suitability of the proposed techniques in enhancing the performance of ECM process.

  9. Adaptive Neuro-Fuzzy Inference System Applied QSAR with Quantum Chemical Descriptors for Predicting Radical Scavenging Activities of Carotenoids

    PubMed Central

    Jhin, Changho; Hwang, Keum Taek

    2015-01-01

    One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models. PMID:26474167

  10. Prediction of matching condition for a microstrip subsystem using artificial neural network and adaptive neuro-fuzzy inference system

    NASA Astrophysics Data System (ADS)

    Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim

    2016-11-01

    In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.

  11. Water quality analysis in rivers with non-parametric probability distributions and fuzzy inference systems: application to the Cauca River, Colombia.

    PubMed

    Ocampo-Duque, William; Osorio, Carolina; Piamba, Christian; Schuhmacher, Marta; Domingo, José L

    2013-02-01

    The integration of water quality monitoring variables is essential in environmental decision making. Nowadays, advanced techniques to manage subjectivity, imprecision, uncertainty, vagueness, and variability are required in such complex evaluation process. We here propose a probabilistic fuzzy hybrid model to assess river water quality. Fuzzy logic reasoning has been used to compute a water quality integrative index. By applying a Monte Carlo technique, based on non-parametric probability distributions, the randomness of model inputs was estimated. Annual histograms of nine water quality variables were built with monitoring data systematically collected in the Colombian Cauca River, and probability density estimations using the kernel smoothing method were applied to fit data. Several years were assessed, and river sectors upstream and downstream the city of Santiago de Cali, a big city with basic wastewater treatment and high industrial activity, were analyzed. The probabilistic fuzzy water quality index was able to explain the reduction in water quality, as the river receives a larger number of agriculture, domestic, and industrial effluents. The results of the hybrid model were compared to traditional water quality indexes. The main advantage of the proposed method is that it considers flexible boundaries between the linguistic qualifiers used to define the water status, being the belongingness of water quality to the diverse output fuzzy sets or classes provided with percentiles and histograms, which allows classify better the real water condition. The results of this study show that fuzzy inference systems integrated to stochastic non-parametric techniques may be used as complementary tools in water quality indexing methodologies.

  12. ARPOP: an appetitive reward-based pseudo-outer-product neural fuzzy inference system inspired from the operant conditioning of feeding behavior in Aplysia.

    PubMed

    Cheu, Eng Yeow; Quek, Chai; Ng, See Kiong

    2012-02-01

    Appetitive operant conditioning in Aplysia for feeding behavior via the electrical stimulation of the esophageal nerve contingently reinforces each spontaneous bite during the feeding process. This results in the acquisition of operant memory by the contingently reinforced animals. Analysis of the cellular and molecular mechanisms of the feeding motor circuitry revealed that activity-dependent neuronal modulation occurs at the interneurons that mediate feeding behaviors. This provides evidence that interneurons are possible loci of plasticity and constitute another mechanism for memory storage in addition to memory storage attributed to activity-dependent synaptic plasticity. In this paper, an associative ambiguity correction-based neuro-fuzzy network, called appetitive reward-based pseudo-outer-product-compositional rule of inference [ARPOP-CRI(S)], is trained based on an appetitive reward-based learning algorithm which is biologically inspired by the appetitive operant conditioning of the feeding behavior in Aplysia. A variant of the Hebbian learning rule called Hebbian concomitant learning is proposed as the building block in the neuro-fuzzy network learning algorithm. The proposed algorithm possesses the distinguishing features of the sequential learning algorithm. In addition, the proposed ARPOP-CRI(S) neuro-fuzzy system encodes fuzzy knowledge in the form of linguistic rules that satisfies the semantic criteria for low-level fuzzy model interpretability. ARPOP-CRI(S) is evaluated and compared against other modeling techniques using benchmark time-series datasets. Experimental results are encouraging and show that ARPOP-CRI(S) is a viable modeling technique for time-variant problem domains.

  13. Application of fuzzy logic-neural network based reinforcement learning to proximity and docking operations: Special approach/docking testcase results

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant

    1993-01-01

    As part of the RICIS project, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use these two terms interchangeably to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS) and programming/testing support from other contractor personnel. This report is the final deliverable D4 in our milestones and project activity. It provides the test results for the special testcase of approach/docking scenario for the shuttle and SMM satellite. Based on our experience and analysis with the attitude and translational controllers, we have modified the basic configuration of the reinforcement learning algorithm in ARIC. The shuttle translational controller and its implementation in ARIC is described in our deliverable D3. In order to simulate the final approach and docking operations, we have set-up this special testcase as described in section 2. The ARIC performance results for these operations are discussed in section 3 and conclusions are provided in section 4 along with the summary for the project.

  14. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS

    NASA Astrophysics Data System (ADS)

    Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi

    2016-09-01

    This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.

  15. Drought prediction using co-active neuro-fuzzy inference system, validation, and uncertainty analysis (case study: Birjand, Iran)

    NASA Astrophysics Data System (ADS)

    Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid

    2016-08-01

    This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS

  16. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    NASA Astrophysics Data System (ADS)

    Ajay Kumar, M.; Srikanth, N. V.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  17. Comparison of adaptive neuro-fuzzy inference system (ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction of skin temperature in lower limb prostheses.

    PubMed

    Mathur, Neha; Glesk, Ivan; Buis, Arjan

    2016-10-01

    Monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used impeding the required consistent positioning of the temperature sensors during donning and doffing. Predicting the in-socket residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. In this work, we propose to implement an adaptive neuro fuzzy inference strategy (ANFIS) to predict the in-socket residual limb temperature. ANFIS belongs to the family of fused neuro fuzzy system in which the fuzzy system is incorporated in a framework which is adaptive in nature. The proposed method is compared to our earlier work using Gaussian processes for machine learning. By comparing the predicted and actual data, results indicate that both the modeling techniques have comparable performance metrics and can be efficiently used for non-invasive temperature monitoring. PMID:27452775

  18. Fuzzy Content-Based Retrieval in Image Databases.

    ERIC Educational Resources Information Center

    Wu, Jian Kang; Narasimhalu, A. Desai

    1998-01-01

    Proposes a fuzzy-image database model and a concept of fuzzy space; describes fuzzy-query processing in fuzzy space and fuzzy indexing on complete fuzzy vectors; and uses an example image database, the computer-aided facial-image inference and retrieval system (CAFIIR), for explanation throughout. (Author/LRW)

  19. Characterization of Lithofacies in an oil well via experimental measument of bulk magnetic properties and their inference through Neuro Fuzzy Logic analysis

    NASA Astrophysics Data System (ADS)

    Hurtado, N.; López, D.; Costanzo-Alvarez, V.; Aldana, M.

    2009-04-01

    We have measured NRM, room temperature magnetic susceptibility, S ratios and Königsberger ratios in 134 samples that encompass aproximately 670 meters of depth in an oil well drilled in eastern Colombia. These samples are sandstones and siltstones from the Guayabo, León and Carbonera Formations (Oligocene/Miocene/Pliocene). Our main goal is to asses the potential of the Neuro Fuzzy Logic analysis to infer magnetic parameters such as S ratios and Königsberger ratios from magnetic susceptibility experimental data. This method has been previously used with some success to obtain other petrophysical properties such as permeability out of porosity experimental data, however this is the first time it is applied to bulk magnetic properties. The results obtained here are then compared and integrated with their experimental counterparts. They are also used to study the variability of the paleoenvironmental conditions during the formation of the Barinas Apure sedimentary basin in eastern Colombia and western Venezuela.

  20. Investigation of the robustness of adaptive neuro-fuzzy inference system for tracking moving tumors in external radiotherapy.

    PubMed

    Torshabi, Ahmad Esmaili

    2014-12-01

    In external radiotherapy of dynamic targets such as lung and breast cancers, accurate correlation models are utilized to extract real time tumor position by means of external surrogates in correlation with the internal motion of tumors. In this study, a correlation method based on the neuro-fuzzy model is proposed to correlate the input external motion data with internal tumor motion estimation in real-time mode, due to its robustness in motion tracking. An initial test of the performance of this model was reported in our previous studies. In this work by implementing some modifications it is resulted that ANFIS is still robust to track tumor motion more reliably by reducing the motion estimation error remarkably. After configuring new version of our ANFIS model, its performance was retrospectively tested over ten patients treated with Synchrony Cyberknife system. In order to assess the performance of our model, the predicted tumor motion as model output was compared with respect to the state of the art model. Final analyzed results show that our adaptive neuro-fuzzy model can reduce tumor tracking errors more significantly, as compared with ground truth database and even tumor tracking methods presented in our previous works. PMID:25412886

  1. Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines.

    PubMed

    Swetapadma, Aleena; Yadav, Anamika

    2015-01-01

    Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance.

  2. Fuzzy Inference System Approach for Locating Series, Shunt, and Simultaneous Series-Shunt Faults in Double Circuit Transmission Lines

    PubMed Central

    Swetapadma, Aleena; Yadav, Anamika

    2015-01-01

    Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance. PMID:26413088

  3. Adaptive neuro-fuzzy inference systems with k-fold cross-validation for energy expenditure predictions based on heart rate.

    PubMed

    Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise

    2015-09-01

    This paper presents a new model based on adaptive neuro-fuzzy inference systems (ANFIS) to predict oxygen consumption (V˙O2) from easily measured variables. The ANFIS prediction model consists of three ANFIS modules for estimating the Flex-HR parameters. Each module was developed based on clustering a training set of data samples relevant to that module and then the ANFIS prediction model was tested against a validation data set. Fifty-eight participants performed the Meyer and Flenghi step-test, during which heart rate (HR) and V˙O2 were measured. Results indicated no significant difference between observed and estimated Flex-HR parameters and between measured and estimated V˙O2 in the overall HR range, and separately in different HR ranges. The ANFIS prediction model (MAE = 3 ml kg(-1) min(-1)) demonstrated better performance than Rennie et al.'s (MAE = 7 ml kg(-1) min(-1)) and Keytel et al.'s (MAE = 6 ml kg(-1) min(-1)) models, and comparable performance with the standard Flex-HR method (MAE = 2.3 ml kg(-1) min(-1)) throughout the HR range. The ANFIS model thus provides practitioners with a practical, cost- and time-efficient method for V˙O2 estimation without the need for individual calibration.

  4. Genetic algorithm-artificial neural network and adaptive neuro-fuzzy inference system modeling of antibacterial activity of annatto dye on Salmonella enteritidis.

    PubMed

    Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin

    2014-01-01

    Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population. PMID:24566279

  5. Use of an adaptive neuro-fuzzy inference system to obtain the correspondence among balance, gait, and depression for Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Woo, Youngkeun; Lee, Juwon; Hwang, Sujin; Hong, Cheol Pyo

    2013-03-01

    The purpose of this study was to investigate the associations between gait performance, postural stability, and depression in patients with Parkinson's disease (PD) by using an adaptive neuro-fuzzy inference system (ANFIS). Twenty-two idiopathic PD patients were assessed during outpatient physical therapy by using three clinical tests: the Berg balance scale (BBS), Dynamic gait index (DGI), and Geriatric depression scale (GDS). Scores were determined from clinical observation and patient interviews, and associations among gait performance, postural stability, and depression in this PD population were evaluated. The DGI showed significant positive correlation with the BBS scores, and negative correlation with the GDS score. We assessed the relationship between the BBS score and the DGI results by using a multiple regression analysis. In this case, the GDS score was not significantly associated with the DGI, but the BBS and DGI results were. Strikingly, the ANFIS-estimated value of the DGI, based on the BBS and the GDS scores, significantly correlated with the walking ability determined by using the DGI in patients with Parkinson's disease. These findings suggest that the ANFIS techniques effectively reflect and explain the multidirectional phenomena or conditions of gait performance in patients with PD.

  6. Adaptive neuro-fuzzy inference systems with k-fold cross-validation for energy expenditure predictions based on heart rate.

    PubMed

    Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise

    2015-09-01

    This paper presents a new model based on adaptive neuro-fuzzy inference systems (ANFIS) to predict oxygen consumption (V˙O2) from easily measured variables. The ANFIS prediction model consists of three ANFIS modules for estimating the Flex-HR parameters. Each module was developed based on clustering a training set of data samples relevant to that module and then the ANFIS prediction model was tested against a validation data set. Fifty-eight participants performed the Meyer and Flenghi step-test, during which heart rate (HR) and V˙O2 were measured. Results indicated no significant difference between observed and estimated Flex-HR parameters and between measured and estimated V˙O2 in the overall HR range, and separately in different HR ranges. The ANFIS prediction model (MAE = 3 ml kg(-1) min(-1)) demonstrated better performance than Rennie et al.'s (MAE = 7 ml kg(-1) min(-1)) and Keytel et al.'s (MAE = 6 ml kg(-1) min(-1)) models, and comparable performance with the standard Flex-HR method (MAE = 2.3 ml kg(-1) min(-1)) throughout the HR range. The ANFIS model thus provides practitioners with a practical, cost- and time-efficient method for V˙O2 estimation without the need for individual calibration. PMID:25959320

  7. Bee algorithm and adaptive neuro-fuzzy inference system as tools for QSAR study toxicity of substituted benzenes to Tetrahymena pyriformis.

    PubMed

    Zarei, Kobra; Atabati, Morteza; Kor, Kamalodin

    2014-06-01

    A quantitative structure-activity relationship (QSAR) was developed to predict the toxicity of substituted benzenes to Tetrahymena pyriformis. A set of 1,497 zero- to three-dimensional descriptors were used for each molecule in the data set. A major problem of QSAR is the high dimensionality of the descriptor space; therefore, descriptor selection is one of the most important steps. In this paper, bee algorithm was used to select the best descriptors. Three descriptors were selected and used as inputs for adaptive neuro-fuzzy inference system (ANFIS). Then the model was corrected for unstable compounds (the compounds that can be ionized in the aqueous solutions or can easily metabolize under some conditions). Finally squared correlation coefficients were obtained as 0.8769, 0.8649 and 0.8301 for training, test and validation sets, respectively. The results showed bee-ANFIS can be used as a powerful model for prediction of toxicity of substituted benzenes to T. pyriformis. PMID:24638918

  8. An exploratory investigation of an adaptive neuro fuzzy inference system (ANFIS) for estimating hydrometeors from TRMM/TMI in synergy with TRMM/PR

    NASA Astrophysics Data System (ADS)

    Islam, Tanvir; Srivastava, Prashant K.; Rico-Ramirez, Miguel A.; Dai, Qiang; Han, Dawei; Gupta, Manika

    2014-08-01

    The authors have investigated an adaptive neuro fuzzy inference system (ANFIS) for the estimation of hydrometeors from the TRMM microwave imager (TMI). The proposed algorithm, named as Hydro-Rain algorithm, is developed in synergy with the TRMM precipitation radar (PR) observed hydrometeor information. The method retrieves rain rates by exploiting the synergistic relations between the TMI and PR observations in twofold steps. First, the fundamental hydrometeor parameters, liquid water path (LWP) and ice water path (IWP), are estimated from the TMI brightness temperatures. Next, the rain rates are estimated from the retrieved hydrometeor parameters (LWP and IWP). A comparison of the hydrometeor retrievals by the Hydro-Rain algorithm is done with the TRMM PR 2A25 and GPROF 2A12 algorithms. The results reveal that the Hydro-Rain algorithm has good skills in estimating hydrometeor paths LWP and IWP, as well as surface rain rate. An examination of the Hydro-Rain algorithm is also conducted on a super typhoon case, in which the Hydro-Rain has shown very good performance in reproducing the typhoon field. Nevertheless, the passive microwave based estimate of hydrometeors appears to suffer in high rain rate regimes, and as the rain rate increases, the discrepancies with hydrometeor estimates tend to increase as well.

  9. Design of an expert system based on neuro-fuzzy inference analyzer for on-line microstructural characterization using magnetic NDT method

    NASA Astrophysics Data System (ADS)

    Ghanei, S.; Vafaeenezhad, H.; Kashefi, M.; Eivani, A. R.; Mazinani, M.

    2015-04-01

    Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency.

  10. Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticales-activated carbon

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Hosaininia, R.; Ghaedi, A. M.; Vafaei, A.; Taghizadeh, F.

    2014-10-01

    In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (<22.46 Å) and average particle size lower than 48.8 Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02 g adsorbent mass, 10 mg L-1 initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30 min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R2) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.

  11. Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticales-activated carbon.

    PubMed

    Ghaedi, M; Hosaininia, R; Ghaedi, A M; Vafaei, A; Taghizadeh, F

    2014-10-15

    In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope(SEM), Brunauer-Emmett-Teller(BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55m(2)/g) and low pore size (<22.46Å) and average particle size lower than 48.8Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02g adsorbent mass, 10mgL(-1) initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R(2)) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way. PMID:24858196

  12. Estimation of Flow Duration Curve for Ungauged Catchments using Adaptive Neuro-Fuzzy Inference System and Map Correlation Method: A Case Study from Turkey

    NASA Astrophysics Data System (ADS)

    Kentel, E.; Dogulu, N.

    2015-12-01

    In Turkey the experience and data required for a hydrological model setup is limited and very often not available. Moreover there are many ungauged catchments where there are also many planned projects aimed at utilization of water resources including development of existing hydropower potential. This situation makes runoff prediction at locations with lack of data and ungauged locations where small hydropower plants, reservoirs, etc. are planned an increasingly significant challenge and concern in the country. Flow duration curves have many practical applications in hydrology and integrated water resources management. Estimation of flood duration curve (FDC) at ungauged locations is essential, particularly for hydropower feasibility studies and selection of the installed capacities. In this study, we test and compare the performances of two methods for estimating FDCs in the Western Black Sea catchment, Turkey: (i) FDC based on Map Correlation Method (MCM) flow estimates. MCM is a recently proposed method (Archfield and Vogel, 2010) which uses geospatial information to estimate flow. Flow measurements of stream gauging stations nearby the ungauged location are the only data requirement for this method. This fact makes MCM very attractive for flow estimation in Turkey, (ii) Adaptive Neuro-Fuzzy Inference System (ANFIS) is a data-driven method which is used to relate FDC to a number of variables representing catchment and climate characteristics. However, it`s ease of implementation makes it very useful for practical purposes. Both methods use easily collectable data and are computationally efficient. Comparison of the results is realized based on two different measures: the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE) value. Ref: Archfield, S. A., and R. M. Vogel (2010), Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments, Water Resour. Res., 46, W10513, doi:10.1029/2009WR008481.

  13. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    NASA Astrophysics Data System (ADS)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  14. Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks.

    PubMed

    Jalali-Heravi, Mehdi; Kyani, Anahita

    2008-06-01

    The purpose of this study was to develop the structure-toxicity relationships for a large group of 268 substituted benzene to the ciliate Tetrahymena pyriformis using mechanistically interpretable descriptors. The shuffling-adaptive neuro fuzzy inference system (Shuffling-ANFIS) has been successfully applied to select the important factors affecting the toxicity of substituted benzenes to T. pyriformis. The results of the proposed model were compared with the model of linear-free energy response surface and also the principal component analysis Bayesian-regularized neural network (PCA-BRANN) trained using the same data. The presented model shows a better statistical parameter in comparison with the previous models. The results of the model are promising and descriptive. Five descriptors of octanol-water partition coefficient (logP), bond information content (BIC0), number of R-CX-R (C-026), eigenvalue sum from Z weighted distance matrix (SEigZ) and fragment based polar surface area (PSA) selected by Shuffling-ANFIS reveal the role of hydrophobicity, electronic and steric interactions in the mechanism of toxic action. Sequential zeroing of weights (SZW) as a sensitivity analysis method revealed that the hydrophobicity and electronic interactions play a major role in toxicity of these compounds. Satisfactory results (q(2)=0.828 and RMSE=0.348) in comparison with the previous works indicate that the Shuffling-ANFIS-ANN technique is able to model a diverse chemical class with more than one mechanism of toxicity by using simple and interpretable descriptors. Shuffling-ANFIS can be used as powerful feature selection technique, because its application in prediction of toxicity potency results in good statistical and interpretable physiochemical parameters. PMID:18499226

  15. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  16. Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests

    NASA Technical Reports Server (NTRS)

    Douglas, Freddie; Bourgeois, Edit Kaminsky

    2005-01-01

    The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).

  17. Fuzzy logic in control systems: Fuzzy logic controller. I, II

    NASA Technical Reports Server (NTRS)

    Lee, Chuen Chien

    1990-01-01

    Recent advances in the theory and applications of fuzzy-logic controllers (FLCs) are examined in an analytical review. The fundamental principles of fuzzy sets and fuzzy logic are recalled; the basic FLC components (fuzzification and defuzzification interfaces, knowledge base, and decision-making logic) are described; and the advantages of FLCs for incorporating expert knowledge into a control system are indicated. Particular attention is given to fuzzy implication functions, the interpretation of sentence connectives (and, also), compositional operators, and inference mechanisms. Applications discussed include the FLC-guided automobile developed by Sugeno and Nishida (1985), FLC hardware systems, FLCs for subway trains and ship-loading cranes, fuzzy-logic chips, and fuzzy computers.

  18. The simplification of fuzzy control algorithm and hardware implementation

    NASA Technical Reports Server (NTRS)

    Wu, Z. Q.; Wang, P. Z.; Teh, H. H.

    1991-01-01

    The conventional interface composition algorithm of a fuzzy controller is very time and memory consuming. As a result, it is difficult to do real time fuzzy inference, and most fuzzy controllers are realized by look-up tables. Here, researchers derive a simplified algorithm using the defuzzification mean of maximum. This algorithm takes shorter computation time and needs less memory usage, thus making it possible to compute the fuzzy inference on real time and easy to tune the control rules on line. A hardware implementation based on a simplified fuzzy inference algorithm is described.

  19. Use of fuzzy logic in lignite inventory estimation

    SciTech Connect

    Tutmez, B.; Dag, A.

    2007-07-01

    Seam thickness is one of the most important parameters for reserve estimation of a lignite deposit. This paper addresses a case study on fuzzy estimation of lignite seam thickness from spatial coordinates. From the relationships between input (Cartesian coordinates) and output (thickness) parameters, fuzzy clustering and a fuzzy rule-based inference system were designed. Data-driven fuzzy model parameters were derived from numerical values directly. In addition, estimations of the fuzzy model were compared with kriging estimations. It was concluded that the performance ofthe fuzzy model was more satisfactory. The results indicated that the fuzzy modeling approach is very reliable for the estimation of lignite reserves.

  20. Fuzzy Representation of Soil Erosion

    NASA Astrophysics Data System (ADS)

    Komaki, Ch. B.; Kainz, W.; Alavi Panah, S. K.; Matinfar, H. R.

    2009-04-01

    Fuzzy representation is a productive method to explain the natural processes so that it is near to linguistic form and it is also applicable to estimate the environmental processes in where the uncertainty in information is high. As models proposed to estimate soil erosion also have uncertainties and fuzzy inference system is more flexible in describing the relationship between soil erosion and other factor, especially in managing data and model uncertainties. in the research, it is used simplified model of revised Universal Soil Loss Equation (RUSLE) to estimate soil erosion in dry lands of Kashan area in Central Iran . Then to discover the systematic (IF-Then) rules in soil erosion process, we used inductive reasoning method to discover rules of the causing agents of erosion such as rainfall erosivity, topography factors, soil erodibility , then highly supported rules converted to fuzzy rules. It is resulted that the application of fuzzy inference system for erosion evaluation is applicable in regional level.

  1. Knowledge representation in fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, Lotfi A.

    1989-01-01

    The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.

  2. Modeling Research Project Risks with Fuzzy Maps

    ERIC Educational Resources Information Center

    Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana

    2009-01-01

    The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…

  3. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs

    NASA Astrophysics Data System (ADS)

    Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed

    2016-06-01

    In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.

  4. Comparison of an adaptive neuro-fuzzy inference system and an artificial neural network in the cross-talk correction of simultaneous 99 m Tc / 201Tl SPECT imaging using a GATE Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Heidary, Saeed; Setayeshi, Saeed; Ghannadi-Maragheh, Mohammad

    2014-09-01

    The aim of this study is to compare the adaptive neuro-fuzzy inference system (ANFIS) and the artificial neural network (ANN) to estimate the cross-talk contamination of 99 m Tc / 201 Tl image acquisition in the 201 Tl energy window (77 ± 15% keV). GATE (Geant4 Application in Emission and Tomography) is employed due to its ability to simulate multiple radioactive sources concurrently. Two kinds of phantoms, including two digital and one physical phantom, are used. In the real and the simulation studies, data acquisition is carried out using eight energy windows. The ANN and the ANFIS are prepared in MATLAB, and the GATE results are used as a training data set. Three indications are evaluated and compared. The ANFIS method yields better outcomes for two indications (Spearman's rank correlation coefficient and contrast) and the two phantom results in each category. The maximum image biasing, which is the third indication, is found to be 6% more than that for the ANN.

  5. Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA.

    PubMed

    Heddam, Salim

    2014-01-01

    In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling. PMID:24705953

  6. Optical generation of fuzzy-based rules.

    PubMed

    Gur, Eran; Mendlovic, David; Zalevsky, Zeev

    2002-08-10

    In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.

  7. Network-Based Management Procedures.

    ERIC Educational Resources Information Center

    Buckner, Allen L.

    Network-based management procedures serve as valuable aids in organizational management, achievement of objectives, problem solving, and decisionmaking. Network techniques especially applicable to educational management systems are the program evaluation and review technique (PERT) and the critical path method (CPM). Other network charting…

  8. DCT-Yager FNN: a novel Yager-based fuzzy neural network with the discrete clustering technique.

    PubMed

    Singh, A; Quek, C; Cho, S Y

    2008-04-01

    superior performance. Extensive experiments have been conducted to test the effectiveness of these two networks, using various clustering algorithms. It follows that the SDCT and UDCT clustering algorithms are particularly suited to networks based on the Yager inference rule.

  9. Fuzzy Commitment

    NASA Astrophysics Data System (ADS)

    Juels, Ari

    The purpose of this chapter is to introduce fuzzy commitment, one of the earliest and simplest constructions geared toward cryptography over noisy data. The chapter also explores applications of fuzzy commitment to two problems in data security: (1) secure management of biometrics, with a focus on iriscodes, and (2) use of knowledge-based authentication (i.e., personal questions) for password recovery.

  10. Comparison between the performance of two classes of fuzzy controllers

    NASA Technical Reports Server (NTRS)

    Janabi, T. H.; Sultan, L. H.

    1992-01-01

    This paper presents an application comparison between two classes of fuzzy controllers: the Clearness Transformation Fuzzy Controller (CTFC) and the CRI-based Fuzzy Controller. The comparison is performed by studying the application of the controllers to simulation examples of nonlinear systems. The CTFC is a new approach for the organization of fuzzy controllers based on a cognitive model of parameter driven control, the notion of fuzzy patterns to represent fuzzy knowledge and the Clearness Transformation Rule of Inference (CTRI) for approximate reasoning. The approach facilitates the implementation of the basic modules of the controller: the fuzzifier, defuzzifier, and the control protocol in a rule-based architecture. The CTRI scheme for approximate reasoning does not require the formation of fuzzy relation matrices yielding improved performance in comparison with the traditional organization of fuzzy controllers.

  11. Long-range forecast of all India summer monsoon rainfall using adaptive neuro-fuzzy inference system: skill comparison with CFSv2 model simulation and real-time forecast for the year 2015

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.

    2016-02-01

    All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.

  12. Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Models for Predicting the Weld Bead Width and Depth of Penetration from the Infrared Thermal Image of the Weld Pool

    NASA Astrophysics Data System (ADS)

    Subashini, L.; Vasudevan, M.

    2012-02-01

    Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.

  13. Cognitive reasoning using fuzzy neural nets.

    PubMed

    Pal, S; Konar, A

    1996-01-01

    The paper presents a new model for cognitive reasoning using fuzzy neural nets. The analysis of the proposed model yields guaranteed stability of the temporal fuzzy inferences, derived from the network and conditional stability of the structure of the cognitive map, framed by the arcs of the network. The results arrived at in the paper have been illustrated with reference to a typical weather forecast system.

  14. A fuzzy adaptive network approach to parameter estimation in cases where independent variables come from an exponential distribution

    NASA Astrophysics Data System (ADS)

    Dalkilic, Turkan Erbay; Apaydin, Aysen

    2009-11-01

    In a regression analysis, it is assumed that the observations come from a single class in a data cluster and the simple functional relationship between the dependent and independent variables can be expressed using the general model; Y=f(X)+[epsilon]. However; a data cluster may consist of a combination of observations that have different distributions that are derived from different clusters. When faced with issues of estimating a regression model for fuzzy inputs that have been derived from different distributions, this regression model has been termed the [`]switching regression model' and it is expressed with . Here li indicates the class number of each independent variable and p is indicative of the number of independent variables [J.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transaction on Systems, Man and Cybernetics 23 (3) (1993) 665-685; M. Michel, Fuzzy clustering and switching regression models using ambiguity and distance rejects, Fuzzy Sets and Systems 122 (2001) 363-399; E.Q. Richard, A new approach to estimating switching regressions, Journal of the American Statistical Association 67 (338) (1972) 306-310]. In this study, adaptive networks have been used to construct a model that has been formed by gathering obtained models. There are methods that suggest the class numbers of independent variables heuristically. Alternatively, in defining the optimal class number of independent variables, the use of suggested validity criterion for fuzzy clustering has been aimed. In the case that independent variables have an exponential distribution, an algorithm has been suggested for defining the unknown parameter of the switching regression model and for obtaining the estimated values after obtaining an optimal membership function, which is suitable for exponential distribution.

  15. Image Edge Extraction via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)

    2008-01-01

    A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.

  16. How to select combination operators for fuzzy expert systems using CRI

    NASA Technical Reports Server (NTRS)

    Turksen, I. B.; Tian, Y.

    1992-01-01

    A method to select combination operators for fuzzy expert systems using the Compositional Rule of Inference (CRI) is proposed. First, fuzzy inference processes based on CRI are classified into three categories in terms of their inference results: the Expansion Type Inference, the Reduction Type Inference, and Other Type Inferences. Further, implication operators under Sup-T composition are classified as the Expansion Type Operator, the Reduction Type Operator, and the Other Type Operators. Finally, the combination of rules or their consequences is investigated for inference processes based on CRI.

  17. Fuzzy Logic for Incidence Geometry

    PubMed Central

    2016-01-01

    The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects “as if they were points.” Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation “extended lines sameness” is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy “degree of indiscernibility” and “discernibility measure” of extended points. PMID:27689133

  18. Fuzzy logic and neural networks

    SciTech Connect

    Loos, J.R.

