Djukanovic, M.B.; Calovic, M.S.; Vesovic, B.V.; Sobajic, D.J.
1997-12-01
This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.
NASA Astrophysics Data System (ADS)
Mekanik, F.; Imteaz, M. A.; Talei, A.
2016-05-01
Accurate seasonal rainfall forecasting is an important step in the development of reliable runoff forecast models. The large scale climate modes affecting rainfall in Australia have recently been proven useful in rainfall prediction problems. In this study, adaptive network-based fuzzy inference systems (ANFIS) models are developed for the first time for southeast Australia in order to forecast spring rainfall. The models are applied in east, center and west Victoria as case studies. Large scale climate signals comprising El Nino Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Inter-decadal Pacific Ocean (IPO) are selected as rainfall predictors. Eight models are developed based on single climate modes (ENSO, IOD, and IPO) and combined climate modes (ENSO-IPO and ENSO-IOD). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson correlation coefficient (r) and root mean square error in probability (RMSEP) skill score are used to evaluate the performance of the proposed models. The predictions demonstrate that ANFIS models based on individual IOD index perform superior in terms of RMSE, MAE and r to the models based on individual ENSO indices. It is further discovered that IPO is not an effective predictor for the region and the combined ENSO-IOD and ENSO-IPO predictors did not improve the predictions. In order to evaluate the effectiveness of the proposed models a comparison is conducted between ANFIS models and the conventional Artificial Neural Network (ANN), the Predictive Ocean Atmosphere Model for Australia (POAMA) and climatology forecasts. POAMA is the official dynamic model used by the Australian Bureau of Meteorology. The ANFIS predictions certify a superior performance for most of the region compared to ANN and climatology forecasts. POAMA performs better in regards to RMSE and MAE in east and part of central Victoria, however, compared to ANFIS it shows weaker results in west Victoria in terms of prediction errors and RMSEP skill
Multiple Instance Fuzzy Inference
2015-12-02
INFERENCE A novel fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The...fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The framework introduces a...or learned from data. In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are
NASA Astrophysics Data System (ADS)
Akhoondzadeh, M.
2013-09-01
Anomaly detection is extremely important for forecasting the date, location and magnitude of an impending earthquake. In this paper, an Adaptive Network-based Fuzzy Inference System (ANFIS) has been proposed to detect the thermal and Total Electron Content (TEC) anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake jolted in 11 August 2012 NW Iran. ANFIS is the famous hybrid neuro-fuzzy network for modeling the non-linear complex systems. In this study, also the detected thermal and TEC anomalies using the proposed method are compared to the results dealing with the observed anomalies by applying the classical and intelligent methods including Interquartile, Auto-Regressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN) and Support Vector Machine (SVM) methods. The duration of the dataset which is comprised from Aqua-MODIS Land Surface Temperature (LST) night-time snapshot images and also Global Ionospheric Maps (GIM), is 62 days. It can be shown that, if the difference between the predicted value using the ANFIS method and the observed value, exceeds the pre-defined threshold value, then the observed precursor value in the absence of non seismic effective parameters could be regarded as precursory anomaly. For two precursors of LST and TEC, the ANFIS method shows very good agreement with the other implemented classical and intelligent methods and this indicates that ANFIS is capable of detecting earthquake anomalies. The applied methods detected anomalous occurrences 1 and 2 days before the earthquake. This paper indicates that the detection of the thermal and TEC anomalies derive their credibility from the overall efficiencies and potentialities of the five integrated methods.
Single board system for fuzzy inference
NASA Technical Reports Server (NTRS)
Symon, James R.; Watanabe, Hiroyuki
1991-01-01
The very large scale integration (VLSI) implementation of a fuzzy logic inference mechanism allows the use of rule-based control and decision making in demanding real-time applications. Researchers designed a full custom VLSI inference engine. The chip was fabricated using CMOS technology. The chip consists of 688,000 transistors of which 476,000 are used for RAM memory. The fuzzy logic inference engine board system incorporates the custom designed integrated circuit into a standard VMEbus environment. The Fuzzy Logic system uses Transistor-Transistor Logic (TTL) parts to provide the interface between the Fuzzy chip and a standard, double height VMEbus backplane, allowing the chip to perform application process control through the VMEbus host. High level C language functions hide details of the hardware system interface from the applications level programmer. The first version of the board was installed on a robot at Oak Ridge National Laboratory in January of 1990.
Evaluation of fuzzy inference systems using fuzzy least squares
NASA Technical Reports Server (NTRS)
Barone, Joseph M.
1992-01-01
Efforts to develop evaluation methods for fuzzy inference systems which are not based on crisp, quantitative data or processes (i.e., where the phenomenon the system is built to describe or control is inherently fuzzy) are just beginning. This paper suggests that the method of fuzzy least squares can be used to perform such evaluations. Regressing the desired outputs onto the inferred outputs can provide both global and local measures of success. The global measures have some value in an absolute sense, but they are particularly useful when competing solutions (e.g., different numbers of rules, different fuzzy input partitions) are being compared. The local measure described here can be used to identify specific areas of poor fit where special measures (e.g., the use of emphatic or suppressive rules) can be applied. Several examples are discussed which illustrate the applicability of the method as an evaluation tool.
Implementation of Fuzzy Inference Systems Using Neural Network Techniques
1992-03-01
rules required to implement the system, which are usually supplied by ’experts’. One alternative is to use a neural network -type architecture to implement...the fuzzy inference system, and neural network -type training techniques to ’learn’ the control parameters needed by the fuzzy inference system. By...using a generalized version of a neural network , the rules of the fuzzy inference system can be learned without the assistance of experts.
Validity-Guided Fuzzy Clustering Evaluation for Neural Network-Based Time-Frequency Reassignment
NASA Astrophysics Data System (ADS)
Shafi, Imran; Ahmad, Jamil; Shah, SyedIsmail; Ikram, AtaulAziz; Ahmad Khan, Adnan; Bashir, Sajid
2010-12-01
This paper describes the validity-guided fuzzy clustering evaluation for optimal training of localized neural networks (LNNs) used for reassigning time-frequency representations (TFRs). Our experiments show that the validity-guided fuzzy approach ameliorates the difficulty of choosing correct number of clusters and in conjunction with neural network-based processing technique utilizing a hybrid approach can effectively reduce the blur in the spectrograms. In the course of every partitioning problem the number of subsets must be given before the calculation, but it is rarely known apriori, in this case it must be searched also with using validity measures. Experimental results demonstrate the effectiveness of the approach.
Prediction of Earth rotation parameters by fuzzy inference systems
NASA Astrophysics Data System (ADS)
Akyilmaz, O.; Kutterer, H.
2004-09-01
The short-term prediction of Earth rotation parameters (ERP) (length-of-day and polar motion) is studied up to 10 days by means of ANFIS (adaptive network based fuzzy inference system). The prediction is then extended to 40 days into the future by using the formerly predicted values as input data. The ERP C04 time series with daily values from the International Earth Rotation Service (IERS) serve as the data base. Well-known effects in the ERP series, such as the impact of the tides of the solid Earth and the oceans or seasonal variations of the atmosphere, were removed a priori from the C04 series. The residual series were used for both training and validation of the network. Different network architectures are discussed and compared in order to optimize the network solution. The results of the prediction are analyzed and compared with those of other methods. Short-term ERP values predicted by ANFIS show root-mean-square errors which are equal to or even lower than those from the other considered methods. The presented method is easy to use.
General inference algorithm of Bayesian networks based on clique tree
NASA Astrophysics Data System (ADS)
Li, Haijun; Liu, Xiao
2008-10-01
A general inference algorithm which based on exact algorithm of clique tree and importance sampling principle was put forward this article. It applied advantages of two algorithms, made information transfer from one clique to another, but don't calculate exact interim result. It calculated and dealt with the information using approximate algorithm, calculated the information from one clique to another using current potential. Because this algorithm was an iterative course of improvement, this continuous ran could increases potential of each clique, and produced much more exact information. Hybrid Bayesian Networks inference algorithm based on general softmax function could deal whit any function for CPD, and could be applicable for any models. Simulation test proved that the effect of classification was fine.
Inference of Gene Regulatory Network Based on Local Bayesian Networks.
Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan
2016-08-01
The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce
The research on high speed underwater target recognition based on fuzzy logic inference
NASA Astrophysics Data System (ADS)
Jiang, Xiang-Dong; Yang, De-Sen; Shi, Sheng-Guo; Li, Si-Chun
2006-06-01
The underwater target recognition is a key technology in acoustic confrontation and underwater defence. In this article, a recognition system based of fuzzy logic inference (FLI) is set up. This system is mainly composed of three parts: the fuzzy input module, the fuzzy logic inference module with a set of inference rules and the de-fuzzy output module. The inference result shows the recognition system is effective in most conditions.
Structure identification in fuzzy inference using reinforcement learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1993-01-01
In our previous work on the GARIC architecture, we have shown that the system can start with surface structure of the knowledge base (i.e., the linguistic expression of the rules) and learn the deep structure (i.e., the fuzzy membership functions of the labels used in the rules) by using reinforcement learning. Assuming the surface structure, GARIC refines the fuzzy membership functions used in the consequents of the rules using a gradient descent procedure. This hybrid fuzzy logic and reinforcement learning approach can learn to balance a cart-pole system and to backup a truck to its docking location after a few trials. In this paper, we discuss how to do structure identification using reinforcement learning in fuzzy inference systems. This involves identifying both surface as well as deep structure of the knowledge base. The term set of fuzzy linguistic labels used in describing the values of each control variable must be derived. In this process, splitting a label refers to creating new labels which are more granular than the original label and merging two labels creates a more general label. Splitting and merging of labels directly transform the structure of the action selection network used in GARIC by increasing or decreasing the number of hidden layer nodes.
A fuzzy inference system to evaluate contract service provider performance.
Cruz, Antonio Miguel; Denis, Ernesto Rodriguez
2005-01-01
This paper puts forward a fuzzy inference system for evaluating the quality performance of service contract providers. An Application Service Provider was designed and put online, featuring surveys to establish the most useful indicators to evaluate the quality of the service. This model was implemented in 10 separate hospitals. As a result, the service cost-acquisition cost ratio in these cases was reduced from 16.14% to 6.09% in the period 2001-January 2003.
HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
Kim, J; Kasabov, N
1999-11-01
This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.
Modeling urban air pollution with optimized hierarchical fuzzy inference system.
Tashayo, Behnam; Alimohammadi, Abbas
2016-10-01
Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.
Prediction of Chemical-Protein Interactions Network with Weighted Network-Based Inference Method
Cheng, Feixiong; Zhou, Yadi; Li, Weihua; Liu, Guixia; Tang, Yun
2012-01-01
Chemical-protein interaction (CPI) is the central topic of target identification and drug discovery. However, large scale determination of CPI is a big challenge for in vitro or in vivo experiments, while in silico prediction shows great advantages due to low cost and high accuracy. On the basis of our previous drug-target interaction prediction via network-based inference (NBI) method, we further developed node- and edge-weighted NBI methods for CPI prediction here. Two comprehensive CPI bipartite networks extracted from ChEMBL database were used to evaluate the methods, one containing 17,111 CPI pairs between 4,741 compounds and 97 G protein-coupled receptors, the other including 13,648 CPI pairs between 2,827 compounds and 206 kinases. The range of the area under receiver operating characteristic curves was 0.73 to 0.83 for the external validation sets, which confirmed the reliability of the prediction. The weak-interaction hypothesis in CPI network was identified by the edge-weighted NBI method. Moreover, to validate the methods, several candidate targets were predicted for five approved drugs, namely imatinib, dasatinib, sertindole, olanzapine and ziprasidone. The molecular hypotheses and experimental evidence for these predictions were further provided. These results confirmed that our methods have potential values in understanding molecular basis of drug polypharmacology and would be helpful for drug repositioning. PMID:22815915
Fuzzy knowledge base construction through belief networks based on Lukasiewicz logic
NASA Technical Reports Server (NTRS)
Lara-Rosano, Felipe
1992-01-01
In this paper, a procedure is proposed to build a fuzzy knowledge base founded on fuzzy belief networks and Lukasiewicz logic. Fuzzy procedures are developed to do the following: to assess the belief values of a consequent, in terms of the belief values of its logical antecedents and the belief value of the corresponding logical function; and to update belief values when new evidence is available.
NASA Astrophysics Data System (ADS)
Lin, Cheng-Jian; Lee, Chi-Yung
2010-04-01
This article introduces a recurrent fuzzy neural network based on improved particle swarm optimisation (IPSO) for non-linear system control. An IPSO method which consists of the modified evolutionary direction operator (MEDO) and the Particle Swarm Optimisation (PSO) is proposed in this article. A MEDO combining the evolutionary direction operator and the migration operation is also proposed. The MEDO will improve the global search solution. Experimental results have shown that the proposed IPSO method controls the magnetic levitation system and the planetary train type inverted pendulum system better than the traditional PSO and the genetic algorithm methods.
Zhang, Dawei; Han, Qing-Long; Jia, Xinchun
2015-08-01
This paper investigates network-based output tracking control for a T-S fuzzy system that can not be stabilized by a nondelayed fuzzy static output feedback controller, but can be stabilized by a delayed fuzzy static output feedback controller. By intentionally introducing a communication network that produces proper network-induced delays in the feedback control loop, a stable and satisfactory tracking control can be ensured for the T-S fuzzy system. Due to the presence of network-induced delays, the fuzzy system and the fuzzy tracking controller operate in an asynchronous way. Taking the asynchronous operation and network-induced delays into consideration, the network-based tracking control system is modeled as an asynchronous T-S fuzzy system with an interval time-varying delay. A new delay-dependent criterion for L2 -gain tracking performance is derived by using the deviation bounds of asynchronous normalized membership functions and a complete Lyapunov-Krasovskii functional. Applying a particle swarm optimization technique with the feasibility of the derived criterion, a novel design algorithm is presented to determine the minimum L2 -gain tracking performance and control gains simultaneously. The effectiveness of the proposed method is illustrated by performing network-based output tracking control of a Duffing-Van der Pol's oscillator.
The application of fuzzy Delphi and fuzzy inference system in supplier ranking and selection
NASA Astrophysics Data System (ADS)
Tahriri, Farzad; Mousavi, Maryam; Hozhabri Haghighi, Siamak; Zawiah Md Dawal, Siti
2014-06-01
In today's highly rival market, an effective supplier selection process is vital to the success of any manufacturing system. Selecting the appropriate supplier is always a difficult task because suppliers posses varied strengths and weaknesses that necessitate careful evaluations prior to suppliers' ranking. This is a complex process with many subjective and objective factors to consider before the benefits of supplier selection are achieved. This paper identifies six extremely critical criteria and thirteen sub-criteria based on the literature. A new methodology employing those criteria and sub-criteria is proposed for the assessment and ranking of a given set of suppliers. To handle the subjectivity of the decision maker's assessment, an integration of fuzzy Delphi with fuzzy inference system has been applied and a new ranking method is proposed for supplier selection problem. This supplier selection model enables decision makers to rank the suppliers based on three classifications including "extremely preferred", "moderately preferred", and "weakly preferred". In addition, in each classification, suppliers are put in order from highest final score to the lowest. Finally, the methodology is verified and validated through an example of a numerical test bed.
Stereo viewing 3-component, planar PIV utilizing fuzzy inference
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1996-01-01
An all electronic 3-D Digital Particle Image Velocimetry (DPIV) system has been developed for use in high velocity (supersonic) flows. Two high resolution CCD cameras mounted in a stereo viewing configuration are used to determine the out-of-plane velocity component from the difference of the in-plane velocity measurements. Double exposure image frames are acquired and Fuzzy inference techniques are used to maximize the validity of the velocity estimates obtained from the auto-correlation analysis. The CCD cameras are tilted relative to their respective lens axes to satisfy Scheimpflug's condition. Tilting the camera film plane ensures that the entire image plane is in focus. Perspective distortion still results, but can be corrected by proper calibration of the optical system. A calibration fixture is used to determine the experimental setup parameters and to assess the accuracy to which the z-plane displacements can be estimated. The details of the calibration fixture and procedure are discussed in the text. A pair of pulsed Nd:YAG lasers operating at 532 nm are used to illuminate the seeded flow from a convergent nozzle operated in an underexpanded condition. The light sheet was oriented perpendicular to the nozzle flow, yielding planar cross-sections of the 3-component velocity field at several axial stations. The key features of the supersonic jet are readily observed in the cross-plane vector plots.
Classification of Microarray Data Using Kernel Fuzzy Inference System.
Kumar, Mukesh; Kumar Rath, Santanu
2014-01-01
The DNA microarray classification technique has gained more popularity in both research and practice. In real data analysis, such as microarray data, the dataset contains a huge number of insignificant and irrelevant features that tend to lose useful information. Classes with high relevance and feature sets with high significance are generally referred for the selected features, which determine the samples classification into their respective classes. In this paper, kernel fuzzy inference system (K-FIS) algorithm is applied to classify the microarray data (leukemia) using t-test as a feature selection method. Kernel functions are used to map original data points into a higher-dimensional (possibly infinite-dimensional) feature space defined by a (usually nonlinear) function ϕ through a mathematical process called the kernel trick. This paper also presents a comparative study for classification using K-FIS along with support vector machine (SVM) for different set of features (genes). Performance parameters available in the literature such as precision, recall, specificity, F-measure, ROC curve, and accuracy are considered to analyze the efficiency of the classification model. From the proposed approach, it is apparent that K-FIS model obtains similar results when compared with SVM model. This is an indication that the proposed approach relies on kernel function.
Annual Rainfall Forecasting by Using Mamdani Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Fallah-Ghalhary, G.-A.; Habibi Nokhandan, M.; Mousavi Baygi, M.
2009-04-01
Long-term rainfall prediction is very important to countries thriving on agro-based economy. In general, climate and rainfall are highly non-linear phenomena in nature giving rise to what is known as "butterfly effect". The parameters that are required to predict the rainfall are enormous even for a short period. Soft computing is an innovative approach to construct computationally intelligent systems that are supposed to possess humanlike expertise within a specific domain, adapt themselves and learn to do better in changing environments, and explain how they make decisions. Unlike conventional artificial intelligence techniques the guiding principle of soft computing is to exploit tolerance for imprecision, uncertainty, robustness, partial truth to achieve tractability, and better rapport with reality. In this paper, 33 years of rainfall data analyzed in khorasan state, the northeastern part of Iran situated at latitude-longitude pairs (31°-38°N, 74°- 80°E). this research attempted to train Fuzzy Inference System (FIS) based prediction models with 33 years of rainfall data. For performance evaluation, the model predicted outputs were compared with the actual rainfall data. Simulation results reveal that soft computing techniques are promising and efficient. The test results using by FIS model showed that the RMSE was obtained 52 millimeter.
Automated interpretation of LIBS spectra using a fuzzy logic inference engine.
Hatch, Jeremy J; McJunkin, Timothy R; Hanson, Cynthia; Scott, Jill R
2012-03-01
Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. Fuzzy logic inference rules were developed using methodology that includes data mining methods and operator expertise to differentiate between various copper-containing and stainless steel alloys as well as unknowns. Results using the fuzzy logic inference engine indicate a high degree of confidence in spectral assignment.
Assessing water quality in rivers with fuzzy inference systems: a case study.
Ocampo-Duque, William; Ferré-Huguet, Núria; Domingo, José L; Schuhmacher, Marta
2006-08-01
In recent years, fuzzy-logic-based methods have demonstrated to be appropriated to address uncertainty and subjectivity in environmental problems. In the present study, a methodology based on fuzzy inference systems (FIS) to assess water quality is proposed. A water quality index calculated with fuzzy reasoning has been developed. The relative importance of water quality indicators involved in the fuzzy inference process has been dealt with a multi-attribute decision-aiding method. The potential application of the fuzzy index has been tested with a case study. A data set collected from the Ebro River (Spain) by two different environmental protection agencies has been used. The current findings, managed within a geographic information system, clearly agree with official reports and expert opinions about the pollution problems in the studied area. Therefore, this methodology emerges as a suitable and alternative tool to be used in developing effective water management plans.
Neural-network-based fuzzy logic control system with applications on compliant robot control
NASA Astrophysics Data System (ADS)
Hor, MawKae; Lu, Hui L.
1994-10-01
In view of the success of neural network applications in inverted pendulum control, speech recognition, and other problem solving, we believe that one could inject the noise removing concepts and learning spirits into the algorithm in constructing the neural networks and apply it to the various tasks such as compliant coordinated motion using multiple robots. Based on the fuzzy logic, a fuzzy logical control system is a logical system which is much closer to human thinking than any other logical systems. During recent years, fuzzy logic control has emerged as a fruitful area in applications, especially the applications lacking quantitative data regarding the input-output relations. Whereas, the connectionist model injects the learning ability to the fuzzy logic system. This model, proposed by Lin and Lee, is a connected neural network that embedded the fuzzy rules in the architecture. Since this model is general enough and we expect the embedded fuzzy concepts can solve the problems caused by the defective training data, it is chosen as our base structure. Appropriate modifications have been made to this model to reflect the real situations encountered in the robot applications. Our goal is to control two different types of robots for coordinated motion using sensory feedback information.
NASA Astrophysics Data System (ADS)
Rajabi, Mohammad Mahdi; Ataie-Ashtiani, Behzad
2016-05-01
Bayesian inference has traditionally been conceived as the proper framework for the formal incorporation of expert knowledge in parameter estimation of groundwater models. However, conventional Bayesian inference is incapable of taking into account the imprecision essentially embedded in expert provided information. In order to solve this problem, a number of extensions to conventional Bayesian inference have been introduced in recent years. One of these extensions is 'fuzzy Bayesian inference' which is the result of integrating fuzzy techniques into Bayesian statistics. Fuzzy Bayesian inference has a number of desirable features which makes it an attractive approach for incorporating expert knowledge in the parameter estimation process of groundwater models: (1) it is well adapted to the nature of expert provided information, (2) it allows to distinguishably model both uncertainty and imprecision, and (3) it presents a framework for fusing expert provided information regarding the various inputs of the Bayesian inference algorithm. However an important obstacle in employing fuzzy Bayesian inference in groundwater numerical modeling applications is the computational burden, as the required number of numerical model simulations often becomes extremely exhaustive and often computationally infeasible. In this paper, a novel approach of accelerating the fuzzy Bayesian inference algorithm is proposed which is based on using approximate posterior distributions derived from surrogate modeling, as a screening tool in the computations. The proposed approach is first applied to a synthetic test case of seawater intrusion (SWI) in a coastal aquifer. It is shown that for this synthetic test case, the proposed approach decreases the number of required numerical simulations by an order of magnitude. Then the proposed approach is applied to a real-world test case involving three-dimensional numerical modeling of SWI in Kish Island, located in the Persian Gulf. An expert
Zhang, Limao; Wu, Xianguo; Qin, Yawei; Skibniewski, Miroslaw J; Liu, Wenli
2016-02-01
Tunneling excavation is bound to produce significant disturbances to surrounding environments, and the tunnel-induced damage to adjacent underground buried pipelines is of considerable importance for geotechnical practice. A fuzzy Bayesian networks (FBNs) based approach for safety risk analysis is developed in this article with detailed step-by-step procedures, consisting of risk mechanism analysis, the FBN model establishment, fuzzification, FBN-based inference, defuzzification, and decision making. In accordance with the failure mechanism analysis, a tunnel-induced pipeline damage model is proposed to reveal the cause-effect relationships between the pipeline damage and its influential variables. In terms of the fuzzification process, an expert confidence indicator is proposed to reveal the reliability of the data when determining the fuzzy probability of occurrence of basic events, with both the judgment ability level and the subjectivity reliability level taken into account. By means of the fuzzy Bayesian inference, the approach proposed in this article is capable of calculating the probability distribution of potential safety risks and identifying the most likely potential causes of accidents under both prior knowledge and given evidence circumstances. A case concerning the safety analysis of underground buried pipelines adjacent to the construction of the Wuhan Yangtze River Tunnel is presented. The results demonstrate the feasibility of the proposed FBN approach and its application potential. The proposed approach can be used as a decision tool to provide support for safety assurance and management in tunnel construction, and thus increase the likelihood of a successful project in a complex project environment.
Automatic Road Gap Detection Using Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Hashemi, S.; Valadan Zoej, M. J.; Mokhtarzadeh, M.
2011-09-01
Automatic feature extraction from aerial and satellite images is a high-level data processing which is still one of the most important research topics of the field. In this area, most of the researches are focused on the early step of road detection, where road tracking methods, morphological analysis, dynamic programming and snakes, multi-scale and multi-resolution methods, stereoscopic and multi-temporal analysis, hyper spectral experiments, are some of the mature methods in this field. Although most researches are focused on detection algorithms, none of them can extract road network perfectly. On the other hand, post processing algorithms accentuated on the refining of road detection results, are not developed as well. In this article, the main is to design an intelligent method to detect and compensate road gaps remained on the early result of road detection algorithms. The proposed algorithm consists of five main steps as follow: 1) Short gap coverage: In this step, a multi-scale morphological is designed that covers short gaps in a hierarchical scheme. 2) Long gap detection: In this step, the long gaps, could not be covered in the previous stage, are detected using a fuzzy inference system. for this reason, a knowledge base consisting of some expert rules are designed which are fired on some gap candidates of the road detection results. 3) Long gap coverage: In this stage, detected long gaps are compensated by two strategies of linear and polynomials for this reason, shorter gaps are filled by line fitting while longer ones are compensated by polynomials.4) Accuracy assessment: In order to evaluate the obtained results, some accuracy assessment criteria are proposed. These criteria are obtained by comparing the obtained results with truly compensated ones produced by a human expert. The complete evaluation of the obtained results whit their technical discussions are the materials of the full paper.
NASA Astrophysics Data System (ADS)
Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer
2015-03-01
Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.
Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Akhavan, P.; Karimi, M.; Pahlavani, P.
2014-10-01
Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.
Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System
Hosseini, Monireh Sheikh; Zekri, Maryam
2012-01-01
Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054
Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System.
Hosseini, Monireh Sheikh; Zekri, Maryam
2012-01-01
Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated.
A novel prediction method for back pressure based on fuzzy inference theory
NASA Astrophysics Data System (ADS)
Chen, Guanghua; Zhang, Kunting; Qi, Hongyuan; Nan, Bingshen
2017-01-01
In order to solve the problem of back pressure set unreasonable in direct air-cooling unit, a back-pressure-fuzzy-inference machine is established in this paper, of which the environmental temperature and wind speed are the inputs, and the optimal back pressure is the output. The feasibility of the novel method is verified by simulation and experimental results, and the accuracy of back pressure fuzzy prediction can satisfy the operating requirements.
An integrated fuzzy inference based monitoring, diagnostic, and prognostic system
NASA Astrophysics Data System (ADS)
Garvey, Dustin
To date the majority of the research related to the development and application of monitoring, diagnostic, and prognostic systems has been exclusive in the sense that only one of the three areas is the focus of the work. While previous research progresses each of the respective fields, the end result is a variable "grab bag" of techniques that address each problem independently. Also, the new field of prognostics is lacking in the sense that few methods have been proposed that produce estimates of the remaining useful life (RUL) of a device or can be realistically applied to real-world systems. This work addresses both problems by developing the nonparametric fuzzy inference system (NFIS) which is adapted for monitoring, diagnosis, and prognosis and then proposing the path classification and estimation (PACE) model that can be used to predict the RUL of a device that does or does not have a well defined failure threshold. To test and evaluate the proposed methods, they were applied to detect, diagnose, and prognose faults and failures in the hydraulic steering system of a deep oil exploration drill. The monitoring system implementing an NFIS predictor and sequential probability ratio test (SPRT) detector produced comparable detection rates to a monitoring system implementing an autoassociative kernel regression (AAKR) predictor and SPRT detector, specifically 80% vs. 85% for the NFIS and AAKR monitor respectively. It was also found that the NFIS monitor produced fewer false alarms. Next, the monitoring system outputs were used to generate symptom patterns for k-nearest neighbor (kNN) and NFIS classifiers that were trained to diagnose different fault classes. The NFIS diagnoser was shown to significantly outperform the kNN diagnoser, with overall accuracies of 96% vs. 89% respectively. Finally, the PACE implementing the NFIS was used to predict the RUL for different failure modes. The errors of the RUL estimates produced by the PACE-NFIS prognosers ranged from 1
Network-based inference of protein activity helps functionalize the genetic landscape of cancer
Alvarez, Mariano J.; Shen, Yao; Giorgi, Federico M.; Lachmann, Alexander; Ding, B. Belinda; Ye, B. Hilda; Califano, Andrea
2016-01-01
Identifying the multiple dysregulated oncoproteins that contribute to tumorigenesis in a given patient is crucial for developing personalized treatment plans. However, accurate inference of aberrant protein activity in biological samples is still challenging as genetic alterations are only partially predictive and direct measurements of protein activity are generally not feasible. To address this problem we introduce and experimentally validate a new algorithm, VIPER (Virtual Inference of Protein-activity by Enriched Regulon analysis), for the accurate assessment of protein activity from gene expression data. We use VIPER to evaluate the functional relevance of genetic alterations in regulatory proteins across all TCGA samples. In addition to accurately inferring aberrant protein activity induced by established mutations, we also identify a significant fraction of tumors with aberrant activity of druggable oncoproteins—despite a lack of mutations, and vice-versa. In vitro assays confirmed that VIPER-inferred protein activity outperforms mutational analysis in predicting sensitivity to targeted inhibitors. PMID:27322546
Search by Fuzzy Inference in a Children's Dictionary
ERIC Educational Resources Information Center
St-Jacques, Claude; Barriere, Caroline
2005-01-01
This research aims at promoting the usage of an online children's dictionary within a context of reading comprehension and vocabulary acquisition. Inspired by document retrieval approaches developed in the area of information retrieval (IR) research, we adapt a particular IR strategy, based on fuzzy logic, to a search in the electronic dictionary.…
Fuzzy inference game approach to uncertainty in business decisions and market competitions.
Oderanti, Festus Oluseyi
2013-01-01
The increasing challenges and complexity of business environments are making business decisions and operations more difficult for entrepreneurs to predict the outcomes of these processes. Therefore, we developed a decision support scheme that could be used and adapted to various business decision processes. These involve decisions that are made under uncertain situations such as business competition in the market or wage negotiation within a firm. The scheme uses game strategies and fuzzy inference concepts to effectively grasp the variables in these uncertain situations. The games are played between human and fuzzy players. The accuracy of the fuzzy rule base and the game strategies help to mitigate the adverse effects that a business may suffer from these uncertain factors. We also introduced learning which enables the fuzzy player to adapt over time. We tested this scheme in different scenarios and discover that it could be an invaluable tool in the hand of entrepreneurs that are operating under uncertain and competitive business environments.
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
Seizure detection in intracranial EEG using a fuzzy inference system.
Aarabi, A; Fazel-Rezai, R; Aghakhani, Y
2009-01-01
In this paper, we present a fuzzy rule-based system for the automatic detection of seizures in the intracranial EEG (IEEG) recordings. A total of 302.7 hours of the IEEG with 78 seizures, recorded from 21 patients aged between 10 and 47 years were used for the evaluation of the system. After preprocessing, temporal, spectral, and complexity features were extracted from the segmented IEEGs. The results were thresholded using the statistics of a reference window and integrated spatio-temporally using a fuzzy rule-based decision making system. The system yielded a sensitivity of 98.7%, a false detection rate of 0.27/h, and an average detection latency of 11 s. The results from the automatic system correlate well with the visual analysis of the seizures by the expert. This system may serve as a good seizure detection tool for monitoring long-term IEEG with relatively high sensitivity and low false detection rate.
Real-time fuzzy inference based robot path planning
NASA Technical Reports Server (NTRS)
Pacini, Peter J.; Teichrow, Jon S.
1990-01-01
This project addresses the problem of adaptive trajectory generation for a robot arm. Conventional trajectory generation involves computing a path in real time to minimize a performance measure such as expended energy. This method can be computationally intensive, and it may yield poor results if the trajectory is weakly constrained. Typically some implicit constraints are known, but cannot be encoded analytically. The alternative approach used here is to formulate domain-specific knowledge, including implicit and ill-defined constraints, in terms of fuzzy rules. These rules utilize linguistic terms to relate input variables to output variables. Since the fuzzy rulebase is determined off-line, only high-level, computationally light processing is required in real time. Potential applications for adaptive trajectory generation include missile guidance and various sophisticated robot control tasks, such as automotive assembly, high speed electrical parts insertion, stepper alignment, and motion control for high speed parcel transfer systems.
Landslide Susceptibility Assessment Through Fuzzy Logic Inference System (flis)
NASA Astrophysics Data System (ADS)
Bibi, T.; Gul, Y.; Rahman, A. Abdul; Riaz, M.
2016-09-01
Landslide is among one of the most important natural hazards that lead to modification of the environment. It is a regular feature of a rapidly growing district Mansehra, Pakistan. This caused extensive loss of life and property in the district located at the foothills of Himalaya. Keeping in view the situation it is concluded that besides structural approaches the non-structural approaches such as hazard and risk assessment maps are effective tools to reduce the intensity of damage. A landslide susceptibility map is base for engineering geologists and geomorphologists. However, it is not easy to produce a reliable susceptibility map due to complex nature of landslides. Since 1980s, several mathematical models have been developed to map landslide susceptibility and hazard. Among various models this paper is discussing the effectiveness of fuzzy logic approach for landslide susceptibility mapping in District Mansehra, Pakistan. The factor maps were modified as landslide susceptibility and fuzzy membership functions were assessed for each class. Likelihood ratios are obtained for each class of contributing factors by considering the expert opinion. The fuzzy operators are applied to generate landslide susceptibility maps. According to this map, 17% of the study area is classified as high susceptibility, 32% as moderate susceptibility, 51% as low susceptibility and areas. From the results it is found that the fuzzy model can integrate effectively with various spatial data for landslide hazard mapping, suggestions in this study are hope to be helpful to improve the applications including interpretation, and integration phases in order to obtain an accurate decision supporting layer.
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).
Automated Interpretation of LIBS Spectra using a Fuzzy Logic Inference Engine
Jeremy J. Hatch; Timothy R. McJunkin; Cynthia Hanson; Jill R. Scott
2012-02-01
Automated interpretation of laser-induced breakdown spectroscopy (LIBS) data is necessary due to the plethora of spectra that can be acquired in a relatively short time. However, traditional chemometric and artificial neural network methods that have been employed are not always transparent to a skilled user. A fuzzy logic approach to data interpretation has now been adapted to LIBS spectral interpretation. A fuzzy logic inference engine (FLIE) was used to differentiate between various copper containing and stainless steel alloys as well as unknowns. Results using FLIE indicate a high degree of confidence in spectral assignment.
Inference of Gene Regulatory Networks Based on a Universal Minimum Description Length
2008-01-01
The Boolean network paradigm is a simple and effective way to interpret genomic systems, but discovering the structure of these networks remains a difficult task. The minimum description length (MDL) principle has already been used for inferring genetic regulatory networks from time-series expression data and has proven useful for recovering the directed connections in Boolean networks. However, the existing method uses an ad hoc measure of description length that necessitates a tuning parameter for artificially balancing the model and error costs and, as a result, directly conflicts with the MDL principle's implied universality. In order to surpass this difficulty, we propose a novel MDL-based method in which the description length is a theoretical measure derived from a universal normalized maximum likelihood model. The search space is reduced by applying an implementable analogue of Kolmogorov's structure function. The performance of the proposed method is demonstrated on random synthetic networks, for which it is shown to improve upon previously published network inference algorithms with respect to both speed and accuracy. Finally, it is applied to time-series Drosophila gene expression measurements. PMID:18437238
Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo
This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.
Development of rainfall runoff models using Takagi Sugeno fuzzy inference systems
NASA Astrophysics Data System (ADS)
Jacquin, Alexandra P.; Shamseldin, Asaad Y.
2006-09-01
SummaryThis study explores the application of Takagi-Sugeno fuzzy inference systems to rainfall-runoff modelling. The models developed intend to describe the non-linear relationship between rainfall as input and runoff as output to the real system using a system based approach. Two types of fuzzy models are proposed, where the first type is intended to account for the effect of changes in catchment wetness in the rainfall-runoff transformation and the second type incorporates seasonality as a source of non-linearity in this relationship. The models developed are applied to data from six catchments of diverse climatic characteristics. The results of the fuzzy models are compared with those of the Simple Linear Model, the Linear Perturbation Model and the Nearest Neighbour Linear Perturbation Model, which use similar input information. The results of this study indicate that fuzzy inference systems are a suitable alternative to the traditional methods for modelling the non-linear relationship between rainfall and runoff.
State of the Art of Fuzzy Methods for Gene Regulatory Networks Inference
Al Qazlan, Tuqyah Abdullah; Kara-Mohamed, Chafia
2015-01-01
To address one of the most challenging issues at the cellular level, this paper surveys the fuzzy methods used in gene regulatory networks (GRNs) inference. GRNs represent causal relationships between genes that have a direct influence, trough protein production, on the life and the development of living organisms and provide a useful contribution to the understanding of the cellular functions as well as the mechanisms of diseases. Fuzzy systems are based on handling imprecise knowledge, such as biological information. They provide viable computational tools for inferring GRNs from gene expression data, thus contributing to the discovery of gene interactions responsible for specific diseases and/or ad hoc correcting therapies. Increasing computational power and high throughput technologies have provided powerful means to manage these challenging digital ecosystems at different levels from cell to society globally. The main aim of this paper is to report, present, and discuss the main contributions of this multidisciplinary field in a coherent and structured framework. PMID:25879048
Crop parameters estimation by fuzzy inference system using X-band scatterometer data
NASA Astrophysics Data System (ADS)
Pandey, Abhishek; Prasad, R.; Singh, V. P.; Jha, S. K.; Shukla, K. K.
2013-03-01
Learning fuzzy rule based systems with microwave remote sensing can lead to very useful applications in solving several problems in the field of agriculture. Fuzzy logic provides a simple way to arrive at a definite conclusion based upon imprecise, ambiguous, vague, noisy or missing input information. In the present paper, a subtractive based fuzzy inference system is introduced to estimate the potato crop parameters like biomass, leaf area index, plant height and soil moisture. Scattering coefficient for HH- and VV-polarizations were used as an input in the Fuzzy network. The plant height, biomass, and leaf area index of potato crop and soil moisture measured at its various growth stages were used as the target variables during the training and validation of the network. The estimated values of crop/soil parameters by this methodology are much closer to the experimental values. The present work confirms the estimation abilities of fuzzy subtractive clustering in potato crop parameters estimation. This technique may be useful for the other crops cultivated over regional or continental level.
Karami, Ali; Keiter, Steffen; Hollert, Henner; Courtenay, Simon C
2013-03-01
This study represents a first attempt at applying a fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference system (ANFIS) to the field of aquatic biomonitoring for classification of the dosage and time of benzo[a]pyrene (BaP) injection through selected biomarkers in African catfish (Clarias gariepinus). Fish were injected either intramuscularly (i.m.) or intraperitoneally (i.p.) with BaP. Hepatic glutathione S-transferase (GST) activities, relative visceral fat weights (LSI), and four biliary fluorescent aromatic compounds (FACs) concentrations were used as the inputs in the modeling study. Contradictory rules in FIS and ANFIS models appeared after conversion of bioassay results into human language (rule-based system). A "data trimming" approach was proposed to eliminate the conflicts prior to fuzzification. However, the model produced was relevant only to relatively low exposures to BaP, especially through the i.m. route of exposure. Furthermore, sensitivity analysis was unable to raise the classification rate to an acceptable level. In conclusion, FIS and ANFIS models have limited applications in the field of fish biomarker studies.
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639
AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection.
Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying
2015-07-17
Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes' status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors' detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability.
AF-DHNN: Fuzzy Clustering and Inference-Based Node Fault Diagnosis Method for Fire Detection
Jin, Shan; Cui, Wen; Jin, Zhigang; Wang, Ying
2015-01-01
Wireless Sensor Networks (WSNs) have been utilized for node fault diagnosis in the fire detection field since the 1990s. However, the traditional methods have some problems, including complicated system structures, intensive computation needs, unsteady data detection and local minimum values. In this paper, a new diagnosis mechanism for WSN nodes is proposed, which is based on fuzzy theory and an Adaptive Fuzzy Discrete Hopfield Neural Network (AF-DHNN). First, the original status of each sensor over time is obtained with two features. One is the root mean square of the filtered signal (FRMS), the other is the normalized summation of the positive amplitudes of the difference spectrum between the measured signal and the healthy one (NSDS). Secondly, distributed fuzzy inference is introduced. The evident abnormal nodes’ status is pre-alarmed to save time. Thirdly, according to the dimensions of the diagnostic data, an adaptive diagnostic status system is established with a Fuzzy C-Means Algorithm (FCMA) and Sorting and Classification Algorithm to reducing the complexity of the fault determination. Fourthly, a Discrete Hopfield Neural Network (DHNN) with iterations is improved with the optimization of the sensors’ detected status information and standard diagnostic levels, with which the associative memory is achieved, and the search efficiency is improved. The experimental results show that the AF-DHNN method can diagnose abnormal WSN node faults promptly and effectively, which improves the WSN reliability. PMID:26193280
Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier.
Ibrahim, Sulaimon; Chowriappa, Pradeep; Dua, Sumeet; Acharya, U Rajendra; Noronha, Kevin; Bhandary, Sulatha; Mugasa, Hatwib
2015-12-01
Prolonged diabetes retinopathy leads to diabetes maculopathy, which causes gradual and irreversible loss of vision. It is important for physicians to have a decision system that detects the early symptoms of the disease. This can be achieved by building a classification model using machine learning algorithms. Fuzzy logic classifiers group data elements with a degree of membership in multiple classes by defining membership functions for each attribute. Various methods have been proposed to determine the partitioning of membership functions in a fuzzy logic inference system. A clustering method partitions the membership functions by grouping data that have high similarity into clusters, while an equalized universe method partitions data into predefined equal clusters. The distribution of each attribute determines its partitioning as fine or coarse. A simple grid partitioning partitions each attribute equally and is therefore not effective in handling varying distribution amongst the attributes. A data-adaptive method uses a data frequency-driven approach to partition each attribute based on the distribution of data in that attribute. A data-adaptive neuro-fuzzy inference system creates corresponding rules for both finely distributed and coarsely distributed attributes. This method produced more useful rules and a more effective classification system. We obtained an overall accuracy of 98.55%.
Urban area mapping from polarimetric SAR data using fuzzy inference system
NASA Astrophysics Data System (ADS)
Ahluwalia, Asmeet; Manickam, Surendar; Bhattacharya, Avik; Porwal, Alok
2016-05-01
In this work, we present urban area mapping from full-polarimetric synthetic aperture radar (SAR) data using fuzzy inference system (FIS). In particular, our aim is to utilize the profound knowledge available about scattering mechanism from urban targets to delineate urban environment. In this approach, we have utilized the recently developed polarimetric SAR scattering power decomposition technique (SD-Y4O) given in Bhattacharya et. al. The improved powers along with some other polarimetric parameters were used in this study. A suitable normalization procedure was adapted to handle the skewness in the estimated parameters. The fuzzy if-then rules were constructed from the in-depth knowledge of scattering mechanisms from an urban environment. Suitable methods were introduced to define the fuzzy inference system. The defuzzified membership values were thresholded using an unsupervised clustering method (k-means). The pixels lying in the range [μmax-σ, μmax+σ] corresponds to urban areas where µmax is the largest cluster center and σ is the standard deviation of the cluster corresponding to µmax. The extracted urban area is in visually good agreement with the high resolution optical image. ALOS PALSAR full-polarimetric L-band SAR data has been used in this study.
Na, Man Gyun; Oh, Seungrohk
2002-11-15
A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.
