Sample records for neural encoding models

  1. Efficiency turns the table on neural encoding, decoding and noise.

    PubMed

    Deneve, Sophie; Chalk, Matthew

    2016-04-01

    Sensory neurons are usually described with an encoding model, for example, a function that predicts their response from the sensory stimulus using a receptive field (RF) or a tuning curve. However, central to theories of sensory processing is the notion of 'efficient coding'. We argue here that efficient coding implies a completely different neural coding strategy. Instead of a fixed encoding model, neural populations would be described by a fixed decoding model (i.e. a model reconstructing the stimulus from the neural responses). Because the population solves a global optimization problem, individual neurons are variable, but not noisy, and have no truly invariant tuning curve or receptive field. We review recent experimental evidence and implications for neural noise correlations, robustness and adaptation. Copyright © 2016. Published by Elsevier Ltd.

  2. On the Relationships between Generative Encodings, Regularity, and Learning Abilities when Evolving Plastic Artificial Neural Networks

    PubMed Central

    Tonelli, Paul; Mouret, Jean-Baptiste

    2013-01-01

    A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099

  3. Closing the Loop for Memory Prostheses: Detecting the Role of Hippocampal Neural Ensembles Using Nonlinear Models

    PubMed Central

    Hampson, Robert E.; Song, Dong; Chan, Rosa H.M.; Sweatt, Andrew J.; Riley, Mitchell R.; Goonawardena, Anushka V.; Marmarelis, Vasilis Z.; Gerhardt, Greg A.; Berger, Theodore W.; Deadwyler, Sam A.

    2012-01-01

    A major factor involved in providing closed loop feedback for control of neural function is to understand how neural ensembles encode online information critical to the final behavioral endpoint. This issue was directly assessed in rats performing a short-term delay memory task in which successful encoding of task information is dependent upon specific spatiotemporal firing patterns recorded from ensembles of CA3 and CA1 hippocampal neurons. Such patterns, extracted by a specially designed nonlinear multi-input multi-output (MIMO) nonlinear mathematical model, were used to predict successful performance online via a closed loop paradigm which regulated trial difficulty (time of retention) as a function of the “strength” of stimulus encoding. The significance of the MIMO model as a neural prosthesis has been demonstrated by substituting trains of electrical stimulation pulses to mimic these same ensemble firing patterns. This feature was used repeatedly to vary “normal” encoding as a means of understanding how neural ensembles can be “tuned” to mimic the inherent process of selecting codes of different strength and functional specificity. The capacity to enhance and tune hippocampal encoding via MIMO model detection and insertion of critical ensemble firing patterns shown here provides the basis for possible extension to other disrupted brain circuitry. PMID:22498704

  4. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.

    PubMed

    Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie

    2016-12-07

    A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for the strong nonlinearities observed in neural data. Copyright © 2016 Yildiz et al.

  5. Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information.

    PubMed

    Barbera, Giovanni; Liang, Bo; Zhang, Lifeng; Gerfen, Charles R; Culurciello, Eugenio; Chen, Rong; Li, Yun; Lin, Da-Ting

    2016-10-05

    An influential striatal model postulates that neural activities in the striatal direct and indirect pathways promote and inhibit movement, respectively. Normal behavior requires coordinated activity in the direct pathway to facilitate intended locomotion and indirect pathway to inhibit unwanted locomotion. In this striatal model, neuronal population activity is assumed to encode locomotion relevant information. Here, we propose a novel encoding mechanism for the dorsal striatum. We identified spatially compact neural clusters in both the direct and indirect pathways. Detailed characterization revealed similar cluster organization between the direct and indirect pathways, and cluster activities from both pathways were correlated with mouse locomotion velocities. Using machine-learning algorithms, cluster activities could be used to decode locomotion relevant behavioral states and locomotion velocity. We propose that neural clusters in the dorsal striatum encode locomotion relevant information and that coordinated activities of direct and indirect pathway neural clusters are required for normal striatal controlled behavior. VIDEO ABSTRACT. Published by Elsevier Inc.

  6. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall.

    PubMed

    Hampson, Robert E; Song, Dong; Robinson, Brian S; Fetterhoff, Dustin; Dakos, Alexander S; Roeder, Brent M; She, Xiwei; Wicks, Robert T; Witcher, Mark R; Couture, Daniel E; Laxton, Adrian W; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J; Whitlow, Christopher T; Marmarelis, Vasilis Z; Berger, Theodore W; Deadwyler, Sam A

    2018-06-01

    We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient's own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  7. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall

    NASA Astrophysics Data System (ADS)

    Hampson, Robert E.; Song, Dong; Robinson, Brian S.; Fetterhoff, Dustin; Dakos, Alexander S.; Roeder, Brent M.; She, Xiwei; Wicks, Robert T.; Witcher, Mark R.; Couture, Daniel E.; Laxton, Adrian W.; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J.; Whitlow, Christopher T.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2018-06-01

    Objective. We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient’s own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. Approach. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. Significance. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  8. Similar patterns of neural activity predict memory function during encoding and retrieval.

    PubMed

    Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J

    2017-07-15

    Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dynamical information encoding in neural adaptation.

    PubMed

    Luozheng Li; Wenhao Zhang; Yuanyuan Mi; Dahui Wang; Xiaohan Lin; Si Wu

    2016-08-01

    Adaptation refers to the general phenomenon that a neural system dynamically adjusts its response property according to the statistics of external inputs. In response to a prolonged constant stimulation, neuronal firing rates always first increase dramatically at the onset of the stimulation; and afterwards, they decrease rapidly to a low level close to background activity. This attenuation of neural activity seems to be contradictory to our experience that we can still sense the stimulus after the neural system is adapted. Thus, it prompts a question: where is the stimulus information encoded during the adaptation? Here, we investigate a computational model in which the neural system employs a dynamical encoding strategy during the neural adaptation: at the early stage of the adaptation, the stimulus information is mainly encoded in the strong independent firings; and as time goes on, the information is shifted into the weak but concerted responses of neurons. We find that short-term plasticity, a general feature of synapses, provides a natural mechanism to achieve this goal. Furthermore, we demonstrate that with balanced excitatory and inhibitory inputs, this correlation-based information can be read out efficiently. The implications of this study on our understanding of neural information encoding are discussed.

  10. A Neural Signature Encoding Decisions under Perceptual Ambiguity

    PubMed Central

    Sun, Sai; Yu, Rongjun

    2017-01-01

    Abstract People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making. PMID:29177189

  11. A Neural Signature Encoding Decisions under Perceptual Ambiguity.

    PubMed

    Sun, Sai; Yu, Rongjun; Wang, Shuo

    2017-01-01

    People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making.

  12. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains.

    PubMed

    Pillow, Jonathan W; Ahmadian, Yashar; Paninski, Liam

    2011-01-01

    One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models, or forward models that predict spike responses to stimuli. These models have concave log-likelihood functions, which allow efficient maximum-likelihood model fitting and stimulus decoding. We present several applications of the encoding model framework to the problem of decoding stimulus information from population spike responses: (1) a tractable algorithm for computing the maximum a posteriori (MAP) estimate of the stimulus, the most probable stimulus to have generated an observed single- or multiple-neuron spike train response, given some prior distribution over the stimulus; (2) a gaussian approximation to the posterior stimulus distribution that can be used to quantify the fidelity with which various stimulus features are encoded; (3) an efficient method for estimating the mutual information between the stimulus and the spike trains emitted by a neural population; and (4) a framework for the detection of change-point times (the time at which the stimulus undergoes a change in mean or variance) by marginalizing over the posterior stimulus distribution. We provide several examples illustrating the performance of these estimators with simulated and real neural data.

  13. Stimulus-dependent Maximum Entropy Models of Neural Population Codes

    PubMed Central

    Segev, Ronen; Schneidman, Elad

    2013-01-01

    Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population. PMID:23516339

  14. The neural dynamics of task context in free recall.

    PubMed

    Polyn, Sean M; Kragel, James E; Morton, Neal W; McCluey, Joshua D; Cohen, Zachary D

    2012-03-01

    Multivariate pattern analysis (MVPA) is a powerful tool for relating theories of cognitive function to the neural dynamics observed while people engage in cognitive tasks. Here, we use the Context Maintenance and Retrieval model of free recall (CMR; Polyn et al., 2009a) to interpret variability in the strength of task-specific patterns of distributed neural activity as participants study and recall lists of words. The CMR model describes how temporal and source-related (here, encoding task) information combine in a contextual representation that is responsible for guiding memory search. Each studied word in the free-recall paradigm is associated with one of two encoding tasks (size and animacy) that have distinct neural representations during encoding. We find evidence for the context retrieval hypothesis central to the CMR model: Task-specific patterns of neural activity are reactivated during memory search, as the participant recalls an item previously associated with a particular task. Furthermore, we find that the fidelity of these task representations during study is related to task-shifting, the serial position of the studied item, and variability in the magnitude of the recency effect across participants. The CMR model suggests that these effects may be related to a central parameter of the model that controls the rate that an internal contextual representation integrates information from the surrounding environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Common capacity-limited neural mechanisms of selective attention and spatial working memory encoding

    PubMed Central

    Fusser, Fabian; Linden, David E J; Rahm, Benjamin; Hampel, Harald; Haenschel, Corinna; Mayer, Jutta S

    2011-01-01

    One characteristic feature of visual working memory (WM) is its limited capacity, and selective attention has been implicated as limiting factor. A possible reason why attention constrains the number of items that can be encoded into WM is that the two processes share limited neural resources. Functional magnetic resonance imaging (fMRI) studies have indeed demonstrated commonalities between the neural substrates of WM and attention. Here we investigated whether such overlapping activations reflect interacting neural mechanisms that could result in capacity limitations. To independently manipulate the demands on attention and WM encoding within one single task, we combined visual search and delayed discrimination of spatial locations. Participants were presented with a search array and performed easy or difficult visual search in order to encode one, three or five positions of target items into WM. Our fMRI data revealed colocalised activation for attention-demanding visual search and WM encoding in distributed posterior and frontal regions. However, further analysis yielded two patterns of results. Activity in prefrontal regions increased additively with increased demands on WM and attention, indicating regional overlap without functional interaction. Conversely, the WM load-dependent activation in visual, parietal and premotor regions was severely reduced during high attentional demand. We interpret this interaction as indicating the sites of shared capacity-limited neural resources. Our findings point to differential contributions of prefrontal and posterior regions to the common neural mechanisms that support spatial WM encoding and attention, providing new imaging evidence for attention-based models of WM encoding. PMID:21781193

  16. Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks

    PubMed Central

    2018-01-01

    Much of the information the brain processes and stores is temporal in nature—a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds—we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. PMID:29537963

  17. Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks.

