Science.gov

Sample records for neural activity related

  1. Social power and approach-related neural activity.

    PubMed

    Boksem, Maarten A S; Smolders, Ruud; De Cremer, David

    2012-06-01

    It has been argued that power activates a general tendency to approach whereas powerlessness activates a tendency to inhibit. The assumption is that elevated power involves reward-rich environments, freedom and, as a consequence, triggers an approach-related motivational orientation and attention to rewards. In contrast, reduced power is associated with increased threat, punishment and social constraint and thereby activates inhibition-related motivation. Moreover, approach motivation has been found to be associated with increased relative left-sided frontal brain activity, while withdrawal motivation has been associated with increased right sided activations. We measured EEG activity while subjects engaged in a task priming either high or low social power. Results show that high social power is indeed associated with greater left-frontal brain activity compared to low social power, providing the first neural evidence for the theory that high power is associated with approach-related motivation. We propose a framework accounting for differences in both approach motivation and goal-directed behaviour associated with different levels of power.

  2. Neural activity during free association to conflict–related sentences

    PubMed Central

    Kehyayan, Aram; Best, Katrin; Schmeing, Jo-Birger; Axmacher, Nikolai; Kessler, Henrik

    2013-01-01

    Psychodynamic conflicts form an important construct to understand the genesis and maintenance of mental disorders. Conflict-related themes should therefore provoke strong reactions on the behavioral, physiological, and neural level. We confronted N = 18 healthy subjects with a vast array of sentences describing typical psychodynamic conflict themes in the fMRI scanner and let them associate spontaneously in reaction. The overt associations were then analyzed according to psychoanalytic theory and the system of operationalized psychodynamic diagnosis and used as a genuinely psychodynamic indicator, whether each potentially conflict-related sentence actually touched a conflict theme of the individual. Behavioral, physiological, and neural reactions were compared between those subjects with an “apparent conflict” and those with “absent conflicts.” The first group reported stronger agreement with the conflict-related sentences, more negative valence in reaction, had higher levels of skin conductance reactivity and exhibited stronger activation in the anterior cingulate cortex, amongst other functions involved in emotion processing and conflict-monitoring. In conjunction, we interpret this activity as a possible correlate of subjects’ inherent reactions and regulatory processes evoked by conflict themes. This study makes a point for the fruitfulness of the neuropsychoanalytic endeavor by using free association, the classical technique most commonly used in psychoanalysis, to investigate aspects of conflict processing in neuroimaging. PMID:24298244

  3. Neural crest specification and migration independently require NSD3-related lysine methyltransferase activity

    PubMed Central

    Jacques-Fricke, Bridget T.; Gammill, Laura S.

    2014-01-01

    Neural crest precursors express genes that cause them to become migratory, multipotent cells, distinguishing them from adjacent stationary neural progenitors in the neurepithelium. Histone methylation spatiotemporally regulates neural crest gene expression; however, the protein methyltransferases active in neural crest precursors are unknown. Moreover, the regulation of methylation during the dynamic process of neural crest migration is unclear. Here we show that the lysine methyltransferase NSD3 is abundantly and specifically expressed in premigratory and migratory neural crest cells. NSD3 expression commences before up-regulation of neural crest genes, and NSD3 is necessary for expression of the neural plate border gene Msx1, as well as the key neural crest transcription factors Sox10, Snail2, Sox9, and FoxD3, but not gene expression generally. Nevertheless, only Sox10 histone H3 lysine 36 dimethylation requires NSD3, revealing unexpected complexity in NSD3-dependent neural crest gene regulation. In addition, by temporally limiting expression of a dominant negative to migratory stages, we identify a novel, direct requirement for NSD3-related methyltransferase activity in neural crest migration. These results identify NSD3 as the first protein methyltransferase essential for neural crest gene expression during specification and show that NSD3-related methyltransferase activity independently regulates migration. PMID:25318671

  4. Differential neural activity patterns for spatial relations in humans: a MEG study.

    PubMed

    Scott, Nicole M; Leuthold, Arthur; Sera, Maria D; Georgopoulos, Apostolos P

    2016-02-01

    Children learn the words for above-below relations earlier than for left-right relations, despite treating these equally well in a simple visual categorization task. Even as adults--conflicts in congruency, such as when a stimulus is depicted in a spatially incongruent manner with respect to salient global cues--can be challenging. Here we investigated the neural correlates of encoding and maintaining in working memory above-below and left-right relational planes in 12 adults using magnetoencephalography in order to discover whether above-below relations are represented by the brain differently than left-right relations. Adults performed perfectly on the task behaviorally, so any differences in neural activity were attributed to the stimuli's cognitive attributes. In comparing above-below to left-right relations during stimulus encoding, we found the greatest differences in neural activity in areas associated with space and movement. In comparing congruent to incongruent trials, we found the greatest differential activity in premotor areas. For both contrasts, brain areas involved in the encoding phase were also involved in the maintenance phase, which provides evidence that those brain areas are particularly important in representing the relational planes or congruency types throughout the trial. When comparing neural activity associated with the relational planes during working memory, additional right posterior areas were implicated, whereas the congruent-incongruent contrast implicated additional bilateral frontal and temporal areas. These findings are consistent with the hypothesis left-right relations are represented differently than above-below relations.

  5. Working Memory-Related Neural Activity Predicts Future Smoking Relapse

    PubMed Central

    Loughead, James; Wileyto, E Paul; Ruparel, Kosha; Falcone, Mary; Hopson, Ryan; Gur, Ruben; Lerman, Caryn

    2015-01-01

    Brief abstinence from smoking impairs cognition, particularly executive function, and this has a role in relapse to smoking. This study examined whether working memory-related brain activity predicts subsequent smoking relapse above and beyond standard clinical and behavioral measures. Eighty treatment-seeking smokers completed two functional magnetic resonance imaging sessions (smoking satiety vs 24 h abstinence challenge) during performance of a visual N-back task. Brief counseling and a short-term quit attempt followed. Relapse during the first 7 days was biochemically confirmed by the presence of the nicotine metabolite cotinine. Mean percent blood oxygen level-dependent (BOLD) signal change was extracted from a priori regions of interest: bilateral dorsolateral prefrontal cortex (DLPFC), medial frontal/cingulate gyrus, posterior cingulate cortex (PCC), and ventromedial prefrontal cortex. Signal from these brain regions and additional clinical measures were used to model outcome status, which was then validated with resampling techniques. Relapse to smoking was predicted by increased withdrawal symptoms, decreased left DLPFC and increased PCC BOLD percent signal change (abstinence vs smoking satiety). Receiver operating characteristic analysis demonstrated 81% area under the curve using these predictors, a significant improvement over the model with clinical variables only. The combination of abstinence-induced decreases in left DLPFC activation and reduced suppression of PCC may be a prognostic marker for poor outcome, specifically early smoking relapse. PMID:25469682

  6. Differences in Feedback- and Inhibition-Related Neural Activity in Adult ADHD

    ERIC Educational Resources Information Center

    Dibbets, Pauline; Evers, Lisbeth; Hurks, Petra; Marchetta, Natalie; Jolles, Jelle

    2009-01-01

    The objective of this study was to examine response inhibition- and feedback-related neural activity in adults with attention deficit hyperactivity disorder (ADHD) using event-related functional MRI. Sixteen male adults with ADHD and 13 healthy/normal controls participated in this study and performed a modified Go/NoGo task. Behaviourally,…

  7. Complexin2 modulates working memory-related neural activity in patients with schizophrenia.

    PubMed

    Hass, Johanna; Walton, Esther; Kirsten, Holger; Turner, Jessica; Wolthusen, Rick; Roessner, Veit; Sponheim, Scott R; Holt, Daphne; Gollub, Randy; Calhoun, Vince D; Ehrlich, Stefan

    2015-03-01

    The specific contribution of risk or candidate gene variants to the complex phenotype of schizophrenia is largely unknown. Studying the effects of such variants on brain function can provide insight into disease-associated mechanisms on a neural systems level. Previous studies found common variants in the complexin2 (CPLX2) gene to be highly associated with cognitive dysfunction in schizophrenia patients. Similarly, cognitive functioning was found to be impaired in Cplx2 gene-deficient mice if they were subjected to maternal deprivation or mild brain trauma during puberty. Here, we aimed to study seven common CPLX2 single-nucleotide polymorphisms (SNPs) and their neurogenetic risk mechanisms by investigating their relationship to a schizophrenia-related functional neuroimaging intermediate phenotype. We examined functional MRI and genotype data collected from 104 patients with DSM-IV-diagnosed schizophrenia and 122 healthy controls who participated in the Mind Clinical Imaging Consortium study of schizophrenia. Seven SNPs distributed over the whole CPLX2 gene were tested for association with working memory-elicited neural activity in a frontoparietal neural network. Three CPLX2 SNPs were significantly associated with increased neural activity in the dorsolateral prefrontal cortex and intraparietal sulcus in the schizophrenia sample, but showed no association in healthy controls. Since increased working memory-related neural activity in individuals with or at risk for schizophrenia has been interpreted as 'neural inefficiency,' these findings suggest that certain variants of CPLX2 may contribute to impaired brain function in schizophrenia, possibly combined with other deleterious genetic variants, adverse environmental events, or developmental insults.

  8. Complexin2 modulates working memory-related neural activity in patients with schizophrenia

    SciTech Connect

    Hass, Johanna; Walton, Esther; Kirsten, Holger; Turner, Jessica; Wolthusen, Rick; Roessner, Veit; Sponheim, Scott R.; Holt, Daphne; Gollub, Randy; Calhoun, Vince D.; Ehrlich, Stefan

    2014-10-09

    The specific contribution of risk or candidate gene variants to the complex phenotype of schizophrenia is largely unknown. Studying the effects of such variants on brain function can provide insight into disease-associated mechanisms on a neural systems level. Previous studies found common variants in the complexin2 (CPLX2) gene to be highly associated with cognitive dysfunction in schizophrenia patients. Similarly, cognitive functioning was found to be impaired in Cplx2 gene-deficient mice if they were subjected to maternal deprivation or mild brain trauma during puberty. Here, we aimed to study seven common CPLX2 single-nucleotide polymorphisms (SNPs) and their neurogenetic risk mechanisms by investigating their relationship to a schizophrenia-related functional neuroimaging intermediate phenotype. In this paper, we examined functional MRI and genotype data collected from 104 patients with DSM-IV-diagnosed schizophrenia and 122 healthy controls who participated in the Mind Clinical Imaging Consortium study of schizophrenia. Seven SNPs distributed over the whole CPLX2 gene were tested for association with working memory-elicited neural activity in a frontoparietal neural network. Three CPLX2 SNPs were significantly associated with increased neural activity in the dorsolateral prefrontal cortex and intraparietal sulcus in the schizophrenia sample, but showed no association in healthy controls. Finally, since increased working memory-related neural activity in individuals with or at risk for schizophrenia has been interpreted as ‘neural inefficiency,’ these findings suggest that certain variants of CPLX2 may contribute to impaired brain function in schizophrenia, possibly combined with other deleterious genetic variants, adverse environmental events, or developmental insults.

  9. Complexin2 modulates working memory-related neural activity in patients with schizophrenia

    DOE PAGES

    Hass, Johanna; Walton, Esther; Kirsten, Holger; ...

    2014-10-09

    The specific contribution of risk or candidate gene variants to the complex phenotype of schizophrenia is largely unknown. Studying the effects of such variants on brain function can provide insight into disease-associated mechanisms on a neural systems level. Previous studies found common variants in the complexin2 (CPLX2) gene to be highly associated with cognitive dysfunction in schizophrenia patients. Similarly, cognitive functioning was found to be impaired in Cplx2 gene-deficient mice if they were subjected to maternal deprivation or mild brain trauma during puberty. Here, we aimed to study seven common CPLX2 single-nucleotide polymorphisms (SNPs) and their neurogenetic risk mechanisms bymore » investigating their relationship to a schizophrenia-related functional neuroimaging intermediate phenotype. In this paper, we examined functional MRI and genotype data collected from 104 patients with DSM-IV-diagnosed schizophrenia and 122 healthy controls who participated in the Mind Clinical Imaging Consortium study of schizophrenia. Seven SNPs distributed over the whole CPLX2 gene were tested for association with working memory-elicited neural activity in a frontoparietal neural network. Three CPLX2 SNPs were significantly associated with increased neural activity in the dorsolateral prefrontal cortex and intraparietal sulcus in the schizophrenia sample, but showed no association in healthy controls. Finally, since increased working memory-related neural activity in individuals with or at risk for schizophrenia has been interpreted as ‘neural inefficiency,’ these findings suggest that certain variants of CPLX2 may contribute to impaired brain function in schizophrenia, possibly combined with other deleterious genetic variants, adverse environmental events, or developmental insults.« less

  10. Elevated reward-related neural activation as a unique biological marker of bipolar disorder: assessment and treatment implications.

    PubMed

    Nusslock, Robin; Young, Christina B; Damme, Katherine S F

    2014-11-01

    Growing evidence indicates that risk for bipolar disorder is characterized by elevated activation in a fronto-striatal reward neural circuit involving the ventral striatum and orbitofrontal cortex, among other regions. It is proposed that individuals with abnormally elevated reward-related neural activation are at risk for experiencing an excessive increase in approach-related motivation during life events involving rewards or goal striving and attainment. In the extreme, this increase in motivation is reflected in hypomanic/manic symptoms. By contrast, unipolar depression (without a history of hypomania/mania) is characterized by decreased reward responsivity and decreased reward-related neural activation. Collectively, this suggests that risk for bipolar disorder and unipolar depression are characterized by distinct and opposite profiles of reward processing and reward-related neural activation. The objective of the present paper is threefold. First, we review the literature on reward processing and reward-related neural activation in bipolar disorder, and in particular risk for hypomania/mania. Second, we propose that reward-related neural activation reflects a biological marker of differential risk for bipolar disorder versus unipolar depression that may help facilitate psychiatric assessment and differential diagnosis. We also discuss, however, the challenges to using neuroscience techniques and biological markers in a clinical setting for assessment and diagnostic purposes. Lastly, we address the pharmacological and psychosocial treatment implications of research on reward-related neural activation in bipolar disorder.

  11. Relation of obesity to neural activation in response to food commercials

    PubMed Central

    Yokum, Sonja; Stice, Eric; Harris, Jennifer L.; Brownell, Kelly D.

    2014-01-01

    Adolescents view thousands of food commercials annually, but the neural response to food advertising and its association with obesity is largely unknown. This study is the first to examine how neural response to food commercials differs from other stimuli (e.g. non-food commercials and television show) and to explore how this response may differ by weight status. The blood oxygen level-dependent functional magnetic resonance imaging activation was measured in 30 adolescents ranging from lean to obese in response to food and non-food commercials imbedded in a television show. Adolescents exhibited greater activation in regions implicated in visual processing (e.g. occipital gyrus), attention (e.g. parietal lobes), cognition (e.g. temporal gyrus and posterior cerebellar lobe), movement (e.g. anterior cerebellar cortex), somatosensory response (e.g. postcentral gyrus) and reward [e.g. orbitofrontal cortex and anterior cingulate cortex (ACC)] during food commercials. Obese participants exhibited less activation during food relative to non-food commercials in neural regions implicated in visual processing (e.g. cuneus), attention (e.g. posterior cerebellar lobe), reward (e.g. ventromedial prefrontal cortex and ACC) and salience detection (e.g. precuneus). Obese participants did exhibit greater activation in a region implicated in semantic control (e.g. medial temporal gyrus). These findings may inform current policy debates regarding the impact of food advertising to minors. PMID:23576811

  12. Relations among pure-tone sound stimuli, neural activity, and the loudness sensation

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1972-01-01

    Both the physiological and psychological responses to pure-tone sound stimuli are used to derive formulas which: (1) relate the loudness, loudness level, and sound-pressure level of pure tones; (2) apply continuously over most of the acoustic regime, including the loudness threshold; and (3) contain no undetermined coefficients. Some of the formulas are fundamental for calculating the loudness of any sound. Power-law formulas relating the pure-tone sound stimulus, neural activity, and loudness are derived from published data.

  13. Perceptual Salience and Reward Both Influence Feedback-Related Neural Activity Arising from Choice

    PubMed Central

    Lou, Bin; Hsu, Wha-Yin

    2015-01-01

    For day-to-day decisions, multiple factors influence our choice between alternatives. Two dimensions of decision making that substantially affect choice are the objective perceptual properties of the stimulus (e.g., salience) and its subjective value. Here we measure EEGs in human subjects to relate their feedback-evoked EEG responses to estimates of prediction error given a neurally derived expected value for each trial. Unlike in traditional reinforcement learning paradigms, in our experiment the reward itself is not probabilistic; rather, it is a fixed value, which, when combined with the variable stimulus salience, yields uncertainty in the choice. We find that feedback-evoked event-related potentials (ERPs), specifically those classically termed feedback-related negativity, are modulated by both the reward level and stimulus salience. Using single-trial analysis of the EEG, we show stimulus-locked EEG components reflecting perceived stimulus salience can be combined with the level of reward to create an estimate of expected reward. This expected reward is used to form a prediction error that correlates with the trial-by-trial variability of the feedback ERPs for negative, but not positive, feedback. This suggests that the valence of prediction error is more important than the valence of the actual feedback, since only positive rewards were delivered in the experiment (no penalty or loss). Finally, we show that these subjectively defined prediction errors are informative of the riskiness of the subject's choice on the subsequent trial. In summary, our work shows that neural correlates of stimulus salience interact with value information to yield neural representations of subjective expected reward. SIGNIFICANCE STATEMENT How we make perceptual decisions depends on sensory evidence and the value of our options. These two factors often interact to yield subjective decisions; i.e., individuals integrate sensory evidence and value to form their own estimates of

  14. When your friends make you cringe: social closeness modulates vicarious embarrassment-related neural activity

    PubMed Central

    Müller-Pinzler, Laura; Rademacher, Lena; Paulus, Frieder M.

    2016-01-01

    Social closeness is a potent moderator of vicarious affect and specifically vicarious embarrassment. The neural pathways of how social closeness to another person affects our experience of vicarious embarrassment for the other’s public flaws, failures and norm violations are yet unknown. To bridge this gap, we examined the neural response of participants while witnessing threats to either a friend’s or a stranger’s social integrity. The results show consistent responses of the anterior insula (AI) and anterior cingulate cortex (ACC), shared circuits of the aversive quality of affect, as well as the medial prefrontal cortex and temporal pole, central structures of the mentalizing network. However, the ACC/AI network activation was increased during vicarious embarrassment in response to a friend’s failures. At the same time, the precuneus, a brain region associated with self-related thoughts, showed a specific activation and an increase in functional connectivity with the shared circuits in the frontal lobe while observing friends. This might indicate a neural systems mechanism for greater affective sharing and self-involvement while people interact with close others that are relevant to oneself. PMID:26516170

  15. Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation

    PubMed Central

    Webber, Emily S.; Mankin, David E.

    2016-01-01

    Abstract The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats (Rattus norvegicus) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility. PMID:27822506

  16. Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation.

    PubMed

    Webber, Emily S; Mankin, David E; Cromwell, Howard C

    2016-01-01

    The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats (Rattus norvegicus) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility.

  17. Neural activations are related to body-shape, anxiety, and outcomes in adolescent anorexia nervosa.

    PubMed

    Xu, Jie; Harper, Jessica A; Van Enkevort, Erin A; Latimer, Kelsey; Kelley, Urszula; McAdams, Carrie J

    2017-04-01

    Anorexia nervosa (AN) is an illness that frequently begins during adolescence and involves weight loss. Two groups of adolescent girls (AN-A, weight-recovered following AN) and (HC-A, healthy comparison) completed a functional magnetic resonance imaging task involving social evaluations, allowing comparison of neural activations during self-evaluations, friend-evaluations, and perspective-taking self-evaluations. Although the two groups were not different in their whole-brain activations, anxiety and body shape concerns were correlated with neural activity in a priori regions of interest. A cluster in medial prefrontal cortex and the dorsal anterior cingulate correlated with the body shape questionnaire; subjects with more body shape concerns used this area less during self than friend evaluations. A cluster in medial prefrontal cortex and the cingulate also correlated with anxiety such that more anxiety was associated with engagement when disagreeing rather than agreeing with social terms during self-evaluations. This data suggests that differences in the utilization of frontal brain regions during social evaluations may contribute to both anxiety and body shape concerns in adolescents with AN. Clinical follow-up was obtained, allowing exploration of whether brain function early in course of disease relates to illness trajectory. The adolescents successful in recovery used the posterior cingulate and precuneus more for friend than self evaluations than the adolescents that remained ill, suggesting that neural differences related to social evaluations may provide clinical predictive value. Utilization of both MPFC and the precuneus during social and self evaluations may be a key biological component for achieving sustained weight-recovery in adolescents with AN.

  18. DNA methyltransferase activity is required for memory-related neural plasticity in the lateral amygdala.

    PubMed

    Maddox, Stephanie A; Watts, Casey S; Schafe, Glenn E

    2014-01-01

    We have previously shown that auditory Pavlovian fear conditioning is associated with an increase in DNA methyltransferase (DNMT) expression in the lateral amygdala (LA) and that intra-LA infusion or bath application of an inhibitor of DNMT activity impairs the consolidation of an auditory fear memory and long-term potentiation (LTP) at thalamic and cortical inputs to the LA, in vitro. In the present study, we use awake behaving neurophysiological techniques to examine the role of DNMT activity in memory-related neurophysiological changes accompanying fear memory consolidation and reconsolidation in the LA, in vivo. We show that auditory fear conditioning results in a training-related enhancement in the amplitude of short-latency auditory-evoked field potentials (AEFPs) in the LA. Intra-LA infusion of a DNMT inhibitor impairs both fear memory consolidation and, in parallel, the consolidation of training-related neural plasticity in the LA; that is, short-term memory (STM) and short-term training-related increases in AEFP amplitude in the LA are intact, while long-term memory (LTM) and long-term retention of training-related increases in AEFP amplitudes are impaired. In separate experiments, we show that intra-LA infusion of a DNMT inhibitor following retrieval of an auditory fear memory has no effect on post-retrieval STM or short-term retention of training-related changes in AEFP amplitude in the LA, but significantly impairs both post-retrieval LTM and long-term retention of AEFP amplitude changes in the LA. These findings are the first to demonstrate the necessity of DNMT activity in the consolidation and reconsolidation of memory-associated neural plasticity, in vivo.

  19. Reward expectancy-related prefrontal neuronal activities: are they neural substrates of "affective" working memory?

    PubMed

    Watanabe, Masataka; Hikosaka, Kazuo; Sakagami, Masamichi; Shirakawa, Shu-ichiro

    2007-01-01

    Primate prefrontal delay neurons are involved in retaining task-relevant cognitive information in working memory (WM). Recent studies have also revealed primate prefrontal delay neurons that are related to reward/omission-of-reward expectancy. Such reward-related delay activities might constitute "affective WM" (Davidson, 2002). "Affective" and "cognitive" WM are both concerned with representing not what is currently being presented, but rather what was presented previously or might be presented in the future. However, according to the original and widely accepted definition, WM is the "temporary storage and manipulation of information for complex cognitive tasks". Reward/omission-of-reward expectancy-related neuronal activity is neither prerequisite nor essential for accurate task performance; thus, such activity is not considered to comprise the neural substrates of WM. Also, "affective WM" might not be an appropriate usage of the term "WM". We propose that WM- and reward/omission-of-reward expectancy-related neuronal activity are concerned with representing which response should be performed in order to attain a goal (reward) and the goal of the response, respectively. We further suggest that the prefrontal cortex (PFC) plays a crucial role in the integration of cognitive (for example, WM-related) and motivational (for example, reward expectancy-related) operations for goal-directed behaviour. The PFC could then send this integrated information to other brain areas to control the behaviour.

  20. Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology.

    PubMed

    Salamone, John D; Yohn, Samantha E; López-Cruz, Laura; San Miguel, Noemí; Correa, Mercè

    2016-05-01

    Motivation has been defined as the process that allows organisms to regulate their internal and external environment, and control the probability, proximity and availability of stimuli. As such, motivation is a complex process that is critical for survival, which involves multiple behavioural functions mediated by a number of interacting neural circuits. Classical theories of motivation suggest that there are both directional and activational aspects of motivation, and activational aspects (i.e. speed and vigour of both the instigation and persistence of behaviour) are critical for enabling organisms to overcome work-related obstacles or constraints that separate them from significant stimuli. The present review discusses the role of brain dopamine and related circuits in behavioural activation, exertion of effort in instrumental behaviour, and effort-related decision-making, based upon both animal and human studies. Impairments in behavioural activation and effort-related aspects of motivation are associated with psychiatric symptoms such as anergia, fatigue, lassitude and psychomotor retardation, which cross multiple pathologies, including depression, schizophrenia, and Parkinson's disease. Therefore, this review also attempts to provide an interdisciplinary approach that integrates findings from basic behavioural neuroscience, behavioural economics, clinical neuropsychology, psychiatry, and neurology, to provide a coherent framework for future research and theory in this critical field. Although dopamine systems are a critical part of the brain circuitry regulating behavioural activation, exertion of effort, and effort-related decision-making, mesolimbic dopamine is only one part of a distributed circuitry that includes multiple neurotransmitters and brain areas. Overall, there is a striking similarity between the brain areas involved in behavioural activation and effort-related processes in rodents and in humans. Animal models of effort-related decision

  1. Trait self-esteem and neural activities related to self-evaluation and social feedback

    PubMed Central

    Yang, Juan; Xu, Xiaofan; Chen, Yu; Shi, Zhenhao; Han, Shihui

    2016-01-01

    Self-esteem has been associated with neural responses to self-reflection and attitude toward social feedback but in different brain regions. The distinct associations might arise from different tasks or task-related attitudes in the previous studies. The current study aimed to clarify these by investigating the association between self-esteem and neural responses to evaluation of one’s own personality traits and of others’ opinion about one’s own personality traits. We scanned 25 college students using functional MRI during evaluation of oneself or evaluation of social feedback. Trait self-esteem was measured using the Rosenberg self-esteem scale after scanning. Whole-brain regression analyses revealed that trait self-esteem was associated with the bilateral orbitofrontal activity during evaluation of one’s own positive traits but with activities in the medial prefrontal cortex, posterior cingulate, and occipital cortices during evaluation of positive social feedback. Our findings suggest that trait self-esteem modulates the degree of both affective processes in the orbitofrontal cortex during self-reflection and cognitive processes in the medial prefrontal cortex during evaluation of social feedback. PMID:26842975

  2. Stress-related noradrenergic activity prompts large-scale neural network reconfiguration.

    PubMed

    Hermans, Erno J; van Marle, Hein J F; Ossewaarde, Lindsey; Henckens, Marloes J A G; Qin, Shaozheng; van Kesteren, Marlieke T R; Schoots, Vincent C; Cousijn, Helena; Rijpkema, Mark; Oostenveld, Robert; Fernández, Guillén

    2011-11-25

    Acute stress shifts the brain into a state that fosters rapid defense mechanisms. Stress-related neuromodulators are thought to trigger this change by altering properties of large-scale neural populations throughout the brain. We investigated this brain-state shift in humans. During exposure to a fear-related acute stressor, responsiveness and interconnectivity within a network including cortical (frontoinsular, dorsal anterior cingulate, inferotemporal, and temporoparietal) and subcortical (amygdala, thalamus, hypothalamus, and midbrain) regions increased as a function of stress response magnitudes. β-adrenergic receptor blockade, but not cortisol synthesis inhibition, diminished this increase. Thus, our findings reveal that noradrenergic activation during acute stress results in prolonged coupling within a distributed network that integrates information exchange between regions involved in autonomic-neuroendocrine control and vigilant attentional reorienting.

  3. Investigating age-related changes in anterior and posterior neural activity throughout the information processing stream

    PubMed Central

    Alperin, Brittany R.; Tusch, Erich S.; Mott, Katherine K.; Holcomb, Phillip J.; Daffner, Kirk R.

    2015-01-01

    Event-related potential (ERP) and other functional imaging studies often demonstrate age-related increases in anterior neural activity and decreases in posterior activity while subjects carry out task demands. It remains unclear whether this “anterior shift” is limited to late cognitive operations like those indexed by the P3 component, or is evident during other stages of information processing. The temporal resolution of ERPs provided an opportunity to address this issue. Temporospatial principal component analysis (PCA) was used to identify underlying components that may be obscured by overlapping ERP waveforms. ERPs were measured during a visual oddball task in 26 young, 26 middle-aged, and 29 old subjects who were well-matched for IQ, executive function, education, and task performance. PCA identified six anterior factors peaking between ~140 ms and 810 ms, and four posterior factors peaking between ~300 ms and 810 ms. There was an age-related increase in the amplitude of anterior factors between ~200 and 500 ms, and an age-associated decrease in amplitude of posterior factors after ~ 500 ms. The increase in anterior processing began as early as middle-age, was sustained throughout old age, and appeared to be linear in nature. These results suggest that age-associated increases in anterior activity occur after early sensory processing has taken place, and are most prominent during a period in which attention is being marshaled to evaluate a stimulus. In contrast, age-related decreases in posterior activity manifest during operations involved in stimulus categorization, post-decision monitoring, and preparation for an upcoming event. PMID:26295684

  4. Neural relativity principle

    NASA Astrophysics Data System (ADS)

    Koulakov, Alexei

    Olfaction is the final frontier of our senses - the one that is still almost completely mysterious to us. Despite extensive genetic and perceptual data, and a strong push to solve the neural coding problem, fundamental questions about the sense of smell remain unresolved. Unlike vision and hearing, where relatively straightforward relationships between stimulus features and neural responses have been foundational to our understanding sensory processing, it has been difficult to quantify the properties of odorant molecules that lead to olfactory percepts. In a sense, we do not have olfactory analogs of ``red'', ``green'' and ``blue''. The seminal work of Linda Buck and Richard Axel identified a diverse family of about 1000 receptor molecules that serve as odorant sensors in the nose. However, the properties of smells that these receptors detect remain a mystery. I will review our current understanding of the molecular properties important to the olfactory system. I will also describe a theory that explains how odorant identity can be preserved despite substantial changes in the odorant concentration.

  5. How and when the fMRI BOLD signal relates to underlying neural activity: The danger in dissociation

    PubMed Central

    Ekstrom, Arne

    2013-01-01

    Functional magnetic resonance imaging (fMRI) has become the dominant means of measuring behavior-related neural activity in the human brain. Yet the relation between the blood oxygen-level dependent (BOLD) signal and underlying neural activity remains an open and actively researched question. A widely accepted model, established for sensory neo-cortex, suggests that the BOLD signal reflects peri-synaptic activity in the form of the local field potential rather than the spiking rate of individual neurons. Several recent experimental results, however, suggest situations in which BOLD, spiking, and the local field potential dissociate. Two different models are discussed, based on the literature reviewed to account for this dissociation, a circuitry-based and vascular-based explanation. Both models are found to account for existing data under some testing situations and in certain brain regions. Because both the vascular and local circuitry-based explanations challenge the BOLD-LFP coupling model, these models provide guidance in predicting when BOLD can be expected to reflect neural processing and when the underlying relation with BOLD may be more complex than a direct correspondence. PMID:20026191

  6. Imaging evolutionarily conserved neural networks: preferential activation of the olfactory system by food-related odor.

    PubMed

    Kulkarni, Praveen; Stolberg, Tara; Sullivanjr, J M; Ferris, Craig F

    2012-04-21

    Rodents routinely forge and rely on hippocampal-dependent spatial memory to guide them to sources of caloric rich food in their environment. Has evolution affected the olfactory system and its connections to the hippocampus and limbic cortex, so rodents have an innate sensitivity to energy rich food and their location? To test this notion, we used functional magnetic resonance imaging in awake rats to observe changes in brain activity in response to four odors: benzaldehyde (almond odor), isoamyl acetate (banana odor), methyl benzoate (rosy odor), and limonene (citrus odor). We chose the almond odor because nuts are high in calories and would be expected to convey greater valance as compared to the other odors. Moreover, the standard food chow is devoid of nuts, so laboratory bred rats would not have any previous exposure to this food. Activation maps derived from computational analysis using a 3D segmented rat MRI atlas were dramatically different between odors. Animals exposed to banana, rosy and citrus odors showed modest activation of the primary olfactory system, hippocampus and limbic cortex. However, animals exposed to almond showed a robust increase in brain activity in the primary olfactory system particularly the main olfactory bulb, anterior olfactory nucleus and tenia tecta. The most significant difference in brain activation between odors was observed in the hippocampus and limbic cortex. These findings show that fMRI can be used to identify neural circuits that have an innate sensitivity to environmental stimuli that may help in an animal's survival.

  7. Repetition-Related Reductions in Neural Activity during Emotional Simulations of Future Events

    PubMed Central

    2015-01-01

    Simulations of future experiences are often emotionally arousing, and the tendency to repeatedly simulate negative future outcomes has been identified as a predictor of the onset of symptoms of anxiety. Nonetheless, next to nothing is known about how the healthy human brain processes repeated simulations of emotional future events. In this study, we present a paradigm that can be used to study repeated simulations of the emotional future in a manner that overcomes phenomenological confounds between positive and negative events. The results show that pulvinar nucleus and orbitofrontal cortex respectively demonstrate selective reductions in neural activity in response to frequently as compared to infrequently repeated simulations of negative and positive future events. Implications for research on repeated simulations of the emotional future in both non-clinical and clinical populations are discussed. PMID:26390294

  8. Tracking real-time neural activation of conceptual knowledge using single-trial event-related potentials.

    PubMed

    Amsel, Ben D

    2011-04-01

    Empirically derived semantic feature norms categorized into different types of knowledge (e.g., visual, functional, auditory) can be summed to create number-of-feature counts per knowledge type. Initial evidence suggests several such knowledge types may be recruited during language comprehension. The present study provides a more detailed understanding of the timecourse and intensity of influence of several such knowledge types on real-time neural activity. A linear mixed-effects model was applied to single trial event-related potentials for 207 visually presented concrete words measured on total number of features (semantic richness), imageability, and number of visual motion, color, visual form, smell, taste, sound, and function features. Significant influences of multiple feature types occurred before 200ms, suggesting parallel neural computation of word form and conceptual knowledge during language comprehension. Function and visual motion features most prominently influenced neural activity, underscoring the importance of action-related knowledge in computing word meaning. The dynamic time courses and topographies of these effects are most consistent with a flexible conceptual system wherein temporally dynamic recruitment of representations in modal and supramodal cortex are a crucial element of the constellation of processes constituting word meaning computation in the brain.

  9. The neural network for tool-related cognition: An activation likelihood estimation meta-analysis of 70 neuroimaging contrasts

    PubMed Central

    Ishibashi, Ryo; Pobric, Gorana; Saito, Satoru; Lambon Ralph, Matthew A.

    2016-01-01

    ABSTRACT The ability to recognize and use a variety of tools is an intriguing human cognitive function. Multiple neuroimaging studies have investigated neural activations with various types of tool-related tasks. In the present paper, we reviewed tool-related neural activations reported in 70 contrasts from 56 neuroimaging studies and performed a series of activation likelihood estimation (ALE) meta-analyses to identify tool-related cortical circuits dedicated either to general tool knowledge or to task-specific processes. The results indicate the following: (a) Common, task-general processing regions for tools are located in the left inferior parietal lobule (IPL) and ventral premotor cortex; and (b) task-specific regions are located in superior parietal lobule (SPL) and dorsal premotor area for imagining/executing actions with tools and in bilateral occipito-temporal cortex for recognizing/naming tools. The roles of these regions in task-general and task-specific activities are discussed with reference to evidence from neuropsychology, experimental psychology and other neuroimaging studies. PMID:27362967

  10. A mathematical model relating cortical oxygenated and deoxygenated hemoglobin flows and volumes to neural activity

    NASA Astrophysics Data System (ADS)

    Cornelius, Nathan R.; Nishimura, Nozomi; Suh, Minah; Schwartz, Theodore H.; Doerschuk, Peter C.

    2015-08-01

    Objective. To describe a toolkit of components for mathematical models of the relationship between cortical neural activity and space-resolved and time-resolved flows and volumes of oxygenated and deoxygenated hemoglobin motivated by optical intrinsic signal imaging (OISI). Approach. Both blood flow and blood volume and both oxygenated and deoxygenated hemoglobin and their interconversion are accounted for. Flow and volume are described by including analogies to both resistive and capacitive electrical circuit elements. Oxygenated and deoxygenated hemoglobin and their interconversion are described by generalization of Kirchhoff's laws based on well-mixed compartments. Main results. Mathematical models built from this toolkit are able to reproduce experimental single-stimulus OISI results that are described in papers from other research groups and are able to describe the response to multiple-stimuli experiments as a sublinear superposition of responses to the individual stimuli. Significance. The same assembly of tools from the toolkit but with different parameter values is able to describe effects that are considered distinctive, such as the presence or absence of an initial decrease in oxygenated hemoglobin concentration, indicating that the differences might be due to unique parameter values in a subject rather than different fundamental mechanisms.

  11. Disrupting neural activity related to awake-state sharp wave-ripple complexes prevents hippocampal learning.

    PubMed

    Nokia, Miriam S; Mikkonen, Jarno E; Penttonen, Markku; Wikgren, Jan

    2012-01-01

    Oscillations in hippocampal local-field potentials (LFPs) reflect the crucial involvement of the hippocampus in memory trace formation: theta (4-8 Hz) oscillations and ripples (~200 Hz) occurring during sharp waves are thought to mediate encoding and consolidation, respectively. During sharp wave-ripple complexes (SPW-Rs), hippocampal cell firing closely follows the pattern that took place during the initial experience, most likely reflecting replay of that event. Disrupting hippocampal ripples using electrical stimulation either during training in awake animals or during sleep after training retards spatial learning. Here, adult rabbits were trained in trace eyeblink conditioning, a hippocampus-dependent associative learning task. A bright light was presented to the animals during the inter-trial interval (ITI), when awake, either during SPW-Rs or irrespective of their neural state. Learning was particularly poor when the light was presented following SPW-Rs. While the light did not disrupt the ripple itself, it elicited a theta-band oscillation, a state that does not usually coincide with SPW-Rs. Thus, it seems that consolidation depends on neuronal activity within and beyond the hippocampus taking place immediately after, but by no means limited to, hippocampal SPW-Rs.

  12. Impact of negative affectively charged stimuli and response style on cognitive-control-related neural activation: an ERP study.

    PubMed

    Lamm, C; Pine, D S; Fox, N A

    2013-11-01

    The canonical AX-CPT task measures two forms of cognitive control: sustained goal-oriented control ("proactive" control) and transient changes in cognitive control following unexpected events ("reactive" control). We modified this task by adding negative and neutral International Affective Picture System (IAPS) pictures to assess the effects of negative emotion on these two forms of cognitive control. Proactive and reactive control styles were assessed based on measures of behavior and electrophysiology, including the N2 event-related potential component and source space activation (Low Resolution Tomography [LORETA]). We found slower reaction-times and greater DLPFC activation for negative relative to neutral stimuli. Additionally, we found that a proactive style of responding was related to less prefrontal activation (interpreted to reflect increased efficiency of processing) during actively maintained previously cued information and that a reactive style of responding was related to less prefrontal activation (interpreted to reflect increased efficiency of processing) during just-in-time environmentally triggered information. This pattern of results was evident in relatively neutral contexts, but in the face of negative emotion, these associations were not found, suggesting potential response style-by-emotion interaction effects on prefrontal neural activation.

  13. A non-invasive method to relate the timing of neural activity to white matter microstructural integrity.

    PubMed

    Stufflebeam, Steven M; Witzel, Thomas; Mikulski, Szymon; Hämäläinen, Matti S; Temereanca, Simona; Barton, Jason J S; Tuch, David S; Manoach, Dara S

    2008-08-15

    The neurophysiological basis of variability in the latency of evoked neural responses has been of interest for decades. We describe a method to identify white matter pathways that may contribute to inter-individual variability in the timing of neural activity. We investigated the relation of the latency of peak visual responses in occipital cortex as measured by magnetoencephalography (MEG) to fractional anisotropy (FA) in the entire brain as measured with diffusion tensor imaging (DTI) in eight healthy young adults. This method makes no assumptions about the anatomy of white matter connections. Visual responses were evoked during a saccadic paradigm and were time-locked to arrival at a saccadic goal. The latency of the peak visual response was inversely related to FA in bilateral parietal and right lateral frontal white matter adjacent to cortical regions that modulate early visual responses. These relations suggest that biophysical properties of white matter affect the timing of early visual responses. This preliminary report demonstrates a non-invasive, unbiased method to relate the timing information from evoked-response experiments to the biophysical properties of white matter measured with DTI.

  14. A non-invasive method to relate the timing of neural activity to white matter microstructural integrity

    PubMed Central

    Stufflebeam, Steven M.; Witzel, Thomas; Mikulski, Szymon; Hämäläinen, Matti S.; Temereanca, Simona; Barton, Jason J. S.; Tuch, David S.; Manoach, Dara S.

    2008-01-01

    The neurophysiological basis of variability in the latency of evoked neural responses has been of interest for decades. We describe a method to identify white matter pathways that may contribute to inter-individual variability in the timing of neural activity. We investigated the relation of the latency of peak visual responses in occipital cortex as measured by magnetoencephalography (MEG) to fractional anisotropy (FA) in the entire brain as measured with diffusion tensor imaging (DTI) in eight healthy young adults. This method makes no assumptions about the anatomy of white matter connections. Visual responses were evoked during a saccadic paradigm and were time-locked to arrival at a saccadic goal. The latency of the peak visual response was inversely related to FA in bilateral parietal and right lateral frontal white matter adjacent to cortical regions that modulate early visual responses. These relations suggest that biophysical properties of white matter affect the timing of early visual responses. This preliminary report demonstrates a non-invasive, unbiased method to relate the timing information from evoked-response experiments to the biophysical properties of white matter measured with DTI. PMID:18565766

  15. Functional activation and neural networks in women with posttraumatic stress disorder related to intimate partner violence

    PubMed Central

    Simmons, Alan; Paulus, Martin P.; Thorp, Steven R.; Matthews, Scott C.; Norman, Sonya B.; Stein, Murray B.

    2008-01-01

    Background Intimate partner violence (IPV) is one of the most common causes of posttraumatic stress disorder (PTSD) in women. Victims of IPV are often preoccupied by the anticipation of impending harm. This investigation tested the hypothesis that IPV-related PTSD individuals show exaggerated insula reactivity to the anticipation of aversive stimuli. Methods Fifteen women with a history of IPV and consequent PTSD (IPV-PTSD) and 15 non-traumatized control (NTC) women performed a task involving cued anticipation to images of positive and negative events during functional magnetic resonance imaging. Results Both groups showed increased activation of bilateral anterior insula during anticipation of negative images minus anticipation of positive images. Activation in right anterior/middle insula was significantly greater in the IPV-PTSD relative to the NTC group. Functional connectivity analysis revealed that changes in activation in right middle insula and bilateral anterior insula were more strongly associated with amygdala activation changes in NTC than in IPV-PTSD subjects. Conclusions Increased activation in the anterior/middle insula during negative anticipation in women with IPV-related PTSD. These findings in women with IPV could be a consequence of the IPV exposure, reflect pre-existing differences in insular function, or due to the development of PTSD. Thus, future longitudinal studi4s need to examine these possibilities. PMID:18639236

  16. I think therefore I am: Rest-related prefrontal cortex neural activity is involved in generating the sense of self.

    PubMed

    Gruberger, M; Levkovitz, Y; Hendler, T; Harel, E V; Harari, H; Ben Simon, E; Sharon, H; Zangen, A

    2015-05-01

    The sense of self has always been a major focus in the psychophysical debate. It has been argued that this complex ongoing internal sense cannot be explained by any physical measure and therefore substantiates a mind-body differentiation. Recently, however, neuro-imaging studies have associated self-referential spontaneous thought, a core-element of the ongoing sense of self, with synchronous neural activations during rest in the medial prefrontal cortex (PFC), as well as the medial and lateral parietal cortices. By applying deep transcranial magnetic stimulation (TMS) over human PFC before rest, we disrupted activity in this neural circuitry thereby inducing reports of lowered self-awareness and strong feelings of dissociation. This effect was not found with standard or sham TMS, or when stimulation was followed by a task instead of rest. These findings demonstrate for the first time a critical, causal role of intact rest-related PFC activity patterns in enabling integrated, enduring, self-referential mental processing.

  17. How number line estimation skills relate to neural activations in single digit subtraction problems.

    PubMed

    Berteletti, I; Man, G; Booth, J R

    2015-02-15

    The Number Line (NL) task requires judging the relative numerical magnitude of a number and estimating its value spatially on a continuous line. Children's skill on this task has been shown to correlate with and predict future mathematical competence. Neurofunctionally, this task has been shown to rely on brain regions involved in numerical processing. However, there is no direct evidence that performance on the NL task is related to brain areas recruited during arithmetical processing and that these areas are domain-specific to numerical processing. In this study, we test whether 8- to 14-year-old's behavioral performance on the NL task is related to fMRI activation during small and large single-digit subtraction problems. Domain-specific areas for numerical processing were independently localized through a numerosity judgment task. Results show a direct relation between NL estimation performance and the amount of the activation in key areas for arithmetical processing. Better NL estimators showed a larger problem size effect than poorer NL estimators in numerical magnitude (i.e., intraparietal sulcus) and visuospatial areas (i.e., posterior superior parietal lobules), marked by less activation for small problems. In addition, the direction of the activation with problem size within the IPS was associated with differences in accuracies for small subtraction problems. This study is the first to show that performance in the NL task, i.e. estimating the spatial position of a number on an interval, correlates with brain activity observed during single-digit subtraction problem in regions thought to be involved in numerical magnitude and spatial processes.

  18. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates

    PubMed Central

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-01-01

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys. DOI: http://dx.doi.org/10.7554/eLife.15441.001 PMID:27438411

  19. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    PubMed

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater

  20. Violence-related PTSD and neural activation when seeing emotionally charged male–female interactions

    PubMed Central

    Aue, Tatjana; Suardi, Francesca; Kutlikova, Hana; Cordero, Maria I.; Rossignol, Ana Sancho; Favez, Nicolas; Rusconi Serpa, Sandra; Schechter, Daniel S.

    2015-01-01

    Post-traumatic stress disorder (PTSD) is a disorder that involves impaired regulation of the fear response to traumatic reminders. This study tested how women with male-perpetrated interpersonal violence-related PTSD (IPV-PTSD) differed in their brain activation from healthy controls (HC) when exposed to scenes of male–female interaction of differing emotional content. Sixteen women with symptoms of IPV-PTSD and 19 HC participated in this study. During magnetic resonance imaging, participants watched a stimulus protocol of 23 different 20 s silent epochs of male–female interactions taken from feature films, which were neutral, menacing or prosocial. IPV-PTSD participants compared with HC showed (i) greater dorsomedial prefrontal cortex (dmPFC) and dorsolateral prefrontal cortex (dlPFC) activation in response to menacing vs prosocial scenes and (ii) greater anterior cingulate cortex (ACC), right hippocampus activation and lower ventromedial prefrontal cortex (vmPFC) activty in response to emotional vs neutral scenes. The fact that IPV-PTSD participants compared with HC showed lower activity of the ventral ACC during emotionally charged scenes regardless of the valence of the scenes suggests that impaired social perception among IPV-PTSD patients transcends menacing contexts and generalizes to a wider variety of emotionally charged male–female interactions. PMID:25062841

  1. Neural activity in relation to empirically derived personality syndromes in depression using a psychodynamic fMRI paradigm

    PubMed Central

    Taubner, Svenja; Wiswede, Daniel; Kessler, Henrik

    2013-01-01

    Objective: The heterogeneity between patients with depression cannot be captured adequately with existing descriptive systems of diagnosis and neurobiological models of depression. Furthermore, considering the highly individual nature of depression, the application of general stimuli in past research efforts may not capture the essence of the disorder. This study aims to identify subtypes of depression by using empirically derived personality syndromes, and to explore neural correlates of the derived personality syndromes. Materials and Methods: In the present exploratory study, an individually tailored and psychodynamically based functional magnetic resonance imaging paradigm using dysfunctional relationship patterns was presented to 20 chronically depressed patients. Results from the Shedler–Westen Assessment Procedure (SWAP-200) were analyzed by Q-factor analysis to identify clinically relevant subgroups of depression and related brain activation. Results: The principle component analysis of SWAP-200 items from all 20 patients lead to a two-factor solution: “Depressive Personality” and “Emotional-Hostile-Externalizing Personality.” Both factors were used in a whole-brain correlational analysis but only the second factor yielded significant positive correlations in four regions: a large cluster in the right orbitofrontal cortex (OFC), the left ventral striatum, a small cluster in the left temporal pole, and another small cluster in the right middle frontal gyrus. Discussion: The degree to which patients with depression score high on the factor “Emotional-Hostile-Externalizing Personality” correlated with relatively higher activity in three key areas involved in emotion processing, evaluation of reward/punishment, negative cognitions, depressive pathology, and social knowledge (OFC, ventral striatum, temporal pole). Results may contribute to an alternative description of neural correlates of depression showing differential brain activation dependent

  2. Neural Dynamics Underlying Event-Related Potentials

    NASA Technical Reports Server (NTRS)

    Shah, Ankoor S.; Bressler, Steven L.; Knuth, Kevin H.; Ding, Ming-Zhou; Mehta, Ashesh D.; Ulbert, Istvan; Schroeder, Charles E.

    2003-01-01

    There are two opposing hypotheses about the brain mechanisms underlying sensory event-related potentials (ERPs). One holds that sensory ERPs are generated by phase resetting of ongoing electroencephalographic (EEG) activity, and the other that they result from signal averaging of stimulus-evoked neural responses. We tested several contrasting predictions of these hypotheses by direct intracortical analysis of neural activity in monkeys. Our findings clearly demonstrate evoked response contributions to the sensory ERP in the monkey, and they suggest the likelihood that a mixed (Evoked/Phase Resetting) model may account for the generation of scalp ERPs in humans.

  3. Activation in Context: Differential Conclusions Drawn from Cross-Sectional and Longitudinal Analyses of Adolescents' Cognitive Control-Related Neural Activity.

    PubMed

    McCormick, Ethan M; Qu, Yang; Telzer, Eva H

    2017-01-01

    Although immature cognitive control, subserved by late-developing prefrontal regions, has been proposed to underlie increased risk taking during adolescence, it remains unclear what patterns of PFC activation represent mature brain states: more or less activation? One challenge to drawing cogent conclusions from extant work stems from its reliance on single-time point neuroimaging and cross-sectional comparisons, which are ill-suited for assessing the complex changes that characterize adolescence. This necessitates longitudinal fMRI work to track within-subject changes in PFC function and links to risk-taking behavior, which can serve as an external marker for maturation of neural systems involved in cognitive control. In the current study, 20 healthy adolescents (13 males) completed a go/nogo task during two fMRI scans, once at age 14 years and again at age 15 years. We found that the association between cognitive control-related VLPFC activation and risk-taking behavior reversed when examining wave 1 (W1) versus longitudinal change (W2 > W1) and wave 2 (W2) in neural activation, such that increased VLPFC activation at W1 was associated with lower risk taking, whereas longitudinal increases in cognitive control-related VLPFC activation as well as heightened VLPFC activation at W2 were associated with greater risk taking. Several steps were taken to disentangle potential alternative accounts that might explain these disparate results across time. Findings highlight the necessity of considering brain-behavior relationships in the context of ongoing developmental changes and suggests that using neuroimaging data at a single time point to predict behavioral changes can introduce interpretation errors when failing to account for changes in neural trajectories.

  4. Activation in Context: Differential Conclusions Drawn from Cross-Sectional and Longitudinal Analyses of Adolescents’ Cognitive Control-Related Neural Activity

    PubMed Central

    McCormick, Ethan M.; Qu, Yang; Telzer, Eva H.

    2017-01-01

    Although immature cognitive control, subserved by late-developing prefrontal regions, has been proposed to underlie increased risk taking during adolescence, it remains unclear what patterns of PFC activation represent mature brain states: more or less activation? One challenge to drawing cogent conclusions from extant work stems from its reliance on single-time point neuroimaging and cross-sectional comparisons, which are ill-suited for assessing the complex changes that characterize adolescence. This necessitates longitudinal fMRI work to track within-subject changes in PFC function and links to risk-taking behavior, which can serve as an external marker for maturation of neural systems involved in cognitive control. In the current study, 20 healthy adolescents (13 males) completed a go/nogo task during two fMRI scans, once at age 14 years and again at age 15 years. We found that the association between cognitive control-related VLPFC activation and risk-taking behavior reversed when examining wave 1 (W1) versus longitudinal change (W2 > W1) and wave 2 (W2) in neural activation, such that increased VLPFC activation at W1 was associated with lower risk taking, whereas longitudinal increases in cognitive control-related VLPFC activation as well as heightened VLPFC activation at W2 were associated with greater risk taking. Several steps were taken to disentangle potential alternative accounts that might explain these disparate results across time. Findings highlight the necessity of considering brain-behavior relationships in the context of ongoing developmental changes and suggests that using neuroimaging data at a single time point to predict behavioral changes can introduce interpretation errors when failing to account for changes in neural trajectories. PMID:28392763

  5. Temporal relation between neural activity and neurite pruning on a numerical model and a microchannel device with micro electrode array.

    PubMed

    Kondo, Yohei; Yada, Yuichiro; Haga, Tatsuya; Takayama, Yuzo; Isomura, Takuya; Jimbo, Yasuhiko; Fukayama, Osamu; Hoshino, Takayuki; Mabuchi, Kunihiko

    2017-04-29

    Synapse elimination and neurite pruning are essential processes for the formation of neuronal circuits. These regressive events depend on neural activity and occur in the early postnatal days known as the critical period, but what makes this temporal specificity is not well understood. One possibility is that the neural activities during the developmentally regulated shift of action of GABA inhibitory transmission lead to the critical period. Moreover, it has been reported that the shifting action of the inhibitory transmission on immature neurons overlaps with synapse elimination and neurite pruning and that increased inhibitory transmission by drug treatment could induce temporal shift of the critical period. However, the relationship among these phenomena remains unclear because it is difficult to experimentally show how the developmental shift of inhibitory transmission influences neural activities and whether the activities promote synapse elimination and neurite pruning. In this study, we modeled synapse elimination in neuronal circuits using the modified Izhikevich's model with functional shifting of GABAergic transmission. The simulation results show that synaptic pruning within a specified period like the critical period is spontaneously generated as a function of the developmentally shifting inhibitory transmission and that the specific firing rate and increasing synchronization of neural circuits are seen at the initial stage of the critical period. This temporal relationship was experimentally supported by an in vitro primary culture of rat cortical neurons in a microchannel on a multi-electrode array (MEA). The firing rate decreased remarkably between the 18-25 days in vitro (DIV), and following these changes in the firing rate, the neurite density was slightly reduced. Our simulation and experimental results suggest that decreasing neural activity due to developing inhibitory synaptic transmission could induce synapse elimination and neurite pruning

  6. Global rhythmic activities in hippocampal neural fields and neural coding.

    PubMed

    Ventriglia, Francesco

    2006-01-01

    Global oscillations of the neural field represent some of the most interesting expressions of the hippocampal activity, being related also to learning and memory. To study oscillatory activities of the CA3 field in theta range, a model of this sub-field of Hippocampus has been formulated. The model describes the firing activity of CA3 neuronal populations within the frame of a kinetic theory of neural systems and it has been used for computer simulations. The results show that the propagation of activities induced in the neural field by hippocampal afferents occurs only in narrow time windows confined by inhibitory barrages, whose time-course follows the theta rhythm. Moreover, during each period of a theta wave, the entire CA3 field bears a firing activity with peculiar space-time patterns, a sort of specific imprint, which can induce effects with similar patterns on brain regions driven by the hippocampal formation. The simulation has also demonstrated the ability of medial septum to influence the global activity of the CA3 pyramidal population through the control of the population of inhibitory interneurons. At last, the possible involvement of global population oscillations in neural coding has been discussed.

  7. Neural activity related to the processing of increasing monetary reward in smokers and nonsmokers.

    PubMed

    Martin-Soelch, C; Missimer, J; Leenders, K L; Schultz, W

    2003-08-01

    This study investigated the processing of increasing monetary reward in nonsmoking and smoking subjects. The choice of the subject populations has been motivated by the observation of differences between nonsmokers and smokers in response to rewarding stimuli in a previous study. Subjects performed a pattern recognition task with delayed response, while rCBF was measured with [H215O] PET. Correct responses to the task were reinforced with three different amounts of monetary reward. The subjects received the sum of the rewards at the end of the experiment. The results show that a cortico-subcortical loop, including the dorsolateral prefrontal cortex, the orbitofrontal cortex, the cingulate gyrus and the thalamus is involved in processing increasing monetary reward. Furthermore, the striatal response differentiates nonsmokers from smokers. Thus, we found significant correlations between rCBF increases in striatum and increasing monetary reward and between striatal rCBF increases and mood in nonsmokers, but not in smokers. Moreover, no significant mood changes among the different monetary rewards could be observed in smokers. We infer that the response of the striatum to reward is related to changes in subjective feelings. The differences between smokers and nonsmokers confirm our previous conclusions that the association between blood flow, performance, mood and amount of reward is more direct in nonsmokers.

  8. The neural control of bimanual movements in the elderly: Brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment.

    PubMed

    Goble, Daniel J; Coxon, James P; Van Impe, Annouchka; De Vos, Jeroen; Wenderoth, Nicole; Swinnen, Stephan P

    2010-08-01

    Coordinated hand use is an essential component of many activities of daily living. Although previous studies have demonstrated age-related behavioral deficits in bimanual tasks, studies that assessed the neural basis underlying such declines in function do not exist. In this fMRI study, 16 old and 16 young healthy adults performed bimanual movements varying in coordination complexity (i.e., in-phase, antiphase) and movement frequency (i.e., 45, 60, 75, 90% of critical antiphase speed) demands. Difficulty was normalized on an individual subject basis leading to group performances (measured by phase accuracy/stability) that were matched for young and old subjects. Despite lower overall movement frequency, the old group "overactivated" brain areas compared with the young adults. These regions included the supplementary motor area, higher order feedback processing areas, and regions typically ascribed to cognitive functions (e.g., inferior parietal cortex/dorsolateral prefrontal cortex). Further, age-related increases in activity in the supplementary motor area and left secondary somatosensory cortex showed positive correlations with coordinative ability in the more complex antiphase task, suggesting a compensation mechanism. Lastly, for both old and young subjects, similar modulation of neural activity was seen with increased movement frequency. Overall, these findings demonstrate for the first time that bimanual movements require greater neural resources for old adults in order to match the level of performance seen in younger subjects. Nevertheless, this increase in neural activity does not preclude frequency-induced neural modulations as a function of increased task demand in the elderly.

  9. The neural implementation of task rule activation in the task-cuing paradigm: an event-related fMRI study.

    PubMed

    Shi, Yiquan; Zhou, Xiaolin; Müller, Hermann J; Schubert, Torsten

    2010-07-01

    To isolate the neural correlates for task rule activation from those related to general task preparation, the effect of a cue explicitly specifying the S-R correspondences (rule-cue) was contrasted with the effects of a cue specifying only the task to performed (task-cue). While the task-cue provides merely information about the type of task, the rule-cue is explicit about both the task type and the task rule (i.e., the set of S-R correspondences). The rule-cue was expected to activate the task rule more efficiently in the preparation period (prior to target presentation); by contrast, in the task-cue condition, part of the task rule activation was expected to be postponed into the task execution period (following the presentation of the target). In an event-related fMRI experiment, we found the right anterior and middle parts of the middle frontal and superior frontal gyri, the right inferior frontal junction, the pre-SMA, as well as the right superior and inferior parietal lobes to show larger activation elicited by the rule-cue than by the task-cue prior to target presentation. Conversely, the results revealed larger activations in these regions in the task-cue than in the rule-cue condition during the task execution period. In summary, this study identified some of the neural correlates of task rule activation and showed that these are a subset of the general task preparation network.

  10. Neural systems recruited by drug- and food-related cues: studies of gene activation in corticolimbic regions.

    PubMed

    Kelley, Ann E; Schiltz, Craig A; Landry, Charles F

    2005-09-15

    In order to survive, animals must acquire information about the reward value of stimuli in their environment. This process partly depends on the ability of the organism to make associations between the environmental context and the internal representation of value. While this type of learning probably evolved in order to promote behaviors that increase fitness (e.g., ingestive and sexual behavior), neuropsychological research utilizing addictive drugs, which are potent artificial reinforcers, has led to a deeper understanding of reinforcement mechanisms. Through these associations, sensory cues can acquire emotional salience and motivational properties. Exposure to drug-related cues in human addicts results in drug craving and localized activation of central circuits that are known to mediate cue-induced reinstatement of drug-seeking behavior in animal models of relapse. Similar regional activation patterns occur in humans in response to cues associated with foods. Furthermore, drug- and food-related cues not only activate common neuroanatomical regions but also result in similar activity-regulated gene expression programs within these shared areas. Here we discuss recent studies from our laboratory that investigate gene expression patterns elicited by exposure to palatable food- or drug-related cues. These studies suggest that the central nervous system stores and utilizes information about 'natural' and drug reinforcers in similar ways, both neuroanatomically and biochemically. These considerations may have important implications for the pharmacological and cognitive-behavioral treatments of substance use disorders, addiction, eating disorders, and obesity.

  11. Modeling neural activity with cumulative damage distributions.

    PubMed

    Leiva, Víctor; Tejo, Mauricio; Guiraud, Pierre; Schmachtenberg, Oliver; Orio, Patricio; Marmolejo-Ramos, Fernando

    2015-10-01

    Neurons transmit information as action potentials or spikes. Due to the inherent randomness of the inter-spike intervals (ISIs), probabilistic models are often used for their description. Cumulative damage (CD) distributions are a family of probabilistic models that has been widely considered for describing time-related cumulative processes. This family allows us to consider certain deterministic principles for modeling ISIs from a probabilistic viewpoint and to link its parameters to values with biological interpretation. The CD family includes the Birnbaum-Saunders and inverse Gaussian distributions, which possess distinctive properties and theoretical arguments useful for ISI description. We expand the use of CD distributions to the modeling of neural spiking behavior, mainly by testing the suitability of the Birnbaum-Saunders distribution, which has not been studied in the setting of neural activity. We validate this expansion with original experimental and simulated electrophysiological data.