Approximation Of Multi-Valued Inverse Functions Using Clustering And Sugeno Fuzzy Inference
NASA Technical Reports Server (NTRS)
Walden, Maria A.; Bikdash, Marwan; Homaifar, Abdollah
1998-01-01
Finding the inverse of a continuous function can be challenging and computationally expensive when the inverse function is multi-valued. Difficulties may be compounded when the function itself is difficult to evaluate. We show that we can use fuzzy-logic approximators such as Sugeno inference systems to compute the inverse on-line. To do so, a fuzzy clustering algorithm can be used in conjunction with a discriminating function to split the function data into branches for the different values of the forward function. These data sets are then fed into a recursive least-squares learning algorithm that finds the proper coefficients of the Sugeno approximators; each Sugeno approximator finds one value of the inverse function. Discussions about the accuracy of the approximation will be included.
Measure of librarian pressure using fuzzy inference system: A case study in Longyan University
NASA Astrophysics Data System (ADS)
Huang, Jian-Jing
2014-10-01
As the hierarchy of middle managers in college's librarian. They may own much work pressure from their mind. How to adapt psychological problem, control the emotion and keep a good relationship in their work place, it becomes an important issue. Especially, they work in China mainland environment. How estimate the librarians work pressure and improve the quality of service in college libraries. Those are another serious issues. In this article, the authors would like discuss how can we use fuzzy inference to test librarian work pressure.
Dragović, Ivana; Turajlić, Nina; Pilčević, Dejan; Petrović, Bratislav; Radojević, Dragan
2015-01-01
Fuzzy inference systems (FIS) enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD). Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis) the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated), when medical experts are not close at hand. PMID:27069500
Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.
Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir
2015-01-01
Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems.
Use of fuzzy inference system for condition monitoring of induction motor
NASA Astrophysics Data System (ADS)
Janier, Josefina B.; Zaim Zaharia, M. F.; Karim, Samsul Ariffin Abd.
2012-09-01
Three phase induction motors are commonly used in industry due to its robustness, simplicity of its construction and high reliability. The tasks performed by these motors grow increasingly complex because of modern industries hence there is a need to determine the faults. Early detection of faults will reduce an unscheduled machine downtime that can upset production deadlines and may cause heavy financial losses. This paper is focused in developing a computer based system using Fuzzy Inference system's membership function. An unusual increase in vibration of the motor could be an indicator of faulty condition hence the vibration of the motor of an induction motor was used as an input, whereas the output is the motor condition. An inference system of the Fuzzy Logic was created to classify the vibration characteristics of the motor which is called vibration analysis. The system classified the motor of the gas distribution pump condition as from 'acceptable' to 'monitor closely'. The early detection of unusual increase in vibration of the induction motor is an important part of a predictive maintenance for motor driven machinery.
Ling, Steve S H; Nguyen, Hung T
2011-03-01
Hypoglycemia or low blood glucose is dangerous and can result in unconsciousness, seizures, and even death. It is a common and serious side effect of insulin therapy in patients with diabetes. Hypoglycemic monitor is a noninvasive monitor that measures some physiological parameters continuously to provide detection of hypoglycemic episodes in type 1 diabetes mellitus patients (T1DM). Based on heart rate (HR), corrected QT interval of the ECG signal, change of HR, and the change of corrected QT interval, we develop a genetic algorithm (GA)-based multiple regression with fuzzy inference system (FIS) to classify the presence of hypoglycemic episodes. GA is used to find the optimal fuzzy rules and membership functions of FIS and the model parameters of regression method. From a clinical study of 16 children with T1DM, natural occurrence of nocturnal hypoglycemic episodes is associated with HRs and corrected QT intervals. The overall data were organized into a training set (eight patients) and a testing set (another eight patients) randomly selected. The results show that the proposed algorithm performs a good sensitivity with an acceptable specificity.
Subhi Al-batah, Mohammad; Mat Isa, Nor Ashidi; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi
2014-01-01
To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316
Huang, Mingzhi; Ma, Yongwen; Wan, Jinquan; Wang, Yan; Chen, Yangmei; Yoo, Changkyoo
2014-10-01
Due to the inherent complexity, uncertainty, and posterity in operating a biological wastewater treatment process, it is difficult to control nitrogen removal in the biological wastewater treatment process. In order to cope with this problem and perform a cost-effective operation, an integrated neural-fuzzy control system including a fuzzy neural network (FNN) predicted model for forecasting the nitrate concentration of the last anoxic zone and a FNN controller were developed to control the nitrate recirculation flow and realize nitrogen removal in an anoxic/oxic (A/O) process. In order to improve the network performance, a self-learning ability embedded in the FNN model was emphasized for improving the rule extraction performance. The results indicate that reasonable forecasting and control performances had been achieved through the developed control system. The effluent COD, TN, and the operation cost were reduced by about 14, 10.5, and 17 %, respectively.
Reliable Identification of Vehicle-Boarding Actions Based on Fuzzy Inference System
Ahn, DaeHan; Park, Homin; Hwang, Seokhyun; Park, Taejoon
2017-01-01
Existing smartphone-based solutions to prevent distracted driving suffer from inadequate system designs that only recognize simple and clean vehicle-boarding actions, thereby failing to meet the required level of accuracy in real-life environments. In this paper, exploiting unique sensory features consistently monitored from a broad range of complicated vehicle-boarding actions, we propose a reliable and accurate system based on fuzzy inference to classify the sides of vehicle entrance by leveraging built-in smartphone sensors only. The results of our comprehensive evaluation on three vehicle types with four participants demonstrate that the proposed system achieves 91.1%∼94.0% accuracy, outperforming other methods by 26.9%∼38.4% and maintains at least 87.8% accuracy regardless of smartphone positions and vehicle types. PMID:28208795
Reliable Identiﬁcation of Vehicle-Boarding Actions Based on Fuzzy Inference Syste.
Ahn, DaeHan; Park, Homin; Hwang, Seokhyun; Park, Taejoon
2017-02-09
Existing smartphone-based solutions to prevent distracted driving suffer from inadequate system designs that only recognize simple and clean vehicle-boarding actions, thereby failing to meet the required level of accuracy in real-life environments. In this paper, exploiting unique sensory features consistently monitored from a broad range of complicated vehicle-boarding actions, we propose a reliable and accurate system based on fuzzy inference to classify the sides of vehicle entrancebyleveragingbuilt-insmartphonesensorsonly. Theresultsofourcomprehensiveevaluation on three vehicle types with four participants demonstrate that the proposed system achieves 91.1%∼94.0% accuracy, outperforming other methods by 26.9%∼38.4% and maintains at least 87.8 %accuracy regardless of smartphone positions and vehicle types.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
The reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we also use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use two terms interchangeable to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS). This report is the deliverable D3 in our project activity and provides the test results of the fuzzy learning translational controller. This report is organized in six sections. Based on our experience and analysis with the attitude controller, we have modified the basic configuration of the reinforcement learning algorithm in ARIC as described in section 2. The shuttle translational controller and its implementation in fuzzy learning architecture is described in section 3. Two test cases that we have performed are described in section 4. Our results and conclusions are discussed in section 5, and section 6 provides future plans and summary for the project.
Qin, Jiahu; Fu, Weiming; Gao, Huijun; Zheng, Wei Xing
2016-03-03
This paper is concerned with developing a distributed k-means algorithm and a distributed fuzzy c-means algorithm for wireless sensor networks (WSNs) where each node is equipped with sensors. The underlying topology of the WSN is supposed to be strongly connected. The consensus algorithm in multiagent consensus theory is utilized to exchange the measurement information of the sensors in WSN. To obtain a faster convergence speed as well as a higher possibility of having the global optimum, a distributed k-means++ algorithm is first proposed to find the initial centroids before executing the distributed k-means algorithm and the distributed fuzzy c-means algorithm. The proposed distributed k-means algorithm is capable of partitioning the data observed by the nodes into measure-dependent groups which have small in-group and large out-group distances, while the proposed distributed fuzzy c-means algorithm is capable of partitioning the data observed by the nodes into different measure-dependent groups with degrees of membership values ranging from 0 to 1. Simulation results show that the proposed distributed algorithms can achieve almost the same results as that given by the centralized clustering algorithms.
2013-01-01
Background Inference of gene-regulatory networks (GRNs) is important for understanding behaviour and potential treatment of biological systems. Knowledge about GRNs gained from transcriptome analysis can be increased by multiple experiments and/or multiple stimuli. Since GRNs are complex and dynamical, appropriate methods and algorithms are needed for constructing models describing these dynamics. Algorithms based on heuristic approaches reduce the effort in parameter identification and computation time. Results The NetGenerator V2.0 algorithm, a heuristic for network inference, is proposed and described. It automatically generates a system of differential equations modelling structure and dynamics of the network based on time-resolved gene expression data. In contrast to a previous version, the inference considers multi-stimuli multi-experiment data and contains different methods for integrating prior knowledge. The resulting significant changes in the algorithmic procedures are explained in detail. NetGenerator is applied to relevant benchmark examples evaluating the inference for data from experiments with different stimuli. Also, the underlying GRN of chondrogenic differentiation, a real-world multi-stimulus problem, is inferred and analysed. Conclusions NetGenerator is able to determine the structure and parameters of GRNs and their dynamics. The new features of the algorithm extend the range of possible experimental set-ups, results and biological interpretations. Based upon benchmarks, the algorithm provides good results in terms of specificity, sensitivity, efficiency and model fit. PMID:23280066
Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data
Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie
2016-01-01
Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine. PMID:27774993
Knowledge-guided fuzzy logic modeling to infer cellular signaling networks from proteomic data
NASA Astrophysics Data System (ADS)
Liu, Hui; Zhang, Fan; Mishra, Shital Kumar; Zhou, Shuigeng; Zheng, Jie
2016-10-01
Modeling of signaling pathways is crucial for understanding and predicting cellular responses to drug treatments. However, canonical signaling pathways curated from literature are seldom context-specific and thus can hardly predict cell type-specific response to external perturbations; purely data-driven methods also have drawbacks such as limited biological interpretability. Therefore, hybrid methods that can integrate prior knowledge and real data for network inference are highly desirable. In this paper, we propose a knowledge-guided fuzzy logic network model to infer signaling pathways by exploiting both prior knowledge and time-series data. In particular, the dynamic time warping algorithm is employed to measure the goodness of fit between experimental and predicted data, so that our method can model temporally-ordered experimental observations. We evaluated the proposed method on a synthetic dataset and two real phosphoproteomic datasets. The experimental results demonstrate that our model can uncover drug-induced alterations in signaling pathways in cancer cells. Compared with existing hybrid models, our method can model feedback loops so that the dynamical mechanisms of signaling networks can be uncovered from time-series data. By calibrating generic models of signaling pathways against real data, our method supports precise predictions of context-specific anticancer drug effects, which is an important step towards precision medicine.
Video-based cargo fire verification system with fuzzy inference engine for commercial aircraft
NASA Astrophysics Data System (ADS)
Sadok, Mokhtar; Zakrzewski, Radek; Zeliff, Bob
2005-02-01
Conventional smoke detection systems currently installed onboard aircraft are often subject to high rates of false alarms. Under current procedures, whenever an alarm is issued the pilot is obliged to release fire extinguishers and to divert to the nearest airport. Aircraft diversions are costly and dangerous in some situations. A reliable detection system that minimizes false-alarm rate and allows continuous monitoring of cargo compartments is highly desirable. A video-based system has been recently developed by Goodrich Corporation to address this problem. The Cargo Fire Verification System (CFVS) is a multi camera system designed to provide live stream video to the cockpit crew and to perform hotspot, fire, and smoke detection in aircraft cargo bays. In addition to video frames, the CFVS uses other sensor readings to discriminate between genuine events such as fire or smoke and nuisance alarms such as fog or dust. A Mamdani-type fuzzy inference engine is developed to provide approximate reasoning for decision making. In one implementation, Gaussian membership functions for frame intensity-based features, relative humidity, and temperature are constructed using experimental data to form the system inference engine. The CFVS performed better than conventional aircraft smoke detectors in all standardized tests.
Najafi, Shahriar; Flintsch, Gerardo W; Khaleghian, Seyedmeysam
2016-05-01
Minimizing roadway crashes and fatalities is one of the primary objectives of highway engineers, and can be achieved in part through appropriate maintenance practices. Maintaining an appropriate level of friction is a crucial maintenance practice, due to the effect it has on roadway safety. This paper presents a fuzzy logic inference system that predicts the rate of vehicle crashes based on traffic level, speed limit, and surface friction. Mamdani and Sugeno fuzzy controllers were used to develop the model. The application of the proposed fuzzy control system in a real-time slippery road warning system is demonstrated as a proof of concept. The results of this study provide a decision support model for highway agencies to monitor their network's friction and make appropriate judgments to correct deficiencies based on crash risk. Furthermore, this model can be implemented in the connected vehicle environment to warn drivers of potentially slippery locations.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
As part of the RICIS activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This report is deliverable D2 Altitude Control Results and provides the status of the project after four months of activities and outlines the future plans. In section 2 we describe the Fuzzy-Learner system for the attitude control functions. In section 3, we provide the description of test cases and results in a chronological order. In section 4, we have summarized our results and conclusions. Our future plans and recommendations are provided in section 5.
NASA Astrophysics Data System (ADS)
Chen, Ho-Wen; Chang, Ni-Bin; Yu, Ruey-Fang; Huang, Yi-Wen
2009-10-01
This paper presents a neural-fuzzy inference approach to identify the land use and land cover (LULC) patterns in large urban areas with the 8-meter resolution of multi-spectral images collected by Formosat-2 satellite. Texture and feature analyses support the retrieval of fuzzy rules in the context of data mining to discern the embedded LULC patterns via a neural-fuzzy inference approach. The case study for Taichung City in central Taiwan shows the application potential based on five LULC classes. With the aid of integrated fuzzy rules and a neural network model, the optimal weights associated with these achievable rules can be determined with phenomenological and theoretical implications. Through appropriate model training and validation stages with respect to a groundtruth data set, research findings clearly indicate that the proposed remote sensing technique can structure an improved screening and sequencing procedure when selecting rules for LULC classification. There is no limitation of using broad spectral bands for category separation by this method, such as the ability to reliably separate only a few (4-5) classes. This normalized difference vegetation index (NDVI)-based data mining technique has shown potential for LULC pattern recognition in different regions, and is not restricted to this sensor, location or date.
Identifying the multiple dysregulated oncoproteins that contribute to tumorigenesis in a given patient is crucial for developing personalized treatment plans. However, accurate inference of aberrant protein activity in biological samples is still challenging as genetic alterations are only partially predictive and direct measurements of protein activity are generally not feasible.
NASA Astrophysics Data System (ADS)
Mahandrio, Irsantyo; Budi, Andriantama; Liong, The Houw; Purqon, Acep
2015-09-01
The growing patterns in cultural and mining sectors are interesting particularly in developed country such as in Indonesia. Here, we investigate the local characteristics of stocks between the sectors of agriculture and mining which si representing two leading companies and two common companies in these sectors. We analyze the prediction by using Adaptive Neuro Fuzzy Inference System (ANFIS). The type of Fuzzy Inference System (FIS) is Sugeno type with Generalized Bell membership function (Gbell). Our results show that ANFIS is a proper method to predicting the stock market with the RMSE : 0.14% for AALI and 0.093% for SGRO representing the agriculture sectors, meanwhile, 0.073% for ANTM and 0.1107% for MDCO representing the mining sectors.
Technology Transfer Automated Retrieval System (TEKTRAN)
The fuzzy logic algorithm has the ability to describe knowledge in a descriptive human-like manner in the form of simple rules using linguistic variables, and provides a new way of modeling uncertain or naturally fuzzy hydrological processes like non-linear rainfall-runoff relationships. Fuzzy infe...
NASA Astrophysics Data System (ADS)
Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.
2011-04-01
Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.
Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system.
Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise
2016-05-01
In a new approach based on adaptive neuro-fuzzy inference systems (ANFIS), field heart rate (HR) measurements were used to classify work rate into four categories: very light, light, moderate, and heavy. Inter-participant variability (physiological and physical differences) was considered. Twenty-eight participants performed Meyer and Flenghi's step-test and a maximal treadmill test, during which heart rate and oxygen consumption (VO2) were measured. Results indicated that heart rate monitoring (HR, HRmax, and HRrest) and body weight are significant variables for classifying work rate. The ANFIS classifier showed superior sensitivity, specificity, and accuracy compared to current practice using established work rate categories based on percent heart rate reserve (%HRR). The ANFIS classifier showed an overall 29.6% difference in classification accuracy and a good balance between sensitivity (90.7%) and specificity (95.2%) on average. With its ease of implementation and variable measurement, the ANFIS classifier shows potential for widespread use by practitioners for work rate assessment.
A Context-Aware Interactive Health Care System Based on Ontology and Fuzzy Inference.
Chiang, Tzu-Chiang; Liang, Wen-Hua
2015-09-01
In the present society, most families are double-income families, and as the long-term care is seriously short of manpower, it contributes to the rapid development of tele-homecare equipment, and the smart home care system gradually emerges, which assists the elderly or patients with chronic diseases in daily life. This study aims at interaction between persons under care and the system in various living spaces, as based on motion-sensing interaction, and the context-aware smart home care system is proposed. The system stores the required contexts in knowledge ontology, including the physiological information and environmental information of the person under care, as the database of decision. The motion-sensing device enables the person under care to interact with the system through gestures. By the inference mechanism of fuzzy theory, the system can offer advice and rapidly execute service, thus, implementing the EHA. In addition, the system is integrated with the functions of smart phone, tablet PC, and PC, in order that users can implement remote operation and share information regarding the person under care. The health care system constructed in this study enables the decision making system to probe into the health risk of each person under care; then, from the view of preventive medicine, and through a composing system and simulation experimentation, tracks the physiological trend of the person under care, and provides early warning service, thus, promoting smart home care.
NASA Astrophysics Data System (ADS)
El-Sebakhy, Emad A.
2009-09-01
Pressure-volume-temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson-Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.
Jin, Nana; Wu, Deng; Gong, Yonghui; Bi, Xiaoman; Jiang, Hong; Li, Kongning; Wang, Qianghu
2014-01-01
An increasing number of experiments have been designed to detect intracellular and intercellular molecular interactions. Based on these molecular interactions (especially protein interactions), molecular networks have been built for using in several typical applications, such as the discovery of new disease genes and the identification of drug targets and molecular complexes. Because the data are incomplete and a considerable number of false-positive interactions exist, protein interactions from different sources are commonly integrated in network analyses to build a stable molecular network. Although various types of integration strategies are being applied in current studies, the topological properties of the networks from these different integration strategies, especially typical applications based on these network integration strategies, have not been rigorously evaluated. In this paper, systematic analyses were performed to evaluate 11 frequently used methods using two types of integration strategies: empirical and machine learning methods. The topological properties of the networks of these different integration strategies were found to significantly differ. Moreover, these networks were found to dramatically affect the outcomes of typical applications, such as disease gene predictions, drug target detections, and molecular complex identifications. The analysis presented in this paper could provide an important basis for future network-based biological researches. PMID:25243127
Topuz, Emel; van Gestel, Cornelis A M
2016-01-01
The usage of Engineered Nanoparticles (ENPs) in consumer products is relatively new and there is a need to conduct environmental risk assessment (ERA) to evaluate their impacts on the environment. However, alternative approaches are required for ERA of ENPs because of the huge gap in data and knowledge compared to conventional pollutants and their unique properties that make it difficult to apply existing approaches. This study aims to propose an ERA approach for ENPs by integrating Analytical Hierarchy Process (AHP) and fuzzy inference models which provide a systematic evaluation of risk factors and reducing uncertainty about the data and information, respectively. Risk is assumed to be the combination of occurrence likelihood, exposure potential and toxic effects in the environment. A hierarchy was established to evaluate the sub factors of these components. Evaluation was made with fuzzy numbers to reduce uncertainty and incorporate the expert judgements. Overall score of each component was combined with fuzzy inference rules by using expert judgements. Proposed approach reports the risk class and its membership degree such as Minor (0.7). Therefore, results are precise and helpful to determine the risk management strategies. Moreover, priority weights calculated by comparing the risk factors based on their importance for the risk enable users to understand which factor is effective on the risk. Proposed approach was applied for Ag (two nanoparticles with different coating) and TiO2 nanoparticles for different case studies. Results verified the proposed benefits of the approach.
A Fuzzy Inference System for Closed-Loop Deep Brain Stimulation in Parkinson's Disease.
Camara, Carmen; Warwick, Kevin; Bruña, Ricardo; Aziz, Tipu; del Pozo, Francisco; Maestú, Fernando
2015-11-01
Parkinsons disease is a complex neurodegenerative disorder for which patients present many symptoms, tremor being the main one. In advanced stages of the disease, Deep Brain Stimulation is a generalized therapy which can significantly improve the motor symptoms. However despite its beneficial effects on treating the symptomatology, the technique can be improved. One of its main limitations is that the parameters are fixed, and the stimulation is provided uninterruptedly, not taking into account any fluctuation in the patients state. A closed-loop system which provides stimulation by demand would adjust the stimulation to the variations in the state of the patient, stimulating only when it is necessary. It would not only perform a more intelligent stimulation, capable of adapting to the changes in real time, but also extending the devices battery life, thereby avoiding surgical interventions. In this work we design a tool that learns to recognize the principal symptom of Parkinsons disease and particularly the tremor. The goal of the designed system is to detect the moments the patient is suffering from a tremor episode and consequently to decide whether stimulation is needed or not. For that, local field potentials were recorded in the subthalamic nucleus of ten Parkinsonian patients, who were diagnosed with tremor-dominant Parkinsons disease and who underwent surgery for the implantation of a neurostimulator. Electromyographic activity in the forearm was simultaneously recorded, and the relation between both signals was evaluated using two different synchronization measures. The results of evaluating the synchronization indexes on each moment represent the inputs to the designed system. Finally, a fuzzy inference system was applied with the goal of identifying tremor episodes. Results are favourable, reaching accuracies of higher 98.7% in 70% of the patients.
Misra, Sudip; Singh, Ranjit; Rohith Mohan, S. V.
2010-01-01
The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes. PMID:22319307
NASA Astrophysics Data System (ADS)
Sezer, Ebru; Pradhan, Biswajeet; Gokceoglu, Candan
2010-05-01
Landslides are one of the recurrent natural hazard problems throughout most of Malaysia. Recently, the Klang Valley area of Selangor state has faced numerous landslide and mudflow events and much damage occurred in these areas. However, only little effort has been made to assess or predict these events which resulted in serious damages. Through scientific analyses of these landslides, one can assess and predict landslide-susceptible areas and even the events as such, and thus reduce landslide damages through proper preparation and/or mitigation. For this reason , the purpose of the present paper is to produce landslide susceptibility maps of a part of the Klang Valley areas in Malaysia by employing the results of the adaptive neuro-fuzzy inference system (ANFIS) analyses. Landslide locations in the study area were identified by interpreting aerial photographs and satellite images, supported by extensive field surveys. Landsat TM satellite imagery was used to map vegetation index. Maps of topography, lineaments and NDVI were constructed from the spatial datasets. Seven landslide conditioning factors such as altitude, slope angle, plan curvature, distance from drainage, soil type, distance from faults and NDVI were extracted from the spatial database. These factors were analyzed using an ANFIS to construct the landslide susceptibility maps. During the model development works, total 5 landslide susceptibility models were obtained by using ANFIS results. For verification, the results of the analyses were then compared with the field-verified landslide locations. Additionally, the ROC curves for all landslide susceptibility models were drawn and the area under curve values was calculated. Landslide locations were used to validate results of the landslide susceptibility map and the verification results showed 98% accuracy for the model 5 employing all parameters produced in the present study as the landslide conditioning factors. The validation results showed sufficient
NASA Technical Reports Server (NTRS)
Zadeh, Lofti A.
1988-01-01
The author presents a condensed exposition of some basic ideas underlying fuzzy logic and describes some representative applications. The discussion covers basic principles; meaning representation and inference; basic rules of inference; and the linguistic variable and its application to fuzzy control.
NASA Astrophysics Data System (ADS)
Oğuz, Yüksel; Üstün, Seydi Vakkas; Yabanova, İsmail; Yumurtaci, Mehmet; Güney, İrfan
2012-01-01
This article presents design of adaptive neuro-fuzzy inference system (ANFIS) for the turbine speed control for purpose of improving the power quality of the power production system of a split shaft microturbine. To improve the operation performance of the microturbine power generation system (MTPGS) and to obtain the electrical output magnitudes in desired quality and value (terminal voltage, operation frequency, power drawn by consumer and production power), a controller depended on adaptive neuro-fuzzy inference system was designed. The MTPGS consists of the microturbine speed controller, a split shaft microturbine, cylindrical pole synchronous generator, excitation circuit and voltage regulator. Modeling of dynamic behavior of synchronous generator driver with a turbine and split shaft turbine was realized by using the Matlab/Simulink and SimPowerSystems in it. It is observed from the simulation results that with the microturbine speed control made with ANFIS, when the MTPGS is operated under various loading situations, the terminal voltage and frequency values of the system can be settled in desired operation values in a very short time without significant oscillation and electrical production power in desired quality can be obtained.
NASA Astrophysics Data System (ADS)
Kiso, Atsushi; Murakami, Hiroki; Seki, Hirokazu
This paper describes a novel obstacle avoidance control scheme of electric powered wheelchairs for realizing the safe driving in various environments. The “electric powered wheelchair” which generates the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people; however, the driving performance must be further improved because the number of driving accidents caused by elderly operator's narrow sight and joystick operation errors is increasing. This paper proposes a novel obstacle avoidance control scheme based on fuzzy algorithm to prevent driving accidents. The proposed control system determines the driving direction by fuzzy algorithm based on the information of the joystick operation and distance to obstacles measured by ultrasonic sensors. Fuzzy rules to determine the driving direction are designed surely to avoid passers-by and walls considering the human's intent and driving environments. Some driving experiments on the practical situations show the effectiveness of the proposed control system.
NASA Astrophysics Data System (ADS)
Yang, G.; Lin, Y.; Bhattacharya, P.
2007-12-01
To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i) casual or contextual feature, (ii) contact feature, (iii) contactless feature, and (iv) performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK) model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA), is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue). We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.
Kim, Y J; Bae, H; Ko, J H; Poo, K M; Kim, S; Kim, C W; Woo, H J
2006-01-01
A fuzzy inference system using sensor measurements was developed to estimate the influent COD/N ratio and ammonia load. The sensors measured ORP, DO and pH. The sensor profiles had a close relationship with the influent COD/N ratio and ammonia load. To confirm this operational knowledge for constructing a rule set, a correlation analysis was conducted. The results showed that a rule generation method based only on operational knowledge did not generate a sufficiently accurate relationship between sensor measurements and target variables. To compensate for this defect, a decision tree algorithm was used as a standardized method for rule generation. Given a set of inputs, this algorithm was used to determine the output variables. However, the generated rules could not estimate the continuous influent COD/N ratio and ammonia load. Fuzzified rules and the fuzzy inference system were developed to overcome this problem. The fuzzy inference system estimated the influent COD/N ratio and ammonia load quite well. When these results were compared to the results from a predictive polynomial neural network model, the fuzzy inference system was more stable.
Jhin, Changho; Hwang, Keum Taek
2014-01-01
Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627
Kim, Y J; Bae, H; Poo, K M; Ko, J H; Kim, B G; Park, T J; Kim, C W
2006-01-01
The importance of a detection technique to prevent process deterioration is increasing. For the fast detection of this disturbance, a diagnostic algorithm was developed to determine types of equipment faults by using on-line ORP and DO profile in sequencing batch reactors (SBRs). To develop the rule base for fault diagnosis, the sensor profiles were obtained from a pilot-scale SBR when blower, influent pump and mixer were broken. The rules were generated based on the calculated error between an abnormal profile and a normal profile, e(ORP)(t) and e(DO)(t). To provide intermediate diagnostic results between "normal" and "fault", a fuzzy inference algorithm was incorporated to the rules. Fuzzified rules could present the diagnosis result "need to be checked". The diagnosis showed good performance in detecting and diagnosing various faults. The developed algorithm showed its applicability to detect faults and make possible fast action to correct them.
NASA Astrophysics Data System (ADS)
Karimi, Gholamreza; Banitalebi, Roza; Babaei Sedaghat, Sedigheh
2013-07-01
In this article, the small-signal equivalent circuit model of SiGe:C heterojunction bipolar transistors (HBTs) has directly been extracted from S-parameter data. Moreover, in this article, we present a new modelling approach using ANFIS (adaptive neuro-fuzzy inference system), which in general has a high degree of accuracy, simplicity and novelty (independent approach). Then measured and model-calculated data show an excellent agreement with less than 1.68 × 10-5% discrepancy in the frequency range of higher than 300 GHz over a wide range of bias points in ANFIS. The results show ANFIS model is better than ANN (artificial neural network) for redeveloping the model and increasing the input parameters.
NASA Astrophysics Data System (ADS)
Trianto, Andriantama Budi; Hadi, I. M.; Liong, The Houw; Purqon, Acep
2015-09-01
Indonesian economical development is growing well. It has effect for their invesment in Banks and the stock market. In this study, we perform prediction for the three blue chips of Indonesian bank i.e. BCA, BNI, and MANDIRI by using the method of Adaptive Neuro-Fuzzy Inference System (ANFIS) with Takagi-Sugeno rules and Generalized bell (Gbell) as the membership function. Our results show that ANFIS perform good prediction with RMSE for BCA of 27, BNI of 5.29, and MANDIRI of 13.41, respectively. Furthermore, we develop an active strategy to gain more benefit. We compare between passive strategy versus active strategy. Our results shows that for the passive strategy gains 13 million rupiah, while for the active strategy gains 47 million rupiah in one year. The active investment strategy significantly shows gaining multiple benefit than the passive one.
Yang, Zhixian; Wang, Yinghua; Ouyang, Gaoxiang
2014-01-01
Background electroencephalography (EEG), recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES) syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE) and sample entropy (SampEn) in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS) classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved. PMID:24790547
Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system
NASA Astrophysics Data System (ADS)
Aliustaoglu, Cuneyt; Ertunc, H. Metin; Ocak, Hasan
2009-02-01
One of the biggest problems in manufacturing is the failure of machine tools due to loss of surface material in cutting operations like drilling and milling. Carrying on the process with a dull tool may damage the workpiece material fabricated. On the other hand, it is unnecessary to change the cutting tool if it is still able to continue cutting operation. Therefore, an effective diagnosis mechanism is necessary for the automation of machining processes so that production loss and downtime can be avoided. This study concerns with the development of a tool wear condition-monitoring technique based on a two-stage fuzzy logic scheme. For this, signals acquired from various sensors were processed to make a decision about the status of the tool. In the first stage of the proposed scheme, statistical parameters derived from thrust force, machine sound (acquired via a very sensitive microphone) and vibration signals were used as inputs to fuzzy process; and the crisp output values of this process were then taken as the input parameters of the second stage. Conclusively, outputs of this stage were taken into a threshold function, the output of which is used to assess the condition of the tool.
ERIC Educational Resources Information Center
Velastegui, Pamela J.
2013-01-01
This hypothesis-generating case study investigates the naturally emerging roles of technology brokers and technology leaders in three independent schools in New York involving 92 school educators. A multiple and mixed method design utilizing Social Network Analysis (SNA) and fuzzy set Qualitative Comparative Analysis (FSQCA) involved gathering…
Poorbagher, Hadi; Moghaddam, Maryam Nasrollahpour; Eagderi, Soheil; Farahmand, Hamid
2016-07-01
The DNA breakage has been widely used in ecotoxicological studies to investigate effects of pesticides in fishes. The present study used a fuzzy inference system to quantify the breakage of DNA double strand in Aphanius sophiae exposed to the cypermethrin. The specimens were adapted to different temperatures and salinity for 14 days and then exposed to cypermethrin. DNA of each specimens were extracted, electrophoresed and photographed. A fuzzy system with three input variables and 27 rules were defined. The pixel value curve of DNA on each gel lane was obtained using ImageJ. The DNA breakage was quantified using the pixel value curve and fuzzy system. The defuzzified values were analyzed using a three-way analysis of variance. Cypermethrin had significant effects on DNA breakage. Fuzzy inference systems can be used as a tool to quantify the breakage of double strand DNA. DNA double strand of the gill of A. sophiae is sensitive enough to be used to detect cypermethrin in surface waters in concentrations much lower than those reported in previous studies.
NASA Astrophysics Data System (ADS)
Heidary, Saeed; Setayeshi, Saeed
2015-01-01
This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous 99mTc/201Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of 201Tl (77±10% keV) and 99mTc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.
NASA Astrophysics Data System (ADS)
Wernet, Mark P.
1995-05-01
Particle Image Velocimetry provides a means of measuring the instantaneous 2-component velocity field across a planar region of a seeded flowfield. In this work only two camera, single exposure images are considered where both cameras have the same view of the illumination plane. Two competing techniques which yield unambiguous velocity vector direction information have been widely used for reducing the single exposure, multiple image data: cross-correlation and particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. The correlation technique requires identification of the correlation peak on the correlation plane corresponding to the average displacement of particles across the subregion. Noise on the images and particle dropout contribute to spurious peaks on the correlation plane, leading to misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak on the correlation plane, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus velocity. The advantage of this technique is the
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1995-01-01
Particle Image Velocimetry provides a means of measuring the instantaneous 2-component velocity field across a planar region of a seeded flowfield. In this work only two camera, single exposure images are considered where both cameras have the same view of the illumination plane. Two competing techniques which yield unambiguous velocity vector direction information have been widely used for reducing the single exposure, multiple image data: cross-correlation and particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. The correlation technique requires identification of the correlation peak on the correlation plane corresponding to the average displacement of particles across the subregion. Noise on the images and particle dropout contribute to spurious peaks on the correlation plane, leading to misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak on the correlation plane, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus velocity. The advantage of this technique is the
Jhin, Changho; Hwang, Keum Taek
2015-01-01
One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.
Amiri, Mohammad J; Abedi-Koupai, Jahangir; Eslamian, Sayed S; Mousavi, Sayed F; Hasheminejad, Hasti
2013-01-01
To evaluate the performance of Adaptive Neural-Based Fuzzy Inference System (ANFIS) model in estimating the efficiency of Pb (II) ions removal from aqueous solution by ostrich bone ash, a batch experiment was conducted. Five operational parameters including adsorbent dosage (C(s)), initial concentration of Pb (II) ions (C(o)), initial pH, temperature (T) and contact time (t) were taken as the input data and the adsorption efficiency (AE) of bone ash as the output. Based on the 31 different structures, 5 ANFIS models were tested against the measured adsorption efficiency to assess the accuracy of each model. The results showed that ANFIS5, which used all input parameters, was the most accurate (RMSE = 2.65 and R(2) = 0.95) and ANFIS1, which used only the contact time input, was the worst (RMSE = 14.56 and R(2) = 0.46). In ranking the models, ANFIS4, ANFIS3 and ANFIS2 ranked second, third and fourth, respectively. The sensitivity analysis revealed that the estimated AE is more sensitive to the contact time, followed by pH, initial concentration of Pb (II) ions, adsorbent dosage, and temperature. The results showed that all ANFIS models overestimated the AE. In general, this study confirmed the capabilities of ANFIS model as an effective tool for estimation of AE.
NASA Astrophysics Data System (ADS)
Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim
2016-11-01
In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.
NASA Astrophysics Data System (ADS)
Teimouri, Reza; Sohrabpoor, Hamed
2013-12-01
Electrochemical machining process (ECM) is increasing its importance due to some of the specific advantages which can be exploited during machining operation. The process offers several special privileges such as higher machining rate, better accuracy and control, and wider range of materials that can be machined. Contribution of too many predominate parameters in the process, makes its prediction and selection of optimal values really complex, especially while the process is programmized for machining of hard materials. In the present work in order to investigate effects of electrolyte concentration, electrolyte flow rate, applied voltage and feed rate on material removal rate (MRR) and surface roughness (SR) the adaptive neuro-fuzzy inference systems (ANFIS) have been used for creation predictive models based on experimental observations. Then the ANFIS 3D surfaces have been plotted for analyzing effects of process parameters on MRR and SR. Finally, the cuckoo optimization algorithm (COA) was used for selection solutions in which the process reaches maximum material removal rate and minimum surface roughness simultaneously. Results indicated that the ANFIS technique has superiority in modeling of MRR and SR with high prediction accuracy. Also, results obtained while applying of COA have been compared with those derived from confirmatory experiments which validate the applicability and suitability of the proposed techniques in enhancing the performance of ECM process.
NASA Technical Reports Server (NTRS)
Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.
2015-01-01
Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.
Jhin, Changho; Hwang, Keum Taek
2015-01-01
One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models. PMID:26474167
Cheu, Eng Yeow; Quek, Chai; Ng, See Kiong
2012-02-01
Appetitive operant conditioning in Aplysia for feeding behavior via the electrical stimulation of the esophageal nerve contingently reinforces each spontaneous bite during the feeding process. This results in the acquisition of operant memory by the contingently reinforced animals. Analysis of the cellular and molecular mechanisms of the feeding motor circuitry revealed that activity-dependent neuronal modulation occurs at the interneurons that mediate feeding behaviors. This provides evidence that interneurons are possible loci of plasticity and constitute another mechanism for memory storage in addition to memory storage attributed to activity-dependent synaptic plasticity. In this paper, an associative ambiguity correction-based neuro-fuzzy network, called appetitive reward-based pseudo-outer-product-compositional rule of inference [ARPOP-CRI(S)], is trained based on an appetitive reward-based learning algorithm which is biologically inspired by the appetitive operant conditioning of the feeding behavior in Aplysia. A variant of the Hebbian learning rule called Hebbian concomitant learning is proposed as the building block in the neuro-fuzzy network learning algorithm. The proposed algorithm possesses the distinguishing features of the sequential learning algorithm. In addition, the proposed ARPOP-CRI(S) neuro-fuzzy system encodes fuzzy knowledge in the form of linguistic rules that satisfies the semantic criteria for low-level fuzzy model interpretability. ARPOP-CRI(S) is evaluated and compared against other modeling techniques using benchmark time-series datasets. Experimental results are encouraging and show that ARPOP-CRI(S) is a viable modeling technique for time-variant problem domains.
Ocampo-Duque, William; Osorio, Carolina; Piamba, Christian; Schuhmacher, Marta; Domingo, José L
2013-02-01
The integration of water quality monitoring variables is essential in environmental decision making. Nowadays, advanced techniques to manage subjectivity, imprecision, uncertainty, vagueness, and variability are required in such complex evaluation process. We here propose a probabilistic fuzzy hybrid model to assess river water quality. Fuzzy logic reasoning has been used to compute a water quality integrative index. By applying a Monte Carlo technique, based on non-parametric probability distributions, the randomness of model inputs was estimated. Annual histograms of nine water quality variables were built with monitoring data systematically collected in the Colombian Cauca River, and probability density estimations using the kernel smoothing method were applied to fit data. Several years were assessed, and river sectors upstream and downstream the city of Santiago de Cali, a big city with basic wastewater treatment and high industrial activity, were analyzed. The probabilistic fuzzy water quality index was able to explain the reduction in water quality, as the river receives a larger number of agriculture, domestic, and industrial effluents. The results of the hybrid model were compared to traditional water quality indexes. The main advantage of the proposed method is that it considers flexible boundaries between the linguistic qualifiers used to define the water status, being the belongingness of water quality to the diverse output fuzzy sets or classes provided with percentiles and histograms, which allows classify better the real water condition. The results of this study show that fuzzy inference systems integrated to stochastic non-parametric techniques may be used as complementary tools in water quality indexing methodologies.
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1993-01-01
As part of the RICIS project, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Maximum Mission (SMM) satellite simulation. In utilizing these fuzzy learning techniques, we use the Approximate Reasoning based Intelligent Control (ARIC) architecture, and so we use these two terms interchangeably to imply the same. This activity is carried out in the Software Technology Laboratory utilizing the Orbital Operations Simulator (OOS) and programming/testing support from other contractor personnel. This report is the final deliverable D4 in our milestones and project activity. It provides the test results for the special testcase of approach/docking scenario for the shuttle and SMM satellite. Based on our experience and analysis with the attitude and translational controllers, we have modified the basic configuration of the reinforcement learning algorithm in ARIC. The shuttle translational controller and its implementation in ARIC is described in our deliverable D3. In order to simulate the final approach and docking operations, we have set-up this special testcase as described in section 2. The ARIC performance results for these operations are discussed in section 3 and conclusions are provided in section 4 along with the summary for the project.
NASA Astrophysics Data System (ADS)
Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi
2016-09-01
This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.
NASA Astrophysics Data System (ADS)
Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid
2016-08-01
This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS
NASA Astrophysics Data System (ADS)
Ajay Kumar, M.; Srikanth, N. V.
2014-03-01
In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.
Mathur, Neha; Glesk, Ivan; Buis, Arjan
2016-10-01
Monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used impeding the required consistent positioning of the temperature sensors during donning and doffing. Predicting the in-socket residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. In this work, we propose to implement an adaptive neuro fuzzy inference strategy (ANFIS) to predict the in-socket residual limb temperature. ANFIS belongs to the family of fused neuro fuzzy system in which the fuzzy system is incorporated in a framework which is adaptive in nature. The proposed method is compared to our earlier work using Gaussian processes for machine learning. By comparing the predicted and actual data, results indicate that both the modeling techniques have comparable performance metrics and can be efficiently used for non-invasive temperature monitoring.
NASA Astrophysics Data System (ADS)
El-Zoghby, Helmy M.; Bendary, Ahmed F.
2016-10-01
Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.
Swetapadma, Aleena; Yadav, Anamika
2015-01-01
Many schemes are reported for shunt fault location estimation, but fault location estimation of series or open conductor faults has not been dealt with so far. The existing numerical relays only detect the open conductor (series) fault and give the indication of the faulty phase(s), but they are unable to locate the series fault. The repair crew needs to patrol the complete line to find the location of series fault. In this paper fuzzy based fault detection/classification and location schemes in time domain are proposed for both series faults, shunt faults, and simultaneous series and shunt faults. The fault simulation studies and fault location algorithm have been developed using Matlab/Simulink. Synchronized phasors of voltage and current signals of both the ends of the line have been used as input to the proposed fuzzy based fault location scheme. Percentage of error in location of series fault is within 1% and shunt fault is 5% for all the tested fault cases. Validation of percentage of error in location estimation is done using Chi square test with both 1% and 5% level of significance.
Blanes-Vidal, Victoria; Cantuaria, Manuella Lech; Nadimi, Esmaeil S
2017-04-01
Many epidemiological studies have used proximity to sources as air pollution exposure assessment method. However, proximity measures are not generally good surrogates because of their complex non-linear relationship with exposures. Neuro-fuzzy inference systems (NFIS) can be used to map complex non-linear systems, but its usefulness in exposure assessment has not been extensively explored. We present a novel approach for exposure assessment using NFIS, where the inputs of the model were easily-obtainable proximity measures, and the output was residential exposure to an air pollutant. We applied it to a case-study on NH3 pollution, and compared health effects and exposures estimated from NFIS, with those obtained from emission-dispersion models, and linear and non-linear regression proximity models, using 10-fold cross validation. The agreement between emission-dispersion and NFIS exposures was high (Root-mean-square error (RMSE) =0.275, correlation coefficient (r)=0.91) and resulted in similar health effect estimates. Linear models showed poor performance (RMSE=0.527, r=0.59), while non-linear regression models resulted in heterocedasticity, non-normality and clustered data. NFIS could be a useful tool for estimating individual air pollution exposures in epidemiological studies on large populations, when emission-dispersion data are not available. The tradeoff between simplicity and accuracy needs to be considered.