    PubMed

    Goudar, Vishwa; Buonomano, Dean V

    2018-03-14

    Much of the information the brain processes and stores is temporal in nature-a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds-we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. © 2018, Goudar et al.

  18. Oscillatory Reinstatement Enhances Declarative Memory.

    PubMed

    Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J

    2017-10-11

    Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval supports successful memory retrieval. Copyright © 2017 Javadi et al.

  19. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces.

    PubMed

    Benyamini, Miri; Zacksenhouse, Miriam

    2015-01-01

    Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  20. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces

    PubMed Central

    Benyamini, Miri; Zacksenhouse, Miriam

    2015-01-01

    Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal. PMID:26042002

  1. A Neural Model for Language and Speech.

    ERIC Educational Resources Information Center

    Buckingham, Hugh W., Jr.; Hollien, Harry

    1978-01-01

    A neural model in the form of a servo-mechanism is developed to account for certain aspects of language and speech in the human nervous system. Emphasis is placed on encoding processes as well as on-going feedback during production. (SW)

  2. Learning to Recognize Actions From Limited Training Examples Using a Recurrent Spiking Neural Model

    PubMed Central

    Panda, Priyadarshini; Srinivasa, Narayan

    2018-01-01

    A fundamental challenge in machine learning today is to build a model that can learn from few examples. Here, we describe a reservoir based spiking neural model for learning to recognize actions with a limited number of labeled videos. First, we propose a novel encoding, inspired by how microsaccades influence visual perception, to extract spike information from raw video data while preserving the temporal correlation across different frames. Using this encoding, we show that the reservoir generalizes its rich dynamical activity toward signature action/movements enabling it to learn from few training examples. We evaluate our approach on the UCF-101 dataset. Our experiments demonstrate that our proposed reservoir achieves 81.3/87% Top-1/Top-5 accuracy, respectively, on the 101-class data while requiring just 8 video examples per class for training. Our results establish a new benchmark for action recognition from limited video examples for spiking neural models while yielding competitive accuracy with respect to state-of-the-art non-spiking neural models. PMID:29551962

  3. A Novel Nonparametric Approach for Neural Encoding and Decoding Models of Multimodal Receptive Fields.

    PubMed

    Agarwal, Rahul; Chen, Zhe; Kloosterman, Fabian; Wilson, Matthew A; Sarma, Sridevi V

    2016-07-01

    Pyramidal neurons recorded from the rat hippocampus and entorhinal cortex, such as place and grid cells, have diverse receptive fields, which are either unimodal or multimodal. Spiking activity from these cells encodes information about the spatial position of a freely foraging rat. At fine timescales, a neuron's spike activity also depends significantly on its own spike history. However, due to limitations of current parametric modeling approaches, it remains a challenge to estimate complex, multimodal neuronal receptive fields while incorporating spike history dependence. Furthermore, efforts to decode the rat's trajectory in one- or two-dimensional space from hippocampal ensemble spiking activity have mainly focused on spike history-independent neuronal encoding models. In this letter, we address these two important issues by extending a recently introduced nonparametric neural encoding framework that allows modeling both complex spatial receptive fields and spike history dependencies. Using this extended nonparametric approach, we develop novel algorithms for decoding a rat's trajectory based on recordings of hippocampal place cells and entorhinal grid cells. Results show that both encoding and decoding models derived from our new method performed significantly better than state-of-the-art encoding and decoding models on 6 minutes of test data. In addition, our model's performance remains invariant to the apparent modality of the neuron's receptive field.

  4. A new optimized GA-RBF neural network algorithm.

    PubMed

    Jia, Weikuan; Zhao, Dean; Shen, Tian; Su, Chunyang; Hu, Chanli; Zhao, Yuyan

    2014-01-01

    When confronting the complex problems, radial basis function (RBF) neural network has the advantages of adaptive and self-learning ability, but it is difficult to determine the number of hidden layer neurons, and the weights learning ability from hidden layer to the output layer is low; these deficiencies easily lead to decreasing learning ability and recognition precision. Aiming at this problem, we propose a new optimized RBF neural network algorithm based on genetic algorithm (GA-RBF algorithm), which uses genetic algorithm to optimize the weights and structure of RBF neural network; it chooses new ways of hybrid encoding and optimizing simultaneously. Using the binary encoding encodes the number of the hidden layer's neurons and using real encoding encodes the connection weights. Hidden layer neurons number and connection weights are optimized simultaneously in the new algorithm. However, the connection weights optimization is not complete; we need to use least mean square (LMS) algorithm for further leaning, and finally get a new algorithm model. Using two UCI standard data sets to test the new algorithm, the results show that the new algorithm improves the operating efficiency in dealing with complex problems and also improves the recognition precision, which proves that the new algorithm is valid.

  5. Agent-specific learning signals for self–other distinction during mentalising

    PubMed Central

    Dolan, Raymond J.; Kurth-Nelson, Zeb

    2018-01-01

    Humans have a remarkable ability to simulate the minds of others. How the brain distinguishes between mental states attributed to self and mental states attributed to someone else is unknown. Here, we investigated how fundamental neural learning signals are selectively attributed to different agents. Specifically, we asked whether learning signals are encoded in agent-specific neural patterns or whether a self–other distinction depends on encoding agent identity separately from this learning signal. To examine this, we tasked subjects to learn continuously 2 models of the same environment, such that one was selectively attributed to self and the other was selectively attributed to another agent. Combining computational modelling with magnetoencephalography (MEG) enabled us to track neural representations of prediction errors (PEs) and beliefs attributed to self, and of simulated PEs and beliefs attributed to another agent. We found that the representational pattern of a PE reliably predicts the identity of the agent to whom the signal is attributed, consistent with a neural self–other distinction implemented via agent-specific learning signals. Strikingly, subjects exhibiting a weaker neural self–other distinction also had a reduced behavioural capacity for self–other distinction and displayed more marked subclinical psychopathological traits. The neural self–other distinction was also modulated by social context, evidenced in a significantly reduced decoding of agent identity in a nonsocial control task. Thus, we show that self–other distinction is realised through an encoding of agent identity intrinsic to fundamental learning signals. The observation that the fidelity of this encoding predicts psychopathological traits is of interest as a potential neurocomputational psychiatric biomarker. PMID:29689053

  6. Agent-specific learning signals for self-other distinction during mentalising.

    PubMed

    Ereira, Sam; Dolan, Raymond J; Kurth-Nelson, Zeb

    2018-04-01

    Humans have a remarkable ability to simulate the minds of others. How the brain distinguishes between mental states attributed to self and mental states attributed to someone else is unknown. Here, we investigated how fundamental neural learning signals are selectively attributed to different agents. Specifically, we asked whether learning signals are encoded in agent-specific neural patterns or whether a self-other distinction depends on encoding agent identity separately from this learning signal. To examine this, we tasked subjects to learn continuously 2 models of the same environment, such that one was selectively attributed to self and the other was selectively attributed to another agent. Combining computational modelling with magnetoencephalography (MEG) enabled us to track neural representations of prediction errors (PEs) and beliefs attributed to self, and of simulated PEs and beliefs attributed to another agent. We found that the representational pattern of a PE reliably predicts the identity of the agent to whom the signal is attributed, consistent with a neural self-other distinction implemented via agent-specific learning signals. Strikingly, subjects exhibiting a weaker neural self-other distinction also had a reduced behavioural capacity for self-other distinction and displayed more marked subclinical psychopathological traits. The neural self-other distinction was also modulated by social context, evidenced in a significantly reduced decoding of agent identity in a nonsocial control task. Thus, we show that self-other distinction is realised through an encoding of agent identity intrinsic to fundamental learning signals. The observation that the fidelity of this encoding predicts psychopathological traits is of interest as a potential neurocomputational psychiatric biomarker.

  7. On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system.

    PubMed

    Shamma, Shihab; Lorenzi, Christian

    2013-05-01

    There is much debate on how the spectrotemporal modulations of speech (or its spectrogram) are encoded in the responses of the auditory nerve, and whether speech intelligibility is best conveyed via the "envelope" (E) or "temporal fine-structure" (TFS) of the neural responses. Wide use of vocoders to resolve this question has commonly assumed that manipulating the amplitude-modulation and frequency-modulation components of the vocoded signal alters the relative importance of E or TFS encoding on the nerve, thus facilitating assessment of their relative importance to intelligibility. Here we argue that this assumption is incorrect, and that the vocoder approach is ineffective in differentially altering the neural E and TFS. In fact, we demonstrate using a simplified model of early auditory processing that both neural E and TFS encode the speech spectrogram with constant and comparable relative effectiveness regardless of the vocoder manipulations. However, we also show that neural TFS cues are less vulnerable than their E counterparts under severe noisy conditions, and hence should play a more prominent role in cochlear stimulation strategies.