  12. Aging Affects Neural Synchronization to Speech-Related Acoustic Modulations

    PubMed Central

    Goossens, Tine; Vercammen, Charlotte; Wouters, Jan; van Wieringen, Astrid

    2016-01-01

    As people age, speech perception problems become highly prevalent, especially in noisy situations. In addition to peripheral hearing and cognition, temporal processing plays a key role in speech perception. Temporal processing of speech features is mediated by synchronized activity of neural oscillations in the central auditory system. Previous studies indicate that both the degree and hemispheric lateralization of synchronized neural activity relate to speech perception performance. Based on these results, we hypothesize that impaired speech perception in older persons may, in part, originate from deviances in neural synchronization. In this study, auditory steady-state responses that reflect synchronized activity of theta, beta, low and high gamma oscillations (i.e., 4, 20, 40, and 80 Hz ASSR, respectively) were recorded in young, middle-aged, and older persons. As all participants had normal audiometric thresholds and were screened for (mild) cognitive impairment, differences in synchronized neural activity across the three age groups were likely to be attributed to age. Our data yield novel findings regarding theta and high gamma oscillations in the aging auditory system. At an older age, synchronized activity of theta oscillations is increased, whereas high gamma synchronization is decreased. In contrast to young persons who exhibit a right hemispheric dominance for processing of high gamma range modulations, older adults show a symmetrical processing pattern. These age-related changes in neural synchronization may very well underlie the speech perception problems in aging persons. PMID:27378906

  13. The neural basis for spatial relations.

    PubMed

    Amorapanth, Prin X; Widick, Page; Chatterjee, Anjan

    2010-08-01

    Studies in semantics traditionally focus on knowledge of objects. By contrast, less is known about how objects relate to each other. In an fMRI study, we tested the hypothesis that the neural processing of categorical spatial relations between objects is distinct from the processing of the identity of objects. Attending to the categorical spatial relations compared with attending to the identity of objects resulted in greater activity in superior and inferior parietal cortices (especially on the left) and posterior middle frontal cortices bilaterally. In an accompanying lesion study, we tested the hypothesis that comparable areas would be necessary to represent categorical spatial relations and that the hemispheres differ in their biases to process categorical or coordinate spatial relations. Voxel-based lesion symptom mapping results were consistent with the fMRI observations. Damage to a network comprising left inferior frontal, supramarginal, and angular gyri resulted in behavioral impairment on categorical spatial judgments. Homologous right brain damage also produced such deficits, albeit less severely. The reverse pattern was observed for coordinate spatial processing. Right brain damage to the middle temporal gyrus produced more severe deficits than left hemisphere damage. Additional analyses suggested that some areas process both kinds of spatial relations conjointly and others distinctly. The left angular and inferior frontal gyrus processes coordinate spatial information over and above the categorical processing. The anterior superior temporal gyrus appears to process categorical spatial information uniquely. No areas within the right hemisphere processed categorical spatial information uniquely. Taken together, these findings suggest that the functional neuroanatomy of categorical and coordinate processing is more nuanced than implied by a simple hemispheric dichotomy.

  14. Role of sympathetic neural activation in age- and habitual exercise-related differences in the thermic effect of food.

    PubMed

    Jones, Pamela Parker; Van Pelt, Rachael E; Johnson, David G; Seals, Douglas R

    2004-10-01

    The thermic effect of food (TEF) declines with advancing age in adult humans but is enhanced in the habitually exercising state. The responsiveness of the sympathetic nervous system (SNS) has been implicated in these differences in TEF. We tested the hypotheses that 1) the reduction in TEF with aging is associated with an attenuated SNS response to acute energy intake; and 2) the greater TEF observed in endurance exercise-trained adults is associated with an augmented SNS response. Four groups of healthy men were studied: 16 young and 11 older sedentary men and nine young and 10 older habitually exercising men. Metabolic rate (indirect calorimetry, ventilated hood), skeletal muscle sympathetic nerve activity (MSNA; peroneal microneurography), and plasma norepinephrine and plasma epinephrine concentrations were measured before and for up to 4 h after ingestion of a carbohydrate drink (2.5 g/kg fat-free mass). TEF was approximately 50% greater in young compared with older men (P < 0.05) and approximately 25% greater in exercising compared with sedentary men (P < 0.05). In contrast, the MSNA, plasma norepinephrine, and plasma epinephrine responses were not different among the four groups. Covarying for MSNA did not significantly alter the observed differences in TEF. Habitual exercise status did not affect the age-associated decline in TEF. These findings demonstrate that altered postprandial whole-body and skeletal muscle SNS activation is not an important mechanism mediating either the reduction in TEF with aging or the augmented TEF associated with the exercise-trained state in healthy men. Differences in beta-adrenergic responsiveness to postprandial sympathoadrenal stimulation and/or nonsympathetic adrenergic influences likely explain the age- and habitual exercise-related differences in TEF.

  15. Age-related neurogenesis decline in the subventricular zone is associated with specific cell cycle regulation changes in activated neural stem cells

    PubMed Central

    Daynac, Mathieu; Morizur, Lise; Chicheportiche, Alexandra; Mouthon, Marc-André; Boussin, François D.

    2016-01-01

    Although neural stem cells (NSCs) sustain continuous neurogenesis throughout the adult lifespan of mammals, they progressively exhibit proliferation defects that contribute to a sharp reduction in subventricular neurogenesis during aging. However, little is known regarding the early age-related events in neurogenic niches. Using a fluorescence-activated cell sorting technique that allows for the prospective purification of the main neurogenic populations from the subventricular zone (SVZ), we demonstrated an early decline in adult neurogenesis with a dramatic loss of progenitor cells in 4 month-old young adult mice. Whereas the activated and quiescent NSC pools remained stable up to 12 months, the proliferative status of activated NSCs was already altered by 6 months, with an overall extension of the cell cycle resulting from a specific lengthening of G1. Whole genome analysis of activated NSCs from 2- and 6-month-old mice further revealed distinct transcriptomic and molecular signatures, as well as a modulation of the TGFβ signalling pathway. Our microarray study constitutes a cogent identification of new molecular players and signalling pathways regulating adult neurogenesis and its early modifications. PMID:26893147

  16. The effect of moderate acute psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans.

    PubMed

    Qin, Shaozheng; Cousijn, Helena; Rijpkema, Mark; Luo, Jing; Franke, Barbara; Hermans, Erno J; Fernández, Guillén

    2012-01-01

    Acute stress has an important impact on higher-order cognitive functions supported by the prefrontal cortex (PFC) such as working memory (WM). In rodents, such effects are mediated by stress-induced alterations in catecholaminergic signaling, but human data in support of this notion is lacking. A common variation in the gene encoding Catechol-O-methyltransferase (COMT) is known to affect basal catecholaminergic availability and PFC functions. Here, we investigated whether this genetic variation (Val158Met) modulates effects of stress on WM-related neural activity in humans. In a counterbalanced crossover design, 41 healthy young men underwent functional magnetic resonance imaging (fMRI) while performing a numerical N-back WM task embedded in a stressful or neutral context. Moderate psychological stress was induced by a well-controlled procedure involving viewing strongly aversive (versus emotionally neutral) movie material in combination with a self-referencing instruction. Acute stress resulted in genotype-dependent effects on WM performance and WM-related activation in the dorsolateral PFC, with a relatively negative impact of stress in COMT Met-homozygotes as opposed to a relatively positive effect in Val-carriers. A parallel interaction was found for WM-related deactivation in the anterior medial temporal lobe (MTL). Our findings suggest that individuals with higher baseline catecholaminergic availability (COMT Met-homozygotes) appear to reach a supraoptimal state under moderate levels of stress. In contrast, individuals with lower baselines (Val-carriers) may reach an optimal state. Thus, our data show that effects of acute stress on higher-order cognitive functions vary depending on catecholaminergic availability at baseline, and thereby corroborate animal models of catecholaminergic signaling that propose a non-linear relationship between catecholaminergic activity and prefrontal functions.

  17. Persistent neural activity in head direction cells

    NASA Technical Reports Server (NTRS)

    Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investigator)

    2003-01-01

    Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have been conducted to elucidate how this signal is generated. The number of HD and angular head velocity cells was estimated for several brain areas involved in the generation of the HD signal, including the postsubiculum, anterior dorsal thalamus, lateral mammillary nuclei and dorsal tegmental nucleus. The HD cell signal has many features in common with what is known about how neural integration is accomplished in the oculomotor system. The nature of the HD cell signal makes it an attractive candidate for using neural network models to elucidate the signal's underlying mechanisms. The conditions that any network model must satisfy in order to accurately represent how the nervous system generates this signal are highlighted and areas where key information is missing are discussed.

  18. Deep Neural Networks with Multistate Activation Functions

    PubMed Central

    Cai, Chenghao; Xu, Yanyan; Ke, Dengfeng; Su, Kaile

    2015-01-01

    We propose multistate activation functions (MSAFs) for deep neural networks (DNNs). These MSAFs are new kinds of activation functions which are capable of representing more than two states, including the N-order MSAFs and the symmetrical MSAF. DNNs with these MSAFs can be trained via conventional Stochastic Gradient Descent (SGD) as well as mean-normalised SGD. We also discuss how these MSAFs perform when used to resolve classification problems. Experimental results on the TIMIT corpus reveal that, on speech recognition tasks, DNNs with MSAFs perform better than the conventional DNNs, getting a relative improvement of 5.60% on phoneme error rates. Further experiments also reveal that mean-normalised SGD facilitates the training processes of DNNs with MSAFs, especially when being with large training sets. The models can also be directly trained without pretraining when the training set is sufficiently large, which results in a considerable relative improvement of 5.82% on word error rates. PMID:26448739

  19. Singing-related neural activity distinguishes two putative pallidal cell types in the songbird basal ganglia: comparison to the primate internal and external pallidal segments

    PubMed Central

    Goldberg, Jesse H.; Adler, Avital; Bergman, Hagai; Fee, Michale S.

    2010-01-01

    The songbird area X is a basal ganglia homologue that contains two pallidal cell types—local neurons that project within the basal ganglia and output neurons that project to the thalamus. Based on these projections, it has been proposed that these classes are structurally homologous to the primate external (GPe) and internal (GPi) pallidal segments. To test the hypothesis that the two area X pallidal types are functionally homologous to GPe and GPi neurons, we recorded from neurons in area X of singing juvenile male zebra finches, and directly compare their firing patterns to neurons recorded in the primate pallidus. In area X, we find two cell classes that exhibited high firing (HF) rates (>60Hz) characteristic of pallidal neurons. HF-1 neurons, like most GPe neurons we examined, exhibited large firing rate modulations, including bursts and long pauses. In contrast, HF-2 neurons, like GPi neurons, discharged continuously without bursts or long pauses. To test if HF-2 neurons were the output neurons that project to the thalamus, we next recorded directly from pallidal axon terminals in thalamic nucleus DLM, and found that all terminals exhibited singing-related firing patterns indistinguishable from HF-2 neurons. Our data show that singing-related neural activity distinguishes two putative pallidal cell types in area X: thalamus-projecting neurons that exhibit activity similar to the primate GPi, and non-thalamus-projecting neurons that exhibit activity similar to the primate GPe. These results suggest that song learning in birds and motor learning in mammals employ conserved basal ganglia signaling strategies. PMID:20484651

  20. Associative memory model with spontaneous neural activity

    NASA Astrophysics Data System (ADS)

    Kurikawa, Tomoki; Kaneko, Kunihiko

    2012-05-01

    We propose a novel associative memory model wherein the neural activity without an input (i.e., spontaneous activity) is modified by an input to generate a target response that is memorized for recall upon the same input. Suitable design of synaptic connections enables the model to memorize input/output (I/O) mappings equaling 70% of the total number of neurons, where the evoked activity distinguishes a target pattern from others. Spontaneous neural activity without an input shows chaotic dynamics but keeps some similarity with evoked activities, as reported in recent experimental studies.

  1. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Small-World Connections to Induce Firing Activity and Phase Synchronization in Neural Networks

    NASA Astrophysics Data System (ADS)

    Qin, Ying-Hua; Luo, Xiao-Shu

    2009-07-01

    We investigate how the firing activity and the subsequent phase synchronization of neural networks with small-world topological connections depend on the probability p of adding-links. Network elements are described by two-dimensional map neurons (2DMNs) in a quiescent original state. Neurons burst for a given coupling strength when the topological randomness p increases, which is absent in a regular-lattice neural network. The bursting activity becomes frequent and synchronization of neurons emerges as topological randomness further increases. The maximal firing frequency and phase synchronization appear at a particular value of p. However, if the randomness p further increases, the firing frequency decreases and synchronization is apparently destroyed.

  2. Neural activation during response competition

    NASA Technical Reports Server (NTRS)

    Hazeltine, E.; Poldrack, R.; Gabrieli, J. D.

    2000-01-01

    The flanker task, introduced by Eriksen and Eriksen [Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143--149], provides a means to selectively manipulate the presence or absence of response competition while keeping other task demands constant. We measured brain activity using functional magnetic resonance imaging (fMRI) during performance of the flanker task. In accordance with previous behavioral studies, trials in which the flanking stimuli indicated a different response than the central stimulus were performed significantly more slowly than trials in which all the stimuli indicated the same response. This reaction time effect was accompanied by increases in activity in four regions: the right ventrolateral prefrontal cortex, the supplementary motor area, the left superior parietal lobe, and the left anterior parietal cortex. The increases were not due to changes in stimulus complexity or the need to overcome previously learned associations between stimuli and responses. Correspondences between this study and other experiments manipulating response interference suggest that the frontal foci may be related to response inhibition processes whereas the posterior foci may be related to the activation of representations of the inappropriate responses.

  3. Age-Related Changes in 1/f Neural Electrophysiological Noise.

    PubMed

    Voytek, Bradley; Kramer, Mark A; Case, John; Lepage, Kyle Q; Tempesta, Zechari R; Knight, Robert T; Gazzaley, Adam

    2015-09-23

    Aging is associated with performance decrements across multiple cognitive domains. The neural noise hypothesis, a dominant view of the basis of this decline, posits that aging is accompanied by an increase in spontaneous, noisy baseline neural activity. Here we analyze data from two different groups of human subjects: intracranial electrocorticography from 15 participants over a 38 year age range (15-53 years) and scalp EEG data from healthy younger (20-30 years) and older (60-70 years) adults to test the neural noise hypothesis from a 1/f noise perspective. Many natural phenomena, including electrophysiology, are characterized by 1/f noise. The defining characteristic of 1/f is that the power of the signal frequency content decreases rapidly as a function of the frequency (f) itself. The slope of this decay, the noise exponent (χ), is often <-1 for electrophysiological data and has been shown to approach white noise (defined as χ = 0) with increasing task difficulty. We observed, in both electrophysiological datasets, that aging is associated with a flatter (more noisy) 1/f power spectral density, even at rest, and that visual cortical 1/f noise statistically mediates age-related impairments in visual working memory. These results provide electrophysiological support for the neural noise hypothesis of aging. Significance statement: Understanding the neurobiological origins of age-related cognitive decline is of critical scientific, medical, and public health importance, especially considering the rapid aging of the world's population. We find, in two separate human studies, that 1/f electrophysiological noise increases with aging. In addition, we observe that this age-related 1/f noise statistically mediates age-related working memory decline. These results significantly add to this understanding and contextualize a long-standing problem in cognition by encapsulating age-related cognitive decline within a neurocomputational model of 1/f noise-induced deficits in

  4. Isolating age-group differences in working memory load-related neural activity: assessing the contribution of working memory capacity using a partial-trial fMRI method.

    PubMed

    Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart

    2013-05-15

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results.

  5. Neural correlates related to action observation in expert archers.

    PubMed

    Kim, Yang-Tae; Seo, Jee-Hye; Song, Hui-Jin; Yoo, Done-Sik; Lee, Hui Joong; Lee, Jongmin; Lee, Gunyoung; Kwon, Eunjin; Kim, Jin Goo; Chang, Yongmin

    2011-10-01

    A growing body of evidence suggests that activity of the mirror neuron system is dependent on the observer's motor experience of a given action. It remains unclear, however, whether activity of the mirror neuron system is also associated with the observer's motor experience in sports game. Therefore, the aim of the present study is to investigate differences in activation of the mirror neuron system during action observation between experts and non-archer control subjects. We used video of Western-style archery in which participants were asked to watch the archery movements. Hyperactivation of the premotor and inferior parietal cortex in expert archers relative to non-archer control subjects suggests that the human mirror neuron system could contain and expand representations of the motor repertoire. The fact that dorsomedial prefrontal cortex was more active in expert archers than in non-archer control subjects indicates a spontaneous engagement of theory of mind in experts when watching video of Western-style archery. Compared with the non-archer control subjects, expert archers showed greater activation in the neural system in regions associated with episodic recall from familiar and meaningful information, including the cingulate cortex, retrosplenial cortex, and parahippocampal gyrus. The results demonstrate that expertise effects stimulate brain activity not only in the mirror neuron system but also in the neural networks related to theory of mind and episodic memory.

  6. Dynamic Neural Processing of Linguistic Cues Related to Death

    PubMed Central

    Ma, Yina; Qin, Jungang; Han, Shihui

    2013-01-01

    Behavioral studies suggest that humans evolve the capacity to cope with anxiety induced by the awareness of death’s inevitability. However, the neurocognitive processes that underlie online death-related thoughts remain unclear. Our recent functional MRI study found that the processing of linguistic cues related to death was characterized by decreased neural activity in human insular cortex. The current study further investigated the time course of neural processing of death-related linguistic cues. We recorded event-related potentials (ERP) to death-related, life-related, negative-valence, and neutral-valence words in a modified Stroop task that required color naming of words. We found that the amplitude of an early frontal/central negativity at 84–120 ms (N1) decreased to death-related words but increased to life-related words relative to neutral-valence words. The N1 effect associated with death-related and life-related words was correlated respectively with individuals’ pessimistic and optimistic attitudes toward life. Death-related words also increased the amplitude of a frontal/central positivity at 124–300 ms (P2) and of a frontal/central positivity at 300–500 ms (P3). However, the P2 and P3 modulations were observed for both death-related and negative-valence words but not for life-related words. The ERP results suggest an early inverse coding of linguistic cues related to life and death, which is followed by negative emotional responses to death-related information. PMID:23840787

  7. Relational Neural Evolution Approach to Bank Failure Prediction

    SciTech Connect

    Abudu, Bolanle; Markose, Sheri

    2007-12-26

    Relational neural networks as a concept offers a unique opportunity for improving classification accuracy by exploiting relational structure in data. The premise is that a relational classification technique, which uses information implicit in relationships, should classify more accurately than techniques that only examine objects in isolation. In this paper, we study the use of relational neural networks for predicting bank failure. Alongside classical financial ratios normally used as predictor variables, we introduced new relational variables for the network. The relational neural network structure, specified as a combination of feed forward and recurrent neural networks, is determined by bank data through neuro-evolution. We discuss empirical results comparing performance of the relational approach to standard propositional methods used for bank failure prediction.

  8. Relational Neural Evolution Approach to Bank Failure Prediction

    NASA Astrophysics Data System (ADS)

    Abudu, Bolanle; Markose, Sheri

    2007-12-01

    Relational neural networks as a concept offers a unique opportunity for improving classification accuracy by exploiting relational structure in data. The premise is that a relational classification technique, which uses information implicit in relationships, should classify more accurately than techniques that only examine objects in isolation. In this paper, we study the use of relational neural networks for predicting bank failure. Alongside classical financial ratios normally used as predictor variables, we introduced new relational variables for the network. The relational neural network structure, specified as a combination of feed forward and recurrent neural networks, is determined by bank data through neuro-evolution. We discuss empirical results comparing performance of the relational approach to standard propositional methods used for bank failure prediction.

  9. Dynamic neural activity during stress signals resilient coping

    PubMed Central

    Sinha, Rajita; Lacadie, Cheryl M.; Constable, R. Todd; Seo, Dongju

    2016-01-01

    Active coping underlies a healthy stress response, but neural processes supporting such resilient coping are not well-known. Using a brief, sustained exposure paradigm contrasting highly stressful, threatening, and violent stimuli versus nonaversive neutral visual stimuli in a functional magnetic resonance imaging (fMRI) study, we show significant subjective, physiologic, and endocrine increases and temporally related dynamically distinct patterns of neural activation in brain circuits underlying the stress response. First, stress-specific sustained increases in the amygdala, striatum, hypothalamus, midbrain, right insula, and right dorsolateral prefrontal cortex (DLPFC) regions supported the stress processing and reactivity circuit. Second, dynamic neural activation during stress versus neutral runs, showing early increases followed by later reduced activation in the ventrolateral prefrontal cortex (VLPFC), dorsal anterior cingulate cortex (dACC), left DLPFC, hippocampus, and left insula, suggested a stress adaptation response network. Finally, dynamic stress-specific mobilization of the ventromedial prefrontal cortex (VmPFC), marked by initial hypoactivity followed by increased VmPFC activation, pointed to the VmPFC as a key locus of the emotional and behavioral control network. Consistent with this finding, greater neural flexibility signals in the VmPFC during stress correlated with active coping ratings whereas lower dynamic activity in the VmPFC also predicted a higher level of maladaptive coping behaviors in real life, including binge alcohol intake, emotional eating, and frequency of arguments and fights. These findings demonstrate acute functional neuroplasticity during stress, with distinct and separable brain networks that underlie critical components of the stress response, and a specific role for VmPFC neuroflexibility in stress-resilient coping. PMID:27432990

  10. Decoding Ventromedial Hypothalamic Neural Activity during Male Mouse Aggression

    PubMed Central

    Dollar, Piotr; Perona, Pietro

    2014-01-01

    The ventromedial hypothalamus, ventrolateral area (VMHvl) was identified recently as a critical locus for inter-male aggression. Optogenetic stimulation of VMHvl in male mice evokes attack toward conspecifics and inactivation of the region inhibits natural aggression, yet very little is known about its underlying neural activity. To understand its role in promoting aggression, we recorded and analyzed neural activity in the VMHvl in response to a wide range of social and nonsocial stimuli. Although response profiles of VMHvl neurons are complex and heterogeneous, we identified a subpopulation of neurons that respond maximally during investigation and attack of male conspecific mice and during investigation of a source of male mouse urine. These “male responsive” neurons in the VMHvl are tuned to both the inter-male distance and the animal's velocity during attack. Additionally, VMHvl activity predicts several parameters of future aggressive action, including the latency and duration of the next attack. Linear regression analysis further demonstrates that aggression-specific parameters, such as distance, movement velocity, and attack latency, can model ongoing VMHvl activity fluctuation during inter-male encounters. These results represent the first effort to understand the hypothalamic neural activity during social behaviors using quantitative tools and suggest an important role for the VMHvl in encoding movement, sensory, and motivation-related signals. PMID:24760856

  11. Can simple interactions capture complex features of neural activity underlying behavior in a virtual reality environment?

    NASA Astrophysics Data System (ADS)

    Meshulam, Leenoy; Gauthier, Jeffrey; Brody, Carlos; Tank, David; Bialek, William

    The complex neural interactions which are abundant in most recordings of neural activity are relatively poorly understood. A prime example of such interactions can be found in the in vivo neural activity which underlies complex behaviors of mice, imaged in brain regions such as hippocampus and parietal cortex. Experimental techniques now allow us to accurately follow these neural interactions in the simultaneous activity of large neuronal populations of awake behaving animals. Here, we demonstrate that pairwise maximum entropy models can predict a surprising number of properties of the neural activity. The models, that are constrained with activity rates and interactions between pairs of neurons, are well fit to the activity `states' in the hippocampus and cortex of mice performing cognitive tasks while navigating in a virtual reality environment.

  12. Empathy and stress related neural responses in maternal decision making

    PubMed Central

    Ho, S. Shaun; Konrath, Sara; Brown, Stephanie; Swain, James E.

    2014-01-01

    Mothers need to make caregiving decisions to meet the needs of children, which may or may not result in positive child feedback. Variations in caregivers' emotional reactivity to unpleasant child-feedback may be partially explained by their dispositional empathy levels. Furthermore, empathic response to the child's unpleasant feedback likely helps mothers to regulate their own stress. We investigated the relationship between maternal dispositional empathy, stress reactivity, and neural correlates of child feedback to caregiving decisions. In Part 1 of the study, 33 female participants were recruited to undergo a lab-based mild stressor, the Social Evaluation Test (SET), and then in Part 2 of the study, a subset of the participants, 14 mothers, performed a Parenting Decision Making Task (PDMT) in an fMRI setting. Four dimensions of dispositional empathy based on the Interpersonal Reactivity Index were measured in all participants—Personal Distress, Empathic Concern, Perspective Taking, and Fantasy. Overall, we found that the Personal Distress and Perspective Taking were associated with greater and lesser cortisol reactivity, respectively. The four types of empathy were distinctly associated with the negative (vs. positive) child feedback activation in the brain. Personal Distress was associated with amygdala and hypothalamus activation, Empathic Concern with the left ventral striatum, ventrolateral prefrontal cortex (VLPFC), and supplemental motor area (SMA) activation, and Fantasy with the septal area, right SMA and VLPFC activation. Interestingly, hypothalamus-septal coupling during the negative feedback condition was associated with less PDMT-related cortisol reactivity. The roles of distinct forms of dispositional empathy in neural and stress responses are discussed. PMID:24971049

  13. Active voltammetric microsensors with neural signal processing.

    SciTech Connect

    Vogt, M. C.

    1998-12-11

    Many industrial and environmental processes, including bioremediation, would benefit from the feedback and control information provided by a local multi-analyte chemical sensor. For most processes, such a sensor would need to be rugged enough to be placed in situ for long-term remote monitoring, and inexpensive enough to be fielded in useful numbers. The multi-analyte capability is difficult to obtain from common passive sensors, but can be provided by an active device that produces a spectrum-type response. Such new active gas microsensor technology has been developed at Argonne National Laboratory. The technology couples an electrocatalytic ceramic-metallic (cermet) microsensor with a voltammetric measurement technique and advanced neural signal processing. It has been demonstrated to be flexible, rugged, and very economical to produce and deploy. Both narrow interest detectors and wide spectrum instruments have been developed around this technology. Much of this technology's strength lies in the active measurement technique employed. The technique involves applying voltammetry to a miniature electrocatalytic cell to produce unique chemical ''signatures'' from the analytes. These signatures are processed with neural pattern recognition algorithms to identify and quantify the components in the analyte. The neural signal processing allows for innovative sampling and analysis strategies to be employed with the microsensor. In most situations, the whole response signature from the voltammogram can be used to identify, classify, and quantify an analyte, without dissecting it into component parts. This allows an instrument to be calibrated once for a specific gas or mixture of gases by simple exposure to a multi-component standard rather than by a series of individual gases. The sampled unknown analytes can vary in composition or in concentration, the calibration, sensing, and processing methods of these active voltammetric microsensors can detect, recognize, and

  14. Understanding the brain by controlling neural activity

    PubMed Central

    Krug, Kristine; Salzman, C. Daniel; Waddell, Scott

    2015-01-01

    Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry. PMID:26240417

  15. Models of neural networks with fuzzy activation functions

    NASA Astrophysics Data System (ADS)

    Nguyen, A. T.; Korikov, A. M.

    2017-02-01

    This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc.

  16. Neural activation during successful and unsuccessful verbal learning in schizophrenia.

    PubMed

    Heinze, Sibylle; Sartory, Gudrun; Müller, Bernhard W; de Greiff, Armin; Forsting, Michael; Jüptner, Markus

    2006-04-01

    Successful and unsuccessful intention to learn words was assessed by means of event-related functional MRI. Eighteen patients with schizophrenia and 15 healthy control participants were scanned while being given two word lists to read and another seven to learn with immediate recall. Neural activation patterns were segregated according to whether words were subsequently recalled or forgotten and these conditions were contrasted with each other and reading. Compared to controls, patients with schizophrenia showed deficits with regard to neural recruitment of right hippocampus and of cerebellar structures during successful verbal learning. Furthermore, a reversal of activated structures was evident in the two groups: Controls showed activation of right frontal and left middle temporal structures during the unsuccessful intention to learn. During successful learning, there was additional activation of right superior parietal lobule. In contrast, patients showed activation of right superior parietal lobule during unsuccessful and successful intention to learn. There were additional frontal and left middle temporal lobe activations during successful learning. We conclude that increased parietal activity may reflect a mechanism which compensates for the lack of hippocampal and cerebellar contributions to verbal learning in schizophrenia.

  17. An Activity for Demonstrating the Concept of a Neural Circuit

    ERIC Educational Resources Information Center

    Kreiner, David S.

    2012-01-01

    College students in two sections of a general psychology course participated in a demonstration of a simple neural circuit. The activity was based on a neural circuit that Jeffress proposed for localizing sounds. Students in one section responded to a questionnaire prior to participating in the activity, while students in the other section…

  18. Movement-related modulation of neural activity in human basal ganglia and its L-DOPA dependency: recordings from deep brain stimulation electrodes in patients with Parkinson's disease.

    PubMed

    Priori, A; Foffani, G; Pesenti, A; Bianchi, A; Chiesa, V; Baselli, G; Caputo, E; Tamma, F; Rampini, P; Egidi, M; Locatelli, M; Barbieri, S; Scarlato, G

    2002-09-01

    Through electrodes implanted for deep brain stimulation in three patients (5 sides) with Parkinson's disease, we recorded the electrical activity from the human basal ganglia before, during and after voluntary contralateral finger movements, before and after L-DOPA. We analysed the movement-related spectral changes in the electroencephalographic signal from the subthalamic nucleus (STN) and from the internal globus pallidus (GPi). Before, during and after voluntary movements, signals arising from the human basal ganglia contained two main frequencies: a high beta (around 26 Hz), and a low beta (around 18 Hz). The high beta (around 26 Hz) power decreased in the STN and GPi, whereas the low beta (around 18 Hz) power decrease was consistently found only in the GPi. Both frequencies changed their power with a specific temporal modulation related to the different movement phases. L-DOPA specifically and selectively influenced the spectral power changes in these two signal bands.

  19. Transient and sustained neural responses to death-related linguistic cues.

    PubMed

    Shi, Zhenhao; Han, Shihui

    2013-06-01

    Recent research showed that perception of death-related vs death-unrelated linguistic cues produced increased frontoparietal activity but decreased insular activity. This study investigated (i) whether the increased frontoparietal and decreased insular activities are, respectively, associated with transient trial-specific processes of death-related linguistic cues and sustained death-related thought during death-relevance judgments on linguistic cues and (ii) whether the neural activity underlying death-related thought can predict individuals' dispositional death anxiety. Participants were presented with death-related/unrelated words, life-related/unrelated words, and negative-valence/neutral words in separate sessions. Participants were scanned using functional magnetic resonance imaging while performing death-relevance, life-relevance, and valence judgments on the words, respectively. The contrast of death-related vs death-unrelated words during death-relevance judgments revealed transient increased activity in the left inferior parietal lobule, the right frontal eye field, and the right superior parietal lobule. The contrast of death-relevance judgments vs life-relevance/valence judgments showed decreased activity in the bilateral insula. The sustained insular activity was correlated with dispositional death anxiety, but only in those with weak transient frontoparietal responses to death-related words. Our results dissociate the transient and sustained neural responses to death-related linguistic cues and suggest that the combination of the transient and sustained neural activities can predict dispositional death anxiety.

  20. Functional Embedding Predicts the Variability of Neural Activity

    PubMed Central

    Mišić, Bratislav; Vakorin, Vasily A.; Paus, Tomáš; McIntosh, Anthony R.

    2011-01-01

    Neural activity is irregular and unpredictable, yet little is known about why this is the case and how this property relates to the functional architecture of the brain. Here we show that the variability of a region’s activity systematically varies according to its topological role in functional networks. We recorded the resting-state electroencephalogram (EEG) and constructed undirected graphs of functional networks. We measured the centrality of each node in terms of the number of connections it makes (degree), the ease with which the node can be reached from other nodes in the network (efficiency) and the tendency of the node to occupy a position on the shortest paths between other pairs of nodes in the network (betweenness). As a proxy for variability, we estimated the information content of neural activity using multiscale entropy analysis. We found that the rate at which information was generated was largely predicted by centrality. Namely, nodes with greater degree, betweenness, and efficiency were more likely to have high information content, while peripheral nodes had relatively low information content. These results suggest that the variability of regional activity reflects functional embedding. PMID:22164135

  1. Quantitative modeling of multiscale neural activity

    NASA Astrophysics Data System (ADS)

    Robinson, Peter A.; Rennie, Christopher J.

    2007-01-01

    The electrical activity of the brain has been observed for over a century and is widely used to probe brain function and disorders, chiefly through the electroencephalogram (EEG) recorded by electrodes on the scalp. However, the connections between physiology and EEGs have been chiefly qualitative until recently, and most uses of the EEG have been based on phenomenological correlations. A quantitative mean-field model of brain electrical activity is described that spans the range of physiological and anatomical scales from microscopic synapses to the whole brain. Its parameters measure quantities such as synaptic strengths, signal delays, cellular time constants, and neural ranges, and are all constrained by independent physiological measurements. Application of standard techniques from wave physics allows successful predictions to be made of a wide range of EEG phenomena, including time series and spectra, evoked responses to stimuli, dependence on arousal state, seizure dynamics, and relationships to functional magnetic resonance imaging (fMRI). Fitting to experimental data also enables physiological parameters to be infered, giving a new noninvasive window into brain function, especially when referenced to a standardized database of subjects. Modifications of the core model to treat mm-scale patchy interconnections in the visual cortex are also described, and it is shown that resulting waves obey the Schroedinger equation. This opens the possibility of classical cortical analogs of quantum phenomena.

  2. Reporting neural activity with genetically encoded calcium indicators

    PubMed Central

    Hires, S. Andrew; Tian, Lin; Looger, Loren L.

    2009-01-01

    Genetically encoded calcium indicators (GECIs), based on recombinant fluorescent proteins, have been engineered to observe calcium transients in living cells and organisms. Through observation of calcium, these indicators also report neural activity. We review progress in GECI construction and application, particularly toward in vivo monitoring of sparse action potentials (APs). We summarize the extrinsic and intrinsic factors that influence GECI performance. A simple model of GECI response to AP firing demonstrates the relative significance of these factors. We recommend a standardized protocol for evaluating GECIs in a physiologically relevant context. A potential method of simultaneous optical control and recording of neuronal circuits is presented. PMID:18941901

  3. The effect of the neural activity on topological properties of growing neural networks.

    PubMed

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  4. Supervised learning for neural manifold using spatiotemporal brain activity

    NASA Astrophysics Data System (ADS)

    Kuo, Po-Chih; Chen, Yong-Sheng; Chen, Li-Fen

    2015-12-01

    Objective. Determining the means by which perceived stimuli are compactly represented in the human brain is a difficult task. This study aimed to develop techniques for the construction of the neural manifold as a representation of visual stimuli. Approach. We propose a supervised locally linear embedding method to construct the embedded manifold from brain activity, taking into account similarities between corresponding stimuli. In our experiments, photographic portraits were used as visual stimuli and brain activity was calculated from magnetoencephalographic data using a source localization method. Main results. The results of 10 × 10-fold cross-validation revealed a strong correlation between manifolds of brain activity and the orientation of faces in the presented images, suggesting that high-level information related to image content can be revealed in the brain responses represented in the manifold. Significance. Our experiments demonstrate that the proposed method is applicable to investigation into the inherent patterns of brain activity.

  5. Neural network with formed dynamics of activity

    SciTech Connect

    Dunin-Barkovskii, V.L.; Osovets, N.B.

    1995-03-01

    The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.

  6. Multiple faces elicit augmented neural activity

    PubMed Central

    Puce, Aina; McNeely, Marie E.; Berrebi, Michael E.; Thompson, James C.; Hardee, Jillian; Brefczynski-Lewis, Julie

    2013-01-01

    How do our brains respond when we are being watched by a group of people?Despite the large volume of literature devoted to face processing, this question has received very little attention. Here we measured the effects on the face-sensitive N170 and other ERPs to viewing displays of one, two and three faces in two experiments. In Experiment 1, overall image brightness and contrast were adjusted to be constant, whereas in Experiment 2 local contrast and brightness of individual faces were not manipulated. A robust positive-negative-positive (P100-N170-P250) ERP complex and an additional late positive ERP, the P400, were elicited to all stimulus types. As the number of faces in the display increased, N170 amplitude increased for both stimulus sets, and latency increased in Experiment 2. P100 latency and P250 amplitude were affected by changes in overall brightness and contrast, but not by the number of faces in the display per se. In Experiment 1 when overall brightness and contrast were adjusted to be constant, later ERP (P250 and P400) latencies showed differences as a function of hemisphere. Hence, our data indicate that N170 increases its magnitude when multiple faces are seen, apparently impervious to basic low-level stimulus features including stimulus size. Outstanding questions remain regarding category-sensitive neural activity that is elicited to viewing multiple items of stimulus categories other than faces. PMID:23785327

  7. Graphene microelectrode arrays for neural activity detection.

    PubMed

    Du, Xiaowei; Wu, Lei; Cheng, Ji; Huang, Shanluo; Cai, Qi; Jin, Qinghui; Zhao, Jianlong

    2015-09-01

    We demonstrate a method to fabricate graphene microelectrode arrays (MEAs) using a simple and inexpensive method to solve the problem of opaque electrode positions in traditional MEAs, while keeping good biocompatibility. To study the interface differences between graphene-electrolyte and gold-electrolyte, graphene and gold electrodes with a large area were fabricated. According to the simulation results of electrochemical impedances, the gold-electrolyte interface can be described as a classical double-layer structure, while the graphene-electrolyte interface can be explained by a modified double-layer theory. Furthermore, using graphene MEAs, we detected the neural activities of neurons dissociated from Wistar rats (embryonic day 18). The signal-to-noise ratio of the detected signal was 10.31 ± 1.2, which is comparable to those of MEAs made with other materials. The long-term stability of the MEAs is demonstrated by comparing differences in Bode diagrams taken before and after cell culturing.

  8. The Neural Correlates of Mindful Awareness: A Possible Buffering Effect on Anxiety-Related Reduction in Subgenual Anterior Cingulate Cortex Activity

    PubMed Central

    Hakamata, Yuko; Iwase, Mikio; Kato, Takashi; Senda, Kohei; Inada, Toshiya

    2013-01-01

    Background Human personality consists of two fundamental elements character and temperament. Character allays automatic and preconceptual emotional responses determined by temperament. However, the neurobiological basis of character and its interplay with temperament remain elusive. Here, we examined character-temperament interplay and explored the neural basis of character, with a particular focus on the subgenual anterior cingulate cortex extending to a ventromedial portion of the prefrontal cortex (sgACC/vmPFC). Methods Resting brain glucose metabolism (GM) was measured using [18F] fluorodeoxyglucose positron emission tomography in 140 healthy adults. Personality traits were assessed using the Temperament and Character Inventory. Regions of interest (ROI) analysis and whole-brain analysis were performed to examine a combination effect of temperament and character on the sgACC/vmPFC and to explore the neural correlates of character, respectively. Results Harm avoidance (HA), a temperament trait (i.e., depressive, anxious, vulnerable), showed a significant negative impact on the sgACC/vmPFC GM, whereas self-transcendence (ST), a character trait (i.e., intuitive, judicious, spiritual), exhibited a significant positive effect on GM in the same region (HA β = −0.248, p = 0.003; ST: β = 0.250, p = 0.003). In addition, when coupled with strong ST, individuals with strong HA maintained the sgACC/vmPFC GM level comparable to the level of those with low scores on both HA and ST. Furthermore, exploratory whole-brain analysis revealed a significant positive relationship between ST and sgACC/vmPFC GM (peak voxel at x = −8, y = 32, z = −8, k = 423, Z = 4.41, corrected pFDR = 0.030). Conclusion The current findings indicate that the sgACC/vmPFC might play a critical role in mindful awareness to something beyond as well as in emotional regulation. Developing a sense of mindfulness may temper exaggerated emotional responses in

  9. Large-scale multielectrode recording and stimulation of neural activity

    NASA Astrophysics Data System (ADS)

    Sher, A.; Chichilnisky, E. J.; Dabrowski, W.; Grillo, A. A.; Grivich, M.; Gunning, D.; Hottowy, P.; Kachiguine, S.; Litke, A. M.; Mathieson, K.; Petrusca, D.

    2007-09-01

    Large circuits of neurons are employed by the brain to encode and process information. How this encoding and processing is carried out is one of the central questions in neuroscience. Since individual neurons communicate with each other through electrical signals (action potentials), the recording of neural activity with arrays of extracellular electrodes is uniquely suited for the investigation of this question. Such recordings provide the combination of the best spatial (individual neurons) and temporal (individual action-potentials) resolutions compared to other large-scale imaging methods. Electrical stimulation of neural activity in turn has two very important applications: it enhances our understanding of neural circuits by allowing active interactions with them, and it is a basis for a large variety of neural prosthetic devices. Until recently, the state-of-the-art in neural activity recording systems consisted of several dozen electrodes with inter-electrode spacing ranging from tens to hundreds of microns. Using silicon microstrip detector expertise acquired in the field of high-energy physics, we created a unique neural activity readout and stimulation framework that consists of high-density electrode arrays, multi-channel custom-designed integrated circuits, a data acquisition system, and data-processing software. Using this framework we developed a number of neural readout and stimulation systems: (1) a 512-electrode system for recording the simultaneous activity of as many as hundreds of neurons, (2) a 61-electrode system for electrical stimulation and readout of neural activity in retinas and brain-tissue slices, and (3) a system with telemetry capabilities for recording neural activity in the intact brain of awake, naturally behaving animals. We will report on these systems, their various applications to the field of neurobiology, and novel scientific results obtained with some of them. We will also outline future directions.

  10. Mesoscopic Patterns of Neural Activity Support Songbird Cortical Sequences

    PubMed Central

    Guitchounts, Grigori; Velho, Tarciso; Lois, Carlos; Gardner, Timothy J.

    2015-01-01

    Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From “time cells” in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity. Multi-channel electrophysiology and calcium imaging reveal that neural activity in premotor cortex is correlated with a length scale of 100 µm. Within this length scale, basal-ganglia–projecting excitatory neurons, on average, fire at a specific phase of a local 30 Hz network rhythm. These results show that premotor cortical activity is inhomogeneous in time and space, and that a mesoscopic dynamical pattern underlies the generation of the neural sequences controlling song. PMID:26039895

  11. Mesoscopic patterns of neural activity support songbird cortical sequences.

    PubMed

    Markowitz, Jeffrey E; Liberti, William A; Guitchounts, Grigori; Velho, Tarciso; Lois, Carlos; Gardner, Timothy J

    2015-06-01

    Time-locked sequences of neural activity can be found throughout the vertebrate forebrain in various species and behavioral contexts. From "time cells" in the hippocampus of rodents to cortical activity controlling movement, temporal sequence generation is integral to many forms of learned behavior. However, the mechanisms underlying sequence generation are not well known. Here, we describe a spatial and temporal organization of the songbird premotor cortical microcircuit that supports sparse sequences of neural activity. Multi-channel electrophysiology and calcium imaging reveal that neural activity in premotor cortex is correlated with a length scale of 100 µm. Within this length scale, basal-ganglia-projecting excitatory neurons, on average, fire at a specific phase of a local 30 Hz network rhythm. These results show that premotor cortical activity is inhomogeneous in time and space, and that a mesoscopic dynamical pattern underlies the generation of the neural sequences controlling song.

  12. The Role of Personal Experience in the Neural Processing of Action-Related Language

    ERIC Educational Resources Information Center

    Lyons, Ian M.; Mattarella-Micke, Andrew; Cieslak, Matthew; Nusbaum, Howard C.; Small, Steven L.; Beilock, Sian L.

    2010-01-01

    We investigated how auditory language processing is modified by a listener's previous experience with the specific activities mentioned in the speech. In particular, we asked whether neural responses related to language processing depend on one's experience with the action-based content of this language. Ice-hockey players and novices passively…

  13. Neural Alterations in Acquired Age-Related Hearing Loss.

    PubMed

    Mudar, Raksha A; Husain, Fatima T

    2016-01-01

    Hearing loss is one of the most prevalent chronic health conditions in older adults. Growing evidence suggests that hearing loss is associated with reduced cognitive functioning and incident dementia. In this mini-review, we briefly examine literature on anatomical and functional alterations in the brains of adults with acquired age-associated hearing loss, which may underlie the cognitive consequences observed in this population, focusing on studies that have used structural and functional magnetic resonance imaging, diffusion tensor imaging, and event-related electroencephalography. We discuss structural and functional alterations observed in the temporal and frontal cortices and the limbic system. These neural alterations are discussed in the context of common cause, information-degradation, and sensory-deprivation hypotheses, and we suggest possible rehabilitation strategies. Although, we are beginning to learn more about changes in neural architecture and functionality related to age-associated hearing loss, much work remains to be done. Understanding the neural alterations will provide objective markers for early identification of neural consequences of age-associated hearing loss and for evaluating benefits of intervention approaches.

  14. Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors.

    PubMed

    Edri, Reuven; Yaffe, Yakey; Ziller, Michael J; Mutukula, Naresh; Volkman, Rotem; David, Eyal; Jacob-Hirsch, Jasmine; Malcov, Hagar; Levy, Carmit; Rechavi, Gideon; Gat-Viks, Irit; Meissner, Alexander; Elkabetz, Yechiel

    2015-03-23

    Decoding heterogeneity of pluripotent stem cell (PSC)-derived neural progeny is fundamental for revealing the origin of diverse progenitors, for defining their lineages, and for identifying fate determinants driving transition through distinct potencies. Here we have prospectively isolated consecutively appearing PSC-derived primary progenitors based on their Notch activation state. We first isolate early neuroepithelial cells and show their broad Notch-dependent developmental and proliferative potential. Neuroepithelial cells further yield successive Notch-dependent functional primary progenitors, from early and midneurogenic radial glia and their derived basal progenitors, to gliogenic radial glia and adult-like neural progenitors, together recapitulating hallmarks of neural stem cell (NSC) ontogeny. Gene expression profiling reveals dynamic stage-specific transcriptional patterns that may link development of distinct progenitor identities through Notch activation. Our observations provide a platform for characterization and manipulation of distinct progenitor cell types amenable for developing streamlined neural lineage specification paradigms for modelling development in health and disease.

  15. Neural activity underlying tinnitus generation: results from PET and fMRI.

    PubMed

    Lanting, C P; de Kleine, E; van Dijk, P

    2009-09-01

    Tinnitus is the percept of sound that is not related to an acoustic source outside the body. For many forms of tinnitus, mechanisms in the central nervous system are believed to play an important role in the pathology. Specifically, three mechanisms have been proposed to underlie tinnitus: (1) changes in the level of spontaneous neural activity in the central auditory system, (2) changes in the temporal pattern of neural activity, and (3) reorganization of tonotopic maps. The neuroimaging methods fMRI and PET measure signals that presumably reflect the firing rates of multiple neurons and are assumed to be sensitive to changes in the level of neural activity. There are two basic paradigms that have been applied in functional neuroimaging of tinnitus. Firstly, sound-evoked responses as well as steady state neural activity have been measured to compare tinnitus patients to healthy controls. Secondly, paradigms that involve modulation of tinnitus by a controlled stimulus allow for a within-subject comparison that identifies neural activity that may be correlated to the tinnitus percept. Even though there are many differences across studies, the general trend emerging from the neuroimaging studies, is that tinnitus in humans may correspond to enhanced neural activity across several centers of the central auditory system. Also, neural activity in non-auditory areas including the frontal areas, the limbic system and the cerebellum seems associated with the perception of tinnitus. These results indicate that in addition to the auditory system, non-auditory systems may represent a neural correlate of tinnitus. Although the currently published neuroimaging studies typically show a correspondence between tinnitus and enhanced neural activity, it will be important to perform future studies on subject groups that are closely matched for characteristics such as age, gender and hearing loss in order to rule out the contribution of these factors to the abnormalities specifically

  16. Neural activity, memory, and dementias: serotonergic markers.

    PubMed

    Meneses, Alfredo

    2017-04-01

    Dysfunctional memory seems to be a key component of diverse dementias and other neuropsychiatric disorders; unfortunately, no effective treatment exists for this, probably because of the absence of neural biomarkers accompanying it. Diverse neurotransmission systems have been implicated in memory, including serotonin or 5-hydroxytryptamine (5-HT). There are multiple serotonergic pharmacological tools, well-characterized downstream signaling in mammals' species and neural markers providing new insights into memory functions and dysfunctions. Serotonin in mammal species has multiple neural markers, including receptors (5-HT1-7), serotonin transporter, and volume transmission, which are present in brain areas involved in memory. Memory, amnesia, and forgetting modify serotonergic markers; this influence is bidirectional. Evidence shows insights and therapeutic targets and diverse approaches support the translatability of using neural markers and cerebral functions and dysfunctions, including memory formation and amnesia. For instance, 5-HT2A/2B/2C, 5-HT4, and 5-HT6 receptors are involved in tau protein hyperphosphorylation in Alzheimer's disease. In addition, at least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7 receptors as well as serotonin transporter seem to be useful neural markers and therapeutic targets. Hence, available evidence supports the notion that several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the number of neurotransmitter receptors and transporters. Considering that memory is a key component of dementias, hence reversing or reducing memory deficits might positively affect them?

  17. Technologies for imaging neural activity in large volumes

    PubMed Central

    Ji, Na; Freeman, Jeremy; Smith, Spencer L.

    2017-01-01

    Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Collecting data from individual planes, conventional microscopy cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here, we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for the processing and analysis of volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics, and help elucidate how brain regions work in concert to support behavior. PMID:27571194

  18. OCT detection of neural activity in American cockroach nervous system

    NASA Astrophysics Data System (ADS)

    Gorczyńska, Iwona; Wyszkowska, Joanna; Bukowska, Danuta; Ruminski, Daniel; Karnowski, Karol; Stankiewicz, Maria; Wojtkowski, Maciej

    2013-03-01

    We show results of a project which focuses on detection of activity in neural tissue with Optical Coherence Tomography (OCT) methods. Experiments were performed in neural cords dissected from the American cockroach (Periplaneta americana L.). Functional OCT imaging was performed with ultrahigh resolution spectral / Fourier domain OCT system (axial resolution 2.5 μm). Electrical stimulation (voltage pulses) was applied to the sensory cercal nerve of the neural cord. Optical detection of functional activation of the sample was performed in the connective between the terminal abdominal ganglion and the fifth abdominal ganglion. Functional OCT data were collected over time with the OCT beam illuminating selected single point in the connectives (i.e. OCT M-scans were acquired). Phase changes of the OCT signal were analyzed to visualize occurrence of activation in the neural cord. Electrophysiology recordings (microelectrode method) were also performed as a reference method to demonstrate electrical response of the sample to stimulation.

  19. Neural activity in the hippocampus during conflict resolution.

    PubMed

    Sakimoto, Yuya; Okada, Kana; Hattori, Minoru; Takeda, Kozue; Sakata, Shogo

    2013-01-15

    This study examined configural association theory and conflict resolution models in relation to hippocampal neural activity during positive patterning tasks. According to configural association theory, the hippocampus is important for responses to compound stimuli in positive patterning tasks. In contrast, according to the conflict resolution model, the hippocampus is important for responses to single stimuli in positive patterning tasks. We hypothesized that if configural association theory is applicable, and not the conflict resolution model, the hippocampal theta power should be increased when compound stimuli are presented. If, on the other hand, the conflict resolution model is applicable, but not configural association theory, then the hippocampal theta power should be increased when single stimuli are presented. If both models are valid and applicable in the positive patterning task, we predict that the hippocampal theta power should be increased by presentation of both compound and single stimuli during the positive patterning task. To examine our hypotheses, we measured hippocampal theta power in rats during a positive patterning task. The results showed that hippocampal theta power increased during the presentation of a single stimulus, but did not increase during the presentation of a compound stimulus. This finding suggests that the conflict resolution model is more applicable than the configural association theory for describing neural activity during positive patterning tasks.

  20. Lag Synchronization of Switched Neural Networks via Neural Activation Function and Applications in Image Encryption.

    PubMed

    Wen, Shiping; Zeng, Zhigang; Huang, Tingwen; Meng, Qinggang; Yao, Wei

    2015-07-01

    This paper investigates the problem of global exponential lag synchronization of a class of switched neural networks with time-varying delays via neural activation function and applications in image encryption. The controller is dependent on the output of the system in the case of packed circuits, since it is hard to measure the inner state of the circuits. Thus, it is critical to design the controller based on the neuron activation function. Comparing the results, in this paper, with the existing ones shows that we improve and generalize the results derived in the previous literature. Several examples are also given to illustrate the effectiveness and potential applications in image encryption.

  1. Social decisions affect neural activity to perceived dynamic gaze

    PubMed Central

    Latinus, Marianne; Love, Scott A.; Rossi, Alejandra; Parada, Francisco J.; Huang, Lisa; Conty, Laurence; George, Nathalie; James, Karin

    2015-01-01

    Gaze direction, a cue of both social and spatial attention, is known to modulate early neural responses to faces e.g. N170. However, findings in the literature have been inconsistent, likely reflecting differences in stimulus characteristics and task requirements. Here, we investigated the effect of task on neural responses to dynamic gaze changes: away and toward transitions (resulting or not in eye contact). Subjects performed, in random order, social (away/toward them) and non-social (left/right) judgment tasks on these stimuli. Overall, in the non-social task, results showed a larger N170 to gaze aversion than gaze motion toward the observer. In the social task, however, this difference was no longer present in the right hemisphere, likely reflecting an enhanced N170 to gaze motion toward the observer. Our behavioral and event-related potential data indicate that performing social judgments enhances saliency of gaze motion toward the observer, even those that did not result in gaze contact. These data and that of previous studies suggest two modes of processing visual information: a ‘default mode’ that may focus on spatial information; a ‘socially aware mode’ that might be activated when subjects are required to make social judgments. The exact mechanism that allows switching from one mode to the other remains to be clarified. PMID:25925272

  2. Social decisions affect neural activity to perceived dynamic gaze.

    PubMed

    Latinus, Marianne; Love, Scott A; Rossi, Alejandra; Parada, Francisco J; Huang, Lisa; Conty, Laurence; George, Nathalie; James, Karin; Puce, Aina

    2015-11-01

    Gaze direction, a cue of both social and spatial attention, is known to modulate early neural responses to faces e.g. N170. However, findings in the literature have been inconsistent, likely reflecting differences in stimulus characteristics and task requirements. Here, we investigated the effect of task on neural responses to dynamic gaze changes: away and toward transitions (resulting or not in eye contact). Subjects performed, in random order, social (away/toward them) and non-social (left/right) judgment tasks on these stimuli. Overall, in the non-social task, results showed a larger N170 to gaze aversion than gaze motion toward the observer. In the social task, however, this difference was no longer present in the right hemisphere, likely reflecting an enhanced N170 to gaze motion toward the observer. Our behavioral and event-related potential data indicate that performing social judgments enhances saliency of gaze motion toward the observer, even those that did not result in gaze contact. These data and that of previous studies suggest two modes of processing visual information: a 'default mode' that may focus on spatial information; a 'socially aware mode' that might be activated when subjects are required to make social judgments. The exact mechanism that allows switching from one mode to the other remains to be clarified.

  3. Neurometabolic coupling between neural activity, glucose, and lactate in activated visual cortex.

    PubMed

    Li, Baowang; Freeman, Ralph D

    2015-11-01

    Neural activity is closely coupled with energy metabolism but details of the association remain to be identified. One basic area involves the relationships between neural activity and the main supportive substrates of glucose and lactate. This is of fundamental significance for the interpretation of non-invasive neural imaging. Here, we use microelectrodes with high spatial and temporal resolution to determine simultaneous co-localized changes in glucose, lactate, and neural activity during visual activation of the cerebral cortex in the cat. Tissue glucose and lactate concentration levels are measured with electrochemical microelectrodes while neural spiking activity and local field potentials are sampled by a microelectrode. These measurements are performed simultaneously while neurons are activated by visual stimuli of different contrast levels, orientations, and sizes. We find immediate decreases in tissue glucose concentration and simultaneous increases in lactate during neural activation. Both glucose and lactate signals return to their baseline levels instantly as neurons cease firing. No sustained changes or initial dips in glucose or lactate signals are elicited by visual stimulation. However, co-localized measurements of cerebral blood flow and neural activity demonstrate a clear delay in the cerebral blood flow signal such that it does not correlate temporally with the neural response. These results provide direct real-time evidence regarding the coupling between co-localized energy metabolism and neural activity during physiological stimulation. They are also relevant to a current question regarding the role of lactate in energy metabolism in the brain during neural activation. Dynamic changes in energy metabolites can be measured directly with high spatial and temporal resolution by use of enzyme-based microelectrodes. Here, to examine neuro-metabolic coupling during brain activation, we use combined microelectrodes to simultaneously measure

  4. Neural activity reveals perceptual grouping in working memory.

    PubMed

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations.

  5. Age-related changes to the neural correlates of working memory which emerge after midlife.

    PubMed

    Macpherson, Helen N; White, David J; Ellis, Kathryn A; Stough, Con; Camfield, David; Silberstein, Richard; Pipingas, Andrew

    2014-01-01

    Previous research has indicated that the neural processes which underlie working memory change with age. Both age-related increases and decreases to cortical activity have been reported. This study investigated which stages of working memory are most vulnerable to age-related changes after midlife. To do this we examined age-differences in the 13 Hz steady state visually evoked potential (SSVEP) associated with a spatial working memory delayed response task. Participants were 130 healthy adults separated into a midlife (40-60 years) and an older group (61-82 years). Relative to the midlife group, older adults demonstrated greater bilateral frontal activity during encoding and this pattern of activity was related to better working memory performance. In contrast, evidence of age-related under activation was identified over left frontal regions during retrieval. Findings from this study suggest that after midlife, under-activation of frontal regions during retrieval contributes to age-related decline in working memory performance.

  6. Optical imaging of neural and hemodynamic brain activity

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  7. Neural dissociation of food- and money-related reward processing using an abstract incentive delay task.

    PubMed

    Simon, Joe J; Skunde, Mandy; Wu, Mudan; Schnell, Knut; Herpertz, Sabine C; Bendszus, Martin; Herzog, Wolfgang; Friederich, Hans-Christoph

    2015-08-01

    Food is an innate reward stimulus related to energy homeostasis and survival, whereas money is considered a more general reward stimulus that gains a rewarding value through learning experiences. Although the underlying neural processing for both modalities of reward has been investigated independently from one another, a more detailed investigation of neural similarities and/or differences between food and monetary reward is still missing. Here, we investigated the neural processing of food compared with monetary-related rewards in 27 healthy, normal-weight women using functional magnetic resonance imaging. We developed a task distinguishing between the anticipation and the receipt of either abstract food or monetary reward. Both tasks activated the ventral striatum during the expectation of a reward. Compared with money, greater food-related activations were observed in prefrontal, parietal and central midline structures during the anticipation and lateral orbitofrontal cortex (lOFC) during the receipt of food reward. Furthermore, during the receipt of food reward, brain activation in the secondary taste cortex was positively related to the body mass index. These results indicate that food-dependent activations encompass to a greater extent brain regions involved in self-control and self-reflection during the anticipation and phylogenetically older parts of the lOFC during the receipt of reward.

  8. Neural dissociation of food- and money-related reward processing using an abstract incentive delay task

    PubMed Central

    Skunde, Mandy; Wu, Mudan; Schnell, Knut; Herpertz, Sabine C.; Bendszus, Martin; Herzog, Wolfgang; Friederich, Hans-Christoph

    2015-01-01

    Food is an innate reward stimulus related to energy homeostasis and survival, whereas money is considered a more general reward stimulus that gains a rewarding value through learning experiences. Although the underlying neural processing for both modalities of reward has been investigated independently from one another, a more detailed investigation of neural similarities and/or differences between food and monetary reward is still missing. Here, we investigated the neural processing of food compared with monetary-related rewards in 27 healthy, normal-weight women using functional magnetic resonance imaging. We developed a task distinguishing between the anticipation and the receipt of either abstract food or monetary reward. Both tasks activated the ventral striatum during the expectation of a reward. Compared with money, greater food-related activations were observed in prefrontal, parietal and central midline structures during the anticipation and lateral orbitofrontal cortex (lOFC) during the receipt of food reward. Furthermore, during the receipt of food reward, brain activation in the secondary taste cortex was positively related to the body mass index. These results indicate that food-dependent activations encompass to a greater extent brain regions involved in self-control and self-reflection during the anticipation and phylogenetically older parts of the lOFC during the receipt of reward. PMID:25552570

  9. Optogenetic feedback control of neural activity

    PubMed Central

    Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M

    2015-01-01

    Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329

  10. Neural activity associated with distinguishing concurrent auditory objects

    NASA Astrophysics Data System (ADS)

    Alain, Claude; Schuler, Benjamin M.; McDonald, Kelly L.

    2002-02-01

    The neural processes underlying concurrent sound segregation were examined by using event-related brain potentials. Participants were presented with complex sounds comprised of multiple harmonics, one of which could be mistuned so that it was no longer an integer multiple of the fundamental. In separate blocks of trials, short-, middle-, and long-duration sounds were presented and participants indicated whether they heard one sound (i.e., buzz) or two sounds (i.e., buzz plus another sound with a pure-tone quality). The auditory stimuli were also presented while participants watched a silent movie in order to evaluate the extent to which the mistuned harmonic could be automatically detected. The perception of the mistuned harmonic as a separate sound was associated with a biphasic negative-positive potential that peaked at about 150 and 350 ms after sound onset, respectively. Long duration sounds also elicited a sustained potential that was greater in amplitude when the mistuned harmonic was perceptually segregated from the complex sound. The early negative wave, referred to as the object-related negativity (ORN), was present during both active and passive listening, whereas the positive wave and the mistuning-related changes in sustained potentials were present only when participants attended to the stimuli. These results are consistent with a two-stage model of auditory scene analysis in which the acoustic wave is automatically decomposed into perceptual groups that can be identified by higher executive functions. The ORN and the positive waves were little affected by sound duration, indicating that concurrent sound segregation depends on transient neural responses elicited by the discrepancy between the mistuned harmonic and the harmonic frequency expected based on the fundamental frequency of the incoming stimulus.