NASA Astrophysics Data System (ADS)
Woo, Youngkeun; Lee, Juwon; Hwang, Sujin; Hong, Cheol Pyo
2013-03-01
The purpose of this study was to investigate the associations between gait performance, postural stability, and depression in patients with Parkinson's disease (PD) by using an adaptive neuro-fuzzy inference system (ANFIS). Twenty-two idiopathic PD patients were assessed during outpatient physical therapy by using three clinical tests: the Berg balance scale (BBS), Dynamic gait index (DGI), and Geriatric depression scale (GDS). Scores were determined from clinical observation and patient interviews, and associations among gait performance, postural stability, and depression in this PD population were evaluated. The DGI showed significant positive correlation with the BBS scores, and negative correlation with the GDS score. We assessed the relationship between the BBS score and the DGI results by using a multiple regression analysis. In this case, the GDS score was not significantly associated with the DGI, but the BBS and DGI results were. Strikingly, the ANFIS-estimated value of the DGI, based on the BBS and the GDS scores, significantly correlated with the walking ability determined by using the DGI in patients with Parkinson's disease. These findings suggest that the ANFIS techniques effectively reflect and explain the multidirectional phenomena or conditions of gait performance in patients with PD.
NASA Astrophysics Data System (ADS)
Islam, Tanvir; Srivastava, Prashant K.; Rico-Ramirez, Miguel A.; Dai, Qiang; Han, Dawei; Gupta, Manika
2014-08-01
The authors have investigated an adaptive neuro fuzzy inference system (ANFIS) for the estimation of hydrometeors from the TRMM microwave imager (TMI). The proposed algorithm, named as Hydro-Rain algorithm, is developed in synergy with the TRMM precipitation radar (PR) observed hydrometeor information. The method retrieves rain rates by exploiting the synergistic relations between the TMI and PR observations in twofold steps. First, the fundamental hydrometeor parameters, liquid water path (LWP) and ice water path (IWP), are estimated from the TMI brightness temperatures. Next, the rain rates are estimated from the retrieved hydrometeor parameters (LWP and IWP). A comparison of the hydrometeor retrievals by the Hydro-Rain algorithm is done with the TRMM PR 2A25 and GPROF 2A12 algorithms. The results reveal that the Hydro-Rain algorithm has good skills in estimating hydrometeor paths LWP and IWP, as well as surface rain rate. An examination of the Hydro-Rain algorithm is also conducted on a super typhoon case, in which the Hydro-Rain has shown very good performance in reproducing the typhoon field. Nevertheless, the passive microwave based estimate of hydrometeors appears to suffer in high rain rate regimes, and as the rain rate increases, the discrepancies with hydrometeor estimates tend to increase as well.
Xie, Qiuju; Ni, Ji-Qin; Su, Zhongbin
2017-03-05
Ammonia (NH3) is considered one of the significant pollutions contributor to indoor air quality and odor gas emission from swine house because of the negative impact on the health of pigs, the workers and local environment. Prediction models could provide a reasonable way for pig industries and environment regulatory to determine environment control strategies and give an effective method to evaluate the air quality. The adaptive neuro fuzzy inference system (ANFIS) simulates human's vague thinking manner to solve the ambiguity and nonlinear problems which are difficult to be processed by conventional mathematics. Five kinds of membership functions were used to build a well fitted ANFIS prediction model. It was shown that the prediction model with "Gbell" membership function had the best capabilities among those five kinds of membership functions, and it had the best performances compared with backpropagation (BP) neuro network model and multiple linear regression model (MLRM) both in wintertime and summertime, the smallest value of mean square error (MSE), mean absolute percentage error (MAPE) and standard deviation (SD) are 0.002 and 0.0047, 31.1599 and 23.6816, 0.0564 and 0.0802, respectively, and the largest coefficients of determination (R(2)) are 0.6351 and 0.6483, repectively. The ANFIS prediction model could be served as a beneficial strategy for the environment control system that has input parameters with highly fluctuating, complexity, and non-linear relationship.
NASA Astrophysics Data System (ADS)
Fleischer, Christian; Waag, Wladislaw; Bai, Ziou; Sauer, Dirk Uwe
2013-12-01
The battery management system (BMS) of a battery-electric road vehicle must ensure an optimal operation of the electrochemical storage system to guarantee for durability and reliability. In particular, the BMS must provide precise information about the battery's state-of-functionality, i.e. how much dis-/charging power can the battery accept at current state and condition while at the same time preventing it from operating outside its safe operating area. These critical limits have to be calculated in a predictive manner, which serve as a significant input factor for the supervising vehicle energy management (VEM). The VEM must provide enough power to the vehicle's drivetrain for certain tasks and especially in critical driving situations. Therefore, this paper describes a new approach which can be used for state-of-available-power estimation with respect to lowest/highest cell voltage prediction using an adaptive neuro-fuzzy inference system (ANFIS). The estimated voltage for a given time frame in the future is directly compared with the actual voltage, verifying the effectiveness and accuracy of a relative voltage prediction error of less than 1%. Moreover, the real-time operating capability of the proposed algorithm was verified on a battery test bench while running on a real-time system performing voltage prediction.
Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin
2014-01-01
Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population.
NASA Astrophysics Data System (ADS)
Ghanei, S.; Vafaeenezhad, H.; Kashefi, M.; Eivani, A. R.; Mazinani, M.
2015-04-01
Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency.
NASA Astrophysics Data System (ADS)
Aghajani, Khadijeh; Tayebi, Habib-Allah
2017-01-01
In this study, the Mesoporous material SBA-15 were synthesized and then, the surface was modified by the surfactant Cetyltrimethylammoniumbromide (CTAB). Finally, the obtained adsorbent was used in order to remove Reactive Red 198 (RR 198) from aqueous solution. Transmission electron microscope (TEM), Fourier transform infra-red spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and BET were utilized for the purpose of examining the structural characteristics of obtained adsorbent. Parameters affecting the removal of RR 198 such as pH, the amount of adsorbent, and contact time were investigated at various temperatures and were also optimized. The obtained optimized condition is as follows: pH = 2, time = 60 min and adsorbent dose = 1 g/l. Moreover, a predictive model based on ANFIS for predicting the adsorption amount according to the input variables is presented. The presented model can be used for predicting the adsorption rate based on the input variables include temperature, pH, time, dosage, concentration. The error between actual and approximated output confirm the high accuracy of the proposed model in the prediction process. This fact results in cost reduction because prediction can be done without resorting to costly experimental efforts. SBA-15, CTAB, Reactive Red 198, adsorption study, Adaptive Neuro-Fuzzy Inference systems (ANFIS).
NASA Astrophysics Data System (ADS)
Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.
2015-12-01
This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.
NASA Astrophysics Data System (ADS)
Entchev, Evgueniy; Yang, Libing
This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell (SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kW el SOFC system was installed at the Canadian Centre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance data were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back propagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed and applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack current, stack voltage, etc. The study revealed that both ANN and ANFIS models' predictions agreed well with variety of experimental data sets representing steady-state, start-up and shut-down operations of the SOFC system. The initial data set was subjected to detailed sensitivity analysis and statistically insignificant parameters were excluded from the training set. As a result, significant reduction of computational time was achieved without affecting models' accuracy. The study showed that adaptive models can be applied with confidence during the design process and for performance optimization of existing and newly developed solid oxide fuel cell systems. It demonstrated that by using ANN and ANFIS techniques SOFC microgeneration system's performance could be modelled with minimum time demand and with a high degree of accuracy.
NASA Astrophysics Data System (ADS)
Kentel, E.; Dogulu, N.
2015-12-01
In Turkey the experience and data required for a hydrological model setup is limited and very often not available. Moreover there are many ungauged catchments where there are also many planned projects aimed at utilization of water resources including development of existing hydropower potential. This situation makes runoff prediction at locations with lack of data and ungauged locations where small hydropower plants, reservoirs, etc. are planned an increasingly significant challenge and concern in the country. Flow duration curves have many practical applications in hydrology and integrated water resources management. Estimation of flood duration curve (FDC) at ungauged locations is essential, particularly for hydropower feasibility studies and selection of the installed capacities. In this study, we test and compare the performances of two methods for estimating FDCs in the Western Black Sea catchment, Turkey: (i) FDC based on Map Correlation Method (MCM) flow estimates. MCM is a recently proposed method (Archfield and Vogel, 2010) which uses geospatial information to estimate flow. Flow measurements of stream gauging stations nearby the ungauged location are the only data requirement for this method. This fact makes MCM very attractive for flow estimation in Turkey, (ii) Adaptive Neuro-Fuzzy Inference System (ANFIS) is a data-driven method which is used to relate FDC to a number of variables representing catchment and climate characteristics. However, it`s ease of implementation makes it very useful for practical purposes. Both methods use easily collectable data and are computationally efficient. Comparison of the results is realized based on two different measures: the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE) value. Ref: Archfield, S. A., and R. M. Vogel (2010), Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments, Water Resour. Res., 46, W10513, doi:10.1029/2009WR008481.
Ghaedi, M; Hosaininia, R; Ghaedi, A M; Vafaei, A; Taghizadeh, F
2014-10-15
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope(SEM), Brunauer-Emmett-Teller(BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55m(2)/g) and low pore size (<22.46Å) and average particle size lower than 48.8Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02g adsorbent mass, 10mgL(-1) initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R(2)) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.
NASA Astrophysics Data System (ADS)
Ghaedi, M.; Hosaininia, R.; Ghaedi, A. M.; Vafaei, A.; Taghizadeh, F.
2014-10-01
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (<22.46 Å) and average particle size lower than 48.8 Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02 g adsorbent mass, 10 mg L-1 initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30 min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R2) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.
Fuzzy/Neural Software Estimates Costs of Rocket-Engine Tests
NASA Technical Reports Server (NTRS)
Douglas, Freddie; Bourgeois, Edit Kaminsky
2005-01-01
The Highly Accurate Cost Estimating Model (HACEM) is a software system for estimating the costs of testing rocket engines and components at Stennis Space Center. HACEM is built on a foundation of adaptive-network-based fuzzy inference systems (ANFIS) a hybrid software concept that combines the adaptive capabilities of neural networks with the ease of development and additional benefits of fuzzy-logic-based systems. In ANFIS, fuzzy inference systems are trained by use of neural networks. HACEM includes selectable subsystems that utilize various numbers and types of inputs, various numbers of fuzzy membership functions, and various input-preprocessing techniques. The inputs to HACEM are parameters of specific tests or series of tests. These parameters include test type (component or engine test), number and duration of tests, and thrust level(s) (in the case of engine tests). The ANFIS in HACEM are trained by use of sets of these parameters, along with costs of past tests. Thereafter, the user feeds HACEM a simple input text file that contains the parameters of a planned test or series of tests, the user selects the desired HACEM subsystem, and the subsystem processes the parameters into an estimate of cost(s).
An improved robust fuzzy-PID controller with optimal fuzzy reasoning.
Li, Han-Xiong; Zhang, Lei; Cai, Kai-Yuan; Chen, Guanrong
2005-12-01
Many fuzzy control schemes used in industrial practice today are based on some simplified fuzzy reasoning methods, which are simple but at the expense of losing robustness, missing fuzzy characteristics, and having inconsistent inference. The concept of optimal fuzzy reasoning is introduced in this paper to overcome these shortcomings. The main advantage is that an integration of the optimal fuzzy reasoning with a PID control structure will generate a new type of fuzzy-PID control schemes with inherent optimal-tuning features for both local optimal performance and global tracking robustness. This new fuzzy-PID controller is then analyzed quantitatively and compared with other existing fuzzy-PID control methods. Both analytical and numerical studies clearly show the improved robustness of the new fuzzy-PID controller.
Use of fuzzy logic in lignite inventory estimation
Tutmez, B.; Dag, A.
2007-07-01
Seam thickness is one of the most important parameters for reserve estimation of a lignite deposit. This paper addresses a case study on fuzzy estimation of lignite seam thickness from spatial coordinates. From the relationships between input (Cartesian coordinates) and output (thickness) parameters, fuzzy clustering and a fuzzy rule-based inference system were designed. Data-driven fuzzy model parameters were derived from numerical values directly. In addition, estimations of the fuzzy model were compared with kriging estimations. It was concluded that the performance ofthe fuzzy model was more satisfactory. The results indicated that the fuzzy modeling approach is very reliable for the estimation of lignite reserves.
Wang, Cheng-Hang; Liu, Baw-Jhiune; Wu, Lawrence Shih-Hsin
2012-02-01
Asthma is one of the most common chronic diseases in children. It is caused by complicated coactions between various genetic factors and environmental allergens. The study aims to integrate the concept of implementing adaptive neuro-fuzzy inference system (ANFIS) and classification analysis methods for forecasting the association of asthma susceptibility genes on 3 serum IgE groups. The ANFIS model was trained and tested with data sets obtained from 425 asthmatic subjects and 483 non-asthma subjects from the Taiwanese population. We assessed 13 single-nucleotide polymorphisms (SNPs) in seven well-known asthma susceptibility genes; firstly, the proposed ANFIS model learned to reduce input features from the 13 SNPs. And secondly, the classification will be used to classify the serum IgE groups from the simulated SNPs results. The performance of the ANFIS model, classification accuracies and the results confirmed that the integration of ANFIS and classified analysis has potential in association discovery.
Fuzzy systems in high-energy physics
NASA Astrophysics Data System (ADS)
Castellano, Marcello; Masulli, Francesco; Penna, Massimo
1996-06-01
exploiting the linguistic knowledge available (structure identification problem) and by using the information contained in a data set (parameter estimation problem). The fuzzy system has been found to be effective for the classification tasks of about 2 by 10-3 hadron contamination at 90% of electron acceptance. A comparison between the adaptive system results and the others previous ones obtained by using both statistical and neural network based methodologies also is presented.
Knowledge representation in fuzzy logic
NASA Technical Reports Server (NTRS)
Zadeh, Lotfi A.
1989-01-01
The author presents a summary of the basic concepts and techniques underlying the application of fuzzy logic to knowledge representation. He then describes a number of examples relating to its use as a computational system for dealing with uncertainty and imprecision in the context of knowledge, meaning, and inference. It is noted that one of the basic aims of fuzzy logic is to provide a computational framework for knowledge representation and inference in an environment of uncertainty and imprecision. In such environments, fuzzy logic is effective when the solutions need not be precise and/or it is acceptable for a conclusion to have a dispositional rather than categorical validity. The importance of fuzzy logic derives from the fact that there are many real-world applications which fit these conditions, especially in the realm of knowledge-based systems for decision-making and control.
Modeling Research Project Risks with Fuzzy Maps
ERIC Educational Resources Information Center
Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana
2009-01-01
The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…
Models of neural networks with fuzzy activation functions
NASA Astrophysics Data System (ADS)
Nguyen, A. T.; Korikov, A. M.
2017-02-01
This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc.
NASA Astrophysics Data System (ADS)
Kim, Chan Moon; Parnichkun, Manukid
2017-02-01
Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system (k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.
Heddam, Salim
2014-01-01
In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.
NASA Astrophysics Data System (ADS)
Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed
2016-06-01
In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.
Analysis of direct action fuzzy PID controller structures.
Mann, G I; Hu, B G; Gosine, R G
1999-01-01
The majority of the research work on fuzzy PID controllers focuses on the conventional two-input PI or PD type controller proposed by Mamdani (1974). However, fuzzy PID controller design is still a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. This paper investigates different fuzzy PID controller structures, including the Mamdani-type controller. By expressing the fuzzy rules in different forms, each PLD structure is distinctly identified. For purpose of analysis, a linear-like fuzzy controller is defined. A simple analytical procedure is developed to deduce the closed form solution for a three-input fuzzy inference. This solution is used to identify the fuzzy PID action of each structure type in the dissociated form. The solution for single-input-single-output nonlinear fuzzy inferences illustrates the effect of nonlinearity tuning. The design of a fuzzy PID controller is then treated as a two-level tuning problem. The first level tunes the nonlinear PID gains and the second level tunes the linear gains, including scale factors of fuzzy variables. By assigning a minimum number of rules to each type, the linear and nonlinear gains are deduced and explicitly presented. The tuning characteristics of different fuzzy PID structures are evaluated with respect to their functional behaviors. The rule decoupled and one-input rule structures proposed in this paper provide greater flexibility and better functional properties than the conventional fuzzy PHD structures.
Runtime Verification of Pacemaker Functionality Using Hierarchical Fuzzy Colored Petri-nets.
Majma, Negar; Babamir, Seyed Morteza; Monadjemi, Amirhassan
2017-02-01
Today, implanted medical devices are increasingly used for many patients and in case of diverse health problems. However, several runtime problems and errors are reported by the relevant organizations, even resulting in patient death. One of those devices is the pacemaker. The pacemaker is a device helping the patient to regulate the heartbeat by connecting to the cardiac vessels. This device is directed by its software, so any failure in this software causes a serious malfunction. Therefore, this study aims to a better way to monitor the device's software behavior to decrease the failure risk. Accordingly, we supervise the runtime function and status of the software. The software verification means examining limitations and needs of the system users by the system running software. In this paper, a method to verify the pacemaker software, based on the fuzzy function of the device, is presented. So, the function limitations of the device are identified and presented as fuzzy rules and then the device is verified based on the hierarchical Fuzzy Colored Petri-net (FCPN), which is formed considering the software limits. Regarding the experiences of using: 1) Fuzzy Petri-nets (FPN) to verify insulin pumps, 2) Colored Petri-nets (CPN) to verify the pacemaker and 3) To verify the pacemaker by a software agent with Petri-network based knowledge, which we gained during the previous studies, the runtime behavior of the pacemaker software is examined by HFCPN, in this paper. This is considered a developing step compared to the earlier work. HFCPN in this paper, compared to the FPN and CPN used in our previous studies reduces the complexity. By presenting the Petri-net (PN) in a hierarchical form, the verification runtime, decreased as 90.61% compared to the verification runtime in the earlier work. Since we need an inference engine in the runtime verification, we used the HFCPN to enhance the performance of the inference engine.
Optical generation of fuzzy-based rules.
Gur, Eran; Mendlovic, David; Zalevsky, Zeev
2002-08-10
In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.
Optical Generation of Fuzzy-Based Rules
NASA Astrophysics Data System (ADS)
Gur, Eran; Mendlovic, David; Zalevsky, Zeev
2002-08-01
In the last third of the 20th century, fuzzy logic has risen from a mathematical concept to an applicable approach in soft computing. Today, fuzzy logic is used in control systems for various applications, such as washing machines, train-brake systems, automobile automatic gear, and so forth. The approach of optical implementation of fuzzy inferencing was given by the authors in previous papers, giving an extra emphasis to applications with two dominant inputs. In this paper the authors introduce a real-time optical rule generator for the dual-input fuzzy-inference engine. The paper briefly goes over the dual-input optical implementation of fuzzy-logic inferencing. Then, the concept of constructing a set of rules from given data is discussed. Next, the authors show ways to implement this procedure optically. The discussion is accompanied by an example that illustrates the transformation from raw data into fuzzy set rules.
2010-05-01
cognitive map. Three examples illustrate fuzzy cognitive maps‘ potential for understanding a non -state actor‘s decision-making calculus and...of the Cold War, the United States has wrestled with how rational deterrence applies to non -state actors in today’s complex security environment...Fuzzy logic’s themes of flexibility, adaptability, and ambiguity lay the foundation for applying fuzzy logic to non -state actor deterrence. Because
DCT-Yager FNN: a novel Yager-based fuzzy neural network with the discrete clustering technique.
Singh, A; Quek, C; Cho, S Y
2008-04-01
superior performance. Extensive experiments have been conducted to test the effectiveness of these two networks, using various clustering algorithms. It follows that the SDCT and UDCT clustering algorithms are particularly suited to networks based on the Yager inference rule.
Network-Based Management Procedures.
ERIC Educational Resources Information Center
Buckner, Allen L.
Network-based management procedures serve as valuable aids in organizational management, achievement of objectives, problem solving, and decisionmaking. Network techniques especially applicable to educational management systems are the program evaluation and review technique (PERT) and the critical path method (CPM). Other network charting…
NASA Astrophysics Data System (ADS)
Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.
2016-11-01
All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.
NASA Astrophysics Data System (ADS)
Dalkilic, Turkan Erbay; Apaydin, Aysen
2009-11-01
In a regression analysis, it is assumed that the observations come from a single class in a data cluster and the simple functional relationship between the dependent and independent variables can be expressed using the general model; Y=f(X)+[epsilon]. However; a data cluster may consist of a combination of observations that have different distributions that are derived from different clusters. When faced with issues of estimating a regression model for fuzzy inputs that have been derived from different distributions, this regression model has been termed the [`]switching regression model' and it is expressed with . Here li indicates the class number of each independent variable and p is indicative of the number of independent variables [J.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transaction on Systems, Man and Cybernetics 23 (3) (1993) 665-685; M. Michel, Fuzzy clustering and switching regression models using ambiguity and distance rejects, Fuzzy Sets and Systems 122 (2001) 363-399; E.Q. Richard, A new approach to estimating switching regressions, Journal of the American Statistical Association 67 (338) (1972) 306-310]. In this study, adaptive networks have been used to construct a model that has been formed by gathering obtained models. There are methods that suggest the class numbers of independent variables heuristically. Alternatively, in defining the optimal class number of independent variables, the use of suggested validity criterion for fuzzy clustering has been aimed. In the case that independent variables have an exponential distribution, an algorithm has been suggested for defining the unknown parameter of the switching regression model and for obtaining the estimated values after obtaining an optimal membership function, which is suitable for exponential distribution.
Fuzzy backward reasoning using fuzzy Petri nets.
Chen, S M
2000-01-01
Chen, Ke and Chang (1990) have presented a fuzzy forward reasoning algorithm for rule-based systems using fuzzy Petri nets. In this paper, we extend the work of Chen, Ke and Chang (1990) to present a fuzzy backward reasoning algorithm for rule-based systems using fuzzy Petri nets, where the fuzzy production rules of a rule-based system are represented by fuzzy Petri nets. The system can perform fuzzy backward reasoning automatically to evaluate the degree of truth of any proposition specified by the user. The fuzzy backward reasoning capability allows the computers to perform reasoning in a more flexible manner and to think more like people.
Image Edge Extraction via Fuzzy Reasoning
NASA Technical Reports Server (NTRS)
Dominquez, Jesus A. (Inventor); Klinko, Steve (Inventor)
2008-01-01
A computer-based technique for detecting edges in gray level digital images employs fuzzy reasoning to analyze whether each pixel in an image is likely on an edge. The image is analyzed on a pixel-by-pixel basis by analyzing gradient levels of pixels in a square window surrounding the pixel being analyzed. An edge path passing through the pixel having the greatest intensity gradient is used as input to a fuzzy membership function, which employs fuzzy singletons and inference rules to assigns a new gray level value to the pixel that is related to the pixel's edginess degree.
Knowledge learning on fuzzy expert neural networks
NASA Astrophysics Data System (ADS)
Fu, Hsin-Chia; Shann, J.-J.; Pao, Hsiao-Tien
1994-03-01
The proposed fuzzy expert network is an event-driven, acyclic neural network designed for knowledge learning on a fuzzy expert system. Initially, the network is constructed according to a primitive (rough) expert rules including the input and output linguistic variables and values of the system. For each inference rule, it corresponds to an inference network, which contains five types of nodes: Input, Membership-Function, AND, OR, and Defuzzification Nodes. We propose a two-phase learning procedure for the inference network. The first phase is the competitive backpropagation (CBP) training phase, and the second phase is the rule- pruning phase. The CBP learning algorithm in the training phase enables the network to learn the fuzzy rules as precisely as backpropagation-type learning algorithms and yet as quickly as competitive-type learning algorithms. After the CBP training, the rule-pruning process is performed to delete redundant weight connections for simple network structures and yet compatible retrieving performance.
How to select combination operators for fuzzy expert systems using CRI
NASA Technical Reports Server (NTRS)
Turksen, I. B.; Tian, Y.
1992-01-01
A method to select combination operators for fuzzy expert systems using the Compositional Rule of Inference (CRI) is proposed. First, fuzzy inference processes based on CRI are classified into three categories in terms of their inference results: the Expansion Type Inference, the Reduction Type Inference, and Other Type Inferences. Further, implication operators under Sup-T composition are classified as the Expansion Type Operator, the Reduction Type Operator, and the Other Type Operators. Finally, the combination of rules or their consequences is investigated for inference processes based on CRI.
Image segmentation using trainable fuzzy set classifiers
NASA Astrophysics Data System (ADS)
Schalkoff, Robert J.; Carver, Albrecht E.; Gurbuz, Sabri
1999-07-01
A general image analysis and segmentation method using fuzzy set classification and learning is described. The method uses a learned fuzzy representation of pixel region characteristics, based upon the conjunction and disjunction of extracted and derived fuzzy color and texture features. Both positive and negative exemplars of some visually apparent characteristic which forms the basis of the inspection, input by a human operator, are used together with a clustering algorithm to construct positive similarity membership functions and negative similarity membership functions. Using these composite fuzzified images, P and N, are produced using fuzzy union. Classification is accomplished via image defuzzification, whereby linguistic meaning is assigned to each pixel in the fuzzy set using a fuzzy inference operation. The technique permits: (1) strict color and texture discrimination, (2) machine learning of color and texture characteristics of regions, (3) and judicious labeling of each pixel based upon leaned fuzzy representation and fuzzy classification. This approach appears ideal for applications involving visual inspection and allows the development of image-based inspection systems which may be trained and used by relatively unskilled workers. We show three different examples involving the visual inspection of mixed waste drums, lumber and woven fabric.
Fuzzy Logic for Incidence Geometry.
Tserkovny, Alex
The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects "as if they were points." Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation "extended lines sameness" is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy "degree of indiscernibility" and "discernibility measure" of extended points.
Fuzzy Logic for Incidence Geometry
2016-01-01
The paper presents a mathematical framework for approximate geometric reasoning with extended objects in the context of Geography, in which all entities and their relationships are described by human language. These entities could be labelled by commonly used names of landmarks, water areas, and so forth. Unlike single points that are given in Cartesian coordinates, these geographic entities are extended in space and often loosely defined, but people easily perform spatial reasoning with extended geographic objects “as if they were points.” Unfortunately, up to date, geographic information systems (GIS) miss the capability of geometric reasoning with extended objects. The aim of the paper is to present a mathematical apparatus for approximate geometric reasoning with extended objects that is usable in GIS. In the paper we discuss the fuzzy logic (Aliev and Tserkovny, 2011) as a reasoning system for geometry of extended objects, as well as a basis for fuzzification of the axioms of incidence geometry. The same fuzzy logic was used for fuzzification of Euclid's first postulate. Fuzzy equivalence relation “extended lines sameness” is introduced. For its approximation we also utilize a fuzzy conditional inference, which is based on proposed fuzzy “degree of indiscernibility” and “discernibility measure” of extended points. PMID:27689133
Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad
2016-06-01
Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.
Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...
2016-06-01
Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less
Modelling of Reservoir Operations using Fuzzy Logic and ANNs
NASA Astrophysics Data System (ADS)
Van De Giesen, N.; Coerver, B.; Rutten, M.
2015-12-01
Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, <0,1>, was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.
NASA Technical Reports Server (NTRS)
Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru
1991-01-01
Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.
NASA Astrophysics Data System (ADS)
King, Gary; Rosen, Ori; Tanner, Martin A.
2004-09-01
This collection of essays brings together a diverse group of scholars to survey the latest strategies for solving ecological inference problems in various fields. The last half-decade has witnessed an explosion of research in ecological inference--the process of trying to infer individual behavior from aggregate data. Although uncertainties and information lost in aggregation make ecological inference one of the most problematic types of research to rely on, these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, by business in marketing research, and by governments in policy analysis.
Huang, Mingzhi; Wan, Jinquan; Hu, Kang; Ma, Yongwen; Wang, Yan
2013-12-01
An on-line hybrid fuzzy-neural soft-sensing model-based control system was developed to optimize dissolved oxygen concentration in a bench-scale anaerobic/anoxic/oxic (A(2)/O) process. In order to improve the performance of the control system, a self-adapted fuzzy c-means clustering algorithm and adaptive network-based fuzzy inference system (ANFIS) models were employed. The proposed control system permits the on-line implementation of every operating strategy of the experimental system. A set of experiments involving variable hydraulic retention time (HRT), influent pH (pH), dissolved oxygen in the aerobic reactor (DO), and mixed-liquid return ratio (r) was carried out. Using the proposed system, the amount of COD in the effluent stabilized at the set-point and below. The improvement was achieved with optimum dissolved oxygen concentration because the performance of the treatment process was optimized using operating rules implemented in real time. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances in the outlet while using the minimum amount of energy.
Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets.
Mohan, B M; Sinha, Arpita
2008-07-01
This paper unveils mathematical models for fuzzy PI/PD controllers which employ two skewed fuzzy sets for each of the two-input variables and three skewed fuzzy sets for the output variable. The basic constituents of these models are Gamma-type and L-type membership functions for each input, trapezoidal/triangular membership functions for output, intersection/algebraic product triangular norm, maximum/drastic sum triangular conorm, Mamdani minimum/Larsen product/drastic product inference method, and center of sums defuzzification method. The existing simplest fuzzy PI/PD controller structures derived via symmetrical fuzzy sets become special cases of the mathematical models revealed in this paper. Finally, a numerical example along with its simulation results are included to demonstrate the effectiveness of the simplest fuzzy PI controllers.
A transductive neuro-fuzzy controller: application to a drilling process.
Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R
2010-07-01
Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage.
Evolutionary design of a fuzzy classifier from data.
Chang, Xiaoguang; Lilly, John H
2004-08-01
Genetic algorithms show powerful capabilities for automatically designing fuzzy systems from data, but many proposed methods must be subjected to some minimal structure assumptions, such as rule base size. In this paper, we also address the design of fuzzy systems from data. A new evolutionary approach is proposed for deriving a compact fuzzy classification system directly from data without any a priori knowledge or assumptions on the distribution of the data. At the beginning of the algorithm, the fuzzy classifier is empty with no rules in the rule base and no membership functions assigned to fuzzy variables. Then, rules and membership functions are automatically created and optimized in an evolutionary process. To accomplish this, parameters of the variable input spread inference training (VISIT) algorithm are used to code fuzzy systems on the training data set. Therefore, we can derive each individual fuzzy system via the VISIT algorithm, and then search the best one via genetic operations. To evaluate the fuzzy classifier, a fuzzy expert system acts as the fitness function. This fuzzy expert system can effectively evaluate the accuracy and compactness at the same time. In the application section, we consider four benchmark classification problems: the iris data, wine data, Wisconsin breast cancer data, and Pima Indian diabetes data. Comparisons of our method with others in the literature show the effectiveness of the proposed method.
[Network-based continuing medical education].
Romanov, Kalle
2011-01-01
Network-based training can provide continuing medical education with methods, whose implementation by means of traditional training is difficult or practically impossible. By virtue of its chronological and geographical flexibility, educational application of the network may provide extra advantage for the trainee and the trainer. Implementation of network-based training is, however, demanding and laborious both technically and pedagogically, whereby organizations should strive for collaboration in organizing the training. In addition, the status of network-based continuing education in relation to the physician's working time should be clearly defined.
NASA Technical Reports Server (NTRS)
Kosko, Bart
1991-01-01
Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.
Prediction of Conductivity by Adaptive Neuro-Fuzzy Model
Akbarzadeh, S.; Arof, A. K.; Ramesh, S.; Khanmirzaei, M. H.; Nor, R. M.
2014-01-01
Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity. PMID:24658582
Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach
NASA Astrophysics Data System (ADS)
Taufik, Afirah; Sakinah Syed Ahmad, Sharifah
2016-06-01
The aim of this paper is to propose a method to classify the land covers of a satellite image based on fuzzy rule-based system approach. The study uses bands in Landsat 8 and other indices, such as Normalized Difference Water Index (NDWI), Normalized difference built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) as input for the fuzzy inference system. The selected three indices represent our main three classes called water, built- up land, and vegetation. The combination of the original multispectral bands and selected indices provide more information about the image. The parameter selection of fuzzy membership is performed by using a supervised method known as ANFIS (Adaptive neuro fuzzy inference system) training. The fuzzy system is tested for the classification on the land cover image that covers Klang Valley area. The results showed that the fuzzy system approach is effective and can be explored and implemented for other areas of Landsat data.
Fuzzy logic and image processing techniques for the interpretation of seismic data
NASA Astrophysics Data System (ADS)
Orozco-del-Castillo, M. G.; Ortiz-Alemán, C.; Urrutia-Fucugauchi, J.; Rodríguez-Castellanos, A.
2011-06-01
Since interpretation of seismic data is usually a tedious and repetitive task, the ability to do so automatically or semi-automatically has become an important objective of recent research. We believe that the vagueness and uncertainty in the interpretation process makes fuzzy logic an appropriate tool to deal with seismic data. In this work we developed a semi-automated fuzzy inference system to detect the internal architecture of a mass transport complex (MTC) in seismic images. We propose that the observed characteristics of a MTC can be expressed as fuzzy if-then rules consisting of linguistic values associated with fuzzy membership functions. The constructions of the fuzzy inference system and various image processing techniques are presented. We conclude that this is a well-suited problem for fuzzy logic since the application of the proposed methodology yields a semi-automatically interpreted MTC which closely resembles the MTC from expert manual interpretation.
ANFIS optimized semi-active fuzzy logic controller for magnetorheological dampers
NASA Astrophysics Data System (ADS)
César, Manuel Braz; Barros, Rui Carneiro
2016-11-01
In this paper, we report on the development of a neuro-fuzzy controller for magnetorheological dampers using an Adaptive Neuro-Fuzzy Inference System or ANFIS. Fuzzy logic based controllers are capable to deal with non-linear or uncertain systems, which make them particularly well suited for civil engineering applications. The main objective is to develop a semi-active control system with a MR damper to reduce the response of a three degrees-of-freedom (DOFs) building structure. The control system is designed using ANFIS to optimize the fuzzy inference rule of a simple fuzzy logic controller. The results show that the proposed semi-active neuro-fuzzy based controller is effective in reducing the response of structural system.
Dynamic Network-Based Epistasis Analysis: Boolean Examples
Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.
2011-01-01
In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and
Robustness in semantic networks based on cliques
NASA Astrophysics Data System (ADS)
Grilo, M.; Fadigas, I. S.; Miranda, J. G. V.; Cunha, M. V.; Monteiro, R. L. S.; Pereira, H. B. B.
2017-04-01
Here, we present a study on how the structure of semantic networks based on cliques (specifically, article titles) behaves when vertex removal strategies (i.e., random and uniform vertex removal - RUR, highest degree vertex removal - HDR, and highest intermediation centrality vertex removal - HICR) are applied to this type of network. We propose a method for calculation of the average size of the small components and we identify the existence of a fraction (fp) where the topological structure of the network changes. Semantic networks based on cliques maintain the small-world phenomenon when subjected to RUR, HDR and HICR for fractions of removed vertices less than or equal to fp.
Regional fuzzy chain model for evapotranspiration estimation
NASA Astrophysics Data System (ADS)
Güçlü, Yavuz Selim; Subyani, Ali M.; Şen, Zekai
2017-01-01
Evapotranspiration (ET) is one of the main hydrological cycle components that has extreme importance for water resources management and agriculture especially in arid and semi-arid regions. In this study, regional ET estimation models based on the fuzzy logic (FL) principles are suggested, where the first stage includes the ET calculation via Penman-Monteith equation, which produces reliable results. In the second phase, ET estimations are produced according to the conventional FL inference system model. In this paper, regional fuzzy model (RFM) and regional fuzzy chain model (RFCM) are proposed through the use of adjacent stations' data in order to fill the missing ones. The application of the two models produces reliable and satisfactory results for mountainous and sea region locations in the Kingdom of Saudi Arabia, but comparatively RFCM estimations have more accuracy. In general, the mean absolute percentage error is less than 10%, which is acceptable in practical applications.
Aggelopoulos, Nikolaos C
2015-08-01
Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
Performance of Geno-Fuzzy Model on rainfall-runoff predictions in claypan watersheds
Technology Transfer Automated Retrieval System (TEKTRAN)
Fuzzy logic provides a relatively simple approach to simulate complex hydrological systems while accounting for the uncertainty of environmental variables. The objective of this study was to develop a fuzzy inference system (FIS) with genetic algorithm (GA) optimization for membership functions (MF...
NASA Technical Reports Server (NTRS)
Abihana, Osama A.; Gonzalez, Oscar R.
1993-01-01
The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.
Adaptive hierarchical fuzzy controller
Raju, G.V.S.; Jun Zhou
1993-07-01
A methodology for designing adaptive hierarchical fuzzy controllers is presented. In order to evaluate this concept, several suitable performance indices were developed and converted to linguistic fuzzy variables. Based on those variables, a supervisory fuzzy rule set was constructed and used to change the parameters of a hierarchical fuzzy controller to accommodate the variations of system parameters. The proposed algorithm was used in feedwater flow control to a steam generator. Simulation studies are presented that illustrate the effectiveness of the approach
Dissecting a Network-Based Education System
ERIC Educational Resources Information Center
Davis, Tiffany; Yoo, Seong-Moo; Pan, Wendi
2005-01-01
The Alabama Learning Exchange (ALEX; www.alex.state.al.us) is a network-based education system designed and implemented to help improve education in Alabama. It accomplishes this goal by providing a single location for the state's K-12 educators to find information that will help improve their classroom effectiveness. The ALEX system includes…
Neural network based architectures for aerospace applications
NASA Technical Reports Server (NTRS)
Ricart, Richard
1987-01-01
A brief history of the field of neural networks research is given and some simple concepts are described. In addition, some neural network based avionics research and development programs are reviewed. The need for the United States Air Force and NASA to assume a leadership role in supporting this technology is stressed.
Network-Based Classrooms: Promises and Realities.
ERIC Educational Resources Information Center
Bruce, Bertram C., Ed.; And Others
Exploring how new technologies and new pedagogies transform and are transformed by existing institutions, this book presents 14 essays that discuss network-based classrooms in which students use communications software on computer networks to converse in writing. The first part of the book discusses general themes and issues of the ENFI…
Network based high performance concurrent computing
Sunderam, V.S.
1991-01-01
The overall objectives of this project are to investigate research issues pertaining to programming tools and efficiency issues in network based concurrent computing systems. The basis for these efforts is the PVM project that evolved during my visits to Oak Ridge Laboratories under the DOE Faculty Research Participation program; I continue to collaborate with researchers at Oak Ridge on some portions of the project.
NASA Technical Reports Server (NTRS)
Howard, Ayanna
2005-01-01
The Fuzzy Logic Engine is a software package that enables users to embed fuzzy-logic modules into their application programs. Fuzzy logic is useful as a means of formulating human expert knowledge and translating it into software to solve problems. Fuzzy logic provides flexibility for modeling relationships between input and output information and is distinguished by its robustness with respect to noise and variations in system parameters. In addition, linguistic fuzzy sets and conditional statements allow systems to make decisions based on imprecise and incomplete information. The user of the Fuzzy Logic Engine need not be an expert in fuzzy logic: it suffices to have a basic understanding of how linguistic rules can be applied to the user's problem. The Fuzzy Logic Engine is divided into two modules: (1) a graphical-interface software tool for creating linguistic fuzzy sets and conditional statements and (2) a fuzzy-logic software library for embedding fuzzy processing capability into current application programs. The graphical- interface tool was developed using the Tcl/Tk programming language. The fuzzy-logic software library was written in the C programming language.
NASA Astrophysics Data System (ADS)
Khan, Shahjahan
Often scientific information on various data generating processes are presented in the from of numerical and categorical data. Except for some very rare occasions, generally such data represent a small part of the population, or selected outcomes of any data generating process. Although, valuable and useful information is lurking in the array of scientific data, generally, they are unavailable to the users. Appropriate statistical methods are essential to reveal the hidden "jewels" in the mess of the row data. Exploratory data analysis methods are used to uncover such valuable characteristics of the observed data. Statistical inference provides techniques to make valid conclusions about the unknown characteristics or parameters of the population from which scientifically drawn sample data are selected. Usually, statistical inference includes estimation of population parameters as well as performing test of hypotheses on the parameters. However, prediction of future responses and determining the prediction distributions are also part of statistical inference. Both Classical or Frequentists and Bayesian approaches are used in statistical inference. The commonly used Classical approach is based on the sample data alone. In contrast, increasingly popular Beyesian approach uses prior distribution on the parameters along with the sample data to make inferences. The non-parametric and robust methods are also being used in situations where commonly used model assumptions are unsupported. In this chapter,we cover the philosophical andmethodological aspects of both the Classical and Bayesian approaches.Moreover, some aspects of predictive inference are also included. In the absence of any evidence to support assumptions regarding the distribution of the underlying population, or if the variable is measured only in ordinal scale, non-parametric methods are used. Robust methods are employed to avoid any significant changes in the results due to deviations from the model
NASA Astrophysics Data System (ADS)
Khan, Shahjahan
Often scientific information on various data generating processes are presented in the from of numerical and categorical data. Except for some very rare occasions, generally such data represent a small part of the population, or selected outcomes of any data generating process. Although, valuable and useful information is lurking in the array of scientific data, generally, they are unavailable to the users. Appropriate statistical methods are essential to reveal the hidden “jewels” in the mess of the row data. Exploratory data analysis methods are used to uncover such valuable characteristics of the observed data. Statistical inference provides techniques to make valid conclusions about the unknown characteristics or parameters of the population from which scientifically drawn sample data are selected. Usually, statistical inference includes estimation of population parameters as well as performing test of hypotheses on the parameters. However, prediction of future responses and determining the prediction distributions are also part of statistical inference. Both Classical or Frequentists and Bayesian approaches are used in statistical inference. The commonly used Classical approach is based on the sample data alone. In contrast, increasingly popular Beyesian approach uses prior distribution on the parameters along with the sample data to make inferences. The non-parametric and robust methods are also being used in situations where commonly used model assumptions are unsupported. In this chapter,we cover the philosophical andmethodological aspects of both the Classical and Bayesian approaches.Moreover, some aspects of predictive inference are also included. In the absence of any evidence to support assumptions regarding the distribution of the underlying population, or if the variable is measured only in ordinal scale, non-parametric methods are used. Robust methods are employed to avoid any significant changes in the results due to deviations from the model
Decentralized fuzzy control of multiple nonholonomic vehicles
Driessen, B.J.; Feddema, J.T.; Kwok, K.S.
1997-09-01
This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.
Industrial application of fuzzy control in bioprocesses.
Honda, Hiroyuki; Kobayashi, Takeshi
2004-01-01
In a bioprocess, for example a fermentation process, many biological reactions are always working in intracellular space and the control of such a process is very complicated. Bioprocesses have therefore been controlled by the judgment of the experts who are the skilled operators and have much experience in the control of such processes. Such experience is normally described in terms of linguistic IF-THEN rules. Fuzzy inference is a powerful tool for incorporating linguistic rules into computer control of such processes. Fuzzy control is divided into two types--direct fuzzy control of process variables, for example sugar feed rate and fermentation temperature, and indirect control via phase recognition. In bioprocess control the experts decide the value of controllable process variables such as sugar feed rate or temperature as output data from several state variables as input data. Fuzzy control is regarded as a computational algorithm in which the causal relationship between input and output data are incorporated. In Japan fuzzy control has already been applied to practical industrial processes such as production of pravastatin precursor and vitamin B2 and to the Japanese sake mashing process; these examples are reviewed. In addition, an advanced control tool developed from a study on fuzzy control, fuzzy neural networks (FNN), are introduced. FNN can involve complicated causality between input and output data in a network model. FNN have been proven to be applicable to a research in biomedicine, for example modeling of the complicated causality between electroencephalogram or gene expression profiling data and prognostic prediction. Successful results on this research will be also explained.