  8. Encoding of natural and artificial stimuli in the auditory midbrain

    NASA Astrophysics Data System (ADS)

    Lyzwa, Dominika

    How complex acoustic stimuli are encoded in the main center of convergence in the auditory midbrain is not clear. Here, the representation of neural spiking responses to natural and artificial sounds across this subcortical structure is investigated based on neurophysiological recordings from the mammalian midbrain. Neural and stimulus correlations of neuronal pairs are analyzed with respect to the neurons' distance, and responses to different natural communication sounds are discriminated. A model which includes linear and nonlinear neural response properties of this nucleus is presented and employed to predict temporal spiking responses to new sounds. Supported by BMBF Grant 01GQ0811.

  9. The Neural Representations Underlying Human Episodic Memory.

    PubMed

    Xue, Gui

    2018-06-01

    A fundamental question of human episodic memory concerns the cognitive and neural representations and processes that give rise to the neural signals of memory. By integrating behavioral tests, formal computational models, and neural measures of brain activity patterns, recent studies suggest that memory signals not only depend on the neural processes and representations during encoding and retrieval, but also on the interaction between encoding and retrieval (e.g., transfer-appropriate processing), as well as on the interaction between the tested events and all other events in the episodic memory space (e.g., global matching). In addition, memory signals are also influenced by the compatibility of the event with the existing long-term knowledge (e.g., schema matching). These studies highlight the interactive nature of human episodic memory. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Character recognition from trajectory by recurrent spiking neural networks.

    PubMed

    Jiangrong Shen; Kang Lin; Yueming Wang; Gang Pan

    2017-07-01

    Spiking neural networks are biologically plausible and power-efficient on neuromorphic hardware, while recurrent neural networks have been proven to be efficient on time series data. However, how to use the recurrent property to improve the performance of spiking neural networks is still a problem. This paper proposes a recurrent spiking neural network for character recognition using trajectories. In the network, a new encoding method is designed, in which varying time ranges of input streams are used in different recurrent layers. This is able to improve the generalization ability of our model compared with general encoding methods. The experiments are conducted on four groups of the character data set from University of Edinburgh. The results show that our method can achieve a higher average recognition accuracy than existing methods.

  11. Transferring and generalizing deep-learning-based neural encoding models across subjects.

    PubMed

    Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming

    2018-08-01

    Recent studies have shown the value of using deep learning models for mapping and characterizing how the brain represents and organizes information for natural vision. However, modeling the relationship between deep learning models and the brain (or encoding models), requires measuring cortical responses to large and diverse sets of natural visual stimuli from single subjects. This requirement limits prior studies to few subjects, making it difficult to generalize findings across subjects or for a population. In this study, we developed new methods to transfer and generalize encoding models across subjects. To train encoding models specific to a target subject, the models trained for other subjects were used as the prior models and were refined efficiently using Bayesian inference with a limited amount of data from the target subject. To train encoding models for a population, the models were progressively trained and updated with incremental data from different subjects. For the proof of principle, we applied these methods to functional magnetic resonance imaging (fMRI) data from three subjects watching tens of hours of naturalistic videos, while a deep residual neural network driven by image recognition was used to model visual cortical processing. Results demonstrate that the methods developed herein provide an efficient and effective strategy to establish both subject-specific and population-wide predictive models of cortical representations of high-dimensional and hierarchical visual features. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Transformed Neural Pattern Reinstatement during Episodic Memory Retrieval.

    PubMed

    Xiao, Xiaoqian; Dong, Qi; Gao, Jiahong; Men, Weiwei; Poldrack, Russell A; Xue, Gui

    2017-03-15

    Contemporary models of episodic memory posit that remembering involves the reenactment of encoding processes. Although encoding-retrieval similarity has been consistently reported and linked to memory success, the nature of neural pattern reinstatement is poorly understood. Using high-resolution fMRI on human subjects, our results obtained clear evidence for item-specific pattern reinstatement in the frontoparietal cortex, even when the encoding-retrieval pairs shared no perceptual similarity. No item-specific pattern reinstatement was found in the ventral visual cortex. Importantly, the brain regions and voxels carrying item-specific representation differed significantly between encoding and retrieval, and the item specificity for encoding-retrieval similarity was smaller than that for encoding or retrieval, suggesting different nature of representations between encoding and retrieval. Moreover, cross-region representational similarity analysis suggests that the encoded representation in the ventral visual cortex was reinstated in the frontoparietal cortex during retrieval. Together, these results suggest that, in addition to reinstatement of the originally encoded pattern in the brain regions that perform encoding processes, retrieval may also involve the reinstatement of a transformed representation of the encoded information. These results emphasize the constructive nature of memory retrieval that helps to serve important adaptive functions. SIGNIFICANCE STATEMENT Episodic memory enables humans to vividly reexperience past events, yet how this is achieved at the neural level is barely understood. A long-standing hypothesis posits that memory retrieval involves the faithful reinstatement of encoding-related activity. We tested this hypothesis by comparing the neural representations during encoding and retrieval. We found strong pattern reinstatement in the frontoparietal cortex, but not in the ventral visual cortex, that represents visual details. Critically, even within the same brain regions, the nature of representation during retrieval was qualitatively different from that during encoding. These results suggest that memory retrieval is not a faithful replay of past event but rather involves additional constructive processes to serve adaptive functions. Copyright © 2017 the authors 0270-6474/17/372986-13$15.00/0.

  13. The importance of situation-specific encodings: analysis of a simple connectionist model of letter transposition effects

    NASA Astrophysics Data System (ADS)

    Fang, Shin-Yi; Smith, Garrett; Tabor, Whitney

    2018-04-01

    This paper analyses a three-layer connectionist network that solves a translation-invariance problem, offering a novel explanation for transposed letter effects in word reading. Analysis of the hidden unit encodings provides insight into two central issues in cognitive science: (1) What is the novelty of claims of "modality-specific" encodings? and (2) How can a learning system establish a complex internal structure needed to solve a problem? Although these topics (embodied cognition and learnability) are often treated separately, we find a close relationship between them: modality-specific features help the network discover an abstract encoding by causing it to break the initial symmetries of the hidden units in an effective way. While this neural model is extremely simple compared to the human brain, our results suggest that neural networks need not be black boxes and that carefully examining their encoding behaviours may reveal how they differ from classical ideas about the mind-world relationship.

  14. Semantic attributes are encoded in human electrocorticographic signals during visual object recognition.

    PubMed

    Rupp, Kyle; Roos, Matthew; Milsap, Griffin; Caceres, Carlos; Ratto, Christopher; Chevillet, Mark; Crone, Nathan E; Wolmetz, Michael

    2017-03-01

    Non-invasive neuroimaging studies have shown that semantic category and attribute information are encoded in neural population activity. Electrocorticography (ECoG) offers several advantages over non-invasive approaches, but the degree to which semantic attribute information is encoded in ECoG responses is not known. We recorded ECoG while patients named objects from 12 semantic categories and then trained high-dimensional encoding models to map semantic attributes to spectral-temporal features of the task-related neural responses. Using these semantic attribute encoding models, untrained objects were decoded with accuracies comparable to whole-brain functional Magnetic Resonance Imaging (fMRI), and we observed that high-gamma activity (70-110Hz) at basal occipitotemporal electrodes was associated with specific semantic dimensions (manmade-animate, canonically large-small, and places-tools). Individual patient results were in close agreement with reports from other imaging modalities on the time course and functional organization of semantic processing along the ventral visual pathway during object recognition. The semantic attribute encoding model approach is critical for decoding objects absent from a training set, as well as for studying complex semantic encodings without artificially restricting stimuli to a small number of semantic categories. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Semantic Congruence Accelerates the Onset of the Neural Signals of Successful Memory Encoding.

    PubMed

    Packard, Pau A; Rodríguez-Fornells, Antoni; Bunzeck, Nico; Nicolás, Berta; de Diego-Balaguer, Ruth; Fuentemilla, Lluís

    2017-01-11

    As the stream of experience unfolds, our memory system rapidly transforms current inputs into long-lasting meaningful memories. A putative neural mechanism that strongly influences how input elements are transformed into meaningful memory codes relies on the ability to integrate them with existing structures of knowledge or schemas. However, it is not yet clear whether schema-related integration neural mechanisms occur during online encoding. In the current investigation, we examined the encoding-dependent nature of this phenomenon in humans. We showed that actively integrating words with congruent semantic information provided by a category cue enhances memory for words and increases false recall. The memory effect of such active integration with congruent information was robust, even with an interference task occurring right after each encoding word list. In addition, via electroencephalography, we show in 2 separate studies that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. That the neural signals of successful encoding of congruent and incongruent information followed similarly ∼200 ms later suggests that this earlier neural response contributed to memory formation. We propose that the encoding of events that are congruent with readily available contextual semantics can trigger an accelerated onset of the neural mechanisms, supporting the integration of semantic information with the event input. This faster onset would result in a long-lasting and meaningful memory trace for the event but, at the same time, make it difficult to distinguish it from plausible but never encoded events (i.e., related false memories). Conceptual or schema congruence has a strong influence on long-term memory. However, the question of whether schema-related integration neural mechanisms occur during online encoding has yet to be clarified. We investigated the neural mechanisms reflecting how the active integration of words with congruent semantic categories enhances memory for words and increases false recall of semantically related words. We analyzed event-related potentials during encoding and showed that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. Our findings indicate that congruent events can trigger an accelerated onset of neural encoding mechanisms supporting the integration of semantic information with the event input. Copyright © 2017 the authors 0270-6474/17/370291-11$15.00/0.

  16. Neural Correlates of Encoding within- and across-Domain Inter-Item Associations

    ERIC Educational Resources Information Center

    Park, Heekyeong; Rugg, Michael D.