    1994-11-01

    Combine fuzzy logic`s fuzzy sets, fuzzy operators, fuzzy inference, and fuzzy rules - like defuzzification - with neural networks and you can arrive at very unfuzzy real-time control. Fuzzy logic, cursed with a very whimsical title, simply means multivalued logic, which includes not only the conventional two-valued (true/false) crisp logic, but also the logic of three or more values. This means one can assign logic values of true, false, and somewhere in between. This is where fuzziness comes in. Multi-valued logic avoids the black-and-white, all-or-nothing assignment of true or false to an assertion. Instead, it permits the assignment of shades of gray. When assigning a value of true or false to an assertion, the numbers typically used are {open_quotes}1{close_quotes} or {open_quotes}0{close_quotes}. This is the case for programmed systems. If {open_quotes}0{close_quotes} means {open_quotes}false{close_quotes} and {open_quotes}1{close_quotes} means {open_quotes}true,{close_quotes} then {open_quotes}shades of gray{close_quotes} are any numbers between 0 and 1. Therefore, {open_quotes}nearly true{close_quotes} may be represented by 0.8 or 0.9, {open_quotes}nearly false{close_quotes} may be represented by 0.1 or 0.2, and {close_quotes}your guess is as good as mine{close_quotes} may be represented by 0.5. The flexibility available to one is limitless. One can associate any meaning, such as {open_quotes}nearly true{close_quotes}, to any value of any granularity, such as 0.9999. 2 figs.

  19. Fuzzy jets

    NASA Astrophysics Data System (ADS)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  20. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Here, collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet taggingmore » variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  1. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, <0,1>, was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  2. Optical implementation of fuzzy-logic-based controllers

    NASA Astrophysics Data System (ADS)

    Mendlovic, David; Zalevsky, Zeev; Gur, Eran

    2000-10-01

    State of the art fuzzy-logic based control is mainly implemented using electronic hardware or computer software. This requires interpretation of fuzzy logic concepts such as membership functions and fuzzy based rules, all of which have been thoroughly studied. However, the 2-D light-speed abilities of optical processing enables direct implementation of dual-input fuzzy logic inference engines. The optical equivalent of the membership function is generated in a straightforward manner and the same applies to rule tables and combination rules. Diffractive optical elements allow these optical inference engines to be compact in size and high on efficiency. This is done by binary optics and phase-only elements. Using the 2-D work-plane of optics, the ability of simple control over the wavelength and the polarization of light and the properties of diffractive elements, such an engine can deal with higher order data and lead the way to fast and dynamic fuzzy inferencing.

  3. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  4. Hybrid fuzzy regression with trapezoidal fuzzy data

    NASA Astrophysics Data System (ADS)

    Razzaghnia, T.; Danesh, S.; Maleki, A.

    2011-12-01

    In this regard, this research deals with a method for hybrid fuzzy least-squares regression. The extension of symmetric triangular fuzzy coefficients to asymmetric trapezoidal fuzzy coefficients is considered as an effective measure for removing unnecessary fuzziness of the linear fuzzy model. First, trapezoidal fuzzy variable is applied to derive a bivariate regression model. In the following, normal equations are formulated to solve the four parts of hybrid regression coefficients. Also the model is extended to multiple regression analysis. Eventually, method is compared with Y-H.O. chang's model.

  5. Community detection by fuzzy clustering

    NASA Astrophysics Data System (ADS)

    Sun, Peng Gang

    2015-02-01

    How to measure the similarity between nodes is of great importance for fuzzy clustering when we use the approach to uncover communities in complex networks. In this paper, we first measure the similarity between nodes in a network based on edge centralities and model the network as a fuzzy relation. Then, two fuzzy transitive rules (Rule I and Rule II) are applied on the relation respectively, by which the similarity information can be transferred from one node to another in the network until the relation reaches a stable state. By choosing different thresholds, our method finally can partition the network into several non-overlapping subgroups. We compare our method with some state of the art methods on the LFR benchmark and real-world networks. We find that our method based on Rule I can correctly identify communities when the similarity between nodes of same groups is greater than that of different groups, while it is just opposite to Rule II. Our method achieves better results than the state of the art methods when the pre-planted communities of the random networks are vaguer.

  6. Application of fuzzy logic in robot control

    NASA Astrophysics Data System (ADS)

    Kemppainen, Seppo; Roening, Juha

    1992-11-01

    During the past several years, fuzzy control has emerged as a suitable control strategy for many complex and nonlinear control problems. The control provided by fuzzy logic is both smooth and accurate. Also the 'if-then' rules of fuzzy control systems are easy to understand and relatively easy to develop. This paper presents a toolkit which is used in the implementation of fuzzy control system. The toolkit consists of C++ class library which computes inferences in fuzzy logic. The toolkit is used to implement a fuzzy control system which controls the movement of a simulated mobile robot. The proposed architecture consists of several rulesets. Each ruleset specializes in some control task, for example, there are rulesets for going around an obstacle, avoiding a moving obstacle, going through a door, etc. The multiple ruleset fuzzy control system is used to guide the simulated mobile robot to a given goal in an unknown environment. With the proposed multiple ruleset architecture complex control problems can be solved while single rulesets remain simple and efficient.

  7. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process.

    PubMed

    Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan

    2013-12-01

    An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy. PMID:24052227

  8. A transductive neuro-fuzzy controller: application to a drilling process.

    PubMed

    Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R

    2010-07-01

    Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage.

  9. A transductive neuro-fuzzy controller: application to a drilling process.

    PubMed

    Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R

    2010-07-01

    Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage. PMID:20659865

  10. Fuzzy control of bioprocess in Japan.

    PubMed

    Honda, H; Kobayashi, T

    2000-01-01

    Process control of bioprocess has been carried out by the judgment of the experts, who are the skilled operators and have lots of experiences for the control of the process. In almost all cases, those experiences are described linguistic IF-THEN rules. Fussy inference is one of the powerful tools to incorporate the linguistic rules to the computer for process control. Fuzzy control are divided into two types; one is the direct fuzzy control of process variables such as sugar feed rate in fed-batch culture and fermentation temperature in batch operation. The other is the indirect control of bioprocess, in which at first the phase recognition is carried out by fuzzy inference and the control strategies constructed in each phase are used for the control of process variables. In Japan, the fuzzy control has already been applied to practical industrial productions, such as pravastatin precursor, vitamin B2, and Japanese sake mashing process. In this review, these industrial approaches of fuzzy control are introduced.

  11. Fuzzy control of bioprocess in Japan.

    PubMed

    Honda, H; Kobayashi, T

    2000-01-01

    Process control of bioprocess has been carried out by the judgment of the experts, who are the skilled operators and have lots of experiences for the control of the process. In almost all cases, those experiences are described linguistic IF-THEN rules. Fussy inference is one of the powerful tools to incorporate the linguistic rules to the computer for process control. Fuzzy control are divided into two types; one is the direct fuzzy control of process variables such as sugar feed rate in fed-batch culture and fermentation temperature in batch operation. The other is the indirect control of bioprocess, in which at first the phase recognition is carried out by fuzzy inference and the control strategies constructed in each phase are used for the control of process variables. In Japan, the fuzzy control has already been applied to practical industrial productions, such as pravastatin precursor, vitamin B2, and Japanese sake mashing process. In this review, these industrial approaches of fuzzy control are introduced. PMID:10874995

  12. Fuzzy associative memories

    NASA Technical Reports Server (NTRS)

    Kosko, Bart

    1991-01-01

    Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.

  13. Universal Approximation of Mamdani Fuzzy Controllers and Fuzzy Logical Controllers

    NASA Technical Reports Server (NTRS)

    Yuan, Bo; Klir, George J.

    1997-01-01

    In this paper, we first distinguish two types of fuzzy controllers, Mamdani fuzzy controllers and fuzzy logical controllers. Mamdani fuzzy controllers are based on the idea of interpolation while fuzzy logical controllers are based on fuzzy logic in its narrow sense, i.e., fuzzy propositional logic. The two types of fuzzy controllers treat IF-THEN rules differently. In Mamdani fuzzy controllers, rules are treated disjunctively. In fuzzy logic controllers, rules are treated conjunctively. Finally, we provide a unified proof of the property of universal approximation for both types of fuzzy controllers.

  14. Prediction of Conductivity by Adaptive Neuro-Fuzzy Model

    PubMed Central

    Akbarzadeh, S.; Arof, A. K.; Ramesh, S.; Khanmirzaei, M. H.; Nor, R. M.

    2014-01-01

    Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity. PMID:24658582

  15. Fuzzy logic and image processing techniques for the interpretation of seismic data

    NASA Astrophysics Data System (ADS)

    Orozco-del-Castillo, M. G.; Ortiz-Alemán, C.; Urrutia-Fucugauchi, J.; Rodríguez-Castellanos, A.

    2011-06-01

    Since interpretation of seismic data is usually a tedious and repetitive task, the ability to do so automatically or semi-automatically has become an important objective of recent research. We believe that the vagueness and uncertainty in the interpretation process makes fuzzy logic an appropriate tool to deal with seismic data. In this work we developed a semi-automated fuzzy inference system to detect the internal architecture of a mass transport complex (MTC) in seismic images. We propose that the observed characteristics of a MTC can be expressed as fuzzy if-then rules consisting of linguistic values associated with fuzzy membership functions. The constructions of the fuzzy inference system and various image processing techniques are presented. We conclude that this is a well-suited problem for fuzzy logic since the application of the proposed methodology yields a semi-automatically interpreted MTC which closely resembles the MTC from expert manual interpretation.

  16. Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach

    NASA Astrophysics Data System (ADS)

    Taufik, Afirah; Sakinah Syed Ahmad, Sharifah

    2016-06-01

    The aim of this paper is to propose a method to classify the land covers of a satellite image based on fuzzy rule-based system approach. The study uses bands in Landsat 8 and other indices, such as Normalized Difference Water Index (NDWI), Normalized difference built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) as input for the fuzzy inference system. The selected three indices represent our main three classes called water, built- up land, and vegetation. The combination of the original multispectral bands and selected indices provide more information about the image. The parameter selection of fuzzy membership is performed by using a supervised method known as ANFIS (Adaptive neuro fuzzy inference system) training. The fuzzy system is tested for the classification on the land cover image that covers Klang Valley area. The results showed that the fuzzy system approach is effective and can be explored and implemented for other areas of Landsat data.

  17. Dynamic Network-Based Epistasis Analysis: Boolean Examples

    PubMed Central

    Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.

    2011-01-01

    In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and

  18. A formalization of commonsense reasoning based on fuzzy logic

    NASA Technical Reports Server (NTRS)

    Zadeh, L. A.

    1985-01-01

    The basic idea underlying the approach outlined in this paper is that commonsense knowledge may be regarded as a collection of dispositions, that is, propositions which are preponderantly, but not necessarily always, true. Technically, a disposition may be interpreted as a proposition with implicit fuzzy quantifiers, e.g., most, almost all, usually, often, etc. For example, a disposition such as Swedes are blond may be interpreted as most Swedes are blond. For purposes of inference from commonsense knowledge, the conversion of a disposition into a proposition with explicit fuzzy quantifiers sets the stage for an application of syllogistic reasoning in which the premises are allowed to be of the form Q A's are B's, where A and B are fuzzy predicates and Q is a fuzzy quantifier. In general, the conclusion yielded by such reasoning is a proposition which may be converted into a disposition through the suppression of fuzzy quantifiers.

  19. Fuzzy logic for elimination of redundant information of microarray data.

    PubMed

    Huerta, Edmundo Bonilla; Duval, Béatrice; Hao, Jin-Kao

    2008-06-01

    Gene subset selection is essential for classification and analysis of microarray data. However, gene selection is known to be a very difficult task since gene expression data not only have high dimensionalities, but also contain redundant information and noises. To cope with these difficulties, this paper introduces a fuzzy logic based pre-processing approach composed of two main steps. First, we use fuzzy inference rules to transform the gene expression levels of a given dataset into fuzzy values. Then we apply a similarity relation to these fuzzy values to define fuzzy equivalence groups, each group containing strongly similar genes. Dimension reduction is achieved by considering for each group of similar genes a single representative based on mutual information. To assess the usefulness of this approach, extensive experimentations were carried out on three well-known public datasets with a combined classification model using three statistic filters and three classifiers. PMID:18973862

  20. Fuzzy logic controller optimization

    DOEpatents

    Sepe, Jr., Raymond B; Miller, John Michael

    2004-03-23

    A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.

  1. Neural network based architectures for aerospace applications

    NASA Technical Reports Server (NTRS)

    Ricart, Richard

    1987-01-01

    A brief history of the field of neural networks research is given and some simple concepts are described. In addition, some neural network based avionics research and development programs are reviewed. The need for the United States Air Force and NASA to assume a leadership role in supporting this technology is stressed.

  2. Elements of Network-Based Assessment

    ERIC Educational Resources Information Center

    Gibson, David

    2007-01-01

    Elements of network-based assessment systems are envisioned based on recent advances in knowledge and practice in learning theory, assessment design and delivery, and semantic web interoperability. The architecture takes advantage of the meditating role of technology as well as recent models of assessment systems. This overview of the elements…

  3. Network-Based Classrooms: Promises and Realities.

    ERIC Educational Resources Information Center

    Bruce, Bertram C., Ed.; And Others

    Exploring how new technologies and new pedagogies transform and are transformed by existing institutions, this book presents 14 essays that discuss network-based classrooms in which students use communications software on computer networks to converse in writing. The first part of the book discusses general themes and issues of the ENFI…

  4. Design and implementation of fuzzy logic controllers. Thesis Final Report, 27 Jul. 1992 - 1 Jan. 1993

    NASA Technical Reports Server (NTRS)

    Abihana, Osama A.; Gonzalez, Oscar R.

    1993-01-01

    The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.

  5. Performance of Geno-Fuzzy Model on rainfall-runoff predictions in claypan watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fuzzy logic provides a relatively simple approach to simulate complex hydrological systems while accounting for the uncertainty of environmental variables. The objective of this study was to develop a fuzzy inference system (FIS) with genetic algorithm (GA) optimization for membership functions (MF...

  6. Fuzzy Logic Engine

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna

    2005-01-01

    The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.

  7. Decentralized fuzzy control of multiple nonholonomic vehicles

    SciTech Connect

    Driessen, B.J.; Feddema, J.T.; Kwok, K.S.

    1997-09-01

    This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.

  8. Industrial application of fuzzy control in bioprocesses.

    PubMed

    Honda, Hiroyuki; Kobayashi, Takeshi

    2004-01-01

    In a bioprocess, for example a fermentation process, many biological reactions are always working in intracellular space and the control of such a process is very complicated. Bioprocesses have therefore been controlled by the judgment of the experts who are the skilled operators and have much experience in the control of such processes. Such experience is normally described in terms of linguistic IF-THEN rules. Fuzzy inference is a powerful tool for incorporating linguistic rules into computer control of such processes. Fuzzy control is divided into two types--direct fuzzy control of process variables, for example sugar feed rate and fermentation temperature, and indirect control via phase recognition. In bioprocess control the experts decide the value of controllable process variables such as sugar feed rate or temperature as output data from several state variables as input data. Fuzzy control is regarded as a computational algorithm in which the causal relationship between input and output data are incorporated. In Japan fuzzy control has already been applied to practical industrial processes such as production of pravastatin precursor and vitamin B2 and to the Japanese sake mashing process; these examples are reviewed. In addition, an advanced control tool developed from a study on fuzzy control, fuzzy neural networks (FNN), are introduced. FNN can involve complicated causality between input and output data in a network model. FNN have been proven to be applicable to a research in biomedicine, for example modeling of the complicated causality between electroencephalogram or gene expression profiling data and prognostic prediction. Successful results on this research will be also explained.

  9. Recurrent fuzzy ranking methods

    NASA Astrophysics Data System (ADS)

    Hajjari, Tayebeh

    2012-11-01

    With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.

  10. Self-organizing neural network as a fuzzy classifier

    SciTech Connect

    Mitra, S.; Pal, S.K.

    1994-03-01

    This paper describes a self-organizing artificial neural network, based on Kohonen`s model of self-organization, which is capable of handling fuzzy input and of providing fuzzy classification. Unlike conventional neural net models, this algorithm incorporates fuzzy set-theoretic concepts at various stages. The input vector consists of membership values for linguistic properties along with some contextual class membership information which is used during self-organization to permit efficient modeling of fuzzy (ambiguous) patterns. A new definition of gain factor for weight updating is proposed. An index of disorder involving mean square distance between the input and weight vectors is used to determine a measure of the ordering of the output space. This controls the number of sweeps required in the process. Incorporation of the concept of fuzzy partitioning allows natural self-organization of the input data, especially when they have ill-defined boundaries. The output of unknown test patterns is generated in terms of class membership values. Incorporation of fuzziness in input and output is seen to provide better performance as compared to the original Kohonen model and the hard version. The effectiveness of this algorithm is demonstrated on the speech recognition problem for various network array sizes, training sets and gain factors. 24 refs.

  11. Fuzzy branching temporal logic.

    PubMed

    Moon, Seong-ick; Lee, Kwang H; Lee, Doheon

    2004-04-01

    Intelligent systems require a systematic way to represent and handle temporal information containing uncertainty. In particular, a logical framework is needed that can represent uncertain temporal information and its relationships with logical formulae. Fuzzy linear temporal logic (FLTL), a generalization of propositional linear temporal logic (PLTL) with fuzzy temporal events and fuzzy temporal states defined on a linear time model, was previously proposed for this purpose. However, many systems are best represented by branching time models in which each state can have more than one possible future path. In this paper, fuzzy branching temporal logic (FBTL) is proposed to address this problem. FBTL adopts and generalizes concurrent tree logic (CTL*), which is a classical branching temporal logic. The temporal model of FBTL is capable of representing fuzzy temporal events and fuzzy temporal states, and the order relation among them is represented as a directed graph. The utility of FBTL is demonstrated using a fuzzy job shop scheduling problem as an example. PMID:15376850

  12. Fuzzy Sets and Mathematical Education.

    ERIC Educational Resources Information Center

    Alsina, C.; Trillas, E.

    1991-01-01

    Presents the concept of "Fuzzy Sets" and gives some ideas for its potential interest in mathematics education. Defines what a Fuzzy Set is, describes why we need to teach fuzziness, gives some examples of fuzzy questions, and offers some examples of activities related to fuzzy sets. (MDH)

  13. Network-Based Analysis of eQTL Data to Prioritize Driver Mutations

    PubMed Central

    De Maeyer, Dries; Weytjens, Bram; De Raedt, Luc; Marchal, Kathleen

    2016-01-01

    In clonal systems, interpreting driver genes in terms of molecular networks helps understanding how these drivers elicit an adaptive phenotype. Obtaining such a network-based understanding depends on the correct identification of driver genes. In clonal systems, independent evolved lines can acquire a similar adaptive phenotype by affecting the same molecular pathways, a phenomenon referred to as parallelism at the molecular pathway level. This implies that successful driver identification depends on interpreting mutated genes in terms of molecular networks. Driver identification and obtaining a network-based understanding of the adaptive phenotype are thus confounded problems that ideally should be solved simultaneously. In this study, a network-based eQTL method is presented that solves both the driver identification and the network-based interpretation problem. As input the method uses coupled genotype-expression phenotype data (eQTL data) of independently evolved lines with similar adaptive phenotypes and an organism-specific genome-wide interaction network. The search for mutational consistency at pathway level is defined as a subnetwork inference problem, which consists of inferring a subnetwork from the genome-wide interaction network that best connects the genes containing mutations to differentially expressed genes. Based on their connectivity with the differentially expressed genes, mutated genes are prioritized as driver genes. Based on semisynthetic data and two publicly available data sets, we illustrate the potential of the network-based eQTL method to prioritize driver genes and to gain insights in the molecular mechanisms underlying an adaptive phenotype. The method is available at http://bioinformatics.intec.ugent.be/phenetic_eqtl/index.html PMID:26802430

  14. Introduction to Fuzzy Set Theory

    NASA Technical Reports Server (NTRS)

    Kosko, Bart

    1990-01-01

    An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.

  15. A phenomenological dynamic model of a magnetorheological damper using a neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Zeinali, Mohammadjavad; Amri Mazlan, Saiful; Yasser Abd Fatah, Abdul; Zamzuri, Hairi

    2013-12-01

    A magnetorheological (MR) damper is a promising appliance for semi-active suspension systems, due to its capability of damping undesired movement using an adequate control strategy. This research has been carried out a phenomenological dynamic model of two MR dampers using an adaptive-network-based fuzzy inference system (ANFIS) approach. Two kinds of Lord Corporation MR damper (a long stroke damper and a short stroke damper) were used in experiments, and then modeled using the experimental results. In addition, an investigation of the influence of the membership function selection on predicting the behavior of the MR damper and obtaining a mathematical model was conducted to realize the relationship between input current, displacement, and velocity as the inputs and force as output. The results demonstrate that the proposed models for both short stroke and long stroke MR dampers have successfully predicted the behavior of the MR damper with adequate accuracy, and an equation is presented to precisely describe the behavior of each MR damper.

  16. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System

    PubMed Central

    Tang, Yongchuan; Zhou, Deyun

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707

  17. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.

    PubMed

    Tang, Yongchuan; Zhou, Deyun; Jiang, Wen

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707

  18. A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.

    PubMed

    Tang, Yongchuan; Zhou, Deyun; Jiang, Wen

    2016-01-01

    In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method.

  19. Approach to Synchronization Control of Magnetic Bearings Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Yang, Li-Farn

    1996-01-01

    This paper presents a fuzzy-logic approach to the synthesis of synchronization control for magnetically suspended rotor system. The synchronization control enables a whirling rotor to undergo synchronous motion along the magnetic bearing axes; thereby avoiding the gyroscopic effect that degrade the stability of rotor systems when spinning at high speed. The control system features a fuzzy controller acting on the magnetic bearing device, in which the fuzzy inference system trained through fuzzy rules to minimize the differential errors between four bearing axes so that an error along one bearing axis can affect the overall control loop for the motion synchronization. Numerical simulations of synchronization control for the magnetically suspended rotor system are presented to show the effectiveness of the present approach.

  20. Experiments on neural network architectures for fuzzy logic

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1991-01-01

    The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.

  1. Research of Expended Production Rule Based on Fuzzy Conceptual Graphs*

    NASA Astrophysics Data System (ADS)

    Liu, Peiqi; Li, Longji; Zhang, Linye; Li, Zengzhi

    In the knowledge engineering, the fuzzy conceptual graphs and the production rule are two important knowledge representation methods. Because the confidence information can't be represented in the fuzzy conceptual graphs and the fuzzy knowledge can't be represented in the production rules, the ability of their knowledge representation is grievous insufficiency. In this paper, the extended production rule which is a new knowledge representation method has been presented. In the extended production rule, the antecedent and consequent of a rule are represented by fuzzy conceptual graphs, and the sustaining relation between antecedent and consequent is the confidence. The rule combines the fuzzy knowledge with the confidence effectually. It not only retains the semantic plentifulness of facts and proposition, but also makes the reasoning results more effectively. According to the extended production rule, the uncertain reasoning algorithm based on fuzzy conceptual graphs is designed. By the experiment test and analysis, the reasoning effects of the extended production rule are more in reason. The researching results are applied in the designed of uncertain inference engine in fuzzy expert system.

  2. Fuzzy and neural control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  3. Representations of fuzzy torus

    NASA Astrophysics Data System (ADS)

    Aizawa, N.; Chakrabarti, R.

    2008-08-01

    A classification of Hermitian representations for the recently introduced fuzzy torus algebra is presented. This is carried out by regarding the fuzzy torus algebra as a q-deformation of parafermion. In addition to the known representations, new representations of both finite and infinite dimension are found. Using the infinite dimensional representation, coherent state for the fuzzy torus is constructed. Dirac operator on commutative torus is also discussed.

  4. Optimal halftoning for network-based imaging

    NASA Astrophysics Data System (ADS)

    Ostromoukhov, Victor

    2000-12-01

    In this contribution, we introduce a multiple depth progressive representation for network-based still and moving images. A simple quantization algorithm associated with this representation provides optimal image quality. By optimum, we mean the best possible visual quality for a given value of information under real life constraints such as physical, psychological , or legal constraints. A special variant of the algorithm, multi-depth coherent error diffusion, addresses a specific problem of temporal coherence between frames in moving images. The output produced with our algorithm is visually pleasant because its Fourier spectrum is close to the 'blue noise'.

  5. Neural network based temporal video segmentation.

    PubMed

    Cao, X; Suganthan, P N

    2002-01-01

    The organization of video information in video databases requires automatic temporal segmentation with minimal user interaction. As neural networks are capable of learning the characteristics of various video segments and clustering them accordingly, in this paper, a neural network based technique is developed to segment the video sequence into shots automatically and with a minimum number of user-defined parameters. We propose to employ growing neural gas (GNG) networks and integrate multiple frame difference features to efficiently detect shot boundaries in the video. Experimental results are presented to illustrate the good performance of the proposed scheme on real video sequences. PMID:12370954

  6. Syllogistic reasoning in fuzzy logic and its application to usuality and reasoning with dispositions

    NASA Technical Reports Server (NTRS)

    Zadeh, L. A.

    1985-01-01

    A fuzzy syllogism in fuzzy logic is defined to be an inference schema in which the major premise, the minor premise and the conclusion are propositions containing fuzzy quantifiers. A basic fuzzy syllogism in fuzzy logic is the intersection/product syllogism. Several other basic syllogisms are developed that may be employed as rules of combination of evidence in expert systems. Among these is the consequent conjunction syllogism. Furthermore, it is shown that syllogistic reasoning in fuzzy logic provides a basis for reasoning with dispositions; that is, with propositions that are preponderantly but not necessarily always true. It is also shown that the concept of dispositionality is closely related to the notion of usuality and serves as a basis for what might be called a theory of usuality - a theory which may eventually provide a computational framework for commonsense reasoning.

  7. Network-Based Protein Biomarker Discovery Platforms

    PubMed Central

    Kim, Minhyung

    2016-01-01

    The advances in mass spectrometry-based proteomics technologies have enabled the generation of global proteome data from tissue or body fluid samples collected from a broad spectrum of human diseases. Comparative proteomic analysis of global proteome data identifies and prioritizes the proteins showing altered abundances, called differentially expressed proteins (DEPs), in disease samples, compared to control samples. Protein biomarker candidates that can serve as indicators of disease states are then selected as key molecules among these proteins. Recently, it has been addressed that cellular pathways can provide better indications of disease states than individual molecules and also network analysis of the DEPs enables effective identification of cellular pathways altered in disease conditions and key molecules representing the altered cellular pathways. Accordingly, a number of network-based approaches to identify disease-related pathways and representative molecules of such pathways have been developed. In this review, we summarize analytical platforms for network-based protein biomarker discovery and key components in the platforms. PMID:27103885

  8. Fuzzy decision trees: issues and methods.

    PubMed

    Janikow, C Z

    1998-01-01

    Decision trees are one of the most popular choices for learning and reasoning from feature-based examples. They have undergone a number of alterations to deal with language and measurement uncertainties. We present another modification, aimed at combining symbolic decision trees with approximate reasoning offered by fuzzy representation. The intent is to exploit complementary advantages of both: popularity in applications to learning from examples, high knowledge comprehensibility of decision trees, and the ability to deal with inexact and uncertain information of fuzzy representation. The merger utilizes existing methodologies in both areas to full advantage, but is by no means trivial. In particular, knowledge inferences must be newly defined for the fuzzy tree. We propose a number of alternatives, based on rule-based systems and fuzzy control. We also explore capabilities that the new framework provides. The resulting learning method is most suitable for stationary problems, with both numerical and symbolic features, when the goal is both high knowledge comprehensibility and gradually changing output. We describe the methodology and provide simple illustrations.

  9. A Fuzzy Logic Based Controller for the Automated Alignment of a Laser-beam-smoothing Spatial Filter

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1992-01-01

    A fuzzy logic based controller for a laser-beam-smoothing spatial filter is described. It is demonstrated that a human operator's alignment actions can easily be described by a system of fuzzy rules of inference. The final configuration uses inexpensive, off-the-shelf hardware and allows for a compact, readily implemented embedded control system.

  10. Some Properties of Fuzzy Soft Proximity Spaces

    PubMed Central

    Demir, İzzettin; Özbakır, Oya Bedre

    2015-01-01

    We study the fuzzy soft proximity spaces in Katsaras's sense. First, we show how a fuzzy soft topology is derived from a fuzzy soft proximity. Also, we define the notion of fuzzy soft δ-neighborhood in the fuzzy soft proximity space which offers an alternative approach to the study of fuzzy soft proximity spaces. Later, we obtain the initial fuzzy soft proximity determined by a family of fuzzy soft proximities. Finally, we investigate relationship between fuzzy soft proximities and proximities. PMID:25793224

  11. Network-based function prediction and interactomics: the case for metabolic enzymes.

    PubMed

    Janga, S C; Díaz-Mejía, J Javier; Moreno-Hagelsieb, G

    2011-01-01

    As sequencing technologies increase in power, determining the functions of unknown proteins encoded by the DNA sequences so produced becomes a major challenge. Functional annotation is commonly done on the basis of amino-acid sequence similarity alone. Long after sequence similarity becomes undetectable by pair-wise comparison, profile-based identification of homologs can often succeed due to the conservation of position-specific patterns, important for a protein's three dimensional folding and function. Nevertheless, prediction of protein function from homology-driven approaches is not without problems. Homologous proteins might evolve different functions and the power of homology detection has already started to reach its maximum. Computational methods for inferring protein function, which exploit the context of a protein in cellular networks, have come to be built on top of homology-based approaches. These network-based functional inference techniques provide both a first hand hint into a proteins' functional role and offer complementary insights to traditional methods for understanding the function of uncharacterized proteins. Most recent network-based approaches aim to integrate diverse kinds of functional interactions to boost both coverage and confidence level. These techniques not only promise to solve the moonlighting aspect of proteins by annotating proteins with multiple functions, but also increase our understanding on the interplay between different functional classes in a cell. In this article we review the state of the art in network-based function prediction and describe some of the underlying difficulties and successes. Given the volume of high-throughput data that is being reported the time is ripe to employ these network-based approaches, which can be used to unravel the functions of the uncharacterized proteins accumulating in the genomic databases.

  12. Social network based microblog user behavior analysis

    NASA Astrophysics Data System (ADS)

    Yan, Qiang; Wu, Lianren; Zheng, Lan

    2013-04-01

    The influence of microblog on information transmission is becoming more and more obvious. By characterizing the behavior of following and being followed as out-degree and in-degree respectively, a microblog social network was built in this paper. It was found to have short diameter of connected graph, short average path length and high average clustering coefficient. The distributions of out-degree, in-degree and total number of microblogs posted present power-law characters. The exponent of total number distribution of microblogs is negatively correlated with the degree of each user. With the increase of degree, the exponent decreases much slower. Based on empirical analysis, we proposed a social network based human dynamics model in this paper, and pointed out that inducing drive and spontaneous drive lead to the behavior of posting microblogs. The simulation results of our model match well with practical situation.