Recurrent fuzzy ranking methods
NASA Astrophysics Data System (ADS)
Hajjari, Tayebeh
2012-11-01
With the increasing development of fuzzy set theory in various scientific fields and the need to compare fuzzy numbers in different areas. Therefore, Ranking of fuzzy numbers plays a very important role in linguistic decision-making, engineering, business and some other fuzzy application systems. Several strategies have been proposed for ranking of fuzzy numbers. Each of these techniques has been shown to produce non-intuitive results in certain case. In this paper, we reviewed some recent ranking methods, which will be useful for the researchers who are interested in this area.
A fuzzy clustering based segmentation system as support to diagnosis in medical imaging.
Masulli, F; Schenone, A
1999-06-01
In medical imaging uncertainty is widely present in data, because of the noise in acquisition and of the partial volume effects originating from the low resolution of sensors. In particular, borders between tissues are not exactly defined and memberships in the boundary regions are intrinsically fuzzy. Therefore, computer assisted unsupervised fuzzy clustering methods turn out to be particularly suitable for handling a decision making process concerning segmentation of multimodal medical images. By using the possibilistic c-means algorithm as a refinement of a neural network based clustering algorithm named capture effect neural network, we developed the possibilistic neuro fuzzy c-means algorithm (PNFCM). In this paper the PNFCM has been applied to two different multimodal data sets and the results have been compared to those obtained by using the classical fuzzy c-means algorithm. Furthermore, a discussion is presented about the role of fuzzy clustering as a support to diagnosis in medical imaging.
Self-organizing neural network as a fuzzy classifier
Mitra, S.; Pal, S.K.
1994-03-01
This paper describes a self-organizing artificial neural network, based on Kohonen`s model of self-organization, which is capable of handling fuzzy input and of providing fuzzy classification. Unlike conventional neural net models, this algorithm incorporates fuzzy set-theoretic concepts at various stages. The input vector consists of membership values for linguistic properties along with some contextual class membership information which is used during self-organization to permit efficient modeling of fuzzy (ambiguous) patterns. A new definition of gain factor for weight updating is proposed. An index of disorder involving mean square distance between the input and weight vectors is used to determine a measure of the ordering of the output space. This controls the number of sweeps required in the process. Incorporation of the concept of fuzzy partitioning allows natural self-organization of the input data, especially when they have ill-defined boundaries. The output of unknown test patterns is generated in terms of class membership values. Incorporation of fuzziness in input and output is seen to provide better performance as compared to the original Kohonen model and the hard version. The effectiveness of this algorithm is demonstrated on the speech recognition problem for various network array sizes, training sets and gain factors. 24 refs.
Network-Based Analysis of eQTL Data to Prioritize Driver Mutations.
De Maeyer, Dries; Weytjens, Bram; De Raedt, Luc; Marchal, Kathleen
2016-01-23
In clonal systems, interpreting driver genes in terms of molecular networks helps understanding how these drivers elicit an adaptive phenotype. Obtaining such a network-based understanding depends on the correct identification of driver genes. In clonal systems, independent evolved lines can acquire a similar adaptive phenotype by affecting the same molecular pathways, a phenomenon referred to as parallelism at the molecular pathway level. This implies that successful driver identification depends on interpreting mutated genes in terms of molecular networks. Driver identification and obtaining a network-based understanding of the adaptive phenotype are thus confounded problems that ideally should be solved simultaneously. In this study, a network-based eQTL method is presented that solves both the driver identification and the network-based interpretation problem. As input the method uses coupled genotype-expression phenotype data (eQTL data) of independently evolved lines with similar adaptive phenotypes and an organism-specific genome-wide interaction network. The search for mutational consistency at pathway level is defined as a subnetwork inference problem, which consists of inferring a subnetwork from the genome-wide interaction network that best connects the genes containing mutations to differentially expressed genes. Based on their connectivity with the differentially expressed genes, mutated genes are prioritized as driver genes. Based on semisynthetic data and two publicly available data sets, we illustrate the potential of the network-based eQTL method to prioritize driver genes and to gain insights in the molecular mechanisms underlying an adaptive phenotype. The method is available at http://bioinformatics.intec.ugent.be/phenetic_eqtl/index.html.
A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System
Tang, Yongchuan; Zhou, Deyun
2016-01-01
In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method. PMID:27482707
A New Fuzzy-Evidential Controller for Stabilization of the Planar Inverted Pendulum System.
Tang, Yongchuan; Zhou, Deyun; Jiang, Wen
2016-01-01
In order to realize the stability control of the planar inverted pendulum system, which is a typical multi-variable and strong coupling system, a new fuzzy-evidential controller based on fuzzy inference and evidential reasoning is proposed. Firstly, for each axis, a fuzzy nine-point controller for the rod and a fuzzy nine-point controller for the cart are designed. Then, in order to coordinate these two controllers of each axis, a fuzzy-evidential coordinator is proposed. In this new fuzzy-evidential controller, the empirical knowledge for stabilization of the planar inverted pendulum system is expressed by fuzzy rules, while the coordinator of different control variables in each axis is built incorporated with the dynamic basic probability assignment (BPA) in the frame of fuzzy inference. The fuzzy-evidential coordinator makes the output of the control variable smoother, and the control effect of the new controller is better compared with some other work. The experiment in MATLAB shows the effectiveness and merit of the proposed method.
Introduction to Fuzzy Set Theory
NASA Technical Reports Server (NTRS)
Kosko, Bart
1990-01-01
An introduction to fuzzy set theory is described. Topics covered include: neural networks and fuzzy systems; the dynamical systems approach to machine intelligence; intelligent behavior as adaptive model-free estimation; fuzziness versus probability; fuzzy sets; the entropy-subsethood theorem; adaptive fuzzy systems for backing up a truck-and-trailer; product-space clustering with differential competitive learning; and adaptive fuzzy system for target tracking.
Approach to Synchronization Control of Magnetic Bearings Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Yang, Li-Farn
1996-01-01
This paper presents a fuzzy-logic approach to the synthesis of synchronization control for magnetically suspended rotor system. The synchronization control enables a whirling rotor to undergo synchronous motion along the magnetic bearing axes; thereby avoiding the gyroscopic effect that degrade the stability of rotor systems when spinning at high speed. The control system features a fuzzy controller acting on the magnetic bearing device, in which the fuzzy inference system trained through fuzzy rules to minimize the differential errors between four bearing axes so that an error along one bearing axis can affect the overall control loop for the motion synchronization. Numerical simulations of synchronization control for the magnetically suspended rotor system are presented to show the effectiveness of the present approach.
FEM Optimization of Spin Forming Using a Fuzzy Control Algorithm
NASA Astrophysics Data System (ADS)
Yoshihara, S.; Ray, P.; MacDonald, B. J.; Koyama, H.; Kawahara, M.
2004-06-01
Finite element (FE) simulation of the manufacturing of a conical nosing such as a pressure vessel from circular tubes, using the spin forming method, was performed on the commercially available software package, ANSYS/LS-DYNA3D. The finite element method (FEM) provides a powerful tool for evaluating the potential to form the pressure vessel with proposed modifications to the process. The use of fuzzy logic inference as a control system to achieve the designed shape of the pressure vessel was investigated using the FEM. The path of the roller as a process parameter was decided by the fuzzy inference control algorithm from information of the result of deformation of each element respectively. The fuzzy control algorithm investigated was validated from the results of the production process time and the deformed shape using FE simulation.
Experiments on neural network architectures for fuzzy logic
NASA Technical Reports Server (NTRS)
Keller, James M.
1991-01-01
The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.
Markowski, Adam S; Mannan, M Sam
2008-11-15
A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated.
Syllogistic reasoning in fuzzy logic and its application to usuality and reasoning with dispositions
NASA Technical Reports Server (NTRS)
Zadeh, L. A.
1985-01-01
A fuzzy syllogism in fuzzy logic is defined to be an inference schema in which the major premise, the minor premise and the conclusion are propositions containing fuzzy quantifiers. A basic fuzzy syllogism in fuzzy logic is the intersection/product syllogism. Several other basic syllogisms are developed that may be employed as rules of combination of evidence in expert systems. Among these is the consequent conjunction syllogism. Furthermore, it is shown that syllogistic reasoning in fuzzy logic provides a basis for reasoning with dispositions; that is, with propositions that are preponderantly but not necessarily always true. It is also shown that the concept of dispositionality is closely related to the notion of usuality and serves as a basis for what might be called a theory of usuality - a theory which may eventually provide a computational framework for commonsense reasoning.
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1992-01-01
Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.
NASA Astrophysics Data System (ADS)
Borgelt, Christian
In clustering we often face the situation that only a subset of the available attributes is relevant for forming clusters, even though this may not be known beforehand. In such cases it is desirable to have a clustering algorithm that automatically weights attributes or even selects a proper subset. In this paper I study such an approach for fuzzy clustering, which is based on the idea to transfer an alternative to the fuzzifier (Klawonn and Höppner, What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier, In: Proc. 5th Int. Symp. on Intelligent Data Analysis, 254-264, Springer, Berlin, 2003) to attribute weighting fuzzy clustering (Keller and Klawonn, Int J Uncertain Fuzziness Knowl Based Syst 8:735-746, 2000). In addition, by reformulating Gustafson-Kessel fuzzy clustering, a scheme for weighting and selecting principal axes can be obtained. While in Borgelt (Feature weighting and feature selection in fuzzy clustering, In: Proc. 17th IEEE Int. Conf. on Fuzzy Systems, IEEE Press, Piscataway, NJ, 2008) I already presented such an approach for a global selection of attributes and principal axes, this paper extends it to a cluster-specific selection, thus arriving at a fuzzy subspace clustering algorithm (Parsons, Haque, and Liu, 2004).
A Fuzzy Logic Based Controller for the Automated Alignment of a Laser-beam-smoothing Spatial Filter
NASA Technical Reports Server (NTRS)
Krasowski, M. J.; Dickens, D. E.
1992-01-01
A fuzzy logic based controller for a laser-beam-smoothing spatial filter is described. It is demonstrated that a human operator's alignment actions can easily be described by a system of fuzzy rules of inference. The final configuration uses inexpensive, off-the-shelf hardware and allows for a compact, readily implemented embedded control system.
Fuzzy logic-based spike sorting system.
Balasubramanian, Karthikeyan; Obeid, Iyad
2011-05-15
We present a new method for autonomous real-time spike sorting using a fuzzy logic inference engine. The engine assigns each detected event a 'spikiness index' from zero to one that quantifies the extent to which the detected event is like an ideal spike. Spikes can then be sorted by simply clustering the spikiness indices. The sorter is defined in terms of natural language rules that, once defined, are static and thus require no user intervention or calibration. The sorter was tested using extracellular recordings from three animals: a macaque, an owl monkey and a rat. Simulation results show that the fuzzy sorter performed equal to or better than the benchmark principal component analysis (PCA) based sorter. Importantly, there was no degradation in fuzzy sorter performance when the spikes were not temporally aligned prior to sorting. In contrast, PCA sorter performance dropped by 27% when sorting unaligned spikes. Since the fuzzy sorter is computationally trivial and requires no spike alignment, it is suitable for scaling into large numbers of parallel channels where computational overhead and the need for operator intervention would preclude other spike sorters.
Fuzzy automata and pattern matching
NASA Technical Reports Server (NTRS)
Setzer, C. B.; Warsi, N. A.
1986-01-01
A wide-ranging search for articles and books concerned with fuzzy automata and syntactic pattern recognition is presented. A number of survey articles on image processing and feature detection were included. Hough's algorithm is presented to illustrate the way in which knowledge about an image can be used to interpret the details of the image. It was found that in hand generated pictures, the algorithm worked well on following the straight lines, but had great difficulty turning corners. An algorithm was developed which produces a minimal finite automaton recognizing a given finite set of strings. One difficulty of the construction is that, in some cases, this minimal automaton is not unique for a given set of strings and a given maximum length. This algorithm compares favorably with other inference algorithms. More importantly, the algorithm produces an automaton with a rigorously described relationship to the original set of strings that does not depend on the algorithm itself.
Some Properties of Fuzzy Soft Proximity Spaces
Demir, İzzettin; Özbakır, Oya Bedre
2015-01-01
We study the fuzzy soft proximity spaces in Katsaras's sense. First, we show how a fuzzy soft topology is derived from a fuzzy soft proximity. Also, we define the notion of fuzzy soft δ-neighborhood in the fuzzy soft proximity space which offers an alternative approach to the study of fuzzy soft proximity spaces. Later, we obtain the initial fuzzy soft proximity determined by a family of fuzzy soft proximities. Finally, we investigate relationship between fuzzy soft proximities and proximities. PMID:25793224
Some properties of fuzzy soft proximity spaces.
Demir, İzzettin; Özbakır, Oya Bedre
2015-01-01
We study the fuzzy soft proximity spaces in Katsaras's sense. First, we show how a fuzzy soft topology is derived from a fuzzy soft proximity. Also, we define the notion of fuzzy soft δ-neighborhood in the fuzzy soft proximity space which offers an alternative approach to the study of fuzzy soft proximity spaces. Later, we obtain the initial fuzzy soft proximity determined by a family of fuzzy soft proximities. Finally, we investigate relationship between fuzzy soft proximities and proximities.
Network-Based Protein Biomarker Discovery Platforms
Kim, Minhyung
2016-01-01
The advances in mass spectrometry-based proteomics technologies have enabled the generation of global proteome data from tissue or body fluid samples collected from a broad spectrum of human diseases. Comparative proteomic analysis of global proteome data identifies and prioritizes the proteins showing altered abundances, called differentially expressed proteins (DEPs), in disease samples, compared to control samples. Protein biomarker candidates that can serve as indicators of disease states are then selected as key molecules among these proteins. Recently, it has been addressed that cellular pathways can provide better indications of disease states than individual molecules and also network analysis of the DEPs enables effective identification of cellular pathways altered in disease conditions and key molecules representing the altered cellular pathways. Accordingly, a number of network-based approaches to identify disease-related pathways and representative molecules of such pathways have been developed. In this review, we summarize analytical platforms for network-based protein biomarker discovery and key components in the platforms. PMID:27103885
Hydrograph estimation with fuzzy chain model
NASA Astrophysics Data System (ADS)
Güçlü, Yavuz Selim; Şen, Zekai
2016-07-01
Hydrograph peak discharge estimation is gaining more significance with unprecedented urbanization developments. Most of the existing models do not yield reliable peak discharge estimations for small basins although they provide acceptable results for medium and large ones. In this study, fuzzy chain model (FCM) is suggested by considering the necessary adjustments based on some measurements over a small basin, Ayamama basin, within Istanbul City, Turkey. FCM is based on Mamdani and the Adaptive Neuro Fuzzy Inference Systems (ANFIS) methodologies, which yield peak discharge estimation. The suggested model is compared with two well-known approaches, namely, Soil Conservation Service (SCS)-Snyder and SCS-Clark methodologies. In all the methods, the hydrographs are obtained through the use of dimensionless unit hydrograph concept. After the necessary modeling, computation, verification and adaptation stages comparatively better hydrographs are obtained by FCM. The mean square error for the FCM is many folds smaller than the other methodologies, which proves outperformance of the suggested methodology.
Network-based recommendation algorithms: A review
NASA Astrophysics Data System (ADS)
Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš
2016-06-01
Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.
A neural network based speech recognition system
NASA Astrophysics Data System (ADS)
Carroll, Edward J.; Coleman, Norman P., Jr.; Reddy, G. N.
1990-02-01
An overview is presented of the development of a neural network based speech recognition system. The two primary tasks involved were the development of a time invariant speech encoder and a pattern recognizer or detector. The speech encoder uses amplitude normalization and a Fast Fourier Transform to eliminate amplitude and frequency shifts of acoustic clues. The detector consists of a back-propagation network which accepts data from the encoder and identifies individual words. This use of neural networks offers two advantages over conventional algorithmic detectors: the detection time is no more than a few network time constants, and its recognition speed is independent of the number of the words in the vocabulary. The completed system has functioned as expected with high tolerance to input variation and with error rates comparable to a commercial system when used in a noisy environment.
Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.
Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N; Crespi, Noel; Khan, Imran
2016-06-27
User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.
Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes
Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N.; Crespi, Noel; Khan, Imran
2016-01-01
User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users’ privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation. PMID:27355951
Neuro-fuzzy controller to navigate an unmanned vehicle.
Selma, Boumediene; Chouraqui, Samira
2013-12-01
A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).
NASA Astrophysics Data System (ADS)
Pedrycz, Witold
1993-12-01
The paradigm of fuzzy modelling entails development of relationships (dependencies) between the linguistic entities defined for system's variables. The key feature of the fuzzy models pertains to their significant flexibility so they could easily be modified to comply with the principle of incompatibility. Considering the existing panoply of fuzzy models one can easily conclude that most of them are embraced under an umbrella of a single conceptual structure. From a functional point of view this structure is perceived as a combination of the two conceptual interfaces and a single processing block aimed at developing calculus of the linguistic labels. The interfaces produce all the links that are necessary to combine the physical (numerical) level of the real-world system with that of a conceptual character realized within the fuzzy model and articulated at the level of the linguistic entities. The presentation will address the main methodological aspects concerning these functional components with a particular emphasis placed on the associated design principles. The main issues dominating the design of the interfaces pertain to the implemented level of information granularity, optimality of linguistic labels, and linguistic-to-numerical transformations. The processing level of the fuzzy modelling will be considered through the use of fuzzy neural networks. These distributed computing structures are highly heterogeneous as they are constructed with the aid of several distinct types of logic-oriented neurons. The advantages of the fuzzy neural networks such as an implicit scheme of knowledge encapsulation that is carried out there will be discussed in detail.
CCor: A whole genome network-based similarity measure between two genes.
Hu, Yiming; Zhao, Hongyu
2016-12-01
Measuring the similarity between genes is often the starting point for building gene regulatory networks. Most similarity measures used in practice only consider pairwise information with a few also consider network structure. Although theoretical properties of pairwise measures are well understood in the statistics literature, little is known about their statistical properties of those similarity measures based on network structure. In this article, we consider a new whole genome network-based similarity measure, called CCor, that makes use of information of all the genes in the network. We derive a concentration inequality of CCor and compare it with the commonly used Pearson correlation coefficient for inferring network modules. Both theoretical analysis and real data example demonstrate the advantages of CCor over existing measures for inferring gene modules.
CCor: a whole genome network-based similarity measure between two genes
Hu, Yiming; Zhao, Hongyu
2016-01-01
Summary Measuring the similarity between genes is often the starting point for building gene regulatory networks. Most similarity measures used in practice only consider pairwise information with a few also consider network structure. Although theoretical properties of pairwise measures are well understood in the statistics literature, little is known about their statistical properties of those similarity measures based on network structure. In this article, we consider a new whole genome network-based similarity measure, called CCor, that makes use of information of all the genes in the network. We derive a concentration inequality of CCor and compare it with the commonly used Pearson correlation coe cient for inferring network modules. Both theoretical analysis and real data example demonstrate the advantages of CCor over existing measures for inferring gene modules. PMID:26953524
NASA Technical Reports Server (NTRS)
Jani, Yashvant
1992-01-01
As part of the Research Institute for Computing and Information Systems (RICIS) activity, the reinforcement learning techniques developed at Ames Research Center are being applied to proximity and docking operations using the Shuttle and Solar Max satellite simulation. This activity is carried out in the software technology laboratory utilizing the Orbital Operations Simulator (OOS). This interim report provides the status of the project and outlines the future plans.
NASA Astrophysics Data System (ADS)
Bosch, David; Ledo, Juanjo; Queralt, Pilar
2013-07-01
Fuzzy logic has been used for lithology prediction with remarkable success. Several techniques such as fuzzy clustering or linguistic reasoning have proven to be useful for lithofacies determination. In this paper, a fuzzy inference methodology has been implemented as a MATLAB routine and applied for the first time to well log data from the German Continental Deep Drilling Program (KTB). The training of the fuzzy inference system is based on the analysis of the multi-class Matthews correlation coefficient computed for the classification matrix. For this particular data set, we have found that the best suited membership function type is the piecewise linear interpolation of the normalized histograms; that the best combination operator for obtaining the final lithology degrees of membership is the fuzzy gamma operator; and that all the available properties are relevant in the classification process. Results show that this fuzzy logic-based method is suited for rapidly and reasonably suggesting a lithology column from well log data, neatly identifying the main units and in some cases refining the classification, which can lead to a better interpretation. We have tested the trained system with synthetic data generated from property value distributions of the training data set to find that the differences in data distributions between both wells are significant enough to misdirect the inference process. However, a cross-validation analysis has revealed that, even with differences between data distributions and missing lithologies in the training data set, this fuzzy logic inference system is able to output a coherent classification.
A Fuzzy Reasoning Design for Fault Detection and Diagnosis of a Computer-Controlled System.
Ting, Y; Lu, W B; Chen, C H; Wang, G K
2008-03-01
A Fuzzy Reasoning and Verification Petri Nets (FRVPNs) model is established for an error detection and diagnosis mechanism (EDDM) applied to a complex fault-tolerant PC-controlled system. The inference accuracy can be improved through the hierarchical design of a two-level fuzzy rule decision tree (FRDT) and a Petri nets (PNs) technique to transform the fuzzy rule into the FRVPNs model. Several simulation examples of the assumed failure events were carried out by using the FRVPNs and the Mamdani fuzzy method with MATLAB tools. The reasoning performance of the developed FRVPNs was verified by comparing the inference outcome to that of the Mamdani method. Both methods result in the same conclusions. Thus, the present study demonstratrates that the proposed FRVPNs model is able to achieve the purpose of reasoning, and furthermore, determining of the failure event of the monitored application program.
Preventive Maintenance Prioritization by Fuzzy Logic for Seamless Hydro Power Generation
NASA Astrophysics Data System (ADS)
Roy, P. K.; Adhikary, P.; Mazumdar, A.
2014-06-01
Preventive maintenance prioritization is one of the most important criteria for the electricity generation planners to minimize the down time and production costs. Break down of equipments increases costs and plant down time results in loss of business. This work focuses on prioritizing the preventive maintenance for seamless hydro power generation considering (24 × 7) client's power demand using fuzzy logic. The main task involves prioritizing the maintenance work considering constraints of varied power demand and hydro turbine plant breakdown. Fuzzy logic is used to optimize the preventive maintenance prioritization under the main constraints. Manual fuzzy arithmetic is used to develop the model and MATLAB Fuzzy Inference System editor used to validate the same. This novel fuzzy logic approach of preventive maintenance prioritizing for hydro power generation is absent in renewable power generation and industrial engineering literatures due to its assessment complexity.
A new approach for modelling gene regulatory networks using fuzzy petri nets.
Hamed, Raed I; Ahson, S I; Parveen, R
2010-02-04
Gene Regulatory Networks are models of genes and gene interactions at the expression level. The advent of microarray technology has challenged computer scientists to develop better algorithms for modeling the underlying regulatory relationship in between the genes. Fuzzy system has an ability to search microarray datasets for activator/repressor regulatory relationship. In this paper, we present a fuzzy reasoning model based on the Fuzzy Petri Net. The model considers the regulatory triplets by means of predicting changes in expression level of the target based on input expression level. This method eliminates possible false predictions from the classical fuzzy model thereby allowing a wider search space for inferring regulatory relationship. Through formalization of fuzzy reasoning, we propose an approach to construct a rulebased reasoning system. The experimental results show the proposed approach is feasible and acceptable to predict changes in expression level of the target gene.
A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV
NASA Astrophysics Data System (ADS)
Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.
2015-11-01
In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.
Automation of Network-Based Scientific Workflows
Altintas, I.; Barreto, R.; Blondin, J. M.; Cheng, Z.; Critchlow, T.; Khan, A.; Klasky, Scott A; Ligon, J.; Ludaescher, B.; Mouallem, P. A.; Parker, S.; Podhorszki, Norbert; Shoshani, A.; Silva, C.; Vouk, M. A.
2007-01-01
Comprehensive, end-to-end, data and workflow management solutions are needed to handle the increasing complexity of processes and data volumes associated with modern distributed scientific problem solving, such as ultra-scale simulations and high-throughput experiments. The key to the solution is an integrated network-based framework that is functional, dependable, fault-tolerant, and supports data and process provenance. Such a framework needs to make development and use of application workflows dramatically easier so that scientists' efforts can shift away from data management and utility software development to scientific research and discovery An integrated view of these activities is provided by the notion of scientific workflows - a series of structured activities and computations that arise in scientific problem-solving. An information technology framework that supports scientific workflows is the Ptolemy II based environment called Kepler. This paper discusses the issues associated with practical automation of scientific processes and workflows and illustrates this with workflows developed using the Kepler framework and tools.
Development of a GA-Fuzzy-Immune PID Controller with Incomplete Derivation for Robot Dexterous Hand
Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin
2014-01-01
In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal. PMID:25097881
Development of a GA-fuzzy-immune PID controller with incomplete derivation for robot dexterous hand.
Liu, Xin-hua; Chen, Xiao-hu; Zheng, Xian-hua; Li, Sheng-peng; Wang, Zhong-bin
2014-01-01
In order to improve the performance of robot dexterous hand, a controller based on GA-fuzzy-immune PID was designed. The control system of a robot dexterous hand and mathematical model of an index finger were presented. Moreover, immune mechanism was applied to the controller design and an improved approach through integration of GA and fuzzy inference was proposed to realize parameters' optimization. Finally, a simulation example was provided and the designed controller was proved ideal.
Network-Based Community Brings forth Sustainable Society
NASA Astrophysics Data System (ADS)
Kikuchi, Toshiko
It has already been shown that an artificial society based on the three relations of social configuration (market, communal, and obligatory relations) functioning in balance with each other formed a sustainable society which the social reproduction is possible. In this artificial society model, communal relations exist in a network-based community with alternating members rather than a conventional community with cooperative mutual assistance practiced in some agricultural communities. In this paper, using the comparison between network-based communities with alternating members and conventional communities with fixed members, the significance of a network-based community is considered. In concrete terms, the difference in appearance rate for sustainable society, economic activity and asset inequality between network-based communities and conventional communities is analyzed. The appearance rate for a sustainable society of network-based community is higher than that of conventional community. Moreover, most of network-based communities had a larger total number of trade volume than conventional communities. But, the value of Gini coefficient in conventional community is smaller than that of network-based community. These results show that communal relations based on a network-based community is significant for the social reproduction and economic efficiency. However, in such an artificial society, the inequality is sacrificed.
Systematic methods for the design of a class of fuzzy logic controllers
NASA Astrophysics Data System (ADS)
Yasin, Saad Yaser
2002-09-01
data, and a conversion algorithm, to develop a fuzzy-based control algorithm. Results were similar to those obtained by recently published conventional control based studies. The influence of the fuzzy inference operators and parameters on performance and stability of the fuzzy logic controller was studied Results indicated that, the selections of certain parameters or combinations of parameters, affect greatly the performance and stability of the fuzzy controller. Diagnostic guidelines used to tune or change certain factors or parameters to improve controller performance were developed based on knowledge gained from conventional control methods and knowledge gained from the experimental and the simulation results of this study.
Fuzzy forecasting based on fuzzy-trend logical relationship groups.
Chen, Shyi-Ming; Wang, Nai-Yi
2010-10-01
In this paper, we present a new method to predict the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) based on fuzzy-trend logical relationship groups (FTLRGs). The proposed method divides fuzzy logical relationships into FTLRGs based on the trend of adjacent fuzzy sets appearing in the antecedents of fuzzy logical relationships. First, we apply an automatic clustering algorithm to cluster the historical data into intervals of different lengths. Then, we define fuzzy sets based on these intervals of different lengths. Then, the historical data are fuzzified into fuzzy sets to derive fuzzy logical relationships. Then, we divide the fuzzy logical relationships into FTLRGs for forecasting the TAIEX. Moreover, we also apply the proposed method to forecast the enrollments and the inventory demand, respectively. The experimental results show that the proposed method gets higher average forecasting accuracy rates than the existing methods.
Spectral Identification Inference Engine
2004-07-27
The software interprets spectra (mass spectra, ion mobility spectra, etc.) using a method that mimics how an expert human analyst would perform the interpretation. Because spectra can be described linguistically (e.g. peak X must be large and peak y must be small), their description can be reduced to rules using fuzzy logic. Therefore, a fuzzy logic rule base can be applied to interpreting the spectra. The fuzzy logic rule base is also easy for the user to understand, and therefore, easy to check and verify its accuracy.
Robust Fuzzy Controllers Using FPGAs
NASA Technical Reports Server (NTRS)
Monroe, Author Gene S., Jr.
2007-01-01
Electro-mechanical device controllers typically come in one of three forms, proportional (P), Proportional Derivative (PD), and Proportional Integral Derivative (PID). Two methods of control are discussed in this paper; they are (1) the classical technique that requires an in-depth mathematical use of poles and zeros, and (2) the fuzzy logic (FL) technique that is similar to the way humans think and make decisions. FL controllers are used in multiple industries; examples include control engineering, computer vision, pattern recognition, statistics, and data analysis. Presented is a study on the development of a PD motor controller written in very high speed hardware description language (VHDL), and implemented in FL. Four distinct abstractions compose the FL controller, they are the fuzzifier, the rule-base, the fuzzy inference system (FIS), and the defuzzifier. FL is similar to, but different from, Boolean logic; where the output value may be equal to 0 or 1, but it could also be equal to any decimal value between them. This controller is unique because of its VHDL implementation, which uses integer mathematics. To compensate for VHDL's inability to synthesis floating point numbers, a scale factor equal to 10(sup (N/4) is utilized; where N is equal to data word size. The scaling factor shifts the decimal digits to the left of the decimal point for increased precision. PD controllers are ideal for use with servo motors, where position control is effective. This paper discusses control methods for motion-base platforms where a constant velocity equivalent to a spectral resolution of 0.25 cm(exp -1) is required; however, the control capability of this controller extends to various other platforms.
Vadiati, M; Asghari-Moghaddam, A; Nakhaei, M; Adamowski, J; Akbarzadeh, A H
2016-12-15
Due to inherent uncertainties in measurement and analysis, groundwater quality assessment is a difficult task. Artificial intelligence techniques, specifically fuzzy inference systems, have proven useful in evaluating groundwater quality in uncertain and complex hydrogeological systems. In the present study, a Mamdani fuzzy-logic-based decision-making approach was developed to assess groundwater quality based on relevant indices. In an effort to develop a set of new hybrid fuzzy indices for groundwater quality assessment, a Mamdani fuzzy inference model was developed with widely-accepted groundwater quality indices: the Groundwater Quality Index (GQI), the Water Quality Index (WQI), and the Ground Water Quality Index (GWQI). In an effort to present generalized hybrid fuzzy indices a significant effort was made to employ well-known groundwater quality index acceptability ranges as fuzzy model output ranges rather than employing expert knowledge in the fuzzification of output parameters. The proposed approach was evaluated for its ability to assess the drinking water quality of 49 samples collected seasonally from groundwater resources in Iran's Sarab Plain during 2013-2014. Input membership functions were defined as "desirable", "acceptable" and "unacceptable" based on expert knowledge and the standard and permissible limits prescribed by the World Health Organization. Output data were categorized into multiple categories based on the GQI (5 categories), WQI (5 categories), and GWQI (3 categories). Given the potential of fuzzy models to minimize uncertainties, hybrid fuzzy-based indices produce significantly more accurate assessments of groundwater quality than traditional indices. The developed models' accuracy was assessed and a comparison of the performance indices demonstrated the Fuzzy Groundwater Quality Index model to be more accurate than both the Fuzzy Water Quality Index and Fuzzy Ground Water Quality Index models. This suggests that the new hybrid fuzzy
Shear wave prediction using committee fuzzy model constrained by lithofacies, Zagros basin, SW Iran
NASA Astrophysics Data System (ADS)
Shiroodi, Sadjad Kazem; Ghafoori, Mohammad; Ansari, Hamid Reza; Lashkaripour, Golamreza; Ghanadian, Mostafa
2017-02-01
The main purpose of this study is to introduce the geological controlling factors in improving an intelligence-based model to estimate shear wave velocity from seismic attributes. The proposed method includes three main steps in the framework of geological events in a complex sedimentary succession located in the Persian Gulf. First, the best attributes were selected from extracted seismic data. Second, these attributes were transformed into shear wave velocity using fuzzy inference systems (FIS) such as Sugeno's fuzzy inference (SFIS), adaptive neuro-fuzzy inference (ANFIS) and optimized fuzzy inference (OFIS). Finally, a committee fuzzy machine (CFM) based on bat-inspired algorithm (BA) optimization was applied to combine previous predictions into an enhanced solution. In order to show the geological effect on improving the prediction, the main classes of predominate lithofacies in the reservoir of interest including shale, sand, and carbonate were selected and then the proposed algorithm was performed with and without lithofacies constraint. The results showed a good agreement between real and predicted shear wave velocity in the lithofacies-based model compared to the model without lithofacies especially in sand and carbonate.
Truth-Valued-Flow Inference (TVFI) and its applications in approximate reasoning
NASA Technical Reports Server (NTRS)
Wang, Pei-Zhuang; Zhang, Hongmin; Xu, Wei
1993-01-01
The framework of the theory of Truth-valued-flow Inference (TVFI) is introduced. Even though there are dozens of papers presented on fuzzy reasoning, we think it is still needed to explore a rather unified fuzzy reasoning theory which has the following two features: (1) it is simplified enough to be executed feasibly and easily; and (2) it is well structural and well consistent enough that it can be built into a strict mathematical theory and is consistent with the theory proposed by L.A. Zadeh. TVFI is one of the fuzzy reasoning theories that satisfies the above two features. It presents inference by the form of networks, and naturally views inference as a process of truth values flowing among propositions.
Component Models for Fuzzy Data
ERIC Educational Resources Information Center
Coppi, Renato; Giordani, Paolo; D'Urso, Pierpaolo
2006-01-01
The fuzzy perspective in statistical analysis is first illustrated with reference to the "Informational Paradigm" allowing us to deal with different types of uncertainties related to the various informational ingredients (data, model, assumptions). The fuzzy empirical data are then introduced, referring to "J" LR fuzzy variables as observed on "I"…
A fuzzy gear shifting strategy for manual transmissions
NASA Astrophysics Data System (ADS)
Mashadi, B.; Kazemkhani, A.
2005-12-01
Governing parameters in decision making for gear changing of an automated manual transmission are discussed based on two different criteria, namely engine working conditions and driver's intention. By taking into consideration the effects of these parameters, gear shifting strategy is designed with the application of Fuzzy control method. The controller structure is formed in two layers. In the first layer two fuzzy inference modules are used to determine necessary outputs. In second layer a fuzzy inference module makes the decision of shifting by up-shift, downshift or maintain commands. The quality of Fuzzy controller behavior is examined by making use of ADVISOR software. It is shown that at different driving conditions the controller makes correct decisions for gear shifting accounting for dynamical requirements of vehicle. It is also shown that the controller based on both engine state and driver's intention eliminates unnecessary shiftings that are present when the intention is ignored. A micro-trip is designed in which a required speed in the form of a step function is demanded for the vehicle. Starting from rest both strategies change the gear to reach maximum speed more or less in a similar fashion. In deceleration phase, however, large differences are observed between the two strategies. The engine-state strategy is less sensitive to downshift, taking even unnecessary up shift decisions. The state-intention strategy, however, correctly interprets the driver's intention for decreasing speed and utilizes engine brake torque to reduce vehicle speed in a shorter time.
Prediction on carbon dioxide emissions based on fuzzy rules
NASA Astrophysics Data System (ADS)
Pauzi, Herrini; Abdullah, Lazim
2014-06-01
There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.
Measuring Distance of Fuzzy Numbers by Trapezoidal Fuzzy Numbers
NASA Astrophysics Data System (ADS)
Hajjari, Tayebeh
2010-11-01
Fuzzy numbers and more generally linguistic values are approximate assessments, given by experts and accepted by decision-makers when obtaining value that is more accurate is impossible or unnecessary. Distance between two fuzzy numbers plays an important role in linguistic decision-making. It is reasonable to define a fuzzy distance between fuzzy objects. To achieve this aim, the researcher presents a new distance measure for fuzzy numbers by means of improved centroid distance method. The metric properties are also studied. The advantage is the calculation of the proposed method is far simple than previous approaches.
NASA Technical Reports Server (NTRS)
Richardson, Albert O.
1997-01-01
This research has investigated the use of fuzzy logic, via the Matlab Fuzzy Logic Tool Box, to design optimized controller systems. The engineering system for which the controller was designed and simulate was the container crane. The fuzzy logic algorithm that was investigated was the 'predictive control' algorithm. The plant dynamics of the container crane is representative of many important systems including robotic arm movements. The container crane that was investigated had a trolley motor and hoist motor. Total distance to be traveled by the trolley was 15 meters. The obstruction height was 5 meters. Crane height was 17.8 meters. Trolley mass was 7500 kilograms. Load mass was 6450 kilograms. Maximum trolley and rope velocities were 1.25 meters per sec. and 0.3 meters per sec., respectively. The fuzzy logic approach allowed the inclusion, in the controller model, of performance indices that are more effectively defined in linguistic terms. These include 'safety' and 'cargo swaying'. Two fuzzy inference systems were implemented using the Matlab simulation package, namely the Mamdani system (which relates fuzzy input variables to fuzzy output variables), and the Sugeno system (which relates fuzzy input variables to crisp output variable). It is found that the Sugeno FIS is better suited to including aspects of those plant dynamics whose mathematical relationships can be determined.
Distributed fuzzy system modeling
Pedrycz, W.; Chi Fung Lam, P.; Rocha, A.F.
1995-05-01
The paper introduces and studies an idea of distributed modeling treating it as a new paradigm of fuzzy system modeling and analysis. This form of modeling is oriented towards developing individual (local) fuzzy models for specific modeling landmarks (expressed as fuzzy sets) and determining the essential logical relationships between these local models. The models themselves are implemented in the form of logic processors being regarded as specialized fuzzy neural networks. The interaction between the processors is developed either in an inhibitory or excitatory way. In more descriptive way, the distributed model can be sought as a collection of fuzzy finite state machines with their individual local first or higher order memories. It is also clarified how the concept of distributed modeling narrows down a gap between purely numerical (quantitative) models and the qualitative ones originated within the realm of Artificial Intelligence. The overall architecture of distributed modeling is discussed along with the detailed learning schemes. The results of extensive simulation experiments are provided as well. 17 refs.
Stock and option portfolio using fuzzy logic approach
NASA Astrophysics Data System (ADS)
Sumarti, Novriana; Wahyudi, Nanang
2014-03-01
Fuzzy Logic in decision-making process has been widely implemented in various problems in industries. It is the theory of imprecision and uncertainty that was not based on probability theory. Fuzzy Logic adds values of degree between absolute true and absolute false. It starts with and builds on a set of human language rules supplied by the user. The fuzzy systems convert these rules to their mathematical equivalents. This could simplify the job of the system designer and the computer, and results in much more accurate representations of the way systems behave in the real world. In this paper we examine the decision making process of stock and option trading by the usage of MACD (Moving Average Convergence Divergence) technical analysis and Option Pricing with Fuzzy Logic approach. MACD technical analysis is for the prediction of the trends of underlying stock prices, such as bearish (going downward), bullish (going upward), and sideways. By using Fuzzy C-Means technique and Mamdani Fuzzy Inference System, we define the decision output where the value of MACD is high then decision is "Strong Sell", and the value of MACD is Low then the decision is "Strong Buy". We also implement the fuzzification of the Black-Scholes option-pricing formula. The stock and options methods are implemented on a portfolio of one stock and its options. Even though the values of input data, such as interest rates, stock price and its volatility, cannot be obtain accurately, these fuzzy methods can give a belief degree of the calculated the Black-Scholes formula so we can make the decision on option trading. The results show the good capability of the methods in the prediction of stock price trends. The performance of the simulated portfolio for a particular period of time also shows good return.
A neural fuzzy controller learning by fuzzy error propagation
NASA Technical Reports Server (NTRS)
Nauck, Detlef; Kruse, Rudolf
1992-01-01
In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.
NASA Technical Reports Server (NTRS)
Salazar, George A. (Inventor)
1993-01-01
This invention relates to a reconfigurable fuzzy cell comprising a digital control programmable gain operation amplifier, an analog-to-digital converter, an electrically erasable PROM, and 8-bit counter and comparator, and supporting logic configured to achieve in real-time fuzzy systems high throughput, grade-of-membership or membership-value conversion of multi-input sensor data. The invention provides a flexible multiplexing-capable configuration, implemented entirely in hardware, for effectuating S-, Z-, and PI-membership functions or combinations thereof, based upon fuzzy logic level-set theory. A membership value table storing 'knowledge data' for each of S-, Z-, and PI-functions is contained within a nonvolatile memory for storing bits of membership and parametric information in a plurality of address spaces. Based upon parametric and control signals, analog sensor data is digitized and converted into grade-of-membership data. In situ learn and recognition modes of operation are also provided.
Prediction system of hydroponic plant growth and development using algorithm Fuzzy Mamdani method
NASA Astrophysics Data System (ADS)
Sudana, I. Made; Purnawirawan, Okta; Arief, Ulfa Mediaty
2017-03-01
Hydroponics is a method of farming without soil. One of the Hydroponic plants is Watercress (Nasturtium Officinale). The development and growth process of hydroponic Watercress was influenced by levels of nutrients, acidity and temperature. The independent variables can be used as input variable system to predict the value level of plants growth and development. The prediction system is using Fuzzy Algorithm Mamdani method. This system was built to implement the function of Fuzzy Inference System (Fuzzy Inference System/FIS) as a part of the Fuzzy Logic Toolbox (FLT) by using MATLAB R2007b. FIS is a computing system that works on the principle of fuzzy reasoning which is similar to humans' reasoning. Basically FIS consists of four units which are fuzzification unit, fuzzy logic reasoning unit, base knowledge unit and defuzzification unit. In addition to know the effect of independent variables on the plants growth and development that can be visualized with the function diagram of FIS output surface that is shaped three-dimensional, and statistical tests based on the data from the prediction system using multiple linear regression method, which includes multiple linear regression analysis, T test, F test, the coefficient of determination and donations predictor that are calculated using SPSS (Statistical Product and Service Solutions) software applications.
Design and simulation of an image-based fuzzy tracking controller for a wheeled mobile robot
NASA Astrophysics Data System (ADS)
Shiao, Ying Shing; Wu, Ching Wei
2011-12-01
Image processing algorithms and fuzzy logic method are used to design a visual tracking controller for mobile robot navigation. In this paper, a wheeled mobile robot is equipped with a camera for detecting its task space. The grabbed environmental images are treated using image recognition processing to obtain target's size and position. The images are treated using input membership functions as the fuzzy logic controller input. The recognized target's size and position are input into a fuzzy logic controller in which fuzzy rules are used for inference. The inference results are output to the defuzzifier to obtain a physical control signal to control the mobile robot's movement. The velocity and direction of the mobile robot are the output of fuzzy logic controller. The differences in velocities for two wheels are used to control the robot's movement directions. The fuzzy logic controller outputs the control commands to drive the mobile robot to reach a position 50cm front of the target location. The simulation results verify that the proposed FLC is effective in navigating the mobile robot to track a moving target.
Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun
2016-12-03
Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC.
Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun
2016-01-01
Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC. PMID:27918482
NASA Astrophysics Data System (ADS)
Messaoud, Deghdak
2010-11-01
In this paper, we study the existence of equilibrium in non-cooperative game with fuzzy parameters. We generalize te results of Larbani and Kacher(2008, 2009) in infinite dimentional spaces. The proof is based on the Browder-Fan fixed point theorem.
Using fuzzy logic to integrate neural networks and knowledge-based systems
NASA Technical Reports Server (NTRS)
Yen, John
1991-01-01
Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.
Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic.
Hou, Shi-Wang; Feng, Shunxiao; Wang, Hui
2016-01-01
Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating.