    2011-01-01

    The neural correlates of the encoding of associations between pairs of words, pairs of pictures, and word-picture pairs were compared. The aims were to determine, first, whether the neural correlates of associative encoding vary according to study material and, second, whether encoding of across- versus within-material item pairs is associated…

  17. The Importance of Encoding-Related Neural Dynamics in the Prediction of Inter-Individual Differences in Verbal Working Memory Performance

    PubMed Central

    Majerus, Steve; Salmon, Eric; Attout, Lucie

    2013-01-01

    Studies of brain-behaviour interactions in the field of working memory (WM) have associated WM success with activation of a fronto-parietal network during the maintenance stage, and this mainly for visuo-spatial WM. Using an inter-individual differences approach, we demonstrate here the equal importance of neural dynamics during the encoding stage, and this in the context of verbal WM tasks which are characterized by encoding phases of long duration and sustained attentional demands. Participants encoded and maintained 5-word lists, half of them containing an unexpected word intended to disturb WM encoding and associated task-related attention processes. We observed that inter-individual differences in WM performance for lists containing disturbing stimuli were related to activation levels in a region previously associated with task-related attentional processing, the left intraparietal sulcus (IPS), and this during stimulus encoding but not maintenance; functional connectivity strength between the left IPS and lateral prefrontal cortex (PFC) further predicted WM performance. This study highlights the critical role, during WM encoding, of neural substrates involved in task-related attentional processes for predicting inter-individual differences in verbal WM performance, and, more generally, provides support for attention-based models of WM. PMID:23874935

  18. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.

    PubMed

    Fiebig, Florian; Lansner, Anders

    2017-01-04

    A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying cortical tissue. These findings are directly relevant to the ongoing paradigm shift in the WM field. Copyright © 2017 Fiebig and Lansner.

  19. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation

    PubMed Central

    Fiebig, Florian

    2017-01-01

    A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. SIGNIFICANCE STATEMENT Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying cortical tissue. These findings are directly relevant to the ongoing paradigm shift in the WM field. PMID:28053032

  20. A Neural Model for Temporal Order Judgments and Their Active Recalibration: A Common Mechanism for Space and Time?

    PubMed Central

    Cai, Mingbo; Stetson, Chess; Eagleman, David M.

    2012-01-01

    When observers experience a constant delay between their motor actions and sensory feedback, their perception of the temporal order between actions and sensations adapt (Stetson et al., 2006). We present here a novel neural model that can explain temporal order judgments (TOJs) and their recalibration. Our model employs three ubiquitous features of neural systems: (1) information pooling, (2) opponent processing, and (3) synaptic scaling. Specifically, the model proposes that different populations of neurons encode different delays between motor-sensory events, the outputs of these populations feed into rivaling neural populations (encoding “before” and “after”), and the activity difference between these populations determines the perceptual judgment. As a consequence of synaptic scaling of input weights, motor acts which are consistently followed by delayed sensory feedback will cause the network to recalibrate its point of subjective simultaneity. The structure of our model raises the possibility that recalibration of TOJs is a temporal analog to the motion aftereffect (MAE). In other words, identical neural mechanisms may be used to make perceptual determinations about both space and time. Our model captures behavioral recalibration results for different numbers of adapting trials and different adapting delays. In line with predictions of the model, we additionally demonstrate that temporal recalibration can last through time, in analogy to storage of the MAE. PMID:23130010

  1. Modeling task-specific neuronal ensembles improves decoding of grasp

    NASA Astrophysics Data System (ADS)

    Smith, Ryan J.; Soares, Alcimar B.; Rouse, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2018-06-01

    Objective. Dexterous movement involves the activation and coordination of networks of neuronal populations across multiple cortical regions. Attempts to model firing of individual neurons commonly treat the firing rate as directly modulating with motor behavior. However, motor behavior may additionally be associated with modulations in the activity and functional connectivity of neurons in a broader ensemble. Accounting for variations in neural ensemble connectivity may provide additional information about the behavior being performed. Approach. In this study, we examined neural ensemble activity in primary motor cortex (M1) and premotor cortex (PM) of two male rhesus monkeys during performance of a center-out reach, grasp and manipulate task. We constructed point process encoding models of neuronal firing that incorporated task-specific variations in the baseline firing rate as well as variations in functional connectivity with the neural ensemble. Models were evaluated both in terms of their encoding capabilities and their ability to properly classify the grasp being performed. Main results. Task-specific ensemble models correctly predicted the performed grasp with over 95% accuracy and were shown to outperform models of neuronal activity that assume only a variable baseline firing rate. Task-specific ensemble models exhibited superior decoding performance in 82% of units in both monkeys (p  <  0.01). Inclusion of ensemble activity also broadly improved the ability of models to describe observed spiking. Encoding performance of task-specific ensemble models, measured by spike timing predictability, improved upon baseline models in 62% of units. Significance. These results suggest that additional discriminative information about motor behavior found in the variations in functional connectivity of neuronal ensembles located in motor-related cortical regions is relevant to decode complex tasks such as grasping objects, and may serve the basis for more reliable and accurate neural prosthesis.

  2. A freely-moving monkey treadmill model.

    PubMed

    Foster, Justin D; Nuyujukian, Paul; Freifeld, Oren; Gao, Hua; Walker, Ross; I Ryu, Stephen; H Meng, Teresa; Murmann, Boris; J Black, Michael; Shenoy, Krishna V

    2014-08-01

    Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the flexibility and utility of this new monkey model, including the first recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average firing rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at different speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic motor neuroscience and for the successful translation of BMIs to people with paralysis.

  3. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks

    PubMed Central

    Miconi, Thomas

    2017-01-01

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior. DOI: http://dx.doi.org/10.7554/eLife.20899.001 PMID:28230528

  4. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.

    PubMed

    Miconi, Thomas

    2017-02-23

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.

  5. A three-layered model of primate prefrontal cortex encodes identity and abstract categorical structure of behavioral sequences.

    PubMed

    Hinaut, Xavier; Dominey, Peter Ford

    2011-01-01

    Categorical encoding is crucial for mastering large bodies of related sensory-motor experiences, but what is its neural substrate? In an effort to respond to this question, recent single-unit recording studies in the macaque lateral prefrontal cortex (LPFC) have demonstrated two characteristic forms of neural encoding of the sequential structure of the animal's sensory-motor experience. One population of neurons encodes the specific behavioral sequences. A second population of neurons encodes the sequence category (e.g. ABAB, AABB or AAAA) and does not differentiate sequences within the category (Shima, K., Isoda, M., Mushiake, H., Tanji, J., 2007. Categorization of behavioural sequences in the prefrontal cortex. Nature 445, 315-318.). Interestingly these neurons are intermingled in the lateral prefrontal cortex, and not topographically segregated. Thus, LPFC may provide a neurophysiological basis for sensorimotor categorization. Here we report on a neural network simulation study that reproduces and explains these results. We model a cortical circuit composed of three layers (infragranular, granular, and supragranular) of 5*5 leaky integrator neurons with a sigmoidal output function, and we examine 1000 such circuits running in parallel. Crucially the three layers are interconnected with recurrent connections, thus producing a dynamical system that is inherently sensitive to the spatiotemporal structure of the sequential inputs. The model is presented with 11 four-element sequences following Shima et al. We isolated one subpopulation of neurons each of whose activity predicts individual sequences, and a second population that predicts category independent of the specific sequence. We argue that a richly interconnected cortical circuit is capable of internally generating a neural representation of category membership, thus significantly extending the scope of recurrent network computation. In order to demonstrate that these representations can be used to create an explicit categorization capability, we introduced an additional neural structure corresponding to the striatum. We showed that via cortico-striatal plasticity, neurons in the striatum could produce an explicit representation both of the identity of each sequence, and its category membership. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A computational model of pattern separation efficiency in the dentate gyrus with implications in schizophrenia

    PubMed Central

    Faghihi, Faramarz; Moustafa, Ahmed A.

    2015-01-01

    Information processing in the hippocampus begins by transferring spiking activity of the entorhinal cortex (EC) into the dentate gyrus (DG). Activity pattern in the EC is separated by the DG such that it plays an important role in hippocampal functions including memory. The structural and physiological parameters of these neural networks enable the hippocampus to be efficient in encoding a large number of inputs that animals receive and process in their life time. The neural encoding capacity of the DG depends on its single neurons encoding and pattern separation efficiency. In this study, encoding by the DG is modeled such that single neurons and pattern separation efficiency are measured using simulations of different parameter values. For this purpose, a probabilistic model of single neurons efficiency is presented to study the role of structural and physiological parameters. Known neurons number of the EC and the DG is used to construct a neural network by electrophysiological features of granule cells of the DG. Separated inputs as activated neurons in the EC with different firing probabilities are presented into the DG. For different connectivity rates between the EC and DG, pattern separation efficiency of the DG is measured. The results show that in the absence of feedback inhibition on the DG neurons, the DG demonstrates low separation efficiency and high firing frequency. Feedback inhibition can increase separation efficiency while resulting in very low single neuron’s encoding efficiency in the DG and very low firing frequency of neurons in the DG (sparse spiking). This work presents a mechanistic explanation for experimental observations in the hippocampus, in combination with theoretical measures. Moreover, the model predicts a critical role for impaired inhibitory neurons in schizophrenia where deficiency in pattern separation of the DG has been observed. PMID:25859189

  7. Encoding model of temporal processing in human visual cortex.

    PubMed

    Stigliani, Anthony; Jeska, Brianna; Grill-Spector, Kalanit

    2017-12-19

    How is temporal information processed in human visual cortex? Visual input is relayed to V1 through segregated transient and sustained channels in the retina and lateral geniculate nucleus (LGN). However, there is intense debate as to how sustained and transient temporal channels contribute to visual processing beyond V1. The prevailing view associates transient processing predominately with motion-sensitive regions and sustained processing with ventral stream regions, while the opposing view suggests that both temporal channels contribute to neural processing beyond V1. Using fMRI, we measured cortical responses to time-varying stimuli and then implemented a two temporal channel-encoding model to evaluate the contributions of each channel. Different from the general linear model of fMRI that predicts responses directly from the stimulus, the encoding approach first models neural responses to the stimulus from which fMRI responses are derived. This encoding approach not only predicts cortical responses to time-varying stimuli from milliseconds to seconds but also, reveals differential contributions of temporal channels across visual cortex. Consistent with the prevailing view, motion-sensitive regions and adjacent lateral occipitotemporal regions are dominated by transient responses. However, ventral occipitotemporal regions are driven by both sustained and transient channels, with transient responses exceeding the sustained. These findings propose a rethinking of temporal processing in the ventral stream and suggest that transient processing may contribute to rapid extraction of the content of the visual input. Importantly, our encoding approach has vast implications, because it can be applied with fMRI to decipher neural computations in millisecond resolution in any part of the brain. Copyright © 2017 the Author(s). Published by PNAS.