  13. Network-based recommendation algorithms: A review

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš

    2016-06-01

    Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.

  14. Network-based stochastic semisupervised learning.

    PubMed

    Silva, Thiago Christiano; Zhao, Liang

    2012-03-01

    Semisupervised learning is a machine learning approach that is able to employ both labeled and unlabeled samples in the training process. In this paper, we propose a semisupervised data classification model based on a combined random-preferential walk of particles in a network (graph) constructed from the input dataset. The particles of the same class cooperate among themselves, while the particles of different classes compete with each other to propagate class labels to the whole network. A rigorous model definition is provided via a nonlinear stochastic dynamical system and a mathematical analysis of its behavior is carried out. A numerical validation presented in this paper confirms the theoretical predictions. An interesting feature brought by the competitive-cooperative mechanism is that the proposed model can achieve good classification rates while exhibiting low computational complexity order in comparison to other network-based semisupervised algorithms. Computer simulations conducted on synthetic and real-world datasets reveal the effectiveness of the model.

  15. Hydrograph estimation with fuzzy chain model

    NASA Astrophysics Data System (ADS)

    Güçlü, Yavuz Selim; Şen, Zekai

    2016-07-01

    Hydrograph peak discharge estimation is gaining more significance with unprecedented urbanization developments. Most of the existing models do not yield reliable peak discharge estimations for small basins although they provide acceptable results for medium and large ones. In this study, fuzzy chain model (FCM) is suggested by considering the necessary adjustments based on some measurements over a small basin, Ayamama basin, within Istanbul City, Turkey. FCM is based on Mamdani and the Adaptive Neuro Fuzzy Inference Systems (ANFIS) methodologies, which yield peak discharge estimation. The suggested model is compared with two well-known approaches, namely, Soil Conservation Service (SCS)-Snyder and SCS-Clark methodologies. In all the methods, the hydrographs are obtained through the use of dimensionless unit hydrograph concept. After the necessary modeling, computation, verification and adaptation stages comparatively better hydrographs are obtained by FCM. The mean square error for the FCM is many folds smaller than the other methodologies, which proves outperformance of the suggested methodology.

  16. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.

    PubMed

    Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N; Crespi, Noel; Khan, Imran

    2016-01-01

    User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.

  17. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes

    PubMed Central

    Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N.; Crespi, Noel; Khan, Imran

    2016-01-01

    User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users’ privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation. PMID:27355951

  18. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.

    PubMed

    Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N; Crespi, Noel; Khan, Imran

    2016-01-01

    User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation. PMID:27355951

  19. Neuro-fuzzy controller to navigate an unmanned vehicle.

    PubMed

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  20. Neuro-fuzzy controller to navigate an unmanned vehicle.

    PubMed

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN). PMID:23705105

  1. Application of fuzzy logic-neural network based reinforcement learning to proximity and docking operations

    NASA Technical Reports Server (NTRS)

    Jani, Yashvant

    1992-01-01

    As part of the Research Institute for Computing and Information Systems (RICIS) activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This interim report provides the status of the project and outlines the future plans.

  2. Fuzzy Logic Determination of Lithologies from Well Log Data: Application to the KTB Project Data set (Germany)

    NASA Astrophysics Data System (ADS)

    Bosch, David; Ledo, Juanjo; Queralt, Pilar

    2013-07-01

    Fuzzy logic has been used for lithology prediction with remarkable success. Several techniques such as fuzzy clustering or linguistic reasoning have proven to be useful for lithofacies determination. In this paper, a fuzzy inference methodology has been implemented as a MATLAB routine and applied for the first time to well log data from the German Continental Deep Drilling Program (KTB). The training of the fuzzy inference system is based on the analysis of the multi-class Matthews correlation coefficient computed for the classification matrix. For this particular data set, we have found that the best suited membership function type is the piecewise linear interpolation of the normalized histograms; that the best combination operator for obtaining the final lithology degrees of membership is the fuzzy gamma operator; and that all the available properties are relevant in the classification process. Results show that this fuzzy logic-based method is suited for rapidly and reasonably suggesting a lithology column from well log data, neatly identifying the main units and in some cases refining the classification, which can lead to a better interpretation. We have tested the trained system with synthetic data generated from property value distributions of the training data set to find that the differences in data distributions between both wells are significant enough to misdirect the inference process. However, a cross-validation analysis has revealed that, even with differences between data distributions and missing lithologies in the training data set, this fuzzy logic inference system is able to output a coherent classification.

  3. Automation of Network-Based Scientific Workflows

    SciTech Connect

    Altintas, I.; Barreto, R.; Blondin, J. M.; Cheng, Z.; Critchlow, T.; Khan, A.; Klasky, Scott A; Ligon, J.; Ludaescher, B.; Mouallem, P. A.; Parker, S.; Podhorszki, Norbert; Shoshani, A.; Silva, C.; Vouk, M. A.

    2007-01-01

    Comprehensive, end-to-end, data and workflow management solutions are needed to handle the increasing complexity of processes and data volumes associated with modern distributed scientific problem solving, such as ultra-scale simulations and high-throughput experiments. The key to the solution is an integrated network-based framework that is functional, dependable, fault-tolerant, and supports data and process provenance. Such a framework needs to make development and use of application workflows dramatically easier so that scientists' efforts can shift away from data management and utility software development to scientific research and discovery An integrated view of these activities is provided by the notion of scientific workflows - a series of structured activities and computations that arise in scientific problem-solving. An information technology framework that supports scientific workflows is the Ptolemy II based environment called Kepler. This paper discusses the issues associated with practical automation of scientific processes and workflows and illustrates this with workflows developed using the Kepler framework and tools.

  4. Convolutional Neural Network Based dem Super Resolution

    NASA Astrophysics Data System (ADS)

    Chen, Zixuan; Wang, Xuewen; Xu, Zekai; Hou, Wenguang

    2016-06-01

    DEM super resolution is proposed in our previous publication to improve the resolution for a DEM on basis of some learning examples. Meanwhile, the nonlocal algorithm is introduced to deal with it and lots of experiments show that the strategy is feasible. In our publication, the learning examples are defined as the partial original DEM and their related high measurements due to this way can avoid the incompatibility between the data to be processed and the learning examples. To further extent the applications of this new strategy, the learning examples should be diverse and easy to obtain. Yet, it may cause the problem of incompatibility and unrobustness. To overcome it, we intend to investigate a convolutional neural network based method. The input of the convolutional neural network is a low resolution DEM and the output is expected to be its high resolution one. A three layers model will be adopted. The first layer is used to detect some features from the input, the second integrates the detected features to some compressed ones and the final step transforms the compressed features as a new DEM. According to this designed structure, some learning DEMs will be taken to train it. Specifically, the designed network will be optimized by minimizing the error of the output and its expected high resolution DEM. In practical applications, a testing DEM will be input to the convolutional neural network and a super resolution will be obtained. Many experiments show that the CNN based method can obtain better reconstructions than many classic interpolation methods.

  5. Fuzzy Risk Analyzer

    1994-03-04

    FRA is a general purpose code for risk analysis using fuzzy, not numeric, attributes. It allows the user to evaluate the risk associated with a composite system on the basis of the risk estimates of the individual components.

  6. Fuzziness in abacus logic

    NASA Astrophysics Data System (ADS)

    Malhas, Othman Qasim

    1993-10-01

    The concept of “abacus logic” has recently been developed by the author (Malhas, n.d.). In this paper the relation of abacus logic to the concept of fuzziness is explored. It is shown that if a certain “regularity” condition is met, concepts from fuzzy set theory arise naturally within abacus logics. In particular it is shown that every abacus logic then has a “pre-Zadeh orthocomplementation”. It is also shown that it is then possible to associate a fuzzy set with every proposition of abacus logic and that the collection of all such sets satisfies natural conditions expected in systems of fuzzy logic. Finally, the relevance to quantum mechanics is discussed.

  7. Preventive Maintenance Prioritization by Fuzzy Logic for Seamless Hydro Power Generation

    NASA Astrophysics Data System (ADS)

    Roy, P. K.; Adhikary, P.; Mazumdar, A.

    2014-06-01

    Preventive maintenance prioritization is one of the most important criteria for the electricity generation planners to minimize the down time and production costs. Break down of equipments increases costs and plant down time results in loss of business. This work focuses on prioritizing the preventive maintenance for seamless hydro power generation considering (24 × 7) client's power demand using fuzzy logic. The main task involves prioritizing the maintenance work considering constraints of varied power demand and hydro turbine plant breakdown. Fuzzy logic is used to optimize the preventive maintenance prioritization under the main constraints. Manual fuzzy arithmetic is used to develop the model and MATLAB Fuzzy Inference System editor used to validate the same. This novel fuzzy logic approach of preventive maintenance prioritizing for hydro power generation is absent in renewable power generation and industrial engineering literatures due to its assessment complexity.

  8. H∞ control for 2-D T-S fuzzy FMII model with stochastic perturbation

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Wang, Weiqun; Li, Lizhen

    2015-03-01

    This paper deals with the problem of H∞ control for 2-D non-linear system with stochastic perturbation. Based on spatial fuzzy set and inference mechanism, 2-D T-S fuzzy FMII model with stochastic perturbation is established first. Then the results for stability analysis and bounded real lemma are obtained. Moreover, an H∞ fuzzy controller is designed. In order to reduce the computational demand of the conditions for the existence of H∞ fuzzy controller, the control inputs are regarded as the variables independent of the states, and some free matrices are introduced to reduce the conservatism of this method. Then, a new H∞ fuzzy controller is derived. Two simulation examples are given to illustrate the effectiveness of the proposed approach.

  9. Spectral Identification Inference Engine

    2004-07-27

    The software interprets spectra (mass spectra, ion mobility spectra, etc.) using a method that mimics how an expert human analyst would perform the interpretation. Because spectra can be described linguistically (e.g. peak X must be large and peak y must be small), their description can be reduced to rules using fuzzy logic. Therefore, a fuzzy logic rule base can be applied to interpreting the spectra. The fuzzy logic rule base is also easy for themore » user to understand, and therefore, easy to check and verify its accuracy.« less

  10. Spectral Identification Inference Engine

    SciTech Connect

    2004-07-27

    The software interprets spectra (mass spectra, ion mobility spectra, etc.) using a method that mimics how an expert human analyst would perform the interpretation. Because spectra can be described linguistically (e.g. peak X must be large and peak y must be small), their description can be reduced to rules using fuzzy logic. Therefore, a fuzzy logic rule base can be applied to interpreting the spectra. The fuzzy logic rule base is also easy for the user to understand, and therefore, easy to check and verify its accuracy.

  11. Development of a GA-Fuzzy-Immune PID Controller with Incomplete Derivation for Robot Dexterous Hand

    PubMed Central

    Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin

    2014-01-01

    In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal. PMID:25097881

  12. Systematic methods for the design of a class of fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Yasin, Saad Yaser

    2002-09-01

    data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.

  13. Fuzzy forecasting based on fuzzy-trend logical relationship groups.

    PubMed

    Chen, Shyi-Ming; Wang, Nai-Yi

    2010-10-01

    In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.

  14. Robust Fuzzy Controllers Using FPGAs

    NASA Technical Reports Server (NTRS)

    Monroe, Author Gene S., Jr.

    2007-01-01

    Electro-mechanical device controllers typically come in one of three forms, proportional (P), Proportional Derivative (PD), and Proportional Integral Derivative (PID). Two methods of control are discussed in this paper; they are (1) the classical technique that requires an in-depth mathematical use of poles and zeros, and (2) the fuzzy logic (FL) technique that is similar to the way humans think and make decisions. FL controllers are used in multiple industries; examples include control engineering, computer vision, pattern recognition, statistics, and data analysis. Presented is a study on the development of a PD motor controller written in very high speed hardware description language (VHDL), and implemented in FL. Four distinct abstractions compose the FL controller, they are the fuzzifier, the rule-base, the fuzzy inference system (FIS), and the defuzzifier. FL is similar to, but different from, Boolean logic; where the output value may be equal to 0 or 1, but it could also be equal to any decimal value between them. This controller is unique because of its VHDL implementation, which uses integer mathematics. To compensate for VHDL's inability to synthesis floating point numbers, a scale factor equal to 10(sup (N/4) is utilized; where N is equal to data word size. The scaling factor shifts the decimal digits to the left of the decimal point for increased precision. PD controllers are ideal for use with servo motors, where position control is effective. This paper discusses control methods for motion-base platforms where a constant velocity equivalent to a spectral resolution of 0.25 cm(exp -1) is required; however, the control capability of this controller extends to various other platforms.

  15. Caption detection from video sequence based on fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Gao, Xinbo; Xin, Hong; Li, Jie

    2001-09-01

    Caption graphically superimposed in video frames can provide important indexing information. The automatic detection and recognition of video captions can be of great help in querying topics of interest in digital news library. To detect the caption from video sequence, we present algorithms based on fuzzy clustering neural networks. Since neural networks have the capabilities of learning and self-organizing and parallel computing mechanism, with the great increasing of digital images and video databases, neural networks based techniques become more efficient and popular tools for multimedia processing. Experimental results show that our caption detection scheme is effective and robust.

  16. Truth-Valued-Flow Inference (TVFI) and its applications in approximate reasoning

    NASA Technical Reports Server (NTRS)

    Wang, Pei-Zhuang; Zhang, Hongmin; Xu, Wei

    1993-01-01

    The framework of the theory of Truth-valued-flow Inference (TVFI) is introduced. Even though there are dozens of papers presented on fuzzy reasoning, we think it is still needed to explore a rather unified fuzzy reasoning theory which has the following two features: (1) it is simplified enough to be executed feasibly and easily; and (2) it is well structural and well consistent enough that it can be built into a strict mathematical theory and is consistent with the theory proposed by L.A. Zadeh. TVFI is one of the fuzzy reasoning theories that satisfies the above two features. It presents inference by the form of networks, and naturally views inference as a process of truth values flowing among propositions.

  17. An approximation of interval type-2 fuzzy controllers using fuzzy ratio switching type-1 fuzzy controllers.

    PubMed

    Tao, C W; Taur, Jinshiuh; Chuang, Chen-Chia; Chang, Chia-Wen; Chang, Yeong-Hwa

    2011-06-01

    In this paper, the interval type-2 fuzzy controllers (FC(IT2)s) are approximated using the fuzzy ratio switching type-1 FCs to avoid the complex type-reduction process required for the interval type-2 FCs. The fuzzy ratio switching type-1 FCs (FC(FRST1)s) are designed to be a fuzzy combination of the possible-leftmost and possible-rightmost type-1 FCs. The fuzzy ratio switching type-1 fuzzy control technique is applied with the sliding control technique to realize the hybrid fuzzy ratio switching type-1 fuzzy sliding controllers (HFSC(FRST1)s) for the double-pendulum-and-cart system. The simulation results and comparisons with other approaches are provided to demonstrate the effectiveness of the proposed HFSC(FRST1)s. PMID:21189244

  18. Prediction on carbon dioxide emissions based on fuzzy rules

    NASA Astrophysics Data System (ADS)

    Pauzi, Herrini; Abdullah, Lazim

    2014-06-01

    There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.

  19. Simulation of the Predictive Control Algorithm for Container Crane Operation using Matlab Fuzzy Logic Tool Box

    NASA Technical Reports Server (NTRS)

    Richardson, Albert O.

    1997-01-01

    This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.

  20. An adaptive fuzzy prediction model for real time tumor tracking in radiotherapy via external surrogates.

    PubMed

    Esmaili Torshabi, Ahmad; Riboldi, Marco; Imani Fooladi, Abbas Ali; Modarres Mosalla, Seyed Mehdi; Baroni, Guido

    2013-01-07

    In the radiation treatment of moving targets with external surrogates, information on tumor position in real time can be extracted by using accurate correlation models. A fuzzy environment is proposed here to correlate input surrogate data with tumor motion estimates in real time. In this study, two different data clustering approaches were analyzed due to their substantial effects on the fuzzy modeler performance. Moreover, a comparative investigation was performed on two fuzzy-based and one neuro-fuzzy-based inference systems with respect to state-of-the-art models. Finally, due to the intrinsic interpatient variability in fuzzy models' performance, a model selectivity algorithm was proposed to select an adaptive fuzzy modeler on a case-by-case basis. The performance of multiple and adaptive fuzzy logic models were retrospectively tested in 20 patients treated with CyberKnife real-time tumor tracking. Final results show that activating adequate model selection of our fuzzy-based modeler can significantly reduce tumor tracking errors.

  1. Towards autonomous fuzzy control

    NASA Technical Reports Server (NTRS)

    Shenoi, Sujeet; Ramer, Arthur

    1993-01-01

    The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.

  2. Distributed fuzzy system modeling

    SciTech Connect

    Pedrycz, W.; Chi Fung Lam, P.; Rocha, A.F.

    1995-05-01

    The paper introduces and studies an idea of distributed modeling treating it as a new paradigm of fuzzy system modeling and analysis. This form of modeling is oriented towards developing individual (local) fuzzy models for specific modeling landmarks (expressed as fuzzy sets) and determining the essential logical relationships between these local models. The models themselves are implemented in the form of logic processors being regarded as specialized fuzzy neural networks. The interaction between the processors is developed either in an inhibitory or excitatory way. In more descriptive way, the distributed model can be sought as a collection of fuzzy finite state machines with their individual local first or higher order memories. It is also clarified how the concept of distributed modeling narrows down a gap between purely numerical (quantitative) models and the qualitative ones originated within the realm of Artificial Intelligence. The overall architecture of distributed modeling is discussed along with the detailed learning schemes. The results of extensive simulation experiments are provided as well. 17 refs.

  3. A fuzzy logic system for Raman spectrum identification

    NASA Astrophysics Data System (ADS)

    Castanys, M.; Soneira, M. J.; Perez-Pueyo, R.; Ruiz-Moreno, S.

    2005-06-01

    Raman Spectroscopy is a fast, rugged analytical technique based on the Raman Effect. When monochromatic light encounters matter, most of the scattered light has the same wavelength as the incident light. However, a small fraction of the scattered light is shifted in a different wavelength by the molecular vibrations and rotations in the sample. The representation of this shifted light is called Raman spectrum, and contains many sharp bands characteristics of the sample, allowing its identification without ambiguity. In this communication, a fuzzy logic system to recognize Raman spectra of artistic pigments is presented. The identification is based on the comparison between an unknown spectrum, and pattern spectra. Frequently the comparison is made by the spectrospist by visual inspection, but this is slow and imprecise. In order to mitigate this problematic, a system based on the fuzzy logic technique to identify Raman spectra is presented. The methodology consists on implementing the comparison with the Correlation. However, a Raman spectrum is inevitably affected by noise which introduces ambiguity into the correlation values. Fuzzy Logic provides a simple way to draw conclusions from imprecise data. The fuzzy identification system is based on the following statement: when the correlation between the unidentified and the pattern is enough high, the analysed pigment is recognized as the pigment which corresponds to this pattern. The membership functions, which characterize the fuzzy sets at the input (Correlation) and output (Identified/ Not_Identified) of the system, and the inference mechanism suitable for the problem, are chosen.

  4. Stock and option portfolio using fuzzy logic approach

    NASA Astrophysics Data System (ADS)

    Sumarti, Novriana; Wahyudi, Nanang

    2014-03-01

    Fuzzy Logic in decision-making process has been widely implemented in various problems in industries. It is the theory of imprecision and uncertainty that was not based on probability theory. Fuzzy Logic adds values of degree between absolute true and absolute false. It starts with and builds on a set of human language rules supplied by the user. The fuzzy systems convert these rules to their mathematical equivalents. This could simplify the job of the system designer and the computer, and results in much more accurate representations of the way systems behave in the real world. In this paper we examine the decision making process of stock and option trading by the usage of MACD (Moving Average Convergence Divergence) technical analysis and Option Pricing with Fuzzy Logic approach. MACD technical analysis is for the prediction of the trends of underlying stock prices, such as bearish (going downward), bullish (going upward), and sideways. By using Fuzzy C-Means technique and Mamdani Fuzzy Inference System, we define the decision output where the value of MACD is high then decision is "Strong Sell", and the value of MACD is Low then the decision is "Strong Buy". We also implement the fuzzification of the Black-Scholes option-pricing formula. The stock and options methods are implemented on a portfolio of one stock and its options. Even though the values of input data, such as interest rates, stock price and its volatility, cannot be obtain accurately, these fuzzy methods can give a belief degree of the calculated the Black-Scholes formula so we can make the decision on option trading. The results show the good capability of the methods in the prediction of stock price trends. The performance of the simulated portfolio for a particular period of time also shows good return.

  5. A neural fuzzy controller learning by fuzzy error propagation

    NASA Technical Reports Server (NTRS)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  6. Fuzzy Reasoning with a Rete-OO Rule Engine

    NASA Astrophysics Data System (ADS)

    Wulff, Nikolaus; Sottara, Davide

    Rules and rule engines play an important role in automated decision making processes like business workflows or system monitoring. Classical inference machines evaluate rules until a final "yes" or "no" decision: this crisp classification schema can turn into a deficiency when they have to deal with uncertain or inprecise knowledge. To circumvent some of these limitations we have built the "Java Expert Fuzzy Inference System" (Jefis) and implemented factory methods to deploy the Jefis library as an extension for the classical rule engine JBoss Drools. We outline the new features and give examples of uncertain formulated rules executing within the Jefis Drools extender.

  7. Fuzzy object modeling

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Odhner, Dewey; Falcao, Alexandre X.; Ciesielski, Krzysztof C.; Miranda, Paulo A. V.; Vaideeswaran, Pavithra; Mishra, Shipra; Grevera, George J.; Saboury, Babak; Torigian, Drew A.

    2011-03-01

    To make Quantitative Radiology (QR) a reality in routine clinical practice, computerized automatic anatomy recognition (AAR) becomes essential. As part of this larger goal, we present in this paper a novel fuzzy strategy for building bodywide group-wise anatomic models. They have the potential to handle uncertainties and variability in anatomy naturally and to be integrated with the fuzzy connectedness framework for image segmentation. Our approach is to build a family of models, called the Virtual Quantitative Human, representing normal adult subjects at a chosen resolution of the population variables (gender, age). Models are represented hierarchically, the descendents representing organs contained in parent organs. Based on an index of fuzziness of the models, 32 thorax data sets, and 10 organs defined in them, we found that the hierarchical approach to modeling can effectively handle the non-linear relationships in position, scale, and orientation that exist among organs in different patients.

  8. Reconfigurable fuzzy cell

    NASA Technical Reports Server (NTRS)

    Salazar, George A. (Inventor)

    1993-01-01

    This invention relates to a reconfigurable fuzzy cell comprising a digital control programmable gain operation amplifier, an analog-to-digital converter, an electrically erasable PROM, and 8-bit counter and comparator, and supporting logic configured to achieve in real-time fuzzy systems high throughput, grade-of-membership or membership-value conversion of multi-input sensor data. The invention provides a flexible multiplexing-capable configuration, implemented entirely in hardware, for effectuating S-, Z-, and PI-membership functions or combinations thereof, based upon fuzzy logic level-set theory. A membership value table storing 'knowledge data' for each of S-, Z-, and PI-functions is contained within a nonvolatile memory for storing bits of membership and parametric information in a plurality of address spaces. Based upon parametric and control signals, analog sensor data is digitized and converted into grade-of-membership data. In situ learn and recognition modes of operation are also provided.

  9. Fuzzy logic for fault diagnosis

    NASA Astrophysics Data System (ADS)

    Comly, James B.; Bonissone, Piero P.; Dausch, Mark E.

    1991-02-01

    Advanced real-time digital controls for complex plants or processes will use a model (an " Observer" ) which predicts the values for sensor readings expected from the actual plant these vote as alternate " sensors" if the real ones fail. We are exploring further use of the Observer for real-time embedded diagnostics based on high speed fuzzy logic chips just becoming available. We have established a Fuzzy Inferencing Test Bed for fuzzy logic applications. It uses a set of development tools which allow applications to be built and tested against simulated systems and then ported directly to a high speed fuzzy logic chip. With the Fuzzy Inferencing Test we investigate very high speed fuzzy logic to: isolate faults using static information and early fault information that evolves rapidly in time validate and smooth readings from redundant sensors and smoothly select alternate control modes in intelligent controllers. This paper reports our experience with fuzzy logic in these kinds of applications.

  10. Towards a Fuzzy Expert System on Toxicological Data Quality Assessment.

    PubMed

    Yang, Longzhi; Neagu, Daniel; Cronin, Mark T D; Hewitt, Mark; Enoch, Steven J; Madden, Judith C; Przybylak, Katarzyna

    2013-01-01

    Quality assessment (QA) requires high levels of domain-specific experience and knowledge. QA tasks for toxicological data are usually performed by human experts manually, although a number of quality evaluation schemes have been proposed in the literature. For instance, the most widely utilised Klimisch scheme1 defines four data quality categories in order to tag data instances with respect to their qualities; ToxRTool2 is an extension of the Klimisch approach aiming to increase the transparency and harmonisation of the approach. Note that the processes of QA in many other areas have been automatised by employing expert systems. Briefly, an expert system is a computer program that uses a knowledge base built upon human expertise, and an inference engine that mimics the reasoning processes of human experts to infer new statements from incoming data. In particular, expert systems have been extended to deal with the uncertainty of information by representing uncertain information (such as linguistic terms) as fuzzy sets under the framework of fuzzy set theory and performing inferences upon fuzzy sets according to fuzzy arithmetic. This paper presents an experimental fuzzy expert system for toxicological data QA which is developed on the basis of the Klimisch approach and the ToxRTool in an effort to illustrate the power of expert systems to toxicologists, and to examine if fuzzy expert systems are a viable solution for QA of toxicological data. Such direction still faces great difficulties due to the well-known common challenge of toxicological data QA that "five toxicologists may have six opinions". In the meantime, this challenge may offer an opportunity for expert systems because the construction and refinement of the knowledge base could be a converging process of different opinions which is of significant importance for regulatory policy making under the regulation of REACH, though a consensus may never be reached. Also, in order to facilitate the implementation

  11. Fast Fuzzy Arithmetic Operations

    NASA Technical Reports Server (NTRS)

    Hampton, Michael; Kosheleva, Olga

    1997-01-01

    In engineering applications of fuzzy logic, the main goal is not to simulate the way the experts really think, but to come up with a good engineering solution that would (ideally) be better than the expert's control, In such applications, it makes perfect sense to restrict ourselves to simplified approximate expressions for membership functions. If we need to perform arithmetic operations with the resulting fuzzy numbers, then we can use simple and fast algorithms that are known for operations with simple membership functions. In other applications, especially the ones that are related to humanities, simulating experts is one of the main goals. In such applications, we must use membership functions that capture every nuance of the expert's opinion; these functions are therefore complicated, and fuzzy arithmetic operations with the corresponding fuzzy numbers become a computational problem. In this paper, we design a new algorithm for performing such operations. This algorithm is applicable in the case when negative logarithms - log(u(x)) of membership functions u(x) are convex, and reduces computation time from O(n(exp 2))to O(n log(n)) (where n is the number of points x at which we know the membership functions u(x)).

  12. [The study on the characters of membrane protein interaction and its network based on integrated intelligence method].

    PubMed

    Shen, Yizhen; Ding, Yongsheng; Hao, Kuangrong

    2011-08-01

    Membrane protein and its interaction network have become a novel research direction in bioinformatics. In this paper, a novel membrane protein interaction network simulator is proposed for system biology studies by integrated intelligence method including spectrum analysis, fuzzy K-Nearest Neighbor(KNN) algorithm and so on. We consider biological system as a set of active computational components interacting with each other and with the external environment. Then we can use the network simulator to construct membrane protein interaction networks. Based on the proposed approach, we found that the membrane protein interaction network almost has some dynamic and collective characteristics, such as small-world network, scale free distributing, and hierarchical module structure. These properties are similar to those of other extensively studied protein interaction networks. The present studies on the characteristics of the membrane protein interaction network will be valuable for its relatively biological and medical studies. PMID:21936357

  13. Interval-valued fuzzy hypergraph and fuzzy partition.

    PubMed

    Chen, S M

    1997-01-01

    This paper extends the work of H. Lee-Kwang and L.M. Lee (1995) to present the concept of the interval-valued fuzzy hypergraph. In the interval-valued fuzzy hypergraph, the concepts of the dual interval-valued fuzzy hypergraph, the crisp-valued alpha-cut hypergraph, and the interval-valued [alpha(1),alpha(2 )]-cut at beta level hypergraph are developed, where alphain [0, 1], 0fuzzy partition of a system. PMID:18255914

  14. Nozzle Fuzzy Controller of Agricultural Spraying Robot Aiming Toward Crop Rows

    NASA Astrophysics Data System (ADS)

    Ren, Jianqiang

    A novel nozzle controller of spraying robot aiming toward crop-rows based on fuzzy control theory was studied in this paper to solve the shortcomings of existing nozzle control system, such as the long regulation time, the higher overshoot and so on. The new fuzzy controller mainly consists of fuzzification interface, defuzzification interface, rule-base and inference mechanism. Considering the actual application, the fuzzy controller was designed as a 2-inputs&1-output closed-loop system. The inputs are the distance from nozzle to crop row and its change rate, the output is the control signal to the execution unit. Based on the design project, we selected the FMC chip NLX230, the EMCU chip AT89S52 and the EEPROM chip AT93C57 to make the fuzzy controller. Experimental results show that the project is workable and efficient, it can solve the shortcomings of existing controller perfectly and the control efficiency can be improved greatly.

  15. Using fuzzy logic to integrate neural networks and knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  16. Recognition of Handwritten Arabic words using a neuro-fuzzy network

    SciTech Connect

    Boukharouba, Abdelhak; Bennia, Abdelhak

    2008-06-12

    We present a new method for the recognition of handwritten Arabic words based on neuro-fuzzy hybrid network. As a first step, connected components (CCs) of black pixels are detected. Then the system determines which CCs are sub-words and which are stress marks. The stress marks are then isolated and identified separately and the sub-words are segmented into graphemes. Each grapheme is described by topological and statistical features. Fuzzy rules are extracted from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data using a fuzzy c-means, and rule parameter tuning phase using gradient descent learning. After learning, the network encodes in its topology the essential design parameters of a fuzzy inference system.The contribution of this technique is shown through the significant tests performed on a handwritten Arabic words database.

  17. Fuzzy logic particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1993-01-01

    Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.