Recognition of Handwritten Arabic words using a neuro-fuzzy network
Boukharouba, Abdelhak; Bennia, Abdelhak
2008-06-12
We present a new method for the recognition of handwritten Arabic words based on neuro-fuzzy hybrid network. As a first step, connected components (CCs) of black pixels are detected. Then the system determines which CCs are sub-words and which are stress marks. The stress marks are then isolated and identified separately and the sub-words are segmented into graphemes. Each grapheme is described by topological and statistical features. Fuzzy rules are extracted from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data using a fuzzy c-means, and rule parameter tuning phase using gradient descent learning. After learning, the network encodes in its topology the essential design parameters of a fuzzy inference system.The contribution of this technique is shown through the significant tests performed on a handwritten Arabic words database.
Intelligent Process Abnormal Patterns Recognition and Diagnosis Based on Fuzzy Logic
Feng, Shunxiao; Wang, Hui
2016-01-01
Locating the assignable causes by use of the abnormal patterns of control chart is a widely used technology for manufacturing quality control. If there are uncertainties about the occurrence degree of abnormal patterns, the diagnosis process is impossible to be carried out. Considering four common abnormal control chart patterns, this paper proposed a characteristic numbers based recognition method point by point to quantify the occurrence degree of abnormal patterns under uncertain conditions and a fuzzy inference system based on fuzzy logic to calculate the contribution degree of assignable causes with fuzzy abnormal patterns. Application case results show that the proposed approach can give a ranked causes list under fuzzy control chart abnormal patterns and support the abnormity eliminating. PMID:28058046
On the intuitionistic fuzzy topological spaces
NASA Astrophysics Data System (ADS)
Saadati, Reza; Park, Jin Han
2006-01-01
In this paper, we define precompact set in intuitionistic fuzzy metric spaces and prove that any subset of an intuitionistic fuzzy metric space is compact if and only if it is precompact and complete. Also we define topologically complete intuitionistic fuzzy metrizable spaces and prove that any $G_{\\delta }$ set in a complete intuitionistic fuzzy metric spaces is a topologically complete intuitionistic fuzzy metrizable space and vice versa. Finally, we define intuitionistic fuzzy normed spaces and fuzzy boundedness for linear operators and so we prove that every finite dimensional intuitionistic fuzzy normed space is complete.
Determining rules for closing customer service centers: A public utility company's fuzzy decision
NASA Technical Reports Server (NTRS)
Dekorvin, Andre; Shipley, Margaret F.
1992-01-01
In the present work, we consider the general problem of knowledge acquisition under uncertainty. A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision was made. Unique to this work is the fuzzy set representation of the conditions or attributes upon which the decision make may base his fuzzy set decision. From our examples, we infer certain and possible rules containing fuzzy terms. It should be stressed that the procedure determines how closely the expert follows the conditions under consideration in making his decision. We offer two examples pertaining to the possible decision to close a customer service center of a public utility company. In the first example, the decision maker does not follow too closely the conditions. In the second example, the conditions are much more relevant to the decision of the expert.
Determining rules for closing customer service centers: A public utility company's fuzzy decision
NASA Technical Reports Server (NTRS)
Dekorvin, Andre; Shipley, Margaret F.; Lea, Robert N.
1992-01-01
In the present work, we consider the general problem of knowledge acquisition under uncertainty. Simply stated, the problem reduces to the following: how can we capture the knowledge of an expert when the expert is unable to clearly formulate how he or she arrives at a decision? A commonly used method is to learn by examples. We observe how the expert solves specific cases and from this infer some rules by which the decision may have been made. Unique to our work is the fuzzy set representation of the conditions or attributes upon which the expert may possibly base his fuzzy decision. From our examples, we infer certain and possible fuzzy rules for closing a customer service center and illustrate the importance of having the decision closely relate to the conditions under consideration.
Harinath, Eranda; Mann, George K I
2008-06-01
This paper describes a design and two-level tuning method for fuzzy proportional-integral derivative (FPID) controllers for a multivariable process where the fuzzy inference uses the inference of standard additive model. The proposed method can be used for any n x n multi-input-multi-output process and guarantees closed-loop stability. In the two-level tuning scheme, the tuning follows two steps: low-level tuning followed by high-level tuning. The low-level tuning adjusts apparent linear gains, whereas the high-level tuning changes the nonlinearity in the normalized fuzzy output. In this paper, two types of FPID configurations are considered, and their performances are evaluated by using a real-time multizone temperature control problem having a 3 x 3 process system.
The stock-flow model of spatial data infrastructure development refined by fuzzy logic.
Abdolmajidi, Ehsan; Harrie, Lars; Mansourian, Ali
2016-01-01
The system dynamics technique has been demonstrated to be a proper method by which to model and simulate the development of spatial data infrastructures (SDI). An SDI is a collaborative effort to manage and share spatial data at different political and administrative levels. It is comprised of various dynamically interacting quantitative and qualitative (linguistic) variables. To incorporate linguistic variables and their joint effects in an SDI-development model more effectively, we suggest employing fuzzy logic. Not all fuzzy models are able to model the dynamic behavior of SDIs properly. Therefore, this paper aims to investigate different fuzzy models and their suitability for modeling SDIs. To that end, two inference and two defuzzification methods were used for the fuzzification of the joint effect of two variables in an existing SDI model. The results show that the Average-Average inference and Center of Area defuzzification can better model the dynamics of SDI development.
Fuzzy set methods for object recognition in space applications
NASA Technical Reports Server (NTRS)
Keller, James M.
1991-01-01
Progress on the following tasks is reported: (1) fuzzy set-based decision making methodologies; (2) feature calculation; (3) clustering for curve and surface fitting; and (4) acquisition of images. The general structure for networks based on fuzzy set connectives which are being used for information fusion and decision making in space applications is described. The structure and training techniques for such networks consisting of generalized means and gamma-operators are described. The use of other hybrid operators in multicriteria decision making is currently being examined. Numerous classical features on image regions such as gray level statistics, edge and curve primitives, texture measures from cooccurrance matrix, and size and shape parameters were implemented. Several fractal geometric features which may have a considerable impact on characterizing cluttered background, such as clouds, dense star patterns, or some planetary surfaces, were used. A new approach to a fuzzy C-shell algorithm is addressed. NASA personnel are in the process of acquiring suitable simulation data and hopefully videotaped actual shuttle imagery. Photographs have been digitized to use in the algorithms. Also, a model of the shuttle was assembled and a mechanism to orient this model in 3-D to digitize for experiments on pose estimation is being constructed.
Fuzzy logic particle tracking velocimetry
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1993-01-01
Fuzzy logic has proven to be a simple and robust method for process control. Instead of requiring a complex model of the system, a user defined rule base is used to control the process. In this paper the principles of fuzzy logic control are applied to Particle Tracking Velocimetry (PTV). Two frames of digitally recorded, single exposure particle imagery are used as input. The fuzzy processor uses the local particle displacement information to determine the correct particle tracks. Fuzzy PTV is an improvement over traditional PTV techniques which typically require a sequence (greater than 2) of image frames for accurately tracking particles. The fuzzy processor executes in software on a PC without the use of specialized array or fuzzy logic processors. A pair of sample input images with roughly 300 particle images each, results in more than 200 velocity vectors in under 8 seconds of processing time.
Development and Individual Differences in Transitive Reasoning: A Fuzzy Trace Theory Approach
ERIC Educational Resources Information Center
Bouwmeester, Samantha; Vermunt, Jeroen K.; Sijtsma, Klaas
2007-01-01
Fuzzy trace theory explains why children do not have to use rules of logic or premise information to infer transitive relationships. Instead, memory of the premises and performance on transitivity tasks is explained by a verbatim ability and a gist ability. Until recently, the processes involved in transitive reasoning and memory of the premises…
A Simple and Effective Remedial Learning System with a Fuzzy Expert System
ERIC Educational Resources Information Center
Lin, C.-C.; Guo, K.-H.; Lin, Y.-C.
2016-01-01
This study aims at implementing a simple and effective remedial learning system. Based on fuzzy inference, a remedial learning material selection system is proposed for a digital logic course. Two learning concepts of the course have been used in the proposed system: number systems and combinational logic. We conducted an experiment to validate…
Fight deck human-automation mode confusion detection using a generalized fuzzy hidden Markov model
NASA Astrophysics Data System (ADS)
Lyu, Hao Lyu
Due to the need for aviation safety, convenience, and efficiency, the autopilot has been introduced into the cockpit. The fast development of the autopilot has brought great benefits to the aviation industry. On the human side, the flight deck has been designed to be a complex, tightly-coupled, and spatially distributed system. The problem of dysfunctional interaction between the pilot and the automation (human-automation interaction issue) has become more and more visible. Thus, detection of a mismatch between the pilot's expectation and automation's behavior in a timely manner is required. In order to solve this challenging problem, separate modeling of the pilot and the automation is necessary. In this thesis, an intent-based framework is introduced to detect the human-automation interaction issue. Under this framework, the pilot's expectation of the aircraft is modeled by pilot intent while the behavior of the automation system is modeled by automation intent. The mode confusion is detected when the automation intent differs from the pilot intent. The pilot intent is inferred by comparing the target value set by the pilot with the aircraft's current state. Meanwhile, the automation intent is inferred through the Generalized Fuzzy Hidden Markov Model (GFHMM), which is an extension of the classical Hidden Markov Model. The stochastic characteristic of the ``hidden'' intents is considered by introducing fuzzy logic. Different from the previous approaches of inferring automation intent, GFHMM does not require a probabilistic model for certain flight modes as prior knowledge. The parameters of GFHMM (initial fuzzy density of the intent, fuzzy transmission density, and fuzzy emission density) are determined through the flight data by using a machine learning technique, the Fuzzy C-Means clustering algorithm (FCM). Lastly, both the pilot's and automation's intent inference algorithms and the mode confusion detection method are validated through flight data.
Fuzzy-Contextual Contrast Enhancement.
Parihar, Anil; Verma, Om; Khanna, Chintan
2017-02-08
This paper presents contrast enhancement algorithms based on fuzzy contextual information of the images. We introduce fuzzy similarity index and fuzzy contrast factor to capture the neighborhood characteristics of a pixel. A new histogram, using fuzzy contrast factor of each pixel is developed, and termed as the fuzzy dissimilarity histogram (FDH). A cumulative distribution function (CDF) is formed with normalized values of FDH and used as a transfer function to obtain the contrast enhanced image. The algorithm gives good contrast enhancement and preserves the natural characteristic of the image. In order to develop a contextual intensity transfer function, we introduce a fuzzy membership function based on fuzzy similarity index and coefficient of variation of the image. The contextual intensity transfer function is designed using the fuzzy membership function to achieve final contrast enhanced image. The overall algorithm is referred as the fuzzy contextual contrast-enhancement (FCCE) algorithm. The proposed algorithms are compared with conventional and state-of-art contrast enhancement algorithms. The quantitative and visual assessment of the results is performed. The results of quantitative measures are statistically analyzed using t-test. The exhaustive experimentation and analysis show the proposed algorithm efficiently enhances contrast and yields in natural visual quality images.
CFD Optimization on Network-Based Parallel Computer System
NASA Technical Reports Server (NTRS)
Cheung, Samson H.; Holst, Terry L. (Technical Monitor)
1994-01-01
Combining multiple engineering workstations into a network-based heterogeneous parallel computer allows application of aerodynamic optimization with advance computational fluid dynamics codes, which is computationally expensive in mainframe supercomputer. This paper introduces a nonlinear quasi-Newton optimizer designed for this network-based heterogeneous parallel computer on a software called Parallel Virtual Machine. This paper will introduce the methodology behind coupling a Parabolized Navier-Stokes flow solver to the nonlinear optimizer. This parallel optimization package has been applied to reduce the wave drag of a body of revolution and a wing/body configuration with results of 5% to 6% drag reduction.
Parallel CFD design on network-based computer
NASA Technical Reports Server (NTRS)
Cheung, Samson
1995-01-01
Combining multiple engineering workstations into a network-based heterogeneous parallel computer allows application of aerodynamic optimization with advanced computational fluid dynamics codes, which can be computationally expensive on mainframe supercomputers. This paper introduces a nonlinear quasi-Newton optimizer designed for this network-based heterogeneous parallel computing environment utilizing a software called Parallel Virtual Machine. This paper will introduce the methodology behind coupling a Parabolized Navier-Stokes flow solver to the nonlinear optimizer. This parallel optimization package is applied to reduce the wave drag of a body of revolution and a wing/body configuration with results of 5% to 6% drag reduction.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Emergent fuzzy geometry and fuzzy physics in four dimensions
NASA Astrophysics Data System (ADS)
Ydri, Badis; Rouag, Ahlam; Ramda, Khaled
2017-03-01
A detailed Monte Carlo calculation of the phase diagram of bosonic mass-deformed IKKT Yang-Mills matrix models in three and six dimensions with quartic mass deformations is given. Background emergent fuzzy geometries in two and four dimensions are observed with a fluctuation given by a noncommutative U (1) gauge theory very weakly coupled to normal scalar fields. The geometry, which is determined dynamically, is given by the fuzzy spheres SN2 and SN2 × SN2 respectively. The three and six matrix models are effectively in the same universality class. For example, in two dimensions the geometry is completely stable, whereas in four dimensions the geometry is stable only in the limit M ⟶ ∞, where M is the mass of the normal fluctuations. The behaviors of the eigenvalue distribution in the two theories are also different. We also sketch how we can obtain a stable fuzzy four-sphere SN2 × SN2 in the large N limit for all values of M as well as models of topology change in which the transition between spheres of different dimensions is observed. The stable fuzzy spheres in two and four dimensions act precisely as regulators which is the original goal of fuzzy geometry and fuzzy physics. Fuzzy physics and fuzzy field theory on these spaces are briefly discussed.
Fuzzy learning under and about an unfamiliar fuzzy teacher
NASA Technical Reports Server (NTRS)
Dasarathy, Belur V.
1992-01-01
This study addresses the problem of optimal parametric learning in unfamiliar fuzzy environments. Prior studies in the domain of unfamiliar environments, which employed either crisp or fuzzy approaches to model the uncertainty or imperfectness of the learning environment, assumed that the training sample labels provided by the unfamiliar teacher were crisp, even if not perfect. Here, the more realistic problem of fuzzy learning under an unfamiliar teacher who provides only fuzzy (instead of crisp) labels, is tackled by expanding the previously defined fuzzy membership concepts to include an additional component representative of the fuzziness of the teacher. The previously studied scenarios, namely, crisp and fuzzy learning under (crisp) unfamiliar teacher, can be looked upon as special cases of this new methodology. As under the earlier studies, the estimated membership functions can then be deployed during the ensuing classification decision phase to judiciously take into account the imperfectness of the learning environment. The study also offers some insight into the properties of several of these fuzzy membership function estimators by examining their behavior under certain specific scenarios.
Fusion techniques of fuzzy systems and neural networks, and fuzzy systems and genetic algorithms
NASA Astrophysics Data System (ADS)
Takagi, Hideyuki
1993-12-01
This paper overviews four combinations of fuzzy logic, neural networks and genetic algorithms: (1) neural networks to auto-design fuzzy systems, (2) employing fuzzy rule structure to construct structured neural networks, (3) genetic algorithms to auto-design fuzzy systems, and (4) a fuzzy knowledge-based system to control genetic parameter dynamically.
Fuzzy Logic in Medicine and Bioinformatics
Torres, Angela; Nieto, Juan J.
2006-01-01
The purpose of this paper is to present a general view of the current applications of fuzzy logic in medicine and bioinformatics. We particularly review the medical literature using fuzzy logic. We then recall the geometrical interpretation of fuzzy sets as points in a fuzzy hypercube and present two concrete illustrations in medicine (drug addictions) and in bioinformatics (comparison of genomes). PMID:16883057
Design of control network based on OMRON PLC
NASA Astrophysics Data System (ADS)
Wang, Xiaocheng; Song, Xiangli; Liu, Yuan; Tang, Yuling
2003-09-01
This paper briefly introduces the design of control network based on OMRON PLC; and describes in detail step and setting of design based on three kinds of network: Ethernet, controller link and CompoBus/D. The design has been applied to lab construction. The practice shows that it is valuable for teaching and scientific research.
A Cultural Approach to Networked-Based Mobile Education
ERIC Educational Resources Information Center
Koskimaa, Raine; Lehtonen, Miika; Heinonen, Ulla; Ruokamo, Heli; Tissari, Varpu; Vahtivuori-Hanninen, Sanna; Tella, Seppo
2007-01-01
This paper discusses cultural conditions for networked-based mobile education. In our paper, we demonstrate how an Integrated Meta-Model that we have been developing in our MOMENTS project, i.e. Models and Methods for Future Knowledge Construction: Interdisciplinary Implementations with Mobile Technologies, can be used as a heuristic tool for…
Network based high performance concurrent computing. Progress report, [FY 1991
Sunderam, V.S.
1991-12-31
The overall objectives of this project are to investigate research issues pertaining to programming tools and efficiency issues in network based concurrent computing systems. The basis for these efforts is the PVM project that evolved during my visits to Oak Ridge Laboratories under the DOE Faculty Research Participation program; I continue to collaborate with researchers at Oak Ridge on some portions of the project.
Teaching Machines to Think Fuzzy
ERIC Educational Resources Information Center
Technology Teacher, 2004
2004-01-01
Fuzzy logic programs for computers make them more human. Computers can then think through messy situations and make smart decisions. It makes computers able to control things the way people do. Fuzzy logic has been used to control subway trains, elevators, washing machines, microwave ovens, and cars. Pretty much all the human has to do is push one…
Representation of Fuzzy Symmetric Relations
1986-03-19
Std Z39-18 REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. Valverde Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda...REPRESENTATION OF FUZZY SYMMETRIC RELATIONS L. "Valverde* Dept. de Matematiques i Estadistica Universitat Politecnica de Catalunya Avda. Diagonal, 649
NASA Astrophysics Data System (ADS)
di Gesù, V.
Methods and their applications to data analysis problems in fuzzy-sets theory are presented. Fuzzy-sets theory seems to be a powerful tool to model uncertainty and vagueness present in the data and to represent the human thinking in a more natural way.
Petrov, S.
1996-10-01
Languages with a solvable implication problem but without complete and consistent systems of inference rules (`poor` languages) are considered. The problem of existence of finite complete and consistent inference rule system for a ``poor`` language is stated independently of the language or rules syntax. Several properties of the problem arc proved. An application of results to the language of join dependencies is given.
Adaptive Neuro-fuzzy approach in friction identification
NASA Astrophysics Data System (ADS)
Zaiyad Muda @ Ismail, Muhammad
2016-05-01
Friction is known to affect the performance of motion control system, especially in terms of its accuracy. Therefore, a number of techniques or methods have been explored and implemented to alleviate the effects of friction. In this project, the Artificial Intelligent (AI) approach is used to model the friction which will be then used to compensate the friction. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is chosen among several other AI methods because of its reliability and capabilities of solving complex computation. ANFIS is a hybrid AI-paradigm that combines the best features of neural network and fuzzy logic. This AI method (ANFIS) is effective for nonlinear system identification and compensation and thus, being used in this project.
Adaptive fuzzy modeling of the hypnotic process in anesthesia.
Marrero, A; Méndez, J A; Reboso, J A; Martín, I; Calvo, J L
2017-04-01
This paper addresses the problem of patient model synthesis in anesthesia. Recent advanced drug infusion mechanisms use a patient model to establish the proper drug dose. However, due to the inherent complexity and variability of the patient dynamics, difficulty obtaining a good model is high. In this paper, a method based on fuzzy logic and genetic algorithms is proposed as an alternative to standard compartmental models. The model uses a Mamdani type fuzzy inference system developed in a two-step procedure. First, an offline model is obtained using information from real patients. Then, an adaptive strategy that uses genetic algorithms is implemented. The validation of the modeling technique was done using real data obtained from real patients in the operating room. Results show that the proposed method based on artificial intelligence appears to be an improved alternative to existing compartmental methodologies.
Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.
Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim
2014-09-19
Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter.
Intelligent Paging Based Mobile User Tracking Using Fuzzy Logic
NASA Astrophysics Data System (ADS)
Saha, Sajal; Dutta, Raju; Debnath, Soumen; Mukhopadhyay, Asish K.
2010-11-01
In general, a mobile user travels in a predefined path that depends mostly on the user's characteristics. Thus, tracking the locations of a mobile user is one of the challenges for location management. In this paper, we introduce a movement pattern learning strategy system to track the user's movements using adaptive fuzzy logic. Our fuzzy inference system extracts patterns from the historical data record of the cell numbers along with the date and time stamp of the users occupying the cell. Implementation of this strategy has been evaluated with the real time user data which proves the efficiency and accuracy of the model. This mechanism not only reduces user location tracking costs, but also significantly decreases the call-loss rates and average paging delays.
Causal Network Inference Via Group Sparse Regularization
Bolstad, Andrew; Van Veen, Barry D.; Nowak, Robert
2011-01-01
This paper addresses the problem of inferring sparse causal networks modeled by multivariate autoregressive (MAR) processes. Conditions are derived under which the Group Lasso (gLasso) procedure consistently estimates sparse network structure. The key condition involves a “false connection score” ψ. In particular, we show that consistent recovery is possible even when the number of observations of the network is far less than the number of parameters describing the network, provided that ψ < 1. The false connection score is also demonstrated to be a useful metric of recovery in nonasymptotic regimes. The conditions suggest a modified gLasso procedure which tends to improve the false connection score and reduce the chances of reversing the direction of causal influence. Computational experiments and a real network based electrocorticogram (ECoG) simulation study demonstrate the effectiveness of the approach. PMID:21918591
NASA Astrophysics Data System (ADS)
Salinas, Jose Luis; Kiss, Andrea; Viglione, Alberto; Blöschl, Günter
2016-04-01
Efforts of the historical environmental extremes community during the last decades have resulted in the obtention of long time series of historical floods, which in some cases range longer than 500 years in the past. In hydrological engineering, historical floods are useful because they give additional information which improves the estimates of discharges with low annual exceedance probabilities, i.e. with high return periods, and additionally might reduce the uncertainty in those estimates. In order to use the historical floods in formal flood frequency analysis, the precise value of the peak discharges would ideally be known, but in most of the cases, the information related to historical floods is given, quantitatively, in a non-precise manner. This work presents an approach on how to deal with the non-precise historical floods, by linking the descriptions in historical records to fuzzy numbers representing discharges. These fuzzy historical discharges are then introduced in a formal Bayesian inference framework, taking into account the arithmetics of non-precise numbers modelled by fuzzy logic theory, to obtain a fuzzy version of the flood frequency curve combining the fuzzy historical flood events and the instrumental data for a given location. Two case studies are selected from the historical literature, representing different facets of the fuzziness present in the historical sources. The results from the cases studies are given in the form of the fuzzy estimates of the flood frequency curves together with the fuzzy 5% and 95% Bayesian credibility bounds for these curves. The presented fuzzy Bayesian inference framework provides a flexible methodology to propagate in an explicit way the imprecision from the historical records into the flood frequency estimate, which allows to assess the effect that the incorporation of non-precise historical information can have in the flood frequency regime.
Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions
NASA Astrophysics Data System (ADS)
Tsaur, Ruey-Chyn
2015-02-01
In the finance market, a short-term investment strategy is usually applied in portfolio selection in order to reduce investment risk; however, the economy is uncertain and the investment period is short. Further, an investor has incomplete information for selecting a portfolio with crisp proportions for each chosen security. In this paper we present a new method of constructing fuzzy portfolio model for the parameters of fuzzy-input return rates and fuzzy-output proportions, based on possibilistic mean-standard deviation models. Furthermore, we consider both excess or shortage of investment in different economic periods by using fuzzy constraint for the sum of the fuzzy proportions, and we also refer to risks of securities investment and vagueness of incomplete information during the period of depression economics for the portfolio selection. Finally, we present a numerical example of a portfolio selection problem to illustrate the proposed model and a sensitivity analysis is realised based on the results.
NASA Astrophysics Data System (ADS)
Jenicka, S.; Suruliandi, A.
2014-01-01
Accuracy of land cover classification in remotely sensed images relies on the utilized classifier and extracted features. Texture features are significant in land cover classification. Traditional texture models capture only patterns with discrete boundaries, whereas fuzzy patterns should be classified by assigning due weightage to uncertainty. When a remotely sensed image contains noise, the image may have fuzzy patterns characterizing land covers and fuzzy boundaries separating them. Therefore, a fuzzy texture model is proposed for the effective classification of land covers in remotely sensed images. The model uses a Sugeno fuzzy inference system. A support vector machine (SVM) is used for the precise, fast classification of image pixels. The model is a hybrid of a fuzzy texture model and an SVM for the land cover classification of remotely sensed images. To support this proposal, experiments were conducted in three steps. In the first two steps, the proposed texture model was validated for supervised classifications and segmentation of a standard benchmark database. In the third step, the land cover classification of a remotely sensed image of LISS-IV (an Indian remote sensing satellite) is performed using a multivariate version of the proposed model. The classified image has 95.54% classification accuracy.
Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.
Kwong, C. K.; Fung, K. Y.; Jiang, Huimin; Chan, K. Y.
2013-01-01
Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884
A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system
Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken
2010-12-15
This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)
Design principles for clinical network-based proteomics.
Goh, Wilson Wen Bin; Wong, Limsoon
2016-07-01
Integrating biological networks with proteomics is a tantalizing option for system-level analysis; for example it can help remove false-positives from proteomics data and improve coverage by detecting false-negatives, as well as resolving inconsistent inter-sample protein expression due to biological heterogeneity. Yet, designing a robust network-based analysis strategy on proteomics data is nontrivial. The issues include dealing with test set bias caused by, for example, inappropriate normalization procedure, devising appropriate benchmarking criteria and formulating statistically robust feature-selection techniques. Given the increasing importance of proteomics in contemporary clinical studies, more powerful network-based approaches are needed. We provide some design principles and considerations that can help achieve this, while taking into account the idiosyncrasies of proteomics data.
Network-based in silico drug efficacy screening
Guney, Emre; Menche, Jörg; Vidal, Marc; Barábasi, Albert-László
2016-01-01
The increasing cost of drug development together with a significant drop in the number of new drug approvals raises the need for innovative approaches for target identification and efficacy prediction. Here, we take advantage of our increasing understanding of the network-based origins of diseases to introduce a drug-disease proximity measure that quantifies the interplay between drugs targets and diseases. By correcting for the known biases of the interactome, proximity helps us uncover the therapeutic effect of drugs, as well as to distinguish palliative from effective treatments. Our analysis of 238 drugs used in 78 diseases indicates that the therapeutic effect of drugs is localized in a small network neighborhood of the disease genes and highlights efficacy issues for drugs used in Parkinson and several inflammatory disorders. Finally, network-based proximity allows us to predict novel drug-disease associations that offer unprecedented opportunities for drug repurposing and the detection of adverse effects. PMID:26831545
Developing network-based services in the NHS.
Conner, M
2001-01-01
Networks, based upon informal relationships, have ensured that care was delivered to patients for many years. This informal organisation of care, based upon personal relationships, ensures that where the bureaucratic organisation fails the patient, health professionals' work together to network the resources the patient needs. Networks are not new. Formalising networks and recognising their potential to deliver seamless care is new. The NHS must ensure that networks are developed, allowing them freedom from bureaucracy to reach their potential. The Northern and Yorkshire Learning Alliance (NYLA) was established as part of the Northern and Yorkshire health community's efforts to radically improve care. The NYLA operates as a network with a small team of change experts working to develop change management and service improvement capacity across 10,000 square miles. As a network based organisation the team has learned many lessons, which may inform the development of clinical networks in England.
Fuzzy resource optimization for safeguards
Zardecki, A.; Markin, J.T.
1991-01-01
Authorization, enforcement, and verification -- three key functions of safeguards systems -- form the basis of a hierarchical description of the system risk. When formulated in terms of linguistic rather than numeric attributes, the risk can be computed through an algorithm based on the notion of fuzzy sets. Similarly, this formulation allows one to analyze the optimal resource allocation by maximizing the overall detection probability, regarded as a linguistic variable. After summarizing the necessary elements of the fuzzy sets theory, we outline the basic algorithm. This is followed by a sample computation of the fuzzy optimization. 10 refs., 1 tab.
Fuzzy expert systems using CLIPS
NASA Technical Reports Server (NTRS)
Le, Thach C.
1994-01-01
This paper describes a CLIPS-based fuzzy expert system development environment called FCLIPS and illustrates its application to the simulated cart-pole balancing problem. FCLIPS is a straightforward extension of CLIPS without any alteration to the CLIPS internal structures. It makes use of the object-oriented and module features in CLIPS version 6.0 for the implementation of fuzzy logic concepts. Systems of varying degrees of mixed Boolean and fuzzy rules can be implemented in CLIPS. Design and implementation issues of FCLIPS will also be discussed.
Entanglement entropy on fuzzy spaces
Dou, Djamel; Ydri, Badis
2006-08-15
We study the entanglement entropy of a scalar field in 2+1 spacetime where space is modeled by a fuzzy sphere and a fuzzy disc. In both models we evaluate numerically the resulting entropies and find that they are proportional to the number of boundary degrees of freedom. In the Moyal plane limit of the fuzzy disc the entanglement entropy per unite area (length) diverges if the ignored region is of infinite size. The divergence is (interpreted) of IR-UV mixing origin. In general we expect the entanglement entropy per unite area to be finite on a noncommutative space if the ignored region is of finite size.
Design development of a neural network-based telemetry monitor
NASA Technical Reports Server (NTRS)
Lembeck, Michael F.
1992-01-01
This paper identifies the requirements and describes an architectural framework for an artificial neural network-based system that is capable of fulfilling monitoring and control requirements of future aerospace missions. Incorporated into this framework are a newly developed training algorithm and the concept of cooperative network architectures. The feasibility of such an approach is demonstrated for its ability to identify faults in low frequency waveforms.
Improved community model for social networks based on social mobility
NASA Astrophysics Data System (ADS)
Lu, Zhe-Ming; Wu, Zhen; Luo, Hao; Wang, Hao-Xian
2015-07-01
This paper proposes an improved community model for social networks based on social mobility. The relationship between the group distribution and the community size is investigated in terms of communication rate and turnover rate. The degree distributions, clustering coefficients, average distances and diameters of networks are analyzed. Experimental results demonstrate that the proposed model possesses the small-world property and can reproduce social networks effectively and efficiently.
Fuzzy Thinking in Non-Fuzzy Situations: Understanding Students' Perspective.
ERIC Educational Resources Information Center
Zazkis, Rina
1995-01-01
In mathematics a true statement is always true, but some false statements are more false than others. Fuzzy logic provides a way of handling degrees of set membership and has implications for helping students appreciate logical thinking. (MKR)
Implementation of Steiner point of fuzzy set.
Liang, Jiuzhen; Wang, Dejiang
2014-01-01
This paper deals with the implementation of Steiner point of fuzzy set. Some definitions and properties of Steiner point are investigated and extended to fuzzy set. This paper focuses on establishing efficient methods to compute Steiner point of fuzzy set. Two strategies of computing Steiner point of fuzzy set are proposed. One is called linear combination of Steiner points computed by a series of crisp α-cut sets of the fuzzy set. The other is an approximate method, which is trying to find the optimal α-cut set approaching the fuzzy set. Stability analysis of Steiner point of fuzzy set is also studied. Some experiments on image processing are given, in which the two methods are applied for implementing Steiner point of fuzzy image, and both strategies show their own advantages in computing Steiner point of fuzzy set.
Strong sum distance in fuzzy graphs.
Tom, Mini; Sunitha, Muraleedharan Shetty
2015-01-01
In this paper the idea of strong sum distance which is a metric, in a fuzzy graph is introduced. Based on this metric the concepts of eccentricity, radius, diameter, center and self centered fuzzy graphs are studied. Some properties of eccentric nodes, peripheral nodes and central nodes are obtained. A characterisation of self centered complete fuzzy graph is obtained and conditions under which a fuzzy cycle is self centered are established. We have proved that based on this metric, an eccentric node of a fuzzy tree G is a fuzzy end node of G and a node is an eccentric node of a fuzzy tree if and only if it is a peripheral node of G and the center of a fuzzy tree consists of either one or two neighboring nodes. The concepts of boundary nodes and interior nodes in a fuzzy graph based on strong sum distance are introduced. Some properties of boundary nodes, interior nodes and complete nodes are studied.
Liu, Hu-Chen; Liu, Long; Lin, Qing-Lian; Liu, Nan
2013-06-01
The two most important issues of expert systems are the acquisition of domain experts' professional knowledge and the representation and reasoning of the knowledge rules that have been identified. First, during expert knowledge acquisition processes, the domain expert panel often demonstrates different experience and knowledge from one another and produces different types of knowledge information such as complete and incomplete, precise and imprecise, and known and unknown because of its cross-functional and multidisciplinary nature. Second, as a promising tool for knowledge representation and reasoning, fuzzy Petri nets (FPNs) still suffer a couple of deficiencies. The parameters in current FPN models could not accurately represent the increasingly complex knowledge-based systems, and the rules in most existing knowledge inference frameworks could not be dynamically adjustable according to propositions' variation as human cognition and thinking. In this paper, we present a knowledge acquisition and representation approach using the fuzzy evidential reasoning approach and dynamic adaptive FPNs to solve the problems mentioned above. As is illustrated by the numerical example, the proposed approach can well capture experts' diversity experience, enhance the knowledge representation power, and reason the rule-based knowledge more intelligently.
Completeness and regularity of generalized fuzzy graphs.
Samanta, Sovan; Sarkar, Biswajit; Shin, Dongmin; Pal, Madhumangal
2016-01-01
Fuzzy graphs are the backbone of many real systems like networks, image, scheduling, etc. But, due to some restriction on edges, fuzzy graphs are limited to represent for some systems. Generalized fuzzy graphs are appropriate to avoid such restrictions. In this study generalized fuzzy graphs are introduced. In this study, matrix representation of generalized fuzzy graphs is described. Completeness and regularity are two important parameters of graph theory. Here, regular and complete generalized fuzzy graphs are introduced. Some properties of them are discussed. After that, effective regular graphs are exemplified.
Current projects in Fuzzy Control
NASA Technical Reports Server (NTRS)
Sugeno, Michio
1990-01-01
Viewgraphs on current projects in fuzzy control are presented. Three projects on helicopter flight control are discussed. The projects are (1) radio control by oral instructions; (2) automatic autorotation entry in engine failure; and (3) unmanned helicopter for sea rescue.
Butt, Muhammad Arif; Akram, Muhammad
2016-01-01
We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.
NASA Technical Reports Server (NTRS)
2005-01-01
A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true
ERIC Educational Resources Information Center
Yates, Donald W.
2009-01-01
This investigation developed, tested, and prototyped a Fuzzy Inference System (FIS) that would assist decision makers in identifying schools that may have been misclassified by existing Adequate Yearly Progress (AYP) methods. This prototype was then used to evaluate Louisiana elementary schools using published school data for Academic Year 2004. …
A Novel Method for Discovering Fuzzy Sequential Patterns Using the Simple Fuzzy Partition Method.
ERIC Educational Resources Information Center
Chen, Ruey-Shun; Hu, Yi-Chung
2003-01-01
Discusses sequential patterns, data mining, knowledge acquisition, and fuzzy sequential patterns described by natural language. Proposes a fuzzy data mining technique to discover fuzzy sequential patterns by using the simple partition method which allows the linguistic interpretation of each fuzzy set to be easily obtained. (Author/LRW)
How Fuzzy-Trace Theory Predicts True and False Memories for Words, Sentences, and Narratives.
Reyna, Valerie F; Corbin, Jonathan C; Weldon, Rebecca B; Brainerd, Charles J
2016-03-01
Fuzzy-trace theory posits independent verbatim and gist memory processes, a distinction that has implications for such applied topics as eyewitness testimony. This distinction between precise, literal verbatim memory and meaning-based, intuitive gist accounts for memory paradoxes including dissociations between true and false memory, false memories outlasting true memories, and developmental increases in false memory. We provide an overview of fuzzy-trace theory, and, using mathematical modeling, also present results demonstrating verbatim and gist memory in true and false recognition of narrative sentences and inferences. Results supported fuzzy-trace theory's dual-process view of memory: verbatim memory was relied on to reject meaning-consistent, but unpresented, sentences (via recollection rejection). However, verbatim memory was often not retrieved, and gist memory supported acceptance of these sentences (via similarity judgment and phantom recollection). Thus, mathematical models of words can be extended to explain memory for complex stimuli, such as narratives, the kind of memory interrogated in law.
Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks
NASA Astrophysics Data System (ADS)
Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.
2010-09-01
Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagatiom fuzzy neural network (CFNN) for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.
Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks
NASA Astrophysics Data System (ADS)
Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.
2011-01-01
Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.
Water quality assessment in Qu River based on fuzzy water pollution index method.
Li, Ranran; Zou, Zhihong; An, Yan
2016-12-01
A fuzzy improved water pollution index was proposed based on fuzzy inference system and water pollution index. This method can not only give a comprehensive water quality rank, but also describe the water quality situation with a quantitative value, which is convenient for the water quality comparison between the same ranks. This proposed method is used to assess water quality of Qu River in Sichuan, China. Data used in the assessment were collected from four monitoring stations from 2006 to 2010. The assessment results show that Qu River water quality presents a downward trend and the overall water quality in 2010 is the worst. The spatial variation indicates that water quality of Nanbashequ section is the pessimal. For the sake of comparison, fuzzy comprehensive evaluation and grey relational method were also employed to assess water quality of Qu River. The comparisons of these three approaches' assessment results show that the proposed method is reliable.
Design of sewage treatment system by applying fuzzy adaptive PID controller
NASA Astrophysics Data System (ADS)
Jin, Liang-Ping; Li, Hong-Chan
2013-03-01
In the sewage treatment system, the dissolved oxygen concentration control, due to its nonlinear, time-varying, large time delay and uncertainty, is difficult to establish the exact mathematical model. While the conventional PID controller only works with good linear not far from its operating point, it is difficult to realize the system control when the operating point far off. In order to solve the above problems, the paper proposed a method which combine fuzzy control with PID methods and designed a fuzzy adaptive PID controller based on S7-300 PLC .It employs fuzzy inference method to achieve the online tuning for PID parameters. The control algorithm by simulation and practical application show that the system has stronger robustness and better adaptability.
Skin Cancer Recognition by Using a Neuro-Fuzzy System
Salah, Bareqa; Alshraideh, Mohammad; Beidas, Rasha; Hayajneh, Ferial
2011-01-01
Skin cancer is the most prevalent cancer in the light-skinned population and it is generally caused by exposure to ultraviolet light. Early detection of skin cancer has the potential to reduce mortality and morbidity. There are many diagnostic technologies and tests to diagnose skin cancer. However many of these tests are extremely complex and subjective and depend heavily on the experience of the clinician. To obviate these problems, image processing techniques, a neural network system (NN) and a fuzzy inference system were used in this study as promising modalities for detection of different types of skin cancer. The accuracy rate of the diagnosis of skin cancer by using the hierarchal neural network was 90.67% while using neuro-fuzzy system yielded a slightly higher rate of accuracy of 91.26% in diagnosis skin cancer type. The sensitivity of NN in diagnosing skin cancer was 95%, while the specificity was 88%. Skin cancer diagnosis by neuro-fuzzy system achieved sensitivity of 98% and a specificity of 89%. PMID:21340020
Pipelined recurrent fuzzy neural networks for nonlinear adaptive speech prediction.
Stavrakoudis, Dimitris G; Theocharis, John B
2007-10-01
A class of pipelined recurrent fuzzy neural networks (PRFNNs) is proposed in this paper for nonlinear adaptive speech prediction. The PRFNNs are modular structures comprising a number of modules that are interconnected in a chained form. Each module is implemented by a small-scale recurrent fuzzy neural network (RFNN) with internal dynamics. Due to module nesting, the PRFNNs offer a number of desirable attributes, including decomposition of the modeling task, enhanced temporal processing capabilities, and multistage dynamic fuzzy inference. Tuning of the PRFNN adaptable parameters is accomplished by a series of gradient descent methods with different weighting of the modules and the decoupled extended Kalman filter (DEKF) algorithm, based on weight grouping. Extensive experimentation is carried out to evaluate the performance of the PRFNNs on the speech prediction platform. Comparative analysis shows that the PRFNNs outperform the single-RFNN models in terms of the prediction gains that are obtained and computational efficiency. Furthermore, PRFNNs provide considerably better performance compared to pipelined recurrent neural networks, for models with similar model complexity.
Robust observer-based adaptive fuzzy sliding mode controller
NASA Astrophysics Data System (ADS)
Oveisi, Atta; Nestorović, Tamara
2016-08-01
In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.
Design and implementation of a new fuzzy PID controller for networked control systems.
Fadaei, A; Salahshoor, K
2008-10-01
This paper presents a practical network platform to design and implement a networked-based cascade control system linking a Smar Foundation Fieldbus (FF) controller (DFI-302) and a Siemens programmable logic controller (PLC-S7-315-2DP) through Industrial Ethernet to a laboratory pilot plant. In the presented network configuration, the Smar OPC tag browser and Siemens WinCC OPC Channel provide the communicating interface between the two controllers. The paper investigates the performance of a PID controller implemented in two different possible configurations of FF function block (FB) and networked control system (NCS) via a remote Siemens PLC. In the FB control system implementation, the desired set-point is provided by the Siemens Human-Machine Interface (HMI) software (i.e, WinCC) via an Ethernet Modbus link. While, in the NCS implementation, the cascade loop is realized in remote Siemens PLC station and the final element set-point is sent to the Smar FF station via Ethernet bus. A new fuzzy PID control strategy is then proposed to improve the control performances of the networked-based control systems due to an induced transmission delay degradation effect. The proposed strategy utilizes an innovative idea based on sectionalizing the error signal of the step response into three different functional zones. The supporting philosophy behind these three functional zones is to decompose the desired control objectives in terms of rising time, settling time and steady-state error measures maintained by an appropriate PID-type controller in each zone. Then, fuzzy membership factors are defined to configure the control signal on the basis of the fuzzy weighted PID outputs of all three zones. The obtained results illustrate the effectiveness of the proposed fuzzy PID control scheme in improving the performances of the implemented NCS for different transportation delays.
Hanson, K.M.; Cunningham, G.S.
1996-04-01
The authors are developing a computer application, called the Bayes Inference Engine, to provide the means to make inferences about models of physical reality within a Bayesian framework. The construction of complex nonlinear models is achieved by a fully object-oriented design. The models are represented by a data-flow diagram that may be manipulated by the analyst through a graphical programming environment. Maximum a posteriori solutions are achieved using a general, gradient-based optimization algorithm. The application incorporates a new technique of estimating and visualizing the uncertainties in specific aspects of the model.
Neural Network Based Montioring and Control of Fluidized Bed.
Bodruzzaman, M.; Essawy, M.A.