  8. The impact of neurotechnology on rehabilitation.

    PubMed

    Berger, Theodore W; Gerhardt, Greg; Liker, Mark A; Soussou, Walid

    2008-01-01

    This paper present results of a multi-disciplinary project that is developing a microchip-based neural prosthesis for the hippocampus, a region of the brain responsible for the formation of long-term memories. Damage to the hippocampus is frequently associated with epilepsy, stroke, and dementia (Alzheimer's disease) and is considered to underlie the memory deficits related to these neurological conditions. The essential goals of the multi-laboratory effort include: (1) experimental study of neuron and neural network function--how does the hippocampus encode information? (2) formulation of biologically realistic models of neural system dynamics--can that encoding process be described mathematically to realize a predictive model of how the hippocampus responds to any event? (3) microchip implementation of neural system models--can the mathematical model be realized as a set of electronic circuits to achieve parallel processing, rapid computational speed, and miniaturization? and (4) creation of hybrid neuron-silicon interfaces-can structural and functional connections between electronic devices and neural tissue be achieved for long-term, bi-directional communication with the brain? By integrating solutions to these component problems, we are realizing a microchip-based model of hippocampal nonlinear dynamics that can perform the same function as part of the hippocampus. Through bi-directional communication with other neural tissue that normally provides the inputs and outputs to/from a damaged hippocampal area, the biomimetic model could serve as a neural prosthesis. A proof-of-concept will be presented in which the CA3 region of the hippocampal slice is surgically removed and is replaced by a microchip model of CA3 nonlinear dynamics--the "hybrid" hippocampal circuit displays normal physiological properties. How the work in brain slices is being extended to behaving animals also will be described.

  9. A cortical neural prosthesis for restoring and enhancing memory

    NASA Astrophysics Data System (ADS)

    Berger, Theodore W.; Hampson, Robert E.; Song, Dong; Goonawardena, Anushka; Marmarelis, Vasilis Z.; Deadwyler, Sam A.

    2011-08-01

    A primary objective in developing a neural prosthesis is to replace neural circuitry in the brain that no longer functions appropriately. Such a goal requires artificial reconstruction of neuron-to-neuron connections in a way that can be recognized by the remaining normal circuitry, and that promotes appropriate interaction. In this study, the application of a specially designed neural prosthesis using a multi-input/multi-output (MIMO) nonlinear model is demonstrated by using trains of electrical stimulation pulses to substitute for MIMO model derived ensemble firing patterns. Ensembles of CA3 and CA1 hippocampal neurons, recorded from rats performing a delayed-nonmatch-to-sample (DNMS) memory task, exhibited successful encoding of trial-specific sample lever information in the form of different spatiotemporal firing patterns. MIMO patterns, identified online and in real-time, were employed within a closed-loop behavioral paradigm. Results showed that the model was able to predict successful performance on the same trial. Also, MIMO model-derived patterns, delivered as electrical stimulation to the same electrodes, improved performance under normal testing conditions and, more importantly, were capable of recovering performance when delivered to animals with ensemble hippocampal activity compromised by pharmacologic blockade of synaptic transmission. These integrated experimental-modeling studies show for the first time that, with sufficient information about the neural coding of memories, a neural prosthesis capable of real-time diagnosis and manipulation of the encoding process can restore and even enhance cognitive, mnemonic processes.

  10. Neural Repetition Effects in the Medial Temporal Lobe Complex are Modulated by Previous Encoding Experience

    PubMed Central

    Greene, Ciara M.; Soto, David

    2012-01-01

    It remains an intriguing question why the medial temporal lobe (MTL) can display either attenuation or enhancement of neural activity following repetition of previously studied items. To isolate the role of encoding experience itself, we assessed neural repetition effects in the absence of any ongoing task demand or intentional orientation to retrieve. Experiment 1 showed that the hippocampus and surrounding MTL regions displayed neural repetition suppression (RS) upon repetition of past items that were merely attended during an earlier study phase but this was not the case following re-occurrence of items that had been encoded into working memory (WM). In this latter case a trend toward neural repetition enhancement (RE) was observed, though this was highly variable across individuals. Interestingly, participants with a higher degree of neural RE in the MTL complex displayed higher memory sensitivity in a later, surprise recognition test. Experiment 2 showed that massive exposure at encoding effected a change in the neural architecture supporting incidental repetition effects, with regions of the posterior parietal and ventral-frontal cortex in addition to the hippocampus displaying neural RE, while no neural RS was observed. The nature of encoding experience therefore modulates the expression of neural repetition effects in the MTL and the neocortex in the absence of memory goals. PMID:22829892

  11. Effects of Modality on the Neural Correlates of Encoding Processes Supporting Recollection and Familiarity

    ERIC Educational Resources Information Center

    Gottlieb, Lauren J.; Rugg, Michael D.

    2011-01-01

    Prior research has demonstrated that the neural correlates of successful encoding ("subsequent memory effects") partially overlap with neural regions selectively engaged by the on-line demands of the study task. The primary goal of the present experiment was to determine whether this overlap is associated solely with encoding processes supporting…

  12. Encoding Time in Feedforward Trajectories of a Recurrent Neural Network Model.

    PubMed

    Hardy, N F; Buonomano, Dean V

    2018-02-01

    Brain activity evolves through time, creating trajectories of activity that underlie sensorimotor processing, behavior, and learning and memory. Therefore, understanding the temporal nature of neural dynamics is essential to understanding brain function and behavior. In vivo studies have demonstrated that sequential transient activation of neurons can encode time. However, it remains unclear whether these patterns emerge from feedforward network architectures or from recurrent networks and, furthermore, what role network structure plays in timing. We address these issues using a recurrent neural network (RNN) model with distinct populations of excitatory and inhibitory units. Consistent with experimental data, a single RNN could autonomously produce multiple functionally feedforward trajectories, thus potentially encoding multiple timed motor patterns lasting up to several seconds. Importantly, the model accounted for Weber's law, a hallmark of timing behavior. Analysis of network connectivity revealed that efficiency-a measure of network interconnectedness-decreased as the number of stored trajectories increased. Additionally, the balance of excitation (E) and inhibition (I) shifted toward excitation during each unit's activation time, generating the prediction that observed sequential activity relies on dynamic control of the E/I balance. Our results establish for the first time that the same RNN can generate multiple functionally feedforward patterns of activity as a result of dynamic shifts in the E/I balance imposed by the connectome of the RNN. We conclude that recurrent network architectures account for sequential neural activity, as well as for a fundamental signature of timing behavior: Weber's law.

  13. A freely-moving monkey treadmill model

    NASA Astrophysics Data System (ADS)

    Foster, Justin D.; Nuyujukian, Paul; Freifeld, Oren; Gao, Hua; Walker, Ross; Ryu, Stephen I.; Meng, Teresa H.; Murmann, Boris; Black, Michael J.; Shenoy, Krishna V.

    2014-08-01

    Objective. Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. Approach. We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the flexibility and utility of this new monkey model, including the first recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Main results. Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average firing rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at different speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Significance. Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic motor neuroscience and for the successful translation of BMIs to people with paralysis.

  14. Video time encoding machines.

    PubMed

    Lazar, Aurel A; Pnevmatikakis, Eftychios A

    2011-03-01

    We investigate architectures for time encoding and time decoding of visual stimuli such as natural and synthetic video streams (movies, animation). The architecture for time encoding is akin to models of the early visual system. It consists of a bank of filters in cascade with single-input multi-output neural circuits. Neuron firing is based on either a threshold-and-fire or an integrate-and-fire spiking mechanism with feedback. We show that analog information is represented by the neural circuits as projections on a set of band-limited functions determined by the spike sequence. Under Nyquist-type and frame conditions, the encoded signal can be recovered from these projections with arbitrary precision. For the video time encoding machine architecture, we demonstrate that band-limited video streams of finite energy can be faithfully recovered from the spike trains and provide a stable algorithm for perfect recovery. The key condition for recovery calls for the number of neurons in the population to be above a threshold value.

  15. Video Time Encoding Machines

    PubMed Central

    Lazar, Aurel A.; Pnevmatikakis, Eftychios A.