  11. Neural Activity During Health Messaging Predicts Reductions in Smoking Above and Beyond Self-Report

    PubMed Central

    Falk, Emily B.; Berkman, Elliot T.; Whalen, Danielle; Lieberman, Matthew D.

    2011-01-01

    Objective The current study tested whether neural activity in response to messages designed to help smokers quit could predict smoking reduction, above and beyond self-report. Design Using neural activity in an a priori region of interest (a subregion of medial prefrontal cortex [MPFC]), in response to ads designed to help smokers quit smoking, we prospectively predicted reductions in smoking in a community sample of smokers (N = 28) who were attempting to quit smoking. Smoking was assessed via expired carbon monoxide (CO; a biological measure of recent smoking) at baseline and 1 month following exposure to professionally developed quitting ads. Results A positive relationship was observed between activity in the MPFC region of interest and successful quitting (increased activity in MPFC was associated with a greater decrease in expired CO). The addition of neural activity to a model predicting changes in CO from self-reported intentions, self-efficacy, and ability to relate to the messages significantly improved model fit, doubling the variance explained ( Rself−report2=.15,Rself−report+neuralactivity2=.35,Rchange2=.20). Conclusion: Neural activity is a useful complement to existing self-report measures. In this investigation, we extend prior work predicting behavior change based on neural activity in response to persuasive media to an important health domain and discuss potential psychological interpretations of the brain–behavior link. Our results support a novel use of neuroimaging technology for understanding the psychology of behavior change and facilitating health promotion. PMID:21261410

  12. Spatiotemporal Imaging of Glutamate-Induced Biophotonic Activities and Transmission in Neural Circuits

    PubMed Central

    Tang, Rendong; Dai, Jiapei

    2014-01-01

    The processing of neural information in neural circuits plays key roles in neural functions. Biophotons, also called ultra-weak photon emissions (UPE), may play potential roles in neural signal transmission, contributing to the understanding of the high functions of nervous system such as vision, learning and memory, cognition and consciousness. However, the experimental analysis of biophotonic activities (emissions) in neural circuits has been hampered due to technical limitations. Here by developing and optimizing an in vitro biophoton imaging method, we characterize the spatiotemporal biophotonic activities and transmission in mouse brain slices. We show that the long-lasting application of glutamate to coronal brain slices produces a gradual and significant increase of biophotonic activities and achieves the maximal effect within approximately 90 min, which then lasts for a relatively long time (>200 min). The initiation and/or maintenance of biophotonic activities by glutamate can be significantly blocked by oxygen and glucose deprivation, together with the application of a cytochrome c oxidase inhibitor (sodium azide), but only partly by an action potential inhibitor (TTX), an anesthetic (procaine), or the removal of intracellular and extracellular Ca2+. We also show that the detected biophotonic activities in the corpus callosum and thalamus in sagittal brain slices mostly originate from axons or axonal terminals of cortical projection neurons, and that the hyperphosphorylation of microtubule-associated protein tau leads to a significant decrease of biophotonic activities in these two areas. Furthermore, the application of glutamate in the hippocampal dentate gyrus results in increased biophotonic activities in its intrahippocampal projection areas. These results suggest that the glutamate-induced biophotonic activities reflect biophotonic transmission along the axons and in neural circuits, which may be a new mechanism for the processing of neural

  13. Internal models for interpreting neural population activity during sensorimotor control.

    PubMed

    Golub, Matthew D; Yu, Byron M; Chase, Steven M

    2015-12-08

    To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects' internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output.

  14. Distinct Neural Substrates for Maintaining Locations and Spatial Relations in Working Memory

    PubMed Central

    Blacker, Kara J.; Courtney, Susan M.

    2016-01-01

    Previous work has demonstrated a distinction between maintenance of two types of spatial information in working memory (WM): spatial locations and spatial relations. While a body of work has investigated the neural mechanisms of sensory-based information like spatial locations, little is known about how spatial relations are maintained in WM. In two experiments, we used fMRI to investigate the involvement of early visual cortex in the maintenance of spatial relations in WM. In both experiments, we found less quadrant-specific BOLD activity in visual cortex when a single spatial relation, compared to a single spatial location, was held in WM. Also across both experiments, we found a consistent set of brain regions that were differentially activated during maintenance of locations vs. relations. Maintaining a location, compared to a relation, was associated with greater activity in typical spatial WM regions like posterior parietal cortex and prefrontal regions. Whereas maintaining a relation, compared to a location, was associated with greater activity in the parahippocampal gyrus and precuneus/retrosplenial cortex. Further, in Experiment 2 we manipulated WM load and included trials where participants had to maintain three spatial locations or relations. Under this high load condition, the regions sensitive to locations vs. relations were somewhat different than under low load. We also identified regions that were sensitive to load specifically for location or relation maintenance, as well as overlapping regions sensitive to load more generally. These results suggest that the neural substrates underlying WM maintenance of spatial locations and relations are distinct from one another and that the neural representations of these distinct types of spatial information change with load. PMID:27932963

  15. Multichannel Convolutional Neural Network for Biological Relation Extraction

    PubMed Central

    Quan, Chanqin; Sun, Xiao; Bai, Wenjun

    2016-01-01

    The plethora of biomedical relations which are embedded in medical logs (records) demands researchers' attention. Previous theoretical and practical focuses were restricted on traditional machine learning techniques. However, these methods are susceptible to the issues of “vocabulary gap” and data sparseness and the unattainable automation process in feature extraction. To address aforementioned issues, in this work, we propose a multichannel convolutional neural network (MCCNN) for automated biomedical relation extraction. The proposed model has the following two contributions: (1) it enables the fusion of multiple (e.g., five) versions in word embeddings; (2) the need for manual feature engineering can be obviated by automated feature learning with convolutional neural network (CNN). We evaluated our model on two biomedical relation extraction tasks: drug-drug interaction (DDI) extraction and protein-protein interaction (PPI) extraction. For DDI task, our system achieved an overall f-score of 70.2% compared to the standard linear SVM based system (e.g., 67.0%) on DDIExtraction 2013 challenge dataset. And for PPI task, we evaluated our system on Aimed and BioInfer PPI corpus; our system exceeded the state-of-art ensemble SVM system by 2.7% and 5.6% on f-scores. PMID:28053977

  16. Relationship between Alcohol Dependence, Escape Drinking, and Early Neural Attention to Alcohol-Related Cuess

    PubMed Central

    Dickter, Cheryl L.; Forestell, Catherine A.; Hammett, Patrick J.; Young, Chelsie M.

    2014-01-01

    Rationale Previous work has indicated that implicit attentional biases to alcohol-related cues are indicative of susceptibility to alcohol dependence and escape drinking, or drinking to avoid dysphoric mood or emotions. Objective The goal of the current study was to examine whether alcohol dependence and escape drinking were associated with early neural attentional biases to alcohol cues. Methods EEG data were recorded from 54 college students who reported that they regularly drank alcohol, while they viewed alcohol and control pictures that contained human content (active) or no human content (inactive). Results Those who were alcohol dependent showed more neural attentional bias to the active alcohol-related stimuli than to the matched control stimuli early in processing, as indicated by N1 amplitude. Escape drinkers showed greater neural attention to the active alcohol cues than non-escape drinkers, as measured by larger N2 amplitudes. Conclusions While alcohol dependence is associated with enhanced automatic attentional biases early in processing, escape drinking is associated with more controlled attentional biases to active alcohol cues during a relatively later stage in processing. These findings reveal important information about the time-course of attentional processing in problem drinkers and have important implications for addiction models and treatment. PMID:24292342

  17. Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior.

    PubMed

    Cohen, Michael X; Donner, Tobias H

    2013-12-01

    Action monitoring and conflict resolution require the rapid and flexible coordination of activity in multiple brain regions. Oscillatory neural population activity may be a key physiological mechanism underlying such rapid and flexible network coordination. EEG power modulations of theta-band (4-8 Hz) activity over the human midfrontal cortex during response conflict have been proposed to reflect neural oscillations that support conflict detection and resolution processes. However, it has remained unclear whether this frequency-band-specific activity reflects neural oscillations or nonoscillatory responses (i.e., event-related potentials). Here, we show that removing the phase-locked component of the EEG did not reduce the strength of the conflict-related modulation of the residual (i.e., non-phase-locked) theta power over midfrontal cortex. Furthermore, within-subject regression analyses revealed that the non-phase-locked theta power was a significantly better predictor of the conflict condition than was the time-domain phase-locked EEG component. Finally, non-phase-locked theta power showed robust and condition-specific (high- vs. low-conflict) cross-trial correlations with reaction time, whereas the phase-locked component did not. Taken together, our results indicate that most of the conflict-related and behaviorally relevant midfrontal EEG signal reflects a modulation of ongoing theta-band oscillations that occurs during the decision process but is not phase-locked to the stimulus or to the response.

  18. Nonoxidative Glucose Consumption during Focal Physiologic Neural Activity

    NASA Astrophysics Data System (ADS)

    Fox, Peter T.; Raichle, Marcus E.; Mintun, Mark A.; Dence, Carmen

    1988-07-01

    Brain glucose uptake, oxygen metabolism, and blood flow in humans were measured with positron emission tomography, and a resting-state molar ratio of oxygen to glucose consumption of 4.1:1 was obtained. Physiological neural activity, however, increased glucose uptake and blood flow much more (51 and 50 percent, respectively) than oxygen consumption (5 percent) and produced a molar ratio for the increases of 0.4:1. Transient increases in neural activity cause a tissue uptake of glucose in excess of that consumed by oxidative metabolism, acutely consume much less energy than previously believed, and regulate local blood flow for purposes other than oxidative metabolism.

  19. Cerebral Oxygen Delivery and Consumption During Evoked Neural Activity

    PubMed Central

    Vazquez, Alberto L.; Masamoto, Kazuto; Fukuda, Mitsuhiro; Kim, Seong-Gi

    2010-01-01

    Increases in neural activity evoke increases in the delivery and consumption of oxygen. Beyond observations of cerebral tissue and blood oxygen, the role and properties of cerebral oxygen delivery and consumption during changes in brain function are not well understood. This work overviews the current knowledge of functional oxygen delivery and consumption and introduces recent and preliminary findings to explore the mechanisms by which oxygen is delivered to tissue as well as the temporal dynamics of oxygen metabolism. Vascular oxygen tension measurements have shown that a relatively large amount of oxygen exits pial arterioles prior to capillaries. Additionally, increases in cerebral blood flow (CBF) induced by evoked neural activation are accompanied by arterial vasodilation and also by increases in arteriolar oxygenation. This increase contributes not only to the down-stream delivery of oxygen to tissue, but also to delivery of additional oxygen to extra-vascular spaces surrounding the arterioles. On the other hand, the changes in tissue oxygen tension due to functional increases in oxygen consumption have been investigated using a method to suppress the evoked CBF response. The functional decreases in tissue oxygen tension induced by increases in oxygen consumption are slow to evoked changes in CBF under control conditions. Preliminary findings obtained using flavoprotein autofluorescence imaging suggest cellular oxidative metabolism changes at a faster rate than the average changes in tissue oxygen. These issues are important in the determination of the dynamic changes in tissue oxygen metabolism from hemoglobin-based imaging techniques such as blood oxygenation-level dependent functional magnetic resonance imaging (fMRI). PMID:20616881

  20. CALCITONIN GENE-RELATED PEPTIDE IN THE BED NUCLEUS OF THE STRIA TERMINALIS PRODUCES AN ANXIETY-LIKE PATTERN OF BEHAVIOR AND INCREASES NEURAL ACTIVATION IN ANXIETY-RELATED STRUCTURES

    PubMed Central

    Sink, KS; Walker, DL; Yang, Y; Davis, M

    2011-01-01

    Calcitonin gene-related peptide (CGRP) evokes anxiety-like responses when infused into the lateral ventricle of rats. Because the bed nucleus of the stria terminalis (BNST) lies immediately adjacent to the lateral ventricle, is rich in CGRP receptors, and has itself been implicated in anxiety, we evaluated the hypothesis that these effects are attributable to stimulation of CGRP receptors within the BNST itself. Bilateral intra-BNST, but not dorsal, CGRP infusions (0, 200, 400, 800 ng/side) dose-dependently enhanced startle amplitude, and produced an anxiety-like response on the elevated plus maze. Intra-BNST infusion of the CGRP antagonist, αCGRP8-37, blocked the effect of CGRP on startle, and also blocked startle potentiation produced by exposure to trimethylthiazoline (TMT – a component of fox feces that induces anxiety-like behavior in rats). Intra-BNST, but not dorsal, CGRP infusions also increased c-Fos immunoreactivity in a number of anxiety-related brain areas (central nucleus of the amygdala, locus coeruleus, ventrolateral septal nucleus, paraventricular hypothalamic nucleus, lateral hypothalamus, lateral parabrachial nucleus, dorsal raphe nucleus, and nucleus accumbens shell), all of which receive direct projections from the BNST. Together, the results indicate that the activation of BNST CGRP receptors is both necessary and sufficient for some anxiety responses and that these effects may be mediated by activation of a wider network of BNST efferent structures. If so, inhibition of CGRP receptors may be a clinically useful strategy for anxiety reduction. PMID:21289190

  1. Neural correlates of conceptual object priming in young and older adults: An event-related fMRI study

    PubMed Central

    Ballesteros, Soledad; Bischof, Gérard N.; Goh, Joshua O.; Park, Denise C.

    2012-01-01

    In this event-related fMRI study, we investigated age-related differences in brain activity associated with conceptual repetition priming in young and older adults. Participants performed a speeded “living/non-living” classification task with three repetitions of familiar objects. Both young and older adults showed a similar magnitude of behavioral priming to repeated objects and evidencing repetition-related activation reductions in fusiform gyrus, superior occipital, middle and inferior temporal cortex, as well as inferior frontal and insula regions. The neural priming effect in young adults was extensive and continued through both the second and third stimulus repetitions, whereas neural priming in older adults was markedly attenuated and reached floor at the second repetition. In young adults, greater neural priming in multiple brain regions correlated with greater behavioral facilitation whereas in older adults, only activation reduction in the left inferior frontal correlated with faster behavioral responses. These findings provide evidence for altered neural priming in older adults despite preserved behavioral priming, and suggest the possibility that age-invariant behavioral priming is observed as a result of more sustained neural processing of stimuli in older adults which may be a form of compensatory neural activity. PMID:23102512

  2. Neural correlates of conceptual object priming in young and older adults: an event-related functional magnetic resonance imaging study.

    PubMed

    Ballesteros, Soledad; Bischof, Gérard N; Goh, Joshua O; Park, Denise C

    2013-04-01

    In this event-related functional magnetic resonance imaging study, we investigated age-related differences in brain activity associated with conceptual repetition priming in young and older adults. Participants performed a speeded "living/nonliving" classification task with 3 repetitions of familiar objects. Both young and older adults showed a similar magnitude of behavioral priming to repeated objects and evidenced repetition-related activation reductions in fusiform gyrus, superior occipital, middle, and inferior temporal cortex, and inferior frontal and insula regions. The neural priming effect in young adults was extensive and continued through both the second and third stimulus repetitions, and neural priming in older adults was markedly attenuated and reached floor at the second repetition. In young adults, greater neural priming in multiple brain regions correlated with greater behavioral facilitation and in older adults, only activation reduction in the left inferior frontal correlated with faster behavioral responses. These findings provide evidence for altered neural priming in older adults despite preserved behavioral priming, and suggest the possibility that age-invariant behavioral priming is observed as a result of more sustained neural processing of stimuli in older adults which might be a form of compensatory neural activity.

  3. NrCAM regulating neural systems and addiction related behaviors

    PubMed Central

    Ishiguro, Hiroki; Hall, Frank S.; Horiuchi, Yasue; Sakurai, Takeshi; Hishimoto, Akitoyo; Grumet, Martin; Uhl, George R.; Onaivi, Emmanuel S.; Arinami, Tadao

    2012-01-01

    We have previously shown that a haplotype associated with decreased NrCAM expression in brain is protective against addiction vulnerability for polysubstance abuse in humans and that Nrcam knockout mice do not develop conditioned place preferences for morphine, cocaine, or amphetamine. In order to gain insight into NrCAM involvement in addiction vulnerability, which may involve specific neural circuits underlying behavioral characteristics relevant to addiction, we evaluated several behavioral phenotypes in Nrcam knockout mice. Consistent with a potential general reduction in motivational function, Nrcam knockout mice demonstrated less curiosity for novel objects and for an unfamiliar conspecific, showed also less anxiety in the zero maze. Nrcam heterozygote knockout mice reduced alcohol preference and buried fewer marbles in home cage. These observations provide further support for a role of NrCAM in substance abuse including alcoholism vulnerability, possibly through its effects on behavioral traits that may affect addiction vulnerability, including novelty seeking, obsessive compulsion and responses to aversive or anxiety-provoking stimuli. Additionally, in order to prove glutamate homeostasis hypothesis of addiction, we analyzed glutamatergic molecules regulated by NRCAM. Glutaminase appears to be involved in NrCAM-related molecular pathway in two different tissues from human and mouse. An inhibitor of the enzyme, PLG, treatment produced, at least, some of the phenotypes of mice shown in alcohol preference and in anxiety-like behavior. Thus, NrCAM could affect addiction-related behaviors via at least partial modulation of some glutamatargic pathways and neural function in brain. PMID:22780223

  4. Typology of nonlinear activity waves in a layered neural continuum.

    PubMed

    Koch, Paul; Leisman, Gerry

    2006-04-01

    Neural tissue, a medium containing electro-chemical energy, can amplify small increments in cellular activity. The growing disturbance, measured as the fraction of active cells, manifests as propagating waves. In a layered geometry with a time delay in synaptic signals between the layers, the delay is instrumental in determining the amplified wavelengths. The growth of the waves is limited by the finite number of neural cells in a given region of the continuum. As wave growth saturates, the resulting activity patterns in space and time show a variety of forms, ranging from regular monochromatic waves to highly irregular mixtures of different spatial frequencies. The type of wave configuration is determined by a number of parameters, including alertness and synaptic conditioning as well as delay. For all cases studied, using numerical solution of the nonlinear Wilson-Cowan (1973) equations, there is an interval in delay in which the wave mixing occurs. As delay increases through this interval, during a series of consecutive waves propagating through a continuum region, the activity within that region changes from a single-frequency to a multiple-frequency pattern and back again. The diverse spatio-temporal patterns give a more concrete form to several metaphors advanced over the years to attempt an explanation of cognitive phenomena: Activity waves embody the "holographic memory" (Pribram, 1991); wave mixing provides a plausible cause of the competition called "neural Darwinism" (Edelman, 1988); finally the consecutive generation of growing neural waves can explain the discontinuousness of "psychological time" (Stroud, 1955).

  5. Event-Related Potentials Index Neural Response to Eye Contact.

    PubMed

    Naples, Adam J; Wu, Jia; Mayes, Linda C; McPartland, James C

    2017-04-07

    Sensitivity to eye-contact is a foundation upon which social cognition is built. However, there are no known neural markers characterizing response to reciprocal gaze. Using co-registered EEG and eye-tracking, we measured brain activity while participants viewed faces that responded to their looking patterns. Contingent upon participant gaze, onscreen faces opened their eyes or mouths; in this way we measured brain response to reciprocal eye-contact. We identified two ERP components that were largest in response to reciprocal eye-contact: the N170 and the P300. The magnitude of the components' differences between reciprocal eye-contact and mouth movement predicted self-reported social function. Individuals with greater brain response to reciprocal eye-contact reported more normative scores on measures of autistic traits. These results present the first neural markers of eye-contact, revealing that reciprocal eye-contact is identified in less than 500ms. Furthermore, individual differences in brain response to eye-contact predict meaningful variability in self-reports of social performance.

  6. Linking perception to neural activity as measured by visual evoked potentials.

    PubMed

    Norcia, Anthony M

    2013-11-01

    Linking propositions have played an important role in refining our understanding of the relationship between neural activity and perception. Over the last 40 years, visual evoked potentials (VEPs) have been used in many different ways to address questions of the relationship between neural activity and perception. This review organizes and discusses this research within the linking proposition framework developed by Davida Teller, and her colleagues. A series of examples from the VEP literature illustrates each of the five classes of linking propositions originally proposed by Davida Teller. The related concept of the bridge locus-the site at which neural activity can be said to first be proscriptive of perception-is discussed and a suggestion is made that the concept be expanded to include an evolution over time and cortical area.

  7. Predicting Reading and Mathematics from Neural Activity for Feedback Learning

    ERIC Educational Resources Information Center

    Peters, Sabine; Van der Meulen, Mara; Zanolie, Kiki; Crone, Eveline A.

    2017-01-01

    Although many studies use feedback learning paradigms to study the process of learning in laboratory settings, little is known about their relevance for real-world learning settings such as school. In a large developmental sample (N = 228, 8-25 years), we investigated whether performance and neural activity during a feedback learning task…

  8. Common neural circuitry supporting volitional saccades and its disruption in schizophrenia patients and relatives

    PubMed Central

    Camchong, Jazmin; Dyckman, Kara A.; Austin, Benjamin P.; Clementz, Brett A.; McDowell, Jennifer E.

    2012-01-01

    BACKGROUND People with schizophrenia and their biological relatives have deficits in executive control processes such as inhibition and working memory as evidenced by performance abnormalities on antisaccade (AS) and ocular motor delayed response (ODR) tasks. METHODS The present functional magnetic resonance imaging (fMRI) study was conducted to investigate brain activity associated with these putative indices of schizophrenia risk by (i) directly comparing neural functioning in 15 schizophrenia patients, 13 of their first-degree biological relatives (primarily siblings), and 14 healthy participants, and (ii) assessing executive function associated with volitional saccades by using a combination of AS and ODR tasks. RESULTS Behavioral data showed that patients and relatives both made more volitional saccade errors. Imaging data demonstrated that within the context of preserved activity in some neural regions in patients and relatives, there were two distinct patterns of disruptions in other regions. First, there were deficits observed only in the schizophrenia group (decreased activity in lateral FEF and SEF), suggesting a change associated with disease manifestation. Second, there were deficits observed in both patients and relatives (decreased activity in middle occipital gyrus, insula, cuneus, anterior cingulate, and BA10 in prefrontal cortex), indicating a potential association with disease risk. CONCLUSIONS Results indicate that decreased brain activation in regions involved in managing and evaluating early sensory and attention processing may be associated with poor volitional saccade control and risk for developing schizophrenia. PMID:18692173

  9. Mechanisms underlying spontaneous patterned activity in developing neural circuits

    PubMed Central

    Blankenship, Aaron G.; Feller, Marla B.

    2010-01-01

    Patterned, spontaneous activity occurs in many developing neural circuits, including the retina, the cochlea, the spinal cord, the cerebellum and the hippocampus, where it provides signals that are important for the development of neurons and their connections. Despite differences in adult architecture and output across these various circuits, the patterns of spontaneous network activity and the mechanisms that generate it are remarkably similar and can include a depolarizing action of GABA, transient synaptic connections, extrasynaptic transmission, gap junction coupling and the presence of pacemaker-like neurons. Interestingly, spontaneous activity is robust; if one element of a circuit is disrupted another will generate similar activity. This research suggests that developing neural circuits exhibit transient and tunable features that maintain a source of correlated activity during critical stages of development. PMID:19953103

  10. Controlling neural activity in Caenorhabditis elegans to evoke chemotactic behavior

    NASA Astrophysics Data System (ADS)

    Kocabas, Askin; Shen, Ching-Han; Guo, Zengcai V.; Ramanathan, Sharad

    2013-03-01

    Animals locate and track chemoattractive gradients in the environment to find food. With its simple nervous system, Caenorhabditis elegans is a good model system in which to understand how the dynamics of neural activity control this search behavior. To understand how the activity in its interneurons coordinate different motor programs to lead the animal to food, here we used optogenetics and new optical tools to manipulate neural activity directly in freely moving animals to evoke chemotactic behavior. By deducing the classes of activity patterns triggered during chemotaxis and exciting individual neurons with these patterns, we identified interneurons that control the essential locomotory programs for this behavior. Notably, we discovered that controlling the dynamics of activity in just one interneuron pair was sufficient to force the animal to locate, turn towards and track virtual light gradients.

  11. Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate.

    PubMed

    Neilson, Karen M; Klein, Steven L; Mhaske, Pallavi; Mood, Kathy; Daar, Ira O; Moody, Sally A

    2012-05-15

    FoxD4/5, a forkhead transcription factor, plays a critical role in establishing and maintaining the embryonic neural ectoderm. It both up-regulates genes that maintain a proliferative, immature neural ectoderm and down-regulates genes that promote the transition to a differentiating neural plate. We constructed deletion and mutant versions of FoxD4/5 to determine which domains are functionally responsible for these opposite activities, which regulate the critical developmental transition of neural precursors to neural progenitors to differentiating neural plate cells. Our results show that up-regulation of genes that maintain immature neural precursors (gem, zic2) requires the Acidic blob (AB) region in the N-terminal portion of the protein, indicating that the AB is the transactivating domain. Additionally, down-regulation of those genes that promote the transition to neural progenitors (sox) and those that lead to neural differentiation (zic, irx) involves: 1) an interaction with the Groucho co-repressor at the Eh-1 motif in the C-terminus; and 2) sequence downstream of this motif. Finally, the ability of FoxD4/5 to induce the ectopic expression of neural precursor genes in the ventral ectoderm also involves both the AB region and the Eh-1 motif; FoxD4/5 accomplishes ectopic neural induction by both activating neural precursor genes and repressing BMP signaling and epidermal genes. This study identifies the specific, conserved domains of the FoxD4/5 protein that allow this single transcription factor to regulate a network of genes that controls the transition of a proliferative neural ectodermal population to a committed neural plate population poised to begin differentiation.

  12. Using Perfusion fMRI to Measure Continuous Changes in Neural Activity with Learning

    ERIC Educational Resources Information Center

    Olson, Ingrid R.; Rao, Hengyi; Moore, Katherine Sledge; Wang, Jiongjiong; Detre, John A.; Aguirre, Geoffrey K.

    2006-01-01

    In this study, we examine the suitability of a relatively new imaging technique, "arterial spin labeled perfusion imaging," for the study of continuous, gradual changes in neural activity. Unlike BOLD imaging, the perfusion signal is stable over long time-scales, allowing for accurate assessment of continuous performance. In addition, perfusion…

  13. Neural activity predicts attitude change in cognitive dissonance.

    PubMed

    van Veen, Vincent; Krug, Marie K; Schooler, Jonathan W; Carter, Cameron S

    2009-11-01

    When our actions conflict with our prior attitudes, we often change our attitudes to be more consistent with our actions. This phenomenon, known as cognitive dissonance, is considered to be one of the most influential theories in psychology. However, the neural basis of this phenomenon is unknown. Using a Solomon four-group design, we scanned participants with functional MRI while they argued that the uncomfortable scanner environment was nevertheless a pleasant experience. We found that cognitive dissonance engaged the dorsal anterior cingulate cortex and anterior insula; furthermore, we found that the activation of these regions tightly predicted participants' subsequent attitude change. These effects were not observed in a control group. Our findings elucidate the neural representation of cognitive dissonance, and support the role of the anterior cingulate cortex in detecting cognitive conflict and the neural prediction of attitude change.

  14. Sex-related similarities and differences in the neural correlates of beauty

    PubMed Central

    Cela-Conde, Camilo J.; Ayala, Francisco J.; Munar, Enric; Maestú, Fernando; Nadal, Marcos; Capó, Miguel A.; del Río, David; López-Ibor, Juan J.; Ortiz, Tomás; Mirasso, Claudio; Marty, Gisèle

    2009-01-01

    The capacity to appreciate beauty is one of our species' most remarkable traits. Although knowledge about its neural correlates is growing, little is known about any gender-related differences. We have explored possible differences between men and women's neural correlates of aesthetic preference. We have used magnetoencephalography to record the brain activity of 10 male and 10 female participants while they decided whether or not they considered examples of artistic and natural visual stimuli to be beautiful. Our results reveal significantly different activity between the sexes in parietal regions when participants judged the stimuli as beautiful. Activity in this region was bilateral in women, whereas it was lateralized to the right hemisphere in men. It is known that the dorsal visual processing stream, which encompasses the superior parietal areas, has been significantly modified throughout human evolution. We posit that the observed gender-related differences are the result of evolutionary processes that occurred after the splitting of the human and chimpanzee lineages. In view of previous results on gender differences with respect to the neural correlates of coordinate and categorical spatial strategies, we infer that the different strategies used by men and women in assessing aesthetic preference may reflect differences in the strategies associated with the division of labor between our male and female hunter-gatherer hominin ancestors. PMID:19237562

  15. A Framework for Relating Cognitive to Neural Systems. Cognitive Science Program, Technical Report No. 84-2.

    ERIC Educational Resources Information Center

    Posner, Michael I.

    This paper reviews the aspects of cognitive science that relate best to using electrical and magnetic recording to understand the function of brain systems. It outlines a framework for relating cognitive activities of daily life (typing, reading) to underlying neural systems. The framework uses five levels of analysis: task, elementary operations,…

  16. Distinct neural correlates of the preference-related valuation of supraliminally and subliminally presented faces.

    PubMed

    Ito, Ayahito; Abe, Nobuhito; Kawachi, Yousuke; Kawasaki, Iori; Ueno, Aya; Yoshida, Kazuki; Sakai, Shinya; Matsue, Yoshihiko; Fujii, Toshikatsu

    2015-08-01

    Recent neuroimaging studies have investigated the neural substrates involved in the valuation of supraliminally presented targets and the subsequent preference decisions. However, the neural mechanisms of the valuation of subliminally presented targets, which can guide subsequent preference decisions, remain to be explored. In the present study, we determined whether the neural systems associated with the valuation of supraliminally presented faces are involved in the valuation of subliminally presented faces. The subjects were supraliminally and subliminally presented with faces during functional magnetic resonance imaging (fMRI). Following fMRI, the subjects were presented with pairs of faces and were asked to choose which face they preferred. We analyzed brain activation by back-sorting the fMRI data according to the subjects' choices. The present study yielded two main findings. First, the ventral striatum and the ventromedial prefrontal cortex predict preferences only for supraliminally presented faces. Second, the dorsomedial prefrontal cortex may predict preferences for subliminally presented faces. These findings indicate that neural correlates of the preference-related valuation of faces are dissociable, contingent upon whether the subjects consciously perceive the faces.

  17. Application of neural networks to seismic active control

    SciTech Connect

    Tang, Yu

    1995-07-01

    An exploratory study on seismic active control using an artificial neural network (ANN) is presented in which a singledegree-of-freedom (SDF) structural system is controlled by a trained neural network. A feed-forward neural network and the backpropagation training method are used in the study. In backpropagation training, the learning rate is determined by ensuring the decrease of the error function at each training cycle. The training patterns for the neural net are generated randomly. Then, the trained ANN is used to compute the control force according to the control algorithm. The control strategy proposed herein is to apply the control force at every time step to destroy the build-up of the system response. The ground motions considered in the simulations are the N21E and N69W components of the Lake Hughes No. 12 record that occurred in the San Fernando Valley in California on February 9, 1971. Significant reduction of the structural response by one order of magnitude is observed. Also, it is shown that the proposed control strategy has the ability to reduce the peak that occurs during the first few cycles of the time history. These promising results assert the potential of applying ANNs to active structural control under seismic loads.

  18. Systematic fluctuation expansion for neural network activity equations.

    PubMed

    Buice, Michael A; Cowan, Jack D; Chow, Carson C

    2010-02-01

    Population rate or activity equations are the foundation of a common approach to modeling for neural networks. These equations provide mean field dynamics for the firing rate or activity of neurons within a network given some connectivity. The shortcoming of these equations is that they take into account only the average firing rate, while leaving out higher-order statistics like correlations between firing. A stochastic theory of neural networks that includes statistics at all orders was recently formulated. We describe how this theory yields a systematic extension to population rate equations by introducing equations for correlations and appropriate coupling terms. Each level of the approximation yields closed equations; they depend only on the mean and specific correlations of interest, without an ad hoc criterion for doing so. We show in an example of an all-to-all connected network how our system of generalized activity equations captures phenomena missed by the mean field rate equations alone.

  19. Dynamical criticality in the collective activity of a neural population

    NASA Astrophysics Data System (ADS)

    Mora, Thierry

    The past decade has seen a wealth of physiological data suggesting that neural networks may behave like critical branching processes. Concurrently, the collective activity of neurons has been studied using explicit mappings to classic statistical mechanics models such as disordered Ising models, allowing for the study of their thermodynamics, but these efforts have ignored the dynamical nature of neural activity. I will show how to reconcile these two approaches by learning effective statistical mechanics models of the full history of the collective activity of a neuron population directly from physiological data, treating time as an additional dimension. Applying this technique to multi-electrode recordings from retinal ganglion cells, and studying the thermodynamics of the inferred model, reveals a peak in specific heat reminiscent of a second-order phase transition.

  20. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces

    PubMed Central

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately. PMID:27147955

  1. Implications of the Dependence of Neuronal Activity on Neural Network States for the Design of Brain-Machine Interfaces.

    PubMed

    Panzeri, Stefano; Safaai, Houman; De Feo, Vito; Vato, Alessandro

    2016-01-01

    Brain-machine interfaces (BMIs) can improve the quality of life of patients with sensory and motor disabilities by both decoding motor intentions expressed by neural activity, and by encoding artificially sensed information into patterns of neural activity elicited by causal interventions on the neural tissue. Yet, current BMIs can exchange relatively small amounts of information with the brain. This problem has proved difficult to overcome by simply increasing the number of recording or stimulating electrodes, because trial-to-trial variability of neural activity partly arises from intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation, and so is shared among neurons. Here we review recent progress in characterizing the state dependence of neural responses, and in particular of how neural responses depend on endogenous slow fluctuations of network excitability. We then elaborate on how this knowledge may be used to increase the amount of information that BMIs exchange with brain. Knowledge of network state can be used to fine-tune the stimulation pattern that should reliably elicit a target neural response used to encode information in the brain, and to discount part of the trial-by-trial variability of neural responses, so that they can be decoded more accurately.

  2. Power to Punish Norm Violations Affects the Neural Processes of Fairness-Related Decision Making

    PubMed Central

    Cheng, Xuemei; Zheng, Li; Li, Lin; Guo, Xiuyan; Wang, Qianfeng; Lord, Anton; Hu, Zengxi; Yang, Guang

    2015-01-01

    Punishing norm violations is considered an important motive during rejection of unfair offers in the ultimatum game (UG). The present study investigates the impact of the power to punish norm violations on people’s responses to unfairness and associated neural correlates. In the UG condition participants had the power to punish norm violations, while an alternate condition, the impunity game (IG), was presented where participants had no power to punish norm violations since rejection only reduced the responder’s income to zero. Results showed that unfair offers were rejected more often in UG compared to IG. At the neural level, anterior insula and dorsal anterior cingulate cortex were more active when participants received and rejected unfair offers in both UG and IG. Moreover, greater dorsolateral prefrontal cortex activity was observed when participants rejected than accepted unfair offers in UG but not in IG. Ventromedial prefrontal cortex activation was higher in UG than IG when unfair offers were accepted as well as when rejecting unfair offers in IG as opposed to UG. Taken together, our results demonstrate that the power to punish norm violations affects not only people’s behavioral responses to unfairness but also the neural correlates of the fairness-related social decision-making process. PMID:26696858

  3. Cortical Neural Synchronization Underlies Primary Visual Consciousness of Qualia: Evidence from Event-Related Potentials

    PubMed Central

    Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana

    2016-01-01

    This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both “seen” and “not seen” trials. There was no statistical difference in the ERP peak latencies between the “seen” and “not seen” trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between “seen” and “not seen” trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble

  4. Trait motivation moderates neural activation associated with goal pursuit.

    PubMed

    Spielberg, Jeffrey M; Miller, Gregory A; Warren, Stacie L; Engels, Anna S; Crocker, Laura D; Sutton, Bradley P; Heller, Wendy

    2012-06-01

    Research has indicated that regions of left and right dorsolateral prefrontal cortex (DLPFC) are involved in integrating the motivational and executive function processes related to, respectively, approach and avoidance goals. Given that sensitivity to pleasant and unpleasant stimuli is an important feature of conceptualizations of approach and avoidance motivation, it is possible that these regions of DLPFC are preferentially activated by valenced stimuli. The present study tested this hypothesis by using a task in which goal pursuit was threatened by distraction from valenced stimuli while functional magnetic resonance imaging data were collected. The analyses examined whether the impact of trait approach and avoidance motivation on the neural processes associated with executive function differed depending on the valence or arousal level of the distractor stimuli. The present findings support the hypothesis that the regions of DLPFC under investigation are involved in integrating motivational and executive function processes, and they also indicate the involvement of a number of other brain areas in maintaining goal pursuit. However, DLPFC did not display differential sensitivity to valence.

  5. Brain temperature fluctuation: a reflection of functional neural activation.

    PubMed

    Kiyatkin, Eugene A; Brown, P Leon; Wise, Roy A

    2002-07-01

    Although it is known that relatively large increases in local brain temperature can occur during behaviour and in response to various novel, stressful and emotionally arousing environmental stimuli, the source of this heat is not clearly established. To clarify this issue, we monitored the temperature in three brain structures (dorsal and ventral striatum, cerebellum) and in arterial blood at the level of the abdominal aorta in freely moving rats exposed to several environmental challenges ranging from traditional stressors to simple sensory stimuli (cage change, tail pinch, exposure to another male rat, a female rat, a mouse or an unexpected sound). We found that brain temperature was consistently higher than arterial blood temperature, and that brain temperature increased prior to, and to a greater extent than, the increase in blood temperature evoked by each test challenge. Thus, the local metabolic consequences of widely correlated neural activity appear to be the primary source of increases in brain temperature and a driving force behind the associated changes in body temperature.

  6. Neural circuit activity in freely behaving zebrafish (Danio rerio).

    PubMed

    Issa, Fadi A; O'Brien, Georgeann; Kettunen, Petronella; Sagasti, Alvaro; Glanzman, David L; Papazian, Diane M

    2011-03-15

    Examining neuronal network activity in freely behaving animals is advantageous for probing the function of the vertebrate central nervous system. Here, we describe a simple, robust technique for monitoring the activity of neural circuits in unfettered, freely behaving zebrafish (Danio rerio). Zebrafish respond to unexpected tactile stimuli with short- or long-latency escape behaviors, which are mediated by distinct neural circuits. Using dipole electrodes immersed in the aquarium, we measured electric field potentials generated in muscle during short- and long-latency escapes. We found that activation of the underlying neural circuits produced unique field potential signatures that are easily recognized and can be repeatedly monitored. In conjunction with behavioral analysis, we used this technique to track changes in the pattern of circuit activation during the first week of development in animals whose trigeminal sensory neurons were unilaterally ablated. One day post-ablation, the frequency of short- and long-latency responses was significantly lower on the ablated side than on the intact side. Three days post-ablation, a significant fraction of escapes evoked by stimuli on the ablated side was improperly executed, with the animal turning towards rather than away from the stimulus. However, the overall response rate remained low. Seven days post-ablation, the frequency of escapes increased dramatically and the percentage of improperly executed escapes declined. Our results demonstrate that trigeminal ablation results in rapid reconfiguration of the escape circuitry, with reinnervation by new sensory neurons and adaptive changes in behavior. This technique is valuable for probing the activity, development, plasticity and regeneration of neural circuits under natural conditions.

  7. Monitoring activity in neural circuits with genetically encoded indicators

    PubMed Central

    Broussard, Gerard J.; Liang, Ruqiang; Tian, Lin

    2014-01-01

    Recent developments in genetically encoded indicators of neural activity (GINAs) have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior—a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning. Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators (GCaMPs), sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function. PMID:25538558

  8. Exponential stability of delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions.

    PubMed

    Song, Xueli; Xin, Xing; Huang, Wenpo

    2012-05-01

    The paper discusses exponential stability of distributed delayed and impulsive cellular neural networks with partially Lipschitz continuous activation functions. By relative nonlinear measure method, some novel criteria are obtained for the uniqueness and exponential stability of the equilibrium point. Our method abandons usual assumptions on global Lipschitz continuity, boundedness and monotonicity of activation functions. Our results are generalization and improvement of some existing ones. Finally, two examples and their simulations are presented to illustrate the correctness of our analysis.

  9. Structural damage detection using active members and neural networks

    NASA Astrophysics Data System (ADS)

    Manning, R. A.

    1994-06-01

    The detection of damage in structures is a topic which has considerable interest in many fields. In the past many methods for detecting damage in structures has relied on finite element model refinement methods. This note presents a structural damage methodology in which only active member transfer function data are used in conjunction with an artificial neural network to detect damage in structures. Specifically, the method relies on training a neural network using active member transfer function pole/zero information to classify damaged structure measurements and to predict the degree of damage in the structure. The method differs from many of the past damage detection algorithms in that no attempt is made to update a finite element model or to match measured data with new finite element analyses of the structure in a damaged state.

  10. Altered neural basis of the reality processing and its relation to cognitive insight in schizophrenia.

    PubMed

    Lee, Jung Suk; Chun, Ji Won; Lee, Sang-Hoon; Kim, Eosu; Lee, Seung-Koo; Kim, Jae-Jin

    2015-01-01

    It has been reported that reality evaluation and recognition are impaired in patients with schizophrenia and these impairments are related to the severity of psychotic symptoms. The current study aimed to investigate the neural basis of impairments in reality evaluation and recognition and their relationships with cognitive insight in schizophrenia. During functional magnetic resonance imaging, 20 patients with schizophrenia and 20 healthy controls performed a set of reality evaluation and recognition tasks, in which subjects judged whether scenes in a series of drawings were real or unreal and whether they were familiar or novel. During reality evaluation, patients showed decreased activity in various regions including the inferior parietal lobule, retrosplenial cortex and parahippocampal gyrus, compared with controls. Particularly, parahippocampal gyrus activity was correlated with the severity of positive symptoms in patients. During recognition, patients also exhibited decreased activity in various regions, including the dorsolateral prefrontal cortex, inferior parietal lobule and posterior cingulate cortex. Particularly, inferior parietal lobule activity and posterior cingulate cortex activity were correlated with cognitive insight in patients. These findings provide evidence that neural impairments in reality evaluation and recognition are related to psychotic symptoms. Anomalous appraisal of context by dysfunctions in the context network may contribute to impairments in the reality processing in schizophrenia, and abnormal declarative memory processes may be involved in cognitive insight in patients with schizophrenia.

  11. Common and Segregated Neural Substrates for Automatic Conceptual and Affective Priming as Revealed by Event-Related Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Liu, Hongyan; Hu, Zhiguo; Peng, Danling; Yang, Yanhui; Li, Kuncheng

    2010-01-01

    The brain activity associated with automatic semantic priming has been extensively studied. Thus far there has been no prior study that directly contrasts the neural mechanisms of semantic and affective priming. The present study employed event-related fMRI to examine the common and distinct neural bases underlying conceptual and affective priming…

  12. Internal models for interpreting neural population activity during sensorimotor control

    PubMed Central

    Golub, Matthew D; Yu, Byron M; Chase, Steven M

    2015-01-01

    To successfully guide limb movements, the brain takes in sensory information about the limb, internally tracks the state of the limb, and produces appropriate motor commands. It is widely believed that this process uses an internal model, which describes our prior beliefs about how the limb responds to motor commands. Here, we leveraged a brain-machine interface (BMI) paradigm in rhesus monkeys and novel statistical analyses of neural population activity to gain insight into moment-by-moment internal model computations. We discovered that a mismatch between subjects’ internal models and the actual BMI explains roughly 65% of movement errors, as well as long-standing deficiencies in BMI speed control. We then used the internal models to characterize how the neural population activity changes during BMI learning. More broadly, this work provides an approach for interpreting neural population activity in the context of how prior beliefs guide the transformation of sensory input to motor output. DOI: http://dx.doi.org/10.7554/eLife.10015.001 PMID:26646183

  13. Long-range neural activity evoked by premotor cortex stimulation: a TMS/EEG co-registration study

    PubMed Central

    Zanon, Marco; Battaglini, Piero P.; Jarmolowska, Joanna; Pizzolato, Gilberto; Busan, Pierpaolo

    2013-01-01

    The premotor cortex is one of the fundamental structures composing the neural networks of the human brain. It is implicated in many behaviors and cognitive tasks, ranging from movement to attention and eye-related activity. Therefore, neural circuits that are related to premotor cortex have been studied to clarify their connectivity and/or role in different tasks. In the present work, we aimed to investigate the propagation of the neural activity evoked in the dorsal premotor cortex using transcranial magnetic stimulation/electroencephalography (TMS/EEG). Toward this end, interest was focused on the neural dynamics elicited in long-ranging temporal and spatial networks. Twelve healthy volunteers underwent a single-pulse TMS protocol in a resting condition with eyes closed, and the evoked activity, measured by EEG, was compared to a sham condition in a time window ranging from 45 ms to about 200 ms after TMS. Spatial and temporal investigations were carried out with sLORETA. TMS was found to induce propagation of neural activity mainly in the contralateral sensorimotor and frontal cortices, at about 130 ms after delivery of the stimulus. Different types of analyses showed propagated activity also in posterior, mainly visual, regions, in a time window between 70 and 130 ms. Finally, a likely “rebounding” activation of the sensorimotor and frontal regions, was observed in various time ranges. Taken together, the present findings further characterize the neural circuits that are driven by dorsal premotor cortex activation in healthy humans. PMID:24324426

  14. Neural correlates of obsessive-compulsive related dysfunctional beliefs.

    PubMed

    Alonso, Pino; Orbegozo, Arantxa; Pujol, Jesús; López-Solà, Clara; Fullana, Miquel Àngel; Segalàs, Cinto; Real, Eva; Subirà, Marta; Martínez-Zalacaín, Ignacio; Menchón, José M; Harrison, Ben J; Cardoner, Narcís; Soriano-Mas, Carles

    2013-12-02

    There have been few attempts to integrate neurobiological and cognitive models of obsessive-compulsive disorder (OCD), although this might constitute a key approach to clarify the complex etiology of the disorder. Our study aimed to explore the neural correlates underlying dysfunctional beliefs hypothesized by cognitive models to be involved in the development and maintenance of OCD. We obtained a high-resolution magnetic resonance image from fifty OCD patients and 30 healthy controls, and correlated them, voxel-wise, with the severity of OC-related dysfunctional beliefs assessed by the Obsessive Beliefs Questionnaire-44. In healthy controls, significant negative correlations were observed between anterior temporal lobe (ATL) volume and scores on perfectionism/intolerance of uncertainty and overimportance/need to control thoughts. No significant correlations between OBQ-44 domains and regional gray matter volumes were observed in OCD patients. A post-hoc region-of-interest analysis detected that the ATLs was bilaterally smaller in OCD patients. On splitting subjects into high- and low-belief subgroups, we observed that such brain structural differences between OCD patients and healthy controls were explained by significantly larger ATL volumes among healthy subjects from the low-belief subgroup. Our results suggest a significant correlation between OC-related dysfunctional beliefs and morphometric variability in the anterior temporal lobe, a brain structure related to socio-emotional processing. Future studies should address the interaction of these correlations with environmental factors to fully characterize the bases of OC-related dysfunctional beliefs and to advance in the integration of biological and cognitive models of OCD.

  15. Efficient Universal Computing Architectures for Decoding Neural Activity

    PubMed Central

    Rapoport, Benjamin I.; Turicchia, Lorenzo; Wattanapanitch, Woradorn; Davidson, Thomas J.; Sarpeshkar, Rahul

    2012-01-01

    The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain– machine interfaces (BMIs). Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain– machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than . We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA) implementation of this portion is consequently energy efficient

  16. An investigation of the relationship between activation of a social cognitive neural network and social functioning.

    PubMed

    Pinkham, Amy E; Hopfinger, Joseph B; Ruparel, Kosha; Penn, David L

    2008-07-01

    Previous work examining the neurobiological substrates of social cognition in healthy individuals has reported modulation of a social cognitive network such that increased activation of the amygdala, fusiform gyrus, and superior temporal sulcus are evident when individuals judge a face to be untrustworthy as compared with trustworthy. We examined whether this pattern would be present in individuals with schizophrenia who are known to show reduced activation within these same neural regions when processing faces. Additionally, we sought to determine how modulation of this social cognitive network may relate to social functioning. Neural activation was measured using functional magnetic resonance imaging with blood oxygenation level dependent contrast in 3 groups of individuals--nonparanoid individuals with schizophrenia, paranoid individuals with schizophrenia, and healthy controls--while they rated faces as either trustworthy or untrustworthy. Analyses of mean percent signal change extracted from a priori regions of interest demonstrated that both controls and nonparanoid individuals with schizophrenia showed greater activation of this social cognitive network when they rated a face as untrustworthy relative to trustworthy. In contrast, paranoid individuals did not show a significant difference in levels of activation based on how they rated faces. Further, greater activation of this social cognitive network to untrustworthy faces was significantly and positively correlated with social functioning. These findings indicate that impaired modulation of neural activity while processing social stimuli may underlie deficits in social cognition and social dysfunction in schizophrenia.

  17. Can Neural Activity Propagate by Endogenous Electrical Field?

    PubMed Central

    Qiu, Chen; Shivacharan, Rajat S.; Zhang, Mingming

    2015-01-01

    It is widely accepted that synaptic transmissions and gap junctions are the major governing mechanisms for signal traveling in the neural system. Yet, a group of neural waves, either physiological or pathological, share the same speed of ∼0.1 m/s without synaptic transmission or gap junctions, and this speed is not consistent with axonal conduction or ionic diffusion. The only explanation left is an electrical field effect. We tested the hypothesis that endogenous electric fields are sufficient to explain the propagation with in silico and in vitro experiments. Simulation results show that field effects alone can indeed mediate propagation across layers of neurons with speeds of 0.12 ± 0.09 m/s with pathological kinetics, and 0.11 ± 0.03 m/s with physiologic kinetics, both generating weak field amplitudes of ∼2–6 mV/mm. Further, the model predicted that propagation speed values are inversely proportional to the cell-to-cell distances, but do not significantly change with extracellular resistivity, membrane capacitance, or membrane resistance. In vitro recordings in mice hippocampi produced similar speeds (0.10 ± 0.03 m/s) and field amplitudes (2.5–5 mV/mm), and by applying a blocking field, the propagation speed was greatly reduced. Finally, osmolarity experiments confirmed the model's prediction that cell-to-cell distance inversely affects propagation speed. Together, these results show that despite their weak amplitude, electric fields can be solely responsible for spike propagation at ∼0.1 m/s. This phenomenon could be important to explain the slow propagation of epileptic activity and other normal propagations at similar speeds. SIGNIFICANCE STATEMENT Neural activity (waves or spikes) can propagate using well documented mechanisms such as synaptic transmission, gap junctions, or diffusion. However, the purpose of this paper is to provide an explanation for experimental data showing that neural signals can propagate by means other than synaptic

  18. Multiview fusion for activity recognition using deep neural networks

    NASA Astrophysics Data System (ADS)

    Kavi, Rahul; Kulathumani, Vinod; Rohit, Fnu; Kecojevic, Vlad

    2016-07-01

    Convolutional neural networks (ConvNets) coupled with long short term memory (LSTM) networks have been recently shown to be effective for video classification as they combine the automatic feature extraction capabilities of a neural network with additional memory in the temporal domain. This paper shows how multiview fusion can be applied to such a ConvNet LSTM architecture. Two different fusion techniques are presented. The system is first evaluated in the context of a driver activity recognition system using data collected in a multicamera driving simulator. These results show significant improvement in accuracy with multiview fusion and also show that deep learning performs better than a traditional approach using spatiotemporal features even without requiring any background subtraction. The system is also validated on another publicly available multiview action recognition dataset that has 12 action classes and 8 camera views.

  19. Neural activity in the hippocampus predicts individual visual short-term memory capacity.

    PubMed

    von Allmen, David Yoh; Wurmitzer, Karoline; Martin, Ernst; Klaver, Peter

    2013-07-01

    Although the hippocampus had been traditionally thought to be exclusively involved in long-term memory, recent studies raised controversial explanations why hippocampal activity emerged during short-term memory tasks. For example, it has been argued that long-term memory processes might contribute to performance within a short-term memory paradigm when memory capacity has been exceeded. It is still unclear, though, whether neural activity in the hippocampus predicts visual short-term memory (VSTM) performance. To investigate this question, we measured BOLD activity in 21 healthy adults (age range 19-27 yr, nine males) while they performed a match-to-sample task requiring processing of object-location associations (delay period  =  900 ms; set size conditions 1, 2, 4, and 6). Based on individual memory capacity (estimated by Cowan's K-formula), two performance groups were formed (high and low performers). Within whole brain analyses, we found a robust main effect of "set size" in the posterior parietal cortex (PPC). In line with a "set size × group" interaction in the hippocampus, a subsequent Finite Impulse Response (FIR) analysis revealed divergent hippocampal activation patterns between performance groups: Low performers (mean capacity  =  3.63) elicited increased neural activity at set size two, followed by a drop in activity at set sizes four and six, whereas high performers (mean capacity  =  5.19) showed an incremental activity increase with larger set size (maximal activation at set size six). Our data demonstrated that performance-related neural activity in the hippocampus emerged below capacity limit. In conclusion, we suggest that hippocampal activity reflected successful processing of object-location associations in VSTM. Neural activity in the PPC might have been involved in attentional updating.

  20. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis.

    PubMed

    Kasischke, Karl A; Vishwasrao, Harshad D; Fisher, Patricia J; Zipfel, Warren R; Webb, Watt W

    2004-07-02

    We have found that two-photon fluorescence imaging of nicotinamide adenine dinucleotide (NADH) provides the sensitivity and spatial three-dimensional resolution to resolve metabolic signatures in processes of astrocytes and neurons deep in highly scattering brain tissue slices. This functional imaging reveals spatiotemporal partitioning of glycolytic and oxidative metabolism between astrocytes and neurons during focal neural activity that establishes a unifying hypothesis for neurometabolic coupling in which early oxidative metabolism in neurons is eventually sustained by late activation of the astrocyte-neuron lactate shuttle. Our model integrates existing views of brain energy metabolism and is in accord with known macroscopic physiological changes in vivo.

  1. Multivariate neural network operators with sigmoidal activation functions.

    PubMed

    Costarelli, Danilo; Spigler, Renato

    2013-12-01

    In this paper, we study pointwise and uniform convergence, as well as order of approximation, of a family of linear positive multivariate neural network (NN) operators with sigmoidal activation functions. The order of approximation is studied for functions belonging to suitable Lipschitz classes and using a moment-type approach. The special cases of NN operators, activated by logistic, hyperbolic tangent, and ramp sigmoidal functions are considered. Multivariate NNs approximation finds applications, typically, in neurocomputing processes. Our approach to NN operators allows us to extend previous convergence results and, in some cases, to improve the order of approximation. The case of multivariate quasi-interpolation operators constructed with sigmoidal functions is also considered.

  2. Human intracranial high-frequency activity during memory processing: neural oscillations or stochastic volatility?

    PubMed

    Burke, John F; Ramayya, Ashwin G; Kahana, Michael J

    2015-04-01

    Intracranial high-frequency activity (HFA), which refers to fast fluctuations in electrophysiological recordings, increases during memory processing. Two views have emerged to explain this effect: (1) HFA reflects a synchronous signal, related to underlying gamma oscillations, that plays a mechanistic role in human memory and (2) HFA reflects an asynchronous signal that is a non-specific marker of brain activation. We review recent data supporting each of these views and conclude that HFA during memory processing is more consistent with an asynchronous signal. Memory-related HFA is therefore best conceptualized as a biomarker of neural activation that can functionally map memory with high spatial and temporal precision.

  3. Neural correlates of mindfulness meditation-related anxiety relief.

    PubMed

    Zeidan, Fadel; Martucci, Katherine T; Kraft, Robert A; McHaffie, John G; Coghill, Robert C

    2014-06-01

    Anxiety is the cognitive state related to the inability to control emotional responses to perceived threats. Anxiety is inversely related to brain activity associated with the cognitive regulation of emotions. Mindfulness meditation has been found to regulate anxiety. However, the brain mechanisms involved in meditation-related anxiety relief are largely unknown. We employed pulsed arterial spin labeling MRI to compare the effects of distraction in the form of attending to the breath (ATB; before meditation training) to mindfulness meditation (after meditation training) on state anxiety across the same subjects. Fifteen healthy subjects, with no prior meditation experience, participated in 4 d of mindfulness meditation training. ATB did not reduce state anxiety, but state anxiety was significantly reduced in every session that subjects meditated. Meditation-related anxiety relief was associated with activation of the anterior cingulate cortex, ventromedial prefrontal cortex and anterior insula. Meditation-related activation in these regions exhibited a strong relationship to anxiety relief when compared to ATB. During meditation, those who exhibited greater default-related activity (i.e. posterior cingulate cortex) reported greater anxiety, possibly reflecting an inability to control self-referential thoughts. These findings provide evidence that mindfulness meditation attenuates anxiety through mechanisms involved in the regulation of self-referential thought processes.

  4. A BOLD Perspective on Age-Related Neurometabolic-Flow Coupling and Neural Efficiency Changes in Human Visual Cortex

    PubMed Central

    Hutchison, Joanna Lynn; Shokri-Kojori, Ehsan; Lu, Hanzhang; Rypma, Bart

    2013-01-01

    Age-related performance declines in visual tasks have been attributed to reductions in processing efficiency. The neural basis of these declines has been explored by comparing the blood-oxygen-level-dependent (BOLD) index of neural activity in older and younger adults during visual task performance. However, neural activity is one of many factors that change with age and lead to BOLD signal differences. We investigated the origin of age-related BOLD changes by comparing blood flow and oxygen metabolic constituents of BOLD signal. Subjects periodically viewed flickering annuli and pressed a button when detecting luminance changes in a central fixation cross. Using magnetic resonance dual-echo arterial spin labeling and CO2 ingestion, we observed age-equivalent (i.e., similar in older and younger groups) fractional cerebral blood flow (ΔCBF) in the presence of age-related increases in fractional cerebral metabolic rate of oxygen (ΔCMRO2). Reductions in ΔCBF responsiveness to increased ΔCMRO2 in elderly led to paradoxical age-related BOLD decreases. Age-related ΔCBF/ΔCMRO2 ratio decreases were associated with reaction times, suggesting that age-related slowing resulted from less efficient neural activity. We hypothesized that reduced vascular responsiveness to neural metabolic demand would lead to a reduction in ΔCBF/ΔCMRO2. A simulation of BOLD relative to ΔCMRO2 for lower and higher neurometabolic-flow coupling ratios (approximating those for old and young, respectively) indicated less BOLD signal change in old than young in relatively lower CMRO2 ranges, as well as greater BOLD signal change in young compared to old in relatively higher CMRO2 ranges. These results suggest that age-comparative studies relying on BOLD signal might be misinterpreted, as age-related BOLD changes do not merely reflect neural activity changes. Age-related declines in neurometabolic-flow coupling might lead to neural efficiency reductions that can adversely affect visual task

  5. Neural activity associated with enhanced facial attractiveness by cosmetics use.

    PubMed

    Ueno, Aya; Ito, Ayahito; Kawasaki, Iori; Kawachi, Yousuke; Yoshida, Kazuki; Murakami, Yui; Sakai, Shinya; Iijima, Toshio; Matsue, Yoshihiko; Fujii, Toshikatsu

    2014-04-30

    Previous psychological studies have shown that make-up enhances facial attractiveness. Although neuroimaging evidence indicates that the orbitofrontal cortex (OFC) shows greater activity for faces of attractive people than for those of unattractive people, there is no direct evidence that the OFC also shows greater activity for the face of an individual wearing make-up than for the same face without make-up. Using functional magnetic resonance imaging (fMRI), we investigated neural activity while subjects viewed 144 photographs of the same faces with and without make-up (48 with make-up, 48 without make-up, and 48 scrambled photographs) and assigned these faces an attractiveness rating. The behavioral data showed that the faces with make-up were rated as more attractive than those without make-up. The imaging data revealed that the left OFC and the right hippocampus showed greater activity for faces with make-up than for those without make-up. Furthermore, the activities of the right anterior cingulate cortex, left hippocampus, and left OFC increased with increasing facial attractiveness resulting from cosmetics use. These results provide direct evidence of the neural underpinnings of cosmetically enhanced facial attractiveness.

  6. Inference of other's internal neural models from active observation.

    PubMed

    Kim, Kyung-Joong; Cho, Sung-Bae

    2015-02-01

    Recently, there have been several attempts to replicate theory of mind, which explains how humans infer the mental states of other people using multiple sensory input, with artificial systems. One example of this is a robot that observes the behavior of other artificial systems and infers their internal models, mapping sensory inputs to the actuator's control signals. In this paper, we present the internal model as an artificial neural network, similar to biological systems. During inference, an observer can use an active incremental learning algorithm to guess an actor's internal neural model. This could significantly reduce the effort needed to guess other people's internal models. We apply an algorithm to the actor-observer robot scenarios with/without prior knowledge of the internal models. To validate our approach, we use a physics-based simulator with virtual robots. A series of experiments reveal that the observer robot can construct an "other's self-model", validating the possibility that a neural-based approach can be used as a platform for learning cognitive functions.

  7. Neural mechanisms underlying ecstasy-related attentional bias.

    PubMed

    Roberts, Gloria M P; Garavan, Hugh

    2013-08-30

    Conditioned responses to cues associated with drug taking play a pivotal role in a number of theories of drug addiction. This study examined whether attentional biases towards drug-related cues exist in recreational drug users who predominantly used ecstasy (3,4-methylenedioxymethamphetamine). Experiment 1 compared 30 ecstasy users, 25 cannabis users, and 30 controls in an attentional distraction task in which neutral, evocative, and ecstasy-related pictures were presented within a coloured border, requiring participants to respond as quickly as possible to the border colour. Experiment 2 employed functional magnetic resonance imaging (fMRI) and the attentional distraction task and tested 20 ecstasy users and 20 controls. Experiment 1 revealed significant response speed interference by the ecstasy-related pictures in the ecstasy users only. Experiment 2 revealed increased prefrontal and occipital activity in ecstasy users in all conditions. Activations in response to the ecstasy stimuli in these regions showed an apparent antagonism whereby ecstasy users, relative to controls, showed increased occipital but decreased right prefrontal activation. These results are interpreted to reflect increased visual processing of, and decreased prefrontal control over, the irrelevant but salient ecstasy-related stimuli. These results suggest that right inferior frontal cortex may play an important role in controlling drug-related attentional biases and may thus play an important role in mediating control over drug usage.