1996-04-01
The goal of this project was to develop chaos analysis and neural network-based modeling techniques and apply them to the pressure-drop data obtained from the Fluid Bed Combustion (FBC) system (a small scale prototype model) located at the Federal Energy Technology Center (FETC)-Morgantown. The second goal was to develop neural network-based chaos control techniques and provide a suggestive prototype for possible real-time application to the FBC system. The experimental pressure data were collected from a cold FBC experimental set-up at the Morgantown Center. We have performed several analysis on these data in order to unveil their dynamical and chaotic characteristics. The phase-space attractors were constructed from the one dimensional time series data, using the time-delay embedding method, for both normal and abnormal conditions. Several identifying parameters were also computed from these attractors such as the correlation dimension, the Kolmogorov entropy, and the Lyapunov exponents. These chaotic attractor parameters can be used to discriminate between the normal and abnormal operating conditions of the FBC system. It was found that, the abnormal data has higher correlation dimension, larger Kolmogorov entropy and larger positive Lyapunov exponents as compared to the normal data. Chaotic system control using neural network based techniques were also investigated and compared to conventional chaotic system control techniques. Both types of chaotic system control techniques were applied to some typical chaotic systems such as the logistic, the Henon, and the Lorenz systems. A prototype model for real-time implementation of these techniques has been suggested to control the FBC system. These models can be implemented for real-time control in a next phase of the project after obtaining further measurements from the experimental model. After testing the control algorithms developed for the FBC model, the next step is to implement them on hardware and link them to
Network Medicine: A Network-based Approach to Human Diseases
NASA Astrophysics Data System (ADS)
Ghiassian, Susan Dina
With the availability of large-scale data, it is now possible to systematically study the underlying interaction maps of many complex systems in multiple disciplines. Statistical physics has a long and successful history in modeling and characterizing systems with a large number of interacting individuals. Indeed, numerous approaches that were first developed in the context of statistical physics, such as the notion of random walks and diffusion processes, have been applied successfully to study and characterize complex systems in the context of network science. Based on these tools, network science has made important contributions to our understanding of many real-world, self-organizing systems, for example in computer science, sociology and economics. Biological systems are no exception. Indeed, recent studies reflect the necessity of applying statistical and network-based approaches in order to understand complex biological systems, such as cells. In these approaches, a cell is viewed as a complex network consisting of interactions among cellular components, such as genes and proteins. Given the cellular network as a platform, machinery, functionality and failure of a cell can be studied with network-based approaches, a field known as systems biology. Here, we apply network-based approaches to explore human diseases and their associated genes within the cellular network. This dissertation is divided in three parts: (i) A systematic analysis of the connectivity patterns among disease proteins within the cellular network. The quantification of these patterns inspires the design of an algorithm which predicts a disease-specific subnetwork containing yet unknown disease associated proteins. (ii) We apply the introduced algorithm to explore the common underlying mechanism of many complex diseases. We detect a subnetwork from which inflammatory processes initiate and result in many autoimmune diseases. (iii) The last chapter of this dissertation describes the
Segmentation method of eye region based on fuzzy logic system for classifying open and closed eyes
NASA Astrophysics Data System (ADS)
Kim, Ki Wan; Lee, Won Oh; Kim, Yeong Gon; Hong, Hyung Gil; Lee, Eui Chul; Park, Kang Ryoung
2015-03-01
The classification of eye openness and closure has been researched in various fields, e.g., driver drowsiness detection, physiological status analysis, and eye fatigue measurement. For a classification with high accuracy, accurate segmentation of the eye region is required. Most previous research used the segmentation method by image binarization on the basis that the eyeball is darker than skin, but the performance of this approach is frequently affected by thick eyelashes or shadows around the eye. Thus, we propose a fuzzy-based method for classifying eye openness and closure. First, the proposed method uses I and K color information from the HSI and CMYK color spaces, respectively, for eye segmentation. Second, the eye region is binarized using the fuzzy logic system based on I and K inputs, which is less affected by eyelashes and shadows around the eye. The combined image of I and K pixels is obtained through the fuzzy logic system. Third, in order to reflect the effect by all the inference values on calculating the output score of the fuzzy system, we use the revised weighted average method, where all the rectangular regions by all the inference values are considered for calculating the output score. Fourth, the classification of eye openness or closure is successfully made by the proposed fuzzy-based method with eye images of low resolution which are captured in the environment of people watching TV at a distance. By using the fuzzy logic system, our method does not require the additional procedure of training irrespective of the chosen database. Experimental results with two databases of eye images show that our method is superior to previous approaches.
Optical-Correlator Neural Network Based On Neocognitron
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Stoner, William W.
1994-01-01
Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.
Feature Selection for Neural Network Based Stock Prediction
NASA Astrophysics Data System (ADS)
Sugunnasil, Prompong; Somhom, Samerkae
We propose a new methodology of feature selection for stock movement prediction. The methodology is based upon finding those features which minimize the correlation relation function. We first produce all the combination of feature and evaluate each of them by using our evaluate function. We search through the generated set with hill climbing approach. The self-organizing map based stock prediction model is utilized as the prediction method. We conduct the experiment on data sets of the Microsoft Corporation, General Electric Co. and Ford Motor Co. The results show that our feature selection method can improve the efficiency of the neural network based stock prediction.
Consistent linguistic fuzzy preference relations method with ranking fuzzy numbers
NASA Astrophysics Data System (ADS)
Ridzuan, Siti Amnah Mohd; Mohamad, Daud; Kamis, Nor Hanimah
2014-12-01
Multi-Criteria Decision Making (MCDM) methods have been developed to help decision makers in selecting the best criteria or alternatives from the options given. One of the well known methods in MCDM is the Consistent Fuzzy Preference Relation (CFPR) method, essentially utilizes a pairwise comparison approach. This method was later improved to cater subjectivity in the data by using fuzzy set, known as the Consistent Linguistic Fuzzy Preference Relations (CLFPR). The CLFPR method uses the additive transitivity property in the evaluation of pairwise comparison matrices. However, the calculation involved is lengthy and cumbersome. To overcome this problem, a method of defuzzification was introduced by researchers. Nevertheless, the defuzzification process has a major setback where some information may lose due to the simplification process. In this paper, we propose a method of CLFPR that preserves the fuzzy numbers form throughout the process. In obtaining the desired ordering result, a method of ranking fuzzy numbers is utilized in the procedure. This improved procedure for CLFPR is implemented to a case study to verify its effectiveness. This method is useful for solving decision making problems and can be applied to many areas of applications.
Decomposed fuzzy systems and their application in direct adaptive fuzzy control.
Hsueh, Yao-Chu; Su, Shun-Feng; Chen, Ming-Chang
2014-10-01
In this paper, a novel fuzzy structure termed as the decomposed fuzzy system (DFS) is proposed to act as the fuzzy approximator for adaptive fuzzy control systems. The proposed structure is to decompose each fuzzy variable into layers of fuzzy systems, and each layer is to characterize one traditional fuzzy set. Similar to forming fuzzy rules in traditional fuzzy systems, layers from different variables form the so-called component fuzzy systems. DFS is proposed to provide more adjustable parameters to facilitate possible adaptation in fuzzy rules, but without introducing a learning burden. It is because those component fuzzy systems are independent so that it can facilitate minimum distribution learning effects among component fuzzy systems. It can be seen from our experiments that even when the rule number increases, the learning time in terms of cycles is still almost constant. It can also be found that the function approximation capability and learning efficiency of the DFS are much better than that of the traditional fuzzy systems when employed in adaptive fuzzy control systems. Besides, in order to further reduce the computational burden, a simplified DFS is proposed in this paper to satisfy possible real time constraints required in many applications. From our simulation results, it can be seen that the simplified DFS can perform fairly with a more concise decomposition structure.
Forecasting Enrollments with Fuzzy Time Series.
ERIC Educational Resources Information Center
Song, Qiang; Chissom, Brad S.
The concept of fuzzy time series is introduced and used to forecast the enrollment of a university. Fuzzy time series, an aspect of fuzzy set theory, forecasts enrollment using a first-order time-invariant model. To evaluate the model, the conventional linear regression technique is applied and the predicted values obtained are compared to the…
Fuzzy image processing in sun sensor
NASA Technical Reports Server (NTRS)
Mobasser, S.; Liebe, C. C.; Howard, A.
2003-01-01
This paper will describe how the fuzzy image processing is implemented in the instrument. Comparison of the Fuzzy image processing and a more conventional image processing algorithm is provided and shows that the Fuzzy image processing yields better accuracy then conventional image processing.
Force control of a tri-layer conducting polymer actuator using optimized fuzzy logic control
NASA Astrophysics Data System (ADS)
Itik, Mehmet; Sabetghadam, Mohammadreza; Alici, Gursel
2014-12-01
Conducting polymers actuators (CPAs) are potential candidates for replacing conventional actuators in various fields, such as robotics and biomedical engineering, due to their advantageous properties, which includes their low cost, light weight, low actuation voltage and biocompatibility. As these actuators are very suitable for use in micro-nano manipulation and in injection devices in which the magnitude of the force applied to the target is of crucial importance, the force generated by CPAs needs to be accurately controlled. In this paper, a fuzzy logic (FL) controller with a Mamdani inference system is designed to control the blocking force of a trilayer CPA with polypyrrole electrodes, which operates in air. The particle swarm optimization (PSO) method is employed to optimize the controller’s membership function parameters and therefore enhance the performance of the FL controller. An adaptive neuro-fuzzy inference system model, which can capture the nonlinear dynamics of the actuator, is utilized in the optimization process. The optimized Mamdani FL controller is then implemented on the CPA experimentally, and its performance is compared with a non-optimized fuzzy controller as well as with those obtained from a conventional PID controller. The results presented indicate that the blocking force at the tip of the CPA can be effectively controlled by the optimized FL controller, which shows excellent transient and steady state characteristics but increases the control voltage compared to the non-optimized fuzzy controllers.
NASA Astrophysics Data System (ADS)
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
Intelligent Segmentation of Medical Images Using Fuzzy Bitplane Thresholding
NASA Astrophysics Data System (ADS)
Khan, Z. Faizal; Kannan, A.
2014-04-01
The performance of assessment in medical image segmentation is highly correlated with the extraction of anatomic structures from them, and the major task is how to separate the regions of interests from the background and soft tissues successfully. This paper proposes a fuzzy logic based bitplane method to automatically segment the background of images and to locate the region of interest of medical images. This segmentation algorithm consists of three steps, namely identification, rule firing, and inference. In the first step, we begin by identifying the bitplanes that represent the lungs clearly. For this purpose, the intensity value of a pixel is separated into bitplanes. In the second step, the triple signum function assigns an optimum threshold based on the grayscale values for the anatomical structure present in the medical images. Fuzzy rules are formed based on the available bitplanes to form the membership table and are stored in a knowledge base. Finally, rules are fired to assign final segmentation values through the inference process. The proposed new metrics are used to measure the accuracy of the segmentation method. From the analysis, it is observed that the proposed metrics are more suitable for the estimation of segmentation accuracy. The results obtained from this work show that the proposed method performs segmentation effectively for the different classes of medical images.
ERIC Educational Resources Information Center
Watson, Jane
2007-01-01
Inference, or decision making, is seen in curriculum documents as the final step in a statistical investigation. For a formal statistical enquiry this may be associated with sophisticated tests involving probability distributions. For young students without the mathematical background to perform such tests, it is still possible to draw informal…
A network-based phenotype mapping approach to identify genes that modulate drug response phenotypes
Cairns, Junmei; Ung, Choong Yong; da Rocha, Edroaldo Lummertz; Zhang, Cheng; Correia, Cristina; Weinshilboum, Richard; Wang, Liewei; Li, Hu
2016-01-01
To better address the problem of drug resistance during cancer chemotherapy and explore the possibility of manipulating drug response phenotypes, we developed a network-based phenotype mapping approach (P-Map) to identify gene candidates that upon perturbed can alter sensitivity to drugs. We used basal transcriptomics data from a panel of human lymphoblastoid cell lines (LCL) to infer drug response networks (DRNs) that are responsible for conferring response phenotypes for anthracycline and taxane, two common anticancer agents use in clinics. We further tested selected gene candidates that interact with phenotypic differentially expressed genes (PDEGs), which are up-regulated genes in LCL for a given class of drug response phenotype in triple-negative breast cancer (TNBC) cells. Our results indicate that it is possible to manipulate a drug response phenotype, from resistant to sensitive or vice versa, by perturbing gene candidates in DRNs and suggest plausible mechanisms regulating directionality of drug response sensitivity. More important, the current work highlights a new way to formulate systems-based therapeutic design: supplementing therapeutics that aim to target disease culprits with phenotypic modulators capable of altering DRN properties with the goal to re-sensitize resistant phenotypes. PMID:27841317
A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management
NASA Technical Reports Server (NTRS)
Wu, G. Gordon
1995-01-01
Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.
Fuzzy Multiple Metrics Link Assessment for Routing in Mobile Ad-Hoc Network
NASA Astrophysics Data System (ADS)
Soo, Ai Luang; Tan, Chong Eng; Tay, Kai Meng
2011-06-01
In this work, we investigate on the use of Sugeno fuzzy inference system (FIS) in route selection for mobile Ad-Hoc networks (MANETs). Sugeno FIS is introduced into Ad-Hoc On Demand Multipath Distance Vector (AOMDV) routing protocol, which is derived from its predecessor, Ad-Hoc On Demand Distance Vector (AODV). Instead of using the conventional way that considering only a single metric to choose the best route, our proposed fuzzy decision making model considers up to three metrics. In the model, the crisp inputs of the three parameters are fed into an FIS and being processed in stages, i.e., fuzzification, inference, and defuzzification. Finally, after experiencing all the stages, a single value score is generated from the combination metrics, which will be used to measure all the discovered routes credibility. Results obtained from simulations show a promising improvement as compared to AOMDV and AODV.
Performance Evaluation in Network-Based Parallel Computing
NASA Technical Reports Server (NTRS)
Dezhgosha, Kamyar
1996-01-01
Network-based parallel computing is emerging as a cost-effective alternative for solving many problems which require use of supercomputers or massively parallel computers. The primary objective of this project has been to conduct experimental research on performance evaluation for clustered parallel computing. First, a testbed was established by augmenting our existing SUNSPARCs' network with PVM (Parallel Virtual Machine) which is a software system for linking clusters of machines. Second, a set of three basic applications were selected. The applications consist of a parallel search, a parallel sort, a parallel matrix multiplication. These application programs were implemented in C programming language under PVM. Third, we conducted performance evaluation under various configurations and problem sizes. Alternative parallel computing models and workload allocations for application programs were explored. The performance metric was limited to elapsed time or response time which in the context of parallel computing can be expressed in terms of speedup. The results reveal that the overhead of communication latency between processes in many cases is the restricting factor to performance. That is, coarse-grain parallelism which requires less frequent communication between processes will result in higher performance in network-based computing. Finally, we are in the final stages of installing an Asynchronous Transfer Mode (ATM) switch and four ATM interfaces (each 155 Mbps) which will allow us to extend our study to newer applications, performance metrics, and configurations.
Home medical monitoring network based on embedded technology
NASA Astrophysics Data System (ADS)
Liu, Guozhong; Deng, Wenyi; Yan, Bixi; Lv, Naiguang
2006-11-01
Remote medical monitoring network for long-term monitoring of physiological variables would be helpful for recovery of patients as people are monitored at more comfortable conditions. Furthermore, long-term monitoring would be beneficial to investigate slowly developing deterioration in wellness status of a subject and provide medical treatment as soon as possible. The home monitor runs on an embedded microcomputer Rabbit3000 and interfaces with different medical monitoring module through serial ports. The network based on asymmetric digital subscriber line (ADSL) or local area network (LAN) is established and a client - server model, each embedded home medical monitor is client and the monitoring center is the server, is applied to the system design. The client is able to provide its information to the server when client's request of connection to the server is permitted. The monitoring center focuses on the management of the communications, the acquisition of medical data, and the visualization and analysis of the data, etc. Diagnosing model of sleep apnea syndrome is built basing on ECG, heart rate, respiration wave, blood pressure, oxygen saturation, air temperature of mouth cavity or nasal cavity, so sleep status can be analyzed by physiological data acquired as people in sleep. Remote medical monitoring network based on embedded micro Internetworking technology have advantages of lower price, convenience and feasibility, which have been tested by the prototype.
Lithology determination from well logs with fuzzy associative memory neural network
Chang, H.C.; Chen, H.C.; Fang, J.H.
1997-05-01
An artificial intelligence technique of fuzzy associative memory is used to determine rock types from well-log signatures. Fuzzy associative memory (FAM) is a hybrid of neutral network and fuzzy expert system. This new approach combines the learning ability of neural network and the strengths of fuzzy linguistic modeling to adaptively infer lithologies from well-log signatures based on (1) the relationships between the lithology and log signature that the neural network have learned during the training and/or (2) geologist`s knowledge about the rocks. The method is applied to a sequence of the Ordovician rock units in northern Kansas. This paper also compares the performances of two different methods, using the same data set for meaningful comparison. The advantages of FAM are (1) expert knowledge acquired by geologists is fully utilized; (2) this knowledge is augmented by the neural network learning from the data, when available; and (3) FAM is transparent in that the knowledge is explicitly stated in the fuzzy rules.
Fuzzy adaptive interacting multiple model nonlinear filter for integrated navigation sensor fusion.
Tseng, Chien-Hao; Chang, Chih-Wen; Jwo, Dah-Jing
2011-01-01
In this paper, the application of the fuzzy interacting multiple model unscented Kalman filter (FUZZY-IMMUKF) approach to integrated navigation processing for the maneuvering vehicle is presented. The unscented Kalman filter (UKF) employs a set of sigma points through deterministic sampling, such that a linearization process is not necessary, and therefore the errors caused by linearization as in the traditional extended Kalman filter (EKF) can be avoided. The nonlinear filters naturally suffer, to some extent, the same problem as the EKF for which the uncertainty of the process noise and measurement noise will degrade the performance. As a structural adaptation (model switching) mechanism, the interacting multiple model (IMM), which describes a set of switching models, can be utilized for determining the adequate value of process noise covariance. The fuzzy logic adaptive system (FLAS) is employed to determine the lower and upper bounds of the system noise through the fuzzy inference system (FIS). The resulting sensor fusion strategy can efficiently deal with the nonlinear problem for the vehicle navigation. The proposed FUZZY-IMMUKF algorithm shows remarkable improvement in the navigation estimation accuracy as compared to the relatively conventional approaches such as the UKF and IMMUKF.
A fuzzy Bayesian approach to flood frequency estimation with imprecise historical information
Kiss, Andrea; Viglione, Alberto; Viertl, Reinhard; Blöschl, Günter
2016-01-01
Abstract This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non‐fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation. PMID:27840456
A fuzzy Bayesian approach to flood frequency estimation with imprecise historical information
NASA Astrophysics Data System (ADS)
Salinas, José Luis; Kiss, Andrea; Viglione, Alberto; Viertl, Reinhard; Blöschl, Günter
2016-09-01
This paper presents a novel framework that links imprecision (through a fuzzy approach) and stochastic uncertainty (through a Bayesian approach) in estimating flood probabilities from historical flood information and systematic flood discharge data. The method exploits the linguistic characteristics of historical source material to construct membership functions, which may be wider or narrower, depending on the vagueness of the statements. The membership functions are either included in the prior distribution or the likelihood function to obtain a fuzzy version of the flood frequency curve. The viability of the approach is demonstrated by three case studies that differ in terms of their hydromorphological conditions (from an Alpine river with bedrock profile to a flat lowland river with extensive flood plains) and historical source material (including narratives, town and county meeting protocols, flood marks and damage accounts). The case studies are presented in order of increasing fuzziness (the Rhine at Basel, Switzerland; the Werra at Meiningen, Germany; and the Tisza at Szeged, Hungary). Incorporating imprecise historical information is found to reduce the range between the 5% and 95% Bayesian credibility bounds of the 100 year floods by 45% and 61% for the Rhine and Werra case studies, respectively. The strengths and limitations of the framework are discussed relative to alternative (non-fuzzy) methods. The fuzzy Bayesian inference framework provides a flexible methodology that fits the imprecise nature of linguistic information on historical floods as available in historical written documentation.
Imprecise (fuzzy) information in geostatistics
Bardossy, A.; Bogardi, I.; Kelly, W.E.
1988-05-01
A methodology based on fuzzy set theory for the utilization of imprecise data in geostatistics is presented. A common problem preventing a broader use of geostatistics has been the insufficient amount of accurate measurement data. In certain cases, additional but uncertain (soft) information is available and can be encoded as subjective probabilities, and then the soft kriging method can be applied (Journal, 1986). In other cases, a fuzzy encoding of soft information may be more realistic and simplify the numerical calculations. Imprecise (fuzzy) spatial information on the possible variogram is integrated into a single variogram which is used in a fuzzy kriging procedure. The overall uncertainty of prediction is represented by the estimation variance and the calculated membership function for each kriged point. The methodology is applied to the permeability prediction of a soil liner for hazardous waste containment. The available number of hard measurement data (20) was not enough for a classical geostatistical analysis. An additional 20 soft data made it possible to prepare kriged contour maps using the fuzzy geostatistical procedure.
Simplifying Hill-based muscle models through generalized extensible fuzzy heuristic implementation
NASA Astrophysics Data System (ADS)
O'Brien, Amy J.
2006-04-01
Traditional dynamic muscle models based on work initially published by A. V. Hill in 1938 often rely on high-order systems of differential equations. While such models are very accurate and effective, they do not typically lend themselves to modification by clinicians who are unfamiliar with biomedical engineering and advanced mathematics. However, it is possible to develop a fuzzy heuristic implementation of a Hill-based model-the Fuzzy Logic Implemented HIll-based (FLIHI) muscle model-that offers several advantages over conventional state equation approaches. Because a fuzzy system is oriented by design to describe a model in linguistics rather than ordinary differential equation-based mathematics, the resulting fuzzy model can be more readily modified and extended by medical practitioners. It also stands to reason that a well-designed fuzzy inference system can be implemented with a degree of generalizability not often encountered in traditional state space models. Taking electromyogram (EMG) as one input to muscle, FLIHI is tantamount to a fuzzy EMG-to-muscle force estimator that captures dynamic muscle properties while providing robustness to partial or noisy data. One goal behind this approach is to encourage clinicians to rely on the model rather than assuming that muscle force as an output maps directly to smoothed EMG as an input. FLIHI's force estimate is more accurate than assuming force equal to smoothed EMG because FLIHI provides a transfer function that accounts for muscle's inherent nonlinearity. Furthermore, employing fuzzy logic should provide FLIHI with improved robustness over traditional mathematical approaches.
El-Sayed, Abdulrahman M; Seemann, Lars; Scarborough, Peter; Galea, Sandro
2013-07-15
Recent research suggests that social networks may present an avenue for intervention against obesity. By using a simulation model in which artificial individuals were nested in a social network, we assessed whether interventions targeting highly networked individuals could help reduce population obesity. We compared the effects of targeting antiobesity interventions at the most connected individuals in a network with those targeting individuals at random. We tested 2 interventions, the first "preventing" obesity among 10% of the population at simulation outset and the second "treating" obesity among 10% of the obese population yearly, each in 2 separate simulations. One simulation featured a literature-based parameter for the network spread of obesity, and the other featured an artificially high parameter. Interventions that targeted highly networked individuals did not outperform at-random interventions in simulations featuring the literature-based parameter. However, in simulations featuring the artificially high parameter, the targeted prevention intervention outperformed the at-random intervention, whereas the treatment intervention implemented at random outperformed the targeted treatment intervention. Results were qualitatively similar across network topologies and intervention scales. Although descriptive studies suggest that social networks influence the spread of obesity, policies targeting well-connected individuals in social networks may not improve obesity reduction. We highlight and discuss the potential applications of counterfactual simulations in epidemiology.
Parallel Fuzzy Segmentation of Multiple Objects*
Garduño, Edgar; Herman, Gabor T.
2009-01-01
The usefulness of fuzzy segmentation algorithms based on fuzzy connectedness principles has been established in numerous publications. New technologies are capable of producing larger-and-larger datasets and this causes the sequential implementations of fuzzy segmentation algorithms to be time-consuming. We have adapted a sequential fuzzy segmentation algorithm to multi-processor machines. We demonstrate the efficacy of such a distributed fuzzy segmentation algorithm by testing it with large datasets (of the order of 50 million points/voxels/items): a speed-up factor of approximately five over the sequential implementation seems to be the norm. PMID:19444333
Chaira, Tamalika
2014-06-01
In this paper automatic leukocyte segmentation in pathological blood cell images is proposed using intuitionistic fuzzy and interval Type II fuzzy set theory. This is done to count different types of leukocytes for disease detection. Also, the segmentation should be accurate so that the shape of the leukocytes is preserved. So, intuitionistic fuzzy set and interval Type II fuzzy set that consider either more number of uncertainties or a different type of uncertainty as compared to fuzzy set theory are used in this work. As the images are considered fuzzy due to imprecise gray levels, advanced fuzzy set theories may be expected to give better result. A modified Cauchy distribution is used to find the membership function. In intuitionistic fuzzy method, non-membership values are obtained using Yager's intuitionistic fuzzy generator. Optimal threshold is obtained by minimizing intuitionistic fuzzy divergence. In interval type II fuzzy set, a new membership function is generated that takes into account the two levels in Type II fuzzy set using probabilistic T co norm. Optimal threshold is selected by minimizing a proposed Type II fuzzy divergence. Though fuzzy techniques were applied earlier but these methods failed to threshold multiple leukocytes in images. Experimental results show that both interval Type II fuzzy and intuitionistic fuzzy methods perform better than the existing non-fuzzy/fuzzy methods but interval Type II fuzzy thresholding method performs little bit better than intuitionistic fuzzy method. Segmented leukocytes in the proposed interval Type II fuzzy method are observed to be distinct and clear.
Dynamic Response Analysis of Fuzzy Stochastic Truss Structures under Fuzzy Stochastic Excitation
NASA Astrophysics Data System (ADS)
Ma, Juan; Chen, Jian-Jun; Gao, Wei
2006-08-01
A novel method (Fuzzy factor method) is presented, which is used in the dynamic response analysis of fuzzy stochastic truss structures under fuzzy stochastic step loads. Considering the fuzzy randomness of structural physical parameters, geometric dimensions and the amplitudes of step loads simultaneously, fuzzy stochastic dynamic response of the truss structures is developed using the mode superposition method and fuzzy factor method. The fuzzy numerical characteristics of dynamic response are then obtained by using the random variable’s moment method and the algebra synthesis method. The influences of the fuzzy randomness of structural physical parameters, geometric dimensions and step load on the fuzzy randomness of the dynamic response are demonstrated via an engineering example, and Monte-Carlo method is used to simulate this example, verifying the feasibility and validity of the modeling and method given in this paper.
Contra continuity and almost contra continuity in generalized fuzzy topological spaces
NASA Astrophysics Data System (ADS)
Bhattacharya, Baby; Chakraborty, Jayasree
2015-05-01
In this paper we introduce fuzzy contra continuity and almost contra continuity in generalized fuzzy topological space. Fuzzy almost contra continuity is weaker than fuzzy contra continuity in generalized fuzzy topological space. Then we investigate their characterizations and properties. We also established some equivalent relation on fuzzy contra continuity and fuzzy almost contra continuity in generalized fuzzy topological spaces.
1988-06-27
de olf nessse end Id e ;-tl Sb ieeI smleo) ,Optical Artificial Intellegence ; Optical inference engines; Optical logic; Optical informationprocessing...common. They arise in areas such as expert systems and other artificial intelligence systems. In recent years, the computer science language PROLOG has...cal processors should in principle be well suited for : I artificial intelligence applications. In recent years, symbolic logic processing. , the
Fuzzy simulation in concurrent engineering
NASA Technical Reports Server (NTRS)
Kraslawski, A.; Nystrom, L.
1992-01-01
Concurrent engineering is becoming a very important practice in manufacturing. A problem in concurrent engineering is the uncertainty associated with the values of the input variables and operating conditions. The problem discussed in this paper concerns the simulation of processes where the raw materials and the operational parameters possess fuzzy characteristics. The processing of fuzzy input information is performed by the vertex method and the commercial simulation packages POLYMATH and GEMS. The examples are presented to illustrate the usefulness of the method in the simulation of chemical engineering processes.
NASA Technical Reports Server (NTRS)
Ruspini, Enrique H.
1991-01-01
Summarized here are the results of recent research on the conceptual foundations of fuzzy logic. The focus is primarily on the principle characteristics of a model that quantifies resemblance between possible worlds by means of a similarity function that assigns a number between 0 and 1 to every pair of possible worlds. Introduction of such a function permits one to interpret the major constructs and methods of fuzzy logic: conditional and unconditional possibility and necessity distributions and the generalized modus ponens of Zadeh on the basis of related metric relationships between subsets of possible worlds.
Active inference and learning.
Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O'Doherty, John; Pezzulo, Giovanni
2016-09-01
This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity.
Use of indexed historical floods in flood frequency estimation with Fuzzy Bayesian methods
NASA Astrophysics Data System (ADS)
Salinas, Jose; Viglione, Alberto; Kiss, Andrea; Bloeschl, Guenter
2015-04-01
Efforts of the historical environmental extremes community during the last decades have resulted in the existence of long time series of floods, for example in Central Europe and the Mediterranean region, which in some cases range longer than 500 years in the past. In most of the cases the flood time series are presented in terms of indices, representing a combination of socio-economic indicators for the flood impact, e.g. economic damage, flood duration and extension, ... In hydrological engineering, historical floods are very useful because they give additional information which will reduce the uncertainty in estimates of discharges with low annual exceedance probabilities, i.e. with high return periods. In order to use the historical floods in formal flood frequency analysis, the precise value of the peak discharges would ideally be known, but as commented, they are most usually given in term of indices. This work presents a novel method on how to obtain a prior distribution for the parameters of the annual peak discharges distribution from indexed historical floods time series. The prior distribution is incorporated in the flood frequency estimation via Bayesian methods (see e.g. Viglione et al., 2013) in order to reduce the uncertainties in the design flood estimates. The historical data used is subject to a high degree of uncertainty and unpreciseness. In this sense, a framework is presented where the discharge thresholds between flood indices are modeled as fuzzy numbers. These fuzzy thresholds will define a fuzzy prior distribution, which will requires to apply Fuzzy Bayesian Inference (Viertl, 2008ab) to obtain fuzzy credibility intervals for the design floods. Viertl, R. (2008a) Foundations of Fuzzy Bayesian Inference, Journal of Uncertain Systems, 2, 187-191. Viertl, R. (2008b) Fuzzy Bayesian Inference. In: Soft Methods For Handling Variability And Imprecision. Advances In Soft Computing. Vol. 48. Springer-Verlag Berlin, pp 10-15. Viglione, A., R. Merz
Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning for pitch control system
NASA Astrophysics Data System (ADS)
Li, Yezi; Xiao, Cheng; Sun, Jinhao
2013-03-01
PID and fuzzy PID controller are applied into the pitch control system. PID control has simple principle and its parameters setting are rather easy. Fuzzy control need not to establish the mathematical of the control system and has strong robustness. The advantages of fuzzy PID control are simple, easy in setting parameters and strong robustness. Fuzzy PID controller combines with closed-loop optimal fuzzy reasoning (COFR), which can effectively improve the robustness, when the robustness is special requirement. MATLAB software is used for simulations, results display that fuzzy PID controller which combines with COFR has better performances than PID controller when errors exist.
Complex fuzzy set-valued complex fuzzy measures and their properties.
Ma, Shengquan; Li, Shenggang
2014-01-01
Let F*(K) be the set of all fuzzy complex numbers. In this paper some classical and measure-theoretical notions are extended to the case of complex fuzzy sets. They are fuzzy complex number-valued distance on F*(K), fuzzy complex number-valued measure on F*(K), and some related notions, such as null-additivity, pseudo-null-additivity, null-subtraction, pseudo-null-subtraction, autocontionuous from above, autocontionuous from below, and autocontinuity of the defined fuzzy complex number-valued measures. Properties of fuzzy complex number-valued measures are studied in detail.
Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems.
Gao, Qing; Feng, Gang; Dong, Daoyi; Liu, Lu
2015-05-01
This paper investigates the problems of universal fuzzy model and universal fuzzy controller for discrete-time nonaffine nonlinear systems (NNSs). It is shown that a kind of generalized T-S fuzzy model is the universal fuzzy model for discrete-time NNSs satisfying a sufficient condition. The results on universal fuzzy controllers are presented for two classes of discrete-time stabilizable NNSs. Constructive procedures are provided to construct the model reference fuzzy controllers. The simulation example of an inverted pendulum is presented to illustrate the effectiveness and advantages of the proposed method. These results significantly extend the approach for potential applications in solving complex engineering problems.
Network based elucidation of drug response: from modulators to targets
2013-01-01
Network-based drug discovery aims at harnessing the power of networks to investigate the mechanism of action of existing drugs, or new molecules, in order to identify innovative therapeutic treatments. In this review, we describe some of the most recent advances in the field of network pharmacology, starting with approaches relying on computational models of transcriptional networks, then moving to protein and signaling network models and concluding with “drug networks”. These networks are derived from different sources of experimental data, or literature-based analysis, and provide a complementary view of drug mode of action. Molecular and drug networks are powerful integrated computational and experimental approaches that will likely speed up and improve the drug discovery process, once fully integrated into the academic and industrial drug discovery pipeline. PMID:24330611
Biomolecular Network-Based Synergistic Drug Combination Discovery
Li, Xiangyi; Qin, Guangrong; Yang, Qingmin
2016-01-01
Drug combination is a powerful and promising approach for complex disease therapy such as cancer and cardiovascular disease. However, the number of synergistic drug combinations approved by the Food and Drug Administration is very small. To bridge the gap between urgent need and low yield, researchers have constructed various models to identify synergistic drug combinations. Among these models, biomolecular network-based model is outstanding because of its ability to reflect and illustrate the relationships among drugs, disease-related genes, therapeutic targets, and disease-specific signaling pathways as a system. In this review, we analyzed and classified models for synergistic drug combination prediction in recent decade according to their respective algorithms. Besides, we collected useful resources including databases and analysis tools for synergistic drug combination prediction. It should provide a quick resource for computational biologists who work with network medicine or synergistic drug combination designing. PMID:27891522
Neural network based analysis for chemical sensor arrays
Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.
1995-04-01
Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. In this paper, we examine the effectiveness of using artificial neural networks for real-time data analysis of a sensor array. Analyzing the sensor data in parallel may allow for rapid identification of contaminants in the field without requiring highly selective individual sensors. We use a prototype sensor array which consists of nine tin-oxide Taguchi-type sensors, a temperature sensor, and a humidity sensor. We illustrate that by using neural network based analysis of the sensor data, the selectivity of the sensor array may be significantly improved, especially when some (or all) the sensors are not highly selective.
A fuzzy control design case: The fuzzy PLL
NASA Technical Reports Server (NTRS)
Teodorescu, H. N.; Bogdan, I.
1992-01-01
The aim of this paper is to present a typical fuzzy control design case. The analyzed controlled systems are the phase-locked loops (PLL's)--classic systems realized in both analogic and digital technology. The crisp PLL devices are well known.
Turbulent-PSO-Based Fuzzy Image Filter With No-Reference Measures for High-Density Impulse Noise.
Chou, Hsien-Hsin; Hsu, Ling-Yuan; Hu, Hwai-Tsu
2013-02-01
Digital images are often corrupted by impulsive noise during data acquisition, transmission, and processing. This paper presents a turbulent particle swarm optimization (PSO) (TPSO)-based fuzzy filtering (or TPFF for short) approach to remove impulse noise from highly corrupted images. The proposed fuzzy filter contains a parallel fuzzy inference mechanism, a fuzzy mean process, and a fuzzy composition process. To a certain extent, the TPFF is an improved and online version of those genetic-based algorithms which had attracted a number of works during the past years. As the PSO is renowned for its ability of achieving success rate and solution quality, the superiority of the TPFF is almost for sure. In particular, by using a no-reference Q metric, the TPSO learning is sufficient to optimize the parameters necessitated by the TPFF. Therefore, the proposed fuzzy filter can cope with practical situations where the assumption of the existence of the "ground-truth" reference does not hold. The experimental results confirm that the TPFF attains an excellent quality of restored images in terms of peak signal-to-noise ratio, mean square error, and mean absolute error even when the noise rate is above 0.5 and without the aid of noise-free images.
Multimodel inference and adaptive management
Rehme, S.E.; Powell, L.A.; Allen, C.R.
2011-01-01
Ecology is an inherently complex science coping with correlated variables, nonlinear interactions and multiple scales of pattern and process, making it difficult for experiments to result in clear, strong inference. Natural resource managers, policy makers, and stakeholders rely on science to provide timely and accurate management recommendations. However, the time necessary to untangle the complexities of interactions within ecosystems is often far greater than the time available to make management decisions. One method of coping with this problem is multimodel inference. Multimodel inference assesses uncertainty by calculating likelihoods among multiple competing hypotheses, but multimodel inference results are often equivocal. Despite this, there may be pressure for ecologists to provide management recommendations regardless of the strength of their study’s inference. We reviewed papers in the Journal of Wildlife Management (JWM) and the journal Conservation Biology (CB) to quantify the prevalence of multimodel inference approaches, the resulting inference (weak versus strong), and how authors dealt with the uncertainty. Thirty-eight percent and 14%, respectively, of articles in the JWM and CB used multimodel inference approaches. Strong inference was rarely observed, with only 7% of JWM and 20% of CB articles resulting in strong inference. We found the majority of weak inference papers in both journals (59%) gave specific management recommendations. Model selection uncertainty was ignored in most recommendations for management. We suggest that adaptive management is an ideal method to resolve uncertainty when research results in weak inference.
NASA Astrophysics Data System (ADS)
Chaney, A.; Stern, A.
2017-02-01
Four-dimensional manifolds with changing signature are obtained by taking the large N limit of fuzzy C P2 solutions to a Lorentzian matrix model. The regions of Lorentzian signature give toy models of closed universes which exhibit cosmological singularities. These singularities are resolved at finite N , as the underlying C P2 solutions are expressed in terms of finite matrix elements.
Commutative POVMs and Fuzzy Observables
NASA Astrophysics Data System (ADS)
Ali, S. Twareque; Carmeli, Claudio; Heinosaari, Teiko; Toigo, Alessandro
2009-06-01
In this paper we review some properties of fuzzy observables, mainly as realized by commutative positive operator valued measures. In this context we discuss two representation theorems for commutative positive operator valued measures in terms of projection valued measures and describe, in some detail, the general notion of fuzzification. We also make some related observations on joint measurements.
Fuzzy associative conjuncted maps network.
Goh, Hanlin; Lim, Joo-Hwee; Quek, Chai
2009-08-01
The fuzzy associative conjuncted maps (FASCOM) is a fuzzy neural network that associates data of nonlinearly related inputs and outputs. In the network, each input or output dimension is represented by a feature map that is partitioned into fuzzy or crisp sets. These fuzzy sets are then conjuncted to form antecedents and consequences, which are subsequently associated to form if-then rules. The associative memory is encoded through an offline batch mode learning process consisting of three consecutive phases. The initial unsupervised membership function initialization phase takes inspiration from the organization of sensory maps in our brains by allocating membership functions based on uniform information density. Next, supervised Hebbian learning encodes synaptic weights between input and output nodes. Finally, a supervised error reduction phase fine-tunes the network, which allows for the discovery of the varying levels of influence of each input dimension across an output feature space in the encoded memory. In the series of experiments, we show that each phase in the learning process contributes significantly to the final accuracy of prediction. Further experiments using both toy problems and real-world data demonstrate significant superiority in terms of accuracy of nonlinear estimation when benchmarked against other prominent architectures and exhibit the network's suitability to perform analysis and prediction on real-world applications, such as traffic density prediction as shown in this paper.
Fuzzy coordinator in control problems
NASA Technical Reports Server (NTRS)
Rueda, A.; Pedrycz, W.
1992-01-01
In this paper a hierarchical control structure using a fuzzy system for coordination of the control actions is studied. The architecture involves two levels of control: a coordination level and an execution level. Numerical experiments will be utilized to illustrate the behavior of the controller when it is applied to a nonlinear plant.
Sympatry inference and network analysis in biogeography.
Dos Santos, Daniel A; Fernández, Hugo R; Cuezzo, María Gabriela; Domínguez, Eduardo
2008-06-01
A new approach for biogeography to find patterns of sympatry, based on network analysis, is proposed. Biogeographic analysis focuses basically on sympatry patterns of species. Sympatry is a network (= relational) datum, but it has never been analyzed before using relational tools such as Network Analysis. Our approach to biogeographic analysis consists of two parts: first the sympatry inference and second the network analysis method (NAM). The sympatry inference method was designed to propose sympatry hypothesis, constructing a basal sympatry network based on punctual data, independent of a priori distributional area determination. In this way, two or more species are considered sympatric when there is interpenetration and relative proximity among their records of occurrence. In nature, groups of species presenting within-group sympatry and between-group allopatry constitute natural units (units of co-occurrence). These allopatric units are usually connected by intermediary species. The network analysis method (NAM) that we propose here is based on the identification and removal of intermediary species to segregate units of co-occurrence, using the betweenness measure and the clustering coefficient. The species ranges of the units of co-occurrence obtained are transferred to a map, being considered as candidates to areas of endemism. The new approach was implemented on three different real complex data sets (one of them a classic example previously used in biogeography) resulting in (1) independence of predefined spatial units; (2) definition of co-occurrence patterns from the sympatry network structure, not from species range similarities; (3) higher stability in results despite scale changes; (4) identification of candidates to areas of endemism supported by strictly endemic species; (5) identification of intermediary species with particular biological attributes.
Network geometry inference using common neighbors
NASA Astrophysics Data System (ADS)
Papadopoulos, Fragkiskos; Aldecoa, Rodrigo; Krioukov, Dmitri
2015-08-01
We introduce and explore a method for inferring hidden geometric coordinates of nodes in complex networks based on the number of common neighbors between the nodes. We compare this approach to the HyperMap method, which is based only on the connections (and disconnections) between the nodes, i.e., on the links that the nodes have (or do not have). We find that for high degree nodes, the common-neighbors approach yields a more accurate inference than the link-based method, unless heuristic periodic adjustments (or "correction steps") are used in the latter. The common-neighbors approach is computationally intensive, requiring O (t4) running time to map a network of t nodes, versus O (t3) in the link-based method. But we also develop a hybrid method with O (t3) running time, which combines the common-neighbors and link-based approaches, and we explore a heuristic that reduces its running time further to O (t2) , without significant reduction in the mapping accuracy. We apply this method to the autonomous systems (ASs) Internet, and we reveal how soft communities of ASs evolve over time in the similarity space. We further demonstrate the method's predictive power by forecasting future links between ASs. Taken altogether, our results advance our understanding of how to efficiently and accurately map real networks to their latent geometric spaces, which is an important necessary step toward understanding the laws that govern the dynamics of nodes in these spaces, and the fine-grained dynamics of network connections.
Learning fuzzy logic control system
NASA Technical Reports Server (NTRS)
Lung, Leung Kam
1994-01-01
The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
NASA Astrophysics Data System (ADS)
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
NASA Technical Reports Server (NTRS)
Wheeler, Kevin; Timucin, Dogan; Rabbette, Maura; Curry, Charles; Allan, Mark; Lvov, Nikolay; Clanton, Sam; Pilewskie, Peter
2002-01-01
The goal of visual inference programming is to develop a software framework data analysis and to provide machine learning algorithms for inter-active data exploration and visualization. The topics include: 1) Intelligent Data Understanding (IDU) framework; 2) Challenge problems; 3) What's new here; 4) Framework features; 5) Wiring diagram; 6) Generated script; 7) Results of script; 8) Initial algorithms; 9) Independent Component Analysis for instrument diagnosis; 10) Output sensory mapping virtual joystick; 11) Output sensory mapping typing; 12) Closed-loop feedback mu-rhythm control; 13) Closed-loop training; 14) Data sources; and 15) Algorithms. This paper is in viewgraph form.
Design of fuzzy system by NNs and realization of adaptability
NASA Technical Reports Server (NTRS)
Takagi, Hideyuki
1993-01-01
The issue of designing and tuning fuzzy membership functions by neural networks (NN's) was started by NN-driven Fuzzy Reasoning in 1988. NN-driven fuzzy reasoning involves a NN embedded in the fuzzy system which generates membership values. In conventional fuzzy system design, the membership functions are hand-crafted by trial and error for each input variable. In contrast, NN-driven fuzzy reasoning considers several variables simultaneously and can design a multidimensional, nonlinear membership function for the entire subspace.
Circular inferences in schizophrenia.