  18. The stock-flow model of spatial data infrastructure development refined by fuzzy logic.

    PubMed

    Abdolmajidi, Ehsan; Harrie, Lars; Mansourian, Ali

    2016-01-01

    The system dynamics technique has been demonstrated to be a proper method by which to model and simulate the development of spatial data infrastructures (SDI). An SDI is a collaborative effort to manage and share spatial data at different political and administrative levels. It is comprised of various dynamically interacting quantitative and qualitative (linguistic) variables. To incorporate linguistic variables and their joint effects in an SDI-development model more effectively, we suggest employing fuzzy logic. Not all fuzzy models are able to model the dynamic behavior of SDIs properly. Therefore, this paper aims to investigate different fuzzy models and their suitability for modeling SDIs. To that end, two inference and two defuzzification methods were used for the fuzzification of the joint effect of two variables in an existing SDI model. The results show that the Average-Average inference and Center of Area defuzzification can better model the dynamics of SDI development. PMID:27006876

  19. The stock-flow model of spatial data infrastructure development refined by fuzzy logic.

    PubMed

    Abdolmajidi, Ehsan; Harrie, Lars; Mansourian, Ali

    2016-01-01

    The system dynamics technique has been demonstrated to be a proper method by which to model and simulate the development of spatial data infrastructures (SDI). An SDI is a collaborative effort to manage and share spatial data at different political and administrative levels. It is comprised of various dynamically interacting quantitative and qualitative (linguistic) variables. To incorporate linguistic variables and their joint effects in an SDI-development model more effectively, we suggest employing fuzzy logic. Not all fuzzy models are able to model the dynamic behavior of SDIs properly. Therefore, this paper aims to investigate different fuzzy models and their suitability for modeling SDIs. To that end, two inference and two defuzzification methods were used for the fuzzification of the joint effect of two variables in an existing SDI model. The results show that the Average-Average inference and Center of Area defuzzification can better model the dynamics of SDI development.

  20. Determining rules for closing customer service centers: A public utility company's fuzzy decision

    NASA Technical Reports Server (NTRS)

    Dekorvin, Andre; Shipley, Margaret F.; Lea, Robert N.

    1992-01-01

    In the present work, we consider the general problem of knowledge acquisition under uncertainty. Simply stated, the problem reduces to the following: how can we capture the knowledge of an expert when the expert is unable to clearly formulate how he or she arrives at a decision? A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision may have been made. Unique to our work is the fuzzy set representation of the conditions or attributes upon which the expert may possibly base his fuzzy decision. From our examples, we infer certain and possible fuzzy rules for closing a customer service center and illustrate the importance of having the decision closely relate to the conditions under consideration.

  1. Determining rules for closing customer service centers: A public utility company's fuzzy decision

    NASA Technical Reports Server (NTRS)

    Dekorvin, Andre; Shipley, Margaret F.

    1992-01-01

    In the present work, we consider the general problem of knowledge acquisition under uncertainty. A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision was made. Unique to this work is the fuzzy set representation of the conditions or attributes upon which the decision make may base his fuzzy set decision. From our examples, we infer certain and possible rules containing fuzzy terms. It should be stressed that the procedure determines how closely the expert follows the conditions under consideration in making his decision. We offer two examples pertaining to the possible decision to close a customer service center of a public utility company. In the first example, the decision maker does not follow too closely the conditions. In the second example, the conditions are much more relevant to the decision of the expert.

  2. Fuzzy set methods for object recognition in space applications

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1991-01-01

    Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed.

  3. Evaluation of Network-Based Minimally Invasive VR Surgery Simulator.

    PubMed

    Tagawa, Kazuyoshi; Tanaka, Hiromi T; Kurumi, Yoshimasa; Komori, Masaru; Morikawa, Shigehiro

    2016-01-01

    In this paper, we report a result of an experiment of a field trial of our network-based minimally invasive surgery simulator. In our previous paper, we proposed a network-based visuohaptic surgery training system for laparoscopic surgery. In addition, we proposed a volume-based haptic communication approach, which allows participants at remote sites on the network to simultaneously interact with the same target object in virtual environments presented by multi-level computer performance systems, by only exchanging a small set of manipulation parameters for the target object and additional packet for synchronization of status of binary tree and deformation of shared volume model. We implemented the approach into our network-based surgery simulator, and field trial of the simulator at three locations was performed. PMID:27046613

  4. Development and Individual Differences in Transitive Reasoning: A Fuzzy Trace Theory Approach

    ERIC Educational Resources Information Center

    Bouwmeester, Samantha; Vermunt, Jeroen K.; Sijtsma, Klaas

    2007-01-01

    Fuzzy trace theory explains why children do not have to use rules of logic or premise information to infer transitive relationships. Instead, memory of the premises and performance on transitivity tasks is explained by a verbatim ability and a gist ability. Until recently, the processes involved in transitive reasoning and memory of the premises…

  5. CFD Optimization on Network-Based Parallel Computer System

    NASA Technical Reports Server (NTRS)

    Cheung, Samson H.; VanDalsem, William (Technical Monitor)

    1994-01-01

    Combining multiple engineering workstations into a network-based heterogeneous parallel computer allows application of aerodynamic optimization with advance computational fluid dynamics codes, which is computationally expensive in mainframe supercomputer. This paper introduces a nonlinear quasi-Newton optimizer designed for this network-based heterogeneous parallel computer on a software called Parallel Virtual Machine. This paper will introduce the methodology behind coupling a Parabolized Navier-Stokes flow solver to the nonlinear optimizer. This parallel optimization package has been applied to reduce the wave drag of a body of revolution and a wing/body configuration with results of 5% to 6% drag reduction.

  6. Parallel CFD design on network-based computer

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1995-01-01

    Combining multiple engineering workstations into a network-based heterogeneous parallel computer allows application of aerodynamic optimization with advanced computational fluid dynamics codes, which can be computationally expensive on mainframe supercomputers. This paper introduces a nonlinear quasi-Newton optimizer designed for this network-based heterogeneous parallel computing environment utilizing a software called Parallel Virtual Machine. This paper will introduce the methodology behind coupling a Parabolized Navier-Stokes flow solver to the nonlinear optimizer. This parallel optimization package is applied to reduce the wave drag of a body of revolution and a wing/body configuration with results of 5% to 6% drag reduction.

  7. Fuzzy-GA modeling in air quality assessment.

    PubMed

    Yadav, Jyoti; Kharat, Vilas; Deshpande, Ashok

    2015-04-01

    In this paper, the authors have suggested and implemented the defined soft computing methods in air quality classification with case studies. The first study relates to the application of Fuzzy C mean (FCM) clustering method in estimating pollution status in cities of Maharashtra State, India. In this study, the computation of weighting factor using a new concept of reference group is successfully demonstrated. The authors have also investigated the efficacy of fuzzy set theoretic approach in combination with genetic algorithm in straightway describing air quality in linguistic terms with linguistic degree of certainty attached to each description using Zadeh-Deshpande (ZD) approach. Two metropolitan cities viz., Mumbai in India and New York in the USA are identified for the assessment of the pollution status due to their somewhat similar geographical features. The case studies infer that the fuzzy sets drawn on the basis of expert knowledge base for the criteria pollutants are not much different from those obtained using genetic algorithm. Pollution forecast using various methods including fuzzy time series forms an integral part of the paper.

  8. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  9. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  10. Evaluation of pulmonary function tests by using fuzzy logic theory.

    PubMed

    Uncü, Umit

    2010-06-01

    Pulmonary Function Tests (PFTs) are very important in the medical evaluation of patients suffering from "shortness of breath", and they are effectively used for the diagnosis of pulmonary diseases, such as COPD (i.e. chronic obstructive pulmonary diseases). Measurement of Forced Vital Capacity (FVC) and Forced Expiratory Flow in the 1st second (FEV1) are very important for controlling the treatment of COPD. During PFTs, some difficulties are encountered which complicate the comparison of produced graphs with the standards. These mainly include the reluctance of the patients to co-operate and the physicians' weaknesses to make healthy interpretations. Main tools of the diagnostic process are the symptoms, laboratory tests or measurements and the medical history of the patient. However, quite frequently, most of the medical information obtained from the patient is uncertain, exaggerated or ignored, incomplete or inconsistent. Fuzziness encountered during PFT is very important. In this study, the purpose is to use "fuzzy logic" approach to facilitate reliable and fast interpretation of PFT graphical outputs. A comparison is made between this approach and methodologies adopted in previous studies. Mathematical models and their coefficients for the spirometric plots are introduced as fuzzy numbers. Firstly, a set of rules for categorizing coefficients of mathematical models obtained. Then, a fuzzy rule-base for a medical inference engine is constructed and a diagnostic "expert system COPDes" designed. This program, COPDes helps for diagnosing the degree of COPD for the patient under test.

  11. Fuzzy learning under and about an unfamiliar fuzzy teacher

    NASA Technical Reports Server (NTRS)

    Dasarathy, Belur V.

    1992-01-01

    This study addresses the problem of optimal parametric learning in unfamiliar fuzzy environments. Prior studies in the domain of unfamiliar environments, which employed either crisp or fuzzy approaches to model the uncertainty or imperfectness of the learning environment, assumed that the training sample labels provided by the unfamiliar teacher were crisp, even if not perfect. Here, the more realistic problem of fuzzy learning under an unfamiliar teacher who provides only fuzzy (instead of crisp) labels, is tackled by expanding the previously defined fuzzy membership concepts to include an additional component representative of the fuzziness of the teacher. The previously studied scenarios, namely, crisp and fuzzy learning under (crisp) unfamiliar teacher, can be looked upon as special cases of this new methodology. As under the earlier studies, the estimated membership functions can then be deployed during the ensuing classification decision phase to judiciously take into account the imperfectness of the learning environment. The study also offers some insight into the properties of several of these fuzzy membership function estimators by examining their behavior under certain specific scenarios.

  12. New geometrical perspective of fuzzy ART and fuzzy ARTMAP learning

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, Georgios C.; Georgiopoulos, Michael

    2001-03-01

    In this paper we introduce new useful, geometric concepts regarding categories in Fuzzy ART and Fuzzy ARTMAP, which shed more light into the process of category competition eligibility upon the presentation of input patterns. First, we reformulate the competition of committed nodes with uncommitted nodes in an F2 layer as a commitment test very similar to the vigilance test. Next, we introduce a category's match and choice regions, which are the geometric interpretation of the vigilance and commitment test respectively. After examining properties of these regions we reach three results applicable to both Fuzzy ART and Fuzzy ARTMAP. More specifically, we show that only one out of these two tests is required; which test needs to be performed depends on the values of the vigilance parameter (rho) and the choice parameter (alpha) . Also, we show that for a specific relation of (rho) and (alpha) , the vigilance (rho) does not influence the training or performance phase of Fuzzy ART and Fuzzy ARTMAP. Finally, we refine a previously published upper bound on the size of the categories created during training in Fuzzy ART and Fuzzy ARTMAP.

  13. Searching arousals: A fuzzy logic approach.

    PubMed

    Chaparro-Vargas, Ramiro; Ahmed, Beena; Penzel, Thomas; Cvetkovic, Dean

    2015-08-01

    This paper presents a computational approach to detect spontaneous, chin tension and limb movement-related arousals by estimating neuronal and muscular activity. Features extraction is carried out by Time Varying Autoregressive Moving Average (TVARMA) models and recursive particle filtering. Classification is performed by a fuzzy inference system with rule-based decision scheme based upon the AASM scoring rules. Our approach yielded two metrics: arousal density and arousal index to comply with standardised clinical benchmarking. The obtained statistics achieved error deviation around ±1.5 to ±30. These results showed that our system can differentiate amongst 3 different types of arousals, subject to inter-subject variability and up-to-date scoring references. PMID:26736862

  14. Neural Network Based System for Equipment Startup Surveillance

    1996-12-18

    NEBSESS is a system for equipment surveillance and fault detection which relies on a neural-network based means for diagnosing disturbances during startup and for automatically actuating the Sequential Probability Ratio Test (SPRT) as a signal validation means during steady-state operation.

  15. A Cultural Approach to Networked-Based Mobile Education

    ERIC Educational Resources Information Center

    Koskimaa, Raine; Lehtonen, Miika; Heinonen, Ulla; Ruokamo, Heli; Tissari, Varpu; Vahtivuori-Hanninen, Sanna; Tella, Seppo

    2007-01-01

    This paper discusses cultural conditions for networked-based mobile education. In our paper, we demonstrate how an Integrated Meta-Model that we have been developing in our MOMENTS project, i.e. Models and Methods for Future Knowledge Construction: Interdisciplinary Implementations with Mobile Technologies, can be used as a heuristic tool for…

  16. Inference in `poor` languages

    SciTech Connect

    Petrov, S.

    1996-10-01

    Languages with a solvable implication problem but without complete and consistent systems of inference rules (`poor` languages) are considered. The problem of existence of finite complete and consistent inference rule system for a ``poor`` language is stated independently of the language or rules syntax. Several properties of the problem arc proved. An application of results to the language of join dependencies is given.

  17. Teaching Machines to Think Fuzzy

    ERIC Educational Resources Information Center

    Technology Teacher, 2004

    2004-01-01

    Fuzzy logic programs for computers make them more human. Computers can then think through messy situations and make smart decisions. It makes computers able to control things the way people do. Fuzzy logic has been used to control subway trains, elevators, washing machines, microwave ovens, and cars. Pretty much all the human has to do is push one…

  18. On the stability of interval type-2 TSK fuzzy logic control systems.

    PubMed

    Biglarbegian, Mohammad; Melek, William W; Mendel, Jerry M

    2010-06-01

    Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainties. This paper proposes a novel inference mechanism for an interval type-2 Takagi-Sugeno-Kang fuzzy logic control system (IT2 TSK FLCS) when antecedents are type-2 fuzzy sets and consequents are crisp numbers (A2-C0). The proposed inference mechanism has a closed form which makes it more feasible to analyze the stability of this FLCS. This paper focuses on control applications for the following cases: 1) Both plant and controller use A2-C0 TSK models, and 2) the plant uses type-1 Takagi-Sugeno (TS) and the controller uses IT2 TS models. In both cases, sufficient stability conditions for the stability of the closed-loop system are derived. Furthermore, novel linear-matrix-inequality-based algorithms are developed for satisfying the stability conditions. Numerical analyses are included which validate the effectiveness of the new inference methods. Case studies reveal that an IT2 TS FLCS using the proposed inference engine clearly outperforms its type-1 TSK counterpart. Moreover, due to the simple nature of the proposed inference engine, it is easy to implement in real-time control systems. The methods presented in this paper lay the mathematical foundations for analyzing the stability and facilitating the design of stabilizing controllers of IT2 TSK FLCSs and IT2 TS FLCSs with significantly improved performance over type-1 approaches. PMID:19884090

  19. Autonomous Navigation System Using a Fuzzy Adaptive Nonlinear H∞ Filter

    PubMed Central

    Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim

    2014-01-01

    Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds (δi) and adaptive disturbance attenuation (γ), which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter. PMID:25244587

  20. Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.

    PubMed

    Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim

    2014-09-19

    Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds  and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter.

  1. Fuzzy-logic optical optimization of mainframe CPU and memory.

    PubMed

    Zalevsky, Zeev; Gur, Eran; Mendlovic, David

    2006-07-01

    The allocation of CPU time and memory resources is a familiar problem in organizations with a large number of users and a single mainframe. Usually the amount of resources allocated to a single user is based on the user's own statistics not on the statistics of the entire organization, therefore patterns are not well identified and the allocation system is prodigal. A fuzzy-logic-based algorithm to optimize the CPU and memory distribution among users based on their history is suggested. The algorithm works on heavy and light users separately since they present different patterns to be observed. The result is a set of rules generated by the fuzzy-logic inference engine that will allow the system to use its computing ability in an optimized manner. Test results on data taken from the Faculty of Engineering of Tel Aviv University demonstrate the capabilities of the new algorithm.

  2. Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.

    PubMed

    Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim

    2014-01-01

    Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds  and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter. PMID:25244587

  3. Adaptive Neuro-fuzzy approach in friction identification

    NASA Astrophysics Data System (ADS)

    Zaiyad Muda @ Ismail, Muhammad

    2016-05-01

    Friction is known to affect the performance of motion control system, especially in terms of its accuracy. Therefore, a number of techniques or methods have been explored and implemented to alleviate the effects of friction. In this project, the Artificial Intelligent (AI) approach is used to model the friction which will be then used to compensate the friction. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is chosen among several other AI methods because of its reliability and capabilities of solving complex computation. ANFIS is a hybrid AI-paradigm that combines the best features of neural network and fuzzy logic. This AI method (ANFIS) is effective for nonlinear system identification and compensation and thus, being used in this project.

  4. Fuzzy-logic optical optimization of mainframe CPU and memory

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Gur, Eran; Mendlovic, David

    2006-07-01

    The allocation of CPU time and memory resources is a familiar problem in organizations with a large number of users and a single mainframe. Usually the amount of resources allocated to a single user is based on the user's own statistics not on the statistics of the entire organization, therefore patterns are not well identified and the allocation system is prodigal. A fuzzy-logic-based algorithm to optimize the CPU and memory distribution among users based on their history is suggested. The algorithm works on heavy and light users separately since they present different patterns to be observed. The result is a set of rules generated by the fuzzy-logic inference engine that will allow the system to use its computing ability in an optimized manner. Test results on data taken from the Faculty of Engineering of Tel Aviv University demonstrate the capabilities of the new algorithm.

  5. CPU and memory allocation optimization using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Gur, Eran; Mendlovic, David

    2002-12-01

    The allocation of CPU time and memory resources, are well known problems in organizations with a large number of users, and a single mainframe. Usually the amount of resources given to a single user is based on its own statistics, not on the entire statistics of the organization therefore patterns are not well identified and the allocation system is prodigal. In this work the authors suggest a fuzzy logic based algorithm to optimize the CPU and memory distribution between the users based on the history of the users. The algorithm works separately on heavy users and light users since they have different patterns to be observed. The result is a set of rules, generated by the fuzzy logic inference engine that will allow the system to use its computing ability in an optimized manner. Test results on data taken from the Faculty of Engineering in Tel Aviv University, demonstrate the abilities of the new algorithm.

  6. Linguistic Summarization of Video for Fall Detection Using Voxel Person and Fuzzy Logic.

    PubMed

    Anderson, Derek; Luke, Robert H; Keller, James M; Skubic, Marjorie; Rantz, Marilyn; Aud, Myra

    2009-01-01

    In this paper, we present a method for recognizing human activity from linguistic summarizations of temporal fuzzy inference curves representing the states of a three-dimensional object called voxel person. A hierarchy of fuzzy logic is used, where the output from each level is summarized and fed into the next level. We present a two level model for fall detection. The first level infers the states of the person at each image. The second level operates on linguistic summarizations of voxel person's states and inference regarding activity is performed. The rules used for fall detection were designed under the supervision of nurses to ensure that they reflect the manner in which elders perform these activities. The proposed framework is extremely flexible. Rules can be modified, added, or removed, allowing for per-resident customization based on knowledge about their cognitive and physical ability.

  7. Linguistic Summarization of Video for Fall Detection Using Voxel Person and Fuzzy Logic

    PubMed Central

    Anderson, Derek; Luke, Robert H.; Keller, James M.; Skubic, Marjorie; Rantz, Marilyn; Aud, Myra

    2009-01-01

    In this paper, we present a method for recognizing human activity from linguistic summarizations of temporal fuzzy inference curves representing the states of a three-dimensional object called voxel person. A hierarchy of fuzzy logic is used, where the output from each level is summarized and fed into the next level. We present a two level model for fall detection. The first level infers the states of the person at each image. The second level operates on linguistic summarizations of voxel person’s states and inference regarding activity is performed. The rules used for fall detection were designed under the supervision of nurses to ensure that they reflect the manner in which elders perform these activities. The proposed framework is extremely flexible. Rules can be modified, added, or removed, allowing for per-resident customization based on knowledge about their cognitive and physical ability. PMID:20046216

  8. Stock trading using RSPOP: a novel rough set-based neuro-fuzzy approach.

    PubMed

    Ang, Kai Keng; Quek, Chai

    2006-09-01

    This paper investigates the method of forecasting stock price difference on artificially generated price series data using neuro-fuzzy systems and neural networks. As trading profits is more important to an investor than statistical performance, this paper proposes a novel rough set-based neuro-fuzzy stock trading decision model called stock trading using rough set-based pseudo outer-product (RSPOP) which synergizes the price difference forecast method with a forecast bottleneck free trading decision model. The proposed stock trading with forecast model uses the pseudo outer-product based fuzzy neural network using the compositional rule of inference [POPFNN-CRI(S)] with fuzzy rules identified using the RSPOP algorithm as the underlying predictor model and simple moving average trading rules in the stock trading decision model. Experimental results using the proposed stock trading with RSPOP forecast model on real world stock market data are presented. Trading profits in terms of portfolio end values obtained are benchmarked against stock trading with dynamic evolving neural-fuzzy inference system (DENFIS) forecast model, the stock trading without forecast model and the stock trading with ideal forecast model. Experimental results showed that the proposed model identified rules with greater interpretability and yielded significantly higher profits than the stock trading with DENFIS forecast model and the stock trading without forecast model.

  9. Causal Network Inference Via Group Sparse Regularization.

    PubMed

    Bolstad, Andrew; Van Veen, Barry D; Nowak, Robert

    2011-06-11

    This paper addresses the problem of inferring sparse causal networks modeled by multivariate autoregressive (MAR) processes. Conditions are derived under which the Group Lasso (gLasso) procedure consistently estimates sparse network structure. The key condition involves a "false connection score" ψ. In particular, we show that consistent recovery is possible even when the number of observations of the network is far less than the number of parameters describing the network, provided that ψ < 1. The false connection score is also demonstrated to be a useful metric of recovery in nonasymptotic regimes. The conditions suggest a modified gLasso procedure which tends to improve the false connection score and reduce the chances of reversing the direction of causal influence. Computational experiments and a real network based electrocorticogram (ECoG) simulation study demonstrate the effectiveness of the approach.

  10. Causal Network Inference Via Group Sparse Regularization

    PubMed Central

    Bolstad, Andrew; Van Veen, Barry D.; Nowak, Robert

    2011-01-01

    This paper addresses the problem of inferring sparse causal networks modeled by multivariate autoregressive (MAR) processes. Conditions are derived under which the Group Lasso (gLasso) procedure consistently estimates sparse network structure. The key condition involves a “false connection score” ψ. In particular, we show that consistent recovery is possible even when the number of observations of the network is far less than the number of parameters describing the network, provided that ψ < 1. The false connection score is also demonstrated to be a useful metric of recovery in nonasymptotic regimes. The conditions suggest a modified gLasso procedure which tends to improve the false connection score and reduce the chances of reversing the direction of causal influence. Computational experiments and a real network based electrocorticogram (ECoG) simulation study demonstrate the effectiveness of the approach. PMID:21918591

  11. Use of fuzzy logic models for prediction of taste and odor compounds in algal bloom-affected inland water bodies.

    PubMed

    Bruder, Slawa; Babbar-Sebens, Meghna; Tedesco, Lenore; Soyeux, Emmanuel

    2014-03-01

    Mechanistic modeling of how algal species produce metabolites (e.g., taste and odor compounds geosmin and 2-methyl isoborneol (2-MIB)) as a biological response is currently not well understood. However, water managers and water utilities using these reservoirs often need methods for predicting metabolite production, so that appropriate water treatment procedures can be implemented. In this research, a heuristic approach using Adaptive Network-based Fuzzy Inference System (ANFIS) was developed to determine the underlying nonlinear and uncertain quantitative relationship between observed cyanobacterial metabolites (2-MIB and geosmin), various algal species, and physical and chemical variables. The model is proposed to be used in conjunction with numerical water quality models that can predict spatial-temporal distribution of flows, velocities, water quality parameters, and algal functional groups. The coupling of the proposed metabolite model with the numerical water quality models would assist various utilities which use mechanistic water quality models to also be able to predict distribution of taste and odor metabolites, especially when monitoring of metabolites is limited. The proposed metabolite model was developed and tested for the Eagle Creek Reservoir in Indiana (USA) using observations over a 3-year period (2008-2010). Results show that the developed models performed well for geosmin (R (2) = 0.83 for all training data and R (2) = 0.78 for validation of all 10 data points in the validation dataset) and reasonably well for the 2-MIB (R (2) = 0.82 for all training data and R (2) = 0.70 for 7 out of 10 data points in the validation dataset). PMID:24242080

  12. Combining non-precise historical information with instrumental measurements for flood frequency estimation: a fuzzy Bayesian approach

    NASA Astrophysics Data System (ADS)

    Salinas, Jose Luis; Kiss, Andrea; Viglione, Alberto; Blöschl, Günter

    2016-04-01

    Efforts of the historical environmental extremes community during the last decades have resulted in the obtention of long time series of historical floods, which in some cases range longer than 500 years in the past. In hydrological engineering, historical floods are useful because they give additional information which improves the estimates of discharges with low annual exceedance probabilities, i.e. with high return periods, and additionally might reduce the uncertainty in those estimates. In order to use the historical floods in formal flood frequency analysis, the precise value of the peak discharges would ideally be known, but in most of the cases, the information related to historical floods is given, quantitatively, in a non-precise manner. This work presents an approach on how to deal with the non-precise historical floods, by linking the descriptions in historical records to fuzzy numbers representing discharges. These fuzzy historical discharges are then introduced in a formal Bayesian inference framework, taking into account the arithmetics of non-precise numbers modelled by fuzzy logic theory, to obtain a fuzzy version of the flood frequency curve combining the fuzzy historical flood events and the instrumental data for a given location. Two case studies are selected from the historical literature, representing different facets of the fuzziness present in the historical sources. The results from the cases studies are given in the form of the fuzzy estimates of the flood frequency curves together with the fuzzy 5% and 95% Bayesian credibility bounds for these curves. The presented fuzzy Bayesian inference framework provides a flexible methodology to propagate in an explicit way the imprecision from the historical records into the flood frequency estimate, which allows to assess the effect that the incorporation of non-precise historical information can have in the flood frequency regime.

  13. Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions

    NASA Astrophysics Data System (ADS)

    Tsaur, Ruey-Chyn

    2015-02-01

    In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.

  14. Function formula oriented construction of Bayesian inference nets for diagnosis of cardiovascular disease.

    PubMed

    Sekar, Booma Devi; Dong, Mingchui

    2014-01-01

    An intelligent cardiovascular disease (CVD) diagnosis system using hemodynamic parameters (HDPs) derived from sphygmogram (SPG) signal is presented to support the emerging patient-centric healthcare models. To replicate clinical approach of diagnosis through a staged decision process, the Bayesian inference nets (BIN) are adapted. New approaches to construct a hierarchical multistage BIN using defined function formulas and a method employing fuzzy logic (FL) technology to quantify inference nodes with dynamic values of statistical parameters are proposed. The suggested methodology is validated by constructing hierarchical Bayesian fuzzy inference nets (HBFIN) to diagnose various heart pathologies from the deduced HDPs. The preliminary diagnostic results show that the proposed methodology has salient validity and effectiveness in the diagnosis of cardiovascular disease.

  15. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    PubMed

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884

  16. A new approach to self-organizing fuzzy polynomial neural networks guided by genetic optimization

    NASA Astrophysics Data System (ADS)

    Oh, Sung-Kwun; Pedrycz, Witold

    2005-09-01

    In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks (FPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology. The underlying methodology involves mechanisms of genetic optimization, especially genetic algorithms (GAs). Let us recall that the design of the “conventional” FPNNs uses an extended Group Method of Data Handling (GMDH) and exploits a fixed fuzzy inference type located at each FPN of the FPNN as well as considers a fixed number of input nodes at FPNs (or nodes) located in each layer. The proposed FPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional FPNNs. The structural optimization is realized via GAs whereas in the case of the parametric optimization we proceed with a standard least square method based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. The performance of the proposed gFPNN is quantified through experimentation that exploits standard data already being used in fuzzy modeling. The results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  17. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    PubMed Central

    Kwong, C. K.; Fung, K. Y.; Jiang, Huimin; Chan, K. Y.

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884

  18. Incremental neuro-fuzzy systems

    NASA Astrophysics Data System (ADS)

    Fritzke, Bernd

    1997-10-01

    The poor scaling behavior of grid-partitioning fuzzy systems in case of increasing data dimensionality suggests using fuzzy systems with a scatter-partition of the input space. Jang has shown that zero-order Sugeno fuzzy systems are equivalent to radial basis function networks (RBFNs). Methods for finding scatter partitions for RBFNs are available, and it is possible to use them for creating scatter-partitioning fuzzy systems. A fundamental problem, however, is the structure identification problem, i.e., the determination of the number of fuzzy rules and their positions in the input space. The supervised growing neural gas method uses classification or regression error to guide insertions of new RBF units. This leads to a more effective positioning of RBF units (fuzzy rule IF-parts, resp.) than achievable with the commonly used unsupervised clustering methods. Example simulations of the new approach are shown demonstrating superior behavior compared with grid-partitioning fuzzy systems and the standard RBF approach of Moody and Darken.

  19. Network-based in silico drug efficacy screening.

    PubMed

    Guney, Emre; Menche, Jörg; Vidal, Marc; Barábasi, Albert-László

    2016-01-01

    The increasing cost of drug development together with a significant drop in the number of new drug approvals raises the need for innovative approaches for target identification and efficacy prediction. Here, we take advantage of our increasing understanding of the network-based origins of diseases to introduce a drug-disease proximity measure that quantifies the interplay between drugs targets and diseases. By correcting for the known biases of the interactome, proximity helps us uncover the therapeutic effect of drugs, as well as to distinguish palliative from effective treatments. Our analysis of 238 drugs used in 78 diseases indicates that the therapeutic effect of drugs is localized in a small network neighborhood of the disease genes and highlights efficacy issues for drugs used in Parkinson and several inflammatory disorders. Finally, network-based proximity allows us to predict novel drug-disease associations that offer unprecedented opportunities for drug repurposing and the detection of adverse effects.

  20. Network-based in silico drug efficacy screening

    PubMed Central

    Guney, Emre; Menche, Jörg; Vidal, Marc; Barábasi, Albert-László

    2016-01-01

    The increasing cost of drug development together with a significant drop in the number of new drug approvals raises the need for innovative approaches for target identification and efficacy prediction. Here, we take advantage of our increasing understanding of the network-based origins of diseases to introduce a drug-disease proximity measure that quantifies the interplay between drugs targets and diseases. By correcting for the known biases of the interactome, proximity helps us uncover the therapeutic effect of drugs, as well as to distinguish palliative from effective treatments. Our analysis of 238 drugs used in 78 diseases indicates that the therapeutic effect of drugs is localized in a small network neighborhood of the disease genes and highlights efficacy issues for drugs used in Parkinson and several inflammatory disorders. Finally, network-based proximity allows us to predict novel drug-disease associations that offer unprecedented opportunities for drug repurposing and the detection of adverse effects. PMID:26831545

  1. A network-based dynamical ranking system for competitive sports.

    PubMed

    Motegi, Shun; Masuda, Naoki

    2012-01-01

    From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.