    2013-01-01

    We investigate architectures for time encoding and time decoding of visual stimuli such as natural and synthetic video streams (movies, animation). The architecture for time encoding is akin to models of the early visual system. It consists of a bank of filters in cascade with single-input multi-output neural circuits. Neuron firing is based on either a threshold-and-fire or an integrate-and-fire spiking mechanism with feedback. We show that analog information is represented by the neural circuits as projections on a set of band-limited functions determined by the spike sequence. Under Nyquist-type and frame conditions, the encoded signal can be recovered from these projections with arbitrary precision. For the video time encoding machine architecture, we demonstrate that band-limited video streams of finite energy can be faithfully recovered from the spike trains and provide a stable algorithm for perfect recovery. The key condition for recovery calls for the number of neurons in the population to be above a threshold value. PMID:21296708

  16. Using Neural Data to Test A Theory of Investor Behavior: An Application to Realization Utility

    PubMed Central

    Frydman, Cary; Barberis, Nicholas; Camerer, Colin; Bossaerts, Peter; Rangel, Antonio

    2015-01-01

    We use measures of neural activity provided by functional magnetic resonance imaging (fMRI) to test the “realization utility” theory of investor behavior, which posits that people derive utility directly from the act of realizing gains and losses. Subjects traded stocks in an experimental market while we measured their brain activity. We find that all subjects exhibit a strong disposition effect in their trading, even though it is suboptimal. Consistent with the realization utility explanation for this behavior, we find that activity in the ventromedial prefrontal cortex, an area known to encode the value of options during choices, correlates with the capital gains of potential trades; that the neural measures of realization utility correlate across subjects with their individual tendency to exhibit a disposition effect; and that activity in the ventral striatum, an area known to encode information about changes in the present value of experienced utility, exhibits a positive response when subjects realize capital gains. These results provide support for the realization utility model and, more generally, demonstrate how neural data can be helpful in testing models of investor behavior. PMID:25774065

  17. Using Neural Data to Test A Theory of Investor Behavior: An Application to Realization Utility.

    PubMed

    Frydman, Cary; Barberis, Nicholas; Camerer, Colin; Bossaerts, Peter; Rangel, Antonio

    2014-04-01

    We use measures of neural activity provided by functional magnetic resonance imaging (fMRI) to test the "realization utility" theory of investor behavior, which posits that people derive utility directly from the act of realizing gains and losses. Subjects traded stocks in an experimental market while we measured their brain activity. We find that all subjects exhibit a strong disposition effect in their trading, even though it is suboptimal. Consistent with the realization utility explanation for this behavior, we find that activity in the ventromedial prefrontal cortex, an area known to encode the value of options during choices, correlates with the capital gains of potential trades; that the neural measures of realization utility correlate across subjects with their individual tendency to exhibit a disposition effect; and that activity in the ventral striatum, an area known to encode information about changes in the present value of experienced utility, exhibits a positive response when subjects realize capital gains. These results provide support for the realization utility model and, more generally, demonstrate how neural data can be helpful in testing models of investor behavior.

  18. Comparing visual representations across human fMRI and computational vision

    PubMed Central

    Leeds, Daniel D.; Seibert, Darren A.; Pyles, John A.; Tarr, Michael J.

    2013-01-01

    Feedforward visual object perception recruits a cortical network that is assumed to be hierarchical, progressing from basic visual features to complete object representations. However, the nature of the intermediate features related to this transformation remains poorly understood. Here, we explore how well different computer vision recognition models account for neural object encoding across the human cortical visual pathway as measured using fMRI. These neural data, collected during the viewing of 60 images of real-world objects, were analyzed with a searchlight procedure as in Kriegeskorte, Goebel, and Bandettini (2006): Within each searchlight sphere, the obtained patterns of neural activity for all 60 objects were compared to model responses for each computer recognition algorithm using representational dissimilarity analysis (Kriegeskorte et al., 2008). Although each of the computer vision methods significantly accounted for some of the neural data, among the different models, the scale invariant feature transform (Lowe, 2004), encoding local visual properties gathered from “interest points,” was best able to accurately and consistently account for stimulus representations within the ventral pathway. More generally, when present, significance was observed in regions of the ventral-temporal cortex associated with intermediate-level object perception. Differences in model effectiveness and the neural location of significant matches may be attributable to the fact that each model implements a different featural basis for representing objects (e.g., more holistic or more parts-based). Overall, we conclude that well-known computer vision recognition systems may serve as viable proxies for theories of intermediate visual object representation. PMID:24273227

  19. Simulation of an array-based neural net model

    NASA Technical Reports Server (NTRS)

    Barnden, John A.

    1987-01-01

    Research in cognitive science suggests that much of cognition involves the rapid manipulation of complex data structures. However, it is very unclear how this could be realized in neural networks or connectionist systems. A core question is: how could the interconnectivity of items in an abstract-level data structure be neurally encoded? The answer appeals mainly to positional relationships between activity patterns within neural arrays, rather than directly to neural connections in the traditional way. The new method was initially devised to account for abstract symbolic data structures, but it also supports cognitively useful spatial analogue, image-like representations. As the neural model is based on massive, uniform, parallel computations over 2D arrays, the massively parallel processor is a convenient tool for simulation work, although there are complications in using the machine to the fullest advantage. An MPP Pascal simulation program for a small pilot version of the model is running.

  20. Optimizing the learning rate for adaptive estimation of neural encoding models

    PubMed Central

    2018-01-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069

  1. Optimizing the learning rate for adaptive estimation of neural encoding models.

    PubMed

    Hsieh, Han-Lin; Shanechi, Maryam M

    2018-05-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.

  2. Circuit variability interacts with excitatory-inhibitory diversity of interneurons to regulate network encoding capacity.

    PubMed

    Tsai, Kuo-Ting; Hu, Chin-Kun; Li, Kuan-Wei; Hwang, Wen-Liang; Chou, Ya-Hui

    2018-05-23

    Local interneurons (LNs) in the Drosophila olfactory system exhibit neuronal diversity and variability, yet it is still unknown how these features impact information encoding capacity and reliability in a complex LN network. We employed two strategies to construct a diverse excitatory-inhibitory neural network beginning with a ring network structure and then introduced distinct types of inhibitory interneurons and circuit variability to the simulated network. The continuity of activity within the node ensemble (oscillation pattern) was used as a readout to describe the temporal dynamics of network activity. We found that inhibitory interneurons enhance the encoding capacity by protecting the network from extremely short activation periods when the network wiring complexity is very high. In addition, distinct types of interneurons have differential effects on encoding capacity and reliability. Circuit variability may enhance the encoding reliability, with or without compromising encoding capacity. Therefore, we have described how circuit variability of interneurons may interact with excitatory-inhibitory diversity to enhance the encoding capacity and distinguishability of neural networks. In this work, we evaluate the effects of different types and degrees of connection diversity on a ring model, which may simulate interneuron networks in the Drosophila olfactory system or other biological systems.

  3. Neural field model of memory-guided search.

    PubMed

    Kilpatrick, Zachary P; Poll, Daniel B

    2017-12-01

    Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.

  4. Neural field model of memory-guided search

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Zachary P.; Poll, Daniel B.

    2017-12-01

    Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.

  5. Optoelectronic fuzzy associative memory with controllable attraction basin sizes

    NASA Astrophysics Data System (ADS)

    Wen, Zhiqing; Campbell, Scott; Wu, Weishu; Yeh, Pochi

    1995-10-01

    We propose and demonstrate a new fuzzy associative memory model that provides an option to control the sizes of the attraction basins in neural networks. In our optoelectronic implementation we use spatial/polarization encoding to represent the fuzzy variables. Shadow casting of the encoded patterns is employed to yield the fuzzy-absolute difference between fuzzy variables.

  6. Neural Global Pattern Similarity Underlies True and False Memories.

    PubMed

    Ye, Zhifang; Zhu, Bi; Zhuang, Liping; Lu, Zhonglin; Chen, Chuansheng; Xue, Gui

    2016-06-22

    The neural processes giving rise to human memory strength signals remain poorly understood. Inspired by formal computational models that posit a central role of global matching in memory strength, we tested a novel hypothesis that the strengths of both true and false memories arise from the global similarity of an item's neural activation pattern during retrieval to that of all the studied items during encoding (i.e., the encoding-retrieval neural global pattern similarity [ER-nGPS]). We revealed multiple ER-nGPS signals that carried distinct information and contributed differentially to true and false memories: Whereas the ER-nGPS in the parietal regions reflected semantic similarity and was scaled with the recognition strengths of both true and false memories, ER-nGPS in the visual cortex contributed solely to true memory. Moreover, ER-nGPS differences between the parietal and visual cortices were correlated with frontal monitoring processes. By combining computational and neuroimaging approaches, our results advance a mechanistic understanding of memory strength in recognition. What neural processes give rise to memory strength signals, and lead to our conscious feelings of familiarity? Using fMRI, we found that the memory strength of a given item depends not only on how it was encoded during learning, but also on the similarity of its neural representation with other studied items. The global neural matching signal, mainly in the parietal lobule, could account for the memory strengths of both studied and unstudied items. Interestingly, a different global matching signal, originated from the visual cortex, could distinguish true from false memories. The findings reveal multiple neural mechanisms underlying the memory strengths of events registered in the brain. Copyright © 2016 the authors 0270-6474/16/366792-11$15.00/0.

  7. Differential Encoding of Time by Prefrontal and Striatal Network Dynamics.

    PubMed

    Bakhurin, Konstantin I; Goudar, Vishwa; Shobe, Justin L; Claar, Leslie D; Buonomano, Dean V; Masmanidis, Sotiris C

    2017-01-25

    Telling time is fundamental to many forms of learning and behavior, including the anticipation of rewarding events. Although the neural mechanisms underlying timing remain unknown, computational models have proposed that the brain represents time in the dynamics of neural networks. Consistent with this hypothesis, changing patterns of neural activity dynamically in a number of brain areas-including the striatum and cortex-has been shown to encode elapsed time. To date, however, no studies have explicitly quantified and contrasted how well different areas encode time by recording large numbers of units simultaneously from more than one area. Here, we performed large-scale extracellular recordings in the striatum and orbitofrontal cortex of mice that learned the temporal relationship between a stimulus and a reward and reported their response with anticipatory licking. We used a machine-learning algorithm to quantify how well populations of neurons encoded elapsed time from stimulus onset. Both the striatal and cortical networks encoded time, but the striatal network outperformed the orbitofrontal cortex, a finding replicated both in simultaneously and nonsimultaneously recorded corticostriatal datasets. The striatal network was also more reliable in predicting when the animals would lick up to ∼1 s before the actual lick occurred. Our results are consistent with the hypothesis that temporal information is encoded in a widely distributed manner throughout multiple brain areas, but that the striatum may have a privileged role in timing because it has a more accurate "clock" as it integrates information across multiple cortical areas. The neural representation of time is thought to be distributed across multiple functionally specialized brain structures, including the striatum and cortex. However, until now, the neural code for time has not been compared quantitatively between these areas. Here, we performed large-scale recordings in the striatum and orbitofrontal cortex of mice trained on a stimulus-reward association task involving a delay period and used a machine-learning algorithm to quantify how well populations of simultaneously recorded neurons encoded elapsed time from stimulus onset. We found that, although both areas encoded time, the striatum consistently outperformed the orbitofrontal cortex. These results suggest that the striatum may refine the code for time by integrating information from multiple inputs. Copyright © 2017 the authors 0270-6474/17/370854-17$15.00/0.