Jardri, Renaud; Denève, Sophie
2013-11-01
A considerable number of recent experimental and computational studies suggest that subtle impairments of excitatory to inhibitory balance or regulation are involved in many neurological and psychiatric conditions. The current paper aims to relate, specifically and quantitatively, excitatory to inhibitory imbalance with psychotic symptoms in schizophrenia. Considering that the brain constructs hierarchical causal models of the external world, we show that the failure to maintain the excitatory to inhibitory balance results in hallucinations as well as in the formation and subsequent consolidation of delusional beliefs. Indeed, the consequence of excitatory to inhibitory imbalance in a hierarchical neural network is equated to a pathological form of causal inference called 'circular belief propagation'. In circular belief propagation, bottom-up sensory information and top-down predictions are reverberated, i.e. prior beliefs are misinterpreted as sensory observations and vice versa. As a result, these predictions are counted multiple times. Circular inference explains the emergence of erroneous percepts, the patient's overconfidence when facing probabilistic choices, the learning of 'unshakable' causal relationships between unrelated events and a paradoxical immunity to perceptual illusions, which are all known to be associated with schizophrenia.
Inferring Horizontal Gene Transfer
Lassalle, Florent; Dessimoz, Christophe
2015-01-01
Horizontal or Lateral Gene Transfer (HGT or LGT) is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages [1]. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric") methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic") approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events. PMID:26020646
Moment inference from tomograms
Day-Lewis, F. D.; Chen, Y.; Singha, K.
2007-01-01
Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.
Age Estimation Based on Children's Voice: A Fuzzy-Based Decision Fusion Strategy
Ting, Hua-Nong
2014-01-01
Automatic estimation of a speaker's age is a challenging research topic in the area of speech analysis. In this paper, a novel approach to estimate a speaker's age is presented. The method features a “divide and conquer” strategy wherein the speech data are divided into six groups based on the vowel classes. There are two reasons behind this strategy. First, reduction in the complicated distribution of the processing data improves the classifier's learning performance. Second, different vowel classes contain complementary information for age estimation. Mel-frequency cepstral coefficients are computed for each group and single layer feed-forward neural networks based on self-adaptive extreme learning machine are applied to the features to make a primary decision. Subsequently, fuzzy data fusion is employed to provide an overall decision by aggregating the classifier's outputs. The results are then compared with a number of state-of-the-art age estimation methods. Experiments conducted based on six age groups including children aged between 7 and 12 years revealed that fuzzy fusion of the classifier's outputs resulted in considerable improvement of up to 53.33% in age estimation accuracy. Moreover, the fuzzy fusion of decisions aggregated the complementary information of a speaker's age from various speech sources. PMID:25006595
Combinational reasoning of quantitative fuzzy topological relations for simple fuzzy regions.
Liu, Bo; Li, Dajun; Xia, Yuanping; Ruan, Jian; Xu, Lili; Wu, Huanyi
2015-01-01
In recent years, formalization and reasoning of topological relations have become a hot topic as a means to generate knowledge about the relations between spatial objects at the conceptual and geometrical levels. These mechanisms have been widely used in spatial data query, spatial data mining, evaluation of equivalence and similarity in a spatial scene, as well as for consistency assessment of the topological relations of multi-resolution spatial databases. The concept of computational fuzzy topological space is applied to simple fuzzy regions to efficiently and more accurately solve fuzzy topological relations. Thus, extending the existing research and improving upon the previous work, this paper presents a new method to describe fuzzy topological relations between simple spatial regions in Geographic Information Sciences (GIS) and Artificial Intelligence (AI). Firstly, we propose a new definition for simple fuzzy line segments and simple fuzzy regions based on the computational fuzzy topology. And then, based on the new definitions, we also propose a new combinational reasoning method to compute the topological relations between simple fuzzy regions, moreover, this study has discovered that there are (1) 23 different topological relations between a simple crisp region and a simple fuzzy region; (2) 152 different topological relations between two simple fuzzy regions. In the end, we have discussed some examples to demonstrate the validity of the new method, through comparisons with existing fuzzy models, we showed that the proposed method can compute more than the existing models, as it is more expressive than the existing fuzzy models.
Analysis of inventory difference using fuzzy controllers
Zardecki, A.
1994-08-01
The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented.
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Earthquake networks based on space-time influence domain
NASA Astrophysics Data System (ADS)
He, Xuan; Zhao, Hai; Cai, Wei; Liu, Zheng; Si, Shuai-Zong
2014-08-01
A new construction method of earthquake networks based on the theory of complex networks is presented in this paper. We propose a space-time influence domain for each earthquake to quantify the subsequence of earthquakes which are directly influenced by the former earthquake. The size of the domain is according to the magnitude of earthquake. In this way, the seismic data in the region of California are mapped to a topology of earthquake network. It is discovered that the earthquake networks in different time spans behave as scale-free networks. This result can be interpreted in terms of the Gutenberg-Richter law. Discovery of small-world characteristic is also reported on the earthquake network constructed by our method. The Omori law emerges as a feature of seismicity for the out-going links of the network. These characteristics highlight a novel aspect of seismicity as a complex phenomenon and will help us to reveal the internal mechanism of seismic system.
A review of network-based approaches to drug repositioning.
Lotfi Shahreza, Maryam; Ghadiri, Nasser; Mousavi, Sayed Rasoul; Varshosaz, Jaleh; Green, James R
2017-02-27
Experimental drug development is time-consuming, expensive and limited to a relatively small number of targets. However, recent studies show that repositioning of existing drugs can function more efficiently than de novo experimental drug development to minimize costs and risks. Previous studies have proven that network analysis is a versatile platform for this purpose, as the biological networks are used to model interactions between many different biological concepts. The present study is an attempt to review network-based methods in predicting drug targets for drug repositioning. For each method, the preferred type of data set is described, and their advantages and limitations are discussed. For each method, we seek to provide a brief description, as well as an evaluation based on its performance metrics.We conclude that integrating distinct and complementary data should be used because each type of data set reveals a unique aspect of information about an organism. We also suggest that applying a standard set of evaluation metrics and data sets would be essential in this fast-growing research domain.
Bayesian Model Selection with Network Based Diffusion Analysis
Whalen, Andrew; Hoppitt, William J. E.
2016-01-01
A number of recent studies have used Network Based Diffusion Analysis (NBDA) to detect the role of social transmission in the spread of a novel behavior through a population. In this paper we present a unified framework for performing NBDA in a Bayesian setting, and demonstrate how the Watanabe Akaike Information Criteria (WAIC) can be used for model selection. We present a specific example of applying this method to Time to Acquisition Diffusion Analysis (TADA). To examine the robustness of this technique, we performed a large scale simulation study and found that NBDA using WAIC could recover the correct model of social transmission under a wide range of cases, including under the presence of random effects, individual level variables, and alternative models of social transmission. This work suggests that NBDA is an effective and widely applicable tool for uncovering whether social transmission underpins the spread of a novel behavior, and may still provide accurate results even when key model assumptions are relaxed. PMID:27092089
Identifying node role in social network based on multiple indicators.
Huang, Shaobin; Lv, Tianyang; Zhang, Xizhe; Yang, Yange; Zheng, Weimin; Wen, Chao
2014-01-01
It is a classic topic of social network analysis to evaluate the importance of nodes and identify the node that takes on the role of core or bridge in a network. Because a single indicator is not sufficient to analyze multiple characteristics of a node, it is a natural solution to apply multiple indicators that should be selected carefully. An intuitive idea is to select some indicators with weak correlations to efficiently assess different characteristics of a node. However, this paper shows that it is much better to select the indicators with strong correlations. Because indicator correlation is based on the statistical analysis of a large number of nodes, the particularity of an important node will be outlined if its indicator relationship doesn't comply with the statistical correlation. Therefore, the paper selects the multiple indicators including degree, ego-betweenness centrality and eigenvector centrality to evaluate the importance and the role of a node. The importance of a node is equal to the normalized sum of its three indicators. A candidate for core or bridge is selected from the great degree nodes or the nodes with great ego-betweenness centrality respectively. Then, the role of a candidate is determined according to the difference between its indicators' relationship with the statistical correlation of the overall network. Based on 18 real networks and 3 kinds of model networks, the experimental results show that the proposed methods perform quite well in evaluating the importance of nodes and in identifying the node role.
Network-based analysis of software change propagation.
Wang, Rongcun; Huang, Rubing; Qu, Binbin
2014-01-01
The object-oriented software systems frequently evolve to meet new change requirements. Understanding the characteristics of changes aids testers and system designers to improve the quality of softwares. Identifying important modules becomes a key issue in the process of evolution. In this context, a novel network-based approach is proposed to comprehensively investigate change distributions and the correlation between centrality measures and the scope of change propagation. First, software dependency networks are constructed at class level. And then, the number of times of cochanges among classes is minded from software repositories. According to the dependency relationships and the number of times of cochanges among classes, the scope of change propagation is calculated. Using Spearman rank correlation analyzes the correlation between centrality measures and the scope of change propagation. Three case studies on java open source software projects Findbugs, Hibernate, and Spring are conducted to research the characteristics of change propagation. Experimental results show that (i) change distribution is very uneven; (ii) PageRank, Degree, and CIRank are significantly correlated to the scope of change propagation. Particularly, CIRank shows higher correlation coefficient, which suggests it can be a more useful indicator for measuring the scope of change propagation of classes in object-oriented software system.
An efficient neural network based method for medical image segmentation.
Torbati, Nima; Ayatollahi, Ahmad; Kermani, Ali
2014-01-01
The aim of this research is to propose a new neural network based method for medical image segmentation. Firstly, a modified self-organizing map (SOM) network, named moving average SOM (MA-SOM), is utilized to segment medical images. After the initial segmentation stage, a merging process is designed to connect the objects of a joint cluster together. A two-dimensional (2D) discrete wavelet transform (DWT) is used to build the input feature space of the network. The experimental results show that MA-SOM is robust to noise and it determines the input image pattern properly. The segmentation results of breast ultrasound images (BUS) demonstrate that there is a significant correlation between the tumor region selected by a physician and the tumor region segmented by our proposed method. In addition, the proposed method segments X-ray computerized tomography (CT) and magnetic resonance (MR) head images much better than the incremental supervised neural network (ISNN) and SOM-based methods.
Neural Network Based Intrusion Detection System for Critical Infrastructures
Todd Vollmer; Ondrej Linda; Milos Manic
2009-07-01
Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.
Pattern recognition tool based on complex network-based approach
NASA Astrophysics Data System (ADS)
Casanova, Dalcimar; Backes, André Ricardo; Martinez Bruno, Odemir
2013-02-01
This work proposed a generalization of the method proposed by the authors: 'A complex network-based approach for boundary shape analysis'. Instead of modelling a contour into a graph and use complex networks rules to characterize it, here, we generalize the technique. This way, the work proposes a mathematical tool for characterization signals, curves and set of points. To evaluate the pattern description power of the proposal, an experiment of plat identification based on leaf veins image are conducted. Leaf vein is a taxon characteristic used to plant identification proposes, and one of its characteristics is that these structures are complex, and difficult to be represented as a signal or curves and this way to be analyzed in a classical pattern recognition approach. Here, we model the veins as a set of points and model as graphs. As features, we use the degree and joint degree measurements in a dynamic evolution. The results demonstrates that the technique has a good power of discrimination and can be used for plant identification, as well as other complex pattern recognition tasks.
Network-based reading system for lung cancer screening CT
NASA Astrophysics Data System (ADS)
Fujino, Yuichi; Fujimura, Kaori; Nomura, Shin-ichiro; Kawashima, Harumi; Tsuchikawa, Megumu; Matsumoto, Toru; Nagao, Kei-ichi; Uruma, Takahiro; Yamamoto, Shinji; Takizawa, Hotaka; Kuroda, Chikazumi; Nakayama, Tomio
2006-03-01
This research aims to support chest computed tomography (CT) medical checkups to decrease the death rate by lung cancer. We have developed a remote cooperative reading system for lung cancer screening over the Internet, a secure transmission function, and a cooperative reading environment. It is called the Network-based Reading System. A telemedicine system involves many issues, such as network costs and data security if we use it over the Internet, which is an open network. In Japan, broadband access is widespread and its cost is the lowest in the world. We developed our system considering human machine interface and security. It consists of data entry terminals, a database server, a computer aided diagnosis (CAD) system, and some reading terminals. It uses a secure Digital Imaging and Communication in Medicine (DICOM) encrypting method and Public Key Infrastructure (PKI) based secure DICOM image data distribution. We carried out an experimental trial over the Japan Gigabit Network (JGN), which is the testbed for the Japanese next-generation network, and conducted verification experiments of secure screening image distribution, some kinds of data addition, and remote cooperative reading. We found that network bandwidth of about 1.5 Mbps enabled distribution of screening images and cooperative reading and that the encryption and image distribution methods we proposed were applicable to the encryption and distribution of general DICOM images via the Internet.
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Refining fuzzy logic controllers with machine learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1994-01-01
In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.
Equipment Selection by using Fuzzy TOPSIS Method
NASA Astrophysics Data System (ADS)
Yavuz, Mahmut
2016-10-01
In this study, Fuzzy TOPSIS method was performed for the selection of open pit truck and the optimal solution of the problem was investigated. Data from Turkish Coal Enterprises was used in the application of the method. This paper explains the Fuzzy TOPSIS approaches with group decision-making application in an open pit coal mine in Turkey. An algorithm of the multi-person multi-criteria decision making with fuzzy set approach was applied an equipment selection problem. It was found that Fuzzy TOPSIS with a group decision making is a method that may help decision-makers in solving different decision-making problems in mining.
A fuzzy classifier system for process control
NASA Technical Reports Server (NTRS)
Karr, C. L.; Phillips, J. C.
1994-01-01
A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.
Fuzzy logic control for camera tracking system
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant
1992-01-01
A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.
BIE: Bayesian Inference Engine
NASA Astrophysics Data System (ADS)
Weinberg, Martin D.
2013-12-01
The Bayesian Inference Engine (BIE) is an object-oriented library of tools written in C++ designed explicitly to enable Bayesian update and model comparison for astronomical problems. To facilitate "what if" exploration, BIE provides a command line interface (written with Bison and Flex) to run input scripts. The output of the code is a simulation of the Bayesian posterior distribution from which summary statistics e.g. by taking moments, or determine confidence intervals and so forth, can be determined. All of these quantities are fundamentally integrals and the Markov Chain approach produces variates heta distributed according to P( heta|D) so moments are trivially obtained by summing of the ensemble of variates.
Bayesian inference in geomagnetism
NASA Technical Reports Server (NTRS)
Backus, George E.
1988-01-01
The inverse problem in empirical geomagnetic modeling is investigated, with critical examination of recently published studies. Particular attention is given to the use of Bayesian inference (BI) to select the damping parameter lambda in the uniqueness portion of the inverse problem. The mathematical bases of BI and stochastic inversion are explored, with consideration of bound-softening problems and resolution in linear Gaussian BI. The problem of estimating the radial magnetic field B(r) at the earth core-mantle boundary from surface and satellite measurements is then analyzed in detail, with specific attention to the selection of lambda in the studies of Gubbins (1983) and Gubbins and Bloxham (1985). It is argued that the selection method is inappropriate and leads to lambda values much larger than those that would result if a reasonable bound on the heat flow at the CMB were assumed.
Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach
NASA Astrophysics Data System (ADS)
Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata
2014-12-01
In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root
A proposal of fuzzy connective with learning function and its application to fuzzy retrieval system
NASA Technical Reports Server (NTRS)
Hayashi, Isao; Naito, Eiichi; Ozawa, Jun; Wakami, Noboru
1993-01-01
A new fuzzy connective and a structure of network constructed by fuzzy connectives are proposed to overcome a drawback of conventional fuzzy retrieval systems. This network represents a retrieval query and the fuzzy connectives in networks have a learning function to adjust its parameters by data from a database and outputs of a user. The fuzzy retrieval systems employing this network are also constructed. Users can retrieve results even with a query whose attributes do not exist in a database schema and can get satisfactory results for variety of thinkings by learning function.
Consistency of crisp and fuzzy pairwise comparison matrix using fuzzy preference programming
NASA Astrophysics Data System (ADS)
Aminuddin, Adam Shariff Adli; Nawawi, Mohd Kamal Mohd
2014-12-01
In this paper, the consistency of crisp pairwise comparison matrix is compared with the fuzzy pairwise comparison matrix of Analytic Network Process (ANP). The fuzzy input in the form of triangular membership function is converted into crisp value using Fuzzy Preference Programming (FPP) method which is implemented using MATLAB. The consistency ratio (CR) for both of the crisp and fuzzy pairwise comparison matrix is calculated using SuperDecisions. Main finding shows that the involvement of fuzzy elements into the decision maker's judgment can reduce the inconsistency of the pairwise comparison matrix compared with the crisp judgment.
Bayes factors and multimodel inference
Link, W.A.; Barker, R.J.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.
2009-01-01
Multimodel inference has two main themes: model selection, and model averaging. Model averaging is a means of making inference conditional on a model set, rather than on a selected model, allowing formal recognition of the uncertainty associated with model choice. The Bayesian paradigm provides a natural framework for model averaging, and provides a context for evaluation of the commonly used AIC weights. We review Bayesian multimodel inference, noting the importance of Bayes factors. Noting the sensitivity of Bayes factors to the choice of priors on parameters, we define and propose nonpreferential priors as offering a reasonable standard for objective multimodel inference.
Collaborating Fuzzy Reinforcement Learning Agents
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1997-01-01
Earlier, we introduced GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Relearning and at the local level, each agent learns and operates based on ANTARCTIC, a technique for fuzzy reinforcement learning. In this paper, we show that it is possible for these agents to compete in order to affect the selected control policy but at the same time, they can collaborate while investigating the state space. In this model, the evaluator or the critic learns by observing all the agents behaviors but the control policy changes only based on the behavior of the winning agent also known as the super agent.
Fuzzy polynucleotide spaces and metrics.
Nieto, Juan J; Torres, A; Georgiou, D N; Karakasidis, T E
2006-04-01
The study of genetic sequences is of great importance in biology and medicine. Mathematics is playing an important role in the study of genetic sequences and, generally, in bioinformatics. In this paper, we extend the work concerning the Fuzzy Polynucleotide Space (FPS) introduced in Torres, A., Nieto, J.J., 2003. The fuzzy polynucleotide Space: Basic properties. Bioinformatics 19(5); 587-592 and Nieto, J.J., Torres, A., Vazquez-Trasande, M.M. 2003. A metric space to study differences between polynucleotides. Appl. Math. Lett. 27:1289-1294: by studying distances between nucleotides and some complete genomes using several metrics. We also present new results concerning the notions of similarity, difference and equality between polynucleotides. The results are encouraging since they demonstrate how the notions of distance and similarity between polynucleotides in the FPS can be employed in the analysis of genetic material.
Tsipouras, Markos G; Exarchos, Themis P; Fotiadis, Dimitrios I
2007-01-01
In this work, we propose a method for the automated expert system creation. The method is based on the integration of global knowledge (i.e. knowledge from the field experts) and local knowledge (i.e. knowledge derived from the available data) in a single inference engine. Starting from an initial set of rules (expert's knowledge) and an annotated dataset, data mining is performed to the dataset and a second set of rules is acquired. Both of them are integrated into a single set of rules. Fuzzy modeling is then applied to the rules, transforming them into a fuzzy model, and finally, an optimization technique is used to tune the fuzzy model's parameters. The method is applied to a medical domain problem, the cardiac arrhythmic beat classification and satisfactory results have been obtained. The method experiences several advantages compared to approaches based solely on expert's knowledge or mined knowledge while the ability to interpret the decisions made from the created fuzzy expert system is a major advantage compared to "black box" approaches.
The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic
Li, Ning; Martínez, José-Fernán; Díaz, Vicente Hernández
2015-01-01
Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters’ dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively. PMID:26266412
The Balanced Cross-Layer Design Routing Algorithm in Wireless Sensor Networks Using Fuzzy Logic.
Li, Ning; Martínez, José-Fernán; Hernández Díaz, Vicente
2015-08-10
Recently, the cross-layer design for the wireless sensor network communication protocol has become more and more important and popular. Considering the disadvantages of the traditional cross-layer routing algorithms, in this paper we propose a new fuzzy logic-based routing algorithm, named the Balanced Cross-layer Fuzzy Logic (BCFL) routing algorithm. In BCFL, we use the cross-layer parameters' dispersion as the fuzzy logic inference system inputs. Moreover, we give each cross-layer parameter a dynamic weight according the value of the dispersion. For getting a balanced solution, the parameter whose dispersion is large will have small weight, and vice versa. In order to compare it with the traditional cross-layer routing algorithms, BCFL is evaluated through extensive simulations. The simulation results show that the new routing algorithm can handle the multiple constraints without increasing the complexity of the algorithm and can achieve the most balanced performance on selecting the next hop relay node. Moreover, the Balanced Cross-layer Fuzzy Logic routing algorithm can adapt to the dynamic changing of the network conditions and topology effectively.
Multi-layered reasoning by means of conceptual fuzzy sets
NASA Technical Reports Server (NTRS)
Takagi, Tomohiro; Imura, Atsushi; Ushida, Hirohide; Yamaguchi, Toru
1993-01-01
The real world consists of a very large number of instances of events and continuous numeric values. On the other hand, people represent and process their knowledge in terms of abstracted concepts derived from generalization of these instances and numeric values. Logic based paradigms for knowledge representation use symbolic processing both for concept representation and inference. Their underlying assumption is that a concept can be defined precisely. However, as this assumption hardly holds for natural concepts, it follows that symbolic processing cannot deal with such concepts. Thus symbolic processing has essential problems from a practical point of view of applications in the real world. In contrast, fuzzy set theory can be viewed as a stronger and more practical notation than formal, logic based theories because it supports both symbolic processing and numeric processing, connecting the logic based world and the real world. In this paper, we propose multi-layered reasoning by using conceptual fuzzy sets (CFS). The general characteristics of CFS are discussed along with upper layer supervision and context dependent processing.
Estimating outcomes in newborn infants using fuzzy logic
Chaves, Luciano Eustáquio; Nascimento, Luiz Fernando C.
2014-01-01
OBJECTIVE: To build a linguistic model using the properties of fuzzy logic to estimate the risk of death of neonates admitted to a Neonatal Intensive Care Unit. METHODS: Computational model using fuzzy logic. The input variables of the model were birth weight, gestational age, 5th-minute Apgar score and inspired fraction of oxygen in newborn infants admitted to a Neonatal Intensive Care Unit of Taubaté, Southeast Brazil. The output variable was the risk of death, estimated as a percentage. Three membership functions related to birth weight, gestational age and 5th-minute Apgar score were built, as well as two functions related to the inspired fraction of oxygen; the risk presented five membership functions. The model was developed using the Mandani inference by means of Matlab(r) software. The model values were compared with those provided by experts and their performance was estimated by ROC curve. RESULTS: 100 newborns were included, and eight of them died. The model estimated an average possibility of death of 49.7±29.3%, and the possibility of hospital discharge was 24±17.5%. These values are different when compared by Student's t-test (p<0.001). The correlation test revealed r=0.80 and the performance of the model was 81.9%. CONCLUSIONS: This predictive, non-invasive and low cost model showed a good accuracy and can be applied in neonatal care, given the easiness of its use. PMID:25119746
A fuzzy-autoregressive model of daily river flows
NASA Astrophysics Data System (ADS)
Greco, Roberto
2012-06-01
A model for the identification of daily river flows has been developed, consisting of the combination of an autoregressive model with a fuzzy inference system. The AR model is devoted to the identification of base flow, supposed to be described by linear laws. The fuzzy model identifies the surface runoff, by applying a small set of linguistic statements, deriving from the knowledge of the physical features of the nonlinear rainfall-runoff transformation, to the inflow entering the river basin. The model has been applied to the identification of the daily flow series of river Volturno at Cancello-Arnone (Southern Italy), with a drainage basin of around 5560 km2, observed between 1970 and 1974. The inflow was estimated on the basis of daily precipitations registered during the same years at six rain gauges located throughout the basin. The first two years were used for model training, the remaining three for the validation. The obtained results show that the proposed model provides good predictions of either low river flows or high floods, although the analysis of residuals, which do not turn out to be a white noise, indicates that the cause and effect relationship between rainfall and runoff is not completely identified by the model.
A fuzzy-autoregressive model of daily river flows
NASA Astrophysics Data System (ADS)
Greco, R.
2012-04-01
A model for the identification of daily river flows has been developed, consisting of the combination of an autoregressive model with a fuzzy inference system. The AR model is devoted to the identification of base flow, supposed to be described by linear laws. The fuzzy model identifies the surface runoff, by applying a small set of linguistic statements, deriving from the knowledge of the physical features of the non linear rainfall-runoff transformation, to the inflow entering the river basin. The model has been applied to the identification of the daily flow series of river Volturno at Cancello-Arnone (Southern Italy), with a drainage basin of around 5560 km2, observed between 1970 and 1974. The inflow was estimated on the basis of daily precipitations registered during the same years at six rain gauges located throughout the basin. The first two years were used for model training, the remaining three for the validation. The obtained results show that the proposed model provides good predictions of either low river flows or high floods, although the analysis of residuals, which do not turn out to be a white noise, indicates that the cause and effect relationship between rainfall and runoff is not completely identified by the model.
An accurate fuzzy edge detection method using wavelet details subimages
NASA Astrophysics Data System (ADS)
Sedaghat, Nafiseh; Pourreza, Hamidreza
2010-02-01
Edge detection is a basic and important subject in computer vision and image processing. An edge detector is defined as a mathematical operator of small spatial extent that responds in some way to these discontinuities, usually classifying every image pixel as either belonging to an edge or not. Many researchers have been spent attempting to develop effective edge detection algorithms. Despite this extensive research, the task of finding the edges that correspond to true physical boundaries remains a difficult problem.Edge detection algorithms based on the application of human knowledge show their flexibility and suggest that the use of human knowledge is a reasonable alternative. In this paper we propose a fuzzy inference system with two inputs: gradient and wavelet details. First input is calculated by Sobel operator and the second is calculated by wavelet transform of input image and then reconstruction of image only with details subimages by inverse wavelet transform. There are many fuzzy edge detection methods, but none of them utilize wavelet transform as it is used in this paper. For evaluating our method, we detect edges of images with different brightness characteristics and compare results with canny edge detector. The results show the high performance of our method in finding true edges.
Diagnosis of the industrial systems by fuzzy classification.
Toscano, R; Lyonnet, P
2003-04-01
The aim of this paper is to present a classifier based on a fuzzy inference system. For this classifier, we propose a parametrization method which is not necessarily based on an iterative training. This approach can be seen as a pre-parametrization which allows the determination of the rules base and the parameters of the membership functions. We also present a continuous and derivable version of the previous classifier and suggest an iterative learning algorithm based on a gradient method. An example using the learning basis IRIS, which is a benchmark for classification problems, is presented showing the performances of this classifier. Finally this classifier is applied to the diagnosis of a dc motor showing the effectiveness of this method.
NASA Astrophysics Data System (ADS)
Pisarski, R. D.
I start with an elementary observation about the pressurein the deconfined phase of a SU(3) gauge theory without quarks. This suggests a ``fuzzy'' bag model for the analogous pressure in QCD, with dynamical quarks. I then sketch how the deconfined phase might be described using an effective theory of Wilson lines. To leading order in weak coupling, the effective electric field appears in a form familiar from the lattice theory of Banks and Ukawa.
A recurrent fuzzy network for fuzzy temporal sequence processing and gesture recognition.
Juang, Chia-Feng; Ku, Ksuan-Chun
2005-08-01
A fuzzified Takagi-Sugeno-Kang (TSK)-type recurrent fuzzy network (FTRFN) for handling fuzzy temporal information is proposed in this paper. The FTRFN extends our previously proposed network, TRFN, to deal with fuzzy temporal signals represented by Gaussian or triangular fuzzy numbers. In the precondition part of FTRFN, matching degrees between input fuzzy variables and fuzzy antecedent sets is performed by similarity measure. In the TSK-type consequence, a linear combination of fuzzy variables is computed, where two sets of combination coefficients, one for the center and the other for the width of each fuzzy number, are used. Derivation of the linear combination results and final network output is based on left-right fuzzy number operation. There are no rules in FTRFN initially; they are constructed online by concurrent structure and parameter learning, where all free parameters in the precondition/consequence of FTRFN are all tunable. FTRFN can be applied on a variety of domains related to fuzzy temporal information processing. In this paper, it has been applied on one-dimensional and two-dimensional fuzzy temporal sequence prediction and CCD-based temporal gesture recognition. The performance of FTRFN is verified from these examples.
Order of Search in Fuzzy ART and Fuzzy ARTMAP: Effect of the Choice Parameter.
Heileman, Gregory L.; Bebis, George; Fernlund, Hans; Georgiopoulos, Michael
1996-12-01
This paper focuses on two ART architectures, the Fuzzy ART and the Fuzzy ARTMAP. Fuzzy ART is a pattern clustering machine, while Fuzzy ARTMAP is a pattern classification machine. Our study concentrates on the order according to which categories in Fuzzy ART, or the ART(a) model of Fuzzy ARTMAP are chosen. Our work provides a geometrical, and clearer understanding of why, and in what order, these categories are chosen for various ranges of the choice parameter of the Fuzzy ART module. This understanding serves as a powerful tool in developing properties of learning pertaining to these neural network architectures; to strengthen this argument, it is worth mentioning that the order according to which categories are chosen in ART 1 and ARTMAP provided a valuable tool in proving important properties about these architectures. Copyright 1996 Elsevier Science Ltd.
Intuitionistic Fuzzy Weighted Linear Regression Model with Fuzzy Entropy under Linear Restrictions.
Kumar, Gaurav; Bajaj, Rakesh Kumar
2014-01-01
In fuzzy set theory, it is well known that a triangular fuzzy number can be uniquely determined through its position and entropies. In the present communication, we extend this concept on triangular intuitionistic fuzzy number for its one-to-one correspondence with its position and entropies. Using the concept of fuzzy entropy the estimators of the intuitionistic fuzzy regression coefficients have been estimated in the unrestricted regression model. An intuitionistic fuzzy weighted linear regression (IFWLR) model with some restrictions in the form of prior information has been considered. Further, the estimators of regression coefficients have been obtained with the help of fuzzy entropy for the restricted/unrestricted IFWLR model by assigning some weights in the distance function.
Chen, Shyi-Ming; Hsin, Wen-Chyuan
2015-07-01
In this paper, we propose a new weighted fuzzy interpolative reasoning method for sparse fuzzy rule-based systems based on the slopes of fuzzy sets. We also propose a particle swarm optimization (PSO)-based weights-learning algorithm to automatically learn the optimal weights of the antecedent variables of fuzzy rules for weighted fuzzy interpolative reasoning. We apply the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm to deal with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. The experimental results show that the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm outperforms the existing methods for dealing with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems.
Probabilistic and fuzzy logic in clinical diagnosis.
Licata, G
2007-06-01
In this study I have compared classic and fuzzy logic and their usefulness in clinical diagnosis. The theory of probability is often considered a device to protect the classical two-valued logic from the evidence of its inadequacy to understand and show the complexity of world [1]. This can be true, but it is not possible to discard the theory of probability. I will argue that the problems and the application fields of the theory of probability are very different from those of fuzzy logic. After the introduction on the theoretical bases of fuzzy approach to logic, I have reported some diagnostic argumentations employing fuzzy logic. The state of normality and the state of disease often fight their battle on scalar quantities of biological values and it is not hard to establish a correspondence between the biological values and the percent values of fuzzy logic. Accordingly, I have suggested some applications of fuzzy logic in clinical diagnosis and in particular I have utilised a fuzzy curve to recognise subjects with diabetes mellitus, renal failure and liver disease. The comparison between classic and fuzzy logic findings seems to indicate that fuzzy logic is more adequate to study the development of biological events. In fact, fuzzy logic is useful when we have a lot of pieces of information and when we dispose to scalar quantities. In conclusion, increasingly the development of technology offers new instruments to measure pathological parameters through scalar quantities, thus it is reasonable to think that in the future fuzzy logic will be employed more in clinical diagnosis.
Fuzzy logic based robotic controller
NASA Technical Reports Server (NTRS)
Attia, F.; Upadhyaya, M.
1994-01-01
Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.
Wang, Yan; Xi, Chengyu; Zhang, Shuai; Yu, Dejian; Zhang, Wenyu; Li, Yong
2014-01-01
The recent government tendering process being conducted in an electronic way is becoming an inevitable affair for numerous governmental agencies to further exploit the superiorities of conventional tendering. Thus, developing an effective web-based bid evaluation methodology so as to realize an efficient and effective government E-tendering (GeT) system is imperative. This paper firstly investigates the potentiality of employing fuzzy analytic hierarchy process (AHP) along with fuzzy gray relational analysis (GRA) for optimal selection of candidate tenderers in GeT process with consideration of a hybrid fuzzy environment with incomplete weight information. We proposed a novel hybrid fuzzy AHP-GRA (HFAHP-GRA) method that combines an extended fuzzy AHP with a modified fuzzy GRA. The extended fuzzy AHP which combines typical AHP with interval AHP is proposed to obtain the exact weight information, and the modified fuzzy GRA is applied to aggregate different types of evaluation information so as to identify the optimal candidate tenderers. Finally, a prototype system is built and validated with an illustrative example for GeT to confirm the feasibility of our approach.
Wang, Yan; Xi, Chengyu; Zhang, Shuai; Yu, Dejian; Zhang, Wenyu; Li, Yong
2014-01-01
The recent government tendering process being conducted in an electronic way is becoming an inevitable affair for numerous governmental agencies to further exploit the superiorities of conventional tendering. Thus, developing an effective web-based bid evaluation methodology so as to realize an efficient and effective government E-tendering (GeT) system is imperative. This paper firstly investigates the potentiality of employing fuzzy analytic hierarchy process (AHP) along with fuzzy gray relational analysis (GRA) for optimal selection of candidate tenderers in GeT process with consideration of a hybrid fuzzy environment with incomplete weight information. We proposed a novel hybrid fuzzy AHP-GRA (HFAHP-GRA) method that combines an extended fuzzy AHP with a modified fuzzy GRA. The extended fuzzy AHP which combines typical AHP with interval AHP is proposed to obtain the exact weight information, and the modified fuzzy GRA is applied to aggregate different types of evaluation information so as to identify the optimal candidate tenderers. Finally, a prototype system is built and validated with an illustrative example for GeT to confirm the feasibility of our approach. PMID:25057506
NASA Astrophysics Data System (ADS)
Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-01-01
This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.
Improving Inferences from Multiple Methods.
ERIC Educational Resources Information Center
Shotland, R. Lance; Mark, Melvin M.
1987-01-01
Multiple evaluation methods (MEMs) can cause an inferential challenge, although there are strategies to strengthen inferences. Practical and theoretical issues involved in the use by social scientists of MEMs, three potential problems in drawing inferences from MEMs, and short- and long-term strategies for alleviating these problems are outlined.…
Causal Inference and Developmental Psychology
ERIC Educational Resources Information Center
Foster, E. Michael
2010-01-01
Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether…
Causal Inference in Retrospective Studies.
ERIC Educational Resources Information Center
Holland, Paul W.; Rubin, Donald B.
1988-01-01
The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…
Fuzzy Comprehensive Evaluation (FCE) in Military Decision Support Processes
2013-12-01
Fuzzy logic , Fuzzy Comprehensive Evaluation (FCE), Decision Making, simulation 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY CLASSIFICATION...COMPREHENSIVE ANALYSIS (FCE) METHOD ....................... 5 A. FUZZY LOGIC ...as well as military applications (Li, Ma, & Liu, 2004). Lotfi A. Zadeh, the creator of fuzzy logic , noted in a 1994 interview with Azerbaijan
On Topological Structures of Fuzzy Parametrized Soft Sets
Zorlutuna, İdris
2014-01-01
We introduce the topological structure of fuzzy parametrized soft sets and fuzzy parametrized soft mappings. We define the notion of quasi-coincidence for fuzzy parametrized soft sets and investigated its basic properties. We study the closure, interior, base, continuity, and compactness and properties of these concepts in fuzzy parametrized soft topological spaces. PMID:24955386
Minimal Solution of Singular LR Fuzzy Linear Systems
Nikuie, M.; Ahmad, M. Z.
2014-01-01
In this paper, the singular LR fuzzy linear system is introduced. Such systems are divided into two parts: singular consistent LR fuzzy linear systems and singular inconsistent LR fuzzy linear systems. The capability of the generalized inverses such as Drazin inverse, pseudoinverse, and {1}-inverse in finding minimal solution of singular consistent LR fuzzy linear systems is investigated. PMID:24737977
Homeopathic drug selection using Intuitionistic fuzzy sets.
Kharal, Athar
2009-01-01
Using intuitionistic fuzzy set theory, Sanchez's approach to medical diagnosis has been applied to the problem of selection of single remedy from homeopathic repertorization. Two types of Intuitionistic Fuzzy Relations (IFRs) and three types of selection indices are discussed. I also propose a new repertory exploiting the benefits of soft-intelligence.
Approximation abilities of neuro-fuzzy networks
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2010-01-01
The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.
Intuitionistic fuzzy segmentation of medical images.
Chaira, Tamalika
2010-06-01
This paper proposes a novel and probably the first method, using Attanassov intuitionistic fuzzy set theory to segment blood vessels and also the blood cells in pathological images. This type of segmentation is very important in detecting different types of human diseases, e.g., an increase in the number of vessels may lead to cancer in prostates, mammary, etc. The medical images are not properly illuminated, and segmentation in that case becomes very difficult. A novel image segmentation approach using intuitionistic fuzzy set theory and a new membership function is proposed using restricted equivalence function from automorphisms, for finding the membership values of the pixels of the image. An intuitionistic fuzzy image is constructed using Sugeno type intuitionistic fuzzy generator. Local thresholding is applied to threshold medical images. The results showed a much better performance on poor contrast medical images, where almost all the blood vessels and blood cells are visible properly. There are several fuzzy and intuitionistic fuzzy thresholding methods, but these methods are not related to the medical images. To make a comparison with the proposed method with other thresholding methods, the method is compared with six nonfuzzy, fuzzy, and intuitionistic fuzzy methods.
Inducing Fuzzy Models for Student Classification
ERIC Educational Resources Information Center
Nykanen, Ossi
2006-01-01
We report an approach for implementing predictive fuzzy systems that manage capturing both the imprecision of the empirically induced classifications and the imprecision of the intuitive linguistic expressions via the extensive use of fuzzy sets. From end-users' point of view, the approach enables encapsulating the technical details of the…
An inclusion measure between fuzzy sets
NASA Astrophysics Data System (ADS)
Wang, Jing
2017-01-01
In this paper, we propose a new inclusion measure between fuzzy sets. Firstly, we select an axiomatic definition for the inclusion measure. Then, we present a new computation formula based on the selected axiomatic definition, and demonstrate its two properties. Finally, we give examples to validate its performance. The results show that the new inclusion measure is rational for fuzzy sets.
Social Inference Through Technology
NASA Astrophysics Data System (ADS)
Oulasvirta, Antti
Awareness cues are computer-mediated, real-time indicators of people’s undertakings, whereabouts, and intentions. Already in the mid-1970 s, UNIX users could use commands such as “finger” and “talk” to find out who was online and to chat. The small icons in instant messaging (IM) applications that indicate coconversants’ presence in the discussion space are the successors of “finger” output. Similar indicators can be found in online communities, media-sharing services, Internet relay chat (IRC), and location-based messaging applications. But presence and availability indicators are only the tip of the iceberg. Technological progress has enabled richer, more accurate, and more intimate indicators. For example, there are mobile services that allow friends to query and follow each other’s locations. Remote monitoring systems developed for health care allow relatives and doctors to assess the wellbeing of homebound patients (see, e.g., Tang and Venables 2000). But users also utilize cues that have not been deliberately designed for this purpose. For example, online gamers pay attention to other characters’ behavior to infer what the other players are like “in real life.” There is a common denominator underlying these examples: shared activities rely on the technology’s representation of the remote person. The other human being is not physically present but present only through a narrow technological channel.
NASA Astrophysics Data System (ADS)
Lin, J.; Zheng, Y. B.
2012-07-01
The main goal of this paper is to develop a novel approach for vibration control on a piezoelectric rotating truss structure. This study will analyze the dynamics and control of a flexible structure system with multiple degrees of freedom, represented in this research as a clamped-free-free-free truss type plate rotated by motors. The controller has two separate feedback loops for tracking and damping, and the vibration suppression controller is independent of position tracking control. In addition to stabilizing the actual system, the proposed proportional-derivative (PD) control, based on genetic algorithm (GA) to seek the primary optimal control gain, must supplement a fuzzy control law to ensure a stable nonlinear system. This is done by using an intelligent fuzzy controller based on adaptive neuro-fuzzy inference system (ANFIS) with GA tuning to increase the efficiency of fuzzy control. The PD controller, in its assisting role, easily stabilized the linear system. The fuzzy controller rule base was then constructed based on PD performance-related knowledge. Experimental validation for such a structure demonstrates the effectiveness of the proposed controller. The broad range of problems discussed in this research will be found useful in civil, mechanical, and aerospace engineering, for flexible structures with multiple degree-of-freedom motion.
Neural network based optimal control of HVAC&R systems
NASA Astrophysics Data System (ADS)
Ning, Min
Heating, Ventilation, Air-Conditioning and Refrigeration (HVAC&R) systems have wide applications in providing a desired indoor environment for different types of buildings. It is well acknowledged that 30%-40% of the total energy generated is consumed by buildings and HVAC&R systems alone account for more than 50% of the building energy consumption. Low operational efficiency especially under partial load conditions and poor control are part of reasons for such high energy consumption. To improve energy efficiency, HVAC&R systems should be properly operated to maintain a comfortable and healthy indoor environment under dynamic ambient and indoor conditions with the least energy consumption. This research focuses on the optimal operation of HVAC&R systems. The optimization problem is formulated and solved to find the optimal set points for the chilled water supply temperature, discharge air temperature and AHU (air handling unit) fan static pressure such that the indoor environment is maintained with the least chiller and fan energy consumption. To achieve this objective, a dynamic system model is developed first to simulate the system behavior under different control schemes and operating conditions. The system model is modular in structure, which includes a water-cooled vapor compression chiller model and a two-zone VAV system model. A fuzzy-set based extended transformation approach is then applied to investigate the uncertainties of this model caused by uncertain parameters and the sensitivities of the control inputs with respect to the interested model outputs. A multi-layer feed forward neural network is constructed and trained in unsupervised mode to minimize the cost function which is comprised of overall energy cost and penalty cost when one or more constraints are violated. After training, the network is implemented as a supervisory controller to compute the optimal settings for the system. In order to implement the optimal set points predicted by the
Transportation optimization with fuzzy trapezoidal numbers based on possibility theory.
He, Dayi; Li, Ran; Huang, Qi; Lei, Ping
2014-01-01
In this paper, a parametric method is introduced to solve fuzzy transportation problem. Considering that parameters of transportation problem have uncertainties, this paper develops a generalized fuzzy transportation problem with fuzzy supply, demand and cost. For simplicity, these parameters are assumed to be fuzzy trapezoidal numbers. Based on possibility theory and consistent with decision-makers' subjectiveness and practical requirements, the fuzzy transportation problem is transformed to a crisp linear transportation problem by defuzzifying fuzzy constraints and objectives with application of fractile and modality approach. Finally, a numerical example is provided to exemplify the application of fuzzy transportation programming and to verify the validity of the proposed methods.
On m-polar fuzzy graph structures.
Akram, Muhammad; Akmal, Rabia; Alshehri, Noura
2016-01-01
Sometimes information in a network model is based on multi-agent, multi-attribute, multi-object, multi-polar information or uncertainty rather than a single bit. An m-polar fuzzy model is useful for such network models which gives more and more precision, flexibility, and comparability to the system as compared to the classical, fuzzy and bipolar fuzzy models. In this research article, we introduce the notion of m-polar fuzzy graph structure and present various operations, including Cartesian product, strong product, cross product, lexicographic product, composition, union and join of m-polar fuzzy graph structures. We illustrate these operations by several examples. We also investigate some of their related properties.