  2. Design principles for clinical network-based proteomics.

    PubMed

    Goh, Wilson Wen Bin; Wong, Limsoon

    2016-07-01

    Integrating biological networks with proteomics is a tantalizing option for system-level analysis; for example it can help remove false-positives from proteomics data and improve coverage by detecting false-negatives, as well as resolving inconsistent inter-sample protein expression due to biological heterogeneity. Yet, designing a robust network-based analysis strategy on proteomics data is nontrivial. The issues include dealing with test set bias caused by, for example, inappropriate normalization procedure, devising appropriate benchmarking criteria and formulating statistically robust feature-selection techniques. Given the increasing importance of proteomics in contemporary clinical studies, more powerful network-based approaches are needed. We provide some design principles and considerations that can help achieve this, while taking into account the idiosyncrasies of proteomics data. PMID:27240775

  3. A network-based dynamical ranking system for competitive sports

    NASA Astrophysics Data System (ADS)

    Motegi, Shun; Masuda, Naoki

    2012-12-01

    From the viewpoint of networks, a ranking system for players or teams in sports is equivalent to a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score of a player (or team) fluctuates over time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. We derive a set of linear online update equations for the score of each player. The proposed ranking system predicts the outcome of the future games with a higher accuracy than the static counterparts.

  4. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    SciTech Connect

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  5. Neuro-fuzzy systems for computer-aided myocardial viability assessment.

    PubMed

    Behloul, F; Lelieveldt, B P; Boudraa, A; Janier, M F; Revel, D; Reiber, J H

    2001-12-01

    This paper describes a multimodality framework for computer-aided myocardial viability assessment based on neuro-fuzzy techniques. The proposed approach distinguishes two main levels: the modality-independent inference level and the modality-dependent application level. This two-level distinction releases the hard constraint of multimodality image registration. An abstract description template is used to describe the different myocardial functions (contractile function, perfusion, metabolism). Parameters extracted from different image modalities are combined to derive a diagnostic image. The neuro-fuzzy techniques make our system transparent, adaptive and easily extendable. Its effectiveness and robustness are demonstrated in a positron emission tomography/magnetic resonance imaging data fusion application.

  6. Improved community model for social networks based on social mobility

    NASA Astrophysics Data System (ADS)

    Lu, Zhe-Ming; Wu, Zhen; Luo, Hao; Wang, Hao-Xian

    2015-07-01

    This paper proposes an improved community model for social networks based on social mobility. The relationship between the group distribution and the community size is investigated in terms of communication rate and turnover rate. The degree distributions, clustering coefficients, average distances and diameters of networks are analyzed. Experimental results demonstrate that the proposed model possesses the small-world property and can reproduce social networks effectively and efficiently.

  7. Design development of a neural network-based telemetry monitor

    NASA Technical Reports Server (NTRS)

    Lembeck, Michael F.

    1992-01-01

    This paper identifies the requirements and describes an architectural framework for an artificial neural network-based system that is capable of fulfilling monitoring and control requirements of future aerospace missions. Incorporated into this framework are a newly developed training algorithm and the concept of cooperative network architectures. The feasibility of such an approach is demonstrated for its ability to identify faults in low frequency waveforms.

  8. Fuzzy expert systems using CLIPS

    NASA Technical Reports Server (NTRS)

    Le, Thach C.

    1994-01-01

    This paper describes a CLIPS-based fuzzy expert system development environment called FCLIPS and illustrates its application to the simulated cart-pole balancing problem. FCLIPS is a straightforward extension of CLIPS without any alteration to the CLIPS internal structures. It makes use of the object-oriented and module features in CLIPS version 6.0 for the implementation of fuzzy logic concepts. Systems of varying degrees of mixed Boolean and fuzzy rules can be implemented in CLIPS. Design and implementation issues of FCLIPS will also be discussed.

  9. Fuzzy Thinking in Non-Fuzzy Situations: Understanding Students' Perspective.

    ERIC Educational Resources Information Center

    Zazkis, Rina

    1995-01-01

    In mathematics a true statement is always true, but some false statements are more false than others. Fuzzy logic provides a way of handling degrees of set membership and has implications for helping students appreciate logical thinking. (MKR)

  10. Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets.

    PubMed

    Liu, Hu-Chen; Liu, Long; Lin, Qing-Lian; Liu, Nan

    2013-06-01

    The two most important issues of expert systems are the acquisition of domain experts' professional knowledge and the representation and reasoning of the knowledge rules that have been identified. First, during expert knowledge acquisition processes, the domain expert panel often demonstrates different experience and knowledge from one another and produces different types of knowledge information such as complete and incomplete, precise and imprecise, and known and unknown because of its cross-functional and multidisciplinary nature. Second, as a promising tool for knowledge representation and reasoning, fuzzy Petri nets (FPNs) still suffer a couple of deficiencies. The parameters in current FPN models could not accurately represent the increasingly complex knowledge-based systems, and the rules in most existing knowledge inference frameworks could not be dynamically adjustable according to propositions' variation as human cognition and thinking. In this paper, we present a knowledge acquisition and representation approach using the fuzzy evidential reasoning approach and dynamic adaptive FPNs to solve the problems mentioned above. As is illustrated by the numerical example, the proposed approach can well capture experts' diversity experience, enhance the knowledge representation power, and reason the rule-based knowledge more intelligently.

  11. Learning and adaptation in fuzzy neural systems

    NASA Astrophysics Data System (ADS)

    Gupta, Madan M.

    1992-03-01

    In recent years, an increasing number of researchers have become involved in the subject of fuzzy neural networks in the hope of combining the reasoning strength of fuzzy logic and the learning and adaptation power of neural networks. This provides a more powerful tool for fuzzy information processing and for exploring the functioning of human brains. In this paper, an attempt has been made to establish some basic models for fuzzy neurons. First, several possible fuzzy neuron models are proposed. Second, synaptic and somatic learning and adaptation mechanisms are proposed. Finally, the possibility of applying nonfuzzy neural networks approaches to fuzzy systems is also described.

  12. Dynamical tachyons on fuzzy spheres

    SciTech Connect

    Berenstein, David; Trancanelli, Diego

    2011-05-15

    We study the spectrum of off-diagonal fluctuations between displaced fuzzy spheres in the Berenstein-Maldacena-Nastase plane wave matrix model. The displacement is along the plane of the fuzzy spheres. We find that when two fuzzy spheres intersect at angles, classical tachyons develop and that the spectrum of these modes can be computed analytically. These tachyons can be related to the familiar Nielsen-Olesen instabilities in Yang-Mills theory on a constant magnetic background. Many features of the problem become more apparent when we compare with maximally supersymmetric Yang-Mills theory on a sphere, of which this system is a truncation. We also set up a simple oscillatory trajectory on the displacement between the fuzzy spheres and study the dynamics of the modes as they become tachyonic for part of the oscillations. We speculate on their role regarding the possible thermalization of the system.

  13. A new intuitionistic fuzzy rule-based decision-making system for an operating system process scheduler.

    PubMed

    Butt, Muhammad Arif; Akram, Muhammad

    2016-01-01

    We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.

  14. A new intuitionistic fuzzy rule-based decision-making system for an operating system process scheduler.

    PubMed

    Butt, Muhammad Arif; Akram, Muhammad

    2016-01-01

    We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers. PMID:27652120

  15. Construction of Multi-dimensional Arterial Health Status Map based on Molecular and Clinical Measurements, Fuzzy System and Data Cubes

    PubMed Central

    Chan, Lawrence W.C.; Benzie, Iris F.F.; Lau, Thomas Y.H.; Zheng, Yongping; Wong, Alex K.S.; Liu, Y.; Chan, Phoebe S.T.

    2008-01-01

    Atherosclerosis results from inflammatory processes involving biomarkers, such as lipid profile, haemoglobin A1C, oxidative stress, coronary artery calcium score and flow-mediated endothelial response through nitric oxide. This paper proposes a health status coefficient, which comprehends molecular and clinical measurements concerning atherosclerosis to provide a measure of arterial health. An arterial health status map is produced to map the multi-dimensional measurements to the health status coefficient. The mapping is modeled by a fuzzy system embedded with the health domain expert knowledge. The measurements obtained from the pilot study are used to tune the fuzzy system. The inferred arterial health coefficients are stored into the data cubes of a multi-dimensional database. Due to this adaptability and transparency of fuzzy system, the health status map can be easily updated when the refinement of fuzzy rule base is needed or new measurements are obtained. PMID:21347120

  16. Fuzzy Logic Particle Tracking

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true

  17. Using Fuzzy Logic to Identify Schools Which May Be Misclassified by the No Child Left Behind Adequate Yearly Progress Policy

    ERIC Educational Resources Information Center

    Yates, Donald W.

    2009-01-01

    This investigation developed, tested, and prototyped a Fuzzy Inference System (FIS) that would assist decision makers in identifying schools that may have been misclassified by existing Adequate Yearly Progress (AYP) methods. This prototype was then used to evaluate Louisiana elementary schools using published school data for Academic Year 2004. …

  18. A Novel Method for Discovering Fuzzy Sequential Patterns Using the Simple Fuzzy Partition Method.

    ERIC Educational Resources Information Center

    Chen, Ruey-Shun; Hu, Yi-Chung

    2003-01-01

    Discusses sequential patterns, data mining, knowledge acquisition, and fuzzy sequential patterns described by natural language. Proposes a fuzzy data mining technique to discover fuzzy sequential patterns by using the simple partition method which allows the linguistic interpretation of each fuzzy set to be easily obtained. (Author/LRW)

  19. Lorentzian fuzzy spheres

    NASA Astrophysics Data System (ADS)

    Chaney, A.; Lu, Lei; Stern, A.

    2015-09-01

    We show that fuzzy spheres are solutions of Lorentzian Ishibashi-Kawai-Kitazawa-Tsuchiya-type matrix models. The solutions serve as toy models of closed noncommutative cosmologies where big bang/crunch singularities appear only after taking the commutative limit. The commutative limit of these solutions corresponds to a sphere embedded in Minkowski space. This "sphere" has several novel features. The induced metric does not agree with the standard metric on the sphere, and, moreover, it does not have a fixed signature. The curvature computed from the induced metric is not constant, has singularities at fixed latitudes (not corresponding to the poles) and is negative. Perturbations are made about the solutions, and are shown to yield a scalar field theory on the sphere in the commutative limit. The scalar field can become tachyonic for a range of the parameters of the theory.

  20. Adaptive fuzzy approach to modeling of operational space for autonomous mobile robots

    NASA Astrophysics Data System (ADS)

    Musilek, Petr; Gupta, Madan M.

    1998-10-01

    Robots operating in an unstructured environment need high level of modeling of their operational space in order to plan a suitable path from an initial position to a desired goal. From this perspective, operational space modeling seems to be crucial to ensure a sufficient level of autonomy. In order to compile the information from various sources, we propose a fuzzy approach to evaluate each unit region on a grid map by a certain value of transition cost. This value expresses the cost of movement over the unit region: the higher the value, the more expensive the movement through the region in terms of energy, time, danger, etc. The approach for modeling, proposed in this paper, employs fuzzy granulation of information on various terrain features and their combination based on a fuzzy neural network. In order to adapt to the changing environmental conditions, and to improve the validity of constructed cost maps on-line, the system can be endowed with learning abilities. The learning subsystem would change parameters of the fuzzy neural network based decision system by reinforcements derived from comparisons of the actual cost of transition with the cost obtained from the model.

  1. The Bayes Inference Engine

    SciTech Connect

    Hanson, K.M.; Cunningham, G.S.

    1996-04-01

    The authors are developing a computer application, called the Bayes Inference Engine, to provide the means to make inferences about models of physical reality within a Bayesian framework. The construction of complex nonlinear models is achieved by a fully object-oriented design. The models are represented by a data-flow diagram that may be manipulated by the analyst through a graphical programming environment. Maximum a posteriori solutions are achieved using a general, gradient-based optimization algorithm. The application incorporates a new technique of estimating and visualizing the uncertainties in specific aspects of the model.

  2. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2011-01-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  3. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks

    NASA Astrophysics Data System (ADS)

    Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.

    2010-09-01

    Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagatiom fuzzy neural network (CFNN) for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.

  4. Design of sewage treatment system by applying fuzzy adaptive PID controller

    NASA Astrophysics Data System (ADS)

    Jin, Liang-Ping; Li, Hong-Chan

    2013-03-01

    In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.

  5. Neural Network Based Montioring and Control of Fluidized Bed.

    SciTech Connect

    Bodruzzaman, M.; Essawy, M.A.

    1996-04-01

    The goal of this project was to develop chaos analysis and neural network-based modeling techniques and apply them to the pressure-drop data obtained from the Fluid Bed Combustion (FBC) system (a small scale prototype model) located at the Federal Energy Technology Center (FETC)-Morgantown. The second goal was to develop neural network-based chaos control techniques and provide a suggestive prototype for possible real-time application to the FBC system. The experimental pressure data were collected from a cold FBC experimental set-up at the Morgantown Center. We have performed several analysis on these data in order to unveil their dynamical and chaotic characteristics. The phase-space attractors were constructed from the one dimensional time series data, using the time-delay embedding method, for both normal and abnormal conditions. Several identifying parameters were also computed from these attractors such as the correlation dimension, the Kolmogorov entropy, and the Lyapunov exponents. These chaotic attractor parameters can be used to discriminate between the normal and abnormal operating conditions of the FBC system. It was found that, the abnormal data has higher correlation dimension, larger Kolmogorov entropy and larger positive Lyapunov exponents as compared to the normal data. Chaotic system control using neural network based techniques were also investigated and compared to conventional chaotic system control techniques. Both types of chaotic system control techniques were applied to some typical chaotic systems such as the logistic, the Henon, and the Lorenz systems. A prototype model for real-time implementation of these techniques has been suggested to control the FBC system. These models can be implemented for real-time control in a next phase of the project after obtaining further measurements from the experimental model. After testing the control algorithms developed for the FBC model, the next step is to implement them on hardware and link them to

  6. Network Medicine: A Network-based Approach to Human Diseases

    NASA Astrophysics Data System (ADS)

    Ghiassian, Susan Dina

    With the availability of large-scale data, it is now possible to systematically study the underlying interaction maps of many complex systems in multiple disciplines. Statistical physics has a long and successful history in modeling and characterizing systems with a large number of interacting individuals. Indeed, numerous approaches that were first developed in the context of statistical physics, such as the notion of random walks and diffusion processes, have been applied successfully to study and characterize complex systems in the context of network science. Based on these tools, network science has made important contributions to our understanding of many real-world, self-organizing systems, for example in computer science, sociology and economics. Biological systems are no exception. Indeed, recent studies reflect the necessity of applying statistical and network-based approaches in order to understand complex biological systems, such as cells. In these approaches, a cell is viewed as a complex network consisting of interactions among cellular components, such as genes and proteins. Given the cellular network as a platform, machinery, functionality and failure of a cell can be studied with network-based approaches, a field known as systems biology. Here, we apply network-based approaches to explore human diseases and their associated genes within the cellular network. This dissertation is divided in three parts: (i) A systematic analysis of the connectivity patterns among disease proteins within the cellular network. The quantification of these patterns inspires the design of an algorithm which predicts a disease-specific subnetwork containing yet unknown disease associated proteins. (ii) We apply the introduced algorithm to explore the common underlying mechanism of many complex diseases. We detect a subnetwork from which inflammatory processes initiate and result in many autoimmune diseases. (iii) The last chapter of this dissertation describes the

  7. Decision analysis of polluted sites -- A fuzzy set approach

    SciTech Connect

    Mohamed, A.M.O.; Cote, K.

    1999-07-01

    A decision analysis based model (DAPS 1.0, Decision Analysis of Polluted Sites) has been developed to evaluate risks that polluted sites might pose to human health. Pollutants present in soils and sediments can potentially migrate from source to receptor(s), via different pathways. in the developed model, pathways are simulated via transport models (i.e., groundwater transport model, runoff-erosion model, air diffusion model, and sediment diffusion, and resuspension model in water bodies). Humans can be affected by pollutant migration through land and water use. health risks can arise from ingestion of and dermal contact with polluted water and soil, as well as through inhalation of polluted air. Quantitative estimates of risks are calculated for both carcinogenic and non-carcinogenic pollutants. Being very heterogeneous, soil and sediment systems are characterized by uncertain parameters. Concepts of fuzzy set theory have been adopted to account for uncertainty in the input parameters which are represented by fuzzy numbers. An inference model using fuzzy logic has been constructed for reasoning in the decision analysis.

  8. Robust observer-based adaptive fuzzy sliding mode controller

    NASA Astrophysics Data System (ADS)

    Oveisi, Atta; Nestorović, Tamara

    2016-08-01

    In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.

  9. Fuzzy regression modeling for tool performance prediction and degradation detection.

    PubMed

    Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L

    2010-10-01

    In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.

  10. Network-based Modeling of the Human Gut Microbiome

    PubMed Central

    Naqvi, Ammar; Rangwala, Huzefa; Keshavarzian, Ali

    2013-01-01

    In this paper we used a network-based approach to characterize the microflora abundance in colonic mucosal samples and correlate potential interactions between the identified species with respect to the healthy and diseased states. We analyzed the modelled network by computing several local and global network statistics, identified recurring patterns or motifs, fit the network models to a family of well-studied graph models. This study has demonstrated, for the first time, an approach that differentiated the gut microbiota in Alcoholic subjects and Healthy subjects using topological network analysis of the gut microbiome. PMID:20491063

  11. Network-based modeling of the human gut microbiome.

    PubMed

    Naqvi, Ammar; Rangwala, Huzefa; Keshavarzian, Ali; Gillevet, Patrick

    2010-05-01

    In this article, we used a network-based approach to characterize the microflora abundance in colonic mucosal samples and correlate potential interactions between the identified species with respect to the healthy and diseased states. We analyzed the modelled network by computing several local and global network statistics, identified recurring patterns or motifs, fit the network models to a family of well-studied graph models. This study has demonstrated, for the first time, an approach that differentiated the gut microbiota in alcoholic subjects and healthy subjects using topological network analysis of the gut microbiome. PMID:20491063

  12. Different types of synchronization in coupled network based chaotic circuits

    NASA Astrophysics Data System (ADS)

    Srinivasan, K.; Chandrasekar, V. K.; Gladwin Pradeep, R.; Murali, K.; Lakshmanan, M.

    2016-10-01

    We propose a simple and new unified method to achieve lag, complete and anticipatory synchronizations in coupled nonlinear systems. It can be considered as an alternative to the subsystem and intentional parameter mismatch methods. This novel method is illustrated in a unidirectionally coupled RC phase shift network based Chua's circuit. Employing feedback coupling, different types of chaos synchronization are observed experimentally and numerically in coupled identical chaotic oscillators without using time delay. With a simple switch in the experimental set up we observe different kinds of synchronization. We also analyze the coupled system with numerical simulations.

  13. Design and implementation of a new fuzzy PID controller for networked control systems.

    PubMed

    Fadaei, A; Salahshoor, K

    2008-10-01

    This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays. PMID:18692184

  14. Design and implementation of a new fuzzy PID controller for networked control systems.

    PubMed

    Fadaei, A; Salahshoor, K

    2008-10-01

    This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.

  15. Segmentation method of eye region based on fuzzy logic system for classifying open and closed eyes

    NASA Astrophysics Data System (ADS)

    Kim, Ki Wan; Lee, Won Oh; Kim, Yeong Gon; Hong, Hyung Gil; Lee, Eui Chul; Park, Kang Ryoung

    2015-03-01

    The classification of eye openness and closure has been researched in various fields, e.g., driver drowsiness detection, physiological status analysis, and eye fatigue measurement. For a classification with high accuracy, accurate segmentation of the eye region is required. Most previous research used the segmentation method by image binarization on the basis that the eyeball is darker than skin, but the performance of this approach is frequently affected by thick eyelashes or shadows around the eye. Thus, we propose a fuzzy-based method for classifying eye openness and closure. First, the proposed method uses I and K color information from the HSI and CMYK color spaces, respectively, for eye segmentation. Second, the eye region is binarized using the fuzzy logic system based on I and K inputs, which is less affected by eyelashes and shadows around the eye. The combined image of I and K pixels is obtained through the fuzzy logic system. Third, in order to reflect the effect by all the inference values on calculating the output score of the fuzzy system, we use the revised weighted average method, where all the rectangular regions by all the inference values are considered for calculating the output score. Fourth, the classification of eye openness or closure is successfully made by the proposed fuzzy-based method with eye images of low resolution which are captured in the environment of people watching TV at a distance. By using the fuzzy logic system, our method does not require the additional procedure of training irrespective of the chosen database. Experimental results with two databases of eye images show that our method is superior to previous approaches.

  16. Consistent linguistic fuzzy preference relations method with ranking fuzzy numbers

    NASA Astrophysics Data System (ADS)

    Ridzuan, Siti Amnah Mohd; Mohamad, Daud; Kamis, Nor Hanimah

    2014-12-01

    Multi-Criteria Decision Making (MCDM) methods have been developed to help decision makers in selecting the best criteria or alternatives from the options given. One of the well known methods in MCDM is the Consistent Fuzzy Preference Relation (CFPR) method, essentially utilizes a pairwise comparison approach. This method was later improved to cater subjectivity in the data by using fuzzy set, known as the Consistent Linguistic Fuzzy Preference Relations (CLFPR). The CLFPR method uses the additive transitivity property in the evaluation of pairwise comparison matrices. However, the calculation involved is lengthy and cumbersome. To overcome this problem, a method of defuzzification was introduced by researchers. Nevertheless, the defuzzification process has a major setback where some information may lose due to the simplification process. In this paper, we propose a method of CLFPR that preserves the fuzzy numbers form throughout the process. In obtaining the desired ordering result, a method of ranking fuzzy numbers is utilized in the procedure. This improved procedure for CLFPR is implemented to a case study to verify its effectiveness. This method is useful for solving decision making problems and can be applied to many areas of applications.

  17. Analog neural network-based helicopter gearbox health monitoring system.

    PubMed

    Monsen, P T; Dzwonczyk, M; Manolakos, E S

    1995-12-01

    The development of a reliable helicopter gearbox health monitoring system (HMS) has been the subject of considerable research over the past 15 years. The deployment of such a system could lead to a significant saving in lives and vehicles as well as dramatically reduce the cost of helicopter maintenance. Recent research results indicate that a neural network-based system could provide a viable solution to the problem. This paper presents two neural network-based realizations of an HMS system. A hybrid (digital/analog) neural system is proposed as an extremely accurate off-line monitoring tool used to reduce helicopter gearbox maintenance costs. In addition, an all analog neural network is proposed as a real-time helicopter gearbox fault monitor that can exploit the ability of an analog neural network to directly compute the discrete Fourier transform (DFT) as a sum of weighted samples. Hardware performance results are obtained using the Integrated Neural Computing Architecture (INCA/1) analog neural network platform that was designed and developed at The Charles Stark Draper Laboratory. The results indicate that it is possible to achieve a 100% fault detection rate with 0% false alarm rate by performing a DFT directly on the first layer of INCA/1 followed by a small-size two-layer feed-forward neural network and a simple post-processing majority voting stage.

  18. Performance Evaluation in Network-Based Parallel Computing

    NASA Technical Reports Server (NTRS)

    Dezhgosha, Kamyar

    1996-01-01

    Network-based parallel computing is emerging as a cost-effective alternative for solving many problems which require use of supercomputers or massively parallel computers. The primary objective of this project has been to conduct experimental research on performance evaluation for clustered parallel computing. First, a testbed was established by augmenting our existing SUNSPARCs' network with PVM (Parallel Virtual Machine) which is a software system for linking clusters of machines. Second, a set of three basic applications were selected. The applications consist of a parallel search, a parallel sort, a parallel matrix multiplication. These application programs were implemented in C programming language under PVM. Third, we conducted performance evaluation under various configurations and problem sizes. Alternative parallel computing models and workload allocations for application programs were explored. The performance metric was limited to elapsed time or response time which in the context of parallel computing can be expressed in terms of speedup. The results reveal that the overhead of communication latency between processes in many cases is the restricting factor to performance. That is, coarse-grain parallelism which requires less frequent communication between processes will result in higher performance in network-based computing. Finally, we are in the final stages of installing an Asynchronous Transfer Mode (ATM) switch and four ATM interfaces (each 155 Mbps) which will allow us to extend our study to newer applications, performance metrics, and configurations.

  19. Home medical monitoring network based on embedded technology

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Deng, Wenyi; Yan, Bixi; Lv, Naiguang

    2006-11-01

    Remote medical monitoring network for long-term monitoring of physiological variables would be helpful for recovery of patients as people are monitored at more comfortable conditions. Furthermore, long-term monitoring would be beneficial to investigate slowly developing deterioration in wellness status of a subject and provide medical treatment as soon as possible. The home monitor runs on an embedded microcomputer Rabbit3000 and interfaces with different medical monitoring module through serial ports. The network based on asymmetric digital subscriber line (ADSL) or local area network (LAN) is established and a client - server model, each embedded home medical monitor is client and the monitoring center is the server, is applied to the system design. The client is able to provide its information to the server when client's request of connection to the server is permitted. The monitoring center focuses on the management of the communications, the acquisition of medical data, and the visualization and analysis of the data, etc. Diagnosing model of sleep apnea syndrome is built basing on ECG, heart rate, respiration wave, blood pressure, oxygen saturation, air temperature of mouth cavity or nasal cavity, so sleep status can be analyzed by physiological data acquired as people in sleep. Remote medical monitoring network based on embedded micro Internetworking technology have advantages of lower price, convenience and feasibility, which have been tested by the prototype.

  20. Fuzzy image processing in sun sensor

    NASA Technical Reports Server (NTRS)

    Mobasser, S.; Liebe, C. C.; Howard, A.

    2003-01-01

    This paper will describe how the fuzzy image processing is implemented in the instrument. Comparison of the Fuzzy image processing and a more conventional image processing algorithm is provided and shows that the Fuzzy image processing yields better accuracy then conventional image processing.

  1. Forecasting Enrollments with Fuzzy Time Series.

    ERIC Educational Resources Information Center

    Song, Qiang; Chissom, Brad S.

    The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…

  2. Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control

    NASA Astrophysics Data System (ADS)

    Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel

    2014-12-01

    Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers.

  3. A Comparison of Fuzzy Models in Similarity Assessment of Misregistered Area Class Maps

    NASA Astrophysics Data System (ADS)

    Brown, Scott

    Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In this paper I build upon prior map comparison research, testing the effectiveness of similarity measures on misregistered data. Though several methods compare uncertain thematic maps, few methods have been tested on misregistration. My objective is to test five map comparison methods for sensitivity to misregistration, including sub-pixel errors in both position and rotation. Methods included four fuzzy categorical models: fuzzy kappa's model, fuzzy inference, cell aggregation, and the epsilon band. The fifth method used conventional crisp classification. I applied these methods to a case study map and simulated data in two sets: a test set with misregistration error, and a control set with equivalent uniform random error. For all five methods, I used raw accuracy or the kappa statistic to measure similarity. Rough-set epsilon bands report the most similarity increase in test maps relative to control data. Conversely, the fuzzy inference model reports a decrease in test map similarity.

  4. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    NASA Astrophysics Data System (ADS)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  5. Fuzzy Multiple Metrics Link Assessment for Routing in Mobile Ad-Hoc Network

    NASA Astrophysics Data System (ADS)

    Soo, Ai Luang; Tan, Chong Eng; Tay, Kai Meng

    2011-06-01

    In this work, we investigate on the use of Sugeno fuzzy inference system (FIS) in route selection for mobile Ad-Hoc networks (MANETs). Sugeno FIS is introduced into Ad-Hoc On Demand Multipath Distance Vector (AOMDV) routing protocol, which is derived from its predecessor, Ad-Hoc On Demand Distance Vector (AODV). Instead of using the conventional way that considering only a single metric to choose the best route, our proposed fuzzy decision making model considers up to three metrics. In the model, the crisp inputs of the three parameters are fed into an FIS and being processed in stages, i.e., fuzzification, inference, and defuzzification. Finally, after experiencing all the stages, a single value score is generated from the combination metrics, which will be used to measure all the discovered routes credibility. Results obtained from simulations show a promising improvement as compared to AOMDV and AODV.

  6. A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management

    NASA Technical Reports Server (NTRS)

    Wu, G. Gordon

    1995-01-01

    Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.

  7. Are network-based interventions a useful antiobesity strategy? An application of simulation models for causal inference in epidemiology.

    PubMed

    El-Sayed, Abdulrahman M; Seemann, Lars; Scarborough, Peter; Galea, Sandro

    2013-07-15

    Recent research suggests that social networks may present an avenue for intervention against obesity. By using a simulation model in which artificial individuals were nested in a social network, we assessed whether interventions targeting highly networked individuals could help reduce population obesity. We compared the effects of targeting antiobesity interventions at the most connected individuals in a network with those targeting individuals at random. We tested 2 interventions, the first "preventing" obesity among 10% of the population at simulation outset and the second "treating" obesity among 10% of the obese population yearly, each in 2 separate simulations. One simulation featured a literature-based parameter for the network spread of obesity, and the other featured an artificially high parameter. Interventions that targeted highly networked individuals did not outperform at-random interventions in simulations featuring the literature-based parameter. However, in simulations featuring the artificially high parameter, the targeted prevention intervention outperformed the at-random intervention, whereas the treatment intervention implemented at random outperformed the targeted treatment intervention. Results were qualitatively similar across network topologies and intervention scales. Although descriptive studies suggest that social networks influence the spread of obesity, policies targeting well-connected individuals in social networks may not improve obesity reduction. We highlight and discuss the potential applications of counterfactual simulations in epidemiology.

  8. Imprecise (fuzzy) information in geostatistics

    SciTech Connect

    Bardossy, A.; Bogardi, I.; Kelly, W.E.

    1988-05-01

    A methodology based on fuzzy set theory for the utilization of imprecise data in geostatistics is presented. A common problem preventing a broader use of geostatistics has been the insufficient amount of accurate measurement data. In certain cases, additional but uncertain (soft) information is available and can be encoded as subjective probabilities, and then the soft kriging method can be applied (Journal, 1986). In other cases, a fuzzy encoding of soft information may be more realistic and simplify the numerical calculations. Imprecise (fuzzy) spatial information on the possible variogram is integrated into a single variogram which is used in a fuzzy kriging procedure. The overall uncertainty of prediction is represented by the estimation variance and the calculated membership function for each kriged point. The methodology is applied to the permeability prediction of a soil liner for hazardous waste containment. The available number of hard measurement data (20) was not enough for a classical geostatistical analysis. An additional 20 soft data made it possible to prepare kriged contour maps using the fuzzy geostatistical procedure.