  8. Motor Neuron Activation in Peripheral Nerves Using Infrared Neural Stimulation

    PubMed Central

    Peterson, EJ; Tyler, DJ

    2014-01-01

    Objective Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach The rabbit sciatic nerve was stimulated extraneurally with 1875 nm-wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results 81% of nerves tested were sensitive to INS, with 1.7± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2–9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance The observed selectivity of INS indicates it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS. PMID:24310923

  9. Motor neuron activation in peripheral nerves using infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Peterson, E. J.; Tyler, D. J.

    2014-02-01

    Objective. Localized activation of peripheral axons may improve selectivity of peripheral nerve interfaces. Infrared neural stimulation (INS) employs localized delivery to activate neural tissue. This study investigated INS to determine whether localized delivery limited functionality in larger mammalian nerves. Approach. The rabbit sciatic nerve was stimulated extraneurally with 1875 nm wavelength infrared light, electrical stimulation, or a combination of both. Infrared-sensitive regions (ISR) of the nerve surface and electromyogram (EMG) recruitment of the Medial Gastrocnemius, Lateral Gastrocnemius, Soleus, and Tibialis Anterior were the primary output measures. Stimulation applied included infrared-only, electrical-only, and combined infrared and electrical. Main results. 81% of nerves tested were sensitive to INS, with 1.7 ± 0.5 ISR detected per nerve. INS was selective to a single muscle within 81% of identified ISR. Activation energy threshold did not change significantly with stimulus power, but motor activation decreased significantly when radiant power was decreased. Maximum INS levels typically recruited up to 2-9% of any muscle. Combined infrared and electrical stimulation differed significantly from electrical recruitment in 7% of cases. Significance. The observed selectivity of INS indicates that it may be useful in augmenting rehabilitation, but significant challenges remain in increasing sensitivity and response magnitude to improve the functionality of INS.

  10. Predicting reading and mathematics from neural activity for feedback learning.

    PubMed

    Peters, Sabine; Van der Meulen, Mara; Zanolie, Kiki; Crone, Eveline A

    2017-01-01

    Although many studies use feedback learning paradigms to study the process of learning in laboratory settings, little is known about their relevance for real-world learning settings such as school. In a large developmental sample (N = 228, 8-25 years), we investigated whether performance and neural activity during a feedback learning task predicted reading and mathematics performance 2 years later. The results indicated that feedback learning performance predicted both reading and mathematics performance. Activity during feedback learning in left superior dorsolateral prefrontal cortex (DLPFC) predicted reading performance, whereas activity in presupplementary motor area/anterior cingulate cortex (pre-SMA/ACC) predicted mathematical performance. Moreover, left superior DLPFC and pre-SMA/ACC activity predicted unique variance in reading and mathematics ability over behavioral testing of feedback learning performance alone. These results provide valuable insights into the relationship between laboratory-based learning tasks and learning in school settings, and the value of neural assessments for prediction of school performance over behavioral testing alone. (PsycINFO Database Record

  11. Social Status-Dependent Shift in Neural Circuit Activation Affects Decision Making.

    PubMed

    Miller, Thomas H; Clements, Katie; Ahn, Sungwoo; Park, Choongseok; Hye Ji, Eoon; Issa, Fadi A

    2017-02-22

    In a social group, animals make behavioral decisions that fit their social ranks. These behavioral choices are dependent on the various social cues experienced during social interactions. In vertebrates, little is known of how social status affects the underlying neural mechanisms regulating decision-making circuits that drive competing behaviors. Here, we demonstrate that social status in zebrafish (Danio rerio) influences behavioral decisions by shifting the balance in neural circuit activation between two competing networks (escape and swim). We show that socially dominant animals enhance activation of the swim circuit. Conversely, social subordinates display a decreased activation of the swim circuit, but an enhanced activation of the escape circuit. In an effort to understand how social status mediates these effects, we constructed a neurocomputational model of the escape and swim circuits. The model replicates our findings and suggests that social status-related shift in circuit dynamics could be mediated by changes in the relative excitability of the escape and swim networks. Together, our results reveal that changes in the excitabilities of the Mauthner command neuron for escape and the inhibitory interneurons that regulate swimming provide a cellular mechanism for the nervous system to adapt to changes in social conditions by permitting the animal to select a socially appropriate behavioral response.SIGNIFICANCE STATEMENT Understanding how social factors influence nervous system function is of great importance. Using zebrafish as a model system, we demonstrate how social experience affects decision making to enable animals to produce socially appropriate behavior. Based on experimental evidence and computational modeling, we show that behavioral decisions reflect the interplay between competing neural circuits whose activation thresholds shift in accordance with social status. We demonstrate this through analysis of the behavior and neural circuit

  12. Infrared neural stimulation fails to evoke neural activity in the deaf guinea pig cochlea.

    PubMed

    Thompson, Alexander C; Fallon, James B; Wise, Andrew K; Wade, Scott A; Shepherd, Robert K; Stoddart, Paul R

    2015-06-01

    At present there is some debate as to the processes by which infrared neural stimulation (INS) activates neurons in the cochlea, as the lasers used for INS can potentially generate a range of secondary stimuli e.g. an acoustic stimulus is produced when the light is absorbed by water. To clarify whether INS in the cochlea requires functioning hair cells and to explore the potential relevance to cochlear implants, experiments using INS were performed in the cochleae of both normal hearing and profoundly deaf guinea pigs. A response to laser stimulation was readily evoked in normal hearing cochlea. However, no response was evoked in any profoundly deaf cochleae, for either acute or chronic deafening, contrary to previous work where a response was observed after acute deafening with ototoxic drugs. A neural response to electrical stimulation was readily evoked in all cochleae after deafening. The absence of a response from optical stimuli in profoundly deaf cochleae suggests that the response from INS in the cochlea is hair cell mediated.

  13. Mechanisms of cortical neural synchronization related to healthy and impaired consciousness: evidence by quantitative electroencephalographic studies.

    PubMed

    Babiloni, Claudio; Vecchio, Fabrizio; Buffo, Paola; Iacoboni, Marco; Pistoia, Francesca; Sacco, Simona; Sara, Marco; Rossini, Paolo Maria

    2014-01-01

    In this paper, we review the contribution of our research group to the study of human consciousness by quantitative electroencephalographic (EEG) techniques. We posit that EEG techniques can be extremely useful for a direct measurement of brain electrophysiological activity related to human consciousness for their unsurpassable high temporal resolution (milliseconds). This activity can be expressed in terms of event-related potentials as well as changes of EEG rhythms of interest, for example the dominant alpha rhythms (about 8-12 Hz). The results of our studies, and those of several independent groups, lead support to the hypothesis that these techniques provide important insights about the neurophysiologic mechanisms underlying cortical neural synchronization/desynchronization and the regulation of neuromodulatory systems (e.g. dopaminergic, noradrenergic, cholinergic, etc.) at the basis of brain arousal and consciousness in healthy subjects and in patients with impairment of the consciousness. A possible interaction of these mechanisms and the drugs administered to patients with consciousness disorders is discussed.

  14. Reading stories activates neural representations of visual and motor experiences.

    PubMed

    Speer, Nicole K; Reynolds, Jeremy R; Swallow, Khena M; Zacks, Jeffrey M

    2009-08-01

    To understand and remember stories, readers integrate their knowledge of the world with information in the text. Here we present functional neuroimaging evidence that neural systems track changes in the situation described by a story. Different brain regions track different aspects of a story, such as a character's physical location or current goals. Some of these regions mirror those involved when people perform, imagine, or observe similar real-world activities. These results support the view that readers understand a story by simulating the events in the story world and updating their simulation when features of that world change.

  15. Reading Stories Activates Neural Representations of Visual and Motor Experiences

    PubMed Central

    Speer, Nicole K.; Reynolds, Jeremy R.; Swallow, Khena M.; Zacks, Jeffrey M.

    2010-01-01

    To understand and remember stories, readers integrate their knowledge of the world with information in the text. Here we present functional neuroimaging evidence that neural systems track changes in the situation described by a story. Different brain regions track different aspects of a story, such as a character’s physical location or current goals. Some of these regions mirror those involved when people perform, imagine, or observe similar real-world activities. These results support the view that readers understand a story by simulating the events in the story world and updating their simulation when features of that world change. PMID:19572969

  16. Tools for resolving functional activity and connectivity within intact neural circuits.

    PubMed

    Jennings, Joshua H; Stuber, Garret D

    2014-01-06

    Mammalian neural circuits are sophisticated biological systems that choreograph behavioral processes vital for survival. While the inherent complexity of discrete neural circuits has proven difficult to decipher, many parallel methodological developments promise to help delineate the function and connectivity of molecularly defined neural circuits. Here, we review recent technological advances designed to precisely monitor and manipulate neural circuit activity. We propose a holistic, multifaceted approach for unraveling how behavioral states are manifested through the cooperative interactions between discrete neurocircuit elements.

  17. Sparse Neural Network Models of Antimicrobial Peptide-Activity Relationships.

    PubMed

    Müller, Alex T; Kaymaz, Aral C; Gabernet, Gisela; Posselt, Gernot; Wessler, Silja; Hiss, Jan A; Schneider, Gisbert

    2016-12-01

    We present an adaptive neural network model for chemical data classification. The method uses an evolutionary algorithm for optimizing the network structure by seeking sparsely connected architectures. The number of hidden layers, the number of neurons in each layer and their connectivity are free variables of the system. We used the method for predicting antimicrobial peptide activity from the amino acid sequence. Visualization of the evolved sparse network structures suggested a high charge density and a low aggregation potential in solution as beneficial for antimicrobial activity. However, different training data sets and peptide representations resulted in greatly varying network structures. Overall, the sparse network models turned out to be less accurate than fully-connected networks. In a prospective application, we synthesized and tested 10 de novo generated peptides that were predicted to either possess antimicrobial activity, or to be inactive. Two of the predicted antibacterial peptides showed cosiderable bacteriostatic effects against both Staphylococcus aureus and Escherichia coli. None of the predicted inactive peptides possessed antibacterial properties. Molecular dynamics simulations of selected peptide structures in water and TFE suggest a pronounced peptide helicity in a hydrophobic environment. The results of this study underscore the applicability of neural networks for guiding the computer-assisted design of new peptides with desired properties.

  18. Multifractal detrended fluctuation analysis of optogenetic modulation of neural activity

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Gu, L.; Ghosh, N.; Mohanty, S. K.

    2013-02-01

    Here, we introduce a computational procedure to examine whether optogenetically activated neuronal firing recordings could be characterized as multifractal series. Optogenetics is emerging as a valuable experimental tool and a promising approach for studying a variety of neurological disorders in animal models. The spiking patterns from cortical region of the brain of optogenetically-stimulated transgenic mice were analyzed using a sophisticated fluctuation analysis method known as multifractal detrended fluctuation analysis (MFDFA). We observed that the optogenetically-stimulated neural firings are consistent with a multifractal process. Further, we used MFDFA to monitor the effect of chemically induced pain (formalin injection) and optogenetic treatment used to relieve the pain. In this case, dramatic changes in parameters characterizing a multifractal series were observed. Both the generalized Hurst exponent and width of singularity spectrum effectively differentiates the neural activities during control and pain induction phases. The quantitative nature of the analysis equips us with better measures to quantify pain. Further, it provided a measure for effectiveness of the optogenetic stimulation in inhibiting pain. MFDFA-analysis of spiking data from other deep regions of the brain also turned out to be multifractal in nature, with subtle differences in the parameters during pain-induction by formalin injection and inhibition by optogenetic stimulation. Characterization of neuronal firing patterns using MFDFA will lead to better understanding of neuronal response to optogenetic activation and overall circuitry involved in the process.

  19. Oxytocin reduces neural activity in the pain circuitry when seeing pain in others

    PubMed Central

    Hermans, Erno J.; Keysers, Christian; van Honk, Jack

    2015-01-01

    Our empathetic abilities allow us to feel the pain of others. This phenomenon of vicarious feeling arises because the neural circuitry of feeling pain and seeing pain in others is shared. The neuropeptide oxytocin (OXT) is considered a robust facilitator of empathy, as intranasal OXT studies have repeatedly been shown to improve cognitive empathy (e.g. mind reading and emotion recognition). However, OXT has not yet been shown to increase neural empathic responses to pain in others, a core aspect of affective empathy. Effects of OXT on empathy for pain are difficult to predict, because OXT evidently has pain-reducing properties. Accordingly, OXT might paradoxically decrease empathy for pain. Here, using functional neuroimaging we show robust activation in the neural circuitry of pain (insula and sensorimotor regions) when subjects observe pain in others. Crucially, this empathy-related activation in the neural circuitry of pain is strongly reduced after intranasal OXT, specifically in the left insula. OXT on the basis of our neuroimaging data thus remarkably decreases empathy for pain, but further research including behavioral measures are necessary to draw definite conclusions. PMID:25818690

  20. Gaze Direction Modulates the Relation between Neural Responses to Faces and Visual Awareness.

    PubMed

    Madipakkam, Apoorva Rajiv; Rothkirch, Marcus; Guggenmos, Matthias; Heinz, Andreas; Sterzer, Philipp

    2015-09-30

    Gaze direction and especially direct gaze is a powerful nonverbal cue that plays an important role in social interactions. Here we studied the neural mechanisms underlying the privileged access of direct gaze to visual awareness. We performed functional magnetic resonance imaging in healthy human volunteers who were exposed to faces with direct or averted gaze under continuous flash suppression, thereby manipulating their awareness of the faces. A gaze processing network comprising fusiform face area (FFA), superior temporal sulcus, amygdala, and intraparietal sulcus showed overall reduced neural responses when participants reported to be unaware of the faces. Interestingly, direct gaze elicited greater responses than averted gaze when participants were aware of the faces, but smaller responses when they were unaware. Additional between-subject correlation and single-trial analyses indicated that this pattern of results was due to a modulation of the relationship between neural responses and awareness by gaze direction: with increasing neural activation in the FFA, direct-gaze faces entered awareness more readily than averted-gaze faces. These findings suggest that for direct gaze, lower levels of neural activity are sufficient to give rise to awareness than for averted gaze, thus providing a neural basis for privileged access of direct gaze to awareness. Significance statement: Another person's eye gaze directed at oneself is a powerful social signal acting as a catalyst for further communication. Here, we studied the neural mechanisms underlying the prioritized access of direct gaze to visual awareness in healthy human volunteers and show that with increasing neural activation, direct-gaze faces enter awareness more readily than averted-gaze faces. This suggests that for a socially highly relevant cue like direct gaze, lower levels of neural activity are sufficient to give rise to awareness compared with averted gaze, possibly because the human brain is attuned

  1. Word Vectorization Using Relations among Words for Neural Network

    NASA Astrophysics Data System (ADS)

    Hotta, Hajime; Kittaka, Masanobu; Hagiwara, Masafumi

    In this paper, we propose a new vectorization method for a new generation of computational intelligence including neural networks and natural language processing. In recent years, various techniques of word vectorization have been proposed, many of which rely on the preparation of dictionaries. However, these techniques don't consider the symbol grounding problem for unknown types of data, which is one of the most fundamental issues on artificial intelligence. In order to avoid the symbol-grounding problem, pattern processing based methods, such as neural networks, are often used in various studies on self-directive systems and algorithms, and the merit of neural network is not exception in the natural language processing. The proposed method is a converter from one word input to one real-valued vector, whose algorithm is inspired by neural network architecture. The merits of the method are as follows: (1) the method requires no specific knowledge of linguistics e.g. word classes or grammatical one; (2) the method is a sequence learning technique and it can learn additional knowledge. The experiment showed the efficiency of word vectorization in terms of similarity measurement.

  2. Age-related effects on the neural correlates of autobiographical memory retrieval.

    PubMed

    St Jacques, Peggy L; Rubin, David C; Cabeza, Roberto

    2012-07-01

    Older adults recall less episodically rich autobiographical memories (AM), however, the neural basis of this effect is not clear. Using functional MRI, we examined the effects of age during search and elaboration phases of AM retrieval. Our results suggest that the age-related attenuation in the episodic richness of AMs is associated with difficulty in the strategic retrieval processes underlying recovery of information during elaboration. First, age effects on AM activity were more pronounced during elaboration than search, with older adults showing less sustained recruitment of the hippocampus and ventrolateral prefrontal cortex (VLPFC) for less episodically rich AMs. Second, there was an age-related reduction in the modulation of top-down coupling of the VLPFC on the hippocampus for episodically rich AMs. In sum, the present study shows that changes in the sustained response and coupling of the hippocampus and prefrontal cortex (PFC) underlie age-related reductions in episodic richness of the personal past.

  3. A Granger causality measure for point process models of ensemble neural spiking activity.

    PubMed

    Kim, Sanggyun; Putrino, David; Ghosh, Soumya; Brown, Emery N

    2011-03-01

    The ability to identify directional interactions that occur among multiple neurons in the brain is crucial to an understanding of how groups of neurons cooperate in order to generate specific brain functions. However, an optimal method of assessing these interactions has not been established. Granger causality has proven to be an effective method for the analysis of the directional interactions between multiple sets of continuous-valued data, but cannot be applied to neural spike train recordings due to their discrete nature. This paper proposes a point process framework that enables Granger causality to be applied to point process data such as neural spike trains. The proposed framework uses the point process likelihood function to relate a neuron's spiking probability to possible covariates, such as its own spiking history and the concurrent activity of simultaneously recorded neurons. Granger causality is assessed based on the relative reduction of the point process likelihood of one neuron obtained excluding one of its covariates compared to the likelihood obtained using all of its covariates. The method was tested on simulated data, and then applied to neural activity recorded from the primary motor cortex (MI) of a Felis catus subject. The interactions present in the simulated data were predicted with a high degree of accuracy, and when applied to the real neural data, the proposed method identified causal relationships between many of the recorded neurons. This paper proposes a novel method that successfully applies Granger causality to point process data, and has the potential to provide unique physiological insights when applied to neural spike trains.

  4. The Neural Bases of Taxonomic and Thematic Conceptual Relations: An MEG Study

    PubMed Central

    Lewis, Gwyneth A.; Poeppel, David; Murphy, Gregory L.

    2015-01-01

    Converging evidence from behavioral and neuroimaging studies of human concepts indicate distinct neural systems for taxonomic and thematic knowledge. A recent study of naming in aphasia found involvement of the anterior temporal lobe (ATL) during taxonomic (feature-based) processing, and involvement of the temporoparietal junction (TPJ) during thematic (function-based) processing. We conducted an online magnetoencephalography (MEG) study to examine the spatio-temporal nature of taxonomic and thematic relations. We measured participants’ brain responses to words preceded by either a taxonomically or thematically related item (e.g., cottage→castle, king→castle). In a separate experiment we collected relatedness ratings of the word pairs from participants. We examined effects of relatedness and relation type on activation in ATL and TPJ regions of interest (ROIs) using permutation t-tests to identify differences in ROI activation between conditions as well as single-trial correlational analyses to examine the millisecond-by-millisecond influence of the stimulus variables on the ROIs. Taxonomic relations strongly predicted ATL activation, and both kinds of relations influenced the TPJ. Our results further strengthen the view of the ATL's importance to taxonomic knowledge. Moreover, they provide a nuanced view of thematic relations as involving taxonomic knowledge. PMID:25582406

  5. Thermal dependence of neural activity in the hamster hippocampal slice preparation

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Thomas, M. P.; Eckerman, P.

    1987-01-01

    1. Neural activity was recorded in an in vitro hamster hippocampal slice preparation while the temperature of the Ringer's solution bathing in the slice was controlled at selected levels. 2. The amplitude of the population spike (action potentials from a group of pyramidal cells) was measured as bath temperature was lowered from 35 degrees C to temperatures where a response could not be evoked. 3. Plots of population spike amplitude versus temperature have bell-shaped curves. The population spikes increased in amplitude as temperature was lowered from 35 degrees C, reached a peak amplitude between 25 and 20 degrees C, and then decreased until a response could not be evoked when temperature was further lowered. 4. These in vitro results obtained in the slice preparation are related to in vivo hippocampal studies. Results are interpreted as consistent with the proposal reviewed here that neural activity in the hippocampus plays a role at specific stages of entrance into and arousal from hibernation.

  6. Odd-skipped related-1 controls neural crest chondrogenesis during tongue development.

    PubMed

    Liu, Han; Lan, Yu; Xu, Jingyue; Chang, Ching-Fang; Brugmann, Samantha A; Jiang, Rulang

    2013-11-12

    The tongue is a critical element of the feeding system in tetrapod animals for their successful adaptation to terrestrial life. Whereas the oral part of the mammalian tongue contains soft tissues only, the avian tongue has an internal skeleton extending to the anterior tip. The mechanisms underlying the evolutionary divergence in tongue skeleton formation are completely unknown. We show here that the odd-skipped related-1 (Osr1) transcription factor is expressed throughout the neural crest-derived tongue mesenchyme in mouse, but not in chick, embryos during early tongue morphogenesis. Neural crest-specific inactivation of Osr1 resulted in formation of an ectopic cartilage in the mouse tongue, reminiscent in shape and developmental ontogeny of the anterior tongue cartilage in chick. SRY-box containing gene-9 (Sox9), the master regulator of chondrogenesis, is widely expressed in the nascent tongue mesenchyme at the onset of tongue morphogenesis but its expression is dramatically down-regulated concomitant with activation of Osr1 expression in the developing mouse tongue. In Osr1 mutant mouse embryos, expression of Sox9 persisted in the developing tongue mesenchyme where chondrogenesis is subsequently activated to form the ectopic cartilage. Furthermore, we show that Osr1 binds to the Sox9 gene promoter and that overexpression of Osr1 suppressed expression of endogenous Sox9 mRNAs and Sox9 promoter-driven reporter. These data indicate that Osr1 normally prevents chondrogenesis in the mammalian tongue through repression of Sox9 expression and suggest that changes in regulation of Osr1 expression in the neural crest-derived tongue mesenchyme underlie the evolutionary divergence of birds from other vertebrates in tongue morphogenesis.

  7. Distinct neural activity associated with focused-attention meditation and loving-kindness meditation.

    PubMed

    Lee, Tatia M C; Leung, Mei-Kei; Hou, Wai-Kai; Tang, Joey C Y; Yin, Jing; So, Kwok-Fai; Lee, Chack-Fan; Chan, Chetwyn C H

    2012-01-01

    This study examined the dissociable neural effects of ānāpānasati (focused-attention meditation, FAM) and mettā (loving-kindness meditation, LKM) on BOLD signals during cognitive (continuous performance test, CPT) and affective (emotion-processing task, EPT, in which participants viewed affective pictures) processing. Twenty-two male Chinese expert meditators (11 FAM experts, 11 LKM experts) and 22 male Chinese novice meditators (11 FAM novices, 11 LKM novices) had their brain activity monitored by a 3T MRI scanner while performing the cognitive and affective tasks in both meditation and baseline states. We examined the interaction between state (meditation vs. baseline) and expertise (expert vs. novice) separately during LKM and FAM, using a conjunction approach to reveal common regions sensitive to the expert meditative state. Additionally, exclusive masking techniques revealed distinct interactions between state and group during LKM and FAM. Specifically, we demonstrated that the practice of FAM was associated with expertise-related behavioral improvements and neural activation differences in attention task performance. However, the effect of state LKM meditation did not carry over to attention task performance. On the other hand, both FAM and LKM practice appeared to affect the neural responses to affective pictures. For viewing sad faces, the regions activated for FAM practitioners were consistent with attention-related processing; whereas responses of LKM experts to sad pictures were more in line with differentiating emotional contagion from compassion/emotional regulation processes. Our findings provide the first report of distinct neural activity associated with forms of meditation during sustained attention and emotion processing.

  8. Fast Delayed Rectifier Potassium Current Required for Circadian Neural Activity

    PubMed Central

    JN, Itri; S, Michel; MJ, Vansteensel; JH, Meijer; CS, Colwell

    2005-01-01

    In mammals, the precise circadian timing of many biological processes depends on the generation of oscillations in neural activity of pacemaker cells in the suprachiasmatic nucleus (SCN). The ionic mechanisms underlying these rhythms are largely unknown. Using the mouse brain slice preparation, we demonstrate that the magnitude of fast delayed rectifier potassium currents exhibits a diurnal rhythm that peaks during the day. Importantly, this rhythm continues in constant darkness, providing the first demonstration of the circadian regulation of an intrinsic voltage–gated current in mammalian cells. Blocking this current prevented the daily rhythm in firing rate in SCN neurons. Kv3.1b and Kv3.2 potassium channels were found to be widely distributed within the SCN with higher expression during the day. We conclude that the fast delayed rectifier is necessary for the circadian modulation of electrical activity in SCN neurons, and represents an important part of the ionic basis for the generation of rhythmic output. PMID:15852012

  9. Correspondence between stimulus encoding- and maintenance-related neural processes underlies successful working memory.

    PubMed

    Cohen, Jessica R; Sreenivasan, Kartik K; D'Esposito, Mark

    2014-03-01

    The ability to actively maintain information in working memory (WM) is vital for goal-directed behavior, but the mechanisms underlying this process remain elusive. We hypothesized that successful WM relies upon a correspondence between the neural processes associated with stimulus encoding and the neural processes associated with maintenance. Using functional magnetic resonance imaging, we identified regional activity and inter-regional connectivity during stimulus encoding and the maintenance of those stimuli when they were no longer present. We compared correspondence in these neural processes across encoding and maintenance epochs with WM performance. Critically, greater correspondence between encoding and maintenance in 1) regional activity in the lateral prefrontal cortex (PFC) and 2) connectivity between lateral PFC and extrastriate cortex was associated with increased performance. These findings suggest that the conservation of neural processes across encoding and maintenance supports the integrity of representations in WM.

  10. Neural correlates of fixation duration in natural reading: Evidence from fixation-related fMRI.

    PubMed

    Henderson, John M; Choi, Wonil; Luke, Steven G; Desai, Rutvik H

    2015-10-01

    A key assumption of current theories of natural reading is that fixation duration reflects underlying attentional, language, and cognitive processes associated with text comprehension. The neurocognitive correlates of this relationship are currently unknown. To investigate this relationship, we compared neural activation associated with fixation duration in passage reading and a pseudo-reading control condition. The results showed that fixation duration was associated with activation in oculomotor and language areas during text reading. Fixation duration during pseudo-reading, on the other hand, showed greater involvement of frontal control regions, suggesting flexibility and task dependency of the eye movement network. Consistent with current models, these results provide support for the hypothesis that fixation duration in reading reflects attentional engagement and language processing. The results also demonstrate that fixation-related fMRI provides a method for investigating the neurocognitive bases of natural reading.

  11. From sensation to percept: the neural signature of auditory event-related potentials.

    PubMed

    Joos, Kathleen; Gilles, Annick; Van de Heyning, Paul; De Ridder, Dirk; Vanneste, Sven

    2014-05-01

    An external auditory stimulus induces an auditory sensation which may lead to a conscious auditory perception. Although the sensory aspect is well known, it is still a question how an auditory stimulus results in an individual's conscious percept. To unravel the uncertainties concerning the neural correlates of a conscious auditory percept, event-related potentials may serve as a useful tool. In the current review we mainly wanted to shed light on the perceptual aspects of auditory processing and therefore we mainly focused on the auditory late-latency responses. Moreover, there is increasing evidence that perception is an active process in which the brain searches for the information it expects to be present, suggesting that auditory perception requires the presence of both bottom-up, i.e. sensory and top-down, i.e. prediction-driven processing. Therefore, the auditory evoked potentials will be interpreted in the context of the Bayesian brain model, in which the brain predicts which information it expects and when this will happen. The internal representation of the auditory environment will be verified by sensation samples of the environment (P50, N100). When this incoming information violates the expectation, it will induce the emission of a prediction error signal (Mismatch Negativity), activating higher-order neural networks and inducing the update of prior internal representations of the environment (P300).

  12. Lead-Induced Impairments in the Neural Processes Related to Working Memory Function

    PubMed Central

    Jin, Seong-Uk; Park, Jang Woo; Kim, Yang-Tae; Ryeom, Hun-Kyu; Lee, Jongmin; Suh, Kyung Jin; Kim, Suk Hwan; Park, Sin-Jae; Jeong, Kyoung Sook; Ham, Jung-O; Kim, Yangho; Chang, Yongmin

    2014-01-01

    Background It is well known that lead exposure induces neurotoxic effects, which can result in a variety of neurocognitive dysfunction. Especially, occupational lead exposures in adults are associated with decreases in cognitive performance including working memory. Despite recent advances in human neuroimaging techniques, the neural correlates of lead-exposed cognitive impairment remain unclear. Therefore, this study was aimed to compare the neural activations in relation to working memory function between the lead-exposed subjects and healthy controls. Methodology/Principal Findings Thirty-one lead-exposed subjects and 34 healthy subjects performed an n-back memory task during MRI scan. We performed fMRI using the 1-back and 2-back memory tasks differing in cognitive demand. Functional MRI data were analyzed using within- and between-group analysis. We found that the lead-exposed subjects showed poorer working memory performance during high memory loading task than the healthy subjects. In addition, between-group analyses revealed that the lead-exposed subjects showed reduced activation in the dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, pre supplementary motor areas, and inferior parietal cortex. Conclusions/Significance Our findings suggest that functional abnormalities in the frontoparietal working memory network might contribute to impairments in maintenance and manipulation of working memory in the lead-exposed subjects. PMID:25141213

  13. On the wrong side of the trolley track: neural correlates of relative social valuation

    PubMed Central

    Farnsworth, Rachel A.; Harris, Lasana T.; Fiske, Susan T.

    2010-01-01

    Using moral dilemmas, we (i) investigate whether stereotypes motivate people to value ingroup lives over outgroup lives and (ii) examine the neurobiological correlates of relative social valuation using fMRI. Saving ingroup members, who seem warm and competent (e.g. Americans), was most morally acceptable in the context of a dilemma where one person was killed to save five people. Extreme outgroup members, who seem neither warm nor competent (e.g. homeless), were the worst off; it was most morally acceptable to sacrifice them and least acceptable to save them. Sacrificing these low-warmth, low-competence targets to save ingroup targets, specifically, activated a neural network associated with resolving complex tradeoffs: medial PFC (BA 9, extending caudally to include ACC), left lateral OFC (BA 47) and left dorsolateral PFC (BA 10). These brain regions were recruited for dilemmas that participants ultimately rated as relatively more acceptable. We propose that participants, though ambivalent, overrode general aversion to these tradeoffs when the cost of sacrificing a low-warmth, low-competence target was pitted against the benefit of saving ingroup targets. Moral decisions are not made in a vacuum; intergroup biases and stereotypes weigh heavily on neural systems implicated in moral decision making. PMID:20150342

  14. Disentangling the neural mechanisms involved in Hinduism- and Buddhism-related meditations.

    PubMed

    Tomasino, Barbara; Chiesa, Alberto; Fabbro, Franco

    2014-10-01

    The most diffuse forms of meditation derive from Hinduism and Buddhism spiritual traditions. Different cognitive processes are set in place to reach these meditation states. According to an historical-philological hypothesis (Wynne, 2009) the two forms of meditation could be disentangled. While mindfulness is the focus of Buddhist meditation reached by focusing sustained attention on the body, on breathing and on the content of the thoughts, reaching an ineffable state of nothigness accompanied by a loss of sense of self and duality (Samadhi) is the main focus of Hinduism-inspired meditation. It is possible that these different practices activate separate brain networks. We tested this hypothesis by conducting an activation likelihood estimation (ALE) meta-analysis of functional magnetic resonance imaging (fMRI) studies. The network related to Buddhism-inspired meditation (16 experiments, 263 subjects, and 96 activation foci) included activations in some frontal lobe structures associated with executive attention, possibly confirming the fundamental role of mindfulness shared by many Buddhist meditations. By contrast, the network related to Hinduism-inspired meditation (8 experiments, 54 activation foci and 66 subjects) triggered a left lateralized network of areas including the postcentral gyrus, the superior parietal lobe, the hippocampus and the right middle cingulate cortex. The dissociation between anterior and posterior networks support the notion that different meditation styles and traditions are characterized by different patterns of neural activation.

  15. Neural correlates of relational reasoning and the symbolic distance effect: involvement of parietal cortex.

    PubMed

    Hinton, E C; Dymond, S; von Hecker, U; Evans, C J

    2010-06-16

    A novel, five-term relational reasoning paradigm was employed during functional magnetic resonance imaging to investigate neural correlates of the symbolic distance effect (SDE). Prior to scanning, participants learned a series of more-than (E>D>C>B>A) or less-than (AA) and nonadjacent one-step (AA, D>B and E>C) and two-step (AA and E>B) combinatorial entailed tasks. In terms of brain activation, the SDE was identified in the inferior frontal cortex, dorsolateral prefrontal cortex, and bilateral parietal cortex with a graded activation pattern from adjacent to one-step and two-step relations. We suggest that this captures the behavioural SDE of increased accuracy and decreased reaction time from adjacent to two-step relations. One-step relations involving endpoints A or E resulted in greater parietal activation compared to one-step relations without endpoints. Novel contrasts found enhanced activation in right parietal and prefrontal cortices during mutually entailed tasks only for participants who had learned all less-than relations. Increased parietal activation was found for one-step tasks that were inconsistent with prior training. Overall, the findings demonstrate a crucial role for parietal cortex during relational reasoning with a spatially ordered array.

  16. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    SciTech Connect

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  17. Amplified induced neural oscillatory activity predicts musicians' benefits in categorical speech perception.

    PubMed

    Bidelman, Gavin M

    2017-02-15

    Event-related brain potentials (ERPs) reveal musical experience refines neural encoding and confers stronger categorical perception (CP) and neural organization for speech sounds. In addition to evoked brain activity, the human EEG can be decomposed into induced (non-phase-locked) responses whose various frequency bands reflect different mechanisms of perceptual-cognitive processing. Here, we aimed to clarify which spectral properties of these neural oscillations are most prone to music-related neuroplasticity and which are linked to behavioral benefits in the categorization of speech. We recorded electrical brain activity while musicians and nonmusicians rapidly identified speech tokens from a sound continuum. Time-frequency analysis parsed evoked and induced EEG into alpha- (∼10Hz), beta- (∼20Hz), and gamma- (>30Hz) frequency bands. We found that musicians' enhanced behavioral CP was accompanied by improved evoked speech responses across the frequency spectrum, complementing previously observed enhancements in evoked potential studies (i.e., ERPs). Brain-behavior correlations implied differences in the underlying neural mechanisms supporting speech CP in each group: modulations in induced gamma power predicted the slope of musicians' speech identification functions whereas early evoked alpha activity predicted behavior in nonmusicians. Collectively, findings indicate that musical training tunes speech processing via two complementary mechanisms: (i) strengthening the formation of auditory object representations for speech signals (gamma-band) and (ii) improving network control and/or the matching of sounds to internalized memory templates (alpha/beta-band). Both neurobiological enhancements may be deployed behaviorally and account for musicians' benefits in the perceptual categorization of speech.

  18. Parametric models to relate spike train and LFP dynamics with neural information processing

    PubMed Central

    Banerjee, Arpan; Dean, Heather L.; Pesaran, Bijan

    2012-01-01

    Spike trains and local field potentials (LFPs) resulting from extracellular current flows provide a substrate for neural information processing. Understanding the neural code from simultaneous spike-field recordings and subsequent decoding of information processing events will have widespread applications. One way to demonstrate an understanding of the neural code, with particular advantages for the development of applications, is to formulate a parametric statistical model of neural activity and its covariates. Here, we propose a set of parametric spike-field models (unified models) that can be used with existing decoding algorithms to reveal the timing of task or stimulus specific processing. Our proposed unified modeling framework captures the effects of two important features of information processing: time-varying stimulus-driven inputs and ongoing background activity that occurs even in the absence of environmental inputs. We have applied this framework for decoding neural latencies in simulated and experimentally recorded spike-field sessions obtained from the lateral intraparietal area (LIP) of awake, behaving monkeys performing cued look-and-reach movements to spatial targets. Using both simulated and experimental data, we find that estimates of trial-by-trial parameters are not significantly affected by the presence of ongoing background activity. However, including background activity in the unified model improves goodness of fit for predicting individual spiking events. Uncovering the relationship between the model parameters and the timing of movements offers new ways to test hypotheses about the relationship between neural activity and behavior. We obtained significant spike-field onset time correlations from single trials using a previously published data set where significantly strong correlation was only obtained through trial averaging. We also found that unified models extracted a stronger relationship between neural response latency and trial

  19. Theoretical analysis on relationship between the neural activity and the EEG.

    PubMed

    Kitazoe, Y; Hiraoka, N; Ueta, H; Ogura, H; Yamamoto, K; Seto, K; Saito, H

    1983-10-21

    Firstly, a collective oscillation mode of the neural activity is derived from the neural network system by using the multicompartment equation and the projection operator technique. This technique takes into account higher order interactions among neurons. The solution of the equation gives a chain structure with an infinite number of circuit loops in which each of them is only composed of four neurons. The obtained eigenvalues are quite similar to the spectrum of frequencies of the EEG. Secondly, the time-dependent behavior of the observed EEG is simulated by starting from the elementary process of action potential trains of neurons, which includes the effect of the collective oscillation mode mentioned above. This gives a comprehensive derivation of the EEG from the neural activity of action potentials. The simulation assumes that information of the action potential trains can be transmitted to the EEG through the intermediate states of the postsynaptic potential trains and the slow waves. The paper reports that a slightly modulated activity of a relatively small amount of neurons can cause a strong influence on the shape of the global EEG and that the calculated results reproduce the characteristic features of the EEG in a rat such as the theta rhythm, the spindle wave and the arousal wave.

  20. Temporal evolution of neural activity underlying auditory discrimination of frequency increase and decrease.

    PubMed

    Noguchi, Yasuki; Fujiwara, Mana; Hamano, Saki

    2015-05-01

    Discriminating a direction of frequency change is an important ability of the human auditory system, although temporal dynamics of neural activity underlying this discrimination remains unclear. In the present study, we recorded auditory-evoked potentials when human subjects explicitly judged a direction of a relative frequency change between two successive tones. A comparison of two types of trials with ascending and descending tone pairs revealed that neural activity discriminating a direction of frequency changes appeared as early as the P1 component of auditory-evoked potentials (latency 50 ms). Those differences between the ascending and descending trials were also observed in subsequent electroencephalographic components such as the N1 (100 ms) and P2 (200 ms). Furthermore, amplitudes of the P2 were significantly modulated by behavioral responses (upward/downward judgments) of subjects in the direction discrimination task, while those of the P1 were not. Those results indicate that, while the neural responses encoding a direction of frequency changes can be observed in an early component of electroencephalographic responses (50 ms after the change), the activity associated (correlated) with behavioral judgments evolves over time, being shaped in a later time period (around 200 ms) of the auditory processing.

  1. Interpreting collective neural activity underlying spatial navigation in virtual reality

    NASA Astrophysics Data System (ADS)

    Meshulam, Leenoy; Gauthier, Jeff; Tank, David; Bialek, William

    2015-03-01

    Traditionally, cognitive- demanding processes like spatial navigation were studied by recording the activity of single neurons. However, recent technological progress allows imaging the simultaneous activity of large neuronal populations in awake behaving animals. This progress in experimental work calls for a similar adjustments of the modeling frameworks. To achieve a description of the ``real thermodynamics'' of the neural system, we construct maximum entropy models for optical imaging data taken in vivo, from the hippocampus of mice navigating in a virtual reality environment. This provides a natural extension of statistical mechanics applicable to brain activity, by focusing on the interactions between cells rather than on single cell's activity. We aim to determine how the topology of the energy landscape predicted by the model corresponds to the location of the animal in the environment. Since large subpopulations of the neurons in this area are spatially modulated, we expect the landscape to exhibit a large ``valley'' structure of local minima, corresponding to the animal's position along the environment. Such a finding is especially of interest because the location information emerges solely from the activity patterns that are accessible to the brain.

  2. Intranasal oxytocin reduces social perception in women: Neural activation and individual variation.

    PubMed

    Hecht, Erin E; Robins, Diana L; Gautam, Pritam; King, Tricia Z

    2017-02-15

    Most intranasal oxytocin research to date has been carried out in men, but recent studies indicate that females' responses can differ substantially from males'. This randomized, double-blind, placebo-controlled study involved an all-female sample of 28 women not using hormonal contraception. Participants viewed animations of geometric shapes depicting either random movement or social interactions such as playing, chasing, or fighting. Probe questions asked whether any shapes were "friends" or "not friends." Social videos were preceded by cues to attend to either social relationships or physical size changes. All subjects received intranasal placebo spray at scan 1. While the experimenter was not blinded to nasal spray contents at Scan 1, the participants were. Scan 2 followed a randomized, double-blind design. At scan 2, half received a second placebo dose while the other half received 24 IU of intranasal oxytocin. We measured neural responses to these animations at baseline, as well as the change in neural activity induced by oxytocin. Oxytocin reduced activation in early visual cortex and dorsal-stream motion processing regions for the social > size contrast, indicating reduced activity related to social attention. Oxytocin also reduced endorsements that shapes were "friends" or "not friends," and this significantly correlated with reduction in neural activation. Furthermore, participants who perceived fewer social relationships at baseline were more likely to show oxytocin-induced increases in a broad network of regions involved in social perception and social cognition, suggesting that lower social processing at baseline may predict more positive neural responses to oxytocin.

  3. Natural lecithin promotes neural network complexity and activity

    PubMed Central

    Latifi, Shahrzad; Tamayol, Ali; Habibey, Rouhollah; Sabzevari, Reza; Kahn, Cyril; Geny, David; Eftekharpour, Eftekhar; Annabi, Nasim; Blau, Axel; Linder, Michel; Arab-Tehrany, Elmira

    2016-01-01

    Phospholipids in the brain cell membranes contain different polyunsaturated fatty acids (PUFAs), which are critical to nervous system function and structure. In particular, brain function critically depends on the uptake of the so-called “essential” fatty acids such as omega-3 (n-3) and omega-6 (n-6) PUFAs that cannot be readily synthesized by the human body. We extracted natural lecithin rich in various PUFAs from a marine source and transformed it into nanoliposomes. These nanoliposomes increased neurite outgrowth, network complexity and neural activity of cortical rat neurons in vitro. We also observed an upregulation of synapsin I (SYN1), which supports the positive role of lecithin in synaptogenesis, synaptic development and maturation. These findings suggest that lecithin nanoliposomes enhance neuronal development, which may have an impact on devising new lecithin delivery strategies for therapeutic applications. PMID:27228907

  4. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons

    PubMed Central

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Portes, Jacob P.; Timerman, Dmitriy

    2016-01-01

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (<0.04 Hz) hemodynamic fluctuations that were not well-predicted by local Thy1-GCaMP recordings. These results support that resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI. PMID:27974609

  5. Resting-state hemodynamics are spatiotemporally coupled to synchronized and symmetric neural activity in excitatory neurons.

    PubMed

    Ma, Ying; Shaik, Mohammed A; Kozberg, Mariel G; Kim, Sharon H; Portes, Jacob P; Timerman, Dmitriy; Hillman, Elizabeth M C

    2016-12-27

    Brain hemodynamics serve as a proxy for neural activity in a range of noninvasive neuroimaging techniques including functional magnetic resonance imaging (fMRI). In resting-state fMRI, hemodynamic fluctuations have been found to exhibit patterns of bilateral synchrony, with correlated regions inferred to have functional connectivity. However, the relationship between resting-state hemodynamics and underlying neural activity has not been well established, making the neural underpinnings of functional connectivity networks unclear. In this study, neural activity and hemodynamics were recorded simultaneously over the bilateral cortex of awake and anesthetized Thy1-GCaMP mice using wide-field optical mapping. Neural activity was visualized via selective expression of the calcium-sensitive fluorophore GCaMP in layer 2/3 and 5 excitatory neurons. Characteristic patterns of resting-state hemodynamics were accompanied by more rapidly changing bilateral patterns of resting-state neural activity. Spatiotemporal hemodynamics could be modeled by convolving this neural activity with hemodynamic response functions derived through both deconvolution and gamma-variate fitting. Simultaneous imaging and electrophysiology confirmed that Thy1-GCaMP signals are well-predicted by multiunit activity. Neurovascular coupling between resting-state neural activity and hemodynamics was robust and fast in awake animals, whereas coupling in urethane-anesthetized animals was slower, and in some cases included lower-frequency (<0.04 Hz) hemodynamic fluctuations that were not well-predicted by local Thy1-GCaMP recordings. These results support that resting-state hemodynamics in the awake and anesthetized brain are coupled to underlying patterns of excitatory neural activity. The patterns of bilaterally-symmetric spontaneous neural activity revealed by wide-field Thy1-GCaMP imaging may depict the neural foundation of functional connectivity networks detected in resting-state fMRI.

  6. Effects of Near-Infrared Laser on Neural Cell Activity

    NASA Astrophysics Data System (ADS)

    Mochizuki-Oda, Noriko; Kataoka, Yosky; Yamada, Hisao; Awazu, Kunio

    2004-08-01

    Near-infrared laser has been used to relieve patients from various kinds of pain caused by postherpetic neuralgesia, myofascial dysfunction, surgical and traumatic wound, cancer, and rheumatoid arthritis. Clinically, He-Ne (λ=632.8 nm, 780 nm) and Ga-Al-As (805 ± 25 nm) lasers are used to irradiate trigger points or nerve ganglion. However the precise mechanisms of such biological actions of the laser have not yet been resolved. Since laser therapy is often effective to suppress the pain caused by hyperactive excitation of sensory neurons, interactions with laser light and neural cells are suggested. As neural excitation requires large amount of energy liberated from adenosine triphosphate (ATP), we examined the effect of 830-nm laser irradiation on the energy metabolism of the rat central nervous system and isolated mitochondria from brain. The diode laser was applied for 15 min with irradiance of 4.8 W/cm2 on a 2 mm-diameter spot at the brain surface. Tissue ATP content of the irradiated area in the cerebral cortex was 19 % higher than that of the non-treated area (opposite side of the cortex), whereas the ADP content showed no significant difference. Irradiation at another wavelength (652 nm) had no effect on either ATP or ADP contents. The temperature of the brain tissue was increased 4.5 - 5.0 °C during the irradiation of both 830-nm and 652-nm laser light. Direct irradiation of the mitochondrial suspension did not show any wavelength-dependent acceleration of respiration rate nor ATP synthesis. These results suggest that the increase in tissue ATP content did not result from the thermal effect, but from specific effect of the laser operated at 830 nm. Electrophysiological studies showed the hyperpolarization of membrane potential of isolated neurons and decrease in membrane resistance with irradiation of the laser, suggesting an activation of potassium channels. Intracellular ATP is reported to regulate some kinds of potassium channels. Possible mechanisms

  7. Neural melanocortin receptors in obesity and related metabolic disorders.

    PubMed

    Girardet, Clemence; Butler, Andrew A

    2014-03-01

    Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  8. Studying modulation on simultaneously activated SSVEP neural networks by a cognitive task.

    PubMed

    Wu, Zhenghua

    2014-01-01

    Since the discovery of steady-state visually evoked potential (SSVEP), it has been used in many fields. Numerous studies suggest that there exist three SSVEP neural networks in different frequency bands. An obvious phenomenon has been observed, that the amplitude and phase of SSVEP can be modulated by a cognitive task. Previous works have studied this modulation on separately activated SSVEP neural networks by a cognitive task. If two or more SSVEP neural networks are activated simultaneously in the process of a cognitive task, is the modulation on different SSVEP neural networks the same? In this study, two different SSVEP neural networks were activated simultaneously by two different frequency flickers, with a working memory task irrelevant to the flickers being conducted at the same time. The modulated SSVEP waves were compared with each other and to those only under one flicker in previous studies. The comparison results show that the cognitive task can modulate different SSVEP neural networks with a similar style.

  9. Uniformity and nonuniformity of neural activities correlated to different insight problem solving.

    PubMed

    Zhao, Q; Li, Y; Shang, X; Zhou, Z; Han, L

    2014-06-13

    Previous studies on the neural basis of insight reflected weak consistency except for the anterior cingulate cortex. The present work adopted the semantic and homophonic punny riddle to explore the uniformity and nonuniformity of neural activities correlated to different insight problem solving. Results showed that in the early period of insight solving, the semantic and homophonic punny riddles induced a common N350-500 over the central scalp. However, during -400 to 0 ms before the riddles were solved, the semantic punny riddles induced a positive event-related potential (ERP) deflection over the temporal cortex for retrieving the extensive semantic information, while the homophonic punny riddles induced a positive ERP deflection over the temporal cortex and a negative one in the left frontal cortex which might reflect the semantic and phonological information processing respectively. Our study indicated that different insight problem solving should have the same cognitive process of detecting cognitive conflicts, but have different ways to solve the conflicts.

  10. The BDNF Val66Met Polymorphism Influences Reading Ability and Patterns of Neural Activation in Children

    PubMed Central

    Jasińska, Kaja K.; Molfese, Peter J.; Kornilov, Sergey A.; Mencl, W. Einar; Frost, Stephen J.; Lee, Maria; Pugh, Kenneth R.; Grigorenko, Elena L.; Landi, Nicole

    2016-01-01

    Understanding how genes impact the brain’s functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children’s (age 6–10) neural activation patterns during a reading task (n = 81) using functional magnetic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading–related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes. PMID:27551971

  11. The BDNF Val66Met Polymorphism Influences Reading Ability and Patterns of Neural Activation in Children.

    PubMed

    Jasińska, Kaja K; Molfese, Peter J; Kornilov, Sergey A; Mencl, W Einar; Frost, Stephen J; Lee, Maria; Pugh, Kenneth R; Grigorenko, Elena L; Landi, Nicole

    2016-01-01

    Understanding how genes impact the brain's functional activation for learning and cognition during development remains limited. We asked whether a common genetic variant in the BDNF gene (the Val66Met polymorphism) modulates neural activation in the young brain during a critical period for the emergence and maturation of the neural circuitry for reading. In animal models, the bdnf variation has been shown to be associated with the structure and function of the developing brain and in humans it has been associated with multiple aspects of cognition, particularly memory, which are relevant for the development of skilled reading. Yet, little is known about the impact of the Val66Met polymorphism on functional brain activation in development, either in animal models or in humans. Here, we examined whether the BDNF Val66Met polymorphism (dbSNP rs6265) is associated with children's (age 6-10) neural activation patterns during a reading task (n = 81) using functional magnetic resonance imaging (fMRI), genotyping, and standardized behavioral assessments of cognitive and reading development. Children homozygous for the Val allele at the SNP rs6265 of the BDNF gene outperformed Met allele carriers on reading comprehension and phonological memory, tasks that have a strong memory component. Consistent with these behavioral findings, Met allele carriers showed greater activation in reading-related brain regions including the fusiform gyrus, the left inferior frontal gyrus and left superior temporal gyrus as well as greater activation in the hippocampus during a word and pseudoword reading task. Increased engagement of memory and spoken language regions for Met allele carriers relative to Val/Val homozygotes during reading suggests that Met carriers have to exert greater effort required to retrieve phonological codes.

  12. Visualizing the Hidden Activity of Artificial Neural Networks.

    PubMed

    Rauber, Paulo E; Fadel, Samuel G; Falcao, Alexandre X; Telea, Alexandru C

    2017-01-01

    In machine learning, pattern classification assigns high-dimensional vectors (observations) to classes based on generalization from examples. Artificial neural networks currently achieve state-of-the-art results in this task. Although such networks are typically used as black-boxes, they are also widely believed to learn (high-dimensional) higher-level representations of the original observations. In this paper, we propose using dimensionality reduction for two tasks: visualizing the relationships between learned representations of observations, and visualizing the relationships between artificial neurons. Through experiments conducted in three traditional image classification benchmark datasets, we show how visualization can provide highly valuable feedback for network designers. For instance, our discoveries in one of these datasets (SVHN) include the presence of interpretable clusters of learned representations, and the partitioning of artificial neurons into groups with apparently related discriminative roles.

  13. Dissociation between Neural Signatures of Stimulus and Choice in Population Activity of Human V1 during Perceptual Decision-Making

    PubMed Central

    Choe, Kyoung Whan; Blake, Randolph

    2014-01-01

    Primary visual cortex (V1) forms the initial cortical representation of objects and events in our visual environment, and it distributes information about that representation to higher cortical areas within the visual hierarchy. Decades of work have established tight linkages between neural activity occurring in V1 and features comprising the retinal image, but it remains debatable how that activity relates to perceptual decisions. An actively debated question is the extent to which V1 responses determine, on a trial-by-trial basis, perceptual choices made by observers. By inspecting the population activity of V1 from human observers engaged in a difficult visual discrimination task, we tested one essential prediction of the deterministic view: choice-related activity, if it exists in V1, and stimulus-related activity should occur in the same neural ensemble of neurons at the same time. Our findings do not support this prediction: while cortical activity signifying the variability in choice behavior was indeed found in V1, that activity was dissociated from activity representing stimulus differences relevant to the task, being advanced in time and carried by a different neural ensemble. The spatiotemporal dynamics of population responses suggest that short-term priors, perhaps formed in higher cortical areas involved in perceptual inference, act to modulate V1 activity prior to stimulus onset without modifying subsequent activity that actually represents stimulus features within V1. PMID:24523561

  14. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation

    ERIC Educational Resources Information Center

    Clark, Heather; Lazarus, Cathy; Arvedson, Joan; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation. Method: A systematic search was conducted to…

  15. Neural activity tied to reading predicts individual differences in extended-text comprehension

    PubMed Central

    Mossbridge, Julia A.; Grabowecky, Marcia; Paller, Ken A.; Suzuki, Satoru

    2013-01-01

    Reading comprehension depends on neural processes supporting the access, understanding, and storage of words over time. Examinations of the neural activity correlated with reading have contributed to our understanding of reading comprehension, especially for the comprehension of sentences and short passages. However, the neural activity associated with comprehending an extended text is not well-understood. Here we describe a current-source-density (CSD) index that predicts individual differences in the comprehension of an extended text. The index is the difference in CSD-transformed event-related potentials (ERPs) to a target word between two conditions: a comprehension condition with words from a story presented in their original order, and a scrambled condition with the same words presented in a randomized order. In both conditions participants responded to the target word, and in the comprehension condition they also tried to follow the story in preparation for a comprehension test. We reasoned that the spatiotemporal pattern of difference-CSDs would reflect comprehension-related processes beyond word-level processing. We used a pattern-classification method to identify the component of the difference-CSDs that accurately (88%) discriminated good from poor comprehenders. The critical CSD index was focused at a frontal-midline scalp site, occurred 400–500 ms after target-word onset, and was strongly correlated with comprehension performance. Behavioral data indicated that group differences in effort or motor preparation could not explain these results. Further, our CSD index appears to be distinct from the well-known P300 and N400 components, and CSD transformation seems to be crucial for distinguishing good from poor comprehenders using our experimental paradigm. Once our CSD index is fully characterized, this neural signature of individual differences in extended-text comprehension may aid the diagnosis and remediation of reading comprehension deficits. PMID

  16. Marine Biology Activities. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  17. Neural Correlates to Food-Related Behavior in Normal-Weight and Overweight/Obese Participants

    PubMed Central

    Ho, Alan; Kennedy, James; Dimitropoulos, Anastasia

    2012-01-01

    Two thirds of US adults are either obese or overweight and this rate is rising. Although the etiology of obesity is not yet fully understood, neuroimaging studies have demonstrated that the central nervous system has a principal role in regulating eating behavior. In this study, functional magnetic resonance imaging and survey data were evaluated for correlations between food-related problem behaviors and the neural regions underlying responses to visual food cues before and after eating in normal-weight individuals and overweight/obese individuals. In normal-weight individuals, activity in the left amygdala in response to high-calorie food vs. nonfood object cues was positively correlated with impaired satiety scores during fasting, suggesting that those with impaired satiety scores may have an abnormal anticipatory reward response. In overweight/obese individuals, activity in the dorsolateral prefrontal cortex (DLPFC) in response to low-calorie food cues was negatively correlated with impaired satiety during fasting, suggesting that individuals scoring lower in satiety impairment were more likely to activate the DLPFC inhibitory system. After eating, activity in both the putamen and the amygdala was positively correlated with impaired satiety scores among obese/overweight participants. While these individuals may volitionally suggest they are full, their functional response to food cues suggests food continues to be salient. These findings suggest brain regions involved in the evaluation of visual food cues may be mediated by satiety-related problems, dependent on calorie content, state of satiation, and body mass index. PMID:23028988

  18. Noise influence on spike activation in a Hindmarsh-Rose small-world neural network

    NASA Astrophysics Data System (ADS)

    Zhe, Sun; Micheletto, Ruggero

    2016-07-01

    We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh-Rose (H-R) neural networks.

  19. The neural basis of desire reasoning for self and others: an event-related potential study.

    PubMed

    Jiang, Qin; Li, Peng; Li, Fuhong; Wang, Qi; Cao, Bihua; Li, Hong

    2016-01-20

    Theory of mind refers to the ability to attribute mental states to self and others, and predict actions in terms of mental states. It is still unclear how certain kinds of processing occur in theory of mind operation. The present study compared neural activities elicited by desire reasoning for self and for others under consistent or inconsistent conditions using the event-related potential method. The results showed that the late positive component (LPC) associated with desire reasoning was larger during the 450-550 ms time period in the condition of reasoning for self than that for others when desires were inconsistent. A left hemisphere effect on the scalp distribution was observed for the LPC component. The present study showed that a left frontal LPC component might reflect the subjective categorization process in desire reasoning.

  20. Integration of active devices on smart polymers for neural interfaces

    NASA Astrophysics Data System (ADS)

    Avendano-Bolivar, Adrian Emmanuel

    The increasing ability to ever more precisely identify and measure neural interactions and other phenomena in the central and peripheral nervous systems is revolutionizing our understanding of the human body and brain. To facilitate further understanding, more sophisticated neural devices, perhaps using microelectronics processing, must be fabricated. Materials often used in these neural interfaces, while compatible with these fabrication processes, are not optimized for long-term use in the body and are often orders of magnitude stiffer than the tissue with which they interact. Using the smart polymer substrates described in this work, suitability for processing as well as chronic implantation is demonstrated. We explore how to integrate reliable circuitry onto these flexible, biocompatible substrates that can withstand the aggressive environment of the body. To increase the capabilities of these devices beyond individual channel sensing and stimulation, active electronics must also be included onto our systems. In order to add this functionality to these substrates and explore the limits of these devices, we developed a process to fabricate single organic thin film transistors with mobilities up to 0.4 cm2/Vs and threshold voltages close to 0V. A process for fabricating organic light emitting diodes on flexible substrates is also addressed. We have set a foundation and demonstrated initial feasibility for integrating multiple transistors onto thin-film flexible devices to create new applications, such as matrix addressable functionalized electrodes and organic light emitting diodes. A brief description on how to integrate waveguides for their use in optogenetics is addressed. We have built understanding about device constraints on mechanical, electrical and in vivo reliability and how various conditions affect the electronics' lifetime. We use a bi-layer gate dielectric using an inorganic material such as HfO 2 combined with organic Parylene-c. A study of

  1. The neural coding of expected and unexpected monetary performance outcomes: dissociations between active and observational learning.

    PubMed

    Bellebaum, C; Jokisch, D; Gizewski, E R; Forsting, M; Daum, I

    2012-02-01

    Successful adaptation to the environment requires the learning of stimulus-response-outcome associations. Such associations can be learned actively by trial and error or by observing the behaviour and accompanying outcomes in other persons. The present study investigated similarities and differences in the neural mechanisms of active and observational learning from monetary feedback using functional magnetic resonance imaging. Two groups of 15 subjects each - active and observational learners - participated in the experiment. On every trial, active learners chose between two stimuli and received monetary feedback. Each observational learner observed the choices and outcomes of one active learner. Learning performance as assessed via active test trials without feedback was comparable between groups. Different activation patterns were observed for the processing of unexpected vs. expected monetary feedback in active and observational learners, particularly for positive outcomes. Activity for unexpected vs. expected reward was stronger in the right striatum in active learning, while activity in the hippocampus was bilaterally enhanced in observational and reduced in active learning. Modulation of activity by prediction error (PE) magnitude was observed in the right putamen in both types of learning, whereas PE related activations in the right anterior caudate nucleus and in the medial orbitofrontal cortex were stronger for active learning. The striatum and orbitofrontal cortex thus appear to link reward stimuli to own behavioural reactions and are less strongly involved when the behavioural outcome refers to another person's action. Alternative explanations such as differences in reward value between active and observational learning are also discussed.

  2. Thinking about the thoughts of others; temporal and spatial neural activation during false belief reasoning.

    PubMed

    Mossad, Sarah I; AuCoin-Power, Michelle; Urbain, Charline; Smith, Mary Lou; Pang, Elizabeth W; Taylor, Margot J

    2016-07-01

    Theory of Mind (ToM) is the ability to understand the perspectives, mental states and beliefs of others in order to anticipate their behaviour and is therefore crucial to social interactions. Although fMRI has been widely used to establish the neural networks implicated in ToM, little is known about the timing of ToM-related brain activity. We used magnetoencephalography (MEG) to measure the neural processes underlying ToM, as MEG provides very accurate timing and excellent spatial localization of brain processes. We recorded MEG activity during a false belief task, a reliable measure of ToM, in twenty young adults (10 females). MEG data were recorded in a 151 sensor CTF system (MISL, Coquitlam, BC) and data were co-registered to each participant's MRI (Siemens 3T) for source reconstruction. We found stronger right temporoparietal junction (rTPJ) activations in the false belief condition from 150ms to 225ms, in the right precuneus from 275ms to 375ms, in the right inferior frontal gyrus from 200ms to 300ms and the superior frontal gyrus from 300ms to 400ms. Our findings extend the literature by demonstrating the timing and duration of neural activity in the main regions involved in the "mentalizing" network, showing that activations related to false belief in adults are predominantly right lateralized and onset around 100ms. The sensitivity of MEG will allow us to determine spatial and temporal differences in the brain processes in ToM in younger populations or those who demonstrate deficits in this ability.