Teaching-Learning by Means of a Fuzzy-Causal User Model
NASA Astrophysics Data System (ADS)
Peña Ayala, Alejandro
In this research the teaching-learning phenomenon that occurs during an E-learning experience is tackled from a fuzzy-causal perspective. The approach is suitable for dealing with intangible objects of a domain, such as personality, that are stated as linguistic variables. In addition, the bias that teaching content exerts on the user’s mind is sketched through causal relationships. Moreover, by means of fuzzy-causal inference, the user’s apprenticeship is estimated prior to delivering a lecture. This supposition is taken into account to adapt the behavior of a Web-based education system (WBES). As a result of an experimental trial, volunteers that took options of lectures chosen by this user model (UM) achieved higher learning than participants who received lectures’ options that were randomly selected. Such empirical evidence contributes to encourage researchers of the added value that a UM offers to adapt a WBES.
Applying fuzzy logic to estimate the parameters of the length-weight relationship.
Bitar, S D; Campos, C P; Freitas, C E C
2016-05-03
We evaluated three mathematical procedures to estimate the parameters of the relationship between weight and length for Cichla monoculus: least squares ordinary regression on log-transformed data, non-linear estimation using raw data and a mix of multivariate analysis and fuzzy logic. Our goal was to find an alternative approach that considers the uncertainties inherent to this biological model. We found that non-linear estimation generated more consistent estimates than least squares regression. Our results also indicate that it is possible to find consistent estimates of the parameters directly from the centers of mass of each cluster. However, the most important result is the intervals obtained with the fuzzy inference system.
Landslide susceptibility mapping using a neuro-fuzzy
NASA Astrophysics Data System (ADS)
Lee, S.; Choi, J.; Oh, H.
2009-12-01
This paper develops and applied an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment using landslide-related factors and location for landslide susceptibility mapping. A neuro-fuzzy system is based on a fuzzy system that is trained by a learning algorithm derived from the neural network theory. The learning procedure operates on local information, and causes only local modifications in the underlying fuzzy system. The study area, Boun, suffered much damage following heavy rain in 1998 and was selected as a suitable site for the evaluation of the frequency and distribution of landslides. Boun is located in the central part of Korea. Landslide-related factors such as slope, soil texture, wood type, lithology, and density of lineament were extracted from topographic, soil, forest, and lineament maps. Landslide locations were identified from interpretation of aerial photographs and field surveys. Landslide-susceptible areas were analyzed by the ANFIS method and mapped using occurrence factors. In particular, we applied various membership functions (MFs) and analysis results were verified using the landslide location data. The predictive maps using triangular, trapezoidal, and polynomial MFs were the best individual MFs for modeling landslide susceptibility maps (84.96% accuracy), proving that ANFIS could be very effective in modeling landslide susceptibility mapping. Various MFs were used in this study, and after verification, the difference in accuracy according to the MFs was small, between 84.81% and 84.96%. The difference was just 0.15% and therefore the choice of MFs was not important in the study. Also, compared with the likelihood ratio model, which showed 84.94%, the accuracy was similar. Thus, the ANFIS could be applied to other study areas with different data and other study methods such as cross-validation. The developed ANFIS learns the if-then rules between landslide-related factors and landslide
Non-stationary stochastic vibration analysis of fuzzy truss system
NASA Astrophysics Data System (ADS)
Ma, Juan; Chen, Jian-jun; Gao, Wei; Zhai, Tian-song
2006-11-01
A new method (fuzzy factor method based on the fuzzy sets theory) for the dynamic response analysis of fuzzy truss system under non-stationary stochastic excitation is presented. Considering the fuzziness of the structural physical parameters and geometric dimensions simultaneously, the fuzzy correlation function matrix of the structural displacement response in time domain is derived using the fuzzy factor method and the optimisation method; then from the structural non-stationary stochastic response in the frequency domain, the fuzzy mean square values of the displacement and stress response are developed by the fuzzy factor method. The influences of the fuzziness of the physical parameters and geometric dimensions on the fuzziness of the mean square values of the structural displacement and stress response are illustrated via two engineering examples and some important conclusions are obtained.
Turkdogan-Aydinol, F Ilter; Yetilmezsoy, Kaan
2010-10-15
A MIMO (multiple inputs and multiple outputs) fuzzy-logic-based model was developed to predict biogas and methane production rates in a pilot-scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating molasses wastewater. Five input variables such as volumetric organic loading rate (OLR), volumetric total chemical oxygen demand (TCOD) removal rate (R(V)), influent alkalinity, influent pH and effluent pH were fuzzified by the use of an artificial intelligence-based approach. Trapezoidal membership functions with eight levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference system was used to implement a total of 134 rules in the IF-THEN format. The product (prod) and the centre of gravity (COG, centroid) methods were employed as the inference operator and defuzzification methods, respectively. Fuzzy-logic predicted results were compared with the outputs of two exponential non-linear regression models derived in this study. The UASB reactor showed a remarkable performance on the treatment of molasses wastewater, with an average TCOD removal efficiency of 93 (+/-3)% and an average volumetric TCOD removal rate of 6.87 (+/-3.93) kg TCOD(removed)/m(3)-day, respectively. Findings of this study clearly indicated that, compared to non-linear regression models, the proposed MIMO fuzzy-logic-based model produced smaller deviations and exhibited a superior predictive performance on forecasting of both biogas and methane production rates with satisfactory determination coefficients over 0.98.
Sari, Hanife; Yetilmezsoy, Kaan; Ilhan, Fatih; Yazici, Senem; Kurt, Ugur; Apaydin, Omer
2013-06-01
Three multiple input and multiple output-type fuzzy-logic-based models were developed as an artificial intelligence-based approach to model a novel integrated process (UF-IER-EDBM-FO) consisted of ultrafiltration (UF), ion exchange resins (IER), electrodialysis with bipolar membrane (EDBM), and Fenton's oxidation (FO) units treating young, middle-aged, and stabilized landfill leachates. The FO unit was considered as the key process for implementation of the proposed modeling scheme. Four input components such as H(2)O(2)/chemical oxygen demand ratio, H(2)O(2)/Fe(2+) ratio, reaction pH, and reaction time were fuzzified in a Mamdani-type fuzzy inference system to predict the removal efficiencies of chemical oxygen demand, total organic carbon, color, and ammonia nitrogen. A total of 200 rules in the IF-THEN format were established within the framework of a graphical user interface for each fuzzy-logic model. The product (prod) and the center of gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the proposed prognostic models. Fuzzy-logic predicted results were compared to the outputs of multiple regression models by means of various descriptive statistical indicators, and the proposed methodology was tested against the experimental data. The testing results clearly revealed that the proposed prognostic models showed a superior predictive performance with very high determination coefficients (R (2)) between 0.930 and 0.991. This study indicated a simple means of modeling and potential of a knowledge-based approach for capturing complicated inter-relationships in a highly non-linear problem. Clearly, it was shown that the proposed prognostic models provided a well-suited and cost-effective method to predict removal efficiencies of wastewater parameters prior to discharge to receiving streams.
The fuzzy transformation and its applications in image processing.
Nie, Yao; Barner, Kenneth E
2006-04-01
The spatial and rank (SR) orderings of samples play a critical role in most signal processing algorithms. The recently introduced fuzzy ordering theory generalizes traditional, or crisp, SR ordering concepts and defines the fuzzy (spatial) samples, fuzzy order statistics, fuzzy spatial indexes, and fuzzy ranks. Here, we introduce a more general concept, the fuzzy transformation (FZT), which refers to the mapping of the crisp samples, order statistics, and SR ordering indexes to their fuzzy counterparts. We establish the element invariant and order invariant properties of the FZT. These properties indicate that fuzzy spatial samples and fuzzy order statistics constitute the same set and, under commonly satisfied membership function conditions, the sample rank order is preserved by the FZT. The FZT also possesses clustering and symmetry properties, which are established through analysis of the distributions and expectations of fuzzy samples and fuzzy order statistics. These properties indicate that the FZT incorporates sample diversity into the ordering operation, which can be utilized in the generalization of conventional filters. Here, we establish the fuzzy weighted median (FWM), fuzzy lower-upper-middle (FLUM), and fuzzy identity filters as generalizations of their crisp counterparts. The advantage of the fuzzy generalizations is illustrated in the applications of DCT coded image deblocking, impulse removal, and noisy image sharpening.
Fuzzy Edge Connectivity of Graphical Fuzzy State Space Model in Multi-connected System
NASA Astrophysics Data System (ADS)
Harish, Noor Ainy; Ismail, Razidah; Ahmad, Tahir
2010-11-01
Structured networks of interacting components illustrate complex structure in a direct or intuitive way. Graph theory provides a mathematical modeling for studying interconnection among elements in natural and man-made systems. On the other hand, directed graph is useful to define and interpret the interconnection structure underlying the dynamics of the interacting subsystem. Fuzzy theory provides important tools in dealing various aspects of complexity, imprecision and fuzziness of the network structure of a multi-connected system. Initial development for systems of Fuzzy State Space Model (FSSM) and a fuzzy algorithm approach were introduced with the purpose of solving the inverse problems in multivariable system. In this paper, fuzzy algorithm is adapted in order to determine the fuzzy edge connectivity between subsystems, in particular interconnected system of Graphical Representation of FSSM. This new approach will simplify the schematic diagram of interconnection of subsystems in a multi-connected system.
Fuzzy Modeling and Control of HIV Infection
Zarei, Hassan; Kamyad, Ali Vahidian; Heydari, Ali Akbar
2012-01-01
The present study proposes a fuzzy mathematical model of HIV infection consisting of a linear fuzzy differential equations (FDEs) system describing the ambiguous immune cells level and the viral load which are due to the intrinsic fuzziness of the immune system's strength in HIV-infected patients. The immune cells in question are considered CD4+ T-cells and cytotoxic T-lymphocytes (CTLs). The dynamic behavior of the immune cells level and the viral load within the three groups of patients with weak, moderate, and strong immune systems are analyzed and compared. Moreover, the approximate explicit solutions of the proposed model are derived using a fitting-based method. In particular, a fuzzy control function indicating the drug dosage is incorporated into the proposed model and a fuzzy optimal control problem (FOCP) minimizing both the viral load and the drug costs is constructed. An optimality condition is achieved as a fuzzy boundary value problem (FBVP). In addition, the optimal fuzzy control function is completely characterized and a numerical solution for the optimality system is computed. PMID:22536298
Design of supply chain in fuzzy environment
NASA Astrophysics Data System (ADS)
Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap
2013-05-01
Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.
Finding the maximal membership in a fuzzy set of an element from another fuzzy set
NASA Astrophysics Data System (ADS)
Yager, Ronald R.
2010-11-01
The problem of finding the maximal membership grade in a fuzzy set of an element from another fuzzy set is an important class of optimisation problems manifested in the real world by situations in which we try to find what is the optimal financial satisfaction we can get from a socially responsible investment. Here, we provide a solution to this problem. We then look at the proposed solution for fuzzy sets with various types of membership grades, ordinal, interval value and intuitionistic.
Algebraic and Probabilistic Bases for Fuzzy Sets and the Development of Fuzzy Conditioning
1991-08-01
bij.ction’ relative to the base spaces . Section 4 develops operations isomorphic to fuzzy set membership operations, including cartesian products, sums...conditional events to fuzzy sets. 2. Fundamental Spaces and Bijective Mappings. Throughout the remaining paper denote the unit interval [0, 1] = {t: 0 < t S...constructs the isomorphic counterparts of the above over Flou(X). 4. Construction of Operations over Flou Spaces Isomnorphic to Those over Fuzzy Set
Bayesian Inference of Galaxy Morphology
NASA Astrophysics Data System (ADS)
Yoon, Ilsang; Weinberg, M.; Katz, N.
2011-01-01
Reliable inference on galaxy morphology from quantitative analysis of ensemble galaxy images is challenging but essential ingredient in studying galaxy formation and evolution, utilizing current and forthcoming large scale surveys. To put galaxy image decomposition problem in broader context of statistical inference problem and derive a rigorous statistical confidence levels of the inference, I developed a novel galaxy image decomposition tool, GALPHAT (GALaxy PHotometric ATtributes) that exploits recent developments in Bayesian computation to provide full posterior probability distributions and reliable confidence intervals for all parameters. I will highlight the significant improvements in galaxy image decomposition using GALPHAT, over the conventional model fitting algorithms and introduce the GALPHAT potential to infer the statistical distribution of galaxy morphological structures, using ensemble posteriors of galaxy morphological parameters from the entire galaxy population that one studies.
Statistical Inference in Graphical Models
2008-06-17
Probabilistic Network Library ( PNL ). While not fully mature, PNL does provide the most commonly-used algorithms for inference and learning with the efficiency...of C++, and also offers interfaces for calling the library from MATLAB and R 1361. Notably, both BNT and PNL provide learning and inference algorithms...mature and has been used for research purposes for several years, it is written in MATLAB and thus is not suitable to be used in real-time settings. PNL
Statistical Inference: The Big Picture.
Kass, Robert E
2011-02-01
Statistics has moved beyond the frequentist-Bayesian controversies of the past. Where does this leave our ability to interpret results? I suggest that a philosophy compatible with statistical practice, labelled here statistical pragmatism, serves as a foundation for inference. Statistical pragmatism is inclusive and emphasizes the assumptions that connect statistical models with observed data. I argue that introductory courses often mis-characterize the process of statistical inference and I propose an alternative "big picture" depiction.
Bayesian Inference: with ecological applications
Link, William A.; Barker, Richard J.
2010-01-01
This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.
2014-01-01
images. To our knowledge, this challenging problem has not yet been extensively explored in computer vision. We present a novel learning based...automatically infers why people are performing actions in images by learning from visual data and written language. ∗denotes equal contribution 1 Report...explored in computer vision. We present a novel learning based framework that uses high-level visual recognition to infer why people are performing
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model. PMID:24982962
Tahriri, Farzad; Dawal, Siti Zawiah Md; Taha, Zahari
2014-01-01
A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative of real-case data. An improved genetic algorithm called fuzzy adaptive genetic algorithm (FAGA) is proposed in order to solve this optimization model. In establishing the FAGA, five dynamic fuzzy parameter controllers are devised in which fuzzy expert experience controller (FEEC) is integrated with automatic learning dynamic fuzzy controller (ALDFC) technique. The enhanced algorithm dynamically adjusts the population size, number of generations, tournament candidate, crossover rate, and mutation rate compared with using fixed control parameters. The main idea is to improve the performance and effectiveness of existing GAs by dynamic adjustment and control of the five parameters. Verification and validation of the dynamic fuzzy GA are carried out by developing test-beds and testing using a multiobjective fuzzy mixed production assembly line sequencing optimization problem. The simulation results highlight that the performance and efficacy of the proposed novel optimization algorithm are more efficient than the performance of the standard genetic algorithm in mixed assembly line sequencing model.
The Modeling of Fuzzy Systems Based on Lee-Oscillatory Chaotic Fuzzy Model (LoCFM)
NASA Astrophysics Data System (ADS)
Wong, Max H. Y.; Liu, James N. K.; Shum, Dennis T. F.; Lee, Raymond S. T.
This paper introduces a new fuzzy membership function — LEE-oscillatory Chaotic Fuzzy Model (LoCFM). The development of this model is based on fuzzy logic and the incorporation of chaos theory — LEE Oscillator. Prototype systems are being developed for handling imprecise problems, typically involving linguistic expression and fuzzy semantic meaning. In addition, the paper also examines the mechanism of the LEE Oscillator through analyzing its structure and neural dynamics. It demonstrates the potential application of the model in future development.
Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.
Carrascal, A; Manrique, D; Ríos, J; Rossi, C
2003-01-01
This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.
Fuzzy geometry, entropy, and image information
NASA Technical Reports Server (NTRS)
Pal, Sankar K.
1991-01-01
Presented here are various uncertainty measures arising from grayness ambiguity and spatial ambiguity in an image, and their possible applications as image information measures. Definitions are given of an image in the light of fuzzy set theory, and of information measures and tools relevant for processing/analysis e.g., fuzzy geometrical properties, correlation, bound functions and entropy measures. Also given is a formulation of algorithms along with management of uncertainties for segmentation and object extraction, and edge detection. The output obtained here is both fuzzy and nonfuzzy. Ambiguity in evaluation and assessment of membership function are also described.
Fuzzy Hybrid Deliberative/Reactive Paradigm (FHDRP)
NASA Technical Reports Server (NTRS)
Sarmadi, Hengameth
2004-01-01
This work aims to introduce a new concept for incorporating fuzzy sets in hybrid deliberative/reactive paradigm. After a brief review on basic issues of hybrid paradigm the definition of agent-based fuzzy hybrid paradigm, which enables the agents to proceed and extract their behavior through quantitative numerical and qualitative knowledge and to impose their decision making procedure via fuzzy rule bank, is discussed. Next an example performs a more applied platform for the developed approach and finally an overview of the corresponding agents architecture enhances agents logical framework.
Adaptive Fuzzy Systems in Computational Intelligence
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1996-01-01
In recent years, the interest in computational intelligence techniques, which currently includes neural networks, fuzzy systems, and evolutionary programming, has grown significantly and a number of their applications have been developed in the government and industry. In future, an essential element in these systems will be fuzzy systems that can learn from experience by using neural network in refining their performances. The GARIC architecture, introduced earlier, is an example of a fuzzy reinforcement learning system which has been applied in several control domains such as cart-pole balancing, simulation of to Space Shuttle orbital operations, and tether control. A number of examples from GARIC's applications in these domains will be demonstrated.
Active inference, communication and hermeneutics☆
Friston, Karl J.; Frith, Christopher D.
2015-01-01
Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others – during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions – both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then – in principle – they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa. PMID:25957007
Active inference, communication and hermeneutics.
Friston, Karl J; Frith, Christopher D
2015-07-01
Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others--during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions--both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then--in principle--they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa.
Causal inference and developmental psychology.
Foster, E Michael
2010-11-01
Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether the risk factor actually causes outcomes. Random assignment is not possible in many instances, and for that reason, psychologists must rely on observational studies. Such studies identify associations, and causal interpretation of such associations requires additional assumptions. Research in developmental psychology generally has relied on various forms of linear regression, but this methodology has limitations for causal inference. Fortunately, methodological developments in various fields are providing new tools for causal inference-tools that rely on more plausible assumptions. This article describes the limitations of regression for causal inference and describes how new tools might offer better causal inference. This discussion highlights the importance of properly identifying covariates to include (and exclude) from the analysis. This discussion considers the directed acyclic graph for use in accomplishing this task. With the proper covariates having been chosen, many of the available methods rely on the assumption of "ignorability." The article discusses the meaning of ignorability and considers alternatives to this assumption, such as instrumental variables estimation. Finally, the article considers the use of the tools discussed in the context of a specific research question, the effect of family structure on child development.
Fuzzy α-minimum spanning tree problem: definition and solutions
NASA Astrophysics Data System (ADS)
Zhou, Jian; Chen, Lu; Wang, Ke; Yang, Fan
2016-04-01
In this paper, the minimum spanning tree problem is investigated on the graph with fuzzy edge weights. The notion of fuzzy ? -minimum spanning tree is presented based on the credibility measure, and then the solutions of the fuzzy ? -minimum spanning tree problem are discussed under different assumptions. First, we respectively, assume that all the edge weights are triangular fuzzy numbers and trapezoidal fuzzy numbers and prove that the fuzzy ? -minimum spanning tree problem can be transformed to a classical problem on a crisp graph in these two cases, which can be solved by classical algorithms such as the Kruskal algorithm and the Prim algorithm in polynomial time. Subsequently, as for the case that the edge weights are general fuzzy numbers, a fuzzy simulation-based genetic algorithm using Prüfer number representation is designed for solving the fuzzy ? -minimum spanning tree problem. Some numerical examples are also provided for illustrating the effectiveness of the proposed solutions.
Improving land resource evaluation using fuzzy neural network ensembles
XUE, Y.-J.; HU, Y.-M.; Liu, S.-G.; YANG, J.-F.; CHEN, Q.-C.; BAO, S.-T.
2007-01-01
Land evaluation factors often contain continuous-, discrete- and nominal-valued attributes. In traditional land evaluation, these different attributes are usually graded into categorical indexes by land resource experts, and the evaluation results rely heavily on experts' experiences. In order to overcome the shortcoming, we presented a fuzzy neural network ensemble method that did not require grading the evaluation factors into categorical indexes and could evaluate land resources by using the three kinds of attribute values directly. A fuzzy back propagation neural network (BPNN), a fuzzy radial basis function neural network (RBFNN), a fuzzy BPNN ensemble, and a fuzzy RBFNN ensemble were used to evaluate the land resources in Guangdong Province. The evaluation results by using the fuzzy BPNN ensemble and the fuzzy RBFNN ensemble were much better than those by using the single fuzzy BPNN and the single fuzzy RBFNN, and the error rate of the single fuzzy RBFNN or fuzzy RBFNN ensemble was lower than that of the single fuzzy BPNN or fuzzy BPNN ensemble, respectively. By using the fuzzy neural network ensembles, the validity of land resource evaluation was improved and reliance on land evaluators' experiences was considerably reduced. ?? 2007 Soil Science Society of China.
Neuro-fuzzy identification applied to fault detection in nonlinear systems
NASA Astrophysics Data System (ADS)
Blázquez, L. Felipe; de Miguel, Luis J.; Aller, Fernando; Perán, José R.
2011-10-01
This article describes a fault detection method, based on the parity equations approach, to be applied to nonlinear systems. The input-output nonlinear model of the plant, used in the method, has been obtained by a neural fuzzy inference architecture and its learning algorithm. The proposed method is able to detect small abrupt faults, even in systems with unknown nonlinearities. This method has been applied to a real industrial pilot plant, and good performance has been obtained for the experimental case of fault detection in the level sensor of a level control process in the said industrial pilot plant.
Keller, Susanna R.; Lee, Jae K.
2017-01-01
Different computational approaches have been examined and compared for inferring network relationships from time-series genomic data on human disease mechanisms under the recent Dialogue on Reverse Engineering Assessment and Methods (DREAM) challenge. Many of these approaches infer all possible relationships among all candidate genes, often resulting in extremely crowded candidate network relationships with many more False Positives than True Positives. To overcome this limitation, we introduce a novel approach, Module Anchored Network Inference (MANI), that constructs networks by analyzing sequentially small adjacent building blocks (modules). Using MANI, we inferred a 7-gene adipogenesis network based on time-series gene expression data during adipocyte differentiation. MANI was also applied to infer two 10-gene networks based on time-course perturbation datasets from DREAM3 and DREAM4 challenges. MANI well inferred and distinguished serial, parallel, and time-dependent gene interactions and network cascades in these applications showing a superior performance to other in silico network inference techniques for discovering and reconstructing gene network relationships. PMID:28197408
Chen, Xing; Yan, Chenggang Clarence; Luo, Cai; Ji, Wen; Zhang, Yongdong; Dai, Qionghai
2015-06-10
Increasing evidence has indicated that plenty of lncRNAs play important roles in many critical biological processes. Developing powerful computational models to construct lncRNA functional similarity network based on heterogeneous biological datasets is one of the most important and popular topics in the fields of both lncRNAs and complex diseases. Functional similarity network construction could benefit the model development for both lncRNA function inference and lncRNA-disease association identification. However, little effort has been attempted to analysis and calculate lncRNA functional similarity on a large scale. In this study, based on the assumption that functionally similar lncRNAs tend to be associated with similar diseases, we developed two novel lncRNA functional similarity calculation models (LNCSIM). LNCSIM was evaluated by introducing similarity scores into the model of Laplacian Regularized Least Squares for LncRNA-Disease Association (LRLSLDA) for lncRNA-disease association prediction. As a result, new predictive models improved the performance of LRLSLDA in the leave-one-out cross validation of various known lncRNA-disease associations datasets. Furthermore, some of the predictive results for colorectal cancer and lung cancer were verified by independent biological experimental studies. It is anticipated that LNCSIM could be a useful and important biological tool for human disease diagnosis, treatment, and prevention.
Saravanan, Vijayakumar; Lakshmi, P T V
2014-09-01
The path to personalized medicine demands the use of new and customized biopharmaceutical products containing modified proteins. Hence, assessment of these products for allergenicity becomes mandatory before they are introduced as therapeutics. Despite the availability of different tools to predict the allergenicity of proteins, it remains challenging to predict the allergens and nonallergens, when they share significant sequence similarity with known nonallergens and allergens, respectively. Hence, we propose "FuzzyApp," a novel fuzzy rule based system to evaluate the quality of the query protein to be an allergen. It measures the allergenicity of the protein based on the fuzzy IF-THEN rules derived from five different modules. On various datasets, FuzzyApp outperformed other existing methods and retained balance between sensitivity and specificity, with positive Mathew's correlation coefficient. The high specificity of allergen-like putative nonallergens (APN) revealed the FuzzyApp's capability in distinguishing the APN from allergens. In addition, the error analysis and whole proteome dataset analysis suggest the efficiency and consistency of the proposed method. Further, FuzzyApp predicted the Tropomyosin from various allergenic and nonallergenic sources accurately. The web service created allows batch sequence submission, and outputs the result as readable sentences rather than values alone, which assists the user in understanding why and what features are responsible for the prediction. FuzzyApp is implemented using PERL CGI and is freely accessible at http://fuzzyapp.bicpu.edu.in/predict.php . We suggest the use of Fuzzy logic has much potential in biomarker and personalized medicine research to enhance predictive capabilities of post-genomics diagnostics.
Optimal inference with suboptimal models: Addiction and active Bayesian inference
Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl
2015-01-01
When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321
Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance
Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.
2016-01-01
An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001
Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.
Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W
2016-01-01
An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot.
Fuzzy Q-Learning for Generalization of Reinforcement Learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1996-01-01
Fuzzy Q-Learning, introduced earlier by the author, is an extension of Q-Learning into fuzzy environments. GARIC is a methodology for fuzzy reinforcement learning. In this paper, we introduce GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Q-Learning and at the local level, each agent learns and operates based on GARIC. GARIC-Q improves the speed and applicability of Fuzzy Q-Learning through generalization of input space by using fuzzy rules and bridges the gap between Q-Learning and rule based intelligent systems.
Nursing and fuzzy logic: an integrative review.
Jensen, Rodrigo; Lopes, Maria Helena Baena de Moraes
2011-01-01
This study conducted an integrative review investigating how fuzzy logic has been used in research with the participation of nurses. The article search was carried out in the CINAHL, EMBASE, SCOPUS, PubMed and Medline databases, with no limitation on time of publication. Articles written in Portuguese, English and Spanish with themes related to nursing and fuzzy logic with the authorship or participation of nurses were included. The final sample included 21 articles from eight countries. For the purpose of analysis, the articles were distributed into categories: theory, method and model. In nursing, fuzzy logic has significantly contributed to the understanding of subjects related to: imprecision or the need of an expert; as a research method; and in the development of models or decision support systems and hard technologies. The use of fuzzy logic in nursing has shown great potential and represents a vast field for research.
Fuzzy logic and neural network technologies
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
Refining Linear Fuzzy Rules by Reinforcement Learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap S.; Malkani, Anil
1996-01-01
Linear fuzzy rules are increasingly being used in the development of fuzzy logic systems. Radial basis functions have also been used in the antecedents of the rules for clustering in product space which can automatically generate a set of linear fuzzy rules from an input/output data set. Manual methods are usually used in refining these rules. This paper presents a method for refining the parameters of these rules using reinforcement learning which can be applied in domains where supervised input-output data is not available and reinforcements are received only after a long sequence of actions. This is shown for a generalization of radial basis functions. The formation of fuzzy rules from data and their automatic refinement is an important step in closing the gap between the application of reinforcement learning methods in the domains where only some limited input-output data is available.
Multilayer perceptron, fuzzy sets, and classification
NASA Technical Reports Server (NTRS)
Pal, Sankar K.; Mitra, Sushmita
1992-01-01
A fuzzy neural network model based on the multilayer perceptron, using the back-propagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy or uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and the other related models.
Fuzzy multimodel of timed Petri nets.
Hennequin, S; Lefebvre, D; El Moudni, A
2001-01-01
This paper deals with discrete event systems (DES) modeled either by discrete timed Petri nets without conflict or by continuous Petri nets. A fuzzy rule-based multimodel is developed for this kind of system. The behavior of each Petri net transition is described by the combination of two linear local fuzzy models. Using the Takagi-Sugemo model in a systematic way, we define the exact modeling for both classes of timed Petri nets. As a result, we notice that classical sets result in the exact description of discrete timed Petri nets. On the contrary, only fuzzy sets are suitable to describe continuous Petri nets exactly. The proposed fuzzy multimodels are very interesting from a control point of view. In that sense, general results such as convergence for timed Petri nets are given.
Competitive Facility Location with Fuzzy Random Demands
NASA Astrophysics Data System (ADS)
Uno, Takeshi; Katagiri, Hideki; Kato, Kosuke
2010-10-01
This paper proposes a new location problem of competitive facilities, e.g. shops, with uncertainty and vagueness including demands for the facilities in a plane. By representing the demands for facilities as fuzzy random variables, the location problem can be formulated as a fuzzy random programming problem. For solving the fuzzy random programming problem, first the α-level sets for fuzzy numbers are used for transforming it to a stochastic programming problem, and secondly, by using their expectations and variances, it can be reformulated to a deterministic programming problem. After showing that one of their optimal solutions can be found by solving 0-1 programming problems, their solution method is proposed by improving the tabu search algorithm with strategic oscillation. The efficiency of the proposed method is shown by applying it to numerical examples of the facility location problems.
A Fuzzy Aproach For Facial Emotion Recognition
NASA Astrophysics Data System (ADS)
Gîlcă, Gheorghe; Bîzdoacă, Nicu-George
2015-09-01
This article deals with an emotion recognition system based on the fuzzy sets. Human faces are detected in images with the Viola - Jones algorithm and for its tracking in video sequences we used the Camshift algorithm. The detected human faces are transferred to the decisional fuzzy system, which is based on the variable fuzzyfication measurements of the face: eyebrow, eyelid and mouth. The system can easily determine the emotional state of a person.
Application of Fuzzy Logic to Matrix FMECA
NASA Astrophysics Data System (ADS)
Shankar, N. Ravi; Prabhu, B. S.
2001-04-01
A methodology combining the benefits of Fuzzy Logic and Matrix FMEA is presented in this paper. The presented methodology extends the risk prioritization beyond the conventional Risk Priority Number (RPN) method. Fuzzy logic is used to calculate the criticality rank. Also the matrix approach is improved further to develop a pictorial representation retaining all relevant qualitative and quantitative information of several FMEA elements relationships. The methodology presented is demonstrated by application to an illustrative example.
Statistical inference and string theory
NASA Astrophysics Data System (ADS)
Heckman, Jonathan J.
2015-09-01
In this paper, we expose some surprising connections between string theory and statistical inference. We consider a large collective of agents sweeping out a family of nearby statistical models for an M-dimensional manifold of statistical fitting parameters. When the agents making nearby inferences align along a d-dimensional grid, we find that the pooled probability that the collective reaches a correct inference is the partition function of a nonlinear sigma model in d dimensions. Stability under perturbations to the original inference scheme requires the agents of the collective to distribute along two dimensions. Conformal invariance of the sigma model corresponds to the condition of a stable inference scheme, directly leading to the Einstein field equations for classical gravity. By summing over all possible arrangements of the agents in the collective, we reach a string theory. We also use this perspective to quantify how much an observer can hope to learn about the internal geometry of a superstring compactification. Finally, we present some brief speculative remarks on applications to the AdS/CFT correspondence and Lorentzian signature space-times.
Fuzzy logic program at SGS-Thomson
NASA Astrophysics Data System (ADS)
Pagni, Andrea; Poluzzi, Rinaldo; Rizzotto, GianGuido
1993-12-01
From its conception by Professor Lotfi A. Zadeh in the early '60s, Fuzzy Logic has slowly won acceptance, first in the academic world, then in industry. Its success is mainly due to the different perspective with which problems are tackled. Thanks to Fuzzy Logic we have moved from a numerical/analytical description to a quantitative/qualitative one. It is important to stress that this different perspective not only allows us to solve analysis/control problems at lower costs but can also allow otherwise insoluble problems to be solved at acceptable costs. Of course, it must be stressed that Fuzzy Systems cannot match the computational precision of traditional techniques but seek, instead, to find acceptable solutions in shorter times. Recognizing the enormous importance of fuzzy logic in the markets of the future, SGS-THOMSON intends to produce devices belonging to a new class of machines: Fuzzy Computational Machines. For this purpose a major research project has been established considering the architectural aspects and system implications of fuzzy logic, the development of dedicated VLSI components and supporting software.
Adaptive fuzzy system for 3-D vision
NASA Technical Reports Server (NTRS)
Mitra, Sunanda
1993-01-01
An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.
Multicriteria Personnel Selection by the Modified Fuzzy VIKOR Method.
Alguliyev, Rasim M; Aliguliyev, Ramiz M; Mahmudova, Rasmiyya S
2015-01-01
Personnel evaluation is an important process in human resource management. The multicriteria nature and the presence of both qualitative and quantitative factors make it considerably more complex. In this study, a fuzzy hybrid multicriteria decision-making (MCDM) model is proposed to personnel evaluation. This model solves personnel evaluation problem in a fuzzy environment where both criteria and weights could be fuzzy sets. The triangular fuzzy numbers are used to evaluate the suitability of personnel and the approximate reasoning of linguistic values. For evaluation, we have selected five information culture criteria. The weights of the criteria were calculated using worst-case method. After that, modified fuzzy VIKOR is proposed to rank the alternatives. The outcome of this research is ranking and selecting best alternative with the help of fuzzy VIKOR and modified fuzzy VIKOR techniques. A comparative analysis of results by fuzzy VIKOR and modified fuzzy VIKOR methods is presented. Experiments showed that the proposed modified fuzzy VIKOR method has some advantages over fuzzy VIKOR method. Firstly, from a computational complexity point of view, the presented model is effective. Secondly, compared to fuzzy VIKOR method, it has high acceptable advantage compared to fuzzy VIKOR method.
Multicriteria Personnel Selection by the Modified Fuzzy VIKOR Method
Alguliyev, Rasim M.; Aliguliyev, Ramiz M.; Mahmudova, Rasmiyya S.
2015-01-01
Personnel evaluation is an important process in human resource management. The multicriteria nature and the presence of both qualitative and quantitative factors make it considerably more complex. In this study, a fuzzy hybrid multicriteria decision-making (MCDM) model is proposed to personnel evaluation. This model solves personnel evaluation problem in a fuzzy environment where both criteria and weights could be fuzzy sets. The triangular fuzzy numbers are used to evaluate the suitability of personnel and the approximate reasoning of linguistic values. For evaluation, we have selected five information culture criteria. The weights of the criteria were calculated using worst-case method. After that, modified fuzzy VIKOR is proposed to rank the alternatives. The outcome of this research is ranking and selecting best alternative with the help of fuzzy VIKOR and modified fuzzy VIKOR techniques. A comparative analysis of results by fuzzy VIKOR and modified fuzzy VIKOR methods is presented. Experiments showed that the proposed modified fuzzy VIKOR method has some advantages over fuzzy VIKOR method. Firstly, from a computational complexity point of view, the presented model is effective. Secondly, compared to fuzzy VIKOR method, it has high acceptable advantage compared to fuzzy VIKOR method. PMID:26516634
Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.
Lin, Chuan-Kai
2005-04-01
A new adaptive critic autopilot design for bank-to-turn missiles is presented. In this paper, the architecture of adaptive critic learning scheme contains a fuzzy-basis-function-network based associative search element (ASE), which is employed to approximate nonlinear and complex functions of bank-to-turn missiles, and an adaptive critic element (ACE) generating the reinforcement signal to tune the associative search element. In the design of the adaptive critic autopilot, the control law receives signals from a fixed gain controller, an ASE and an adaptive robust element, which can eliminate approximation errors and disturbances. Traditional adaptive critic reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment, however, the proposed tuning algorithm can significantly shorten the learning time by online tuning all parameters of fuzzy basis functions and weights of ASE and ACE. Moreover, the weight updating law derived from the Lyapunov stability theory is capable of guaranteeing both tracking performance and stability. Computer simulation results confirm the effectiveness of the proposed adaptive critic autopilot.
Twenty-Five Years of the Fuzzy Factor: Fuzzy Logic, the Courts, and Student Press Law.
ERIC Educational Resources Information Center
Plopper, Bruce L.; McCool, Lauralee
A study applied the structure of fuzzy logic, a fairly modern development in mathematical set theory, to judicial opinions concerning non-university, public school student publications, from 1975 to 1999. The study examined case outcomes (19 cases generated 27 opinions) as a function of fuzzy logic, and it evaluated interactions between fuzzy…
Directed Laplacians For Fuzzy Autocatalytic Set Of Fuzzy Graph Type-3 Of An Incineration Process
NASA Astrophysics Data System (ADS)
Ahmad, Tahir; Baharun, Sabariah; Bakar, Sumarni Abu
2010-11-01
Fuzzy Autocatalytic Set (FACS) of Fuzzy Graph Type-3 was used in the modeling of a clinical waste incineration process in Malacca. FACS provided more accurate explanations of the incineration process than using crisp graph. In this paper we explore further FACS. Directed and combinatorial Laplacian of FACS are developed and their basic properties are presented.
Locative inferences in medical texts.
Mayer, P S; Bailey, G H; Mayer, R J; Hillis, A; Dvoracek, J E
1987-06-01
Medical research relies on epidemiological studies conducted on a large set of clinical records that have been collected from physicians recording individual patient observations. These clinical records are recorded for the purpose of individual care of the patient with little consideration for their use by a biostatistician interested in studying a disease over a large population. Natural language processing of clinical records for epidemiological studies must deal with temporal, locative, and conceptual issues. This makes text understanding and data extraction of clinical records an excellent area for applied research. While much has been done in making temporal or conceptual inferences in medical texts, parallel work in locative inferences has not been done. This paper examines the locative inferences as well as the integration of temporal, locative, and conceptual issues in the clinical record understanding domain by presenting an application that utilizes two key concepts in its parsing strategy--a knowledge-based parsing strategy and a minimal lexicon.
Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.
Xia, Youshen; Wang, Jun
2015-07-01
This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction.
Network-based drug discovery by integrating systems biology and computational technologies.
Leung, Elaine L; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua; Liu, Liang
2013-07-01
Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple '-omics' databases. The newly developed algorithm- or network-based computational models can tightly integrate '-omics' databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various '-omics' platforms and computational tools would accelerate development of network-based drug discovery and network medicine.
Network-based drug discovery by integrating systems biology and computational technologies
Leung, Elaine L.; Cao, Zhi-Wei; Jiang, Zhi-Hong; Zhou, Hua
2013-01-01
Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple ‘-omics’ databases. The newly developed algorithm- or network-based computational models can tightly integrate ‘-omics’ databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various ‘-omics’ platforms and computational tools would accelerate development of network-based drug discovery and network medicine. PMID:22877768
How Fuzzy-Trace Theory Predicts True and False Memories for Words, Sentences, and Narratives
Reyna, Valerie F.; Corbin, Jonathan C.; Weldon, Rebecca B.; Brainerd, Charles J.
2016-01-01
Fuzzy-trace theory posits independent verbatim and gist memory processes, a distinction that has implications for such applied topics as eyewitness testimony. This distinction between precise, literal verbatim memory and meaning-based, intuitive gist accounts for memory paradoxes including dissociations between true and false memory, false memories outlasting true memories, and developmental increases in false memory. We provide an overview of fuzzy-trace theory, and, using mathematical modeling, also present results demonstrating verbatim and gist memory in true and false recognition of narrative sentences and inferences. Results supported fuzzy-trace theory's dual-process view of memory: verbatim memory was relied on to reject meaning-consistent, but unpresented, sentences (via recollection rejection). However, verbatim memory was often not retrieved, and gist memory supported acceptance of these sentences (via similarity judgment and phantom recollection). Thus, mathematical models of words can be extended to explain memory for complex stimuli, such as narratives, the kind of memory interrogated in law. PMID:27042402
Zhang, Xian-Xia; Jiang, Ye; Li, Han-Xiong; Li, Shao-Yuan
2013-10-01
A data-driven 3-D fuzzy-logic controller (3-D FLC) design methodology based on support vector regression (SVR) learning is developed for nonlinear spatially distributed dynamic systems. Initially, the spatial information expression and processing as well as the fuzzy linguistic expression and rule inference of a 3-D FLC are integrated into spatial fuzzy basis functions (SFBFs), and then the 3-D FLC can be depicted by a three-layer network structure. By relating SFBFs of the 3-D FLC directly to spatial kernel functions of an SVR, an equivalence relationship of the 3-D FLC and the SVR is established, which means that the 3-D FLC can be designed with the help of the SVR learning. Subsequently, for an easy implementation, a systematic SVR learning-based 3-D FLC design scheme is formulated. In addition, the universal approximation capability of the proposed 3-D FLC is presented. Finally, the control of a nonlinear catalytic packed-bed reactor is considered as an application to demonstrate the effectiveness of the proposed 3-D FLC.
Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection.
Hanine, Mohamed; Boutkhoum, Omar; Tikniouine, Abdessadek; Agouti, Tarik
2016-01-01
Landfill location selection is a multi-criteria decision problem and has a strategic importance for many regions. The conventional methods for landfill location selection are insufficient in dealing with the vague or imprecise nature of linguistic assessment. To resolve this problem, fuzzy multi-criteria decision-making methods are proposed. The aim of this paper is to use fuzzy TODIM (the acronym for Interactive and Multi-criteria Decision Making in Portuguese) and the fuzzy analytic hierarchy process (AHP) methods for the selection of landfill location. The proposed methods have been applied to a landfill location selection problem in the region of Casablanca, Morocco. After determining the criteria affecting the landfill location decisions, fuzzy TODIM and fuzzy AHP methods are applied to the problem and results are presented. The comparisons of these two methods are also discussed.
Chen, Shyi-Ming; Chen, Shen-Wen
2015-03-01
In this paper, we present a new method for fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy-trend logical relationships. Firstly, the proposed method fuzzifies the historical training data of the main factor and the secondary factor into fuzzy sets, respectively, to form two-factors second-order fuzzy logical relationships. Then, it groups the obtained two-factors second-order fuzzy logical relationships into two-factors second-order fuzzy-trend logical relationship groups. Then, it calculates the probability of the "down-trend," the probability of the "equal-trend" and the probability of the "up-trend" of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group, respectively. Finally, it performs the forecasting based on the probabilities of the down-trend, the equal-trend, and the up-trend of the two-factors second-order fuzzy-trend logical relationships in each two-factors second-order fuzzy-trend logical relationship group. We also apply the proposed method to forecast the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) and the NTD/USD exchange rates. The experimental results show that the proposed method outperforms the existing methods.
Fuzzy model-based observers for fault detection in CSTR.
Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan
2015-11-01
Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions.
Encoding spatial images: A fuzzy set theory approach
NASA Technical Reports Server (NTRS)
Sztandera, Leszek M.
1992-01-01
As the use of fuzzy set theory continues to grow, there is an increased need for methodologies and formalisms to manipulate obtained fuzzy subsets. Concepts involving relative position of fuzzy patterns are acknowledged as being of high importance in many areas. In this paper, we present an approach based on the concept of dominance in fuzzy set theory for modelling relative positions among fuzzy subsets of a plane. In particular, we define the following spatial relations: to the left (right), in front of, behind, above, below, near, far from, and touching. This concept has been implemented to define spatial relationships among fuzzy subsets of the image plane. Spatial relationships based on fuzzy set theory, coupled with a fuzzy segmentation, should therefore yield realistic results in scene understanding.