  9. FCMAC-BYY: fuzzy CMAC using Bayesian Ying-Yang learning.

    PubMed

    Nguyen, Minh Nhut; Shi, Daming; Quek, C

    2006-10-01

    As an associative memory neural network model, the cerebellar model articulation controller (CMAC) has attractive properties of fast learning and simple computation, but its rigid structure makes it difficult to approximate certain functions. This research attempts to construct a novel neural fuzzy CMAC, in which Bayesian Ying-Yang (BYY) learning is introduced to determine the optimal fuzzy sets, and a truth-value restriction inference scheme is subsequently employed to derive the truth values of the rule weights of implication rules. The BYY is motivated from the famous Chinese ancient Ying-Yang philosophy: everything in the universe can be viewed as a product of a constant conflict between opposites-Ying and Yang, a perfect status is reached when Ying and Yang achieve harmony. The proposed fuzzy CMAC (FCMAC)-BYY enjoys the following advantages. First, it has a higher generalization ability because the fuzzy rule sets are systematically optimized by BYY; second, it reduces the memory requirement of the network by a significant degree as compared to the original CMAC; and third, it provides an intuitive fuzzy logic reasoning and has clear semantic meanings. The experimental results on some benchmark datasets show that the proposed FCMAC-BYY outperforms the existing representative techniques in the research literature.

  10. Optoelectronic implementation of real-time control of an inverted pendulum by fuzzy-logic-control units based on a light-emitting-diode array and a position-sensing device.

    PubMed

    Itoh, H; Yamada, T; Mukai, S; Watanabe, M; Brandl, D

    1997-02-01

    We have realized a novel optoelectronic implementation of an analog fuzzy-inference architecture, using the movement of the center of gravity of a far-field pattern. In the inference process Gaussianlike membership functions and a product-sum-gravity method are used. Antecedent membership functions and the grade evaluations are realized by combining light-emitting-diode (LED) arrays for sequential light emission and position-sensing devices for center-of-gravity detection. Consequent and defuzzification operations are realized by a LED array and a position-sensing device. High-speed fuzzy inference of more than several tens of mega fuzzy logical inference per second is possible with these units. The usefulness of the system is demonstrated by the real-time standing control of an inverted pendulum.

  11. A comparative study of fuzzy logic systems approach for river discharge prediction

    NASA Astrophysics Data System (ADS)

    Jayawardena, A. W.; Perera, E. D. P.; Zhu, Bing; Amarasekara, J. D.; Vereivalu, V.

    2014-06-01

    In recent years, flood disasters resulting from extreme rainfall have been on the increase in many regions of the world. In developed countries, the usual practice of mitigating flood disasters is by structural means which can reduce infrastructural damages as well as casualties but are unaffordable in most developing countries. The alternative then is to look for non-structural means that involve, among other things, early warning systems which can reduce casualties. The basic technical components of an early warning system involves a measurable input data set that trigger floods, a measurable output data set that quantify the extent of flood and an appropriate mathematical model that transforms the input data set into a corresponding output data set. There are many types of mathematical models that can be used to transform the input data into corresponding output data. The crux of this paper is on one type of data driven mathematical models, namely the use of fuzzy logic approach. The reliability and robustness of the approach are demonstrated with daily and 6-hourly discharge predictions in 4 rivers in 3 countries having contrasting climatological, geographical and land use characteristics. The first application is for two tropical rivers in Sri Lanka using daily upstream rainfall and discharge data to predict downstream discharge with the minimum implication function type Mamdani fuzzy inference system. The second application is for another tropical river in Fiji using similar type of data with daily and 6-h time scales. Both Mamdani type fuzzy inference system with minimum and product implication functions as well as Larsen type inference systems were used. In the third application, daily upstream and tributary discharges were used to predict downstream discharges in a temperate-climate river in China using the TSK type fuzzy inference system with clustering. The methods are robust and the results obtained are within reasonable agreement with observations.

  12. Parallel Fuzzy Segmentation of Multiple Objects.

    PubMed

    Garduño, Edgar; Herman, Gabor T

    2008-01-01

    The usefulness of fuzzy segmentation algorithms based on fuzzy connectedness principles has been established in numerous publications. New technologies are capable of producing larger-and-larger datasets and this causes the sequential implementations of fuzzy segmentation algorithms to be time-consuming. We have adapted a sequential fuzzy segmentation algorithm to multi-processor machines. We demonstrate the efficacy of such a distributed fuzzy segmentation algorithm by testing it with large datasets (of the order of 50 million points/voxels/items): a speed-up factor of approximately five over the sequential implementation seems to be the norm. PMID:19444333

  13. Parallel Fuzzy Segmentation of Multiple Objects*

    PubMed Central

    Garduño, Edgar; Herman, Gabor T.

    2009-01-01

    The usefulness of fuzzy segmentation algorithms based on fuzzy connectedness principles has been established in numerous publications. New technologies are capable of producing larger-and-larger datasets and this causes the sequential implementations of fuzzy segmentation algorithms to be time-consuming. We have adapted a sequential fuzzy segmentation algorithm to multi-processor machines. We demonstrate the efficacy of such a distributed fuzzy segmentation algorithm by testing it with large datasets (of the order of 50 million points/voxels/items): a speed-up factor of approximately five over the sequential implementation seems to be the norm. PMID:19444333

  14. Accurate segmentation of leukocyte in blood cell images using Atanassov's intuitionistic fuzzy and interval Type II fuzzy set theory.

    PubMed

    Chaira, Tamalika

    2014-06-01

    In this paper automatic leukocyte segmentation in pathological blood cell images is proposed using intuitionistic fuzzy and interval Type II fuzzy set theory. This is done to count different types of leukocytes for disease detection. Also, the segmentation should be accurate so that the shape of the leukocytes is preserved. So, intuitionistic fuzzy set and interval Type II fuzzy set that consider either more number of uncertainties or a different type of uncertainty as compared to fuzzy set theory are used in this work. As the images are considered fuzzy due to imprecise gray levels, advanced fuzzy set theories may be expected to give better result. A modified Cauchy distribution is used to find the membership function. In intuitionistic fuzzy method, non-membership values are obtained using Yager's intuitionistic fuzzy generator. Optimal threshold is obtained by minimizing intuitionistic fuzzy divergence. In interval type II fuzzy set, a new membership function is generated that takes into account the two levels in Type II fuzzy set using probabilistic T co norm. Optimal threshold is selected by minimizing a proposed Type II fuzzy divergence. Though fuzzy techniques were applied earlier but these methods failed to threshold multiple leukocytes in images. Experimental results show that both interval Type II fuzzy and intuitionistic fuzzy methods perform better than the existing non-fuzzy/fuzzy methods but interval Type II fuzzy thresholding method performs little bit better than intuitionistic fuzzy method. Segmented leukocytes in the proposed interval Type II fuzzy method are observed to be distinct and clear.

  15. Combining fuzzy mathematics with fuzzy logic to solve business management problems

    NASA Astrophysics Data System (ADS)

    Vrba, Joseph A.

    1993-12-01

    Fuzzy logic technology has been applied to control problems with great success. Because of this, many observers fell that fuzzy logic is applicable only in the control arena. However, business management problems almost never deal with crisp values. Fuzzy systems technology--a combination of fuzzy logic, fuzzy mathematics and a graphical user interface--is a natural fit for developing software to assist in typical business activities such as planning, modeling and estimating. This presentation discusses how fuzzy logic systems can be extended through the application of fuzzy mathematics and the use of a graphical user interface to make the information contained in fuzzy numbers accessible to business managers. As demonstrated through examples from actual deployed systems, this fuzzy systems technology has been employed successfully to provide solutions to the complex real-world problems found in the business environment.

  16. G-fuzzy ART: a geometrical fuzzy ART neural network architecture

    NASA Astrophysics Data System (ADS)

    Dagher, Issam J.

    2003-04-01

    In this paper, a geometrical Fuzzy ART (G-Fuzzy ART) neural network architecture is presented. While the original Fuzzy ART requires preprocessing of the input patterns (complement coding), the G-Fuzzy ART accept the input patterns without complement coding. The weights of the G-Fuzzy ART refer directly to the borders of the hyper-rectangle while the weights in the Fuzzy ART refer to the endpoints of the hyper-rectangle. The size of the hyper-rectangle is directly given by the size of the weight. The geometrical choice function (the Hamming distance of the input pattern to the hyper-rectangle) and the weight update formulas for the G-Fuzzy ART are presented. The G-Fuzzy ART retains the notion of resonance by retaining the vigilance criterion applied directly to the new size of the hyper-rectangle. It also retains the min-max fuzzy operators.

  17. Forecasting of natural gas consumption with neural network and neuro fuzzy system

    NASA Astrophysics Data System (ADS)

    Kaynar, Oguz; Yilmaz, Isik; Demirkoparan, Ferhan

    2010-05-01

    The prediction of natural gas consumption is crucial for Turkey which follows foreign-dependent policy in point of providing natural gas and whose stock capacity is only 5% of internal total consumption. Prediction accuracy of demand is one of the elements which has an influence on sectored investments and agreements about obtaining natural gas, so on development of sector. In recent years, new techniques, such as artificial neural networks and fuzzy inference systems, have been widely used in natural gas consumption prediction in addition to classical time series analysis. In this study, weekly natural gas consumption of Turkey has been predicted by means of three different approaches. The first one is Autoregressive Integrated Moving Average (ARIMA), which is classical time series analysis method. The second approach is the Artificial Neural Network. Two different ANN models, which are Multi Layer Perceptron (MLP) and Radial Basis Function Network (RBFN), are employed to predict natural gas consumption. The last is Adaptive Neuro Fuzzy Inference System (ANFIS), which combines ANN and Fuzzy Inference System. Different prediction models have been constructed and one model, which has the best forecasting performance, is determined for each method. Then predictions are made by using these models and results are compared. Keywords: ANN, ANFIS, ARIMA, Natural Gas, Forecasting

  18. Fuzzy logic and its applications in medicine.

    PubMed

    Phuong, N H; Kreinovich, V

    2001-07-01

    Fuzzy set theory and fuzzy logic are a highly suitable and applicable basis for developing knowledge-based systems in medicine for tasks such as the interpretation of sets of medical findings, syndrome differentiation in Eastern medicine, diagnosis of diseases in Western medicine, mixed diagnosis of integrated Western and Eastern medicine, the optimal selection of medical treatments integrating Western and Eastern medicine, and for real-time monitoring of patient data. This was verified by trials with the following systems that were developed by our group in Vietnam: a fuzzy Expert System for Syndromes Differentiation in Oriental Traditional Medicine, an Expert System for Lung Diseases using fuzzy logic, Case Based Reasoning for Medical Diagnosis using fuzzy set theory, a diagnostic system combining disease diagnosis of Western Medicine with syndrome differentiation of Oriental Traditional Medicine, a fuzzy system for classification of Western and Eastern medicaments and finally, a fuzzy system for diagnosis and treatment of integrated Western and Eastern Medicine. PMID:11470619

  19. Learning and Tuning of Fuzzy Rules

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.

  20. Neural network based analysis for chemical sensor arrays

    SciTech Connect

    Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-04-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. In this paper, we examine the effectiveness of using artificial neural networks for real-time data analysis of a sensor array. Analyzing the sensor data in parallel may allow for rapid identification of contaminants in the field without requiring highly selective individual sensors. We use a prototype sensor array which consists of nine tin-oxide Taguchi-type sensors, a temperature sensor, and a humidity sensor. We illustrate that by using neural network based analysis of the sensor data, the selectivity of the sensor array may be significantly improved, especially when some (or all) the sensors are not highly selective.

  1. Design of an adaptive neural network based power system stabilizer.

    PubMed

    Liu, Wenxin; Venayagamoorthy, Ganesh K; Wunsch, Donald C

    2003-01-01

    Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp the low frequency power system oscillations. To overcome the drawbacks of conventional PSS (CPSS), numerous techniques have been proposed in the literature. Based on the analysis of existing techniques, this paper presents an indirect adaptive neural network based power system stabilizer (IDNC) design. The proposed IDNC consists of a neuro-controller, which is used to generate a supplementary control signal to the excitation system, and a neuro-identifier, which is used to model the dynamics of the power system and to adapt the neuro-controller parameters. The proposed method has the features of a simple structure, adaptivity and fast response. The proposed IDNC is evaluated on a single machine infinite bus power system under different operating conditions and disturbances to demonstrate its effectiveness and robustness. PMID:12850048

  2. Neural network based feed-forward high density associative memory

    NASA Technical Reports Server (NTRS)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.

    1987-01-01

    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  3. Fuzzy simulation in concurrent engineering

    NASA Technical Reports Server (NTRS)

    Kraslawski, A.; Nystrom, L.

    1992-01-01

    Concurrent engineering is becoming a very important practice in manufacturing. A problem in concurrent engineering is the uncertainty associated with the values of the input variables and operating conditions. The problem discussed in this paper concerns the simulation of processes where the raw materials and the operational parameters possess fuzzy characteristics. The processing of fuzzy input information is performed by the vertex method and the commercial simulation packages POLYMATH and GEMS. The examples are presented to illustrate the usefulness of the method in the simulation of chemical engineering processes.

  4. Invariability, orbits and fuzzy attractors

    NASA Astrophysics Data System (ADS)

    Perez-Gonzaga, S.; Lloret-Climent, M.; Nescolarde-Selva, J. A.

    2016-01-01

    In this paper, we present a generalization of a new systemic approach to abstract fuzzy systems. Using a fuzzy relations structure will retain the information provided by degrees of membership. In addition, to better suit the situation to be modelled, it is advisable to use T-norm or T-conorm distinct from the minimum and maximum, respectively. This gain in generality is due to the completeness of the work on a higher level of abstraction. You cannot always reproduce the results obtained previously, and also sometimes different definitions with different views are obtained. In any case this approach proves to be much more effective when modelling reality.

  5. The semantics of fuzzy logic

    NASA Technical Reports Server (NTRS)

    Ruspini, Enrique H.

    1991-01-01

    Summarized here are the results of recent research on the conceptual foundations of fuzzy logic. The focus is primarily on the principle characteristics of a model that quantifies resemblance between possible worlds by means of a similarity function that assigns a number between 0 and 1 to every pair of possible worlds. Introduction of such a function permits one to interpret the major constructs and methods of fuzzy logic: conditional and unconditional possibility and necessity distributions and the generalized modus ponens of Zadeh on the basis of related metric relationships between subsets of possible worlds.

  6. Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems.

    PubMed

    Gao, Qing; Feng, Gang; Dong, Daoyi; Liu, Lu

    2015-05-01

    This paper investigates the problems of universal fuzzy model and universal fuzzy controller for discrete-time nonaffine nonlinear systems (NNSs). It is shown that a kind of generalized T-S fuzzy model is the universal fuzzy model for discrete-time NNSs satisfying a sufficient condition. The results on universal fuzzy controllers are presented for two classes of discrete-time stabilizable NNSs. Constructive procedures are provided to construct the model reference fuzzy controllers. The simulation example of an inverted pendulum is presented to illustrate the effectiveness and advantages of the proposed method. These results significantly extend the approach for potential applications in solving complex engineering problems.

  7. Use of indexed historical floods in flood frequency estimation with Fuzzy Bayesian methods

    NASA Astrophysics Data System (ADS)

    Salinas, Jose; Viglione, Alberto; Kiss, Andrea; Bloeschl, Guenter

    2015-04-01

    Efforts of the historical environmental extremes community during the last decades have resulted in the existence of long time series of floods, for example in Central Europe and the Mediterranean region, which in some cases range longer than 500 years in the past. In most of the cases the flood time series are presented in terms of indices, representing a combination of socio-economic indicators for the flood impact, e.g. economic damage, flood duration and extension, ... In hydrological engineering, historical floods are very useful because they give additional information which will reduce the uncertainty in estimates of discharges with low annual exceedance probabilities, i.e. with high return periods. In order to use the historical floods in formal flood frequency analysis, the precise value of the peak discharges would ideally be known, but as commented, they are most usually given in term of indices. This work presents a novel method on how to obtain a prior distribution for the parameters of the annual peak discharges distribution from indexed historical floods time series. The prior distribution is incorporated in the flood frequency estimation via Bayesian methods (see e.g. Viglione et al., 2013) in order to reduce the uncertainties in the design flood estimates. The historical data used is subject to a high degree of uncertainty and unpreciseness. In this sense, a framework is presented where the discharge thresholds between flood indices are modeled as fuzzy numbers. These fuzzy thresholds will define a fuzzy prior distribution, which will requires to apply Fuzzy Bayesian Inference (Viertl, 2008ab) to obtain fuzzy credibility intervals for the design floods. Viertl, R. (2008a) Foundations of Fuzzy Bayesian Inference, Journal of Uncertain Systems, 2, 187-191. Viertl, R. (2008b) Fuzzy Bayesian Inference. In: Soft Methods For Handling Variability And Imprecision. Advances In Soft Computing. Vol. 48. Springer-Verlag Berlin, pp 10-15. Viglione, A., R. Merz

  8. Towards Context Sensitive Information Inference.

    ERIC Educational Resources Information Center

    Song, D.; Bruza, P. D.

    2003-01-01

    Discusses information inference from a psychologistic stance and proposes an information inference mechanism that makes inferences via computations of information flow through an approximation of a conceptual space. Highlights include cognitive economics of information processing; context sensitivity; and query models for information retrieval.…

  9. Multimodel inference and adaptive management

    USGS Publications Warehouse

    Rehme, S.E.; Powell, L.A.; Allen, C.R.

    2011-01-01

    Ecology is an inherently complex science coping with correlated variables, nonlinear interactions and multiple scales of pattern and process, making it difficult for experiments to result in clear, strong inference. Natural resource managers, policy makers, and stakeholders rely on science to provide timely and accurate management recommendations. However, the time necessary to untangle the complexities of interactions within ecosystems is often far greater than the time available to make management decisions. One method of coping with this problem is multimodel inference. Multimodel inference assesses uncertainty by calculating likelihoods among multiple competing hypotheses, but multimodel inference results are often equivocal. Despite this, there may be pressure for ecologists to provide management recommendations regardless of the strength of their study’s inference. We reviewed papers in the Journal of Wildlife Management (JWM) and the journal Conservation Biology (CB) to quantify the prevalence of multimodel inference approaches, the resulting inference (weak versus strong), and how authors dealt with the uncertainty. Thirty-eight percent and 14%, respectively, of articles in the JWM and CB used multimodel inference approaches. Strong inference was rarely observed, with only 7% of JWM and 20% of CB articles resulting in strong inference. We found the majority of weak inference papers in both journals (59%) gave specific management recommendations. Model selection uncertainty was ignored in most recommendations for management. We suggest that adaptive management is an ideal method to resolve uncertainty when research results in weak inference.

  10. Ozone levels in the Empty Quarter of Saudi Arabia--application of adaptive neuro-fuzzy model.

    PubMed

    Rahman, Syed Masiur; Khondaker, A N; Khan, Rouf Ahmad

    2013-05-01

    In arid regions, primary pollutants may contribute to the increase of ozone levels and cause negative effects on biotic health. This study investigates the use of adaptive neuro-fuzzy inference system (ANFIS) for ozone prediction. The initial fuzzy inference system is developed by using fuzzy C-means (FCM) and subtractive clustering (SC) algorithms, which determines the important rules, increases generalization capability of the fuzzy inference system, reduces computational needs, and ensures speedy model development. The study area is located in the Empty Quarter of Saudi Arabia, which is considered as a source of huge potential for oil and gas field development. The developed clustering algorithm-based ANFIS model used meteorological data and derived meteorological data, along with NO and NO₂ concentrations and their transformations, as inputs. The root mean square error and Willmott's index of agreement of the FCM- and SC-based ANFIS models are 3.5 ppbv and 0.99, and 8.9 ppbv and 0.95, respectively. Based on the analysis of the performance measures and regression error characteristic curves, it is concluded that the FCM-based ANFIS model outperforms the SC-based ANFIS model. PMID:23111771

  11. A fuzzy control design case: The fuzzy PLL

    NASA Technical Reports Server (NTRS)

    Teodorescu, H. N.; Bogdan, I.

    1992-01-01

    The aim of this paper is to present a typical fuzzy control design case. The analyzed controlled systems are the phase-locked loops (PLL's)--classic systems realized in both analogic and digital technology. The crisp PLL devices are well known.

  12. Visual Inference Programming

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Timucin, Dogan; Rabbette, Maura; Curry, Charles; Allan, Mark; Lvov, Nikolay; Clanton, Sam; Pilewskie, Peter

    2002-01-01

    The goal of visual inference programming is to develop a software framework data analysis and to provide machine learning algorithms for inter-active data exploration and visualization. The topics include: 1) Intelligent Data Understanding (IDU) framework; 2) Challenge problems; 3) What's new here; 4) Framework features; 5) Wiring diagram; 6) Generated script; 7) Results of script; 8) Initial algorithms; 9) Independent Component Analysis for instrument diagnosis; 10) Output sensory mapping virtual joystick; 11) Output sensory mapping typing; 12) Closed-loop feedback mu-rhythm control; 13) Closed-loop training; 14) Data sources; and 15) Algorithms. This paper is in viewgraph form.

  13. Graphical inference for Infovis.

    PubMed

    Wickham, Hadley; Cook, Dianne; Hofmann, Heike; Buja, Andreas

    2010-01-01

    How do we know if what we see is really there? When visualizing data, how do we avoid falling into the trap of apophenia where we see patterns in random noise? Traditionally, infovis has been concerned with discovering new relationships, and statistics with preventing spurious relationships from being reported. We pull these opposing poles closer with two new techniques for rigorous statistical inference of visual discoveries. The "Rorschach" helps the analyst calibrate their understanding of uncertainty and "line-up" provides a protocol for assessing the significance of visual discoveries, protecting against the discovery of spurious structure.

  14. Network geometry inference using common neighbors

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Fragkiskos; Aldecoa, Rodrigo; Krioukov, Dmitri

    2015-08-01

    We introduce and explore a method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that the nodes have (or do not have). We find that for high degree nodes, the common-neighbors approach yields a more accurate inference than the link-based method, unless heuristic periodic adjustments (or "correction steps") are used in the latter. The common-neighbors approach is computationally intensive, requiring O (t4) running time to map a network of t nodes, versus O (t3) in the link-based method. But we also develop a hybrid method with O (t3) running time, which combines the common-neighbors and link-based approaches, and we explore a heuristic that reduces its running time further to O (t2) , without significant reduction in the mapping accuracy. We apply this method to the autonomous systems (ASs) Internet, and we reveal how soft communities of ASs evolve over time in the similarity space. We further demonstrate the method's predictive power by forecasting future links between ASs. Taken altogether, our results advance our understanding of how to efficiently and accurately map real networks to their latent geometric spaces, which is an important necessary step toward understanding the laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections.

  15. Network geometry inference using common neighbors.

    PubMed

    Papadopoulos, Fragkiskos; Aldecoa, Rodrigo; Krioukov, Dmitri

    2015-08-01

    We introduce and explore a method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that the nodes have (or do not have). We find that for high degree nodes, the common-neighbors approach yields a more accurate inference than the link-based method, unless heuristic periodic adjustments (or "correction steps") are used in the latter. The common-neighbors approach is computationally intensive, requiring O(t4) running time to map a network of t nodes, versus O(t3) in the link-based method. But we also develop a hybrid method with O(t3) running time, which combines the common-neighbors and link-based approaches, and we explore a heuristic that reduces its running time further to O(t2), without significant reduction in the mapping accuracy. We apply this method to the autonomous systems (ASs) Internet, and we reveal how soft communities of ASs evolve over time in the similarity space. We further demonstrate the method's predictive power by forecasting future links between ASs. Taken altogether, our results advance our understanding of how to efficiently and accurately map real networks to their latent geometric spaces, which is an important necessary step toward understanding the laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections. PMID:26382454

  16. Fuzzy associative conjuncted maps network.

    PubMed

    Goh, Hanlin; Lim, Joo-Hwee; Quek, Chai

    2009-08-01

    The fuzzy associative conjuncted maps (FASCOM) is a fuzzy neural network that associates data of nonlinearly related inputs and outputs. In the network, each input or output dimension is represented by a feature map that is partitioned into fuzzy or crisp sets. These fuzzy sets are then conjuncted to form antecedents and consequences, which are subsequently associated to form if-then rules. The associative memory is encoded through an offline batch mode learning process consisting of three consecutive phases. The initial unsupervised membership function initialization phase takes inspiration from the organization of sensory maps in our brains by allocating membership functions based on uniform information density. Next, supervised Hebbian learning encodes synaptic weights between input and output nodes. Finally, a supervised error reduction phase fine-tunes the network, which allows for the discovery of the varying levels of influence of each input dimension across an output feature space in the encoded memory. In the series of experiments, we show that each phase in the learning process contributes significantly to the final accuracy of prediction. Further experiments using both toy problems and real-world data demonstrate significant superiority in terms of accuracy of nonlinear estimation when benchmarked against other prominent architectures and exhibit the network's suitability to perform analysis and prediction on real-world applications, such as traffic density prediction as shown in this paper.

  17. Learning fuzzy logic control system

    NASA Technical Reports Server (NTRS)

    Lung, Leung Kam

    1994-01-01

    The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the

  18. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    NASA Astrophysics Data System (ADS)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  19. Circular inferences in schizophrenia.

    PubMed

    Jardri, Renaud; Denève, Sophie

    2013-11-01

    A considerable number of recent experimental and computational studies suggest that subtle impairments of excitatory to inhibitory balance or regulation are involved in many neurological and psychiatric conditions. The current paper aims to relate, specifically and quantitatively, excitatory to inhibitory imbalance with psychotic symptoms in schizophrenia. Considering that the brain constructs hierarchical causal models of the external world, we show that the failure to maintain the excitatory to inhibitory balance results in hallucinations as well as in the formation and subsequent consolidation of delusional beliefs. Indeed, the consequence of excitatory to inhibitory imbalance in a hierarchical neural network is equated to a pathological form of causal inference called 'circular belief propagation'. In circular belief propagation, bottom-up sensory information and top-down predictions are reverberated, i.e. prior beliefs are misinterpreted as sensory observations and vice versa. As a result, these predictions are counted multiple times. Circular inference explains the emergence of erroneous percepts, the patient's overconfidence when facing probabilistic choices, the learning of 'unshakable' causal relationships between unrelated events and a paradoxical immunity to perceptual illusions, which are all known to be associated with schizophrenia. PMID:24065721

  20. Inferring horizontal gene transfer.

    PubMed

    Ravenhall, Matt; Škunca, Nives; Lassalle, Florent; Dessimoz, Christophe

    2015-05-01

    Horizontal or Lateral Gene Transfer (HGT or LGT) is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric") methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic") approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events. PMID:26020646

  1. Moment inference from tomograms

    USGS Publications Warehouse

    Day-Lewis, F. D.; Chen, Y.; Singha, K.

    2007-01-01

    Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.

  2. Circular inferences in schizophrenia.

    PubMed

    Jardri, Renaud; Denève, Sophie

    2013-11-01

    A considerable number of recent experimental and computational studies suggest that subtle impairments of excitatory to inhibitory balance or regulation are involved in many neurological and psychiatric conditions. The current paper aims to relate, specifically and quantitatively, excitatory to inhibitory imbalance with psychotic symptoms in schizophrenia. Considering that the brain constructs hierarchical causal models of the external world, we show that the failure to maintain the excitatory to inhibitory balance results in hallucinations as well as in the formation and subsequent consolidation of delusional beliefs. Indeed, the consequence of excitatory to inhibitory imbalance in a hierarchical neural network is equated to a pathological form of causal inference called 'circular belief propagation'. In circular belief propagation, bottom-up sensory information and top-down predictions are reverberated, i.e. prior beliefs are misinterpreted as sensory observations and vice versa. As a result, these predictions are counted multiple times. Circular inference explains the emergence of erroneous percepts, the patient's overconfidence when facing probabilistic choices, the learning of 'unshakable' causal relationships between unrelated events and a paradoxical immunity to perceptual illusions, which are all known to be associated with schizophrenia.

  3. Inferring Horizontal Gene Transfer

    PubMed Central

    Lassalle, Florent; Dessimoz, Christophe

    2015-01-01

    Horizontal or Lateral Gene Transfer (HGT or LGT) is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages [1]. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric") methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic") approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events. PMID:26020646

  4. Design of fuzzy system by NNs and realization of adaptability

    NASA Technical Reports Server (NTRS)

    Takagi, Hideyuki

    1993-01-01

    The issue of designing and tuning fuzzy membership functions by neural networks (NN's) was started by NN-driven Fuzzy Reasoning in 1988. NN-driven fuzzy reasoning involves a NN embedded in the fuzzy system which generates membership values. In conventional fuzzy system design, the membership functions are hand-crafted by trial and error for each input variable. In contrast, NN-driven fuzzy reasoning considers several variables simultaneously and can design a multidimensional, nonlinear membership function for the entire subspace.

  5. Identifying node role in social network based on multiple indicators.

    PubMed

    Huang, Shaobin; Lv, Tianyang; Zhang, Xizhe; Yang, Yange; Zheng, Weimin; Wen, Chao

    2014-01-01

    It is a classic topic of social network analysis to evaluate the importance of nodes and identify the node that takes on the role of core or bridge in a network. Because a single indicator is not sufficient to analyze multiple characteristics of a node, it is a natural solution to apply multiple indicators that should be selected carefully. An intuitive idea is to select some indicators with weak correlations to efficiently assess different characteristics of a node. However, this paper shows that it is much better to select the indicators with strong correlations. Because indicator correlation is based on the statistical analysis of a large number of nodes, the particularity of an important node will be outlined if its indicator relationship doesn't comply with the statistical correlation. Therefore, the paper selects the multiple indicators including degree, ego-betweenness centrality and eigenvector centrality to evaluate the importance and the role of a node. The importance of a node is equal to the normalized sum of its three indicators. A candidate for core or bridge is selected from the great degree nodes or the nodes with great ego-betweenness centrality respectively. Then, the role of a candidate is determined according to the difference between its indicators' relationship with the statistical correlation of the overall network. Based on 18 real networks and 3 kinds of model networks, the experimental results show that the proposed methods perform quite well in evaluating the importance of nodes and in identifying the node role.