  3. The Effects of Simulated Stuttering and Prolonged Speech on the Neural Activation Patterns of Stuttering and Nonstuttering Adults

    ERIC Educational Resources Information Center

    De Nil, Luc F.; Beal, Deryk S.; Lafaille, Sophie J.; Kroll, Robert M.; Crawley, Adrian P.; Gracco, Vincent L.

    2008-01-01

    Functional magnetic resonance imaging was used to investigate the neural correlates of passive listening, habitual speech and two modified speech patterns (simulated stuttering and prolonged speech) in stuttering and nonstuttering adults. Within-group comparisons revealed increased right hemisphere biased activation of speech-related regions…

  4. EEG-fMRI Bayesian framework for neural activity estimation: a simulation study

    NASA Astrophysics Data System (ADS)

    Croce, Pierpaolo; Basti, Alessio; Marzetti, Laura; Zappasodi, Filippo; Del Gratta, Cosimo

    2016-12-01

    Objective. Due to the complementary nature of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), and given the possibility of simultaneous acquisition, the joint data analysis can afford a better understanding of the underlying neural activity estimation. In this simulation study we want to show the benefit of the joint EEG-fMRI neural activity estimation in a Bayesian framework. Approach. We built a dynamic Bayesian framework in order to perform joint EEG-fMRI neural activity time course estimation. The neural activity is originated by a given brain area and detected by means of both measurement techniques. We have chosen a resting state neural activity situation to address the worst case in terms of the signal-to-noise ratio. To infer information by EEG and fMRI concurrently we used a tool belonging to the sequential Monte Carlo (SMC) methods: the particle filter (PF). Main results. First, despite a high computational cost, we showed the feasibility of such an approach. Second, we obtained an improvement in neural activity reconstruction when using both EEG and fMRI measurements. Significance. The proposed simulation shows the improvements in neural activity reconstruction with EEG-fMRI simultaneous data. The application of such an approach to real data allows a better comprehension of the neural dynamics.

  5. Sociocultural patterning of neural activity during self-reflection

    PubMed Central

    Ma, Yina; Bang, Dan; Wang, Chenbo; Allen, Micah; Frith, Chris; Roepstorff, Andreas; Han, Shihui

    2014-01-01

    Western cultures encourage self-construals independent of social contexts, whereas East Asian cultures foster interdependent self-construals that rely on how others perceive the self. How are culturally specific self-construals mediated by the human brain? Using functional magnetic resonance imaging, we monitored neural responses from adults in East Asian (Chinese) and Western (Danish) cultural contexts during judgments of social, mental and physical attributes of themselves and public figures to assess cultural influences on self-referential processing of personal attributes in different dimensions. We found that judgments of self vs a public figure elicited greater activation in the medial prefrontal cortex (mPFC) in Danish than in Chinese participants regardless of attribute dimensions for judgments. However, self-judgments of social attributes induced greater activity in the temporoparietal junction (TPJ) in Chinese than in Danish participants. Moreover, the group difference in TPJ activity was mediated by a measure of a cultural value (i.e. interdependence of self-construal). Our findings suggest that individuals in different sociocultural contexts may learn and/or adopt distinct strategies for self-reflection by changing the weight of the mPFC and TPJ in the social brain network. PMID:22956678

  6. Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays.

    PubMed

    Cao, Jinde; Wang, Jun

    2004-04-01

    This paper investigates the absolute exponential stability of a general class of delayed neural networks, which require the activation functions to be partially Lipschitz continuous and monotone nondecreasing only, but not necessarily differentiable or bounded. Three new sufficient conditions are derived to ascertain whether or not the equilibrium points of the delayed neural networks with additively diagonally stable interconnection matrices are absolutely exponentially stable by using delay Halanay-type inequality and Lyapunov function. The stability criteria are also suitable for delayed optimization neural networks and delayed cellular neural networks whose activation functions are often nondifferentiable or unbounded. The results herein answer a question: if a neural network without any delay is absolutely exponentially stable, then under what additional conditions, the neural networks with delay is also absolutely exponentially stable.

  7. Human activities recognition by head movement using partial recurrent neural network

    NASA Astrophysics Data System (ADS)

    Tan, Henry C. C.; Jia, Kui; De Silva, Liyanage C.

    2003-06-01

    Traditionally, human activities recognition has been achieved mainly by the statistical pattern recognition methods or the Hidden Markov Model (HMM). In this paper, we propose a novel use of the connectionist approach for the recognition of ten simple human activities: walking, sitting down, getting up, squatting down and standing up, in both lateral and frontal views, in an office environment. By means of tracking the head movement of the subjects over consecutive frames from a database of different color image sequences, and incorporating the Elman model of the partial recurrent neural network (RNN) that learns the sequential patterns of relative change of the head location in the images, the proposed system is able to robustly classify all the ten activities performed by unseen subjects from both sexes, of different race and physique, with a recognition rate as high as 92.5%. This demonstrates the potential of employing partial RNN to recognize complex activities in the increasingly popular human-activities-based applications.

  8. Maximizing the entropy of histogram bar heights to explore neural activity: a simulation study on auditory and tactile fibers.

    PubMed

    Güçlü, Burak

    2005-01-01

    Neurophysiologists often use histograms to explore patterns of activity in neural spike trains. The bin size selected to construct a histogram is crucial: too large bin widths result in coarse histograms, too small bin widths expand unimportant detail. Peri-stimulus time (PST) histograms of simulated nerve fibers were studied in the current article. This class of histograms gives information about neural activity in the temporal domain and is a density estimate for the spike rate. Scott's rule based on modem statistical theory suggests that the optimal bin size is inversely proportional to the cube root of sample size. However, this estimate requires a priori knowledge about the density function. Moreover, there are no good algorithms for adaptive-mesh histograms, which have variable bin sizes to minimize estimation errors. Therefore, an unconventional technique is proposed here to help experimenters in practice. This novel method maximizes the entropy of histogram-bar heights to find the unique bin size, which generates the highest disorder in a histogram (i.e., the most complex histogram), and is useful as a starting point for neural data mining. Although the proposed method is ad hoc from a density-estimation point of view, it is simple, efficient and more helpful in the experimental setting where no prior statistical information on neural activity is available. The results of simulations based on the entropy method are also discussed in relation to Ellaway's cumulative-sum technique, which can detect subtle changes in neural activity in certain conditions.

  9. Light-Activated Ion Channels for Remote Control of Neural Activity

    PubMed Central

    Chambers, James J.; Kramer, Richard H.

    2009-01-01

    Light-activated ion channels provide a new opportunity to precisely and remotely control neuronal activity for experimental applications in neurobiology. In the past few years, several strategies have arisen that allow light to control ion channels and therefore neuronal function. Light-based triggers for ion channel control include caged compounds, which release active neurotransmitters when photolyzed with light, and natural photoreceptive proteins, which can be expressed exogenously in neurons. More recently, a third type of light trigger has been introduced: a photoisomerizable tethered ligand that directly controls ion channel activity in a light-dependent manner. Beyond the experimental applications for light-gated ion channels, there may be clinical applications in which these light-sensitive ion channels could prove advantageous over traditional methods. Electrodes for neural stimulation to control disease symptoms are invasive and often difficult to reposition between cells in tissue. Stimulation by chemical agents is difficult to constrain to individual cells and has limited temporal accuracy in tissue due to diffusional limitations. In contrast, ion channels that can be directly activated with light allow control with unparalleled spatial and temporal precision. The goal of this chapter is to describe light-regulated ion channels and how they have been tailored to control different aspects of neural activity, and how to use these channels to manipulate and better understand development, function, and plasticity of neurons and neural circuits. PMID:19195553

  10. Current steering to activate targeted neural pathways during deep brain stimulation of the subthalamic region

    PubMed Central

    Chaturvedi, Ashutosh; Foutz, Thomas J.; McIntyre, Cameron C.

    2012-01-01

    Deep brain stimulation (DBS) has steadily evolved into an established surgical therapy for numerous neurological disorders, most notably Parkinson’s disease (PD). Traditional DBS technology relies on voltage-controlled stimulation with a single source; however, recent engineering advances are providing current-controlled devices with multiple independent sources. These new stimulators deliver constant current to the brain tissue, irrespective of impedance changes that occur around the electrode, and enable more specific steering of current towards targeted regions of interest. In this study, we examined the impact of current steering between multiple electrode contacts to directly activate three distinct neural populations in the subthalamic region commonly stimulated for the treatment of PD: projection neurons of the subthalamic nucleus (STN), globus pallidus internus (GPi) fibers of the lenticular fasiculus, and internal capsule (IC) fibers of passage. We used three-dimensional finite element electric field models, along with detailed multi-compartment cable models of the three neural populations to determine their activations using a wide range of stimulation parameter settings. Our results indicate that selective activation of neural populations largely depends on the location of the active electrode(s). Greater activation of the GPi and STN populations (without activating any side-effect related IC fibers) was achieved by current steering with multiple independent sources, compared to a single current source. Despite this potential advantage, it remains to be seen if these theoretical predictions result in a measurable clinical effect that outweighs the added complexity of the expanded stimulation parameter search space generated by the more flexible technology. PMID:22277548

  11. Fast optical recording of light-flash evoked neural activation in amphibian retina

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; George, John S.

    2005-08-01

    Imaging of fast intrinsic optical responses closely associated with neural activation promises important technical advantages over traditional single and multi-channel electrophysiological techniques for dynamic measurements of visual processing and early detection of eye diseases. We have developed a fast, no-moving-parts optical coherence tomography (OCT), system based on an electro-optic phase modulator, and used it to record dynamic near infrared (NIR) light scattering changes in frog retina activated by a visible light-flash. We also employed transmitted light for highly sensitive measurement and imaging of neural activation, and to optimize illumination and optical configuration. Using a photodiode detector, we routinely measured dynamic NIR transmitted optical responses in single passes. When the whole retina was illuminated by a visible light-flash, a positive peak was typically observed in transmitted light measurements. CCD image sequences disclosed larger fractional responses, in some cases exceeding 0.5% in individual pixels, and showed evidence of multiple response components with both negative- and positive-going signals with different timescales and complex but consistent spatial organization. The fast negative-going signals are highly correlated with the a-wave of the electrophysiological signals, and may reflect the activation of photoreceptors. The fast positive-going responses are related to the b-wave of the electrophysiological signals, and may result from the activation of ON bipolar cells. Slow optical responses may signal metabolic changes of retinal tissue. Our experimental results and theoretical analysis suggest that the optical responses may result from dynamic volume changes associated with neural activation, corresponding to ion and water flow across the cell membrane.

  12. Telencephalic neural activation following passive avoidance learning in a terrestrial toad.

    PubMed

    Puddington, Martín M; Daneri, M Florencia; Papini, Mauricio R; Muzio, Rubén N

    2016-12-15

    The present study explores passive avoidance learning and its neural basis in toads (Rhinella arenarum). In Experiment 1, two groups of toads learned to move from a lighted compartment into a dark compartment. After responding, animals in the experimental condition were exposed to an 800-mM strongly hypertonic NaCl solution that leads to weight loss. Control animals received exposure to a 300-mM slightly hypertonic NaCl solution that leads to neither weight gain nor loss. After 10 daily acquisition trials, animals in the experimental group showed significantly longer latency to enter the dark compartment. Additionally, 10 daily trials in which both groups received the 300-mM NaCl solution after responding eliminated this group effect. Thus, experimental animals showed gradual acquisition and extinction of a passive avoidance respond. Experiment 2 replicated the gradual acquisition effect, but, after the last trial, animals were sacrificed and neural activation was assessed in five brain regions using AgNOR staining for nucleoli-an index of brain activity. Higher activation in the experimental animals, relative to controls, was observed in the amygdala and striatum. Group differences in two other regions, lateral pallium and septum, were borderline, but nonsignificant, whereas group differences in the medial pallium were nonsignificant. These preliminary results suggest that a striatal-amygdala activation could be a key component of the brain circuit controlling passive avoidance learning in amphibians. The results are discussed in relation to the results of analogous experiments with other vertebrates.

  13. Convergence of nicotine-induced and auditory-evoked neural activity activates ERK in auditory cortex.

    PubMed

    Kawai, Hideki D; La, Maggie; Kang, Ho-An; Hashimoto, Yusuke; Liang, Kevin; Lazar, Ronit; Metherate, Raju

    2013-08-01

    Enhancement of sound-evoked responses in auditory cortex (ACx) following administration of systemic nicotine is known to depend on activation of extracellular-signaling regulated kinase (ERK), but the nature of this enhancement is not clear. Here, we show that systemic nicotine increases the density of cells immunolabeled for phosphorylated (activated) ERK (P-ERK) in mouse primary ACx (A1). Cortical injection of dihydro-β-erythroidine reduced nicotine-induced P-ERK immunolabel, suggesting a role for nicotinic acetylcholine receptors located in A1 and containing α4 and β2 subunits. P-ERK expressing cells were distributed mainly in layers 2/3 and more sparsely in lower layers, with many cells exhibiting immunolabel within pyramidal-shaped somata and proximal apical dendrites. About one-third of P-ERK positive cells also expressed calbindin. In the thalamus, P-ERK immunopositive cells were found in the nonlemniscal medial geniculate (MG) and adjacent nuclei, but were absent in the lemniscal MG. Pairing broad spectrum acoustic stimulation (white noise) with systemic nicotine increased P-ERK immunopositive cell density in ACx as well as the total amount of P-ERK protein, particularly the phosphorylated form of ERK2. However, narrow spectrum (tone) stimulation paired with nicotine increased P-ERK immunolabel preferentially at a site within A1 where the paired frequency was characteristic frequency (CF), relative to a second site with a spectrally distant CF (two octaves above or below the paired frequency). Together, these results suggest that ERK is activated optimally where nicotinic signaling and sound-evoked neural activity converge.

  14. Modulation in voluntary neural drive in relation to muscle soreness

    PubMed Central

    Bringard, A.; Puchaux, K.; Noakes, T. D.; Perrey, S.

    2007-01-01

    The aim of this study was to investigate whether (1) spinal modulation would change after non-exhausting eccentric exercise of the plantar flexor muscles that produced muscle soreness and (2) central modulation of the motor command would be linked to the development of muscle soreness. Ten healthy subjects volunteered to perform a single bout of backward downhill walking exercise (duration 30 min, velocity 1 ms−1, negative grade −25%, load 12% of body weight). Neuromuscular test sessions [H-reflex, M-wave, maximal voluntary torque (MVT)] were performed before, immediately after, as well as 1–3 days after the exercise bout. Immediately after exercise there was a −15% decrease in MVT of the plantar flexors partly attributable to an alteration in contractile properties (−23% in electrically evoked mechanical twitch). However, MVT failed to recover before the third day whereas the contractile properties had significantly recovered within the first day. This delayed recovery of MVT was likely related to a decrement in voluntary muscle drive. The decrease in voluntary activation occurred in the absence of any variation in spinal modulation estimated from the H-reflex. Our findings suggest the development of a supraspinal modulation perhaps linked to the presence of muscle soreness. PMID:17978834

  15. Neural activity during emotion recognition after combined cognitive plus social cognitive training in schizophrenia.

    PubMed

    Hooker, Christine I; Bruce, Lori; Fisher, Melissa; Verosky, Sara C; Miyakawa, Asako; Vinogradov, Sophia

    2012-08-01

    Cognitive remediation training has been shown to improve both cognitive and social cognitive deficits in people with schizophrenia, but the mechanisms that support this behavioral improvement are largely unknown. One hypothesis is that intensive behavioral training in cognition and/or social cognition restores the underlying neural mechanisms that support targeted skills. However, there is little research on the neural effects of cognitive remediation training. This study investigated whether a 50 h (10-week) remediation intervention which included both cognitive and social cognitive training would influence neural function in regions that support social cognition. Twenty-two stable, outpatient schizophrenia participants were randomized to a treatment condition consisting of auditory-based cognitive training (AT) [Brain Fitness Program/auditory module ~60 min/day] plus social cognition training (SCT) which was focused on emotion recognition [~5-15 min per day] or a placebo condition of non-specific computer games (CG) for an equal amount of time. Pre and post intervention assessments included an fMRI task of positive and negative facial emotion recognition, and standard behavioral assessments of cognition, emotion processing, and functional outcome. There were no significant intervention-related improvements in general cognition or functional outcome. fMRI results showed the predicted group-by-time interaction. Specifically, in comparison to CG, AT+SCT participants had a greater pre-to-post intervention increase in postcentral gyrus activity during emotion recognition of both positive and negative emotions. Furthermore, among all participants, the increase in postcentral gyrus activity predicted behavioral improvement on a standardized test of emotion processing (MSCEIT: Perceiving Emotions). Results indicate that combined cognition and social cognition training impacts neural mechanisms that support social cognition skills.

  16. Multisynaptic activity in a pyramidal neuron model and neural code.

    PubMed

    Ventriglia, Francesco; Di Maio, Vito

    2006-01-01

    The highly irregular firing of mammalian cortical pyramidal neurons is one of the most striking observation of the brain activity. This result affects greatly the discussion on the neural code, i.e. how the brain codes information transmitted along the different cortical stages. In fact it seems to be in favor of one of the two main hypotheses about this issue, named the rate code. But the supporters of the contrasting hypothesis, the temporal code, consider this evidence inconclusive. We discuss here a leaky integrate-and-fire model of a hippocampal pyramidal neuron intended to be biologically sound to investigate the genesis of the irregular pyramidal firing and to give useful information about the coding problem. To this aim, the complete set of excitatory and inhibitory synapses impinging on such a neuron has been taken into account. The firing activity of the neuron model has been studied by computer simulation both in basic conditions and allowing brief periods of over-stimulation in specific regions of its synaptic constellation. Our results show neuronal firing conditions similar to those observed in experimental investigations on pyramidal cortical neurons. In particular, the variation coefficient (CV) computed from the inter-spike intervals (ISIs) in our simulations for basic conditions is close to the unity as that computed from experimental data. Our simulation shows also different behaviors in firing sequences for different frequencies of stimulation.

  17. Generalized activity equations for spiking neural network dynamics

    PubMed Central

    Buice, Michael A.; Chow, Carson C.

    2013-01-01

    Much progress has been made in uncovering the computational capabilities of spiking neural networks. However, spiking neurons will always be more expensive to simulate compared to rate neurons because of the inherent disparity in time scales—the spike duration time is much shorter than the inter-spike time, which is much shorter than any learning time scale. In numerical analysis, this is a classic stiff problem. Spiking neurons are also much more difficult to study analytically. One possible approach to making spiking networks more tractable is to augment mean field activity models with some information about spiking correlations. For example, such a generalized activity model could carry information about spiking rates and correlations between spikes self-consistently. Here, we will show how this can be accomplished by constructing a complete formal probabilistic description of the network and then expanding around a small parameter such as the inverse of the number of neurons in the network. The mean field theory of the system gives a rate-like description. The first order terms in the perturbation expansion keep track of covariances. PMID:24298252

  18. Beaches. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Marrett, Andrea

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  19. Whales. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Jones, Claire

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  20. Tides. Ocean Related Curriculum Activities.

    ERIC Educational Resources Information Center

    Marrett, Andrea

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  1. A systematic review of the neural bases of psychotherapy for anxiety and related disorders.

    PubMed

    Brooks, Samantha J; Stein, Dan J

    2015-09-01

    Brain imaging studies over two decades have delineated the neural circuitry of anxiety and related disorders, particularly regions involved in fear processing and in obsessive-compulsive symptoms. The neural circuitry of fear processing involves the amygdala, anterior cingulate, and insular cortex, while cortico-striatal-thalamic circuitry plays a key role in obsessive-compulsive disorder. More recently, neuroimaging studies have examined how psychotherapy for anxiety and related disorders impacts on these neural circuits. Here we conduct a systematic review of the findings of such work, which yielded 19 functional magnetic resonance imaging studies examining the neural bases of cognitive-behavioral therapy (CBT) in 509 patients with anxiety and related disorders. We conclude that, although each of these related disorders is mediated by somewhat different neural circuitry, CBT may act in a similar way to increase prefrontal control of subcortical structures. These findings are consistent with an emphasis in cognitive-affective neuroscience on the potential therapeutic value of enhancing emotional regulation in various psychiatric conditions.

  2. Neural mirroring and social interaction: Motor system involvement during action observation relates to early peer cooperation.

    PubMed

    Endedijk, H M; Meyer, M; Bekkering, H; Cillessen, A H N; Hunnius, S

    2017-01-07

    Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other's actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children's interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction.

  3. A systematic review of the neural bases of psychotherapy for anxiety and related disorders

    PubMed Central

    Brooks, Samantha J.; Stein, Dan J.

    2015-01-01

    Brain imaging studies over two decades have delineated the neural circuitry of anxiety and related disorders, particularly regions involved in fear processing and in obsessive-compulsive symptoms. The neural circuitry of fear processing involves the amygdala, anterior cingulate, and insular cortex, while cortico-striatal-thalamic circuitry plays a key role in obsessive-compulsive disorder. More recently, neuroimaging studies have examined how psychotherapy for anxiety and related disorders impacts on these neural circuits. Here we conduct a systematic review of the findings of such work, which yielded 19 functional magnetic resonance imaging studies examining the neural bases of cognitive-behavioral therapy (CBT) in 509 patients with anxiety and related disorders. We conclude that, although each of these related disorders is mediated by somewhat different neural circuitry, CBT may act in a similar way to increase prefrontal control of subcortical structures. These findings are consistent with an emphasis in cognitive-affective neuroscience on the potential therapeutic value of enhancing emotional regulation in various psychiatric conditions. PMID:26487807

  4. Touching moments: desire modulates the neural anticipation of active romantic caress

    PubMed Central

    Ebisch, Sjoerd J.; Ferri, Francesca; Gallese, Vittorio

    2014-01-01

    A romantic caress is a basic expression of affiliative behavior and a primary reinforcer. Given its inherent affective valence, its performance also would imply the prediction of reward values. For example, touching a person for whom one has strong passionate feelings likely is motivated by a strong desire for physical contact and associated with the anticipation of hedonic experiences. The present study aims at investigating how the anticipatory neural processes of active romantic caress are modulated by the intensity of the desire for affective contact as reflected by passionate feelings for the other. Functional magnetic resonance imaging scanning was performed in romantically involved partners using a paradigm that allowed to isolate the specific anticipatory representations of active romantic caress, compared with control caress, while testing for the relationship between neural activity and measures of feelings of passionate love for the other. The results demonstrated that right posterior insula activity in anticipation of romantic caress significantly co-varied with the intensity of desire for union with the other. This effect was independent of the sensory-affective properties of the performed touch, like its pleasantness. Furthermore, functional connectivity analysis showed that the same posterior insula cluster interacted with brain regions related to sensory-motor functions as well as to the processing and anticipation of reward. The findings provide insight on the neural substrate mediating between the desire for and the performance of romantic caress. In particular, we propose that anticipatory activity patterns in posterior insula may modulate subsequent sensory-affective processing of skin-to-skin contact. PMID:24616676

  5. Touching moments: desire modulates the neural anticipation of active romantic caress.

    PubMed

    Ebisch, Sjoerd J; Ferri, Francesca; Gallese, Vittorio

    2014-01-01

    A romantic caress is a basic expression of affiliative behavior and a primary reinforcer. Given its inherent affective valence, its performance also would imply the prediction of reward values. For example, touching a person for whom one has strong passionate feelings likely is motivated by a strong desire for physical contact and associated with the anticipation of hedonic experiences. The present study aims at investigating how the anticipatory neural processes of active romantic caress are modulated by the intensity of the desire for affective contact as reflected by passionate feelings for the other. Functional magnetic resonance imaging scanning was performed in romantically involved partners using a paradigm that allowed to isolate the specific anticipatory representations of active romantic caress, compared with control caress, while testing for the relationship between neural activity and measures of feelings of passionate love for the other. The results demonstrated that right posterior insula activity in anticipation of romantic caress significantly co-varied with the intensity of desire for union with the other. This effect was independent of the sensory-affective properties of the performed touch, like its pleasantness. Furthermore, functional connectivity analysis showed that the same posterior insula cluster interacted with brain regions related to sensory-motor functions as well as to the processing and anticipation of reward. The findings provide insight on the neural substrate mediating between the desire for and the performance of romantic caress. In particular, we propose that anticipatory activity patterns in posterior insula may modulate subsequent sensory-affective processing of skin-to-skin contact.

  6. Long-Range Temporal Correlations, Multifractality, and the Causal Relation between Neural Inputs and Movements

    PubMed Central

    Hu, Jing; Zheng, Yi; Gao, Jianbo

    2013-01-01

    Understanding the causal relation between neural inputs and movements is very important for the success of brain-machine interfaces (BMIs). In this study, we analyze 104 neurons’ firings using statistical, information theoretic, and fractal analysis. The latter include Fano factor analysis, multifractal adaptive fractal analysis (MF-AFA), and wavelet multifractal analysis. We find neuronal firings are highly non-stationary, and Fano factor analysis always indicates long-range correlations in neuronal firings, irrespective of whether those firings are correlated with movement trajectory or not, and thus does not reveal any actual correlations between neural inputs and movements. On the other hand, MF-AFA and wavelet multifractal analysis clearly indicate that when neuronal firings are not well correlated with movement trajectory, they do not have or only have weak temporal correlations. When neuronal firings are well correlated with movements, they are characterized by very strong temporal correlations, up to a time scale comparable to the average time between two successive reaching tasks. This suggests that neurons well correlated with hand trajectory experienced a “re-setting” effect at the start of each reaching task, in the sense that within the movement correlated neurons the spike trains’ long-range dependences persisted about the length of time the monkey used to switch between task executions. A new task execution re-sets their activity, making them only weakly correlated with their prior activities on longer time scales. We further discuss the significance of the coalition of those important neurons in executing cortical control of prostheses. PMID:24130549

  7. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation

    PubMed Central

    Sameiro-Barbosa, Catia M.; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system. PMID:27559306

  8. Neural basis of psychosis-related behaviour in the infection model of schizophrenia.

    PubMed

    Meyer, Urs; Feldon, Joram

    2009-12-07

    Maternal infection during pregnancy is a notable risk factor for the offspring to develop severe neuropsychiatric disorders, including schizophrenia. One prevalent hypothesis suggests that infection-induced disruption of early prenatal brain development predisposes the organism for long-lasting structural and functional brain abnormalities, leading to the emergence of psychopathological behaviour in adulthood. The feasibility of this causal link has received considerable support from several experimental models established in both rats and mice. In this review, we provide an integrative summary of the long-term neuropathological consequences of prenatal exposure to infection and/or inflammation as identified in various experimental models of prenatal immune challenge. In addition, we highlight how abnormalities in distinct brain areas and neurotransmitter systems following prenatal immune activation may provide a neural basis for the emergence of specific forms of psychosis-related behaviour. Specifically, we suggest that prenatal infection-induced imbalances in the mesolimibic and mesocortical dopamine pathways may constitute critical neural mechanisms for disturbances in sensorimotor gating, abnormalities in selective associative learning and hypersensitivity to psychostimulant drugs. On the other hand, the emergence of working memory deficiency following prenatal immune challenge may be crucially linked to the concomitant disruption of GABAergic and glutamatergic functions in prefrontal cortical and hippocampal structures. Notably, many of the identified neuronal abnormalities are directly implicated in the neuropathology of schizophrenia. The findings from prenatal infection models of schizophrenia thus provide considerable experimental evidence for the assumption that prenatal exposure to infection and/or inflammation is a relevant environmental link to specific neuronal abnormalities underlying psychosis-related behaviour in humans.

  9. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    PubMed

    Xie, Kun; Kuang, Hui; Tsien, Joe Z

    2013-01-01

    There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  10. Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension.

    PubMed

    Beaucousin, Virginie; Zago, Laure; Hervé, Pierre-Yves; Strelnikov, Kuzma; Crivello, Fabrice; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie

    2011-05-16

    Studies using event related potentials have shown that men are more likely than women to rely on semantic cues when understanding emotional speech. In a previous functional Magnetic Resonance Imaging (fMRI) study, using an affective sentence classification task, we were able to separate areas involved in semantic processing and areas involved in the processing of affective prosody (Beaucousin et al., 2007). Here we searched for sex-related differences in the neural networks active during emotional speech processing in groups of men and women. The ortholinguistic abilities of the participants did not differ when evaluated with a large battery of tests. Although the neural networks engaged by men and women during emotional sentence classification were largely overlapping, sex-dependent modulations were detected during emotional sentence classification, but not during grammatical sentence classification. Greater activity was observed in men, compared with women, in inferior frontal cortical areas involved in emotional labeling and in attentional areas. In conclusion, at equivalent linguistic abilities and performances, men activate semantic and attentional cortical areas to a larger extent than women during emotional speech processing.

  11. Neural Activities Underlying the Feedback Express Salience Prediction Errors for Appetitive and Aversive Stimuli

    PubMed Central

    Gu, Yan; Hu, Xueping; Pan, Weigang; Yang, Chun; Wang, Lijun; Li, Yiyuan; Chen, Antao

    2016-01-01

    Feedback information is essential for us to adapt appropriately to the environment. The feedback-related negativity (FRN), a frontocentral negative deflection after the delivery of feedback, has been found to be larger for outcomes that are worse than expected, and it reflects a reward prediction error derived from the midbrain dopaminergic projections to the anterior cingulate cortex (ACC), as stated in reinforcement learning theory. In contrast, the prediction of response-outcome (PRO) model claims that the neural activity in the mediofrontal cortex (mPFC), especially the ACC, is sensitive to the violation of expectancy, irrespective of the valence of feedback. Additionally, increasing evidence has demonstrated significant activities in the striatum, anterior insula and occipital lobe for unexpected outcomes independently of their valence. Thus, the neural mechanism of the feedback remains under dispute. Here, we investigated the feedback with monetary reward and electrical pain shock in one task via functional magnetic resonance imaging. The results revealed significant prediction-error-related activities in the bilateral fusiform gyrus, right middle frontal gyrus and left cingulate gyrus for both money and pain. This implies that some regions underlying the feedback may signal a salience prediction error rather than a reward prediction error. PMID:27694920

  12. Spontaneous neural activity during human slow wave sleep.

    PubMed

    Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Albouy, Geneviève; Boly, Mélanie; Darsaud, Annabelle; Gais, Steffen; Rauchs, Géraldine; Sterpenich, Virginie; Vandewalle, Gilles; Carrier, Julie; Moonen, Gustave; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Phillips, Christophe; Maquet, Pierre

    2008-09-30

    Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the previous awake period. At the cellular level, during SWS, a slow oscillation (<1 Hz) synchronizes firing patterns in large neuronal populations and is reflected on electroencephalography (EEG) recordings as large-amplitude, low-frequency waves. By using simultaneous EEG and event-related functional magnetic resonance imaging (fMRI), we characterized the transient changes in brain activity consistently associated with slow waves (>140 microV) and delta waves (75-140 microV) during SWS in 14 non-sleep-deprived normal human volunteers. Significant increases in activity were associated with these waves in several cortical areas, including the inferior frontal, medial prefrontal, precuneus, and posterior cingulate areas. Compared with baseline activity, slow waves are associated with significant activity in the parahippocampal gyrus, cerebellum, and brainstem, whereas delta waves are related to frontal responses. No decrease in activity was observed. This study demonstrates that SWS is not a state of brain quiescence, but rather is an active state during which brain activity is consistently synchronized to the slow oscillation in specific cerebral regions. The partial overlap between the response pattern related to SWS waves and the waking default mode network is consistent with the fascinating hypothesis that brain responses synchronized by the slow oscillation restore microwake-like activity patterns that facilitate neuronal interactions.

  13. Nutri-epigenomic Studies Related to Neural Tube Defects: Does Folate Affect Neural Tube Closure Via Changes in DNA Methylation?

    PubMed

    Rochtus, Anne; Jansen, Katrien; Van Geet, Chris; Freson, Kathleen

    2015-01-01

    Neural tube defects (NTDs), affecting 1-2 per 1000 pregnancies, are severe congenital malformations that arise from the failure of neurulation during early embryonic development. The methylation hypothesis suggests that folate prevents NTDs by stimulating cellular methylation reactions. Folate is central to the one-carbon metabolism that produces pyrimidines and purines for DNA synthesis and for the generation of the methyldonor S-adenosyl-methionine. This review focuses on the relation between the folate-mediated one-carbon metabolism, DNA methylation and NTDs. Studies will be discussed that investigated global or locus-specific DNA methylation differences in patients with NTDs. Folate deficiency may increase NTD risk by decreasing DNA methylation, but to date, human studies vary widely in study design in terms of analyzing different clinical subtypes of NTDs, using different methylation quantification assays and using DNA isolated from diverse types of tissues. Some studies have focused mainly on global DNA methylation differences while others have quantified specific methylation differences for imprinted genes, transposable elements and DNA repair enzymes. Findings of global DNA hypomethylation and LINE-1 hypomethylation suggest that epigenetic alterations may disrupt neural tube closure. However, current research does not support a linear relation between red blood cell folate concentration and DNA methylation. Further studies are required to better understand the interaction between folate, DNA methylation changes and NTDs.

  14. A novel approach to image neural activity directly by MRI

    NASA Astrophysics Data System (ADS)

    Singh, Manbir; Sungkarat, Witaya

    2005-04-01

    Though an approach to image the electrical activity of neurons directly by detecting phase shifts in MRI was first reported in 1991, results to-date remain equivocal due to the low signal-to-noise ratio. The objective of this work was to develop a stimulus-presentation and data acquisition strategy specially geared to detect phase-dispersion effects of neuronal currents within 10-100 ms following stimulation. The key feature is to set the repeated MR data acquisition time TR and the stimulus presentation interval (TI) slightly different from each other so that the time at which images are acquired shifts gradually from one acquisition to the next with respect to stimulus onset. For example, at TR=275ms and 4 Hz stimulus presentation (TI=250ms), initial synchronization of the stimulus onset and MR acquisition would result in the first image being acquired at a latency of 0+/- (temporal width of data acquisition window), second image at a latency of 25ms, third image at a latency of 50ms and so on up to a latency of 250ms, at which time the stimulus and data acquisition times would become re-synchronized to once again acquire an image at latency=0. Human data were acquired on a 1.5T GE EXCITE scanner from two 8mm thick contiguous slices bracketing the calcarine fissure during a checkerboard flashing at 4 Hz. Preliminary results show activity in the visual cortex at latencies consistent with EEG studies, suggesting the potential of this methodology to image neural activity directly.

  15. Neural Activity in the Ventral Pallidum Encodes Variation in the Incentive Value of a Reward Cue

    PubMed Central

    Meyer, Paul J.; Ferguson, Lindsay M.; Robinson, Terry E.; Aldridge, J. Wayne

    2016-01-01

    There is considerable individual variation in the extent to which reward cues are attributed with incentive salience. For example, a food-predictive conditioned stimulus (CS; an illuminated lever) becomes attractive, eliciting approach toward it only in some rats (“sign trackers,” STs), whereas others (“goal trackers,” GTs) approach the food cup during the CS period. The purpose of this study was to determine how individual differences in Pavlovian approach responses are represented in neural firing patterns in the major output structure of the mesolimbic system, the ventral pallidum (VP). Single-unit in vivo electrophysiology was used to record neural activity in the caudal VP during the performance of ST and GT conditioned responses. All rats showed neural responses to both cue onset and reward delivery but, during the CS period, STs showed greater neural activity than GTs both in terms of the percentage of responsive neurons and the magnitude of the change in neural activity. Furthermore, neural activity was positively correlated with the degree of attraction to the cue. Given that the CS had equal predictive value in STs and GTs, we conclude that neural activity in the VP largely reflects the degree to which the CS was attributed with incentive salience. SIGNIFICANCE STATEMENT Cues associated with reward can acquire motivational properties (i.e., incentive salience) that cause them to have a powerful influence on desire and motivated behavior. There are individual differences in sensitivity to reward-paired cues, with some individuals attaching greater motivational value to cues than others. Here, we investigated the neural activity associated with these individual differences in incentive salience. We found that cue-evoked neural firing in the ventral pallidum (VP) reflected the strength of incentive motivation, with the greatest neural responses occurring in individuals that demonstrated the strongest attraction to the cue. This suggests that the VP

  16. Neural activities associated with emotion recognition observed in men and women.

    PubMed

    Lee, T M C; Liu, H-L; Chan, C C H; Fang, S-Y; Gao, J-H

    2005-05-01

    Previous studies have suggested that men and women process emotional stimuli differently. In this study, we examined if there would be any consistency in regions of activation in men and women when processing stimuli portraying happy or sad emotions presented in the form of facial expressions, scenes, and words. A blocked design BOLD functional magnetic resonance imaging paradigm was employed to monitor the neural activities of male and female healthy volunteers while they were presented with the experimental stimuli. The imaging data revealed that the right insula and left thalamus were consistently activated for men, but not women, during emotion recognition of all forms of stimuli studied. To further understand the imaging data acquired, we conducted the protocol analysis method to identify the cognitive processes engaged while the men and women were viewing the emotional stimuli and deciding whether they were happy or sad. The findings suggest that men rely on the recall of past emotional experiences to evaluate current emotional experiences. This may explain why the insula, a structure important for self-induced or internally generated recalled emotions, was consistently activated in men while processing emotional stimuli. Our findings suggest possible gender-related neural responses to emotional stimuli.

  17. Where’s the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network

    PubMed Central

    Hartmann, Christoph; Lazar, Andreea; Nessler, Bernhard; Triesch, Jochen

    2015-01-01

    Even in the absence of sensory stimulation the brain is spontaneously active. This background “noise” seems to be the dominant cause of the notoriously high trial-to-trial variability of neural recordings. Recent experimental observations have extended our knowledge of trial-to-trial variability and spontaneous activity in several directions: 1. Trial-to-trial variability systematically decreases following the onset of a sensory stimulus or the start of a motor act. 2. Spontaneous activity states in sensory cortex outline the region of evoked sensory responses. 3. Across development, spontaneous activity aligns itself with typical evoked activity patterns. 4. The spontaneous brain activity prior to the presentation of an ambiguous stimulus predicts how the stimulus will be interpreted. At present it is unclear how these observations relate to each other and how they arise in cortical circuits. Here we demonstrate that all of these phenomena can be accounted for by a deterministic self-organizing recurrent neural network model (SORN), which learns a predictive model of its sensory environment. The SORN comprises recurrently coupled populations of excitatory and inhibitory threshold units and learns via a combination of spike-timing dependent plasticity (STDP) and homeostatic plasticity mechanisms. Similar to balanced network architectures, units in the network show irregular activity and variable responses to inputs. Additionally, however, the SORN exhibits sequence learning abilities matching recent findings from visual cortex and the network’s spontaneous activity reproduces the experimental findings mentioned above. Intriguingly, the network’s behaviour is reminiscent of sampling-based probabilistic inference, suggesting that correlates of sampling-based inference can develop from the interaction of STDP and homeostasis in deterministic networks. We conclude that key observations on spontaneous brain activity and the variability of neural responses can be

  18. Differences in Neural Activation for Object-Directed Grasping in Chimpanzees and Humans

    PubMed Central

    Murphy, Lauren E.; Gutman, David A.; Votaw, John R.; Schuster, David M.; Preuss, Todd M.; Orban, Guy A.; Stout, Dietrich; Parr, Lisa A.

    2013-01-01

    The human faculty for object-mediated action, including tool use and imitation, exceeds that of even our closest primate relatives and is a key foundation of human cognitive and cultural uniqueness. In humans and macaques, observing object-directed grasping actions activates a network of frontal, parietal, and occipitotemporal brain regions, but differences in human and macaque activation suggest that this system has been a focus of selection in the primate lineage. To study the evolution of this system, we performed functional neuroimaging in humans' closest living relatives, chimpanzees. We compare activations during performance of an object-directed manual grasping action, observation of the same action, and observation of a mimed version of the action that consisted of only movements without results. Performance and observation of the same action activated a distributed frontoparietal network similar to that reported in macaques and humans. Like humans and unlike macaques, these regions were also activated by observing movements without results. However, in a direct chimpanzee/human comparison, we also identified unique aspects of human neural responses to observed grasping. Chimpanzee activation showed a prefrontal bias, including significantly more activity in ventrolateral prefrontal cortex, whereas human activation was more evenly distributed across more posterior regions, including significantly more activation in ventral premotor cortex, inferior parietal cortex, and inferotemporal cortex. This indicates a more “bottom-up” representation of observed action in the human brain and suggests that the evolution of tool use, social learning, and cumulative culture may have involved modifications of frontoparietal interactions. PMID:23986247

  19. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    PubMed Central

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  20. Age and experience shape developmental changes in the neural basis of language-related learning.

    PubMed

    McNealy, Kristin; Mazziotta, John C; Dapretto, Mirella

    2011-11-01

    Very little is known about the neural underpinnings of language learning across the lifespan and how these might be modified by maturational and experiential factors. Building on behavioral research highlighting the importance of early word segmentation (i.e. the detection of word boundaries in continuous speech) for subsequent language learning, here we characterize developmental changes in brain activity as this process occurs online, using data collected in a mixed cross-sectional and longitudinal design. One hundred and fifty-six participants, ranging from age 5 to adulthood, underwent functional magnetic resonance imaging (fMRI) while listening to three novel streams of continuous speech, which contained either strong statistical regularities, strong statistical regularities and speech cues, or weak statistical regularities providing minimal cues to word boundaries. All age groups displayed significant signal increases over time in temporal cortices for the streams with high statistical regularities; however, we observed a significant right-to-left shift in the laterality of these learning-related increases with age. Interestingly, only the 5- to 10-year-old children displayed significant signal increases for the stream with low statistical regularities, suggesting an age-related decrease in sensitivity to more subtle statistical cues. Further, in a sample of 78 10-year-olds, we examined the impact of proficiency in a second language and level of pubertal development on learning-related signal increases, showing that the brain regions involved in language learning are influenced by both experiential and maturational factors.

  1. Time spent with friends in adolescence relates to less neural sensitivity to later peer rejection.

    PubMed

    Masten, Carrie L; Telzer, Eva H; Fuligni, Andrew J; Lieberman, Matthew D; Eisenberger, Naomi I

    2012-01-01

    Involvement with friends carries many advantages for adolescents, including protection from the detrimental effects of being rejected by peers. However, little is known about the mechanisms through which friendships may serve their protective role at this age, or the potential benefit of these friendships as adolescents transition to adulthood. As such, this investigation tested whether friend involvement during adolescence related to less neural sensitivity to social threats during young adulthood. Twenty-one adolescents reported the amount of time they spent with friends outside of school using a daily diary. Two years later they underwent an fMRI scan, during which they were ostensibly excluded from an online ball-tossing game by two same-age peers. Findings from region of interest and whole brain analyses revealed that spending more time with friends during adolescence related to less activity in the dorsal anterior cingulate cortex and anterior insula--regions previously linked with negative affect and pain processing--during an experience of peer rejection 2 years later. These findings are consistent with the notion that positive relationships during adolescence may relate to individuals being less sensitive to negative social experiences later on.

  2. Common neural systems associated with the recognition of famous faces and names: an event-related fMRI study.

    PubMed

    Nielson, Kristy A; Seidenberg, Michael; Woodard, John L; Durgerian, Sally; Zhang, Qi; Gross, William L; Gander, Amelia; Guidotti, Leslie M; Antuono, Piero; Rao, Stephen M

    2010-04-01

    Person recognition can be accomplished through several modalities (face, name, voice). Lesion, neurophysiology and neuroimaging studies have been conducted in an attempt to determine the similarities and differences in the neural networks associated with person identity via different modality inputs. The current study used event-related functional-MRI in 17 healthy participants to directly compare activation in response to randomly presented famous and non-famous names and faces (25 stimuli in each of the four categories). Findings indicated distinct areas of activation that differed for faces and names in regions typically associated with pre-semantic perceptual processes. In contrast, overlapping brain regions were activated in areas associated with the retrieval of biographical knowledge and associated social affective features. Specifically, activation for famous faces was primarily right lateralized and famous names were left-lateralized. However, for both stimuli, similar areas of bilateral activity were observed in the early phases of perceptual processing. Activation for fame, irrespective of stimulus modality, activated an extensive left hemisphere network, with bilateral activity observed in the hippocampi, posterior cingulate, and middle temporal gyri. Findings are discussed within the framework of recent proposals concerning the neural network of person identification.

  3. Neural correlates of age-related visual search decline: a combined ERP and sLORETA study.

    PubMed

    Lorenzo-López, Laura; Amenedo, Elena; Pascual-Marqui, Roberto D; Cadaveira, Fernando

    2008-06-01

    Differences in the neural systems underlying visual search processes for young (n=17, mean age 19.6+/-1.9) and older (n=22, mean age 68.5+/-6) subjects were investigated combining the Event-Related Potential (ERP) technique with standardized Low-Resolution brain Electromagnetic Tomography (sLORETA) analyses. Behavioral results showed an increase in mean reaction times (RTs) and a reduction in hit rates with age. The ERPs were significantly different between young and older subjects at the P3 component, showing longer latencies and lower amplitudes in older subjects. These ERP results suggest an age-related decline in the intensity and speed of visual processing during visual search that imply a reduction in attentional resources with normal aging. The sLORETA data revealed a significantly reduced neural differentiation in older subjects, who recruited bilateral prefrontal regions in a nonselective manner for the different search arrays. Finally, sLORETA between-group comparisons revealed that relative to young subjects, older subjects showed significantly reduced activity in anterior cingulate cortex as well as in numerous limbic and occipitotemporal regions contributing to visual search processes. These findings provide evidence that the neural circuit supporting this cognitive process is vulnerable to normal aging. All these attentional factors could contribute to poorer performance of older compared to young subjects in visual search tasks.

  4. Physical methods for generating and decoding neural activity in Hirudo verbana

    NASA Astrophysics Data System (ADS)

    Migliori, Benjamin John

    The interface between living nervous systems and hardware is an excellent proving ground for precision experimental methods and information classification systems. Nervous systems are complex (104 -- 10 15(!) connections), fragile, and highly active in intricate, constantly evolving patterns. However, despite the conveniently electrical nature of neural transmission, the interface between nervous systems and hardware poses significant experimental difficulties. As the desire for direct interfaces with neural signals continues to expand, the need for methods of generating and measuring neural activity with high spatiotemporal precision has become increasingly critical. In this thesis, I describe advances I have made in the ability to modify, generate, measure, and understand neural signals both in- and ex-vivo. I focus on methods developed for transmitting and extracting signals in the intact nervous system of Hirudo verbana (the medicinal leech), an animal with a minimally complex nervous system (10000 neurons distributed in packets along a nerve cord) that exhibits a diverse array of behaviors. To introduce artificial activity patterns, I developed a photothermal activation system in which a highly focused laser is used to irradiate carbon microparticles in contact with target neurons. The resulting local temperature increase generates an electrical current that forces the target neuron to fire neural signals, thereby providing a unique neural input mechanism. These neural signals can potentially be used to alter behavioral choice or generate specific behavioral output, and can be used endogenously in many animal models. I also describe new tools developed to expand the application of this method. In complement to this input system, I describe a new method of analyzing neural output signals involved in long-range coordination of behaviors. Leech behavioral signals are propagated between neural packets as electrical pulses in the nerve connective, a bundle of

  5. Social exclusion in middle childhood: rejection events, slow-wave neural activity, and ostracism distress.

    PubMed

    Crowley, Michael J; Wu, Jia; Molfese, Peter J; Mayes, Linda C

    2010-01-01

    This study examined neural activity with event-related potentials (ERPs) in middle childhood during a computer-simulated ball-toss game, Cyberball. After experiencing fair play initially, children were ultimately excluded by the other players. We focused specifically on “not my turn” events within fair play and rejection events within social exclusion. Dense-array ERPs revealed that rejection events are perceived rapidly. Condition differences (“not my turn” vs. rejection) were evident in a posterior ERP peaking at 420 ms consistent, with a larger P3 effect for rejection events indicating that in middle childhood rejection events are differentiated in <500 ms. Condition differences were evident for slow-wave activity (500-900 ms) in the medial frontal cortical region and the posterior occipital-parietal region, with rejection events more negative frontally and more positive posteriorly. Distress from the rejection experience was associated with a more negative frontal slow wave and a larger late positive slow wave, but only for rejection events. Source modeling with Geosouce software suggested that slow-wave neural activity in cortical regions previously identified in functional imaging studies of ostracism, including subgenual cortex, ventral anterior cingulate cortex, and insula, was greater for rejection events vs. “not my turn” events.

  6. Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity

    PubMed Central

    Waddington, Amelia; Appleby, Peter A.; De Kamps, Marc; Cohen, Netta

    2012-01-01

    Synfire chains have long been proposed to generate precisely timed sequences of neural activity. Such activity has been linked to numerous neural functions including sensory encoding, cognitive and motor responses. In particular, it has been argued that synfire chains underlie the precise spatiotemporal firing patterns that control song production in a variety of songbirds. Previous studies have suggested that the development of synfire chains requires either initial sparse connectivity or strong topological constraints, in addition to any synaptic learning rules. Here, we show that this necessity can be removed by using a previously reported but hitherto unconsidered spike-timing-dependent plasticity (STDP) rule and activity-dependent excitability. Under this rule the network develops stable synfire chains that possess a non-trivial, scalable multi-layer structure, in which relative layer sizes appear to follow a universal function. Using computational modeling and a coarse grained random walk model, we demonstrate the role of the STDP rule in growing, molding and stabilizing the chain, and link model parameters to the resulting structure. PMID:23162457

  7. Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making.

    PubMed

    Huk, Alexander C; Shadlen, Michael N

    2005-11-09

    Decision-making often requires the accumulation and maintenance of evidence over time. Although the neural signals underlying sensory processing have been studied extensively, little is known about how the brain accrues and holds these sensory signals to guide later actions. Previous work has suggested that neural activity in the lateral intraparietal area (LIP) of the monkey brain reflects the formation of perceptual decisions in a random dot direction-discrimination task in which monkeys communicate their decisions with eye-movement responses. We tested the hypothesis that decision-related neural activity in LIP represents the time integral of the momentary motion "evidence." By briefly perturbing the strength of the visual motion stimulus during the formation of perceptual decisions, we tested whether this LIP activity reflected a persistent, integrated "memory" of these brief sensory events. We found that the responses of LIP neurons reflected substantial temporal integration. Brief pulses had persistent effects on both the monkeys' choices and the responses of neurons in LIP, lasting up to 800 ms after appearance. These results demonstrate that LIP is involved in neural time integration underlying the accumulation of evidence in this task. Additional analyses suggest that decision-related LIP responses, as well as behavioral choices and reaction times, can be explained by near-perfect time integration that stops when a criterion amount of evidence has been accumulated. Temporal integration may be a fundamental computation underlying higher cognitive functions that are dissociated from immediate sensory inputs or motor outputs.

  8. The neural correlates of upper limb motor blocks in Parkinson's disease and their relation to freezing of gait.

    PubMed

    Vercruysse, S; Spildooren, J; Heremans, E; Wenderoth, N; Swinnen, S P; Vandenberghe, W; Nieuwboer, A

    2014-12-01

    Due to basal ganglia dysfunction, bimanual motor performance in Parkinson patients reportedly relies on compensatory brain activation in premotor-parietal-cerebellar circuitries. A subgroup of Parkinson's disease (PD) patients with freezing of gait (FOG) may exhibit greater bimanual impairments up to the point that motor blocks occur. This study investigated the neural mechanisms of upper limb motor blocks and explored their relation with FOG. Brain activation was measured using functional magnetic resonance imaging during bilateral finger movements in 16 PD with FOG, 16 without FOG (PD + FOG and PD - FOG), and 16 controls. During successful movement, PD + FOG showed decreased activation in right dorsolateral prefrontal cortex (PFC), left dorsal premotor cortex (PMd), as well as left M1 and bilaterally increased activation in dorsal putamen, pallidum, as well as subthalamic nucleus compared with PD - FOG and controls. On the contrary, upper limb motor blocks were associated with increased activation in right M1, PMd, supplementary motor area, and left PFC compared with successful movement, whereas bilateral pallidum and putamen activity was decreased. Complex striatofrontal activation changes may be involved in the difficulties of PD + FOG to perform bimanual movements, or sequential movements in general. These novel results suggest that, whatever the exact underlying cause, PD + FOG seem to have reached a saturation point of normal neural compensation and respond belatedly to actual movement breakdown.

  9. Optogenetics in Silicon: A Neural Processor for Predicting Optically Active Neural Networks.

    PubMed

    Luo, Junwen; Nikolic, Konstantin; Evans, Benjamin D; Dong, Na; Sun, Xiaohan; Andras, Peter; Yakovlev, Alex; Degenaar, Patrick

    2016-08-17

    We present a reconfigurable neural processor for real-time simulation and prediction of opto-neural behaviour. We combined a detailed Hodgkin-Huxley CA3 neuron integrated with a four-state Channelrhodopsin-2 (ChR2) model into reconfigurable silicon hardware. Our architecture consists of a Field Programmable Gated Array (FPGA) with a custom-built computing data-path, a separate data management system and a memory approach based router. Advancements over previous work include the incorporation of short and long-term calcium and light-dependent ion channels in reconfigurable hardware. Also, the developed processor is computationally efficient, requiring only 0.03 ms processing time per sub-frame for a single neuron and 9.7 ms for a fully connected network of 500 neurons with a given FPGA frequency of 56.7 MHz. It can therefore be utilized for exploration of closed loop processing and tuning of biologically realistic optogenetic circuitry.

  10. Predicting body temperature and activity of adult Polyommatus icarus using neural network models under current and projected climate scenarios.

    PubMed

    Howe, P D; Bryant, S R; Shreeve, T G

    2007-10-01

    We use field observations in two geographic regions within the British Isles and regression and neural network models to examine the relationship between microhabitat use, thoracic temperatures and activity in a widespread lycaenid butterfly, Polyommatus icarus. We also make predictions for future activity under climate change scenarios. Individuals from a univoltine northern population initiated flight with significantly lower thoracic temperatures than individuals from a bivoltine southern population. Activity is dependent on body temperature and neural network models of body temperature are better at predicting body temperature than generalized linear models. Neural network models of activity with a sole input of predicted body temperature (using weather and microclimate variables) are good predictors of observed activity and were better predictors than generalized linear models. By modelling activity under climate change scenarios for 2080 we predict differences in activity in relation to both regional differences of climate change and differing body temperature requirements for activity in different populations. Under average conditions for low-emission scenarios there will be little change in the activity of individuals from central-southern Britain and a reduction in northwest Scotland from 2003 activity levels. Under high-emission scenarios, flight-dependent activity in northwest Scotland will increase the greatest, despite smaller predicted increases in temperature and decreases in cloud cover. We suggest that neural network models are an effective way of predicting future activity in changing climates for microhabitat-specialist butterflies and that regional differences in the thermoregulatory response of populations will have profound effects on how they respond to climate change.

  11. The corollary discharge in humans is related to synchronous neural oscillations

    PubMed Central

    Chen, Chi-Ming A.; Mathalon, Daniel H.; Roach, Brian J.; Cavus, Idil; Spencer, Dennis D.; Ford, Judith M.

    2014-01-01

    How do animals distinguish between sensations coming from external sources and those resulting from their own actions? A corollary discharge system has evolved that involves the transmission of a copy of motor commands to sensory cortex, where the expected sensation is generated. Through this mechanism, sensations are tagged as coming from self, and responsiveness to them is minimized. The present study investigated whether neural phase synchrony between motor command and auditory cortical areas is related to the suppression of the auditory cortical response. We recorded electrocorticograms from the human brain during a vocalizing/listening task. Neural phase synchrony between Broca’s area and auditory cortex in the gamma band (35 Hz to ~50 Hz) in the 50 ms time window preceding speech onset was greater during vocalizing than listening to a playback of the same spoken sounds. Because pre-speech neural synchrony was correlated (r = −0.83, p = 0.006) with the subsequent suppression of the auditory cortical response to the spoken sound, we hypothesize that phase synchrony in the gamma band between Broca’s area and auditory cortex is the neural instantiation of the transmission of a copy of motor commands. We suggest that neural phase synchrony of gamma frequencies may contribute to transmission of corollary discharges in humans. PMID:20946054

  12. Adolescent neural response to reward is related to participant sex and task motivation.

    PubMed

    Alarcón, Gabriela; Cservenka, Anita; Nagel, Bonnie J

    2017-02-01

    Risky decision making is prominent during adolescence, perhaps contributed to by heightened sensation seeking and ongoing maturation of reward and dopamine systems in the brain, which are, in part, modulated by sex hormones. In this study, we examined sex differences in the neural substrates of reward sensitivity during a risky decision-making task and hypothesized that compared with girls, boys would show heightened brain activation in reward-relevant regions, particularly the nucleus accumbens, during reward receipt. Further, we hypothesized that testosterone and estradiol levels would mediate this sex difference. Moreover, we predicted boys would make more risky choices on the task. While boys showed increased nucleus accumbens blood oxygen level-dependent (BOLD) response relative to girls, sex hormones did not mediate this effect. As predicted, boys made a higher percentage of risky decisions during the task. Interestingly, boys also self-reported more motivation to perform well and earn money on the task, while girls self-reported higher state anxiety prior to the scan session. Motivation to earn money partially mediated the effect of sex on nucleus accumbens activity during reward. Previous research shows that increased motivation and salience of reinforcers is linked with more robust striatal BOLD response, therefore psychosocial factors, in addition to sex, may play an important role in reward sensitivity. Elucidating neurobiological mechanisms that support adolescent sex differences in risky decision making has important implications for understanding individual differences that lead to advantageous and adverse behaviors that affect health outcomes.

  13. Frequency domain active vibration control of a flexible plate based on neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Chen, Xuefeng; He, Zhengjia

    2013-06-01

    A neural-network (NN)-based active control system was proposed to reduce the low frequency noise radiation of the simply supported flexible plate. Feedback control system was built, in which neural network controller (NNC) and neural network identifier (NNI) were applied. Multi-frequency control in frequency domain was achieved by simulation through the NN-based control systems. A pre-testing experiment of the control system on a real simply supported plate was conducted. The NN-based control algorithm was shown to perform effectively. These works lay a solid foundation for the active vibration control of mechanical structures.

  14. The optimization of force inputs for active structural acoustic control using a neural network

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Lester, H. C.; Silcox, R. J.

    1992-01-01

    This paper investigates the use of a neural network to determine which force actuators, of a multi-actuator array, are best activated in order to achieve structural-acoustic control. The concept is demonstrated using a cylinder/cavity model on which the control forces, produced by piezoelectric actuators, are applied with the objective of reducing the interior noise. A two-layer neural network is employed and the back propagation solution is compared with the results calculated by a conventional, least-squares optimization analysis. The ability of the neural network to accurately and efficiently control actuator activation for interior noise reduction is demonstrated.

  15. Environmental influences on neural systems of relational complexity

    PubMed Central

    Kalbfleisch, M. Layne; deBettencourt, Megan T.; Kopperman, Rebecca; Banasiak, Meredith; Roberts, Joshua M.; Halavi, Maryam

    2013-01-01

    Constructivist learning theory contends that we construct knowledge by experience and that environmental context influences learning. To explore this principle, we examined the cognitive process relational complexity (RC), defined as the number of visual dimensions considered during problem solving on a matrix reasoning task and a well-documented measure of mature reasoning capacity. We sought to determine how the visual environment influences RC by examining the influence of color and visual contrast on RC in a neuroimaging task. To specify the contributions of sensory demand and relational integration to reasoning, our participants performed a non-verbal matrix task comprised of color, no-color line, or black-white visual contrast conditions parametrically varied by complexity (relations 0, 1, 2). The use of matrix reasoning is ecologically valid for its psychometric relevance and for its potential to link the processing of psychophysically specific visual properties with various levels of RC during reasoning. The role of these elements is important because matrix tests assess intellectual aptitude based on these seemingly context-less exercises. This experiment is a first step toward examining the psychophysical underpinnings of performance on these types of problems. The importance of this is increased in light of recent evidence that intelligence can be linked to visual discrimination. We submit three main findings. First, color and black-white visual contrast (BWVC) add demand at a basic sensory level, but contributions from color and from BWVC are dissociable in cortex such that color engages a “reasoning heuristic” and BWVC engages a “sensory heuristic.” Second, color supports contextual sense-making by boosting salience resulting in faster problem solving. Lastly, when visual complexity reaches 2-relations, color and visual contrast relinquish salience to other dimensions of problem solving. PMID:24133465

  16. Emotion regulation related neural predictors of cognitive behavioral therapy response in social anxiety disorder.

    PubMed

    Klumpp, Heide; Roberts, Julia; Kennedy, Amy E; Shankman, Stewart A; Langenecker, Scott A; Gross, James J; Phan, K Luan

    2017-04-03

    Social anxiety disorder (SAD) is characterized by aberrant prefrontal activity during reappraisal, an adaptive cognitive approach aimed at downregulating the automatic response evoked by a negative event. Cognitive behavioral therapy (CBT) is first-line psychotherapy for SAD, however, many remain symptomatic after treatment indicating baseline individual differences in neurofunctional activity may factor into CBT outcome. An emotion regulation strategy practiced in CBT is cognitive restructuring, a proxy for reappraisal. Therefore, neural response during reappraisal may serve as a brain-based predictor of CBT success. Prior to 12weeks of individual CBT, 34 patients with SAD completed a validated emotion regulation task during fMRI. Task instructions included 'Reappraise,' that is, use a cognitive approach to reduce affective state to a negative image, which was contrasted with looking at a negative image ('Look'). Regression results for Reappraise (vs. Look) revealed greater reduction in symptom severity was predicted by less pre-CBT activation in the dorsolateral prefrontal cortex (DLPFC). Regarding predictive validity, DLPFC significantly classified responder status. Post-hoc analysis revealed DLPFC activity, but not demographic data, baseline clinical measures, or reappraisal-related affective state during fMRI, significantly accounted for the variance in symptom reduction. Findings indicate patients with SAD are more likely to benefit from CBT if there is less pre-treatment DLPFC recruitment, a region strongly implicated in emotion regulation. Patients with reduced baseline frontal activation when reappraising negative stimuli may be especially helped by explicit cognitive interventions. Further research is necessary to establish DLPFC as a stable brain-based marker of treatment outcome.