  8. A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system.

    PubMed

    Dicke, Ulrike; Ewert, Stephan D; Dau, Torsten; Kollmeier, Birger

    2007-01-01

    Periodic amplitude modulations (AMs) of an acoustic stimulus are presumed to be encoded in temporal activity patterns of neurons in the cochlear nucleus. Physiological recordings indicate that this temporal AM code is transformed into a rate-based periodicity code along the ascending auditory pathway. The present study suggests a neural circuit for the transformation from the temporal to the rate-based code. Due to the neural connectivity of the circuit, bandpass shaped rate modulation transfer functions are obtained that correspond to recorded functions of inferior colliculus (IC) neurons. In contrast to previous modeling studies, the present circuit does not employ a continuously changing temporal parameter to obtain different best modulation frequencies (BMFs) of the IC bandpass units. Instead, different BMFs are yielded from varying the number of input units projecting onto different bandpass units. In order to investigate the compatibility of the neural circuit with a linear modulation filterbank analysis as proposed in psychophysical studies, complex stimuli such as tones modulated by the sum of two sinusoids, narrowband noise, and iterated rippled noise were processed by the model. The model accounts for the encoding of AM depth over a large dynamic range and for modulation frequency selective processing of complex sounds.

  9. UniEnt: uniform entropy model for the dynamics of a neuronal population

    NASA Astrophysics Data System (ADS)

    Hernandez Lahme, Damian; Nemenman, Ilya

    Sensory information and motor responses are encoded in the brain in a collective spiking activity of a large number of neurons. Understanding the neural code requires inferring statistical properties of such collective dynamics from multicellular neurophysiological recordings. Questions of whether synchronous activity or silence of multiple neurons carries information about the stimuli or the motor responses are especially interesting. Unfortunately, detection of such high order statistical interactions from data is especially challenging due to the exponentially large dimensionality of the state space of neural collectives. Here we present UniEnt, a method for the inference of strengths of multivariate neural interaction patterns. The method is based on the Bayesian prior that makes no assumptions (uniform a priori expectations) about the value of the entropy of the observed multivariate neural activity, in contrast to popular approaches that maximize this entropy. We then study previously published multi-electrode recordings data from salamander retina, exposing the relevance of higher order neural interaction patterns for information encoding in this system. This work was supported in part by Grants JSMF/220020321 and NSF/IOS/1208126.

  10. Critical branching neural networks.

    PubMed

    Kello, Christopher T

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.

  11. Neural systems language: a formal modeling language for the systematic description, unambiguous communication, and automated digital curation of neural connectivity.

    PubMed

    Brown, Ramsay A; Swanson, Larry W

    2013-09-01

    Systematic description and the unambiguous communication of findings and models remain among the unresolved fundamental challenges in systems neuroscience. No common descriptive frameworks exist to describe systematically the connective architecture of the nervous system, even at the grossest level of observation. Furthermore, the accelerating volume of novel data generated on neural connectivity outpaces the rate at which this data is curated into neuroinformatics databases to synthesize digitally systems-level insights from disjointed reports and observations. To help address these challenges, we propose the Neural Systems Language (NSyL). NSyL is a modeling language to be used by investigators to encode and communicate systematically reports of neural connectivity from neuroanatomy and brain imaging. NSyL engenders systematic description and communication of connectivity irrespective of the animal taxon described, experimental or observational technique implemented, or nomenclature referenced. As a language, NSyL is internally consistent, concise, and comprehensible to both humans and computers. NSyL is a promising development for systematizing the representation of neural architecture, effectively managing the increasing volume of data on neural connectivity and streamlining systems neuroscience research. Here we present similar precedent systems, how NSyL extends existing frameworks, and the reasoning behind NSyL's development. We explore NSyL's potential for balancing robustness and consistency in representation by encoding previously reported assertions of connectivity from the literature as examples. Finally, we propose and discuss the implications of a framework for how NSyL will be digitally implemented in the future to streamline curation of experimental results and bridge the gaps among anatomists, imagers, and neuroinformatics databases. Copyright © 2013 Wiley Periodicals, Inc.

  12. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain.

    PubMed

    Higgins, Irina; Stringer, Simon; Schnupp, Jan

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable.

  13. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain

    PubMed Central

    Stringer, Simon

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable. PMID:28797034

  14. A High-Performance Lossless Compression Scheme for EEG Signals Using Wavelet Transform and Neural Network Predictors

    PubMed Central

    Sriraam, N.

    2012-01-01

    Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications. PMID:22489238

  15. A high-performance lossless compression scheme for EEG signals using wavelet transform and neural network predictors.

    PubMed

    Sriraam, N

    2012-01-01

    Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications.

  16. Massively parallel neural circuits for stereoscopic color vision: encoding, decoding and identification.

    PubMed

    Lazar, Aurel A; Slutskiy, Yevgeniy B; Zhou, Yiyin

    2015-03-01

    Past work demonstrated how monochromatic visual stimuli could be faithfully encoded and decoded under Nyquist-type rate conditions. Color visual stimuli were then traditionally encoded and decoded in multiple separate monochromatic channels. The brain, however, appears to mix information about color channels at the earliest stages of the visual system, including the retina itself. If information about color is mixed and encoded by a common pool of neurons, how can colors be demixed and perceived? We present Color Video Time Encoding Machines (Color Video TEMs) for encoding color visual stimuli that take into account a variety of color representations within a single neural circuit. We then derive a Color Video Time Decoding Machine (Color Video TDM) algorithm for color demixing and reconstruction of color visual scenes from spikes produced by a population of visual neurons. In addition, we formulate Color Video Channel Identification Machines (Color Video CIMs) for functionally identifying color visual processing performed by a spiking neural circuit. Furthermore, we derive a duality between TDMs and CIMs that unifies the two and leads to a general theory of neural information representation for stereoscopic color vision. We provide examples demonstrating that a massively parallel color visual neural circuit can be first identified with arbitrary precision and its spike trains can be subsequently used to reconstruct the encoded stimuli. We argue that evaluation of the functional identification methodology can be effectively and intuitively performed in the stimulus space. In this space, a signal reconstructed from spike trains generated by the identified neural circuit can be compared to the original stimulus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Evaluation of Deep Learning Representations of Spatial Storm Data

    NASA Astrophysics Data System (ADS)

    Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.

    2017-12-01

    The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being performed to determine how the choice of input variables affects the results.

  18. Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks.

    PubMed

    Liu, Da; Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai

    2016-01-01

    Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012.

  19. Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks

    PubMed Central

    Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai

    2016-01-01

    Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012. PMID:27281032

  20. Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise

    PubMed Central

    Burge, Johannes

    2017-01-01

    Accuracy Maximization Analysis (AMA) is a recently developed Bayesian ideal observer method for task-specific dimensionality reduction. Given a training set of proximal stimuli (e.g. retinal images), a response noise model, and a cost function, AMA returns the filters (i.e. receptive fields) that extract the most useful stimulus features for estimating a user-specified latent variable from those stimuli. Here, we first contribute two technical advances that significantly reduce AMA’s compute time: we derive gradients of cost functions for which two popular estimators are appropriate, and we implement a stochastic gradient descent (AMA-SGD) routine for filter learning. Next, we show how the method can be used to simultaneously probe the impact on neural encoding of natural stimulus variability, the prior over the latent variable, noise power, and the choice of cost function. Then, we examine the geometry of AMA’s unique combination of properties that distinguish it from better-known statistical methods. Using binocular disparity estimation as a concrete test case, we develop insights that have general implications for understanding neural encoding and decoding in a broad class of fundamental sensory-perceptual tasks connected to the energy model. Specifically, we find that non-orthogonal (partially redundant) filters with scaled additive noise tend to outperform orthogonal filters with constant additive noise; non-orthogonal filters and scaled additive noise can interact to sculpt noise-induced stimulus encoding uncertainty to match task-irrelevant stimulus variability. Thus, we show that some properties of neural response thought to be biophysical nuisances can confer coding advantages to neural systems. Finally, we speculate that, if repurposed for the problem of neural systems identification, AMA may be able to overcome a fundamental limitation of standard subunit model estimation. As natural stimuli become more widely used in the study of psychophysical and neurophysiological performance, we expect that task-specific methods for feature learning like AMA will become increasingly important. PMID:28178266

  1. Modeling for Visual Feature Extraction Using Spiking Neural Networks

    NASA Astrophysics Data System (ADS)

    Kimura, Ichiro; Kuroe, Yasuaki; Kotera, Hiromichi; Murata, Tomoya

    This paper develops models for “visual feature extraction” in biological systems by using “spiking neural network (SNN)”. The SNN is promising for developing the models because the information is encoded and processed by spike trains similar to biological neural networks. Two architectures of SNN are proposed for modeling the directionally selective and the motion parallax cell in neuro-sensory systems and they are trained so as to possess actual biological responses of each cell. To validate the developed models, their representation ability is investigated and their visual feature extraction mechanisms are discussed from the neurophysiological viewpoint. It is expected that this study can be the first step to developing a sensor system similar to the biological systems and also a complementary approach to investigating the function of the brain.