  6. Neural Network Based Intrusion Detection System for Critical Infrastructures

    SciTech Connect

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  7. Network-based reading system for lung cancer screening CT

    NASA Astrophysics Data System (ADS)

    Fujino, Yuichi; Fujimura, Kaori; Nomura, Shin-ichiro; Kawashima, Harumi; Tsuchikawa, Megumu; Matsumoto, Toru; Nagao, Kei-ichi; Uruma, Takahiro; Yamamoto, Shinji; Takizawa, Hotaka; Kuroda, Chikazumi; Nakayama, Tomio

    2006-03-01

    This research aims to support chest computed tomography (CT) medical checkups to decrease the death rate by lung cancer. We have developed a remote cooperative reading system for lung cancer screening over the Internet, a secure transmission function, and a cooperative reading environment. It is called the Network-based Reading System. A telemedicine system involves many issues, such as network costs and data security if we use it over the Internet, which is an open network. In Japan, broadband access is widespread and its cost is the lowest in the world. We developed our system considering human machine interface and security. It consists of data entry terminals, a database server, a computer aided diagnosis (CAD) system, and some reading terminals. It uses a secure Digital Imaging and Communication in Medicine (DICOM) encrypting method and Public Key Infrastructure (PKI) based secure DICOM image data distribution. We carried out an experimental trial over the Japan Gigabit Network (JGN), which is the testbed for the Japanese next-generation network, and conducted verification experiments of secure screening image distribution, some kinds of data addition, and remote cooperative reading. We found that network bandwidth of about 1.5 Mbps enabled distribution of screening images and cooperative reading and that the encryption and image distribution methods we proposed were applicable to the encryption and distribution of general DICOM images via the Internet.

  8. Earthquake networks based on space-time influence domain

    NASA Astrophysics Data System (ADS)

    He, Xuan; Zhao, Hai; Cai, Wei; Liu, Zheng; Si, Shuai-Zong

    2014-08-01

    A new construction method of earthquake networks based on the theory of complex networks is presented in this paper. We propose a space-time influence domain for each earthquake to quantify the subsequence of earthquakes which are directly influenced by the former earthquake. The size of the domain is according to the magnitude of earthquake. In this way, the seismic data in the region of California are mapped to a topology of earthquake network. It is discovered that the earthquake networks in different time spans behave as scale-free networks. This result can be interpreted in terms of the Gutenberg-Richter law. Discovery of small-world characteristic is also reported on the earthquake network constructed by our method. The Omori law emerges as a feature of seismicity for the out-going links of the network. These characteristics highlight a novel aspect of seismicity as a complex phenomenon and will help us to reveal the internal mechanism of seismic system.

  9. Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.

    PubMed

    Zhang, Yanjun; Tao, Gang; Chen, Mou

    2016-09-01

    This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.

  10. Network-based analysis of software change propagation.

    PubMed

    Wang, Rongcun; Huang, Rubing; Qu, Binbin

    2014-01-01

    The object-oriented software systems frequently evolve to meet new change requirements. Understanding the characteristics of changes aids testers and system designers to improve the quality of softwares. Identifying important modules becomes a key issue in the process of evolution. In this context, a novel network-based approach is proposed to comprehensively investigate change distributions and the correlation between centrality measures and the scope of change propagation. First, software dependency networks are constructed at class level. And then, the number of times of cochanges among classes is minded from software repositories. According to the dependency relationships and the number of times of cochanges among classes, the scope of change propagation is calculated. Using Spearman rank correlation analyzes the correlation between centrality measures and the scope of change propagation. Three case studies on java open source software projects Findbugs, Hibernate, and Spring are conducted to research the characteristics of change propagation. Experimental results show that (i) change distribution is very uneven; (ii) PageRank, Degree, and CIRank are significantly correlated to the scope of change propagation. Particularly, CIRank shows higher correlation coefficient, which suggests it can be a more useful indicator for measuring the scope of change propagation of classes in object-oriented software system.

  11. PROMISCUOUS: a database for network-based drug-repositioning

    PubMed Central

    von Eichborn, Joachim; Murgueitio, Manuela S.; Dunkel, Mathias; Koerner, Soeren; Bourne, Philip E.; Preissner, Robert

    2011-01-01

    The procedure of drug approval is time-consuming, costly and risky. Accidental findings regarding multi-specificity of approved drugs led to block-busters in new indication areas. Therefore, the interest in systematically elucidating new areas of application for known drugs is rising. Furthermore, the knowledge, understanding and prediction of so-called off-target effects allow a rational approach to the understanding of side-effects. With PROMISCUOUS we provide an exhaustive set of drugs (25 000), including withdrawn or experimental drugs, annotated with drug–protein and protein–protein relationships (21 500/104 000) compiled from public resources via text and data mining including manual curation. Measures of structural similarity for drugs as well as known side-effects can be easily connected to protein–protein interactions to establish and analyse networks responsible for multi-pharmacology. This network-based approach can provide a starting point for drug-repositioning. PROMISCUOUS is publicly available at http://bioinformatics.charite.de/promiscuous. PMID:21071407

  12. Network-Based Approaches in Drug Discovery and Early Development

    PubMed Central

    Harrold, JM; Ramanathan, M; Mager, DE

    2015-01-01

    Identification of novel targets is a critical first step in the drug discovery and development process. Most diseases such as cancer, metabolic disorders, and neurological disorders are complex, and their pathogenesis involves multiple genetic and environmental factors. Finding a viable drug target–drug combination with high potential for yielding clinical success within the efficacy–toxicity spectrum is extremely challenging. Many examples are now available in which network-based approaches show potential for the identification of novel targets and for the repositioning of established targets. The objective of this article is to highlight network approaches for identifying novel targets with greater chances of gaining approved drugs with maximal efficacy and minimal side effects. Further enhancement of these approaches may emerge from effectively integrating computational systems biology with pharmacodynamic systems analysis. Coupling genomics, proteomics, and metabolomics databases with systems pharmacology modeling may aid in the development of disease-specific networks that can be further used to build confidence in target identification. PMID:24025802

  13. Pattern recognition tool based on complex network-based approach

    NASA Astrophysics Data System (ADS)

    Casanova, Dalcimar; Backes, André Ricardo; Martinez Bruno, Odemir

    2013-02-01

    This work proposed a generalization of the method proposed by the authors: 'A complex network-based approach for boundary shape analysis'. Instead of modelling a contour into a graph and use complex networks rules to characterize it, here, we generalize the technique. This way, the work proposes a mathematical tool for characterization signals, curves and set of points. To evaluate the pattern description power of the proposal, an experiment of plat identification based on leaf veins image are conducted. Leaf vein is a taxon characteristic used to plant identification proposes, and one of its characteristics is that these structures are complex, and difficult to be represented as a signal or curves and this way to be analyzed in a classical pattern recognition approach. Here, we model the veins as a set of points and model as graphs. As features, we use the degree and joint degree measurements in a dynamic evolution. The results demonstrates that the technique has a good power of discrimination and can be used for plant identification, as well as other complex pattern recognition tasks.

  14. Combinational reasoning of quantitative fuzzy topological relations for simple fuzzy regions.

    PubMed

    Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi

    2015-01-01

    In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models.

  15. (Fuzzy) Ideals of BN-Algebras

    PubMed Central

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  16. Image clustering using fuzzy graph theory

    NASA Astrophysics Data System (ADS)

    Jafarkhani, Hamid; Tarokh, Vahid

    1999-12-01

    We propose an image clustering algorithm which uses fuzzy graph theory. First, we define a fuzzy graph and the concept of connectivity for a fuzzy graph. Then, based on our definition of connectivity we propose an algorithm which finds connected subgraphs of the original fuzzy graph. Each connected subgraph can be considered as a cluster. As an application of our algorithm, we consider a database of images. We calculate a similarity measure between any paris of images in the database and generate the corresponding fuzzy graph. The, we find the subgraphs of the resulting fuzzy graph using our algorithm. Each subgraph corresponds to a cluster. We apply our image clustering algorithm to the key frames of news programs to find the anchorperson clusters. Simulation results show that our algorithm is successful to find most of anchorperson frames from the database.

  17. Age Estimation Based on Children's Voice: A Fuzzy-Based Decision Fusion Strategy

    PubMed Central

    Ting, Hua-Nong

    2014-01-01

    Automatic estimation of a speaker's age is a challenging research topic in the area of speech analysis. In this paper, a novel approach to estimate a speaker's age is presented. The method features a “divide and conquer” strategy wherein the speech data are divided into six groups based on the vowel classes. There are two reasons behind this strategy. First, reduction in the complicated distribution of the processing data improves the classifier's learning performance. Second, different vowel classes contain complementary information for age estimation. Mel-frequency cepstral coefficients are computed for each group and single layer feed-forward neural networks based on self-adaptive extreme learning machine are applied to the features to make a primary decision. Subsequently, fuzzy data fusion is employed to provide an overall decision by aggregating the classifier's outputs. The results are then compared with a number of state-of-the-art age estimation methods. Experiments conducted based on six age groups including children aged between 7 and 12 years revealed that fuzzy fusion of the classifier's outputs resulted in considerable improvement of up to 53.33% in age estimation accuracy. Moreover, the fuzzy fusion of decisions aggregated the complementary information of a speaker's age from various speech sources. PMID:25006595

  18. A fuzzy logic methodology for fault-tree analysis in critical safety systems

    SciTech Connect

    Erbay, A.; Ikonomopoulos, A. )

    1993-01-01

    A new approach for fault-tree analysis in critical safety systems employing fuzzy sets for information representation is presented in this paper. The methodology is based on the utilization of the extension principle for mapping crisp measurements to various degrees of membership in the fuzzy set of linguistic Truth. Criticality alarm systems are used in miscellaneous nuclear fuel processing, handling, and storage facilities to reduce the risk associated with fissile material operations. Fault-tree methodologies are graphic illustrations of tile failure logic associated with the development of a particular system failure (top event) from basic subcomponent failures (primary events). The term event denotes a dynamic change of state that occurs to system elements, which may include hardware, software, human, or environmental factors. A fault-tree represents a detailed, deductive, analysis that requires extensive system information. The knowledge incorporated in a fault tree can be articulated in logical rules of the form [open quotes]IF A is true THEN B is true.[close quotes] However, it is well known that this type of syllogism fails to give an answer when the satisfaction of the antecedent clause is only partial. Zadeh suggested a new type of fuzzy conditional inference. This type of syllogism (generalized modus ponens) reads as follows: Premise: A is partially true Implication: IF A is true THEN B is true Conclusion: B is partially-true. In generalized modus ponens, the antecedent is true only to some degree; hence, it is desired to compute the grade to which the consequent is satisfied. Fuzzy sets provide a natural environment for this type of computation because fuzzy variables (e.g., B) can take fuzzy values (e.g., partially-true).

  19. Fuzzy representations need a careful design

    NASA Astrophysics Data System (ADS)

    Trillas, Enric; Guadarrama, Sergio

    2010-04-01

    This paper tries to show, from a theoretical perspective, the importance of designing well the representation of fuzzy systems whose behaviour is described by a linguistic description. The way in which this design of the representation is done by means of fuzzy sets, connectives and relations marks a distinction between the fuzzy and the formal logic methodologies, two different disciplines whose design process and agendas are not coincidental.

  20. Bayesian inference in geomagnetism

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    The inverse problem in empirical geomagnetic modeling is investigated, with critical examination of recently published studies. Particular attention is given to the use of Bayesian inference (BI) to select the damping parameter lambda in the uniqueness portion of the inverse problem. The mathematical bases of BI and stochastic inversion are explored, with consideration of bound-softening problems and resolution in linear Gaussian BI. The problem of estimating the radial magnetic field B(r) at the earth core-mantle boundary from surface and satellite measurements is then analyzed in detail, with specific attention to the selection of lambda in the studies of Gubbins (1983) and Gubbins and Bloxham (1985). It is argued that the selection method is inappropriate and leads to lambda values much larger than those that would result if a reasonable bound on the heat flow at the CMB were assumed.

  1. BIE: Bayesian Inference Engine

    NASA Astrophysics Data System (ADS)

    Weinberg, Martin D.

    2013-12-01

    The Bayesian Inference Engine (BIE) is an object-oriented library of tools written in C++ designed explicitly to enable Bayesian update and model comparison for astronomical problems. To facilitate "what if" exploration, BIE provides a command line interface (written with Bison and Flex) to run input scripts. The output of the code is a simulation of the Bayesian posterior distribution from which summary statistics e.g. by taking moments, or determine confidence intervals and so forth, can be determined. All of these quantities are fundamentally integrals and the Markov Chain approach produces variates heta distributed according to P( heta|D) so moments are trivially obtained by summing of the ensemble of variates.

  2. Variables of Interest in Exploring the Reflective Outcomes of Network-based Communication.

    ERIC Educational Resources Information Center

    Hawkes, Mark

    2001-01-01

    Explored the opportunities presented by network-based communication to facilitate collaborative critical reflection between elementary and middle school teachers who were working on a curriculum development project. Considers self-efficacy and discusses results that showed that collaboratively produced network-based communication was significantly…

  3. A fuzzy classifier system for process control

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  4. Fuzzy logic control and optimization system

    DOEpatents

    Lou, Xinsheng

    2012-04-17

    A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.

  5. Refining fuzzy logic controllers with machine learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1994-01-01

    In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.

  6. Fuzzy logic control for camera tracking system

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant

    1992-01-01

    A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.

  7. Fuzzy set classifier for waste classification tracking

    SciTech Connect

    Gavel, D.T.

    1992-11-04

    We have developed an expert system based on fuzzy logic theory to fuse the data from multiple sensors and make classification decisions for objects in a waste reprocessing stream. Fuzzy set theory has been applied in decision and control applications with some success, particularly by the Japanese. We have found that the fuzzy logic system is rather easy to design and train, a feature that can cut development costs considerably. With proper training, the classification accuracy is quite high. We performed several tests sorting radioactive test samples using a gamma spectrometer to compare fuzzy logic to more conventional sorting schemes.

  8. Fuzzy control of small servo motors

    NASA Technical Reports Server (NTRS)

    Maor, Ron; Jani, Yashvant

    1993-01-01

    To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.

  9. Bayes factors and multimodel inference

    USGS Publications Warehouse

    Link, W.A.; Barker, R.J.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.

    2009-01-01

    Multimodel inference has two main themes: model selection, and model averaging. Model averaging is a means of making inference conditional on a model set, rather than on a selected model, allowing formal recognition of the uncertainty associated with model choice. The Bayesian paradigm provides a natural framework for model averaging, and provides a context for evaluation of the commonly used AIC weights. We review Bayesian multimodel inference, noting the importance of Bayes factors. Noting the sensitivity of Bayes factors to the choice of priors on parameters, we define and propose nonpreferential priors as offering a reasonable standard for objective multimodel inference.

  10. Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach

    NASA Astrophysics Data System (ADS)

    Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata

    2014-12-01

    In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root

  11. A proposal of fuzzy connective with learning function and its application to fuzzy retrieval system

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Naito, Eiichi; Ozawa, Jun; Wakami, Noboru

    1993-01-01

    A new fuzzy connective and a structure of network constructed by fuzzy connectives are proposed to overcome a drawback of conventional fuzzy retrieval systems. This network represents a retrieval query and the fuzzy connectives in networks have a learning function to adjust its parameters by data from a database and outputs of a user. The fuzzy retrieval systems employing this network are also constructed. Users can retrieve results even with a query whose attributes do not exist in a database schema and can get satisfactory results for variety of thinkings by learning function.

  12. Fuzzy fractals, chaos, and noise

    SciTech Connect

    Zardecki, A.

    1997-05-01

    To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.

  13. Collaborating Fuzzy Reinforcement Learning Agents

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    Earlier, we introduced GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Relearning and at the local level, each agent learns and operates based on ANTARCTIC, a technique for fuzzy reinforcement learning. In this paper, we show that it is possible for these agents to compete in order to affect the selected control policy but at the same time, they can collaborate while investigating the state space. In this model, the evaluator or the critic learns by observing all the agents behaviors but the control policy changes only based on the behavior of the winning agent also known as the super agent.

  14. A fuzzy-autoregressive model of daily river flows

    NASA Astrophysics Data System (ADS)

    Greco, R.

    2012-04-01

    A model for the identification of daily river flows has been developed, consisting of the combination of an autoregressive model with a fuzzy inference system. The AR model is devoted to the identification of base flow, supposed to be described by linear laws. The fuzzy model identifies the surface runoff, by applying a small set of linguistic statements, deriving from the knowledge of the physical features of the non linear rainfall-runoff transformation, to the inflow entering the river basin. The model has been applied to the identification of the daily flow series of river Volturno at Cancello-Arnone (Southern Italy), with a drainage basin of around 5560 km2, observed between 1970 and 1974. The inflow was estimated on the basis of daily precipitations registered during the same years at six rain gauges located throughout the basin. The first two years were used for model training, the remaining three for the validation. The obtained results show that the proposed model provides good predictions of either low river flows or high floods, although the analysis of residuals, which do not turn out to be a white noise, indicates that the cause and effect relationship between rainfall and runoff is not completely identified by the model.

  15. A fuzzy-autoregressive model of daily river flows

    NASA Astrophysics Data System (ADS)

    Greco, Roberto

    2012-06-01

    A model for the identification of daily river flows has been developed, consisting of the combination of an autoregressive model with a fuzzy inference system. The AR model is devoted to the identification of base flow, supposed to be described by linear laws. The fuzzy model identifies the surface runoff, by applying a small set of linguistic statements, deriving from the knowledge of the physical features of the nonlinear rainfall-runoff transformation, to the inflow entering the river basin. The model has been applied to the identification of the daily flow series of river Volturno at Cancello-Arnone (Southern Italy), with a drainage basin of around 5560 km2, observed between 1970 and 1974. The inflow was estimated on the basis of daily precipitations registered during the same years at six rain gauges located throughout the basin. The first two years were used for model training, the remaining three for the validation. The obtained results show that the proposed model provides good predictions of either low river flows or high floods, although the analysis of residuals, which do not turn out to be a white noise, indicates that the cause and effect relationship between rainfall and runoff is not completely identified by the model.

  16. Fuzzy logic model of Langmuir probe discharge data.

    PubMed

    Kim, Byungwhan; Park, Jang Hyun; Kim, Beom-Soo

    2002-11-01

    Plasma models are crucial to gain physical insights into complex discharges as well as to optimizing plasma-driven processes. As an alternative to physical model, a qualitative model was constructed using adaptive fuzzy logic called adaptive network fuzzy inference system (ANFIS). Prediction performance of ANFIS was evaluated on two sets of experimental discharge data. One referred to as hemispherical inductively coupled plasma (HICP) was characterized with a 2(4) full factorial experiment, in which the factors that were varied include source power, pressure, chuck position, and Cl2 flow rate. The other called multipole ICP was characterized by performing a 3(3) full factorial experiment on the factors, including source power, pressure, and Ar flow rate. Trained ANFIS models were tested on eight and 16 experiments not pertaining to previous training data for HICP and MICP, respectively. Plasma attributes modeled include electron density. electron temperature, and plasma potential. The performance of ANFIS was optimized as a function of a type of membership function, number of membership function, and two learning factors. The number of membership functions was different depending on the type of plasma data and employing too large number of membership functions resulted in a drastic degradation in prediction performances. Optimized ANFIS models were compared to statistical regression models and demonstrated improved predictions in all comparisons. PMID:12385474

  17. Subtractive fuzzy classifier based driver distraction levels classification using EEG.

    PubMed

    Wali, Mousa Kadhim; Murugappan, Murugappan; Ahmad, Badlishah

    2013-09-01

    [Purpose] In earlier studies of driver distraction, researchers classified distraction into two levels (not distracted, and distracted). This study classified four levels of distraction (neutral, low, medium, high). [Subjects and Methods] Fifty Asian subjects (n=50, 43 males, 7 females), age range 20-35 years, who were free from any disease, participated in this study. Wireless EEG signals were recorded by 14 electrodes during four types of distraction stimuli (Global Position Systems (GPS), music player, short message service (SMS), and mental tasks). We derived the amplitude spectrum of three different frequency bands, theta, alpha, and beta of EEG. Then, based on fusion of discrete wavelet packet transforms and fast fourier transform yield, we extracted two features (power spectral density, spectral centroid frequency) of different wavelets (db4, db8, sym8, and coif5). Mean ± SD was calculated and analysis of variance (ANOVA) was performed. A fuzzy inference system classifier was applied to different wavelets using the two extracted features. [Results] The results indicate that the two features of sym8 posses highly significant discrimination across the four levels of distraction, and the best average accuracy achieved by the subtractive fuzzy classifier was 79.21% using the power spectral density feature extracted using the sym8 wavelet. [Conclusion] These findings suggest that EEG signals can be used to monitor distraction level intensity in order to alert drivers to high levels of distraction.

  18. Estimating outcomes in newborn infants using fuzzy logic

    PubMed Central

    Chaves, Luciano Eustáquio; Nascimento, Luiz Fernando C.

    2014-01-01

    OBJECTIVE: To build a linguistic model using the properties of fuzzy logic to estimate the risk of death of neonates admitted to a Neonatal Intensive Care Unit. METHODS: Computational model using fuzzy logic. The input variables of the model were birth weight, gestational age, 5th-minute Apgar score and inspired fraction of oxygen in newborn infants admitted to a Neonatal Intensive Care Unit of Taubaté, Southeast Brazil. The output variable was the risk of death, estimated as a percentage. Three membership functions related to birth weight, gestational age and 5th-minute Apgar score were built, as well as two functions related to the inspired fraction of oxygen; the risk presented five membership functions. The model was developed using the Mandani inference by means of Matlab(r) software. The model values were compared with those provided by experts and their performance was estimated by ROC curve. RESULTS: 100 newborns were included, and eight of them died. The model estimated an average possibility of death of 49.7±29.3%, and the possibility of hospital discharge was 24±17.5%. These values are different when compared by Student's t-test (p<0.001). The correlation test revealed r=0.80 and the performance of the model was 81.9%. CONCLUSIONS: This predictive, non-invasive and low cost model showed a good accuracy and can be applied in neonatal care, given the easiness of its use. PMID:25119746

  19. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.

    PubMed

    Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente

    2015-08-10

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.

  20. Analysis of atomic force microscopy data for surface characterization using fuzzy logic

    SciTech Connect

    Al-Mousa, Amjed; Niemann, Darrell L.; Niemann, Devin J.; Gunther, Norman G.; Rahman, Mahmud

    2011-07-15

    In this paper we present a methodology to characterize surface nanostructures of thin films. The methodology identifies and isolates nanostructures using Atomic Force Microscopy (AFM) data and extracts quantitative information, such as their size and shape. The fuzzy logic based methodology relies on a Fuzzy Inference Engine (FIE) to classify the data points as being top, bottom, uphill, or downhill. The resulting data sets are then further processed to extract quantitative information about the nanostructures. In the present work we introduce a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and present an omni-directional search technique to improve the structural recognition accuracy. In order to demonstrate the effectiveness of our approach we present a case study which uses our approach to quantitatively identify particle sizes of two specimens each with a unique gold nanoparticle size distribution. - Research Highlights: {yields} A Fuzzy logic analysis technique capable of characterizing AFM images of thin films. {yields} The technique is applicable to different surfaces regardless of their densities. {yields} Fuzzy logic technique does not require manual adjustment of the algorithm parameters. {yields} The technique can quantitatively capture differences between surfaces. {yields} This technique yields more realistic structure boundaries compared to other methods.

  1. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.

    PubMed

    Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente

    2015-01-01

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412

  2. The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic

    PubMed Central

    Li, Ning; Martínez, José-Fernán; Díaz, Vicente Hernández

    2015-01-01

    Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412

  3. Fuzzy logic based robotic controller

    NASA Technical Reports Server (NTRS)

    Attia, F.; Upadhyaya, M.

    1994-01-01

    Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.

  4. A novel prosodic-information synthesizer based on recurrent fuzzy neural network for the Chinese TTS system.

    PubMed

    Lin, Chin-Teng; Wu, Rui-Cheng; Chang, Jyh-Yeong; Liang, Sheng-Fu

    2004-02-01

    In this paper, a new technique for the Chinese text-to-speech (TTS) system is proposed. Our major effort focuses on the prosodic information generation. New methodologies for constructing fuzzy rules in a prosodic model simulating human's pronouncing rules are developed. The proposed Recurrent Fuzzy Neural Network (RFNN) is a multilayer recurrent neural network (RNN) which integrates a Self-cOnstructing Neural Fuzzy Inference Network (SONFIN) into a recurrent connectionist structure. The RFNN can be functionally divided into two parts. The first part adopts the SONFIN as a prosodic model to explore the relationship between high-level linguistic features and prosodic information based on fuzzy inference rules. As compared to conventional neural networks, the SONFIN can always construct itself with an economic network size in high learning speed. The second part employs a five-layer network to generate all prosodic parameters by directly using the prosodic fuzzy rules inferred from the first part as well as other important features of syllables. The TTS system combined with the proposed method can behave not only sandhi rules but also the other prosodic phenomena existing in the traditional TTS systems. Moreover, the proposed scheme can even find out some new rules about prosodic phrase structure. The performance of the proposed RFNN-based prosodic model is verified by imbedding it into a Chinese TTS system with a Chinese monosyllable database based on the time-domain pitch synchronous overlap add (TD-PSOLA) method. Our experimental results show that the proposed RFNN can generate proper prosodic parameters including pitch means, pitch shapes, maximum energy levels, syllable duration, and pause duration. Some synthetic sounds are online available for demonstration. PMID:15369074

  5. Probabilistic and fuzzy logic in clinical diagnosis.

    PubMed

    Licata, G

    2007-06-01

    In this study I have compared classic and fuzzy logic and their usefulness in clinical diagnosis. The theory of probability is often considered a device to protect the classical two-valued logic from the evidence of its inadequacy to understand and show the complexity of world [1]. This can be true, but it is not possible to discard the theory of probability. I will argue that the problems and the application fields of the theory of probability are very different from those of fuzzy logic. After the introduction on the theoretical bases of fuzzy approach to logic, I have reported some diagnostic argumentations employing fuzzy logic. The state of normality and the state of disease often fight their battle on scalar quantities of biological values and it is not hard to establish a correspondence between the biological values and the percent values of fuzzy logic. Accordingly, I have suggested some applications of fuzzy logic in clinical diagnosis and in particular I have utilised a fuzzy curve to recognise subjects with diabetes mellitus, renal failure and liver disease. The comparison between classic and fuzzy logic findings seems to indicate that fuzzy logic is more adequate to study the development of biological events. In fact, fuzzy logic is useful when we have a lot of pieces of information and when we dispose to scalar quantities. In conclusion, increasingly the development of technology offers new instruments to measure pathological parameters through scalar quantities, thus it is reasonable to think that in the future fuzzy logic will be employed more in clinical diagnosis.

  6. A Combination of Extended Fuzzy AHP and Fuzzy GRA for Government E-Tendering in Hybrid Fuzzy Environment

    PubMed Central

    Wang, Yan; Xi, Chengyu; Zhang, Shuai; Yu, Dejian; Zhang, Wenyu; Li, Yong

    2014-01-01

    The recent government tendering process being conducted in an electronic way is becoming an inevitable affair for numerous governmental agencies to further exploit the superiorities of conventional tendering. Thus, developing an effective web-based bid evaluation methodology so as to realize an efficient and effective government E-tendering (GeT) system is imperative. This paper firstly investigates the potentiality of employing fuzzy analytic hierarchy process (AHP) along with fuzzy gray relational analysis (GRA) for optimal selection of candidate tenderers in GeT process with consideration of a hybrid fuzzy environment with incomplete weight information. We proposed a novel hybrid fuzzy AHP-GRA (HFAHP-GRA) method that combines an extended fuzzy AHP with a modified fuzzy GRA. The extended fuzzy AHP which combines typical AHP with interval AHP is proposed to obtain the exact weight information, and the modified fuzzy GRA is applied to aggregate different types of evaluation information so as to identify the optimal candidate tenderers. Finally, a prototype system is built and validated with an illustrative example for GeT to confirm the feasibility of our approach. PMID:25057506

  7. Inferring the gene network underlying the branching of tomato inflorescence.

    PubMed

    Astola, Laura; Stigter, Hans; van Dijk, Aalt D J; van Daelen, Raymond; Molenaar, Jaap

    2014-01-01

    The architecture of tomato inflorescence strongly affects flower production and subsequent crop yield. To understand the genetic activities involved, insight into the underlying network of genes that initiate and control the sympodial growth in the tomato is essential. In this paper, we show how the structure of this network can be derived from available data of the expressions of the involved genes. Our approach starts from employing biological expert knowledge to select the most probable gene candidates behind branching behavior. To find how these genes interact, we develop a stepwise procedure for computational inference of the network structure. Our data consists of expression levels from primary shoot meristems, measured at different developmental stages on three different genotypes of tomato. With the network inferred by our algorithm, we can explain the dynamics corresponding to all three genotypes simultaneously, despite their apparent dissimilarities. We also correctly predict the chronological order of expression peaks for the main hubs in the network. Based on the inferred network, using optimal experimental design criteria, we are able to suggest an informative set of experiments for further investigation of the mechanisms underlying branching behavior.

  8. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    NASA Astrophysics Data System (ADS)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  9. Learning to Observe "and" Infer

    ERIC Educational Resources Information Center

    Hanuscin, Deborah L.; Park Rogers, Meredith A.

    2008-01-01

    Researchers describe the need for students to have multiple opportunities and social interaction to learn about the differences between observation and inference and their role in developing scientific explanations (Harlen 2001; Simpson 2000). Helping children develop their skills of observation and inference in science while emphasizing the…

  10. Feature Inference Learning and Eyetracking

    ERIC Educational Resources Information Center

    Rehder, Bob; Colner, Robert M.; Hoffman, Aaron B.

    2009-01-01

    Besides traditional supervised classification learning, people can learn categories by inferring the missing features of category members. It has been proposed that feature inference learning promotes learning a category's internal structure (e.g., its typical features and interfeature correlations) whereas classification promotes the learning of…

  11. Improving Inferences from Multiple Methods.

    ERIC Educational Resources Information Center

    Shotland, R. Lance; Mark, Melvin M.

    1987-01-01

    Multiple evaluation methods (MEMs) can cause an inferential challenge, although there are strategies to strengthen inferences. Practical and theoretical issues involved in the use by social scientists of MEMs, three potential problems in drawing inferences from MEMs, and short- and long-term strategies for alleviating these problems are outlined.…

  12. Causal Inference in Retrospective Studies.

    ERIC Educational Resources Information Center

    Holland, Paul W.; Rubin, Donald B.