  17. Neural correlates of mental state decoding in human adults: an event-related potential study.

    PubMed

    Sabbagh, Mark A; Moulson, Margaret C; Harkness, Kate L

    2004-04-01

    Successful negotiation of human social interactions rests on having a theory of mind - an understanding of how others' behaviors can be understood in terms of internal mental states, such as beliefs, desires, intentions, and emotions. A core theory-of-mind skill is the ability to decode others' mental states on the basis of observable information, such as facial expressions. Although several recent studies have focused on the neural correlates of reasoning about mental states, no research has addressed the question of what neural systems underlie mental state decoding. We used dense-array event-related potentials (ERP) to show that decoding mental states from pictures of eyes is associated with an N270-400 component over inferior frontal and anterior temporal regions of the right hemisphere. Source estimation procedures suggest that orbitofrontal and medial temporal regions may underlie this ERP effect. These findings suggest that different components of everyday theory-of-mind skills may rely on dissociable neural mechanisms.

  18. Forecast and restoration of geomagnetic activity indices by using the software-computational neural network complex

    NASA Astrophysics Data System (ADS)

    Barkhatov, Nikolay; Revunov, Sergey

    2010-05-01

    It is known that currently used indices of geomagnetic activity to some extent reflect the physical processes occurring in the interaction of the perturbed solar wind with Earth's magnetosphere. Therefore, they are connected to each other and with the parameters of near-Earth space. The establishment of such nonlinear connections is interest. For such purposes when the physical problem is complex or has many parameters the technology of artificial neural networks is applied. Such approach for development of the automated forecast and restoration method of geomagnetic activity indices with the establishment of creative software-computational neural network complex is used. Each neural network experiments were carried out at this complex aims to search for a specific nonlinear relation between the analyzed indices and parameters. At the core of the algorithm work program a complex scheme of the functioning of artificial neural networks (ANN) of different types is contained: back propagation Elman network, feed forward network, fuzzy logic network and Kohonen layer classification network. Tools of the main window of the complex (the application) the settings used by neural networks allow you to change: the number of hidden layers, the number of neurons in the layer, the input and target data, the number of cycles of training. Process and the quality of training the ANN is a dynamic plot of changing training error. Plot of comparison of network response with the test sequence is result of the network training. The last-trained neural network with established nonlinear connection for repeated numerical experiments can be run. At the same time additional training is not executed and the previously trained network as a filter input parameters get through and output parameters with the test event are compared. At statement of the large number of different experiments provided the ability to run the program in a "batch" mode is stipulated. For this purpose the user a

  19. Attenuation of β-Amyloid Deposition and Neurotoxicity by Chemogenetic Modulation of Neural Activity

    PubMed Central

    Yuan, Peng

    2016-01-01

    Aberrant neural hyperactivity has been observed in early stages of Alzheimer's disease (AD) and may be a driving force in the progression of amyloid pathology. Evidence for this includes the findings that neural activity may modulate β-amyloid (Aβ) peptide secretion and experimental stimulation of neural activity can increase amyloid deposition. However, whether long-term attenuation of neural activity prevents the buildup of amyloid plaques and associated neural pathologies remains unknown. Using viral-mediated delivery of designer receptors exclusively activated by designer drugs (DREADDs), we show in two AD-like mouse models that chronic intermittent increases or reductions of activity have opposite effects on Aβ deposition. Neural activity reduction markedly decreases Aβ aggregation in regions containing axons or dendrites of DREADD-expressing neurons, suggesting the involvement of synaptic and nonsynaptic Aβ release mechanisms. Importantly, activity attenuation is associated with a reduction in axonal dystrophy and synaptic loss around amyloid plaques. Thus, modulation of neural activity could constitute a potential therapeutic strategy for ameliorating amyloid-induced pathology in AD. SIGNIFICANCE STATEMENT A novel chemogenetic approach to upregulate and downregulate neuronal activity in Alzheimer's disease (AD) mice was implemented. This led to the first demonstration that chronic intermittent attenuation of neuronal activity in vivo significantly reduces amyloid deposition. The study also demonstrates that modulation of β-amyloid (Aβ) release can occur at both axonal and dendritic fields, suggesting the involvement of synaptic and nonsynaptic Aβ release mechanisms. Activity reductions also led to attenuation of the synaptic pathology associated with amyloid plaques. Therefore, chronic attenuation of neuronal activity could constitute a novel therapeutic approach for AD. PMID:26758850

  20. Optimal waist-to-hip ratios in women activate neural reward centers in men.

    PubMed

    Platek, Steven M; Singh, Devendra

    2010-02-05

    Secondary sexual characteristics convey information about reproductive potential. In the same way that facial symmetry and masculinity, and shoulder-to-hip ratio convey information about reproductive/genetic quality in males, waist-to-hip-ratio (WHR) is a phenotypic cue to fertility, fecundity, neurodevelopmental resources in offspring, and overall health, and is indicative of "good genes" in women. Here, using fMRI, we found that males show activation in brain reward centers in response to naked female bodies when surgically altered to express an optimal (approximately 0.7) WHR with redistributed body fat, but relatively unaffected body mass index (BMI). Relative to presurgical bodies, brain activation to postsurgical bodies was observed in bilateral orbital frontal cortex. While changes in BMI only revealed activation in visual brain substrates, changes in WHR revealed activation in the anterior cingulate cortex, an area associated with reward processing and decision-making. When regressing ratings of attractiveness on brain activation, we observed activation in forebrain substrates, notably the nucleus accumbens, a forebrain nucleus highly involved in reward processes. These findings suggest that an hourglass figure (i.e., an optimal WHR) activates brain centers that drive appetitive sociality/attention toward females that represent the highest-quality reproductive partners. This is the first description of a neural correlate implicating WHR as a putative honest biological signal of female reproductive viability and its effects on men's neurological processing.

  1. Phase of neural excitation relative to basilar membrane motion in the organ of Corti: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Andoh, Masayoshi; Nakajima, Chihiro; Wada, Hiroshi

    2005-09-01

    Although the auditory transduction process is dependent on neural excitation of the auditory nerve in relation to motion of the basilar membrane (BM) in the organ of Corti (OC), specifics of this process are unclear. In this study, therefore, an attempt was made to estimate the phase of the neural excitation relative to the BM motion using a finite-element model of the OC at the basal turn of the gerbil, including the fluid-structure interaction with the lymph fluid. It was found that neural excitation occurs when the BM exhibits a maximum velocity toward the scala vestibuli at 10 Hz and shows a phase delay relative to the BM motion with increasing frequency up to 800 Hz. It then shows a phase advance until the frequency reaches 2 kHz. From 2 kHz, neural excitation again shows a phase delay with increasing frequency. From 800 Hz up to 2 kHz, the phase advances because the dominant force exerted on the hair bundle shifts from a velocity-dependent Couette flow-induced force to a displacement-dependent force induced by the pressure difference. The phase delay that occurs from 2 kHz is caused by the resonance process of the hair bundle of the IHC.

  2. Neural networks related to dysfunctional face processing in autism spectrum disorder

    PubMed Central

    Nickl-Jockschat, Thomas; Rottschy, Claudia; Thommes, Johanna; Schneider, Frank; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.

    2016-01-01

    One of the most consistent neuropsychological findings in autism spectrum disorders (ASD) is a reduced interest in and impaired processing of human faces. We conducted an activation likelihood estimation meta-analysis on 14 functional imaging studies on neural correlates of face processing enrolling a total of 164 ASD patients. Subsequently, normative whole-brain functional connectivity maps for the identified regions of significant convergence were computed for the task-independent (resting-state) and task-dependent (co-activations) state in healthy subjects. Quantitative functional decoding was performed by reference to the BrainMap database. Finally, we examined the overlap of the delineated network with the results of a previous meta-analysis on structural abnormalities in ASD as well as with brain regions involved in human action observation/imitation. We found a single cluster in the left fusiform gyrus showing significantly reduced activation during face processing in ASD across all studies. Both task-dependent and task-independent analyses indicated significant functional connectivity of this region with the temporo-occipital and lateral occipital cortex, the inferior frontal and parietal cortices, the thalamus and the amygdala. Quantitative reverse inference then indicated an association of these regions mainly with face processing, affective processing, and language-related tasks. Moreover, we found that the cortex in the region of right area V5 displaying structural changes in ASD patients showed consistent connectivity with the region showing aberrant responses in the context of face processing. Finally, this network was also implicated in the human action observation/imitation network. In summary, our findings thus suggest a functionally and structurally disturbed network of occipital regions related primarily to face (but potentially also language) processing, which interact with inferior frontal as well as limbic regions and may be the core of

  3. Distance modulation of neural activity in the visual cortex.

    PubMed

    Dobbins, A C; Jeo, R M; Fiser, J; Allman, J M

    1998-07-24

    Humans use distance information to scale the size of objects. Earlier studies demonstrated changes in neural response as a function of gaze direction and gaze distance in the dorsal visual cortical pathway to parietal cortex. These findings have been interpreted as evidence of the parietal pathway's role in spatial representation. Here, distance-dependent changes in neural response were also found to be common in neurons in the ventral pathway leading to inferotemporal cortex of monkeys. This result implies that the information necessary for object and spatial scaling is common to all visual cortical areas.

  4. Cognitive-affective neural plasticity following active-controlled mindfulness intervention

    PubMed Central

    Allen, Micah; Dietz, Martin; Blair, Karina S.; van Beek, Martijn; Rees, Geraint; Vestergaard-Poulsen, Peter; Lutz, Antoine; Roepstorff, Andreas

    2015-01-01

    Mindfulness meditation is a set of attention-based, regulatory and self-inquiry training regimes. Although the impact of mindfulness meditation training (MT) on self-regulation is well established, the neural mechanisms supporting such plasticity are poorly understood. MT is thought to act on attention through interoceptive salience and attentional control mechanisms, but until now conflicting evidence from behavioral and neural measures has made it difficult to distinguish the role of these mechanisms. To resolve this question we conducted a fully randomized 6-week longitudinal trial of MT, explicitly controlling for cognitive and treatment effects with an active control group. We measured behavioral metacognition and whole-brain Blood Oxygenation Level Dependent (BOLD) signals using functional MRI during an affective Stroop task before and after intervention. Although both groups improved significantly on a response-inhibition task, only the MT group showed reduced affective Stroop conflict. Moreover, the MT group displayed greater dorsolateral prefrontal cortex (DLPFC) responses during executive processing, consistent with increased recruitment of top-down mechanisms to resolve conflict. In contrast, we did not observe overall group by time interactions on negative affect-related RTs or BOLD responses. However, only participants with the greatest amount of MT practice showed improvements in response-inhibition and increased recruitment of dorsal anterior cingulate cortex (dACC), medial prefrontal cortex (mPFC), and right anterior insula during negative valence processing. Collectively our findings highlight the importance of active control in MT research, and indicate unique neural mechanisms for progressive stages of mindfulness training. PMID:23115195

  5. Cognitive-affective neural plasticity following active-controlled mindfulness intervention.

    PubMed

    Allen, Micah; Dietz, Martin; Blair, Karina S; van Beek, Martijn; Rees, Geraint; Vestergaard-Poulsen, Peter; Lutz, Antoine; Roepstorff, Andreas

    2012-10-31

    Mindfulness meditation is a set of attention-based, regulatory, and self-inquiry training regimes. Although the impact of mindfulness training (MT) on self-regulation is well established, the neural mechanisms supporting such plasticity are poorly understood. MT is thought to act through interoceptive salience and attentional control mechanisms, but until now conflicting evidence from behavioral and neural measures renders difficult distinguishing their respective roles. To resolve this question we conducted a fully randomized 6 week longitudinal trial of MT, explicitly controlling for cognitive and treatment effects with an active-control group. We measured behavioral metacognition and whole-brain blood oxygenation level-dependent (BOLD) signals using functional MRI during an affective Stroop task before and after intervention in healthy human subjects. Although both groups improved significantly on a response-inhibition task, only the MT group showed reduced affective Stroop conflict. Moreover, the MT group displayed greater dorsolateral prefrontal cortex responses during executive processing, consistent with increased recruitment of top-down mechanisms to resolve conflict. In contrast, we did not observe overall group-by-time interactions on negative affect-related reaction times or BOLD responses. However, only participants with the greatest amount of MT practice showed improvements in response inhibition and increased recruitment of dorsal anterior cingulate cortex, medial prefrontal cortex, and right anterior insula during negative valence processing. Our findings highlight the importance of active control in MT research, indicate unique neural mechanisms for progressive stages of mindfulness training, and suggest that optimal application of MT may differ depending on context, contrary to a one-size-fits-all approach.

  6. Functionally integrated neural processing of linguistic and talker information: An event-related fMRI and ERP study

    PubMed Central

    Zhang, Caicai; Pugh, Kenneth R.; Mencl, W. Einar; Molfese, Peter J.; Frost, Stephen J.; Magnuson, James S.; Peng, Gang; Wang, William S-Y

    2016-01-01

    Speech signals contain information of both linguistic content and a talker’s voice. Conventionally, linguistic and talker processing are thought to be mediated by distinct neural systems in the left and right hemispheres respectively, but there is growing evidence that linguistic and talker processing interact in many ways. Previous studies suggest that talker-related vocal tract changes are processed integrally with phonetic changes in the bilateral posterior superior temporal gyrus/superior temporal sulcus (STG/STS), because the vocal tract parameter influences the perception of phonetic information. It is yet unclear whether the bilateral STG are also activated by the integral processing of another parameter – pitch, which influences the perception of lexical tone information and are related to talker differences in tone languages. In this study, we conducted separate functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments to examine the spatial and temporal loci of interactions of lexical tone and talker-related pitch processing in Cantonese. We found that the STG was activated bilaterally during the processing of talker changes when listeners attended to lexical tone changes in the stimuli and during the processing of lexical tone changes when listeners attended to talker changes, suggesting that lexical tone and talker processing are functionally integrated in the bilateral STG. It extends the previous study, providing evidence for a general neural mechanism of integral phonetic and talker processing in the bilateral STG. The ERP results show interactions of lexical tone and talker processing 500–800 ms after auditory word onset (a simultaneous posterior P3b and a frontal negativity). Moreover, there is some asymmetry in the interaction, such that unattended talker changes affect linguistic processing more than vice versa, which may be related to the ambiguity that talker changes cause in speech perception and

  7. Compact VLSI neural computer integrated with active pixel sensor for real-time ATR applications

    NASA Astrophysics Data System (ADS)

    Fang, Wai-Chi; Udomkesmalee, Gabriel; Alkalai, Leon

    1997-04-01

    A compact VLSI neural computer integrated with an active pixel sensor has been under development to mimic what is inherent in biological vision systems. This electronic eye- brain computer is targeted for real-time machine vision applications which require both high-bandwidth communication and high-performance computing for data sensing, synergy of multiple types of sensory information, feature extraction, target detection, target recognition, and control functions. The neural computer is based on a composite structure which combines Annealing Cellular Neural Network (ACNN) and Hierarchical Self-Organization Neural Network (HSONN). The ACNN architecture is a programmable and scalable multi- dimensional array of annealing neurons which are locally connected with their local neurons. Meanwhile, the HSONN adopts a hierarchical structure with nonlinear basis functions. The ACNN+HSONN neural computer is effectively designed to perform programmable functions for machine vision processing in all levels with its embedded host processor. It provides a two order-of-magnitude increase in computation power over the state-of-the-art microcomputer and DSP microelectronics. A compact current-mode VLSI design feasibility of the ACNN+HSONN neural computer is demonstrated by a 3D 16X8X9-cube neural processor chip design in a 2-micrometers CMOS technology. Integration of this neural computer as one slice of a 4'X4' multichip module into the 3D MCM based avionics architecture for NASA's New Millennium Program is also described.

  8. Non-invasive imaging of neuroanatomical structures and neural activation with high-resolution MRI.

    PubMed

    Herberholz, Jens; Mishra, Subrata H; Uma, Divya; Germann, Markus W; Edwards, Donald H; Potter, Kimberlee

    2011-01-01

    Several years ago, manganese-enhanced magnetic resonance imaging (MEMRI) was introduced as a new powerful tool to image active brain areas and to identify neural connections in living, non-human animals. Primarily restricted to studies in rodents and later adapted for bird species, MEMRI has recently been discovered as a useful technique for neuroimaging of invertebrate animals. Using crayfish as a model system, we highlight the advantages of MEMRI over conventional techniques for imaging of small nervous systems. MEMRI can be applied to image invertebrate nervous systems at relatively high spatial resolution, and permits identification of stimulus-evoked neural activation non-invasively. Since the selection of specific imaging parameters is critical for successful in vivo micro-imaging, we present an overview of different experimental conditions that are best suited for invertebrates. We also compare the effects of hardware and software specifications on image quality, and provide detailed descriptions of the steps necessary to prepare animals for successful imaging sessions. Careful consideration of hardware, software, experiments, and specimen preparation will promote a better understanding of this novel technique and facilitate future MEMRI studies in other laboratories.

  9. Patterns of neural circuit activation and behavior during dominance hierarchy formation in freely behaving crayfish.

    PubMed

    Herberholz, J; Issa, F A; Edwards, D H

    2001-04-15

    Creation of a dominance hierarchy within a population of animals typically involves a period of agonistic activity in which winning and losing decide relative positions in the hierarchy. Among crayfish, fighting between size-matched animals leads to an abrupt change of behavior as the new subordinate retreats and escapes from the attacks and approaches of the dominant (Issa et al., 1999). We used high-speed videography and electrical recordings of aquarium field potentials to monitor the release of aggressive and defensive behavior, including the activation of neural circuits for four different tail-flip behaviors. We found that the sequence of tail-flip circuit excitation traced the development of their dominance hierarchy. Offensive tail flipping, attacks, and approaches by both animals were followed by a sharp rise in the frequency of nongiant and medial giant escape tail flips and a fall in the frequency of offensive tail flips of the new subordinate. These changes suggest that sudden, coordinated changes in the excitability of a set of neural circuits in one animal produce the changes in behavior that mark its transition to subordinate status.

  10. Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury

    DTIC Science & Technology

    2012-09-01

    effective pharmacological and neurorehabilitation interventions. In this cross-sectional study, we applied neurobehavioral testing and advanced MRI...the completion of the project in Houston can be summarized as: • Chronic effects of blast related mild traumatic brain injury (mTBI) in Veterans...further analysis of our data and replication, these findings on the Sternberg indicate distinct effects of blast related mTBI on the neural network

  11. Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury

    DTIC Science & Technology

    2009-09-30

    ABSTRACT Traumatic brain injuries ( TBI ) are a common occurrence from roadside blasts of improvised explosive devices (IEDs). In the proposed cross...years, we will enroll the planned 120 subjects across the two study sites. 15. SUBJECT TERMS Blast-related traumatic brain injury ( TBI ), fMRI, DTI...TITLE: Neural and Behavioral Sequelae of Blast-Related Traumatic Brain Injury PRINCIPAL INVESTIGATOR: Stephen M. Rao, Ph.D

  12. Cognitive flexibility modulates maturation and music-training-related changes in neural sound discrimination.

    PubMed

    Saarikivi, Katri; Putkinen, Vesa; Tervaniemi, Mari; Huotilainen, Minna

    2016-07-01

    Previous research has demonstrated that musicians show superior neural sound discrimination when compared to non-musicians, and that these changes emerge with accumulation of training. Our aim was to investigate whether individual differences in executive functions predict training-related changes in neural sound discrimination. We measured event-related potentials induced by sound changes coupled with tests for executive functions in musically trained and non-trained children aged 9-11 years and 13-15 years. High performance in a set-shifting task, indexing cognitive flexibility, was linked to enhanced maturation of neural sound discrimination in both musically trained and non-trained children. Specifically, well-performing musically trained children already showed large mismatch negativity (MMN) responses at a young age as well as at an older age, indicating accurate sound discrimination. In contrast, the musically trained low-performing children still showed an increase in MMN amplitude with age, suggesting that they were behind their high-performing peers in the development of sound discrimination. In the non-trained group, in turn, only the high-performing children showed evidence of an age-related increase in MMN amplitude, and the low-performing children showed a small MMN with no age-related change. These latter results suggest an advantage in MMN development also for high-performing non-trained individuals. For the P3a amplitude, there was an age-related increase only in the children who performed well in the set-shifting task, irrespective of music training, indicating enhanced attention-related processes in these children. Thus, the current study provides the first evidence that, in children, cognitive flexibility may influence age-related and training-related plasticity of neural sound discrimination.

  13. Neural Activity during Encoding Predicts False Memories Created by Misinformation

    ERIC Educational Resources Information Center

    Okado, Yoko; Stark, Craig E. L.

    2005-01-01

    False memories are often demonstrated using the misinformation paradigm, in which a person's recollection of a witnessed event is altered after exposure to misinformation about the event. The neural basis of this phenomenon, however, remains unknown. The authors used fMRI to investigate encoding processes during the viewing of an event and…

  14. Event-related potential study of dynamic neural mechanisms of semantic organizational strategies in verbal learning.

    PubMed

    Blanchet, Sophie; Gagnon, Geneviève; Bastien, Célyne

    2007-09-19

    Neuroimaging and neuropsychological data indicate that the frontal regions are implicated in semantic organizational strategies in verbal learning. Whereas these approaches tend to adopt a localizationist view, we used event-related potentials (ERPs) to investigate the dynamic neural mechanisms involved in these strategies. We recorded ERPs using a 128-channel system in 12 young adults (23.75+/-3.02 years) during 3 encoding conditions that manipulated the levels of semantic organization demands. In the Unrelated condition, the words to encode did not share any semantic attributes. For both Spontaneous and Guided conditions, the words in each list were drawn from four semantic categories. In the Spontaneous condition, participants were not informed about the semantic relationship between items. In contrast, in the Guided condition, participants were instructed to improve their subsequent recall by mentally regrouping related items with the aid of category labels. Results indicated that the P200 amplitude increased with the greater organizational demand of semantic strategies. In contrast, the late positive component (LPC) amplitude was larger in both encoding conditions with semantic related words regardless of their instructions as compared to the Unrelated condition. Finally, there was greater right frontal sustained activity in the Spontaneous condition than in the Unrelated condition. Thus, our data indicate that the P200 is sensitive to attentional processes that increase with the organizational semantic demand. The LPC indexes associative processes voluntarily involved in linking related items together. Finally, the right frontal region appears to play an important role in the self-initiation of semantic organizational strategies.

  15. High baseline activity in inferior temporal cortex improves neural and behavioral discriminability during visual categorization

    PubMed Central

    Emadi, Nazli; Rajimehr, Reza; Esteky, Hossein

    2014-01-01

    Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature suggests that this baseline activity plays a key role in perception. However, it is not known how the baseline activity contributes to neural coding and behavior. Here, by recording from the single neurons in the inferior temporal cortex of monkeys performing a visual categorization task, we thoroughly explored the relationship between baseline activity, the evoked response, and behavior. Specifically we found that a low-frequency (<8 Hz) oscillation in the spike train, prior and phase-locked to the stimulus onset, was correlated with increased gamma power and neuronal baseline activity. This enhancement of the baseline activity was then followed by an increase in the neural selectivity and the response reliability and eventually a higher behavioral performance. PMID:25404900

  16. Brooding Is Related to Neural Alterations during Autobiographical Memory Retrieval in Aging

    PubMed Central

    Schneider, Sophia; Brassen, Stefanie

    2016-01-01

    Brooding rumination is considered a central aspect of depression in midlife. As older people tend to review their past, rumination tendency might be particularly crucial in late life since it might hinder older adults to adequately evaluate previous events. We scanned 22 non-depressed older adults with varying degrees of brooding tendency with functional magnetic resonance imaging (MRI) while they performed the construction and elaboration of autobiographical memories. Behavioral findings demonstrate that brooders reported lower mood states, needed more time for memory construction and rated their memories as less detailed and less positive. On the neural level, brooding tendency was related to increased amygdala activation during the search for specific memories and reduced engagement of cortical networks during elaboration. Moreover, coupling patterns of the subgenual cingulate cortex with the hippocampus (HC) and the amygdala predicted details and less positive valence of memories in brooders. Our findings support the hypothesis that ruminative thinking interferes with the search for specific memories while facilitating the uncontrolled retrieval of negatively biased self-schemes. The observed neurobehavioral dysfunctions might put older people with brooding tendency at high risk for becoming depressed when reviewing their past. Training of autobiographical memory ability might therefore be a promising approach to increase resilience against depression in late-life. PMID:27695414

  17. Music training relates to the development of neural mechanisms of selective auditory attention.

    PubMed

    Strait, Dana L; Slater, Jessica; O'Connell, Samantha; Kraus, Nina

    2015-04-01

    Selective attention decreases trial-to-trial variability in cortical auditory-evoked activity. This effect increases over the course of maturation, potentially reflecting the gradual development of selective attention and inhibitory control. Work in adults indicates that music training may alter the development of this neural response characteristic, especially over brain regions associated with executive control: in adult musicians, attention decreases variability in auditory-evoked responses recorded over prefrontal cortex to a greater extent than in nonmusicians. We aimed to determine whether this musician-associated effect emerges during childhood, when selective attention and inhibitory control are under development. We compared cortical auditory-evoked variability to attended and ignored speech streams in musicians and nonmusicians across three age groups: preschoolers, school-aged children and young adults. Results reveal that childhood music training is associated with reduced auditory-evoked response variability recorded over prefrontal cortex during selective auditory attention in school-aged child and adult musicians. Preschoolers, on the other hand, demonstrate no impact of selective attention on cortical response variability and no musician distinctions. This finding is consistent with the gradual emergence of attention during this period and may suggest no pre-existing differences in this attention-related cortical metric between children who undergo music training and those who do not.

  18. Neural constraints on learning.

    PubMed

    Sadtler, Patrick T; Quick, Kristin M; Golub, Matthew D; Chase, Steven M; Ryu, Stephen I; Tyler-Kabara, Elizabeth C; Yu, Byron M; Batista, Aaron P

    2014-08-28

    Learning, whether motor, sensory or cognitive, requires networks of neurons to generate new activity patterns. As some behaviours are easier to learn than others, we asked if some neural activity patterns are easier to generate than others. Here we investigate whether an existing network constrains the patterns that a subset of its neurons is capable of exhibiting, and if so, what principles define this constraint. We employed a closed-loop intracortical brain-computer interface learning paradigm in which Rhesus macaques (Macaca mulatta) controlled a computer cursor by modulating neural activity patterns in the primary motor cortex. Using the brain-computer interface paradigm, we could specify and alter how neural activity mapped to cursor velocity. At the start of each session, we observed the characteristic activity patterns of the recorded neural population. The activity of a neural population can be represented in a high-dimensional space (termed the neural space), wherein each dimension corresponds to the activity of one neuron. These characteristic activity patterns comprise a low-dimensional subspace (termed the intrinsic manifold) within the neural space. The intrinsic manifold presumably reflects constraints imposed by the underlying neural circuitry. Here we show that the animals could readily learn to proficiently control the cursor using neural activity patterns that were within the intrinsic manifold. However, animals were less able to learn to proficiently control the cursor using activity patterns that were outside of the intrinsic manifold. These results suggest that the existing structure of a network can shape learning. On a timescale of hours, it seems to be difficult to learn to generate neural activity patterns that are not consistent with the existing network structure. These findings offer a network-level explanation for the observation that we are more readily able to learn new skills when they are related to the skills that we already

  19. Revealing unobserved factors underlying cortical activity with a rectified latent variable model applied to neural population recordings.

    PubMed

    Whiteway, Matthew R; Butts, Daniel A

    2017-03-01

    The activity of sensory cortical neurons is not only driven by external stimuli but also shaped by other sources of input to the cortex. Unlike external stimuli, these other sources of input are challenging to experimentally control, or even observe, and as a result contribute to variability of neural responses to sensory stimuli. However, such sources of input are likely not "noise" and may play an integral role in sensory cortex function. Here we introduce the rectified latent variable model (RLVM) in order to identify these sources of input using simultaneously recorded cortical neuron populations. The RLVM is novel in that it employs nonnegative (rectified) latent variables and is much less restrictive in the mathematical constraints on solutions because of the use of an autoencoder neural network to initialize model parameters. We show that the RLVM outperforms principal component analysis, factor analysis, and independent component analysis, using simulated data across a range of conditions. We then apply this model to two-photon imaging of hundreds of simultaneously recorded neurons in mouse primary somatosensory cortex during a tactile discrimination task. Across many experiments, the RLVM identifies latent variables related to both the tactile stimulation as well as nonstimulus aspects of the behavioral task, with a majority of activity explained by the latter. These results suggest that properly identifying such latent variables is necessary for a full understanding of sensory cortical function and demonstrate novel methods for leveraging large population recordings to this end.NEW & NOTEWORTHY The rapid development of neural recording technologies presents new opportunities for understanding patterns of activity across neural populations. Here we show how a latent variable model with appropriate nonlinear form can be used to identify sources of input to a neural population and infer their time courses. Furthermore, we demonstrate how these sources are

  20. Persistent neural activity during the maintenance of spatial position in working memory.

    PubMed

    Srimal, Riju; Curtis, Clayton E

    2008-01-01

    The mechanism for the short-term maintenance of information involves persistent neural activity during the retention interval, which forms a bridge between the cued memoranda and its later contingent response. Here, we used event-related functional magnetic resonance imaging to identify cortical areas with activity that persists throughout working memory delays with the goal of testing if such activity represents visuospatial attention or prospective saccade goals. We did so by comparing two spatial working memory tasks. During a memory-guided saccade (MGS) task, a location was maintained during a delay after which a saccade was generated to the remembered location. During a spatial item recognition (SIR) task identical to MGS until after the delay, a button press indicated whether a newly cued location matched the remembered location. Activity in frontal and parietal areas persisted above baseline and was greater in the hemisphere contralateral to the cued visual field. However, delay-period activity did not differ between the tasks. Notably, in the putative frontal eye field (FEF), delay period activity did not differ despite that the precise metrics of the memory-guided saccade were known during the MGS delay and saccades were never made in SIR. Persistent FEF activity may therefore represent a prioritized attentional map of space, rather than the metrics for saccades.

  1. Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey; Meiler, Jens

    2016-02-01

    Dropout is an Artificial Neural Network (ANN) training technique that has been shown to improve ANN performance across canonical machine learning (ML) datasets. Quantitative Structure Activity Relationship (QSAR) datasets used to relate chemical structure to biological activity in Ligand-Based Computer-Aided Drug Discovery pose unique challenges for ML techniques, such as heavily biased dataset composition, and relatively large number of descriptors relative to the number of actives. To test the hypothesis that dropout also improves QSAR ANNs, we conduct a benchmark on nine large QSAR datasets. Use of dropout improved both enrichment false positive rate and log-scaled area under the receiver-operating characteristic curve (logAUC) by 22-46 % over conventional ANN implementations. Optimal dropout rates are found to be a function of the signal-to-noise ratio of the descriptor set, and relatively independent of the dataset. Dropout ANNs with 2D and 3D autocorrelation descriptors outperform conventional ANNs as well as optimized fingerprint similarity search methods.

  2. Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix

    PubMed Central

    Ueno, Morio; Matsumura, Michiru; Watanabe, Kiichi; Nakamura, Takahiro; Osakada, Fumitaka; Takahashi, Masayo; Kawasaki, Hiroshi; Kinoshita, Shigeru; Sasai, Yoshiki

    2006-01-01

    Here we report a human-derived material with potent inductive activity that selectively converts ES cells into neural tissues. Both mouse and human ES cells efficiently differentiate into neural precursors when cultured on the matrix components of the human amniotic membrane in serum-free medium [amniotic membrane matrix-based ES cell differentiation (AMED)]. AMED-induced neural tissues have regional characteristics (brainstem) similar to those induced by coculture with mouse PA6 stromal cells [a common method called stromal cell-derived inducing activity (SDIA) culture]. Like the SDIA culture, the AMED system is applicable to the in vitro generation of various CNS tissues, including dopaminergic neurons, motor neurons, and retinal pigment epithelium. In contrast to the SDIA method, which uses animal cells, the AMED culture uses a noncellular inductive material derived from an easily available human tissue; therefore, AMED should provide a more suitable and versatile system for generating a variety of neural tissues for clinical applications. PMID:16766664

  3. On the relation between conceptual priming, neural priming, and novelty assessment.

    PubMed

    Habib, R

    2001-07-01

    A consistently reported finding in functional neuroimaging studies which compare processing of new information to processing of old information is a reduction in blood flow, and hence neural activity, associated with the old condition. This deactivation has been labeled neural priming. Some investigators have hypothesized that neural priming is the physiological mechanism underlying conceptual priming--a facilitation in the semantic processing of repeated information. Others, however, have hypothesized that neural priming reflects novelty assessment--a mechanism which minimizes the probability that redundant information will be stored in long-term memory. In this paper, the conceptual priming and novelty assessment hypotheses are compared and contrasted in order to ask, and tentatively answer, the question: Are conceptual priming and novelty assessment cognitively and neurophysiologically distinct? Based on a review of the literature, it is suggested that whereas novelty assessment and conceptual priming are distinct cognitive entities, they cannot be presently separated neurophysiologically. That is, some novelty assessment deactivations may in fact reflect priming, and some priming deactivations may in fact reflect novelty assessment.

  4. In vivo blockade of neural activity alters dendritic development of neonatal CA1 pyramidal cells.

    PubMed

    Groc, Laurent; Petanjek, Zdravko; Gustafsson, Bengt; Ben-Ari, Yehezkel; Hanse, Eric; Khazipov, Roustem

    2002-11-01

    During development, neural activity has been proposed to promote neuronal growth. During the first postnatal week, the hippocampus is characterized by an oscillating neural network activity and a rapid neuronal growth. In the present study we tested in vivo, by injecting tetanus toxin into the hippocampus of P1 rats, whether this neural activity indeed promotes growth of pyramidal cells. We have previously shown that tetanus toxin injection leads to a strong reduction in the frequency of spontaneous GABA and glutamatergic synaptic currents, and to a complete blockade of the early neural network activity during the first postnatal week. Morphology of neurobiotin-filled CA1 pyramidal cells was analyzed at the end of the first postnatal week (P6-10). In activity-reduced neurons, the total length of basal dendritic tree was three times less than control. The number, but not the length, of basal dendritic branches was affected. The growth impairment was restricted to the basal dendrites. The apical dendrite, the axons, or the soma grew normally during activity deprivation. Thus, the in vivo neural activity in the neonate hippocampus seems to promote neuronal growth by initiating novel branches.

  5. Parametric characterization of neural activity in the locus coeruleus in response to vagus nerve stimulation.

    PubMed

    Hulsey, Daniel R; Riley, Jonathan R; Loerwald, Kristofer W; Rennaker, Robert L; Kilgard, Michael P; Hays, Seth A

    2017-03-01

    Vagus nerve stimulation (VNS) has emerged as a therapy to treat a wide range of neurological disorders, including epilepsy, depression, stroke, and tinnitus. Activation of neurons in the locus coeruleus (LC) is believed to mediate many of the effects of VNS in the central nervous system. Despite the importance of the LC, there is a dearth of direct evidence characterizing neural activity in response to VNS. A detailed understanding of the brain activity evoked by VNS across a range of stimulation parameters may guide selection of stimulation regimens for therapeutic use. In this study, we recorded neural activity in the LC and the mesencephalic trigeminal nucleus (Me5) in response to VNS over a broad range of current amplitudes, pulse frequencies, train durations, inter-train intervals, and pulse widths. Brief 0.5s trains of VNS drive rapid, phasic firing of LC neurons at 0.1mA. Higher current intensities and longer pulse widths drive greater increases in LC firing rate. Varying the pulse frequency substantially affects the timing, but not the total amount, of phasic LC activity. VNS drives pulse-locked neural activity in the Me5 at current levels above 1.2mA. These results provide insight into VNS-evoked phasic neural activity in multiple neural structures and may be useful in guiding the selection of VNS parameters to enhance clinical efficacy.

  6. Neural Basis of Intrinsic Motivation: Evidence from Event-Related Potentials.

    PubMed

    Jin, Jia; Yu, Liping; Ma, Qingguo

    2015-01-01

    Human intrinsic motivation is of great importance in human behavior. However, although researchers have focused on this topic for decades, its neural basis was still unclear. The current study employed event-related potentials to investigate the neural disparity between an interesting stop-watch (SW) task and a boring watch-stop task (WS) to understand the neural mechanisms of intrinsic motivation. Our data showed that, in the cue priming stage, the cue of the SW task elicited smaller N2 amplitude than that of the WS task. Furthermore, in the outcome feedback stage, the outcome of the SW task induced smaller FRN amplitude and larger P300 amplitude than that of the WS task. These results suggested that human intrinsic motivation did exist and that it can be detected at the neural level. Furthermore, intrinsic motivation could be quantitatively indexed by the amplitude of ERP components, such as N2, FRN, and P300, in the cue priming stage or feedback stage. Quantitative measurements would also be convenient for intrinsic motivation to be added as a candidate social factor in the construction of a machine learning model.

  7. Explorative data analysis for changes in neural activity

    NASA Astrophysics Data System (ADS)

    Blythe, Duncan A. J.; Meinecke, Frank C.; von Bünau, Paul; Müller, Klaus-Robert

    2013-04-01

    Neural recordings are non-stationary time series, i.e. their properties typically change over time. Identifying specific changes, e.g., those induced by a learning task, can shed light on the underlying neural processes. However, such changes of interest are often masked by strong unrelated changes, which can be of physiological origin or due to measurement artifacts. We propose a novel algorithm for disentangling such different causes of non-stationarity and in this manner enable better neurophysiological interpretation for a wider set of experimental paradigms. A key ingredient is the repeated application of Stationary Subspace Analysis (SSA) using different temporal scales. The usefulness of our explorative approach is demonstrated in simulations, theory and EEG experiments with 80 brain-computer interfacing subjects.

  8. Serotonin activates overall feeding by activating two separate neural pathways in Caenorhabditis elegans.

    PubMed

    Song, Bo-mi; Avery, Leon

    2012-02-08

    Food intake in the nematode Caenorhabditis elegans requires two distinct feeding motions, pharyngeal pumping and isthmus peristalsis. Bacteria, the natural food of C. elegans, activate both feeding motions (Croll, 1978; Horvitz et al., 1982; Chiang et al., 2006). The mechanisms by which bacteria activate the feeding motions are largely unknown. To understand the process, we studied how serotonin, an endogenous pharyngeal pumping activator whose action is triggered by bacteria, activates feeding motions. Here, we show that serotonin, like bacteria, activates overall feeding by activating isthmus peristalsis as well as pharyngeal pumping. During active feeding, the frequencies and the timing of onset of the two motions were distinct, but each isthmus peristalsis was coupled to the preceding pump. We found that serotonin activates the two feeding motions mainly by activating two separate neural pathways in response to bacteria. For activating pumping, the SER-7 serotonin receptor in the MC motor neurons in the feeding organ activated cholinergic transmission from MC to the pharyngeal muscles by activating the Gsα signaling pathway. For activating isthmus peristalsis, SER-7 in the M4 (and possibly M2) motor neuron in the feeding organ activated the G(12)α signaling pathway in a cell-autonomous manner, which presumably activates neurotransmission from M4 to the pharyngeal muscles. Based on our results and previous calcium imaging of pharyngeal muscles (Shimozono et al., 2004), we propose a model that explains how the two feeding motions are separately regulated yet coupled. The feeding organ may have evolved this way to support efficient feeding.

  9. Light-induced Notch activity controls neurogenic and gliogenic potential of neural progenitors.

    PubMed

    Kim, Kyung-Tai; Song, Mi-Ryoung

    2016-10-28

    Oscillations in Notch signaling are essential for reserving neural progenitors for cellular diversity in developing brains. Thus, steady and prolonged overactivation of Notch signaling is not suitable for generating neurons. To acquire greater temporal control of Notch activity and mimic endogenous oscillating signals, here we adopted a light-inducible transgene system to induce active form of Notch NICD in neural progenitors. Alternating Notch activity saved more progenitors that are prone to produce neurons creating larger number of mixed clones with neurons and progenitors in vitro, compared to groups with no light or continuous light stimulus. Furthermore, more upper layer neurons and astrocytes arose upon intermittent Notch activity, indicating that dynamic Notch activity maintains neural progeny and fine-tune neuron-glia diversity.

  10. Active Control of Complex Systems via Dynamic (Recurrent) Neural Networks

    DTIC Science & Technology

    1992-05-30

    course, to on-going changes brought about by learning processes. As research in neurodynamics proceeded, the concept of reverberatory information flows...Microstructure of Cognition . Vol. 1: Foundations, M.I.T. Press, Cambridge, Massachusetts, pp. 354-361, 1986. 100 I Schwarz, G., "Estimating the dimension of a...Continually Running Fully Recurrent Neural Networks, ICS Report 8805, Institute of Cognitive Science, University of California at San Diego, 1988. 10 II

  11. Neural Networks

    SciTech Connect

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  12. Age-related increase in brain activity during task-related and -negative networks and numerical inductive reasoning

    PubMed Central

    Sun, Li; Liang, Peipeng; Jia, Xiuqin; Qi, Zhigang; Li, Kuncheng

    2014-01-01

    Objective: Recent neuroimaging studies have shown that elderly adults exhibit increased and decreased activation on various cognitive tasks, yet little is known about age-related changes in inductive reasoning. Methods: To investigate the neural basis for the aging effect on inductive reasoning, 15 young and 15 elderly subjects performed numerical inductive reasoning while in a magnetic resonance (MR) scanner. Results: Functional magnetic resonance imaging (fMRI) analysis revealed that numerical inductive reasoning, relative to rest, yielded multiple frontal, temporal, parietal, and some subcortical area activations for both age groups. In addition, the younger participants showed significant regions of task-induced deactivation, while no deactivation occurred in the elderly adults. Direct group comparisons showed that elderly adults exhibited greater activity in regions of task-related activation and areas showing task-induced deactivation (TID) in the younger group. Conclusions: Our findings suggest an age-related deficiency in neural function and resource allocation during inductive reasoning. PMID:25337240

  13. Phospholipase B activity and organophosphorus compound toxicity in cultured neural cells

    SciTech Connect

    Read, David J.; Langford, Lynda; Barbour, Helen R.; Forshaw, Philip J.; Glynn, Paul . E-mail: pg8@le.ac.uk

    2007-03-15

    Organophosphorus compounds (OP) such as phenyl saligenin phosphate (PSP) and mipafox (MPX) which cause delayed neuropathy, inhibit neuropathy target esterase (NTE), while OPs such as paraoxon (PXN) react more readily with acetylcholinesterase. In yeast and mammalian cell lines, NTE has been shown to have phospholipase B (PLB) activity which deacylates intracellular phosphatidylcholine to glycerophosphocholine (GroPCho) and can be detected by metabolic labeling with [{sup 14}C]choline. Here we investigated PLB activity in primary cultures of mouse neural cells. In cortical and cerebellar granule neurons and astrocytes, [{sup 14}C]GroPCho labeling was inhibited by PSP and MPX: phenyl dipentylphosphinate (PDPP), a non-neuropathic NTE inhibitor, was more potent, while PXN, was substantially less so. In all three cell types, conversion of [{sup 14}C]phosphatidylcholine to [{sup 14}C]GroPCho over 24 h was relatively small (2.3-14%). Consequently, even with > 80% inhibition of [{sup 14}C]GroPCho production, increased [{sup 14}C]phosphatidylcholine was not detected. At concentrations of 1-10 {mu}M, only PSP was cytotoxic to cortical and cerebellar granule neurons after 24-h exposure. Moreover, dramatic changes in glial cell morphology were induced by PSP, but not PDPP or MPX, with rapid (2-3 h) rounding up of astrocytes and of Schwann cells in cultures of dissociated mouse dorsal root ganglia. We conclude that PLB activity is present in a variety of cultured mouse neural cell types but that acute loss of this activity is not cytotoxic. Conversely, the rapid toxic effects of PSP in vitro suggest that a serine hydrolase distinct from NTE is required continuously by neurons and glia.

  14. Neural correlates of individual differences in pain-related fear and anxiety

    PubMed Central

    Ochsner, Kevin N.; Ludlow, David H.; Knierim, Kyle; Hanelin, Josh; Ramachandran, Tara; Glover, Gary C.; Mackey, Sean C.

    2010-01-01

    Although individual differences in fear and anxiety modulate the pain response and may even cause more suffering than the initiating physical stimulus, little is known about the neural systems mediating this relationship. The present study provided the first examination of the neural correlates of individual differences in the tendency to (1) feel anxious about the potentially negative implications of physical sensations, as measured by the anxiety sensitivity index (ASI), and (2) fear various types of physical pain, as indexed by the fear of pain questionnaire (FPQ). In separate sessions, participants completed these questionnaires and experienced alternating blocks of noxious thermal stimulation (45–50 °C) and neutral thermal stimulation (38 °C) during the collection of whole-brain fMRI data. Regression analyses demonstrated that during the experience of pain, ASI scores predicted activation of a medial prefrontal region associated with self-focused attention, whereas FPQ scores predicted activation of a ventral lateral frontal region associated with response regulation and anterior and posterior cingulate regions associated with monitoring and evaluation of affective responses. These functional relationships cannot be wholly explained by generalized anxiety (indexed by STAI-T scores), which did not significantly correlate with activation of any regions. The present findings may help clarify both the impact of individual differences in emotion on the neural correlates of pain, and the roles in anxiety, fear, and pain processing played by medial and orbitofrontal systems. PMID:16364548

  15. Effects of binary taste stimuli on the neural activity of the hamster chorda tympani

    PubMed Central

    1980-01-01

    Binary mixtures of taste stimuli were applied to the tongue of the hamster and the reaction of the whole corda tympani was recorded. Some of the chemicals that were paired in mixtures (HCl, NH4Cl, NaCl, CaCl2, sucrose, and D-phenylalanine) have similar tastes to human and/or hamster, and/or common stimulatory effects on individual fibers of the hamster chorda tympani; other pairs of these chemicals have dissimilar tastes and/or distinct neural stimulatory effects. The molarity of each chemical with approximately the same effect on the activity of the nerve as 0.01 M NaCl was selected, and an established relation between stimulus concentration and response allowed estimation of the effect of a "mixture" of two concentrations of one chemical. Each mixture elicited a response that was smaller than the sum of the responses to its components. However, responses to some mixtures approached this sum, and responses to other mixtures closely approached the response to a "mixture" of two concentrations of one chemical. Responses of the former variety were generated by mixtures of an electrolyte and a nonelectrolyte and the latter by mixtures of two electrolytes or two nonelectrolytes. But, beyond the distinction between electrolytes and nonelectrolytes, the whole-nerve response to a mixture could not be predicted from the known neural or psychophysical effects of its components. PMID:7411114

  16. Differential neural activation of vascular alpha-adrenoceptors in oral tissues of cats.

    PubMed

    Koss, Michael C

    2002-04-05

    The aim of this study was to determine the relative contribution of alpha(1)- and alpha(2)-adrenoceptors involved in sympathetic-evoked vasoconstrictor responses in tissues perfused by the lingual arterial circulation in pentobarbital anesthetized cats. Blood flow in the lingual artery was measured by ultrasonic flowmetry. Laser-Doppler flowmetry was utilized to measure oral tissue vasoconstrictor responses in the maxillary gingiva and from the surface of the tongue. Electrical stimulation of the preganglionic superior cervical sympathetic nerve resulted in frequency-dependent blood flow decreases at all three sites. These responses were stable over time and were uniformly antagonized by administration of phentolamine (0.3 - 3.0 mg kg(-1)). The selective alpha(1)-adrenoceptor antagonist, prazosin (10 - 300 microg kg(-1)), attenuated vasoconstriction in the lingual artery and gingiva, but was ineffective in blocking vasoconstriction in the tongue. Subsequent administration of rauwolscine (300 microg kg(-1)) antagonized remaining vasoconstrictor responses. In contrast, rauwolscine (10 - 300 microg kg(-1)), given alone, blocked evoked vasoconstriction in the tongue, and was without effect on gingival or lingual artery vasoconstrictor responses. Subsequent administration of prazosin (300 microg kg(-1)) largely antagonized remaining neurally elicited responses. These results suggest that neural vasoconstrictor responses in some regional vascular beds in the cat oral cavity are mediated by both alpha(1)- and alpha(2)-adrenoceptors. In contrast, tongue surface vasoconstrictor responses to sympathetic nerve activation appear to be mediated primarily by alpha(2)-adrenoceptors.

  17. Neural correlates of envy: Regional homogeneity of resting-state brain activity predicts dispositional envy.

    PubMed

    Xiang, Yanhui; Kong, Feng; Wen, Xue; Wu, Qihan; Mo, Lei

    2016-11-15

    Envy differs from common negative emotions across cultures. Although previous studies have explored the neural basis of episodic envy via functional magnetic resonance imaging (fMRI), little is known about the neural processes associated with dispositional envy. In the present study, we used regional homogeneity (ReHo) as an index in resting-state fMRI (rs-fMRI) to identify brain regions involved in individual differences in dispositional envy, as measured by the Dispositional Envy Scale (DES). Results showed that ReHo in the inferior/middle frontal gyrus (IFG/MFG) and dorsomedial prefrontal cortex (DMPFC) positively predicted dispositional envy. Moreover, of all the personality traits measured by the Revised NEO Personality Inventory (NEO-PI-R), only neuroticism was significantly associated with dispositional envy. Furthermore, neuroticism mediated the underlying association between the ReHo of the IFG/MFG and dispositional envy. Hence, to the best of our knowledge, this study provides the first evidence that spontaneous brain activity in multiple regions related to self-evaluation, social perception, and social emotion contributes to dispositional envy. In addition, our findings reveal that neuroticism may play an important role in the cognitive processing of dispositional envy.

  18. Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions.

    PubMed

    Hu, Kun; Meijer, Johanna H; Shea, Steven A; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A J L

    2012-01-01

    The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ~24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales--from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation.

  19. Dynamical Behaviors of Multiple Equilibria in Competitive Neural Networks With Discontinuous Nonmonotonic Piecewise Linear Activation Functions.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing

    2016-03-01

    This paper addresses the problem of coexistence and dynamical behaviors of multiple equilibria for competitive neural networks. First, a general class of discontinuous nonmonotonic piecewise linear activation functions is introduced for competitive neural networks. Then based on the fixed point theorem and theory of strict diagonal dominance matrix, it is shown that under some conditions, such n -neuron competitive neural networks can have 5(n) equilibria, among which 3(n) equilibria are locally stable and the others are unstable. More importantly, it is revealed that the neural networks with the discontinuous activation functions introduced in this paper can have both more total equilibria and locally stable equilibria than the ones with other activation functions, such as the continuous Mexican-hat-type activation function and discontinuous two-level activation function. Furthermore, the 3(n) locally stable equilibria given in this paper are located in not only saturated regions, but also unsaturated regions, which is different from the existing results on multistability of neural networks with multiple level activation functions. A simulation example is provided to illustrate and validate the theoretical findings.

  20. Early neural activation during facial affect processing in adolescents with Autism Spectrum Disorder☆

    PubMed Central

    Leung, Rachel C.; Pang, Elizabeth W.; Cassel, Daniel; Brian, Jessica A.; Smith, Mary Lou; Taylor, Margot J.

    2014-01-01

    Impaired social interaction is one of the hallmarks of Autism Spectrum Disorder (ASD). Emotional faces are arguably the most critical visual social stimuli and the ability to perceive, recognize, and interpret emotions is central to social interaction and communication, and subsequently healthy social development. However, our understanding of the neural and cognitive mechanisms underlying emotional face processing in adolescents with ASD is limited. We recruited 48 adolescents, 24 with high functioning ASD and 24 typically developing controls. Participants completed an implicit emotional face processing task in the MEG. We examined spatiotemporal differences in neural activation between the groups during implicit angry and happy face processing. While there were no differences in response latencies between groups across emotions, adolescents with ASD had lower accuracy on the implicit emotional face processing task when the trials included angry faces. MEG data showed atypical neural activity in adolescents with ASD during angry and happy face processing, which included atypical activity in the insula, anterior and posterior cingulate and temporal and orbitofrontal regions. Our findings demonstrate differences in neural activity during happy and angry face processing between adolescents with and without ASD. These differences in activation in social cognitive regions may index the difficulties in face processing and in comprehension of social reward and punishment in the ASD group. Thus, our results suggest that atypical neural activation contributes to impaired affect processing, and thus social cognition, in adolescents with ASD. PMID:25610782

  1. Early neural activation during facial affect processing in adolescents with Autism Spectrum Disorder.

    PubMed

    Leung, Rachel C; Pang, Elizabeth W; Cassel, Daniel; Brian, Jessica A; Smith, Mary Lou; Taylor, Margot J

    2015-01-01

    Impaired social interaction is one of the hallmarks of Autism Spectrum Disorder (ASD). Emotional faces are arguably the most critical visual social stimuli and the ability to perceive, recognize, and interpret emotions is central to social interaction and communication, and subsequently healthy social development. However, our understanding of the neural and cognitive mechanisms underlying emotional face processing in adolescents with ASD is limited. We recruited 48 adolescents, 24 with high functioning ASD and 24 typically developing controls. Participants completed an implicit emotional face processing task in the MEG. We examined spatiotemporal differences in neural activation between the groups during implicit angry and happy face processing. While there were no differences in response latencies between groups across emotions, adolescents with ASD had lower accuracy on the implicit emotional face processing task when the trials included angry faces. MEG data showed atypical neural activity in adolescents with ASD during angry and happy face processing, which included atypical activity in the insula, anterior and posterior cingulate and temporal and orbitofrontal regions. Our findings demonstrate differences in neural activity during happy and angry face processing between adolescents with and without ASD. These differences in activation in social cognitive regions may index the difficulties in face processing and in comprehension of social reward and punishment in the ASD group. Thus, our results suggest that atypical neural activation contributes to impaired affect processing, and thus social cognition, in adolescents with ASD.

  2. Climate change and related activities

    SciTech Connect

    Not Available

    1992-10-01

    The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. If we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. The Department of Energy carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies-technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for the Department. This report is a brief description of the Department`s activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change.

  3. Climate change and related activities

    SciTech Connect

    Not Available

    1992-01-01

    The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. If we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. The Department of Energy carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies-technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for the Department. This report is a brief description of the Department's activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change.

  4. Early olfactory experience modifies neural activity in the antennal lobe of a social insect at the adult stage.

    PubMed

    Arenas, A; Giurfa, M; Farina, W M; Sandoz, J C

    2009-10-01

    In the antennal lobe (AL), the first olfactory centre of the insect brain, odorants are represented as spatiotemporal patterns of glomerular activity. Whether and how such patterns are modified in the long term after precocious olfactory experiences (i.e. in the first days of adulthood) remains unknown. To address this question, we used in vivo optical imaging of calcium activity in the antennal lobe of 17-day-old honeybees which either experienced an odorant associated with sucrose solution 5-8 days after emergence or were left untreated. In both cases, we imaged neural responses to the learned odor and to three novel odors varying in functional group and carbon-chain length. Two different odor concentrations were used. We also measured behavioral responses of 17-day-old honeybees, treated and untreated, to these stimuli. We show that precocious olfactory experience increased general odor-induced activity and the number of activated glomeruli in the adult AL, but also affected qualitative odor representations, which appeared shifted in the neural space of treated animals relative to control animals. Such effects were not limited to the experienced odor, but were generalized to other perceptually similar odors. A similar trend was found in behavioral experiments, in which increased responses to the learned odor extended to perceptually similar odors in treated bees. Our results show that early olfactory experiences have long-lasting effects, reflected in behavioral responses to odorants and concomitant neural activity in the adult olfactory system.

  5. Real-time Neural Network predictions of geomagnetic activity indices

    NASA Astrophysics Data System (ADS)

    Bala, R.; Reiff, P. H.

    2009-12-01

    The Boyle potential or the Boyle Index (BI), Φ (kV)=10-4 (V/(km/s))2 + 11.7 (B/nT) sin3(θ/2), is an empirically-derived formula that can characterize the Earth's polar cap potential, which is readily derivable in real time using the solar wind data from ACE (Advanced Composition Explorer). The BI has a simplistic form that utilizes a non-magnetic "viscous" and a magnetic "merging" component to characterize the magnetospheric behavior in response to the solar wind. We have investigated its correlation with two of conventional geomagnetic activity indices in Kp and the AE index. We have shown that the logarithms of both 3-hr and 1-hr averages of the BI correlate well with the subsequent Kp: Kp = 8.93 log10(BI) - 12.55 along with 1-hr BI correlating with the subsequent log10(AE): log10(AE) = 1.78 log10(BI) - 3.6. We have developed a new set of algorithms based on Artificial Neural Networks (ANNs) suitable for short term space weather forecasts with an enhanced lead-time and better accuracy in predicting Kp and AE over some leading models; the algorithms omit the time history of its targets to utilize only the solar wind data. Inputs to our ANN models benefit from the BI and its proven record as a forecasting parameter since its initiation in October, 2003. We have also performed time-sensitivity tests using cross-correlation analysis to demonstrate that our models are as efficient as those that incorporates the time history of the target indices in their inputs. Our algorithms can predict the upcoming full 3-hr Kp, purely from the solar wind data and achieve a linear correlation coefficient of 0.840, which means that it predicts the upcoming Kp value on average to within 1.3 step, which is approximately the resolution of the real-time Kp estimate. Our success in predicting Kp during a recent unexpected event (22 July ’09) is shown in the figure. Also, when predicting an equivalent "one hour Kp'', the correlation coefficient is 0.86, meaning on average a prediction

  6. Neural Connectivity and Immunocytochemical Studies of Anatomical Sites Related to Nauseogenic and Emetic Reflexes

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1992-01-01

    The studies conducted in this research project examined several aspects of neuroanatomical structures and neurochemical processes related to motion sickness in animal models. A principle objective of these studies was to investigate neurochemical changes in the central nervous system that are related to motion sickness with the objective of defining neural mechanisms important to this malady. For purposes of exposition, the studies and research finding have been classified into five categories. These are: immunoreactivity in the brainstem, vasopressin effects, lesion studies of area postrema, role of the vagus nerve, and central nervous system structure related to adaptation to microgravity.

  7. Fast fMRI can detect oscillatory neural activity in humans

    PubMed Central

    Lewis, Laura D.; Setsompop, Kawin; Rosen, Bruce R.; Polimeni, Jonathan R.

    2016-01-01

    Oscillatory neural dynamics play an important role in the coordination of large-scale brain networks. High-level cognitive processes depend on dynamics evolving over hundreds of milliseconds, so measuring neural activity in this frequency range is important for cognitive neuroscience. However, current noninvasive neuroimaging methods are not able to precisely localize oscillatory neural activity above 0.2 Hz. Electroencephalography and magnetoencephalography have limited spatial resolution, whereas fMRI has limited temporal resolution because it measures vascular responses rather than directly recording neural activity. We hypothesized that the recent development of fast fMRI techniques, combined with the extra sensitivity afforded by ultra-high-field systems, could enable precise localization of neural oscillations. We tested whether fMRI can detect neural oscillations using human visual cortex as a model system. We detected small oscillatory fMRI signals in response to stimuli oscillating at up to 0.75 Hz within single scan sessions, and these responses were an order of magnitude larger than predicted by canonical linear models. Simultaneous EEG–fMRI and simulations based on a biophysical model of the hemodynamic response to neuronal activity suggested that the blood oxygen level-dependent response becomes faster for rapidly varying stimuli, enabling the detection of higher frequencies than expected. Accounting for phase delays across voxels further improved detection, demonstrating that identifying vascular delays will be of increasing importance with higher-frequency activity. These results challenge the assumption that the hemodynamic response is slow, and demonstrate that fMRI has the potential to map neural oscillations directly throughout the brain. PMID:27729529

  8. Individual differences in attentional bias associated with cocaine dependence are related to varying engagement of neural processing networks.

    PubMed

    Kilts, Clint D; Kennedy, Ashley; Elton, Amanda L; Tripathi, Shanti Prakash; Young, Jonathan; Cisler, Josh M; James, G Andrew

    2014-04-01

    Cocaine and other drug dependencies are associated with significant attentional bias for drug use stimuli that represents a candidate cognitive marker of drug dependence and treatment outcomes. We explored, using fMRI, the role of discrete neural processing networks in the representation of individual differences in the drug attentional bias effect associated with cocaine dependence (AB-coc) using a word counting Stroop task with personalized cocaine use stimuli (cocStroop). The cocStroop behavioral and neural responses were further compared with those associated with a negative emotional word Stroop task (eStroop) and a neutral word counting Stroop task (cStroop). Brain-behavior correlations were explored using both network-level correlation analysis following independent component analysis (ICA) and voxel-level, brain-wide univariate correlation analysis. Variation in the attentional bias effect for cocaine use stimuli among cocaine-dependent men and women was related to the recruitment of two separate neural processing networks related to stimulus attention and salience attribution (inferior frontal-parietal-ventral insula), and the processing of the negative affective properties of cocaine stimuli (frontal-temporal-cingulate). Recruitment of a sensory-motor-dorsal insula network was negatively correlated with AB-coc and suggested a regulatory role related to the sensorimotor processing of cocaine stimuli. The attentional bias effect for cocaine stimuli and for negative affective word stimuli were significantly correlated across individuals, and both were correlated with the activity of the frontal-temporal-cingulate network. Functional connectivity for a single prefrontal-striatal-occipital network correlated with variation in general cognitive control (cStroop) that was unrelated to behavioral or neural network correlates of cocStroop- or eStroop-related attentional bias. A brain-wide mass univariate analysis demonstrated the significant correlation of

  9. Is Neural Activity Detected by ERP-Based Brain-Computer Interfaces Task Specific?

    PubMed Central

    Wenzel, Markus A.; Almeida, Inês; Blankertz, Benjamin

    2016-01-01

    Objective Brain-computer interfaces (BCIs) that are based on event-related potentials (ERPs) can estimate to which stimulus a user pays particular attention. In typical BCIs, the user silently counts the selected stimulus (which is repeatedly presented among other stimuli) in order to focus the attention. The stimulus of interest is then inferred from the electroencephalogram (EEG). Detecting attention allocation implicitly could be also beneficial for human-computer interaction (HCI), because it would allow software to adapt to the user’s interest. However, a counting task would be inappropriate for the envisaged implicit application in HCI. Therefore, the question was addressed if the detectable neural activity is specific for silent counting, or if it can be evoked also by other tasks that direct the attention to certain stimuli. Approach Thirteen people performed a silent counting, an arithmetic and a memory task. The tasks required the subjects to pay particular attention to target stimuli of a random color. The stimulus presentation was the same in all three tasks, which allowed a direct comparison of the experimental conditions. Results Classifiers that were trained to detect the targets in one task, according to patterns present in the EEG signal, could detect targets in all other tasks (irrespective of some task-related differences in the EEG). Significance The neural activity detected by the classifiers is not strictly task specific but can be generalized over tasks and is presumably a result of the attention allocation or of the augmented workload. The results may hold promise for the transfer of classification algorithms from BCI research to implicit relevance detection in HCI. PMID:27792781

  10. Climate change and related activities

    SciTech Connect

    Not Available

    1992-01-01

    The greenhouse'' process regulates the Earth's climate at a level to sustain life, making our planet unique. The term climate'' refers not only to temperature, but also to the entire system of precipitation, cloudiness, and winds, as well as to the distribution of these features in space and time. The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. It we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. Global climate change is a significant issue for the US Department of Energy (DOE) because greenhouse gases are emitted from the production and use of fossil fuels. Energy use and production now contribute more than half of the total manmade emissions on a global basis. DOE carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies -- technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for DOE. This report is a brief description of DOE's activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change.