    1988-01-01

    The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…

  13. Causal Inference and Developmental Psychology

    ERIC Educational Resources Information Center

    Foster, E. Michael

    2010-01-01

    Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether…

  14. Unusual thermodynamics on the fuzzy 2-sphere

    NASA Astrophysics Data System (ADS)

    Digal, Sanatan; Padmanabhan, Pramod

    2010-10-01

    Higher spin Dirac operators on both the continuum sphere( S 2) and its fuzzy analog( S {F/2}) come paired with anticommuting chirality operators. A consequence of this is seen in the fermion-like spectrum of these operators which is especially true even for the case of integer-spin Dirac operators. Motivated by this feature of the spectrum of a spin 1 Dirac operator on S {F/2}, we assume the spin 1 particles obey Fermi-Dirac statistics. This choice is inspite of the lack of a well defined spin-statistics relation on a compact surface such as S 2. The specific heats are computed in the cases of the spin 1/2 and spin 1 Dirac operators. Remarkably the specific heat for a system of spin 1/2 particles is more than that of the spin 1 case, though the number of degrees of freedom is more in the case of spin 1 particles. The reason for this is inferred through a study of the spectrums of the Dirac operators in both the cases. The zero modes of the spin 1 Dirac operator is studied as a function of the cut-off angular momentum L and is found to follow a simple power law. This number is such that the number of states with positive energy for the spin 1 and spin 1/2 system become comparable. Remarks are made about the spectrums of higher spin Dirac operators as well through a study of their zero-modes and the variation of their spectrum with degeneracy. The mean energy as a function of temperature is studied in both the spin 1/2 and spin 1 cases. They are found to deviate from the standard ideal gas law in 2+ 1 dimensions.

  15. Neural network based optimal control of HVAC&R systems

    NASA Astrophysics Data System (ADS)

    Ning, Min

    Heating, Ventilation, Air-Conditioning and Refrigeration (HVAC&R) systems have wide applications in providing a desired indoor environment for different types of buildings. It is well acknowledged that 30%-40% of the total energy generated is consumed by buildings and HVAC&R systems alone account for more than 50% of the building energy consumption. Low operational efficiency especially under partial load conditions and poor control are part of reasons for such high energy consumption. To improve energy efficiency, HVAC&R systems should be properly operated to maintain a comfortable and healthy indoor environment under dynamic ambient and indoor conditions with the least energy consumption. This research focuses on the optimal operation of HVAC&R systems. The optimization problem is formulated and solved to find the optimal set points for the chilled water supply temperature, discharge air temperature and AHU (air handling unit) fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. The system model is modular in structure, which includes a water-cooled vapor compression chiller model and a two-zone VAV system model. A fuzzy-set based extended transformation approach is then applied to investigate the uncertainties of this model caused by uncertain parameters and the sensitivities of the control inputs with respect to the interested model outputs. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. In order to implement the optimal set points predicted by the

  16. Homeopathic drug selection using Intuitionistic fuzzy sets.

    PubMed

    Kharal, Athar

    2009-01-01

    Using intuitionistic fuzzy set theory, Sanchez's approach to medical diagnosis has been applied to the problem of selection of single remedy from homeopathic repertorization. Two types of Intuitionistic Fuzzy Relations (IFRs) and three types of selection indices are discussed. I also propose a new repertory exploiting the benefits of soft-intelligence.

  17. Scalar field theory on fuzzy S 4

    NASA Astrophysics Data System (ADS)

    Medina, Julieta; O'Connor, Denjoe

    2003-11-01

    Scalar fields are studied on fuzzy S 4 and a solution is found for the elimination of the unwanted degrees of freedom that occur in the model. The resulting theory can be interpreted as a Kaluza-Klein reduction of Bbb CP3 to S 4 in the fuzzy context.

  18. A Fuzzy Model of Document Retrieval Systems

    ERIC Educational Resources Information Center

    Tahani, Valiollah

    1976-01-01

    This paper is concerned with the organization and retrieval of records in document retrieval systems which admit of imprecision in the form of fuzziness in document characterization and retrieval rules. A mathematical model for such systems, based on the theory of fuzzy sets, is introduced. (Author)

  19. Inducing Fuzzy Models for Student Classification

    ERIC Educational Resources Information Center

    Nykanen, Ossi

    2006-01-01

    We report an approach for implementing predictive fuzzy systems that manage capturing both the imprecision of the empirically induced classifications and the imprecision of the intuitive linguistic expressions via the extensive use of fuzzy sets. From end-users' point of view, the approach enables encapsulating the technical details of the…

  20. Fuzzy logic mode switching in helicopters

    NASA Technical Reports Server (NTRS)

    Sherman, Porter D.; Warburton, Frank W.

    1993-01-01

    The application of fuzzy logic to a wide range of control problems has been gaining momentum internationally, fueled by a concentrated Japanese effort. Advanced Research & Development within the Engineering Department at Sikorsky Aircraft undertook a fuzzy logic research effort designed to evaluate how effective fuzzy logic control might be in relation to helicopter operations. The mode switching module in the advanced flight control portion of Sikorsky's motion based simulator was identified as a good candidate problem because it was simple to understand and contained imprecise (fuzzy) decision criteria. The purpose of the switching module is to aid a helicopter pilot in entering and leaving coordinated turns while in flight. The criteria that determine the transitions between modes are imprecise and depend on the varied ranges of three flight conditions (i.e., simulated parameters): Commanded Rate, Duration, and Roll Attitude. The parameters were given fuzzy ranges and used as input variables to a fuzzy rulebase containing the knowledge of mode switching. The fuzzy control program was integrated into a real time interactive helicopter simulation tool. Optimization of the heading hold and turn coordination was accomplished by interactive pilot simulation testing of the handling quality performance of the helicopter dynamic model. The fuzzy logic code satisfied all the requirements of this candidate control problem.

  1. Fuzzy torus via q-Parafermion

    NASA Astrophysics Data System (ADS)

    Aizawa, N.; Chakrabarti, R.

    2007-08-01

    We note that the recently introduced fuzzy torus can be regarded as a q-deformed parafermion. Based on this picture, classification of the Hermitian representations of the fuzzy torus is carried out. The result involves Fock-type representations and new finite-dimensional representations for q being a root of unity as well as already known finite-dimensional ones.

  2. Approximation abilities of neuro-fuzzy networks

    NASA Astrophysics Data System (ADS)

    Mrówczyńska, Maria

    2010-01-01

    The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.

  3. The Fuzzy Model for Diagnosis of Animal Disease

    NASA Astrophysics Data System (ADS)

    Jianhua, Xiao; Luyi, Shi; Yu, Zhang; Li, Gao; Honggang, Fan; Haikun, Ma; Hongbin, Wang

    The knowledge of animal disease diagnosis was fuzzy; the fuzzy model can imitate the character of clinical diagnosis for veterinary. The fuzzy model of disease, the methods for class the disease group of differential diagnosis and the fuzzy diagnosis model were discussed in this paper.

  4. Vibration suppression control of smart piezoelectric rotating truss structure by parallel neuro-fuzzy control with genetic algorithm tuning

    NASA Astrophysics Data System (ADS)

    Lin, J.; Zheng, Y. B.

    2012-07-01

    The main goal of this paper is to develop a novel approach for vibration control on a piezoelectric rotating truss structure. This study will analyze the dynamics and control of a flexible structure system with multiple degrees of freedom, represented in this research as a clamped-free-free-free truss type plate rotated by motors. The controller has two separate feedback loops for tracking and damping, and the vibration suppression controller is independent of position tracking control. In addition to stabilizing the actual system, the proposed proportional-derivative (PD) control, based on genetic algorithm (GA) to seek the primary optimal control gain, must supplement a fuzzy control law to ensure a stable nonlinear system. This is done by using an intelligent fuzzy controller based on adaptive neuro-fuzzy inference system (ANFIS) with GA tuning to increase the efficiency of fuzzy control. The PD controller, in its assisting role, easily stabilized the linear system. The fuzzy controller rule base was then constructed based on PD performance-related knowledge. Experimental validation for such a structure demonstrates the effectiveness of the proposed controller. The broad range of problems discussed in this research will be found useful in civil, mechanical, and aerospace engineering, for flexible structures with multiple degree-of-freedom motion.

  5. Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.

    PubMed

    He, Dayi; Li, Ran; Huang, Qi; Lei, Ping

    2014-01-01

    In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.

  6. On m-polar fuzzy graph structures.

    PubMed

    Akram, Muhammad; Akmal, Rabia; Alshehri, Noura

    2016-01-01

    Sometimes information in a network model is based on multi-agent, multi-attribute, multi-object, multi-polar information or uncertainty rather than a single bit. An m-polar fuzzy model is useful for such network models which gives more and more precision, flexibility, and comparability to the system as compared to the classical, fuzzy and bipolar fuzzy models. In this research article, we introduce the notion of m-polar fuzzy graph structure and present various operations, including Cartesian product, strong product, cross product, lexicographic product, composition, union and join of m-polar fuzzy graph structures. We illustrate these operations by several examples. We also investigate some of their related properties. PMID:27652024

  7. Applying fuzzy logic to estimate the parameters of the length-weight relationship.

    PubMed

    Bitar, S D; Campos, C P; Freitas, C E C

    2016-05-01

    We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the fuzzy inference system. PMID:27143051

  8. Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine

    NASA Astrophysics Data System (ADS)

    Sheng, Hanmin; Xiao, Jian

    2015-05-01

    The aim of this study is to estimate the state of charge (SOC) of the lithium iron phosphate (LiFePO4) battery pack by applying machine learning strategy. To reduce the noise sensitive issue of common machine learning strategies, a kind of SOC estimation method based on fuzzy least square support vector machine is proposed. By applying fuzzy inference and nonlinear correlation measurement, the effects of the samples with low confidence can be reduced. Further, a new approach for determining the error interval of regression results is proposed to avoid the control system malfunction. Tests are carried out on modified COMS electric vehicles, with two battery packs each consists of 24 50 Ah LiFePO4 batteries. The effectiveness of the method is proven by the test and the comparison with other popular methods.

  9. Fuzzy based power factor improvement strategy for a multiple connected AC-DC converter fed drive

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, N.; Muthiah, Ramaswamy

    2012-01-01

    The main focus of this paper is to design a Fuzzy based control algorithm to realize an improvement in the input power factor of a multiple connected AC-DC converter fed drive system. It incorporates the role of fuzzy inference principles to generate appropriate PWM pulses for the power switches at the second stage of the power module. The philosophy is developed, with a view to reshape the input current phasor and enables it to align with the supply voltage wave in the perspective of improving the input power factor. The closed loop scheme evaluated using MATLAB based simulation exhibits an enhancement in supply power factor over a range of operating loads in addition to illustrating the speed regulating capability of the drive.

  10. [Proposal for recognition of the comfort pattern in clients with pemphigus vulgaris using Fuzzy Logic].

    PubMed

    Brandão, Euzeli da Silva; dos Santos, Iraci; Lanzillotti, Regina Serrão; Moreira, Augusto Júnior

    2013-08-01

    The objective was to propose the use of Fuzzy Logic for recognition of comfort patterns in people undergoing a technology of nursing care because of pemphigus vulgaris, a rare mucocutaneous disease that affects mainly adults. The proposal applied experimental methods, with subjects undergoing a qualitative-quantitative comparison (taxonomy/relevance) of the comfort patterns before and after the intervention. A record of a chromatic scale corresponding to the intensity of each attribute was required: pain, mobility and impaired self-image. The Fuzzy rules established by an inference engine set the standard for comfort in maximum, median and minimum discomfort, reflecting the effectiveness of nursing care. Although rarely used in the area of nursing, this logic enabled viable research without a priori scaling of the number of subjects depending on the estimation of population parameters. It is expected to evaluate the pattern of comfort in the client with pemphigus, before the applied technology, in a personalized way, leading to a comprehensive evaluation.

  11. Applying fuzzy logic to estimate the parameters of the length-weight relationship.

    PubMed

    Bitar, S D; Campos, C P; Freitas, C E C

    2016-05-01

    We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the fuzzy inference system.

  12. A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater.

    PubMed

    Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan

    2010-10-15

    A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98.

  13. Fuzzy-logic modeling of Fenton's strong chemical oxidation process treating three types of landfill leachates.

    PubMed

    Sari, Hanife; Yetilmezsoy, Kaan; Ilhan, Fatih; Yazici, Senem; Kurt, Ugur; Apaydin, Omer

    2013-06-01

    Three multiple input and multiple output-type fuzzy-logic-based models were developed as an artificial intelligence-based approach to model a novel integrated process (UF-IER-EDBM-FO) consisted of ultrafiltration (UF), ion exchange resins (IER), electrodialysis with bipolar membrane (EDBM), and Fenton's oxidation (FO) units treating young, middle-aged, and stabilized landfill leachates. The FO unit was considered as the key process for implementation of the proposed modeling scheme. Four input components such as H(2)O(2)/chemical oxygen demand ratio, H(2)O(2)/Fe(2+) ratio, reaction pH, and reaction time were fuzzified in a Mamdani-type fuzzy inference system to predict the removal efficiencies of chemical oxygen demand, total organic carbon, color, and ammonia nitrogen. A total of 200 rules in the IF-THEN format were established within the framework of a graphical user interface for each fuzzy-logic model. The product (prod) and the center of gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the proposed prognostic models. Fuzzy-logic predicted results were compared to the outputs of multiple regression models by means of various descriptive statistical indicators, and the proposed methodology was tested against the experimental data. The testing results clearly revealed that the proposed prognostic models showed a superior predictive performance with very high determination coefficients (R (2)) between 0.930 and 0.991. This study indicated a simple means of modeling and potential of a knowledge-based approach for capturing complicated inter-relationships in a highly non-linear problem. Clearly, it was shown that the proposed prognostic models provided a well-suited and cost-effective method to predict removal efficiencies of wastewater parameters prior to discharge to receiving streams.

  14. Energy partitioning for ``fuzzy'' atoms

    NASA Astrophysics Data System (ADS)

    Salvador, P.; Mayer, I.

    2004-03-01

    The total energy of a molecule is presented as a sum of one- and two-atomic energy components in terms of "fuzzy" atoms, i.e., such divisions of the three-dimensional physical space into atomic regions in which the regions assigned to the individual atoms have no sharp boundaries but exhibit a continuous transition from one to another. By proper definitions the energy components are on the chemical energy scale. The method is realized by using Becke's integration scheme and weight function permitting very effective numerical integrations.

  15. Fuzzy ART and Fuzzy ARTMAP with adaptively weighted distances

    NASA Astrophysics Data System (ADS)

    Charalampidis, Dimitrios; Anagnostopoulos, Georgios C.; Georgiopoulos, Michael; Kasparis, Takis

    2002-03-01

    In this paper, we introduce a modification of the Fuzzy ARTMAP (FAM) neural network, namely, the Fuzzy ARTMAP with adaptively weighted distances (FAMawd) neural network. In FAMawd we substitute the regular L1-norm with a weighted L1-norm to measure the distances between categories and input patterns. The distance-related weights are a function of a category's shape and allow for bias in the direction of a category's expansion during learning. Moreover, the modification to the distance measurement is proposed in order to study the capability of FAMawd in achieving more compact knowledge representation than FAM, while simultaneously maintaining good classification performance. For a special parameter setting FAMawd simplifies to the original FAM, thus, making FAMawd a generalization of the FAM architecture. We also present an experimental comparison between FAMawd and FAM on two benchmark classification problems in terms of generalization performance and utilization of categories. Our obtained results illustrate FAMawd's potential to exhibit low memory utilization, while maintaining classification performance comparable to FAM.

  16. Security analysis for fingerprint fuzzy vaults

    NASA Astrophysics Data System (ADS)

    Hartloff, Jesse; Bileschi, Maxwell; Tulyakov, Sergey; Dobler, Jimmy; Rudra, Atri; Govindaraju, Venu

    2013-05-01

    In this work we place some of the traditional biometrics work on fingerprint verification via the fuzzy vault scheme within a cryptographic framework. We show that the breaking of a fuzzy vault leads to decoding of Reed-Solomon codes from random errors, which has been proposed as a hard problem in the cryptography community. We provide a security parameter for the fuzzy vault in terms of the decoding problem, which gives context for the breaking of the fuzzy vault, whereas most of the existing literature measures the strength of the fuzzy vault in terms of its resistance to pre-defined attacks or by the entropy of the vault. We keep track of our security parameter, and provide it alongside ROC statistics. We also aim to be more aware of the nature of the fingerprints when placing them in the fuzzy vault, noting that the distribution of minutiae is far from uniformly random. The results we show provide additional support that the fuzzy vault can be a viable scheme for secure fingerprint verification.

  17. Fuzzy probabilistic design of water distribution networks

    NASA Astrophysics Data System (ADS)

    Fu, Guangtao; Kapelan, Zoran

    2011-05-01

    The primary aim of this paper is to present a fuzzy probabilistic approach for optimal design and rehabilitation of water distribution systems, combining aleatoric and epistemic uncertainties in a unified framework. The randomness and imprecision in future water consumption are characterized using fuzzy random variables whose realizations are not real but fuzzy numbers, and the nodal head requirements are represented by fuzzy sets, reflecting the imprecision in customers' requirements. The optimal design problem is formulated as a two-objective optimization problem, with minimization of total design cost and maximization of system performance as objectives. The system performance is measured by the fuzzy random reliability, defined as the probability that the fuzzy head requirements are satisfied across all network nodes. The satisfactory degree is represented by necessity measure or belief measure in the sense of the Dempster-Shafer theory of evidence. An efficient algorithm is proposed, within a Monte Carlo procedure, to calculate the fuzzy random system reliability and is effectively combined with the nondominated sorting genetic algorithm II (NSGAII) to derive the Pareto optimal design solutions. The newly proposed methodology is demonstrated with two case studies: the New York tunnels network and Hanoi network. The results from both cases indicate that the new methodology can effectively accommodate and handle various aleatoric and epistemic uncertainty sources arising from the design process and can provide optimal design solutions that are not only cost-effective but also have higher reliability to cope with severe future uncertainties.

  18. Fuzzy Modeling and Control of HIV Infection

    PubMed Central

    Zarei, Hassan; Kamyad, Ali Vahidian; Heydari, Ali Akbar

    2012-01-01

    The present study proposes a fuzzy mathematical model of HIV infection consisting of a linear fuzzy differential equations (FDEs) system describing the ambiguous immune cells level and the viral load which are due to the intrinsic fuzziness of the immune system's strength in HIV-infected patients. The immune cells in question are considered CD4+ T-cells and cytotoxic T-lymphocytes (CTLs). The dynamic behavior of the immune cells level and the viral load within the three groups of patients with weak, moderate, and strong immune systems are analyzed and compared. Moreover, the approximate explicit solutions of the proposed model are derived using a fitting-based method. In particular, a fuzzy control function indicating the drug dosage is incorporated into the proposed model and a fuzzy optimal control problem (FOCP) minimizing both the viral load and the drug costs is constructed. An optimality condition is achieved as a fuzzy boundary value problem (FBVP). In addition, the optimal fuzzy control function is completely characterized and a numerical solution for the optimality system is computed. PMID:22536298

  19. Design of supply chain in fuzzy environment

    NASA Astrophysics Data System (ADS)

    Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap

    2013-05-01

    Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.

  20. Bayesian Inference: with ecological applications

    USGS Publications Warehouse

    Link, William A.; Barker, Richard J.

    2010-01-01

    This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.

  1. Active inference, communication and hermeneutics.

    PubMed

    Friston, Karl J; Frith, Christopher D

    2015-07-01

    Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others--during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions--both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then--in principle--they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa.

  2. Active inference, communication and hermeneutics☆

    PubMed Central

    Friston, Karl J.; Frith, Christopher D.

    2015-01-01

    Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others – during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions – both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then – in principle – they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa. PMID:25957007

  3. Active inference, communication and hermeneutics.

    PubMed

    Friston, Karl J; Frith, Christopher D

    2015-07-01

    Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others--during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions--both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then--in principle--they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa. PMID:25957007

  4. Fuzzy geometry, entropy, and image information

    NASA Technical Reports Server (NTRS)

    Pal, Sankar K.

    1991-01-01

    Presented here are various uncertainty measures arising from grayness ambiguity and spatial ambiguity in an image, and their possible applications as image information measures. Definitions are given of an image in the light of fuzzy set theory, and of information measures and tools relevant for processing/analysis e.g., fuzzy geometrical properties, correlation, bound functions and entropy measures. Also given is a formulation of algorithms along with management of uncertainties for segmentation and object extraction, and edge detection. The output obtained here is both fuzzy and nonfuzzy. Ambiguity in evaluation and assessment of membership function are also described.

  5. Fuzzy Hybrid Deliberative/Reactive Paradigm (FHDRP)

    NASA Technical Reports Server (NTRS)

    Sarmadi, Hengameth

    2004-01-01

    This work aims to introduce a new concept for incorporating fuzzy sets in hybrid deliberative/reactive paradigm. After a brief review on basic issues of hybrid paradigm the definition of agent-based fuzzy hybrid paradigm, which enables the agents to proceed and extract their behavior through quantitative numerical and qualitative knowledge and to impose their decision making procedure via fuzzy rule bank, is discussed. Next an example performs a more applied platform for the developed approach and finally an overview of the corresponding agents architecture enhances agents logical framework.

  6. Adaptive Fuzzy Systems in Computational Intelligence

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1996-01-01

    In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.

  7. Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.

    PubMed

    Carrascal, A; Manrique, D; Ríos, J; Rossi, C

    2003-01-01

    This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.

  8. Genetic Algorithm for Solving Fuzzy Shortest Path Problem in a Network with mixed fuzzy arc lengths

    NASA Astrophysics Data System (ADS)

    Mahdavi, Iraj; Tajdin, Ali; Hassanzadeh, Reza; Mahdavi-Amiri, Nezam; Shafieian, Hosna

    2011-06-01

    We are concerned with the design of a model and an algorithm for computing a shortest path in a network having various types of fuzzy arc lengths. First, we develop a new technique for the addition of various fuzzy numbers in a path using α -cuts by proposing a linear least squares model to obtain membership functions for the considered additions. Then, using a recently proposed distance function for comparison of fuzzy numbers. we propose a new approach to solve the fuzzy APSPP using of genetic algorithm. Examples are worked out to illustrate the applicability of the proposed model.

  9. Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

    PubMed Central

    Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari

    2014-01-01

    A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962

  10. FUZZY SUPERNOVA TEMPLATES. I. CLASSIFICATION

    SciTech Connect

    Rodney, Steven A.; Tonry, John L. E-mail: jt@ifa.hawaii.ed

    2009-12-20

    Modern supernova (SN) surveys are now uncovering stellar explosions at rates that far surpass what the world's spectroscopic resources can handle. In order to make full use of these SN data sets, it is necessary to use analysis methods that depend only on the survey photometry. This paper presents two methods for utilizing a set of SN light-curve templates to classify SN objects. In the first case, we present an updated version of the Bayesian Adaptive Template Matching program (BATM). To address some shortcomings of that strictly Bayesian approach, we introduce a method for Supernova Ontology with Fuzzy Templates (SOFT), which utilizes fuzzy set theory for the definition and combination of SN light-curve models. For well-sampled light curves with a modest signal-to-noise ratio (S/N >10), the SOFT method can correctly separate thermonuclear (Type Ia) SNe from core collapse SNe with >=98% accuracy. In addition, the SOFT method has the potential to classify SNe into sub-types, providing photometric identification of very rare or peculiar explosions. The accuracy and precision of the SOFT method are verified using Monte Carlo simulations as well as real SN light curves from the Sloan Digital Sky Survey and the SuperNova Legacy Survey. In a subsequent paper, the SOFT method is extended to address the problem of parameter estimation, providing estimates of redshift, distance, and host galaxy extinction without any spectroscopy.

  11. Fuzzy α-minimum spanning tree problem: definition and solutions

    NASA Astrophysics Data System (ADS)

    Zhou, Jian; Chen, Lu; Wang, Ke; Yang, Fan

    2016-04-01

    In this paper, the minimum spanning tree problem is investigated on the graph with fuzzy edge weights. The notion of fuzzy ? -minimum spanning tree is presented based on the credibility measure, and then the solutions of the fuzzy ? -minimum spanning tree problem are discussed under different assumptions. First, we respectively, assume that all the edge weights are triangular fuzzy numbers and trapezoidal fuzzy numbers and prove that the fuzzy ? -minimum spanning tree problem can be transformed to a classical problem on a crisp graph in these two cases, which can be solved by classical algorithms such as the Kruskal algorithm and the Prim algorithm in polynomial time. Subsequently, as for the case that the edge weights are general fuzzy numbers, a fuzzy simulation-based genetic algorithm using Prüfer number representation is designed for solving the fuzzy ? -minimum spanning tree problem. Some numerical examples are also provided for illustrating the effectiveness of the proposed solutions.

  12. Optimal inference with suboptimal models: Addiction and active Bayesian inference

    PubMed Central

    Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl

    2015-01-01

    When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321

  13. Improving land resource evaluation using fuzzy neural network ensembles

    USGS Publications Warehouse

    XUE, Y.-J.; HU, Y.-M.; Liu, S.-G.; YANG, J.-F.; CHEN, Q.-C.; BAO, S.-T.

    2007-01-01

    Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. ?? 2007 Soil Science Society of China.

  14. Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity

    PubMed Central

    Chen, Xing; Clarence Yan, Chenggang; Luo, Cai; Ji, Wen; Zhang, Yongdong; Dai, Qionghai

    2015-01-01

    Increasing evidence has indicated that plenty of lncRNAs play important roles in many critical biological processes. Developing powerful computational models to construct lncRNA functional similarity network based on heterogeneous biological datasets is one of the most important and popular topics in the fields of both lncRNAs and complex diseases. Functional similarity network consturction could benefit the model development for both lncRNA function inference and lncRNA-disease association identification. However, little effort has been attempted to analysis and calculate lncRNA functional similarity on a large scale. In this study, based on the assumption that functionally similar lncRNAs tend to be associated with similar diseases, we developed two novel lncRNA functional similarity calculation models (LNCSIM). LNCSIM was evaluated by introducing similarity scores into the model of Laplacian Regularized Least Squares for LncRNA–Disease Association (LRLSLDA) for lncRNA-disease association prediction. As a result, new predictive models improved the performance of LRLSLDA in the leave-one-out cross validation of various known lncRNA-disease associations datasets. Furthermore, some of the predictive results for colorectal cancer and lung cancer were verified by independent biological experimental studies. It is anticipated that LNCSIM could be a useful and important biological tool for human disease diagnosis, treatment, and prevention. PMID:26061969

  15. Fuzzy logic for personalized healthcare and diagnostics: FuzzyApp--a fuzzy logic based allergen-protein predictor.

    PubMed

    Saravanan, Vijayakumar; Lakshmi, P T V

    2014-09-01

    The path to personalized medicine demands the use of new and customized biopharmaceutical products containing modified proteins. Hence, assessment of these products for allergenicity becomes mandatory before they are introduced as therapeutics. Despite the availability of different tools to predict the allergenicity of proteins, it remains challenging to predict the allergens and nonallergens, when they share significant sequence similarity with known nonallergens and allergens, respectively. Hence, we propose "FuzzyApp," a novel fuzzy rule based system to evaluate the quality of the query protein to be an allergen. It measures the allergenicity of the protein based on the fuzzy IF-THEN rules derived from five different modules. On various datasets, FuzzyApp outperformed other existing methods and retained balance between sensitivity and specificity, with positive Mathew's correlation coefficient. The high specificity of allergen-like putative nonallergens (APN) revealed the FuzzyApp's capability in distinguishing the APN from allergens. In addition, the error analysis and whole proteome dataset analysis suggest the efficiency and consistency of the proposed method. Further, FuzzyApp predicted the Tropomyosin from various allergenic and nonallergenic sources accurately. The web service created allows batch sequence submission, and outputs the result as readable sentences rather than values alone, which assists the user in understanding why and what features are responsible for the prediction. FuzzyApp is implemented using PERL CGI and is freely accessible at http://fuzzyapp.bicpu.edu.in/predict.php . We suggest the use of Fuzzy logic has much potential in biomarker and personalized medicine research to enhance predictive capabilities of post-genomics diagnostics.

  16. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    PubMed Central

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  17. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    PubMed

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  18. Fuzzy Q-Learning for Generalization of Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1996-01-01

    Fuzzy Q-Learning, introduced earlier by the author, is an extension of Q-Learning into fuzzy environments. GARIC is a methodology for fuzzy reinforcement learning. In this paper, we introduce GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Q-Learning and at the local level, each agent learns and operates based on GARIC. GARIC-Q improves the speed and applicability of Fuzzy Q-Learning through generalization of input space by using fuzzy rules and bridges the gap between Q-Learning and rule based intelligent systems.

  19. Fuzzy controllers and fuzzy expert systems: industrial applications of fuzzy technology

    NASA Astrophysics Data System (ADS)

    Bonissone, Piero P.

    1995-06-01

    We will provide a brief description of the field of approximate reasoning systems, with a particular emphasis on the development of fuzzy logic control (FLC). FLC technology has drastically reduced the development time and deployment cost for the synthesis of nonlinear controllers for dynamic systems. As a result we have experienced an increased number of FLC applications. In a recently published paper we have illustrated some of our efforts in FLC technology transfer, covering projects in turboshaft aircraft engine control, stream turbine startup, steam turbine cycling optimization, resonant converter power supply control, and data-induced modeling of the nonlinear relationship between process variable in a rolling mill stand. These applications will be illustrated in the oral presentation. In this paper, we will compare these applications in a cost/complexity framework, and examine the driving factors that led to the use of FLCs in each application. We will emphasize the role of fuzzy logic in developing supervisory controllers and in maintaining explicit the tradeoff criteria used to manage multiple control strategies. Finally, we will describe some of our FLC technology research efforts in automatic rule base tuning and generation, leading to a suite of programs for reinforcement learning, supervised learning, genetic algorithms, steepest descent algorithms, and rule clustering.

  20. Japanese advances in fuzzy systems research

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel G.

    1992-07-01

    During this past summer (1991), I spent two months on an appointment as visiting researcher at Kansai University, Osaka, Japan, and five weeks at the Laboratory for International Fuzzy Engineering Research (LIFE), in Yokohama. Part of the expenses for the time in Osaka, and all the expenses for the visit at LIFE, were covered by ONR. While there I met with most of the key researchers in both fuzzy systems and case-based reasoning. This involved trips to numerous universities and research laboratories at Matsushita/Panasonic, Omron, and Hitachi Corporations. In addition, I spent three days at the Fuzzy Logic Systems Institute (FLSI), Iizuka, and I attended the annual meeting of the Japan Society for Fuzzy Theory and Research (SOFT-91) in Nagoya. The following report elaborates what I learned as a result of those activities.