  11. Climate change and related activities

    SciTech Connect

    Not Available

    1992-03-01

    The ``greenhouse`` process regulates the Earth`s climate at a level to sustain life, making our planet unique. The term ``climate`` refers not only to temperature, but also to the entire system of precipitation, cloudiness, and winds, as well as to the distribution of these features in space and time. The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. It we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. Global climate change is a significant issue for the US Department of Energy (DOE) because greenhouse gases are emitted from the production and use of fossil fuels. Energy use and production now contribute more than half of the total manmade emissions on a global basis. DOE carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies -- technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for DOE. This report is a brief description of DOE`s activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change.

  12. Two-stage neural algorithm for defect detection and characterization uses an active thermography

    NASA Astrophysics Data System (ADS)

    Dudzik, Sebastian

    2015-07-01

    In the paper a two-stage neural algorithm for defect detection and characterization is presented. In order to estimate the defect depth two neural networks trained on data obtained using an active thermography were employed. The first stage of the algorithm is developed to detect the defect by a classification neural network. Then the defects depth is estimated using a regressive neural network. In this work the results of experimental investigations and simulations are shown. Further, the sensitivity analysis of the presented algorithm was conducted and the impacts of emissivity error and the ambient temperature error on the depth estimation errors were studied. The results were obtained using a test sample made of material with a low thermal diffusivity.

  13. Motivation alters response bias and neural activation patterns in a perceptual decision-making task.

    PubMed

    Reckless, G E; Bolstad, I; Nakstad, P H; Andreassen, O A; Jensen, J

    2013-05-15

    Motivation has been demonstrated to affect individuals' response strategies in economic decision-making, however, little is known about how motivation influences perceptual decision-making behavior or its related neural activity. Given the important role motivation plays in shaping our behavior, a better understanding of this relationship is needed. A block-design, continuous performance, perceptual decision-making task where participants were asked to detect a picture of an animal among distractors was used during functional magnetic resonance imaging (fMRI). The effect of positive and negative motivation on sustained activity within regions of the brain thought to underlie decision-making was examined by altering the monetary contingency associated with the task. In addition, signal detection theory was used to investigate the effect of motivation on detection sensitivity, response bias and response time. While both positive and negative motivation resulted in increased sustained activation in the ventral striatum, fusiform gyrus, left dorsolateral prefrontal cortex (DLPFC) and ventromedial prefrontal cortex, only negative motivation resulted in the adoption of a more liberal, closer to optimal response bias. This shift toward a liberal response bias correlated with increased activation in the left DLPFC, but did not result in improved task performance. The present findings suggest that motivation alters aspects of the way perceptual decisions are made. Further, this altered response behavior is reflected in a change in left DLPFC activation, a region involved in the computation of perceptual decisions.

  14. Chronic social stress in puberty alters appetitive male sexual behavior and neural metabolic activity.

    PubMed

    Bastida, Christel C; Puga, Frank; Gonzalez-Lima, Francisco; Jennings, Kimberly J; Wommack, Joel C; Delville, Yvon

    2014-07-01

    Repeated social subjugation in early puberty lowers testosterone levels. We used hamsters to investigate the effects of social subjugation on male sexual behavior and metabolic activity within neural systems controlling social and motivational behaviors. Subjugated animals were exposed daily to aggressive adult males in early puberty for postnatal days 28 to 42, while control animals were placed in empty clean cages. On postnatal day 45, they were tested for male sexual behavior in the presence of receptive female. Alternatively, they were tested for mate choice after placement at the base of a Y-maze containing a sexually receptive female in one tip of the maze and an ovariectomized one on the other. Social subjugation did not affect the capacity to mate with receptive females. Although control animals were fast to approach females and preferred ovariectomized individuals, subjugated animals stayed away from them and showed no preference. Cytochrome oxidase activity was reduced within the preoptic area and ventral tegmental area in subjugated hamsters. In addition, the correlation of metabolic activity of these areas with the bed nucleus of the stria terminalis and anterior parietal cortex changed significantly from positive in controls to negative in subjugated animals. These data show that at mid-puberty, while male hamsters are capable of mating, their appetitive sexual behavior is not fully mature and this aspect of male sexual behavior is responsive to social subjugation. Furthermore, metabolic activity and coordination of activity in brain areas related to sexual behavior and motivation were altered by social subjugation.

  15. Neural correlates of episodic memory: associative memory and confidence drive hippocampus activations.

    PubMed

    Kuchinke, Lars; Fritzemeier, Steffen; Hofmann, Markus J; Jacobs, Arthur M

    2013-10-01

    The present study used a study-test recognition memory task to examine the brain regions engaged in episodic and associative memory processes. Participants evaluated on a six-point rating scale how confident they were on whether or not an item was presented in a previous study phase. Neural activations for high- and low-confidence decisions were examined in old and new items at two levels of between-item-associations. Items had different amounts of associations within the stimulus set, while associations were defined by co-occurrence statistics. The medial frontal gyrus, the posterior cingulate gyrus, the superior temporal gyrus and the right hippocampus revealed U-shaped activation functions with greater activations for high-confidence OLD and NEW decisions. This was independent of the associative memory manipulation, which suggests that not episodic memory, but rather processes related to confidence account for the activation in these brain regions. In contrast, left hippocampus followed a different activation pattern that was modulated by the amount of associations. This provides evidence for the role of the left hippocampus in associative memory.

  16. Systemic Administration of Induced Neural Stem Cells Regulates Complement Activation in Mouse Closed Head Injury Models

    PubMed Central

    Gao, Mou; Dong, Qin; Yao, Hui; Lu, Yingzhou; Ji, Xinchao; Zou, Mingming; Yang, Zhijun; Xu, Minhui; Xu, Ruxiang

    2017-01-01

    Complement activation plays important roles in the pathogenesis of central nervous system (CNS) diseases. Patients face neurological disorders due to the development of complement activation, which contributes to cell apoptosis, brain edema, blood-brain barrier dysfunction and inflammatory infiltration. We previously reported that induced neural stem cells (iNSCs) can promote neurological functional recovery in closed head injury (CHI) animals. Remarkably, we discovered that local iNSC grafts have the potential to modulate CNS inflammation post-CHI. In this study, we aimed to explore the role of systemically delivered iNSCs in complement activation following CNS injury. Our data showed that iNSC grafts decreased the levels of sera C3a and C5a and down-regulated the expression of C3d, C9, active Caspase-3 and Bax in the brain, kidney and lung tissues of CHI mice. Furthermore, iNSC grafts decreased the levels of C3d+/NeuN+, C5b-9+/NeuN+, C3d+/Map2+ and C5b-9+/Map2+ neurons in the injured cortices of CHI mice. Subsequently, we explored the mechanisms underlying these effects. With flow cytometry analysis, we observed a dramatic increase in complement receptor type 1-related protein y (Crry) expression in iNSCs after CHI mouse serum treatment. Moreover, both in vitro and in vivo loss-of-function studies revealed that iNSCs could modulate complement activation via Crry expression. PMID:28383046

  17. Seasonal prediction of tropical cyclone activity over the north Indian Ocean using three artificial neural networks

    NASA Astrophysics Data System (ADS)

    Nath, Sankar; Kotal, S. D.; Kundu, P. K.

    2016-12-01

    Three artificial neural network (ANN) methods, namely, multilayer perceptron (MLP), radial basis function (RBF) and generalized regression neural network (GRNN) are utilized to predict the seasonal tropical cyclone (TC) activity over the north Indian Ocean (NIO) during the post-monsoon season (October, November, December). The frequency of TC and large-scale climate variables derived from NCEP/NCAR reanalysis dataset of resolution 2.5° × 2.5° were analyzed for the period 1971-2013. Data for the years 1971-2002 were used for the development of the models, which were tested with independent sample data for the year 2003-2013. Using the correlation analysis, the five large-scale climate variables, namely, geopotential height at 500 hPa, relative humidity at 500 hPa, sea-level pressure, zonal wind at 700 hPa and 200 hPa for the preceding month September, are selected as potential predictors of the post-monsoon season TC activity. The result reveals that all the three different ANN methods are able to provide satisfactory forecast in terms of the various metrics, such as root mean-square error (RMSE), standard deviation (SD), correlation coefficient ( r), and bias and index of agreement ( d). Additionally, leave-one-out cross validation (LOOCV) method is also performed and the forecast skill is evaluated. The results show that the MLP model is found to be superior to the other two models (RBF, GRNN). The (MLP) is expected to be very useful to operational forecasters for prediction of TC activity.

  18. Folate-related gene variants in Irish families affected by neural tube defects.

    PubMed

    Fisk Green, Ridgely; Byrne, Julianne; Crider, Krista S; Gallagher, Margaret; Koontz, Deborah; Berry, Robert J

    2013-01-01

    Periconceptional folic acid use can often prevent neural tube defects (NTDs). Variants of genes involved in folate metabolism in mothers and children have been associated with occurrence of NTDs. We identified Irish families with individuals affected by neural tube defects. In these families, we observed that neural tube defects and birth defects overall occurred at a higher rate in the maternal lineage compared with the paternal lineage. The goal of this study was to look for evidence for genetic effects that could explain the discrepancy in the occurrence of these birth defects in the maternal vs. paternal lineage. We genotyped blood samples from 322 individuals from NTD-affected Irish families, identified through their membership in spina bifida associations. We looked for differences in distribution in maternal vs. paternal lineages of five genetic polymorphisms: the DHFR 19 bp deletion, MTHFD1 1958G>A, MTHFR 1298A>C, MTHFR 677C>T, and SLC19A1 80A>G. In addition to looking at genotypes individually, we determined the number of genotypes associated with decreased folate metabolism in each relative ("risk genotypes") and compared the distribution of these genotypes in maternal vs. paternal relatives. Overall, maternal relatives had a higher number of genotypes associated with lower folate metabolism than paternal relatives (p = 0.017). We expected that relatives would share the same risk genotype as the individuals with NTDs and/or their mothers. However, we observed that maternal relatives had an over-abundance of any risk genotype, rather than one specific genotype. The observed genetic effects suggest an epigenetic mechanism in which decreased folate metabolism results in epigenetic alterations related to the increased rate of NTDs and other birth defects seen in the maternal lineage. Future studies on the etiology of NTDs and other birth defects could benefit from including multigenerational extended families, in order to explore potential epigenetic

  19. Defective neural crest migration revealed by a Zebrafish model of Alx1-related frontonasal dysplasia.

    PubMed

    Dee, Chris T; Szymoniuk, Christoph R; Mills, Peter E D; Takahashi, Tokiharu

    2013-01-15

    Frontonasal dysplasia (FND) refers to a class of midline facial malformations caused by abnormal development of the facial primordia. The term encompasses a spectrum of severities but characteristic features include combinations of ocular hypertelorism, malformations of the nose and forehead and clefting of the facial midline. Several recent studies have drawn attention to the importance of Alx homeobox transcription factors during craniofacial development. Most notably, loss of Alx1 has devastating consequences resulting in severe orofacial clefting and extreme microphthalmia. In contrast, mutations of Alx3 or Alx4 cause milder forms of FND. Whilst Alx1, Alx3 and Alx4 are all known to be expressed in the facial mesenchyme of vertebrate embryos, little is known about the function of these proteins during development. Here, we report the establishment of a zebrafish model of Alx-related FND. Morpholino knock-down of zebrafish alx1 expression causes a profound craniofacial phenotype including loss of the facial cartilages and defective ocular development. We demonstrate for the first time that Alx1 plays a crucial role in regulating the migration of cranial neural crest (CNC) cells into the frontonasal primordia. Abnormal neural crest migration is coincident with aberrant expression of foxd3 and sox10, two genes previously suggested to play key roles during neural crest development, including migration, differentiation and the maintenance of progenitor cells. This novel function is specific to Alx1, and likely explains the marked clinical severity of Alx1 mutation within the spectrum of Alx-related FND.

  20. International Activities Related to Pesticides

    EPA Pesticide Factsheets

    Regulating pesticides involves many international issues and working with our regulatory partners in other countries. Learn about EPA's activities, upcoming meetings and workshops, and various regulatory issues.

  1. Neural Activation Underlying Cognitive Control in the Context of Neutral and Affectively Charged Pictures in Children

    ERIC Educational Resources Information Center

    Lamm, Connie; White, Lauren K.; McDermott, Jennifer Martin; Fox, Nathan A.

    2012-01-01

    The neural correlates of cognitive control for typically developing 9-year-old children were examined using dense-array ERPs and estimates of cortical activation (LORETA) during a go/no-go task with two conditions: a neutral picture condition and an affectively charged picture condition. Activation was estimated for the entire cortex after which…

  2. Solar geomagnetic activity prediction using the fractal analysis and neural network

    NASA Astrophysics Data System (ADS)

    Ouadfeul, Sid-Ali; Aliouane, Leila

    2010-05-01

    The main goal of this work is to predict the Solar geomagnetic field activity using the neural network combined with the fractal analysis, first a multilayer perceptron neural network model is proposed to predict the future Solar geomagnetic field, the input of this machine is the geographic Coordinates and the time .The output is the three geomagnetic field components and the total field intensity recorded by the Orsted Satellite Mission. Holder Exponents of the measured geomagnetic field components and the total field intensity are calculated using the continuous wavelet transform. The Set of Holder exponents is used to train a Kohonen's Self-Organizing Map (SOM) neural machine which will become a classifier of the solar magnetic activity nature. The SOM neural network machine is used to predict the future solar magnetic storms, in this step the input is the calculated set of the Holder exponents of the predicted geomagnetic field components and the total field intensity. Obtained results show that the proposed technique is a powerful tool and can enhance the solar magnetic field activity prediction. Keywords: Solar geomagnetic activity, neural network, prediction, Orsted, Holder Exponents, Solar magnetic storms.

  3. Strategies influence neural activity for feedback learning across child and adolescent development.

    PubMed

    Peters, Sabine; Koolschijn, P Cédric M P; Crone, Eveline A; Van Duijvenvoorde, Anna C K; Raijmakers, Maartje E J

    2014-09-01

    Learning from feedback is an important aspect of executive functioning that shows profound improvements during childhood and adolescence. This is accompanied by neural changes in the feedback-learning network, which includes pre-supplementary motor area (pre- SMA)/anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), superior parietal cortex (SPC), and the basal ganglia. However, there can be considerable differences within age ranges in performance that are ascribed to differences in strategy use. This is problematic for traditional approaches of analyzing developmental data, in which age groups are assumed to be homogenous in strategy use. In this study, we used latent variable models to investigate if underlying strategy groups could be detected for a feedback-learning task and whether there were differences in neural activation patterns between strategies. In a sample of 268 participants between ages 8 to 25 years, we observed four underlying strategy groups, which were cut across age groups and varied in the optimality of executive functioning. These strategy groups also differed in neural activity during learning; especially the most optimal performing group showed more activity in DLPFC, SPC and pre-SMA/ACC compared to the other groups. However, age differences remained an important contributor to neural activation, even when correcting for strategy. These findings contribute to the debate of age versus performance predictors of neural development, and highlight the importance of studying individual differences in strategy use when studying development.

  4. Neural Activity Propagation in an Unfolded Hippocampal Preparation with a Penetrating Micro-electrode Array

    PubMed Central

    Gonzales-Reyes, Luis E.; Durand, Dominique M.

    2015-01-01

    This protocol describes a method for preparing a new in vitro flat hippocampus preparation combined with a micro-machined array to map neural activity in the hippocampus. The transverse hippocampal slice preparation is the most common tissue preparation to study hippocampus electrophysiology. A longitudinal hippocampal slice was also developed in order to investigate longitudinal connections in the hippocampus. The intact mouse hippocampus can also be maintained in vitro because its thickness allows adequate oxygen diffusion. However, these three preparations do not provide direct access to neural propagation since some of the tissue is either missing or folded. The unfolded intact hippocampus provides both transverse and longitudinal connections in a flat configuration for direct access to the tissue to analyze the full extent of signal propagation in the hippocampus in vitro. In order to effectively monitor the neural activity from the cell layer, a custom made penetrating micro-electrode array (PMEA) was fabricated and applied to the unfolded hippocampus. The PMEA with 64 electrodes of 200 µm in height could record neural activity deep inside the mouse hippocampus. The unique combination of an unfolded hippocampal preparation and the PMEA provides a new in-vitro tool to study the speed and direction of propagation of neural activity in the two-dimensional CA1-CA3 regions of the hippocampus with a high signal to noise ratio. PMID:25868081

  5. Epigenetic activation of Sox2 gene in the developing vertebrate neural plate.

    PubMed

    Bouzas, Santiago O; Marini, Melisa S; Torres Zelada, Eliana; Buzzi, Ailín L; Morales Vicente, David A; Strobl-Mazzulla, Pablo H

    2016-06-15

    One of the earliest manifestations of neural induction is onset of expression of the neural marker Sox2, mediated by the activation of the enhancers N1 and N2. By using loss and gain of function, we find that Sox2 expression requires the activity of JmjD2A and the Msk1 kinase, which can respectively demethylate the repressive H3K9me3 mark and phosphorylate the activating H3S10 (H3S10ph) mark. Bimolecular fluorescence complementation reveals that the adaptor protein 14-3-3, known to bind to H3S10ph, interacts with JMJD2A and may be involved in its recruitment to regulatory regions of the Sox2 gene. Chromatin immunoprecipitation reveals dynamic binding of JMJD2A to the Sox2 promoter and N-1 enhancer at the time of neural plate induction. Finally, we show a clear temporal antagonism on the occupancy of H3K9me3 and H3S10ph modifications at the promoter of the Sox2 locus before and after the neural plate induction. Taken together, our results propose a series of epigenetic events necessary for the early activation of the Sox2 gene in neural progenitor cells.

  6. A method for reconstructing tomographic images of evoked neural activity with electrical impedance tomography using intracranial planar arrays.

    PubMed

    Aristovich, Kirill Y; dos Santos, Gustavo Sato; Packham, Brett C; Holder, David S

    2014-06-01

    A method is presented for reconstructing images of fast neural evoked activity in rat cerebral cortex recorded with electrical impedance tomography (EIT) and a 6 × 5 mm(2) epicortical planar 30 electrode array. A finite element model of the rat brain and inverse solution with Tikhonov regularization were optimized in order to improve spatial resolution and accuracy. The optimized FEM mesh had 7 M tetrahedral elements, with finer resolution (0.05 mm) near the electrodes. A novel noise-based image processing technique based on t-test significance improved depth localization accuracy from 0.5 to 0.1 mm. With the improvements, a simulated perturbation 0.5 mm in diameter could be localized in a region 4 × 5 mm(2) under the centre of the array to a depth of 1.4 mm, thus covering all six layers of the cerebral cortex with an accuracy of <0.1 mm. Simulated deep brain hippocampal or thalamic activity could be localized with an accuracy of 0.5 mm with a 256 electrode array covering the brain. Parallel studies have achieved a temporal resolution of 2 ms for imaging fast neural activity by EIT during evoked activity; this encourages the view that fast neural EIT can now resolve the propagation of depolarization-related fast impedance changes in cerebral cortex and deeper in the brain with a resolution equal or greater to the dimension of a cortical column.

  7. Neural Activation During Risky Decision-Making in Youth at High Risk for Substance Use Disorders

    PubMed Central

    Hulvershorn, Leslie A.; Hummer, Tom A.; Fukunaga, Rena; Leibenluft, Ellen; Finn, Peter; Cyders, Melissa A.; Anand, Amit; Overhage, Lauren; Dir, Allyson; Brown, Joshua

    2015-01-01

    Risky decision-making, particularly in the context of reward-seeking behavior, is strongly associated with the presence of substance use disorders (SUDs). However, there has been little research on the neural substrates underlying reward-related decision-making in drug-naïve youth who are at elevated risk for SUDs. Participants comprised 23 high-risk (HR) youth with a well-established SUD risk phenotype and 27 low-risk healthy comparison (HC) youth, aged 10–14. Participants completed the balloon analog risk task (BART), a task designed to examine risky decision-making, during functional magnetic resonance imaging. The HR group had faster reaction times, but otherwise showed no behavioral differences from the HC group. HR youth experienced greater activation when processing outcome, as the chances of balloon explosion increased, relative to HC youth, in ventromedial prefrontal cortex (vmPFC). As explosion probability increased, group-by-condition interactions in the ventral striatum/anterior cingulate and the anterior insula showed increasing activation in HR youth, specifically on trials when explosions occurred. Thus, atypical activation increased with increasing risk of negative outcome (i.e., balloon explosion) in a cortico-striatal network in the HR group. These findings identify candidate neurobiological markers of addiction risk in youth at high familial and phenotypic risk for SUDs. PMID:26071624

  8. Abnormal Neural Activation to Faces in the Parents of Children with Autism.

    PubMed

    Yucel, G H; Belger, A; Bizzell, J; Parlier, M; Adolphs, R; Piven, J

    2015-12-01

    Parents of children with an autism spectrum disorder (ASD) show subtle deficits in aspects of social behavior and face processing, which resemble those seen in ASD, referred to as the "Broad Autism Phenotype " (BAP). While abnormal activation in ASD has been reported in several brain structures linked to social cognition, little is known regarding patterns in the BAP. We compared autism parents with control parents with no family history of ASD using 2 well-validated face-processing tasks. Results indicated increased activation in the autism parents to faces in the amygdala (AMY) and the fusiform gyrus (FG), 2 core face-processing regions. Exploratory analyses revealed hyper-activation of lateral occipital cortex (LOC) bilaterally in autism parents with aloof personality ("BAP+"). Findings suggest that abnormalities of the AMY and FG are related to underlying genetic liability for ASD, whereas abnormalities in the LOC and right FG are more specific to behavioral features of the BAP. Results extend our knowledge of neural circuitry underlying abnormal face processing beyond those previously reported in ASD to individuals with shared genetic liability for autism and a subset of genetically related individuals with the BAP.

  9. New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations.

    PubMed

    Cai, Zuowei; Huang, Lihong; Zhang, Lingling

    2015-05-01

    This paper investigates the problem of exponential synchronization of time-varying delayed neural networks with discontinuous neuron activations. Under the extended Filippov differential inclusion framework, by designing discontinuous state-feedback controller and using some analytic techniques, new testable algebraic criteria are obtained to realize two different kinds of global exponential synchronization of the drive-response system. Moreover, we give the estimated rate of exponential synchronization which depends on the delays and system parameters. The obtained results extend some previous works on synchronization of delayed neural networks not only with continuous activations but also with discontinuous activations. Finally, numerical examples are provided to show the correctness of our analysis via computer simulations. Our method and theoretical results have a leading significance in the design of synchronized neural network circuits involving discontinuous factors and time-varying delays.

  10. Control of a Shunt Active Power Filter with Neural Networks—Theory and Practical Results

    NASA Astrophysics Data System (ADS)

    Villalva, Marcelo G.; Filho, Ernesto Ruppert

    This paper presents theoretical studies and practical results obtained with a four-wire shunt active power filter fully controlled with neural networks. The paper is focused on a current compensation method based on adaptive linear elements (adalines), which are powerful and easy-to-use neural networks. The reader will find here an introduction about these networks, an explanatory section about the achievement of Fourier series with adalines, and the full description of an adaline-based selective current compensator. The paper also brings a quick discussion about the use of a feedforward neural network in the current controller of the active filter, as well as simulation and experimental results obtained with the prototype of an active power filter.

  11. Increased Neural Activation during Picture Encoding and Retrieval in 60-Year-Olds Compared to 20-Year-Olds

    ERIC Educational Resources Information Center

    Burgmans, S.; van Boxtel, M. P. J.; Vuurman, E. F. P. M.; Evers, E. A. T.; Jolles, J.

    2010-01-01

    Brain aging has been associated with both reduced and increased neural activity during task execution. The purpose of the present study was to investigate whether increased neural activation during memory encoding and retrieval is already present at the age of 60 as well as to obtain more insight into the mechanism behind increased activity.…

  12. Neural activity to intense positive versus negative stimuli can help differentiate bipolar disorder from unipolar major depressive disorder in depressed adolescents: a pilot fMRI study.

    PubMed

    Diler, Rasim Somer; de Almeida, Jorge Renner Cardoso; Ladouceur, Cecile; Birmaher, Boris; Axelson, David; Phillips, Mary

    2013-12-30

    Failure to distinguish bipolar depression (BDd) from the unipolar depression of major depressive disorder (UDd) in adolescents has significant clinical consequences. We aimed to identify differential patterns of functional neural activity in BDd versus UDd and employed two (fearful and happy) facial expression/ gender labeling functional magnetic resonance imaging (fMRI) experiments to study emotion processing in 10 BDd (8 females, mean age=15.1 ± 1.1) compared to age- and gender-matched 10 UDd and 10 healthy control (HC) adolescents who were age- and gender-matched to the BDd group. BDd adolescents, relative to UDd, showed significantly lower activity to both intense happy (e.g., insula and temporal cortex) and intense fearful faces (e.g., frontal precentral cortex). Although the neural regions recruited in each group were not the same, both BDd and UDd adolescents, relative to HC, showed significantly lower neural activity to intense happy and mild happy faces, but elevated neural activity to mild fearful faces. Our results indicated that patterns of neural activity to intense positive and negative emotional stimuli can help differentiate BDd from UDd in adolescents.

  13. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

    PubMed

    Li, Shuai; Li, Yangming

    2013-10-28

    The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

  14. Identification of another actin-related protein (Arp) 2/3 complex binding site in neural Wiskott-Aldrich syndrome protein (N-WASP) that complements actin polymerization induced by the Arp2/3 complex activating (VCA) domain of N-WASP.

    PubMed

    Suetsugu, S; Miki, H; Takenawa, T

    2001-08-31

    Neural Wiskott-Aldrich syndrome protein (N-WASP) is an essential regulator of actin cytoskeleton formation via its association with the actin-related protein (Arp) 2/3 complex. It is believed that the C-terminal Arp2/3 complex-activating domain (verprolin homology, cofilin homology, and acidic (VCA) or C-terminal region of WASP family proteins domain) of N-WASP is usually kept masked (autoinhibition) but is opened upon cooperative binding of upstream regulators such as Cdc42 and phosphatidylinositol 4,5-bisphosphate (PIP2). However, the mechanisms of autoinhibition and association with Arp2/3 complex are still unclear. We focused on the acidic region of N-WASP because it is thought to interact with Arp2/3 complex and may be involved in autoinhibition. Partial deletion of acidic residues from the VCA portion alone greatly reduced actin polymerization activity, demonstrating that the acidic region contributes to Arp2/3 complex-mediated actin polymerization. Surprisingly, the same partial deletion of the acidic region in full-length N-WASP led to constitutive activity comparable with the activity seen with the VCA portion. Therefore, the acidic region in full-length N-WASP plays an indispensable role in the formation of the autoinhibited structure. This mutant contains WASP-homology (WH) 1 domain with weak affinity to the Arp2/3 complex, leading to activity in the absence of part of the acidic region. Furthermore, the actin comet formed by the DeltaWH1 mutant of N-WASP was much smaller than that of wild-type N-WASP. Partial deletion of acidic residues did not affect actin comet size, indicating the importance of the WH1 domain in actin structure formation. Collectively, the acidic region of N-WASP plays an essential role in Arp2/3 complex activation as well as in the formation of the autoinhibited structure, whereas the WH1 domain complements the activation of the Arp2/3 complex achieved through the VCA portion.

  15. Cell cycle-related genes p57kip2, Cdk5 and Spin in the pathogenesis of neural tube defects.

    PubMed

    Li, Xinjun; Yang, Zhong; Zeng, Yi; Xu, Hong; Li, Hongli; Han, Yangyun; Long, Xiaodong; You, Chao

    2013-07-15

    In the field of developmental neurobiology, accurate and ordered regulation of the cell cycle and apoptosis are crucial factors contributing to the normal formation of the neural tube. Preliminary studies identified several genes involved in the development of neural tube defects. In this study, we established a model of developmental neural tube defects by administration of retinoic acid to pregnant rats. Gene chip hybridization analysis showed that genes related to the cell cycle and apoptosis, signal transduction, transcription and translation regulation, energy and metabolism, heat shock, and matrix and cytoskeletal proteins were all involved in the formation of developmental neural tube defects. Among these, cell cycle-related genes were predominant. Retinoic acid ment caused differential expression of three cell cycle-related genes p57kip2, Cdk5 and Spin, the expression levels of which were downregulated by retinoic acid and upregulated during normal neural tube formation. The results of this study indicate that cell cycle-related genes play an important role in the formation of neural tube defects. P57kip2, Cdk5 and Spin may be critical genes in the pathogenesis of neural tube defects.

  16. Reduced Specificity of Hippocampal and Posterior Ventrolateral Prefrontal Activity during Relational Retrieval in Normal Aging

    ERIC Educational Resources Information Center

    Giovanello, Kelly S.; Schacter, Daniel L.

    2012-01-01

    Neuroimaging studies of episodic memory in young adults demonstrate greater functional neural activity in ventrolateral pFC and hippocampus during retrieval of relational information as compared with item information. We tested the hypothesis that healthy older adults--individuals who exhibit behavioral declines in relational memory--would show…

  17. False memory for face in short-term memory and neural activity in human amygdala.

    PubMed

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2014-12-03

    Human memory is often inaccurate. Similar to words and figures, new faces are often recognized as seen or studied items in long- and short-term memory tests; however, the neural mechanisms underlying this false memory remain elusive. In a previous fMRI study using morphed faces and a standard false memory paradigm, we found that there was a U-shaped response curve of the amygdala to old, new, and lure items. This indicates that the amygdala is more active in response to items that are salient (hit and correct rejection) compared to items that are less salient (false alarm), in terms of memory retrieval. In the present fMRI study, we determined whether the false memory for faces occurs within the short-term memory range (a few seconds), and assessed which neural correlates are involved in veridical and illusory memories. Nineteen healthy participants were scanned by 3T MRI during a short-term memory task using morphed faces. The behavioral results indicated that the occurrence of false memories was within the short-term range. We found that the amygdala displayed a U-shaped response curve to memory items, similar to those observed in our previous study. These results suggest that the amygdala plays a common role in both long- and short-term false memory for faces. We made the following conclusions: First, the amygdala is involved in detecting the saliency of items, in addition to fear, and supports goal-oriented behavior by modulating memory. Second, amygdala activity and response time might be related with a subject's response criterion for similar faces.

  18. Neural activity patterns evoked by a spouse's incongruent emotional reactions when recalling marriage-relevant experiences.

    PubMed

    Petrican, Raluca; Rosenbaum, Rachel Shayna; Grady, Cheryl

    2015-10-01

    Resonance with the inner states of another social actor is regarded as a hallmark of emotional closeness. Nevertheless, sensitivity to potential incongruities between one's own and an intimate partner's subjective experience is reportedly also important for close relationship quality. Here, we tested whether perceivers show greater neurobehavioral responsiveness to a spouse's positive (rather than negative) context-incongruent emotions, and whether this effect is influenced by the perceiver's satisfaction with the relationship. Thus, we used fMRI to scan older long-term married female perceivers while they judged either their spouse's or a stranger's affect, based on incongruent nonverbal and verbal cues. The verbal cues were selected to evoke strongly polarized affective responses. Higher perceiver marital satisfaction predicted greater neural processing of the spouse's (rather than the strangers) nonverbal cues. Nevertheless, across all perceivers, greater neural processing of a spouse's (rather than a stranger's) nonverbal behavior was reliably observed only when the behavior was positive and the context was negative. The spouse's positive (rather than negative) nonverbal behavior evoked greater activity in putative mirror neuron areas, such as the bilateral inferior parietal lobule (IPL). This effect was related to a stronger inhibitory influence of cognitive control areas on mirror system activity in response to a spouse's negative nonverbal cues, an effect that strengthened with increasing perceiver marital satisfaction. Our valence-asymmetric findings imply that neurobehavioral responsiveness to a close other's emotions may depend, at least partly, on cognitive control resources, which are used to support the perceiver's interpersonal goals (here, goals that are relevant to relationship stability).

  19. Afterimage induced neural activity during emotional face perception.

    PubMed

    Cheal, Jenna L; Heisz, Jennifer J; Walsh, Jennifer A; Shedden, Judith M; Rutherford, M D

    2014-02-26

    The N170 response differs when positive versus negative facial expressions are viewed. This neural response could be associated with the perception of emotions, or some feature of the stimulus. We used an aftereffect paradigm to clarify. Consistent with previous reports of emotional aftereffects, a neutral face was more likely to be described as happy following a sad face adaptation, and more likely to be described as sad following a happy face adaptation. In addition, similar to previous observations with actual emotional faces, we found differences in the latency of the N170 elicited by the neutral face following sad versus happy face adaptation, demonstrating that the emotion-specific effect on the N170 emerges even when emotion expressions are perceptually different but physically identical. The re-entry of emotional information from other brain regions may be driving the emotional aftereffects and the N170 latency differences.

  20. Model Of Neural Network With Creative Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Barhen, Jacob

    1993-01-01

    Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.

  1. What shall I be, what must I be: neural correlates of personal goal activation

    PubMed Central

    Strauman, Timothy J.; Detloff, Allison M.; Sestokas, Rima; Smith, David V.; Goetz, Elena L.; Rivera, Christine; Kwapil, Lori

    2013-01-01

    How is the brain engaged when people are thinking about their hopes, dreams, and obligations? Regulatory focus theory postulates two classes of personal goals and motivational systems for pursuing them. Ideal goals, such as hopes and aspirations, are pursued via the promotion system through “making good things happen.” Ought goals, such as obligations or responsibilities, are pursued via the prevention system through “keeping bad things from happening.” This study investigated the neural correlates of ideal and ought goal priming using an event-related fMRI design with rapid masked stimulus presentations. We exposed participants to their self-identified ideal and ought goals, yoked-control words and non-words. We also examined correlations between goal-related activation and measures of regulatory focus, behavioral activation/inhibition, and negative affect. Ideal priming led to activation in frontal and occipital regions as well as caudate and thalamus, whereas prevention goal priming was associated with activation in precuneus and posterior cingulate cortex. Individual differences in dysphoric/anxious affect and regulatory focus, but not differences in BAS/BIS strength, were predictive of differential activation in response to goal priming. The regions activated in response to ideal and ought goal priming broadly map onto the cortical midline network that has been shown to index processing of self-referential stimuli. Individual differences in regulatory focus and negative affect impact this network and appeared to influence the strength and accessibility of the promotion and prevention systems. The results support a fundamental distinction between promotion and prevention and extend our understanding of how personal goals influence behavior. PMID:23316145

  2. Transient Global Amnesia following Neural and Cardiac Angiography May Be Related to Ischemia

    PubMed Central

    Zhang, Yang; Chen, Ming; Bao, Shengde

    2016-01-01

    Introduction. Transient global amnesia (TGA) following angiography is rare, and the pathogenesis has not been illustrated clearly till now. The aim of this research is to explore the pathogenesis of TGA following angiography by analyzing our data and reviewing the literature. Methods. We retrospectively studied 20836 cases with angiography in our hospital between 2007 and 2015 and found 9 cases with TGA following angiography. The data of these 9 cases were analyzed. Results. We found all 9 cases with TGA following neural angiography (5 in 4360) or cardiac angiography (4 in 8817) and no case with TGA following peripheral angiography (0 in 7659). Statistical difference was found when comparing the neural and cardiac angiography group with peripheral group (p = 0.022). Two cases with TGA were confirmed with small acute infarctions in hippocampus after angiography. This might be related to the microemboli which were rushed into vertebral artery following blood flow during neural angiography or cardiac angiography. There was no statistical difference when comparing the different approaches for angiography (p = 0.82) and different contrast agents (p = 0.619). Conclusion. Based on the positive findings of imaging study and our analysis, we speculate that ischemia in the medial temporal lobe with the involvement of the hippocampus might be an important reason of TGA following angiography. PMID:27419129

  3. Dopamine neurons modulate neural encoding and expression of depression-related behaviour

    PubMed Central

    Ferenczi, Emily A.; Tsai, Hsing-Chen; Finkelstein, Joel; Kim, Sung-Yon; Adhikari, Avishek; Thompson, Kimberly R.; Andalman, Aaron S.; Gunaydin, Lisa A.; Witten, Ilana B.; Deisseroth, Karl

    2014-01-01

    Major depression is characterized by diverse debilitating symptoms that include hopelessness and anhedonia1. Dopamine neurons involved in reward and motivation2–9 are among many neural populations that have been hypothesized to be relevant10, and certain antidepressant treatments, including medications and brain stimulation therapies, can influence the complex dopamine system. Until now it has not been possible to test this hypothesis directly, even in animal models, as existing therapeutic interventions are unable to specifically target dopamine neurons. Here we investigated directly the causal contributions of defined dopamine neurons to multidimensional depression-like phenotypes induced by chronic mild stress, by integrating behavioural, pharmacological, optogenetic and electrophysiological methods in freely moving rodents. We found that bidirectional control (inhibition or excitation) of specified midbrain dopamine neurons immediately and bidirectionally modulates (induces or relieves) multiple independent depression symptoms caused by chronic stress. By probing the circuit implementation of these effects, we observed that optogenetic recruitment of these dopamine neurons potently alters the neural encoding of depression-related behaviours in the downstream nucleus accumbens of freely moving rodents, suggesting that processes affecting depression symptoms may involve alterations in the neural encoding of action in limbic circuitry. PMID:23235822

  4. 12-Deoxyphorbols Promote Adult Neurogenesis by Inducing Neural Progenitor Cell Proliferation via PKC Activation

    PubMed Central

    Geribaldi-Doldán, Noelia; Flores-Giubi, Eugenia; Murillo-Carretero, Maribel; García-Bernal, Francisco; Carrasco, Manuel; Macías-Sánchez, Antonio J.; Domínguez-Riscart, Jesús; Verástegui, Cristina; Hernández-Galán, Rosario

    2016-01-01

    Background: Neuropsychiatric and neurological disorders frequently occur after brain insults associated with neuronal loss. Strategies aimed to facilitate neuronal renewal by promoting neurogenesis constitute a promising therapeutic option to treat neuronal death-associated disorders. In the adult brain, generation of new neurons occurs physiologically throughout the entire life controlled by extracellular molecules coupled to intracellular signaling cascades. Proteins participating in these cascades within neurogenic regions constitute potential pharmacological targets to promote neuronal regeneration of injured areas of the central nervous system. Methodology: We have performed in vitro and in vivo approaches to determine neural progenitor cell proliferation to understand whether activation of kinases of the protein kinase C family facilitates neurogenesis in the adult brain. Results: We have demonstrated that protein kinase C activation by phorbol-12-myristate-13-acetate induces neural progenitor cell proliferation in vitro. We also show that the nontumorogenic protein kinase C activator prostratin exerts a proliferative effect on neural progenitor cells in vitro. This effect can be reverted by addition of the protein kinase C inhibitor G06850, demonstrating that the effect of prostratin is mediated by protein kinase C activation. Additionally, we show that prostratin treatment in vivo induces proliferation of neural progenitor cells within the dentate gyrus of the hippocampus and the subventricular zone. Finally, we describe a library of diterpenes with a 12-deoxyphorbol structure similar to that of prostratin that induces a stronger effect than prostratin on neural progenitor cell proliferation both in vitro and in vivo. Conclusions: This work suggests that protein kinase C activation is a promising strategy to expand the endogenous neural progenitor cell population to promote neurogenesis and highlights the potential of 12-deoxyphorbols as pharmaceutical

  5. Reduced respiratory neural activity elicits a long-lasting decrease in the CO2 threshold for apnea in anesthetized rats.

    PubMed

    Baertsch, N A; Baker, T L

    2017-01-01

    Two critical parameters that influence breathing stability are the levels of arterial pCO2 at which breathing ceases and subsequently resumes - termed the apneic and recruitment thresholds (AT and RT, respectively). Reduced respiratory neural activity elicits a chemoreflex-independent, long-lasting increase in phrenic burst amplitude, a form of plasticity known as inactivity-induced phrenic motor facilitation (iPMF). The physiological significance of iPMF is unknown. To determine if iPMF and neural apnea have long-lasting physiological effects on breathing, we tested the hypothesis that patterns of neural apnea that induce iPMF also elicit changes in the AT and RT. Phrenic nerve activity and end-tidal CO2 were recorded in urethane-anesthetized, ventilated rats to quantify phrenic nerve burst amplitude and the AT and RT before and after three patterns of neural apnea that differed in their duration and ability to elicit iPMF: brief intermittent neural apneas, a single brief "massed" neural apnea, or a prolonged neural apnea. Consistent with our hypothesis, we found that patterns of neural apnea that elicited iPMF also resulted in changes in the AT and RT. Specifically, intermittent neural apneas progressively decreased the AT with each subsequent neural apnea, which persisted for at least 60min. Similarly, a prolonged neural apnea elicited a long-lasting decrease in the AT. In both cases, the magnitude of the AT decrease was proportional to iPMF. In contrast, the RT was transiently decreased following prolonged neural apnea, and was not proportional to iPMF. No changes in the AT or RT were observed following a single brief neural apnea. Our results indicate that the AT and RT are differentially altered by neural apnea and suggest that specific patterns of neural apnea that elicit plasticity may stabilize breathing via a decrease in the AT.

  6. Improved training of neural networks for the nonlinear active control of sound and vibration.

    PubMed

    Bouchard, M; Paillard, B; Le Dinh, C T

    1999-01-01

    Active control of sound and vibration has been the subject of a lot of research in recent years, and examples of applications are now numerous. However, few practical implementations of nonlinear active controllers have been realized. Nonlinear active controllers may be required in cases where the actuators used in active control systems exhibit nonlinear characteristics, or in cases when the structure to be controlled exhibits a nonlinear behavior. A multilayer perceptron neural-network based control structure was previously introduced as a nonlinear active controller, with a training algorithm based on an extended backpropagation scheme. This paper introduces new heuristical training algorithms for the same neural-network control structure. The objective is to develop new algorithms with faster convergence speed (by using nonlinear recursive-least-squares algorithms) and/or lower computational loads (by using an alternative approach to compute the instantaneous gradient of the cost function). Experimental results of active sound control using a nonlinear actuator with linear and nonlinear controllers are presented. The results show that some of the new algorithms can greatly improve the learning rate of the neural-network control structure, and that for the considered experimental setup a neural-network controller can outperform linear controllers.

  7. Comae Berenicids and related activities

    NASA Astrophysics Data System (ADS)

    Koseki, Masahiro

    2011-12-01

    The Comae Berenicids have been considered as a winter shower but lower meteor activities continue the whole year round in this region. It might be called the meteors of Coma Sororum Medusae (CSM) instead of Comae Berenicids (COM). The CSM radiant passes the zenith twice in lower latitudes of the northern hemisphere and CSM activities vary with the altitude of the radiant. December Leonis Minorids (DLM) and September varepsilon-Perseids (SPE) are distinct from the CSM background meteors, but July Pegasids (JPE), delta-Aurigids (DAU) and nu-Aurigids (NAU) are buried in this complex. The conglomeration of DLM, COM and JCO (January Comae Berenicids) has caused confusion in meteor observations as to whether they are three distinct sources or should be considered as one. A simple model of meteor stream structure shows the clear profile of their activities. Although their radiant drifts are overlapping, they might have different parent objects.

  8. Familial risk and ADHD-specific neural activity revealed by case-control, discordant twin pair design.

    PubMed

    Godinez, Detre A; Willcutt, Erik G; Burgess, Gregory C; Depue, Brendan E; Andrews-Hanna, Jessica R; Banich, Marie T

    2015-09-30

    Individuals with ADHD, as well as their family members who do not meet clinical criteria, have shown deficits in executive function. However, it remains unclear whether underlying neural alterations are familial or ADHD-specific. To investigate this issue, neural activation underlying executive function was assessed using functional magnetic resonance imaging during performance of a Stroop task in three groups of individuals: 20 young adults who were diagnosed with ADHD in childhood, their 20 dizygotic co-twins without ADHD in childhood, and 20 unrelated controls selected from dizygotic twin pairs in which neither twin had ADHD in childhood (total n=60). Implicating the frontoparietal network as a location of effects specific to ADHD, activation in the superior frontal (Brodmann's Area - BA 6) and parietal regions (BA 40) was significantly reduced in twins with childhood ADHD compared to both their control co-twins and unrelated control twins. Consistent with familial influences, activity in the anterior cingulate and insula was significantly reduced in both the twins with ADHD and their co-twins compared to the unrelated controls. These results show that both ADHD-specific and familial influences related to an ADHD diagnosis impact neural systems underlying executive function.

  9. Application of neural networks with orthogonal activation functions in control of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.

    2016-04-01

    In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.

  10. Nonsmooth finite-time stabilization of neural networks with discontinuous activations.

    PubMed

    Liu, Xiaoyang; Park, Ju H; Jiang, Nan; Cao, Jinde

    2014-04-01

    This paper is concerned with the finite-time stabilization for a class of neural networks (NNs) with discontinuous activations. The purpose of the addressed problem is to design a discontinuous controller to stabilize the states of such neural networks in finite time. Unlike the previous works, such stabilization objective will be realized for neural networks when the activations and controllers are both discontinuous. Based on the famous finite-time stability theorem of nonlinear systems and nonsmooth analysis in mathematics, sufficient conditions are established to ensure the finite-time stability of the dynamics of NNs. Then, the upper bound of the settling time for stabilization can be estimated in two forms due to two different methods of proof. Finally, two numerical examples are given to illustrate the effectiveness of the proposed design method.

  11. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals

    PubMed Central

    2014-01-01

    Background Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural “intent”. A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of “intent” may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. Methods We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called “Motolink”, which detects these neural patterns and triggers a “spinal” stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for “Motolink” hardware. Results We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the “Motolink” system to detect the neural “intent” of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. Conclusion We present a direct cortical “intent”-driven electronic spinal

  12. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.

    PubMed

    Winkler, David A; Le, Tu C

    2017-01-01

    Neural networks have generated valuable Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) models for a wide variety of small molecules and materials properties. They have grown in sophistication and many of their initial problems have been overcome by modern mathematical techniques. QSAR studies have almost always used so-called "shallow" neural networks in which there is a single hidden layer between the input and output layers. Recently, a new and potentially paradigm-shifting type of neural network based on Deep Learning has appeared. Deep learning methods have generated impressive improvements in image and voice recognition, and are now being applied to QSAR and QSAR modelling. This paper describes the differences in approach between deep and shallow neural networks, compares their abilities to predict the properties of test sets for 15 large drug data sets (the kaggle set), discusses the results in terms of the Universal Approximation theorem for neural networks, and describes how DNN may ameliorate or remove troublesome "activity cliffs" in QSAR data sets.

  13. Neural speech recognition: continuous phoneme decoding using spatiotemporal representations of human cortical activity

    NASA Astrophysics Data System (ADS)

    Moses, David A.; Mesgarani, Nima; Leonard, Matthew K.; Chang, Edward F.

    2016-10-01

    Objective. The superior temporal gyrus (STG) and neighboring brain regions play a key role in human language processing. Previous studies have attempted to reconstruct speech information from brain activity in the STG, but few of them incorporate the probabilistic framework and engineering methodology used in modern speech recognition systems. In this work, we describe the initial efforts toward the design of a neural speech recognition (NSR) system that performs continuous phoneme recognition on English stimuli with arbitrary vocabulary sizes using the high gamma band power of local field potentials in the STG and neighboring cortical areas obtained via electrocorticography. Approach. The system implements a Viterbi decoder that incorporates phoneme likelihood estimates from a linear discriminant analysis model and transition probabilities from an n-gram phonemic language model. Grid searches were used in an attempt to determine optimal parameterizations of the feature vectors and Viterbi decoder. Main results. The performance of the system was significantly improved by using spatiotemporal representations of the neural activity (as opposed to purely spatial representations) and by including language modeling and Viterbi decoding in the NSR system. Significance. These results emphasize the importance of modeling the temporal dynamics of neural responses when analyzing their variations with respect to varying stimuli and demonstrate that speech recognition techniques can be successfully leveraged when decoding speech from neural signals. Guided by the results detailed in this work, further development of the NSR system could have applications in the fields of automatic speech recognition and neural prosthetics.

  14. Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis.

    PubMed

    Hoogi, Assaf; Subramaniam, Arjun; Veerapaneni, Rishi; Rubin, Daniel

    2016-11-11

    In this paper, we propose a generalization of the level set segmentation approach by supplying a novel method for adaptive estimation of active contour parameters. The presented segmentation method is fully automatic once the lesion has been detected. First, the location of the level set contour relative to the lesion is estimated using a convolutional neural network (CNN). The CNN has two convolutional layers for feature extraction, which lead into dense layers for classification. Second, the output CNN probabilities are then used to adaptively calculate the parameters of the active contour functional during the segmentation process. Finally, the adaptive window size surrounding each contour point is re-estimated by an iterative process that considers lesion size and spatial texture. We demonstrate the capabilities of our method on a dataset of 164 MRI and 112 CT images of liver lesions that includes low contrast and heterogeneous lesions as well as noisy images. To illustrate the strength of our method, we evaluated it against state of the art CNNbased and active contour techniques. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better than currently available methods. An average Dice improvement of 0.27 was found across the entire dataset over all comparisons. We also analyzed two challenging subsets of lesions and obtained a significant Dice improvement of ����.�������� with our method (p < 0.001, Wilcoxon).

  15. Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis.

    PubMed

    Hoogi, Assaf; Subramaniam, Arjun; Veerapaneni, Rishi; Rubin, Daniel

    2016-11-11

    In this paper, we propose a generalization of the level set segmentation approach by supplying a novel method for adaptive estimation of active contour parameters. The presented segmentation method is fully automatic once the lesion has been detected. First, the location of the level set contour relative to the lesion is estimated using a convolutional neural network (CNN). The CNN has two convolutional layers for feature extraction, which lead into dense layers for classification. Second, the output CNN probabilities are then used to adaptively calculate the parameters of the active contour functional during the segmentation process. Finally, the adaptive window size surrounding each contour point is re-estimated by an iterative process that considers lesion size and spatial texture. We demonstrate the capabilities of our method on a dataset of 164 MRI and 112 CT images of liver lesions that includes low contrast and heterogeneous lesions as well as noisy images. To illustrate the strength of our method, we evaluated it against state of the art CNNbased and active contour techniques. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better than currently available methods. An average Dice improvement of 0.27 was found across the entire dataset over all comparisons. We also analyzed two challenging subsets of lesions and obtained a significant Dice improvement of 0.24 with our method (p < 0.001, Wilcoxon).

  16. Toutatis, a TIP5-related protein, positively regulates Pannier function during Drosophila neural development.

    PubMed

    Vanolst, Luc; Fromental-Ramain, Catherine; Ramain, Philippe

    2005-10-01

    The GATA factor Pannier (Pnr) activates proneural expression through binding to a remote enhancer of the achaete-scute (ac-sc) complex. Chip associates both with Pnr and with the (Ac-Sc)-Daughterless heterodimer bound to the ac-sc promoters to give a proneural complex that facilitates enhancer-promoter communication during development. Using a yeast two-hybrid screening, we have identified Toutatis (Tou), which physically interacts with both Pnr and Chip. Loss-of-function and gain-of-function experiments indicate that Tou cooperates with Pnr and Chip during neural development. Tou shares functional domains with chromatin remodelling proteins, including TIP5 (termination factor TTFI-interacting protein 5) of NoRC (nucleolar remodelling complex), which mediates repression of RNA polymerase 1 transcription. In contrast, Tou acts positively to activate proneural gene expression. Moreover, we show that Iswi associates with Tou, Pnr and Chip, and is also required during Pnr-driven neural development. The results suggest that Tou and Iswi may belong to a complex that directly regulates the activity of Pnr and Chip during enhancer-promoter communication, possibly through chromatin remodelling.

  17. Alterations in Brain Activation During Cognitive Empathy Are Related to Social Functioning in Schizophrenia

    PubMed Central

    Smith, Matthew J.; Schroeder, Matthew P.; Abram, Samantha V.; Goldman, Morris B.; Parrish, Todd B.; Wang, Xue; Derntl, Birgit; Habel, Ute; Decety, Jean; Reilly, James L.; Csernansky, John G.; Breiter, Hans C.

    2015-01-01

    Impaired cognitive empathy (ie, understanding the emotional experiences of others) is associated with poor social functioning in schizophrenia. However, it is unclear whether the neural activity underlying cognitive empathy relates to social functioning. This study examined the neural activation supporting cognitive empathy performance and whether empathy-related activation during correctly performed trials was associated with self-reported cognitive empathy and measures of social functioning. Thirty schizophrenia outpatients and 24 controls completed a cognitive empathy paradigm during functional magnetic resonance imaging. Neural activity corresponding to correct judgments about the expected emotional expression in a social interaction was compared in schizophrenia subjects relative to control subjects. Participants also completed a self-report measure of empathy and 2 social functioning measures (social competence and social attainment). Schizophrenia subjects demonstrated significantly lower accuracy in task performance and were characterized by hypoactivation in empathy-related frontal, temporal, and parietal regions as well as hyperactivation in occipital regions compared with control subjects during accurate cognitive empathy trials. A cluster with peak activation in the supplementary motor area (SMA) extending to the anterior midcingulate cortex (aMCC) correlated with social competence and social attainment in schizophrenia subjects but not controls. These results suggest that neural correlates of cognitive empathy may be promising targets for interventions aiming to improve social functioning and that brain activation in the SMA/aMCC region could be used as a biomarker for monitoring treatment response. PMID:24583906

  18. Alterations in brain activation during cognitive empathy are related to social functioning in schizophrenia.

    PubMed

    Smith, Matthew J; Schroeder, Matthew P; Abram, Samantha V; Goldman, Morris B; Parrish, Todd B; Wang, Xue; Derntl, Birgit; Habel, Ute; Decety, Jean; Reilly, James L; Csernansky, John G; Breiter, Hans C

    2015-01-01

    Impaired cognitive empathy (ie, understanding the emotional experiences of others) is associated with poor social functioning in schizophrenia. However, it is unclear whether the neural activity underlying cognitive empathy relates to social functioning. This study examined the neural activation supporting cognitive empathy performance and whether empathy-related activation during correctly performed trials was associated with self-reported cognitive empathy and measures of social functioning. Thirty schizophrenia outpatients and 24 controls completed a cognitive empathy paradigm during functional magnetic resonance imaging. Neural activity corresponding to correct judgments about the expected emotional expression in a social interaction was compared in schizophrenia subjects relative to control subjects. Participants also completed a self-report measure of empathy and 2 social functioning measures (social competence and social attainment). Schizophrenia subjects demonstrated significantly lower accuracy in task performance and were characterized by hypoactivation in empathy-related frontal, temporal, and parietal regions as well as hyperactivation in occipital regions compared with control subjects during accurate cognitive empathy trials. A cluster with peak activation in the supplementary motor area (SMA) extending to the anterior midcingulate cortex (aMCC) correlated with social competence and social attainment in schizophrenia subjects but not controls. These results suggest that neural correlates of cognitive empathy may be promising targets for interventions aiming to improve social functioning and that brain activation in the SMA/aMCC region could be used as a biomarker for monitoring treatment response.

  19. Comparative aspects of adult neural stem cell activity in vertebrates.

    PubMed

    Grandel, Heiner; Brand, Michael

    2013-03-01

    At birth or after hatching from the egg, vertebrate brains still contain neural stem cells which reside in specialized niches. In some cases, these stem cells are deployed for further postnatal development of parts of the brain until the final structure is reached. In other cases, postnatal neurogenesis continues as constitutive neurogenesis into adulthood leading to a net increase of the number of neurons with age. Yet, in other cases, stem cells fuel neuronal turnover. An example is protracted development of the cerebellar granular layer in mammals and birds, where neurogenesis continues for a few weeks postnatally until the granular layer has reached its definitive size and stem cells are used up. Cerebellar growth also provides an example of continued neurogenesis during adulthood in teleosts. Again, it is the granular layer that grows as neurogenesis continues and no definite adult cerebellar size is reached. Neuronal turnover is most clearly seen in the telencephalon of male canaries, where projection neurons are replaced in nucleus high vocal centre each year before the start of a new mating season--circuitry reconstruction to achieve changes of the song repertoire in these birds? In this review, we describe these and other examples of adult neurogenesis in different vertebrate taxa. We also compare the structure of the stem cell niches to find common themes in their organization despite different functions adult neurogenesis serves in different species. Finally, we report on regeneration of the zebrafish telencephalon after injury to highlight similarities and differences of constitutive neurogenesis and neuronal regeneration.

  20. Optical imaging of neural activity: from neuron to brain

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Zeng, Shaoqun; Gong, Hui

    2003-12-01

    This paper introduces the optical imaging approaches at three levels in cognitive neuroscience in the Key Laboratory of Biomedical Photonics of Ministry of Education of China. In molecular and cellular level, the advances in microscopy, molecular optical marker, and sample preparations have made possible studies that characterize the form and function of neurons in unprecedented detail. The development of two-photon excitation has enabled fluorescent imaging of small structures in the midst of highly scattering media with little photodamage. The combination of MPE and multi-electrode array provides a powerful approach for neuronal networks imaging. Intrinsic signal imaging (ISI) and laser speckle imaging (LSI) are effective approaches for intrinsic signal imaging at a given cortical site. No alternative imaging technique for the visualization of functional organization in the living brain provides a comparable spatial resolution. It is this level of resolution that reveals where processing is performed - a necessary step for the understanding of the neural code at the population level. Completely noninvasive optical imaging through the intact human skull, such as functional near infrared imaging may provide an imaging tool offering both the spatial and the temporal resolutions required to expand our knowledge of the principles underlying the remarkable performance of the human cerebral cortex.

  1. Time structure of the activity in neural network models

    NASA Astrophysics Data System (ADS)

    Gerstner, Wulfram

    1995-01-01

    Several neural network models in continuous time are reconsidered in the framework of a general mean-field theory which is exact in the limit of a large and fully connected network. The theory assumes pointlike spikes which are generated by a renewal process. The effect of spikes on a receiving neuron is described by a linear response kernel which is the dominant term in a weak-coupling expansion. It is shown that the resulting ``spike response model'' is the most general renewal model with linear inputs. The standard integrate-and-fire model forms a special case. In a network structure with several pools of identical spiking neurons, the global states and the dynamic evolution are determined by a nonlinear integral equation which describes the effective interaction within and between different pools. We derive explicit stability criteria for stationary (incoherent) and oscillatory (coherent) solutions. It is shown that the stationary state of noiseless systems is ``almost always'' unstable. Noise suppresses fast oscillations and stabilizes the system. Furthermore, collective oscillations are stable only if the firing occurs while the synaptic potential is increasing. In particular, collective oscillations in a network with delayless excitatory interaction are at most semistable. Inhibitory interactions with short delays or excitatory interactions with long delays lead to stable oscillations. Our general results allow a straightforward application to different network models with spiking neurons. Furthermore, the theory allows an estimation of the errors introduced in firing rate or ``graded-response'' models.

  2. Human Brain Activity Related to the Tactile Perception of Stickiness.

    PubMed

    Yeon, Jiwon; Kim, Junsuk; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    While the perception of stickiness serves as one of the fundamental dimensions for tactile sensation, little has been elucidated about the stickiness sensation and its neural correlates. The present study investigated how the human brain responds to perceived tactile sticky stimuli using functional magnetic resonance imaging (fMRI). To evoke tactile perception of stickiness with multiple intensities, we generated silicone stimuli with varying catalyst ratios. Also, an acrylic sham stimulus was prepared to present a condition with no sticky sensation. From the two psychophysics experiments-the methods of constant stimuli and the magnitude estimation-we could classify the silicone stimuli into two groups according to whether a sticky perception was evoked: the Supra-threshold group that evoked sticky perception and the Infra-threshold group that did not. In the Supra-threshold vs. Sham contrast analysis of the fMRI data using the general linear model (GLM), the contralateral primary somatosensory area (S1) and ipsilateral dorsolateral prefrontal cortex (DLPFC) showed significant activations in subjects, whereas no significant result was found in the Infra-threshold vs. Sham contrast. This result indicates that the perception of stickiness not only activates the somatosensory cortex, but also possibly induces higher cognitive processes. Also, the Supra- vs. Infra-threshold contrast analysis revealed significant activations in several subcortical regions, including the pallidum, putamen, caudate and thalamus, as well as in another region spanning the insula and temporal cortices. These brain regions, previously known to be related to tactile discrimination, may subserve the discrimination of different intensities of tactile stickiness. The present study unveils the human neural correlates of the tactile perception of stickiness and may contribute to broadening the understanding of neural mechanisms associated with tactile perception.

  3. Human Brain Activity Related to the Tactile Perception of Stickiness

    PubMed Central

    Yeon, Jiwon; Kim, Junsuk; Ryu, Jaekyun; Park, Jang-Yeon; Chung, Soon-Cheol; Kim, Sung-Phil

    2017-01-01

    While the perception of stickiness serves as one of the fundamental dimensions for tactile sensation, little has been elucidated about the stickiness sensation and its neural correlates. The present study investigated how the human brain responds to perceived tactile sticky stimuli using functional magnetic resonance imaging (fMRI). To evoke tactile perception of stickiness with multiple intensities, we generated silicone stimuli with varying catalyst ratios. Also, an acrylic sham stimulus was prepared to present a condition with no sticky sensation. From the two psychophysics experiments–the methods of constant stimuli and the magnitude estimation—we could classify the silicone stimuli into two groups according to whether a sticky perception was evoked: the Supra-threshold group that evoked sticky perception and the Infra-threshold group that did not. In the Supra-threshold vs. Sham contrast analysis of the fMRI data using the general linear model (GLM), the contralateral primary somatosensory area (S1) and ipsilateral dorsolateral prefrontal cortex (DLPFC) showed significant activations in subjects, whereas no significant result was found in the Infra-threshold vs. Sham contrast. This result indicates that the perception of stickiness not only activates the somatosensory cortex, but also possibly induces higher cognitive processes. Also, the Supra- vs. Infra-threshold contrast analysis revealed significant activations in several subcortical regions, including the pallidum, putamen, caudate and thalamus, as well as in another region spanning the insula and temporal cortices. These brain regions, previously known to be related to tactile discrimination, may subserve the discrimination of different intensities of tactile stickiness. The present study unveils the human neural correlates of the tactile perception of stickiness and may contribute to broadening the understanding of neural mechanisms associated with tactile perception. PMID:28163677

  4. Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models.

    PubMed

    Orsini, Caitlin A; Moorman, David E; Young, Jared W; Setlow, Barry; Floresco, Stan B

    2015-11-01

    Over the past 20 years there has been a growing interest in the neural underpinnings of cost/benefit decision-making. Recent studies with animal models have made considerable advances in our understanding of how different prefrontal, striatal, limbic and monoaminergic circuits interact to promote efficient risk/reward decision-making, and how dysfunction in these circuits underlies aberrant decision-making observed in numerous psychiatric disorders. This review will highlight recent findings from studies exploring these questions using a variety of behavioral assays, as well as molecular, pharmacological, neurophysiological, and translational approaches. We begin with a discussion of how neural systems related to decision subcomponents may interact to generate more complex decisions involving risk and uncertainty. This is followed by an overview of interactions between prefrontal-amygdala-dopamine and habenular circuits in regulating choice between certain and uncertain rewards and how different modes of dopamine transmission may contribute to these processes. These data will be compared with results from other studies investigating the contribution of some of these systems to guiding decision-making related to rewards vs. punishment. Lastly, we provide a brief summary of impairments in risk-related decision-making associated with psychiatric disorders, highlighting recent translational studies in laboratory animals.

  5. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    NASA Astrophysics Data System (ADS)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  6. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    PubMed Central

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-01-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization. PMID:27250879

  7. Specific and Nonspecific Neural Activity during Selective Processing of Visual Representations in Working Memory

    ERIC Educational Resources Information Center

    Oh, Hwamee; Leung, Hoi-Chung

    2010-01-01

    In this fMRI study, we investigated prefrontal cortex (PFC) and visual association regions during selective information processing. We recorded behavioral responses and neural activity during a delayed recognition task with a cue presented during the delay period. A specific cue ("Face" or "Scene") was used to indicate which one of the two…

  8. Distributed dynamical computation in neural circuits with propagating coherent activity patterns.

    PubMed

    Gong, Pulin; van Leeuwen, Cees

    2009-12-01

    Activity in neural circuits is spatiotemporally organized. Its spatial organization consists of multiple, localized coherent patterns, or patchy clusters. These patterns propagate across the circuits over time. This type of collective behavior has ubiquitously been observed, both in spontaneous activity and evoked responses; its function, however, has remained unclear. We construct a spatially extended, spiking neural circuit that generates emergent spatiotemporal activity patterns, thereby capturing some of the complexities of the patterns observed empirically. We elucidate what kind of fundamental function these patterns can serve by showing how they process information. As self-sustained objects, localized coherent patterns can signal information by propagating across the neural circuit. Computational operations occur when these emergent patterns interact, or collide with each other. The ongoing behaviors of these patterns naturally embody both distributed, parallel computation and cascaded logical operations. Such distributed computations enable the system to work in an inherently flexible and efficient way. Our work leads us to propose that propagating coherent activity patterns are the underlying primitives with which neural circuits carry out distributed dynamical computation.

  9. Neural activities in V1 create the bottom-up saliency map of natural scenes.

    PubMed

    Chen, Cheng; Zhang, Xilin; Wang, Yizhou; Zhou, Tiangang; Fang, Fang

    2016-06-01

    A saliency map is the bottom-up contribution to the deployment of exogenous attention. It, as well as its underlying neural mechanism, is hard to identify because of the influence of top-down signals. A recent study showed that neural activities in V1 could create a bottom-up saliency map (Zhang et al. in Neuron 73(1):183-192, 2012). In this paper, we tested whether their conclusion can generalize to complex natural scenes. In order to avoid top-down influences, each image was presented with a low contrast for only 50 ms and was followed by a high contrast mask, which rendered the whole image invisible to participants (confirmed by a forced-choice test). The Posner cueing paradigm was adopted to measure the spatial cueing effect (i.e., saliency) by an orientation discrimination task. A positive cueing effect was found, and the magnitude of the cueing effect was consistent with the saliency prediction of a computational saliency model. In a following fMRI experiment, we used the same masked natural scenes as stimuli and measured BOLD signals responding to the predicted salient region (relative to the background). We found that the BOLD signal in V1, but not in other cortical areas, could well predict the cueing effect. These results suggest that the bottom-up saliency map of natural scenes could be created in V1, providing further evidence for the V1 saliency theory (Li in Trends Cogn Sci 6(1):9-16, 2002).

  10. Quantifying the Neural Elements Activated and Inhibited by Globus Pallidus Deep Brain Stimulation

    PubMed Central

    Johnson, Matthew D.; McIntyre, Cameron C.

    2008-01-01

    Deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) is an effective therapy option for controlling the motor symptoms of medication-refractory Parkinson's disease and dystonia. Despite the clinical successes of GPi DBS, the precise therapeutic mechanisms are unclear and questions remain on the optimal electrode placement and stimulation parameter selection strategies. In this study, we developed a three-dimensional computational model of GPi-DBS in nonhuman primates to investigate how membrane channel dynamics, synaptic inputs, and axonal collateralization contribute to the neural responses generated during stimulation. We focused our analysis on three general neural elements that surround GPi-DBS electrodes: GPi somatodendritic segments, GPi efferent axons, and globus pallidus pars externa (GPe) fibers of passage. During high-frequency electrical stimulation (136 Hz), somatic activity in the GPi showed interpulse excitatory phases at 1–3 and 4–5.5 ms. When including stimulation-induced GABAA and AMPA receptor dynamics into the model, the somatic firing patterns continued to be entrained to the stimulation, but the overall firing rate was reduced (78.7 to 25.0 Hz, P < 0.001). In contrast, axonal output from GPi neurons remained largely time-locked to each pulse of the stimulation train. Similar entrainment was also observed in GPe efferents, a majority of which have been shown to project through GPi en route to the subthalamic nucleus. The models suggest that pallidal DBS may have broader network effects than previously realized and the modes of therapy may depend on the relative proportion of GPi and/or GPe efferents that are directly affected by the stimulation. PMID:18768645

  11. Where does brain neural activation in aesthetic responses to visual art occur? Meta-analytic evidence from neuroimaging studies.

    PubMed

    Boccia, M; Barbetti, S; Piccardi, L; Guariglia, C; Ferlazzo, F; Giannini, A M; Zaidel, D W

    2016-01-01

    Here we aimed at finding the neural correlates of the general aspect of visual aesthetic experience (VAE) and those more strictly correlated with the content of the artworks. We applied a general activation likelihood estimation (ALE) meta-analysis to 47 fMRI experiments described in 14 published studies. We also performed four separate ALE analyses in order to identify the neural substrates of reactions to specific categories of artworks, namely portraits, representation of real-world-visual-scenes, abstract paintings, and body sculptures. The general ALE revealed that VAE relies on a bilateral network of areas, and the individual ALE analyses revealed different maximal activation for the artworks' categories as function of their content. Specifically, different content-dependent areas of the ventral visual stream are involved in VAE, but a few additional brain areas are involved as well. Thus, aesthetic-related neural responses to art recruit widely distributed networks in both hemispheres including content-dependent brain areas of the ventral visual stream. Together, the results suggest that aesthetic responses are not independent of sensory, perceptual, and cognitive processes.

  12. Similar patterns of neural activity predict memory function during encoding and retrieval.

    PubMed

    Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J

    2017-04-01

    Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval.

  13. Neural stem cell deforestation as the main force driving the age-related decline in adult hippocampal neurogenesis.

    PubMed

    Encinas, Juan M; Sierra, Amanda

    2012-02-14

    Newborn neurons derived from radial glia-like stem cells located in the dentate gyrus integrate into the adult hippocampal circuitry and participate in memory formation, spatial learning, pattern separation, fear conditioning, and anxiety. This process takes place throughout the life span of mammals, including humans; however, it follows a sharp declining curve. New neurons are generated abundantly during youth but very scarcely in the aged brain. The absolute number of newly generated neurons, or neurogenic output, is determined at different levels along the neurogenic cascade: the activation of quiescent stem cells; the mitotic potential of proliferating precursors; and the survival of neuronal fate-committed precursors. A continuous depletion of the hippocampal neural stem cell pool has been recently proposed as the main force underlying the age-related decline of neurogenesis, in contrast to the previous view of population of neural stem cells whose number remains constant but loses its ability to bear fruit. Nevertheless, the diminished neurogenic output may be reflecting other phenomena such as decreased mitotic capability of proliferating progenitors, decreased survival or changes in differentiation. We describe herein the most important events in determining the amount of neurogenesis in the dentate gyrus and examine the literature to understand the effects of age throughout the cascade.

  14. Preliminary findings on the relation between the personality trait of stress reaction and the central neural control of human vocalization.

    PubMed

    Dietrich, Maria; Andreatta, Richard D; Jiang, Yang; Joshi, Ashwini; Stemple, Joseph C

    2012-08-01

    The objectives of this study were to examine whether the personality trait of stress reaction (SR), as assessed with the Multidimensional Personality Questionnaire-Brief Form (MPQ-BF), (1) influences prefrontal and limbic area activity during overt sentence reading and if (2) SR and associated individual differences in prefrontal and limbic activations correlate with sensorimotor cortical activity during overt sentence reading. Ten vocally healthy adults (22-57 years) participated in a functional MRI study using an event-related sparse sampling design to acquire brain activation data during sentence production tasks (covert, whispered, overt). The outcome measure was the blood oxygenation level-dependent signal change in prefrontal, limbic, and primary somatosensory (S1) and motor cortices (M1). Significant positive correlations were found between SR scores and S1, dorsolateral prefrontal cortex (both r =.73, p <.05), and periaqueductal gray (r =.88, p <.01) activity. M1 activity was positively correlated with SR (r =.64, p <.05) and negatively with social potency (r = -.70, p <.05). Our findings suggest that motor cortical control subserving voice and speech production varies with expression of selected personality traits. Future studies should investigate the functional significance of personality differences in the central neural control of vocalization.

  15. Origins of choice-related activity in mouse somatosensory cortex

    PubMed Central

    Yang, Hongdian; Kwon, Sung E.; Severson, Kyle S.; O’Connor, Daniel H.

    2015-01-01

    During perceptual decisions about faint or ambiguous sensory stimuli, even identical stimuli can produce different choices. Spike trains from sensory cortex neurons can predict trial-to-trial variability in choice. Choice-related spiking is widely studied to link cortical activity to perception, but its origins remain unclear. Using imaging and electrophysiology, we found that mouse primary somatosensory cortex neurons showed robust choice-related activity during a tactile detection task. Spike trains from primary mechanoreceptive neurons did not predict choices about identical stimuli. Spike trains from thalamic relay neurons showed highly transient, weak choice-related activity. Intracellular recordings in cortex revealed a prolonged choice-related depolarization in most neurons that was not accounted for by feedforward thalamic input. Top-down axons projecting from secondary to primary somatosensory cortex signaled choice. An intracellular measure of stimulus sensitivity determined which neurons converted choice-related depolarization into spiking. Our results reveal how choice-related spiking emerges across neural circuits and within single neurons. PMID:26642088

  16. Executive control- and reward-related neural processes associated with the opportunity to engage in voluntary dishonest moral decision making.

    PubMed

    Hu, Xiaoqing; Pornpattananangkul, Narun; Nusslock, Robin

    2015-06-01

    Research has begun to examine the neurocognitive processes underlying voluntary moral decision making, which involves engaging in honest or dishonest behavior in a setting in which the individual is free to make his or her own moral decisions. Employing event-related potentials, we measured executive control-related and reward-related neural processes during an incentivized coin-guessing task in which participants had the opportunity to voluntarily engage in dishonest behavior, by overreporting their wins to maximize earnings. We report four primary findings: First, the opportunity to deceive recruited executive control processes involving conflict monitoring and conflict resolution, as evidenced by a higher N2 and a smaller P3. Second, processing the outcome of the coin flips engaged reward-related processes, as evidenced by a larger medial feedback negativity (MFN) for incorrect (loss) than for correct (win) guesses, reflecting a reward prediction error signal. Third, elevated executive control-related neural activity reflecting conflict resolution (i.e., an attenuated executive control P3) predicted a greater likelihood of engaging in overall deceptive behavior. Finally, whereas elevated reward-related neural activity (the reward P3) was associated with a greater likelihood of engaging in overall deceptive behavior, an elevated reward prediction error signal (MFN difference score) predicted increased trial-by-trial moral behavioral adjustment (i.e., a greater likelihood to overreport wins following a previous honest loss than following a previous honest win trial). Collectively, these findings suggest that both executive control- and reward-related neural processes are implicated in moral decision making.

  17. Cannabis abstinence during treatment and one-year follow-up: relationship to neural activity in men.

    PubMed

    Kober, Hedy; DeVito, Elise E; DeLeone, Cameron M; Carroll, Kathleen M; Potenza, Marc N

    2014-09-01

    Cannabis is among the most frequently abused substances in the United States. Cognitive control is a contributory factor in the maintenance of substance-use disorders and may relate to treatment response. Therefore, we assessed whether cognitive-control-related neural activity before treatment differs between treatment-seeking cannabis-dependent and healthy individuals and relates to cannabis-abstinence measures during treatment and 1-year follow-up. Cannabis-dependent males (N=20) completed a functional magnetic resonance imaging (fMRI) cognitive-control (Stroop) task before a 12-week randomized controlled trial of cognitive-behavioral therapy and/or contingency management. A healthy-comparison group (N=20) also completed the fMRI task. Cannabis use was assessed by urine toxicology and self-report during treatment, and by self-report across a 1-year follow-up period (N=18). The cannabis-dependent group displayed diminished Stroop-related neural activity relative to the healthy-comparison group in multiple regions, including those strongly implicated in cognitive-control and addiction-related processes (eg, dorsolateral prefrontal cortex and ventral striatum). The groups did not differ significantly in response times (cannabis-dependent, N=12; healthy-comparison, N=14). Within the cannabis-dependent group, greater Stroop-related activity in regions including the dorsal anterior cingulate cortex was associated with less cannabis use during treatment. Greater activity in regions including the ventral striatum was associated with less cannabis use during 1-year posttreatment follow-up. These data suggest that lower cognitive-control-related neural activity in classic 'control' regions (eg, dorsolateral prefrontal cortex and dorsal anterior cingulate) and classic 'salience/reward/learning' regions (eg, ventral striatum) differentiates cannabis-dependent individuals from healthy individuals and relates to less abstinence within-treatment and during long-term follow

  18. Cannabis Abstinence During Treatment and One-Year Follow-Up: Relationship to Neural Activity in Men

    PubMed Central

    Kober, Hedy; DeVito, Elise E; DeLeone, Cameron M; Carroll, Kathleen M; Potenza, Marc N

    2014-01-01

    Cannabis is among the most frequently abused substances in the United States. Cognitive control is a contributory factor in the maintenance of substance-use disorders and may relate to treatment response. Therefore, we assessed whether cognitive-control-related neural activity before treatment differs between treatment-seeking cannabis-dependent and healthy individuals and relates to cannabis-abstinence measures during treatment and 1-year follow-up. Cannabis-dependent males (N=20) completed a functional magnetic resonance imaging (fMRI) cognitive-control (Stroop) task before a 12-week randomized controlled trial of cognitive–behavioral therapy and/or contingency management. A healthy-comparison group (N=20) also completed the fMRI task. Cannabis use was assessed by urine toxicology and self-report during treatment, and by self-report across a 1-year follow-up period (N=18). The cannabis-dependent group displayed diminished Stroop-related neural activity relative to the healthy-comparison group in multiple regions, including those strongly implicated in cognitive-control and addiction-related processes (eg, dorsolateral prefrontal cortex and ventral striatum). The groups did not differ significantly in response times (cannabis-dependent, N=12; healthy-comparison, N=14). Within the cannabis-dependent group, greater Stroop-related activity in regions including the dorsal anterior cingulate cortex was associated with less cannabis use during treatment. Greater activity in regions including the ventral striatum was associated with less cannabis use during 1-year posttreatment follow-up. These data suggest that lower cognitive-control-related neural activity in classic ‘control' regions (eg, dorsolateral prefrontal cortex and dorsal anterior cingulate) and classic ‘salience/reward/learning' regions (eg, ventral striatum) differentiates cannabis-dependent individuals from healthy individuals and relates to less abstinence within-treatment and during long

  19. Effect of short-term escitalopram treatment on neural activation during emotional processing.

    PubMed

    Maron, Eduard; Wall, Matt; Norbury, Ray; Godlewska, Beata; Terbeck, Sylvia; Cowen, Philip; Matthews, Paul; Nutt, David J

    2016-01-01

    Recent functional magnetic resonance (fMRI) imaging studies have revealed that subchronic medication with escitalopram leads to significant reduction in both amygdala and medial frontal gyrus reactivity during processing of emotional faces, suggesting that escitalopram may have a distinguishable modulatory effect on neural activation as compared with other serotonin-selective antidepressants. In this fMRI study we aimed to explore whether short-term medication with escitalopram in healthy volunteers is associated with reduced neural response to emotional processing, and whether this effect is predicted by drug plasma concentration. The neural response to fearful and happy faces was measured before and on day 7 of treatment with escitalopram (10mg) in 15 healthy volunteers and compared with those in a control unmedicated group (n=14). Significantly reduced activation to fearful, but not to happy facial expressions was observed in the bilateral amygdala, cingulate and right medial frontal gyrus following escitalopram medication. This effect was not correlated with plasma drug concentration. In accordance with previous data, we showed that escitalopram exerts its rapid direct effect on emotional processing via attenuation of neural activation in pathways involving medial frontal gyrus and amygdala, an effect that seems to be distinguishable from that of other SSRIs.

  20. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches

    PubMed Central

    Ma, Ying; Shaik, Mohammed A.; Kozberg, Mariel G.; Thibodeaux, David N.; Zhao, Hanzhi T.; Yu, Hang

    2016-01-01

    Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574312

  1. Statistical modelling of higher-order correlations in pools of neural activity

    NASA Astrophysics Data System (ADS)

    Montani, Fernando; Phoka, Elena; Portesi, Mariela; Schultz, Simon R.

    2013-07-01

    Simultaneous recordings from multiple neural units allow us to investigate the activity of very large neural ensembles. To understand how large ensembles of neurons process sensory information, it is necessary to develop suitable statistical models to describe the response variability of the recorded spike trains. Using the information geometry framework, it is possible to estimate higher-order correlations by assigning one interaction parameter to each degree of correlation, leading to a (2N-1)-dimensional model for a population with N neurons. However, this model suffers greatly from a combinatorial explosion, and the number of parameters to be estimated from the available sample size constitutes the main intractability reason of this approach. To quantify the extent of higher than pairwise spike correlations in pools of multiunit activity, we use an information-geometric approach within the framework of the extended central limit theorem considering all possible contributions from higher-order spike correlations. The identification of a deformation parameter allows us to provide a statistical characterisation of the amount of higher-order correlations in the case of a very large neural ensemble, significantly reducing the number of parameters, avoiding the sampling problem, and inferring the underlying dynamical properties of the network within pools of multiunit neural activity.

  2. Convergence of inhibitory neural inputs regulate motor activity in the murine and monkey stomach.

    PubMed

    Shaylor, Lara A; Hwang, Sung Jin; Sanders, Kenton M; Ward, Sean M

    2016-11-01

    Inhibitory motor neurons regulate several gastric motility patterns including receptive relaxation, gastric peristaltic motor patterns, and pyloric sphincter opening. Nitric oxide (NO) and purines have been identified as likely candidates that mediate inhibitory neural responses. However, the contribution from each neurotransmitter has received little attention in the distal stomach. The aims of this study were to identify the roles played by NO and purines in inhibitory motor responses in the antrums of mice and monkeys. By using wild-type mice and mutants with genetically deleted neural nitric oxide synthase (Nos1(-/-)) and P2Y1 receptors (P2ry1(-/-)) we examined the roles of NO and purines in postjunctional inhibitory responses in the distal stomach and compared these responses to those in primate stomach. Activation of inhibitory motor nerves using electrical field stimulation (EFS) produced frequency-dependent inhibitory junction potentials (IJPs) that produced muscle relaxations in both species. Stimulation of inhibitory nerves during slow waves terminated pacemaker events and associated contractions. In Nos1(-/-) mice IJPs and relaxations persisted whereas in P2ry1(-/-) mice IJPs were absent but relaxations persisted. In the gastric antrum of the non-human primate model Macaca fascicularis, similar NO and purine neural components contributed to inhibition of gastric motor activity. These data support a role of convergent inhibitory neural responses in the regulation of gastric motor activity across diverse species.

  3. Local active information storage as a tool to understand distributed neural information processing.

    PubMed

    Wibral, Michael; Lizier, Joseph T; Vögler, Sebastian; Priesemann, Viola; Galuske, Ralf

    2014-01-01

    Every act of information processing can in principle be decomposed into the component operations of information storage, transfer, and modification. Yet, while this is easily done for today's digital computers, the application of these concepts to neural information processing was hampered by the lack of proper mathematical definitions of these operations on information. Recently, definitions were given for the dynamics of these information processing operations on a local scale in space and time in a distributed system, and the specific concept of local active information storage was successfully applied to the analysis and optimization of artificial neural systems. However, no attempt to measure the space-time dynamics of local active information storage in neural data has been made to date. Here we measure local active information storage on a local scale in time and space in voltage sensitive dye imaging data from area 18 of the cat. We show that storage reflects neural properties such as stimulus preferences and surprise upon unexpected stimulus change, and in area 18 reflects the abstract concept of an ongoing stimulus despite the locally random nature of this stimulus. We suggest that LAIS will be a useful quantity to test theories of cortical function, such as predictive coding.

  4. Review of mesoscopic optical tomography for depth-resolved imaging of hemodynamic changes and neural activities.

    PubMed

    Tang, Qinggong; Lin, Jonathan; Tsytsarev, Vassiliy; Erzurumlu, Reha S; Liu, Yi; Chen, Yu

    2017-01-01

    Understanding the functional wiring of neural circuits and their patterns of activation following sensory stimulations is a fundamental task in the field of neuroscience. Furthermore, charting the activity patterns is undoubtedly important to elucidate how neural networks operate in the living brain. However, optical imaging must overcome the effects of light scattering in the tissue, which limit the light penetration depth and affect both the imaging quantitation and sensitivity. Laminar optical tomography (LOT) is a three-dimensional (3-D) in-vivo optical imaging technique that can be used for functional imaging. LOT can achieve both a resolution of 100 to [Formula: see text] and a penetration depth of 2 to 3 mm based either on absorption or fluorescence contrast, as well as large field-of-view and high acquisition speed. These advantages make LOT suitable for 3-D depth-resolved functional imaging of the neural functions in the brain and spinal cords. We review the basic principles and instrumentations of representative LOT systems, followed by recent applications of LOT on 3-D imaging of neural activities in the rat forepaw stimulation model and mouse whisker-barrel system.

  5. Strong geomagnetic activity forecast by neural networks under dominant southern orientation of the interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Valach, Fridrich; Bochníček, Josef; Hejda, Pavel; Revallo, Miloš

    2014-02-01

    The paper deals with the relation of the southern orientation of the north-south component Bz of the interplanetary magnetic field to geomagnetic activity (GA) and subsequently a method is suggested of using the found facts to forecast potentially dangerous high GA. We have found that on a day with very high GA hourly averages of Bz with a negative sign occur at least 16 times in typical cases. Since it is very difficult to estimate the orientation of Bz in the immediate vicinity of the Earth one day or even a few days in advance, we have suggested using a neural-network model, which assumes the worse of the possibilities to forecast the danger of high GA - the dominant southern orientation of the interplanetary magnetic field. The input quantities of the proposed model were information about X-ray flares, type II and IV radio bursts as well as information about coronal mass ejections (CME). In comparing the GA forecasts with observations, we obtain values of the Hanssen-Kuiper skill score ranging from 0.463 to 0.727, which are usual values for similar forecasts of space weather. The proposed model provides forecasts of potentially dangerous high geomagnetic activity should the interplanetary CME (ICME), the originator of geomagnetic storms, hit the Earth under the most unfavorable configuration of cosmic magnetic fields. We cannot know in advance whether the unfavorable configuration is going to occur or not; we just know that it will occur with the probability of 31%.

  6. Experimental evaluation of a neural-oscillator-driven active mass damper system

    NASA Astrophysics Data System (ADS)

    Iba, Daisuke; Hongu, Junichi

    2014-03-01

    This paper proposes a new active dynamic absorber control system for high-rise buildings using a neural oscillator and a map, which estimates the amplitude level of the oscillator, and shows some experimental results by using an apparatus, which realizes the proposed control algorithm. The proposed system decides the travel distance and direction of the auxiliary mass of the dynamic absorber using the output of oscillator, which is the filtering result of structure acceleration responses by the property of the oscillator, and Amplitude-Phase map (AP-map) for estimation of the structural response in specific frequency between synchronization region, and then, transfer the auxiliary mass to the predetermined location by using a position controller. In addition, the developed active dynamic absorber system is mounted on the top of the experimental single degree of freedom structure, which represents high-rise buildings, and consists of the auxiliary mass, a DC motor, a ball screw, a microcomputer, a laser displacement sensor, and an acceleration sensor. The proposed AP-map and the algorithm to determine the travel direction of the mass using the oscillator output are embedded in the microcomputer. This paper starts by illuminating the relation among subsystems of the proposed system with reference to a block diagram, and then, shows experimental responses of the whole system excited by earthquakes to confirm the validity of the proposed system.

  7. Modeling spontaneous activity across an excitable epithelium: Support for a coordination scenario of early neural evolution

    PubMed Central

    de Wiljes, Oltman O.; van Elburg, Ronald A. J.; Biehl, Michael; Keijzer, Fred A.

    2015-01-01

    Internal coordination models hold that early nervous systems evolved in the first place to coordinate internal activity at a multicellular level, most notably the use of multicellular contractility as an effector for motility. A recent example of such a model, the skin brain thesis, suggests that excitable epithelia using chemical signaling are a potential candidate as a nervous system precursor. We developed a computational model and a measure for whole body coordination to investigate the coordinative properties of such excitable epithelia. Using this measure we show that excitable epithelia can spontaneously exhibit body-scale patterns of activation. Relevant factors determining the extent of patterning are the noise level for exocytosis, relative body dimensions, and body size. In smaller bodies whole-body coordination emerges from cellular excitability and bidirectional excitatory transmission alone. Our results show that basic internal coordination as proposed by the skin brain thesis could have arisen in this potential nervous system precursor, supporting that this configuration may have played a role as a proto-neural system and requires further investigation. PMID:26441620

  8. Identification and integration of sensory modalities: neural basis and relation to consciousness.

    PubMed

    Pennartz, Cyriel M A

    2009-09-01

    A key question in studying consciousness is how neural operations in the brain can identify streams of sensory input as belonging to distinct modalities, which contributes to the representation of qualitatively different experiences. The basis for identification of modalities is proposed to be constituted by self-organized comparative operations across a network of unimodal and multimodal sensory areas. However, such network interactions alone cannot answer the question how sensory feature detectors collectively account for an integrated, yet phenomenally differentiated experiential content. This problem turns out to be different from, although related to, the binding problem. It is proposed that the neural correlate of an enriched, multimodal experience is constituted by the attractor state of a dynamic associative network. Within this network, unimodal and multimodal sensory maps continuously interact to influence each other's attractor state, so that a feature change in one modality results in a fast re-coding of feature information in another modality. In this scheme, feature detection is coded by firing-rate, whereas firing phase codes relational aspects.

  9. A face a mother could love: depression-related maternal neural responses to infant emotion faces.

    PubMed

    Laurent, Heidemarie K; Ablow, Jennifer C

    2013-01-01

    Depressed mothers show negatively biased responses to their infants' emotional bids, perhaps due to faulty processing of infant cues. This study is the first to examine depression-related differences in mothers' neural response to their own infant's emotion faces, considering both effects of perinatal depression history and current depressive symptoms. Primiparous mothers (n = 22), half of whom had a history of major depressive episodes (with one episode occurring during pregnancy and/or postpartum), were exposed to images of their own and unfamiliar infants' joy and distress faces during functional neuroimaging. Group differences (depression vs. no-depression) and continuous effects of current depressive symptoms were tested in relation to neural response to own infant emotion faces. Compared to mothers with no psychiatric diagnoses, those with depression showed blunted responses to their own infant's distress faces in the dorsal anterior cingulate cortex. Mothers with higher levels of current symptomatology showed reduced responses to their own infant's joy faces in the orbitofrontal cortex and insula. Current symptomatology also predicted lower responses to own infant joy-distress in left-sided prefrontal and insula/striatal regions. These deficits in self-regulatory and motivational response circuits may help explain parenting difficulties in depressed mothers.

  10. Genetic dyslexia risk variant is related to neural connectivity patterns underlying phonological awareness in children.

    PubMed

    Skeide, Michael A; Kirsten, Holger; Kraft, Indra; Schaadt, Gesa; Müller, Bent; Neef, Nicole; Brauer, Jens; Wilcke, Arndt; Emmrich, Frank; Boltze, Johannes; Friederici, Angela D

    2015-09-01

    Phonological awareness is the best-validated predictor of reading and spelling skill and therefore highly relevant for developmental dyslexia. Prior imaging genetics studies link several dyslexia risk genes to either brain-functional or brain-structural factors of phonological deficits. However, coherent evidence for genetic associations with both functional and structural neural phenotypes underlying variation in phonological awareness has not yet been provided. Here we demonstrate that rs11100040, a reported modifier of SLC2A3, is related to the functional connectivity of left fronto-temporal phonological processing areas at resting state in a sample of 9- to 12-year-old children. Furthermore, we provide evidence that rs11100040 is related to the fractional anisotropy of the arcuate fasciculus, which forms the structural connection between these areas. This structural connectivity phenotype is associated with phonological awareness, which is in turn associated with the individual retrospective risk scores in an early dyslexia screening as well as to spelling. These results suggest a link between a dyslexia risk genotype and a functional as well as a structural neural phenotype, which is associated with a phonological awareness phenotype. The present study goes beyond previous work by integrating genetic, brain-functional and brain-structural aspects of phonological awareness within a single approach. These combined findings might be another step towards a multimodal biomarker for developmental dyslexia.

  11. On the inter-relations between artificial and physiological neural networks.

    PubMed

    Graupe, D; Vern, B

    2001-07-01

    This paper discusses the inter-relations between findings on the physiological neural network (PNN) and artificial neural networks (ANN). It discusses the interaction of progress in both PNN and ANN for the purpose of borrowing from ANN's mathematical understandings to establish pointers for further explorations to better understand the PNN, and also for the reciprocal transferring of knowledge from PNN findings to improve ANN schemes. Such improvements in ANN are essential for better handling the needs of the information technology (IT) explosion in dealing with huge data bases and where data often defy analysis and are incomplete and fuzzy. On the other hand, principles and elements of ANN designs that appear to be important and successful can serve as guides for identifying them in the PNN, to be subsequently confirmed by bioanalytical tests. Hence progress in PNN is obviously essential for progress in ANN, as is progress in ANN helpful in PNN modeling, though its laboratory confirmation is still a far lengthier process. We discuss certain specific ANN schemes with respect to the above inter-relations with PNN. We feel that the progress in both PNN and ANN research provides a major link between the thrust in information technology developments and the thrust in biological science research, which are most probably the two major focus areas of research at the dawn of the 21st century.

  12. COMPUTATIONAL EVALUATION OF METHODS FOR MEASURING THE SPATIAL EXTENT OF NEURAL ACTIVATION

    PubMed Central

    Mahnam, Amin; Hashemi, S. Mohammad Reza; Grill, Warren M.

    2008-01-01

    Knowing of the spatial extent of neural activation around extracellular stimulating electrodes is necessary to ensure that only the desired neurons are activated or to determine which neurons are responsible for an observed response. Various approaches have been used to estimate the current-distance relationship and thereby the spatial extent of activation resulting from extracellular stimulation. However, these approaches all require underlying assumptions and simplifications, and since the actual extent of activation cannot be directly measured, the impact of deviations from these assumptions cannot be determined. We implemented a computer-based model of excitation of a population of nerve fibers and used the model to evaluate a range of approaches proposed for measuring the spatial extent of neural activation. The estimates with each method were compared with measurements of the true spatial extent of activation that were accessible in the simulations to quantify the accuracy of the estimates and to determine the dependence of accuracy on measurement parameters (interelectrode distance, stimulation amplitude, noise). A newly proposed method, based on the refractory interaction technique, provided the most accurate and most robust estimates of the spatial extent of neural activation. PMID:18606455

  13. Whole-brain mapping of behaviourally induced neural activation in mice.

    PubMed

    Vousden, Dulcie A; Epp, Jonathan; Okuno, Hiroyuki; Nieman, Brian J; van Eede, Matthijs; Dazai, Jun; Ragan, Timothy; Bito, Haruhiko; Frankland, Paul W; Lerch, Jason P; Henkelman, R Mark

    2015-07-01

    The ability to visualize behaviourally evoked neural activity patterns across the rodent brain is essential for understanding the distributed brain networks mediating particular behaviours. However, current imaging methods are limited in their spatial resolution and/or ability to obtain brain-wide coverage of functional activity. Here, we describe a new automated method for obtaining cellular-level, whole-brain maps of behaviourally induced neural activity in the mouse. This method combines the use of transgenic immediate-early gene reporter mice to visualize neural activity; serial two-photon tomography to image the entire brain at cellular resolution; advanced image processing algorithms to count the activated neurons and align the datasets to the Allen Mouse Brain Atlas; and statistical analysis to identify the network of activated brain regions evoked by behaviour. We demonstrate the use of this approach to determine the whole-brain networks activated during the retrieval of fear memories. Consistent with previous studies, we identified a large network of amygdalar, hippocampal, and neocortical brain regions implicated in fear memory retrieval. Our proposed methods can thus be used to map cellular networks involved in the expression of normal behaviours as well as to investigate in depth circuit dysfunction in mouse models of neurobiological disease.

  14. An fMRI comparison of neural activity associated with recognition of familiar melodies in younger and older adults

    PubMed Central

    Sikka, Ritu; Cuddy, Lola L.; Johnsrude, Ingrid S.; Vanstone, Ashley D.

    2015-01-01

    Several studies of semantic memory in non-musical domains involving recognition of items from long-term memory have shown an age-related shift from the medial temporal lobe structures to the frontal lobe. However, the effects of aging on musical semantic memory remain unexamined. We compared activation associated with recognition of familiar melodies in younger and older adults. Recognition follows successful retrieval from the musical lexicon that comprises a lifetime of learned musical phrases. We used the sparse-sampling technique in fMRI to determine the neural correlates of melody recognition by comparing activation when listening to familiar vs. unfamiliar melodies, and to identify age differences. Recognition-related cortical activation was detected in the right superior temporal, bilateral inferior and superior frontal, left middle orbitofrontal, bilateral precentral, and left supramarginal gyri. Region-of-interest analysis showed greater activation for younger adults in the left superior temporal gyrus and for older adults in the left superior frontal, left angular, and bilateral superior parietal regions. Our study provides powerful evidence for these musical memory networks due to a large sample (N = 40) that includes older adults. This study is the first to investigate the neural basis of melody recognition in older adults and to compare the findings to younger adults. PMID:26500480

  15. Changes in music tempo entrain movement related brain activity.

    PubMed

    Daly, Ian; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Roesch, Etienne; Weaver, James; Williams, Duncan; Miranda, Eduardo; Nasuto, Slawomir J

    2014-01-01

    The neural mechanisms of music listening and appreciation are not yet completely understood. Based on the apparent relationship between the beats per minute (tempo) of music and the desire to move (for example feet tapping) induced while listening to that music it is hypothesised that musical tempo may evoke movement related activity in the brain. Participants are instructed to listen, without moving, to a large range of musical pieces spanning a range of styles and tempos during an electroencephalogram (EEG) experiment. Event-related desynchronisation (ERD) in the EEG is observed to correlate significantly with the variance of the tempo of the musical stimuli. This suggests that the dynamics of the beat of the music may induce movement related brain activity in the motor cortex. Furthermore, significant correlations are observed between EEG activity in the alpha band over the motor cortex and the bandpower of the music in the same frequency band over time. This relationship is observed to correlate with the strength of the ERD, suggesting entrainment of motor cortical activity relates to increased ERD strength.

  16. Rapid regulation of sialidase activity in response to neural activity and sialic acid removal during memory processing in rat hippocampus.

    PubMed

    Minami, Akira; Meguro, Yuko; Ishibashi, Sayaka; Ishii, Ami; Shiratori, Mako; Sai, Saki; Horii, Yuuki; Shimizu, Hirotaka; Fukumoto, Hokuto; Shimba, Sumika; Taguchi, Risa; Takahashi, Tadanobu; Otsubo, Tadamune; Ikeda, Kiyoshi; Suzuki, Takashi

    2017-04-07

    Sialidase cleaves sialic acids on the extracellular cell surface as well as inside the cell and is necessary for normal long-term potentiation (LTP) at mossy fiber-CA3 pyramidal cell synapses and for hippocampus-dependent spatial memory. Here, we investigated in detail the role of sialidase in memory processing. Sialidase activity measured with 4-methylumbelliferyl-α-d-N-acetylneuraminic acid (4MU-Neu5Ac) or 5-bromo-4-chloroindol-3-yl-α-d-N-acetylneuraminic acid (X-Neu5Ac) and Fast Red Violet LB was increased by high-K(+)-induced membrane depolarization. Sialidase activity was also increased by chemical LTP induction with forskolin and activation of BDNF signaling, non-NMDA receptors, or NMDA receptors. The increase in sialidase activity with neural excitation appears to be caused not by secreted sialidase or by an increase in sialidase expression but by a change in the subcellular localization of sialidase. Astrocytes as well as neurons are also involved in the neural activity-dependent increase in sialidase activity. Sialidase activity visualized with a benzothiazolylphenol-based sialic acid derivative (BTP3-Neu5Ac), a highly sensitive histochemical imaging probe for sialidase activity, at the CA3 stratum lucidum of rat acute hippocampal slices was immediately increased in response to LTP-inducible high-frequency stimulation on a time scale of seconds. To obtain direct evidence for sialic acid removal on the extracellular cell surface during neural excitation, the extracellular free sialic acid level in the hippocampus was monitored using in vivo microdialysis. The free sialic acid level was increased by high-K(+)-induced membrane depolarization. Desialylation also occurred during hippocampus-dependent memory formation in a contextual fear-conditioning paradigm. Our results show that neural activity-dependent desialylation by sialidase may be involved in hippocampal memory processing.

  17. Activity-Regulated Genes as Mediators of Neural Circuit Plasticity

    PubMed Central

    Leslie, Jennifer H.; Nedivi, Elly

    2011-01-01

    Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Many electrophysiological and molecular mechanisms are common to the seemingly diverse types of activity-dependent functional adaptation that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. They fine-tune brain circuits by strengthening or weakening synaptic connections or by altering synapse numbers. Their effects are further modulated by posttranscriptional regulatory mechanisms, often also dependent on activity, that control activity-regulated gene transcript and protein function. Thus, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. PMID:21601615

  18. Body posture and gender impact neural processing of power-related words.

    PubMed

    Bailey, April H; Kelly, Spencer D

    2016-09-29

    Judging others' power facilitates successful social interaction. Both gender and body posture have been shown to influence judgments of another's power. However, little is known about how these two cues interact when they conflict or how they influence early processing. The present study investigated this question during very early processing of power-related words using event-related potentials (ERPs). Participants viewed images of women and men in dominant and submissive postures that were quickly followed by dominant or submissive words. Gender and posture both modulated neural responses in the N2 latency range to dominant words, but for submissive words they had little impact. Thus, in the context of dual-processing theories of person perception, information extracted from both behavior (i.e., posture) and from category membership (i.e., gender) are recruited side-by-side to impact word processing.

  19. Estimation of relative humidity based on artificial neural network approach in the Aegean Region of Turkey

    NASA Astrophysics Data System (ADS)

    Yasar, Abdulkadir; Simsek, Erdoğan; Bilgili, Mehmet; Yucel, Ahmet; Ilhan, Ilhami

    2012-01-01

    The aim of this study is to estimate the monthly mean relative humidity (MRH) values in the Aegean Region of Turkey with the help of the topographical and meteorological parameters based on artificial neural network (ANN) approach. The monthly MRH values were calculated from the measurement in the meteorological observing stations established in Izmir, Mugla, Aydin, Denizli, Usak, Manisa, Kutahya and Afyonkarahisar provinces between 2000 and 2006. Latitude, longitude, altitude, precipitation and months of the year were used in the input layer of the ANN network, while the MRH was used in output layer of the network. The ANN model was developed using MATLAB software, and then actual values were compared with those obtained by ANN and multi-linear regression methods. It seemed that the obtained values were in the acceptable error limits. It is concluded that the determination of relative humidity values is possible at any target point of the region where the measurement cannot be performed.

  20. EEG based patient emotion monitoring using relative wavelet energy feature and Back Propagation Neural Network.

    PubMed

    Purnamasari, Prima Dewi; Ratna, Anak Agung Putri; Kusumoputro, Benyamin

    2015-08-01

    In EEG-based emotion recognition, feature extraction is as important as the classification algorithm. A good choice of features results in higher recognition rate. However, there is no standard method for feature extraction in EEG-based emotion recognition, especially for real time monitoring, where speed of computation is crucial. In this work, we assess the use of relative wavelet energy as features and Back Propagation Neural Network (BPNN) as classifier for emotion recognition. This method was implemented in simulated real time emotion recognition by using a publicly accessible database. The results showed that relative wavelet energy and BPNN achieved an average recognition rate of 92.03%. The highest average recognition rate was achieved when the time window was 30s.

  1. Neural activation during response inhibition in adult attention-deficit/hyperactivity disorder: preliminary findings on the effects of medication and symptom severity.

    PubMed

    Congdon, Eliza; Altshuler, Lori L; Mumford, Jeanette A; Karlsgodt, Katherine H; Sabb, Fred W; Ventura, Joseph; McGough, James J; London, Edythe D; Cannon, Tyrone D; Bilder, Robert M; Poldrack, Russell A

    2014-04-30

    Studies of adults with attention-deficit/hyperactivity disorder (ADHD) have suggested that they have deficient response inhibition, but findings concerning the neural correlates of inhibition in this patient population are inconsistent. We used the Stop-Signal task and functional magnetic resonance imaging (fMRI) to compare neural activation associated with response inhibition between adults with ADHD (N=35) and healthy comparison subjects (N=62), and in follow-up tests to examine the effect of current medication use and symptom severity. There were no differences in Stop-Signal task performance or neural activation between ADHD and control participants. Among the ADHD participants, however, significant differences were associated with current medication, with individuals taking psychostimulants (N=25) showing less stopping-related activation than those not currently receiving psychostimulant medication (N=10). Follow-up analyses suggested that this difference in activation was independent of symptom severity. These results provide evidence that deficits in inhibition-related neural activation persist in a subset of adult ADHD individuals, namely those individuals currently taking psychostimulants. These findings help to explain some of the disparities in the literature, and advance our understanding of why deficits in response inhibition are more variable in adult, as compared with child and adolescent, ADHD patients.

  2. Neural signatures of fairness-related normative decision making in the ultimatum game: a coordinate-based meta-analysis.

    PubMed

    Feng, Chunliang; Luo, Yue-Jia; Krueger, Frank

    2015-02-01

    The willingness to incur personal costs to enforce prosocial norms represents a hallmark of human civilization. Although recent neuroscience studies have used the ultimatum game to understand the neuropsychological mechanisms that underlie the enforcement of fairness norms; however, a precise characterization of the neural systems underlying fairness-related norm enforcement remains elusive. In this study, we used a coordinate-based meta-analysis on functional magnetic resonance imaging (fMRI) studies using the ultimatum game with the goal to provide an additional level of evidence for the refinement of the underlying neural architecture of this human puzzling behavior. Our results demonstrated a convergence of reported activation foci in brain networks associated with psychological components of fairness-related normative decision making, presumably reflecting a reflexive and intuitive system (System 1) and a reflective and deliberate system (System 2). System 1 (anterior insula, ventromedial prefrontal cortex [PFC]) may be associated with the reflexive and intuitive responses to norm violations, representing a motivation to punish norm violators. Those intuitive responses conflict with economic self-interest, encoded in the dorsal anterior cingulate cortex (ACC), which may engage cognitive control from a reflective and deliberate System 2 to resolve the conflict by either suppressing (ventrolateral PFC, dorsomedial PFC, left dorsolateral PFC, and rostral ACC) the intuitive responses or over-riding self-interest (right dorsolateral PFC). Taken together, we suggest that fairness-related norm enforcement recruits an intuitive system for rapid evaluation of norm violations and a deliberate system for integrating both social norms and self-interest to regulate the intuitive system in favor of more flexible decision making.

  3. Linking neural activity and molecular oscillations in the SCN

    PubMed Central

    Colwell, Christopher S.

    2015-01-01

    Neurons in the suprachiasmatic nucleus (SCN) function as part of a central timing circuit that drives daily changes in our behaviour and underlying physiology. A hallmark feature of SCN neuronal populations is that they are mostly electrically silent during the night, start to fire action potentials near dawn and then continue to generate action potentials with a slow and steady pace all day long. Sets of currents are responsible for this daily rhythm, with the strongest evidence for persistent Na+ currents, L-type Ca2+ currents, hyperpolarization-activated currents (IH), large-conductance Ca2+ activated K+ (BK) currents and fast delayed rectifier (FDR) K+ currents. These rhythms in electrical activity are crucial for the function of the circadian timing system, including the expression of clock genes, and decline with ageing and disease. This article reviews our current understanding of the ionic and molecular mechanisms that drive the rhythmic firing patterns in the SCN. PMID:21886186

  4. Dampened neural activity and abolition of epileptic-like activity in cortical slices by active ingredients of spices

    PubMed Central

    Pezzoli, Maurizio; Elhamdani, Abdeladim; Camacho, Susana; Meystre, Julie; González, Stephanie Michlig; le Coutre, Johannes; Markram, Henry

    2014-01-01

    Active ingredients of spices (AIS) modulate neural response in the peripheral nervous system, mainly through interaction with TRP channel/receptors. The present study explores how different AIS modulate neural response in layer 5 pyramidal neurons of S1 neocortex. The AIS tested are agonists of TRPV1/3, TRPM8 or TRPA1. Our results demonstrate that capsaicin, eugenol, menthol, icilin and cinnamaldehyde, but not AITC dampen the generation of APs in a voltage- and time-dependent manner. This effect was further tested for the TRPM8 ligands in the presence of a TRPM8 blocker (BCTC) and on TRPM8 KO mice. The observable effect was still present. Finally, the influence of the selected AIS was tested on in vitro gabazine-induced seizures. Results coincide with the above observations: except for cinnamaldehyde, the same AIS were able to reduce the number, duration of the AP bursts and increase the concentration of gabazine needed to elicit them. In conclusion, our data suggests that some of these AIS can modulate glutamatergic neurons in the brain through a TRP-independent pathway, regardless of whether the neurons are stimulated intracellularly or by hyperactive microcircuitry. PMID:25359561

  5. Dampened neural activity and abolition of epileptic-like activity in cortical slices by active ingredients of spices.

    PubMed

    Pezzoli, Maurizio; Elhamdani, Abdeladim; Camacho, Susana; Meystre, Julie; González, Stephanie Michlig; le Coutre, Johannes; Markram, Henry

    2014-10-31

    Active ingredients of spices (AIS) modulate neural response in the peripheral nervous system, mainly through interaction with TRP channel/receptors. The present study explores how different AIS modulate neural response in layer 5 pyramidal neurons of S1 neocortex. The AIS tested are agonists of TRPV1/3, TRPM8 or TRPA1. Our results demonstrate that capsaicin, eugenol, menthol, icilin and cinnamaldehyde, but not AITC dampen the generation of APs in a voltage- and time-dependent manner. This effect was further tested for the TRPM8 ligands in the presence of a TRPM8 blocker (BCTC) and on TRPM8 KO mice. The observable effect was still present. Finally, the influence of the selected AIS was tested on in vitro gabazine-induced seizures. Results coincide with the above observations: except for cinnamaldehyde, the same AIS were able to reduce the number, duration of the AP bursts and increase the concentration of gabazine needed to elicit them. In conclusion, our data suggests that some of these AIS can modulate glutamatergic neurons in the brain through a TRP-independent pathway, regardless of whether the neurons are stimulated intracellularly or by hyperactive microcircuitry.

  6. Computerized cognitive training restores neural activity within the reality monitoring network in schizophrenia.

    PubMed

    Subramaniam, Karuna; Luks, Tracy L; Fisher, Melissa; Simpson, Gregory V; Nagarajan, Srikantan; Vinogradov, Sophia

    2012-02-23

    Schizophrenia patients suffer from severe cognitive deficits, such as impaired reality monitoring. Reality monitoring is the ability to distinguish the source of internal experiences from outside reality. During reality monitoring tasks, schizophrenia patients make errors identifying "I made it up" items, and even during accurate performance, they show abnormally low activation of the medial prefrontal cortex (mPFC), a region that supports self-referential cognition. We administered 80 hr of computerized training of cognitive processes to schizophrenia patients and found improvement in reality monitoring that correlated with increased mPFC activity. In contrast, patients in a computer games control condition did not show any behavioral or neural improvements. Notably, recovery in mPFC activity after training was associated with improved social functioning 6 months later. These findings demonstrate that a serious behavioral deficit in schizophrenia, and its underlying neural dysfunction, can be improved by well-designed computerized cognitive training, resulting in better quality of life.

  7. Video-based convolutional neural networks for activity recognition from robot-centric videos

    NASA Astrophysics Data System (ADS)

    Ryoo, M. S.; Matthies, Larry

    2016-05-01

    In this evaluation paper, we discuss convolutional neural network (CNN)-based approaches for human activity recognition. In particular, we investigate CNN architectures designed to capture temporal information in videos and their applications to the human activity recognition problem. There have been multiple previous works to use CNN-features for videos. These include CNNs using 3-D XYT convolutional filters, CNNs using pooling operations on top of per-frame image-based CNN descriptors, and recurrent neural networks to learn temporal changes in per-frame CNN descriptors. We experimentally compare some of these different representatives CNNs while using first-person human activity videos. We especially focus on videos from a robots viewpoint, captured during its operations and human-robot interactions.

  8. Persistent neural activity in the prefrontal cortex: a mechanism by which BDNF regulates working memory?

    PubMed

    Galloway, Evan M; Woo, Newton H; Lu, Bai

    2008-01-01

    Working memory is the ability to maintain representations of task-relevant information for short periods of time to guide subsequent actions or make decisions. Neurons of the prefrontal cortex exhibit persistent firing during the delay period of working memory tasks. Despite extensive studies, the mechanisms underlying this persistent neural activity remain largely obscure. The neurotransmitter systems of dopamine, NMDA, and GABA have been implicated, but further investigations are necessary to establish their precise roles and relationships. Recent research has suggested a new component: brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, TrkB. We review the research on persistent activity and suggest that BDNF/TrkB signaling in a distinct class of interneurons plays an important role in organizing persistent neural activity at the single-neuron and network levels.

  9. Predicting Neural Activity Patterns Associated with Sentences Using a Neurobiologically Motivated Model of Semantic Representation.

    PubMed

    Anderson, Andrew James; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Aguilar, Mario; Wang, Xixi; Doko, Donias; Raizada, Rajeev D S

    2016-08-12

    We introduce an approach that predicts neural representations of word meanings contained in sentences then superposes these to predict neural representations of new sentences. A neurobiological semantic model based on sensory, motor, social, emotional, and cognitive attributes was used as a foundation to define semantic content. Previous studies have predominantly predicted neural patterns for isolated words, using models that lack neurobiological interpretation. Fourteen participants read 240 sentences describing everyday situations while undergoing fMRI. To connect sentence-level fMRI activation patterns to the word-level semantic model, we devised methods to decompose the fMRI data into individual words. Activation patterns associated with each attribute in the model were then estimated using multiple-regression. This enabled synthesis of activation patterns for trained and new words, which were subsequently averaged to predict new sentences. Region-of-interest analyses revealed that prediction accuracy was highest using voxels in the left temporal and inferior parietal cortex, although a broad range of regions returned statistically significant results, showing that semantic information is widely distributed across the brain. The results show how a neurobiologically motivated semantic model can decompose sentence-level fMRI data into activation features for component words, which can be recombined to predict activation patterns for new sentences.

  10. Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits.

    PubMed

    Bernstein, Jacob G; Garrity, Paul A; Boyden, Edward S

    2012-02-01

    In recent years, interest has grown in the ability to manipulate, in a temporally precise fashion, the electrical activity of specific neurons embedded within densely wired brain circuits, in order to reveal how specific neurons subserve behaviors and neural computations, and to open up new horizons on the clinical treatment of brain disorders. Technologies that enable temporally precise control of electrical activity of specific neurons, and not these neurons' neighbors-whose cell bodies or processes might be just tens to hundreds of nanometers away-must involve two components. First, they require as a trigger a transient pulse of energy that supports the temporal precision of the control. Second, they require a molecular sensitizer that can be expressed in specific neurons and which renders those neurons specifically responsive to the triggering energy delivered. Optogenetic tools, such as microbial opsins, can be used to activate or silence neural activity with brief pulses of light. Thermogenetic tools, such as thermosensitive TRP channels, can be used to drive neural activity downstream of increases or decreases in temperature. We here discuss the principles underlying the operation of these two recently developed, but widely used, toolboxes, as well as the directions being taken in the use and improvement of these toolboxes.

  11. Self-regulated homoclinic chaos in neural networks activity

    NASA Astrophysics Data System (ADS)

    Volman, Vladislav; Baruchi, Itay; Ben-Jacob, Eshel

    2004-12-01

    We compare the recorded activity of cultured neuronal networks with hybridized model simulations, in which the model neurons are driven by the recorded activity of special neurons. The latter, named `spiker' neurons, that exhibit fast firing with homoclinic chaos like characteristics, are expected to play an important role in the networks' self regulation. The cultured networks are grown from dissociated mixtures of cortical neurons and glia cells. Despite the artificial manner of their construction, the spontaneous activity of these networks exhibits rich dynamical behavior, marked by the formation of temporal sequences of synchronized bursting events (SBEs), and additional features which seemingly reflect the action of underlying regulating mechanism, rather than arbitrary causes and effects. Our model neurons are composed of soma described by the two Morris-Lecar dynamical variables (voltage and fraction of open potassium channels), with dynamical synapses described by the Tsodyks-Markram three variables dynamics. To study the recorded and simulated activities we evaluated the inter-neuron correlation matrices, and analyzed them utilizing the functional holography approach: the correlations are re-normalized by the correlation distances — Euclidean distances between the matrix columns. Then, we project the N-dimensional (for N channels) space spanned by the matrix of re-normalized correlations, or correlation affinities, onto a corresponding 3-D causal manifold (3-D Cartesian space constructed by the 3 leading principal vectors of the N-dimensional space. The neurons are located by their principal eigenvalues and linked by their original (not-normalized) correlations. This reveals hidden causal motifs: the neuron locations and their links form simple structures. Similar causal motifs are exhibited by the model simulations when feeded by the recorded activity of the spiker neurons. We illustrate that the homoclinic chaotic behavior of the spiker neurons can be

  12. Activities in Science Related to Space.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    Contained are a collection of science activities based upon forty-six scientific concepts related to space science. These activities are designed for junior high school science, but a much wider grade level range of use is possible. The booklet is primarily intended for teacher use. Each series of concept-oriented activities is independent of the…

  13. Optimal Recognition Method of Human Activities Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Oniga, Stefan; József, Sütő

    2015-12-01

    The aim of this research is an exhaustive analysis of the various factors that may influence the recognition rate of the human activity using wearable sensors data. We made a total of 1674 simulations on a publically released human activity database by a group of researcher from the University of California at Berkeley. In a previous research, we analyzed the influence of the number of sensors and their placement. In the present research we have examined the influence of the number of sensor nodes, the type of sensor node, preprocessing algorithms, type of classifier and its parameters. The final purpose is to find the optimal setup for best recognition rates with lowest hardware and software costs.

  14. Mechanical and/or neural activity-dependent regulation of soleus muscle fibers of mdx mice

    NASA Astrophysics Data System (ADS)

    Terada, Masahiro; Kawano, Fuminori; Lan, Yong Bo; Matsuoka, Yoshikazu; Wang, Xiao Dong; Ohira, Yoshinobu

    2005-08-01

    Roles of mechanical and/or neural activity in the necrosis -regeneration cycle in the soleus muscle fibers of mdxmicewerestudied. Five-weeks-oldmalemdxand wild type (WT) mice were separated into tenotomy (T), denervation (D), and T+D groups. The distal tendons of the left plantarflexors (soleus, plantaris, and gastrocnemius) were ablated in the T group. The left sciatic nerve was transected at the gluteal region in the D group. The right limb was kept intact as the normal control. Ambulation was allowed after the surgery. Soleus muscle was sampled 14 days after the surgery and analyses were performed in cross-section of whole muscle and in single fibers removed longitudinally. The total fiber number of the untreated muscle was 913±19 (Mean±SEM) and 872±45 in WT and mdx mice, respectively. The fiber number in mdx mice was decreased 48% by T and 31-35% by D and T+D, which induced fiber atrophy, may be due to either inhibited regeneration or stimulated necrosis. Although fibers with central nuclei or necrosis were not observed in WT muscle, 25-40% of fibers (vs. 40% in the contralateral control side) in treated muscles of mdx mice, analyzed cross-sectionally, were central-nucleated. However, fibers with only central nuclei were not detected in the longitudinally isolated fibers of treated groups, may be due to the phenomenon that the fibers with necrosis were lost in the relaxing solution. But % fibers with both central and peripheral nuclei were decreased and those with peripheral nuclei alone were increased by T. In both cross-sectional and longitudinal analyses, the % distribution of the central-nucleated relative to total fiber number was not affected by D, but decreased by T in mdx mice (p>0.05). Myonuclear number per mm of fiber length was identical generally, although the number was increased by T. Furthermore, DNA fragmentation was noted in the mdx fibers with necrosis. These data suggested that the localization of myonuclei, as well as either necrosis or

  15. Neural-activity mapping of memory-based dominance in the crow: neural networks integrating individual discrimination and social behaviour control.

    PubMed

    Nishizawa, K; Izawa, E-I; Watanabe, S

    2011-12-01

    Large-billed crows (Corvus macrorhynchos), highly social birds, form stable dominance relationships based on the memory of win/loss outcomes of first encounters and on individual discrimination. This socio-cognitive behaviour predicts the existence of neural mechanisms for integration of social behaviour control and individual discrimination. This study aimed to elucidate the neural substrates of memory-based dominance in crows. First, the formation of dominance relationships was confirmed between males in a dyadic encounter paradigm. Next, we examined whether neural activities in 22 focal nuclei of pallium and subpallium were correlated with social behaviour and stimulus familiarity after exposure to dominant/subordinate familiar individuals and unfamiliar conspecifics. Neural activity was determined by measuring expression level of the immediate-early-gene (IEG) protein Zenk. Crows displayed aggressive and/or submissive behaviour to opponents less frequently but more discriminatively in subsequent encounters, suggesting stable dominance based on memory, including win/loss outcomes of the first encounters and individual discrimination. Neural correlates of aggressive and submissive behaviour were found in limbic subpallium including septum, bed nucleus of the striae terminalis (BST), and nucleus taeniae of amygdala (TnA), but also those to familiarity factor in BST and TnA. Contrastingly, correlates of social behaviour were little in pallium and those of familiarity with exposed individuals were identified in hippocampus, medial meso-/nidopallium, and ventro-caudal nidopallium. Given the anatomical connection and neural response patterns of the focal nuclei, neural networks connecting pallium and limbic subpallium via hippocampus could be involved in the integration of individual discrimination and social behaviour control in memory-based dominance in the crow.

  16. Model predictions of features in microsaccade-related neural responses in a feedforward network with short-term synaptic depression

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Fang; Yuan, Wu-Jie; Zhou, Zhao; Zhou, Changsong

    2016-02-01

    Recently, the significant microsaccade-induced neural responses have been extensively observed in experiments. To explore the underlying mechanisms of the observed neural responses, a feedforward network model with short-term synaptic depression has been proposed [Yuan, W.-J., Dimigen, O., Sommer, W. and Zhou, C. Front. Comput. Neurosci. 7, 47 (2013)]. The depression model not only gave an explanation for microsaccades in counteracting visual fading, but also successfully reproduced several microsaccade-related features in experimental findings. These results strongly suggest that, the depression model is very useful to investigate microsaccade-related neural responses. In this paper, by using the model, we extensively study and predict the dependance of microsaccade-related neural responses on several key parameters, which could be tuned in experiments. Particularly, we provide a significant prediction that microsaccade-related neural response also complies with the property “sharper is better” observed in many contexts in neuroscience. Importantly, the property exhibits a power-law relationship between the width of input signal and the responsive effectiveness, which is robust against many parameters in the model. By using mean field theory, we analytically investigate the robust power-law property. Our predictions would give theoretical guidance for further experimental investigations of the functional role of microsaccades in visual information processing.