  2. Auditory attentional capture during serial recall: violations at encoding of an algorithm-based neural model?

    PubMed

    Hughes, Robert W; Vachon, François; Jones, Dylan M

    2005-07-01

    A novel attentional capture effect is reported in which visual-verbal serial recall was disrupted if a single deviation in the interstimulus interval occurred within otherwise regularly presented task-irrelevant spoken items. The degree of disruption was the same whether the temporal deviant was embedded in a sequence made up of a repeating item or a sequence of changing items. Moreover, the effect was evident during the presentation of the to-be-remembered sequence but not during rehearsal just prior to recall, suggesting that the encoding of sequences is particularly susceptible. The results suggest that attentional capture is due to a violation of an algorithm rather than an aggregate-based neural model and further undermine an attentional capture-based account of the classical changing-state irrelevant sound effect. ((c) 2005 APA, all rights reserved).

  3. Functional model of biological neural networks.

    PubMed

    Lo, James Ting-Ho

    2010-12-01

    A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.

  4. Spatial Learning and Action Planning in a Prefrontal Cortical Network Model

    PubMed Central

    Martinet, Louis-Emmanuel; Sheynikhovich, Denis; Benchenane, Karim; Arleo, Angelo

    2011-01-01

    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates. PMID:21625569

  5. Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment

    PubMed Central

    Legenstein, Robert; Maass, Wolfgang

    2014-01-01

    It has recently been shown that networks of spiking neurons with noise can emulate simple forms of probabilistic inference through “neural sampling”, i.e., by treating spikes as samples from a probability distribution of network states that is encoded in the network. Deficiencies of the existing model are its reliance on single neurons for sampling from each random variable, and the resulting limitation in representing quickly varying probabilistic information. We show that both deficiencies can be overcome by moving to a biologically more realistic encoding of each salient random variable through the stochastic firing activity of an ensemble of neurons. The resulting model demonstrates that networks of spiking neurons with noise can easily track and carry out basic computational operations on rapidly varying probability distributions, such as the odds of getting rewarded for a specific behavior. We demonstrate the viability of this new approach towards neural coding and computation, which makes use of the inherent parallelism of generic neural circuits, by showing that this model can explain experimentally observed firing activity of cortical neurons for a variety of tasks that require rapid temporal integration of sensory information. PMID:25340749

  6. Production and characterization of immortal human neural stem cell line with multipotent differentiation property.

    PubMed

    Kim, Seung U; Nagai, Atsushi; Nakagawa, Eiji; Choi, Hyun B; Bang, Jung H; Lee, Hong J; Lee, Myung A; Lee, Yong B; Park, In H

    2008-01-01

    We document the protocols and methods for the production of immortalized cell lines of human neural stem cells from the human fetal central nervous system (CNS) cells by using a retroviral vector encoding v-myc oncogene. One of the human neural stem cell lines (HB1.F3) was found to express nestin and other specific markers for human neural stem cells, giving rise to three fundamental cell types of the CNS: neurons, astrocytes, and oligodendrocytes. After transplantation into the brain of mouse model of stroke, implanted human neural stem cells were observed to migrate extensively from the site of implantation into other anatomical sites and to differentiate into neurons and glial cells.

  7. Computational advances towards linking BOLD and behavior.

    PubMed

    Serences, John T; Saproo, Sameer

    2012-03-01

    Traditionally, fMRI studies have focused on analyzing the mean response amplitude within a cortical area. However, the mean response is blind to many important patterns of cortical modulation, which severely limits the formulation and evaluation of linking hypotheses between neural activity, BOLD responses, and behavior. More recently, multivariate pattern classification analysis (MVPA) has been applied to fMRI data to evaluate the information content of spatially distributed activation patterns. This approach has been remarkably successful at detecting the presence of specific information in targeted brain regions, and provides an extremely flexible means of extracting that information without a precise generative model for the underlying neural activity. However, this flexibility comes at a cost: since MVPA relies on pooling information across voxels that are selective for many different stimulus attributes, it is difficult to infer how specific sub-sets of tuned neurons are modulated by an experimental manipulation. In contrast, recently developed encoding models can produce more precise estimates of feature-selective tuning functions, and can support the creation of explicit linking hypotheses between neural activity and behavior. Although these encoding models depend on strong - and often untested - assumptions about the response properties of underlying neural generators, they also provide a unique opportunity to evaluate population-level computational theories of perception and cognition that have previously been difficult to assess using either single-unit recording or conventional neuroimaging techniques. Copyright © 2011. Published by Elsevier Ltd.

  8. Toward a Unified Sub-symbolic Computational Theory of Cognition

    PubMed Central

    Butz, Martin V.

    2016-01-01

    This paper proposes how various disciplinary theories of cognition may be combined into a unifying, sub-symbolic, computational theory of cognition. The following theories are considered for integration: psychological theories, including the theory of event coding, event segmentation theory, the theory of anticipatory behavioral control, and concept development; artificial intelligence and machine learning theories, including reinforcement learning and generative artificial neural networks; and theories from theoretical and computational neuroscience, including predictive coding and free energy-based inference. In the light of such a potential unification, it is discussed how abstract cognitive, conceptualized knowledge and understanding may be learned from actively gathered sensorimotor experiences. The unification rests on the free energy-based inference principle, which essentially implies that the brain builds a predictive, generative model of its environment. Neural activity-oriented inference causes the continuous adaptation of the currently active predictive encodings. Neural structure-oriented inference causes the longer term adaptation of the developing generative model as a whole. Finally, active inference strives for maintaining internal homeostasis, causing goal-directed motor behavior. To learn abstract, hierarchical encodings, however, it is proposed that free energy-based inference needs to be enhanced with structural priors, which bias cognitive development toward the formation of particular, behaviorally suitable encoding structures. As a result, it is hypothesized how abstract concepts can develop from, and thus how they are structured by and grounded in, sensorimotor experiences. Moreover, it is sketched-out how symbol-like thought can be generated by a temporarily active set of predictive encodings, which constitute a distributed neural attractor in the form of an interactive free-energy minimum. The activated, interactive network attractor essentially characterizes the semantics of a concept or a concept composition, such as an actual or imagined situation in our environment. Temporal successions of attractors then encode unfolding semantics, which may be generated by a behavioral or mental interaction with an actual or imagined situation in our environment. Implications, further predictions, possible verification, and falsifications, as well as potential enhancements into a fully spelled-out unified theory of cognition are discussed at the end of the paper. PMID:27445895

  9. Population coding and decoding in a neural field: a computational study.

    PubMed

    Wu, Si; Amari, Shun-Ichi; Nakahara, Hiroyuki

    2002-05-01

    This study uses a neural field model to investigate computational aspects of population coding and decoding when the stimulus is a single variable. A general prototype model for the encoding process is proposed, in which neural responses are correlated, with strength specified by a gaussian function of their difference in preferred stimuli. Based on the model, we study the effect of correlation on the Fisher information, compare the performances of three decoding methods that differ in the amount of encoding information being used, and investigate the implementation of the three methods by using a recurrent network. This study not only rediscovers main results in existing literatures in a unified way, but also reveals important new features, especially when the neural correlation is strong. As the neural correlation of firing becomes larger, the Fisher information decreases drastically. We confirm that as the width of correlation increases, the Fisher information saturates and no longer increases in proportion to the number of neurons. However, we prove that as the width increases further--wider than (sqrt)2 times the effective width of the turning function--the Fisher information increases again, and it increases without limit in proportion to the number of neurons. Furthermore, we clarify the asymptotic efficiency of the maximum likelihood inference (MLI) type of decoding methods for correlated neural signals. It shows that when the correlation covers a nonlocal range of population (excepting the uniform correlation and when the noise is extremely small), the MLI type of method, whose decoding error satisfies the Cauchy-type distribution, is not asymptotically efficient. This implies that the variance is no longer adequate to measure decoding accuracy.

  10. The neural code for face orientation in the human fusiform face area.

    PubMed

    Ramírez, Fernando M; Cichy, Radoslaw M; Allefeld, Carsten; Haynes, John-Dylan

    2014-09-03

    Humans recognize faces and objects with high speed and accuracy regardless of their orientation. Recent studies have proposed that orientation invariance in face recognition involves an intermediate representation where neural responses are similar for mirror-symmetric views. Here, we used fMRI, multivariate pattern analysis, and computational modeling to investigate the neural encoding of faces and vehicles at different rotational angles. Corroborating previous studies, we demonstrate a representation of face orientation in the fusiform face-selective area (FFA). We go beyond these studies by showing that this representation is category-selective and tolerant to retinal translation. Critically, by controlling for low-level confounds, we found the representation of orientation in FFA to be compatible with a linear angle code. Aspects of mirror-symmetric coding cannot be ruled out when FFA mean activity levels are considered as a dimension of coding. Finally, we used a parametric family of computational models, involving a biased sampling of view-tuned neuronal clusters, to compare different face angle encoding models. The best fitting model exhibited a predominance of neuronal clusters tuned to frontal views of faces. In sum, our findings suggest a category-selective and monotonic code of face orientation in the human FFA, in line with primate electrophysiology studies that observed mirror-symmetric tuning of neural responses at higher stages of the visual system, beyond the putative homolog of human FFA. Copyright © 2014 the authors 0270-6474/14/3412155-13$15.00/0.

  11. Neuronal modelling of baroreflex response to orthostatic stress

    NASA Astrophysics Data System (ADS)

    Samin, Azfar

    The accelerations experienced in aerial combat can cause pilot loss of consciousness (GLOC) due to a critical reduction in cerebral blood circulation. The development of smart protective equipment requires understanding of how the brain processes blood pressure (BP) information in response to acceleration. We present a biologically plausible model of the Baroreflex to investigate the neural correlates of short-term BP control under acceleration or orthostatic stress. The neuronal network model, which employs an integrate-and-fire representation of a biological neuron, comprises the sensory, motor, and the central neural processing areas that form the Baroreflex. Our modelling strategy is to test hypotheses relating to the encoding mechanisms of multiple sensory inputs to the nucleus tractus solitarius (NTS), the site of central neural processing. The goal is to run simulations and reproduce model responses that are consistent with the variety of available experimental data. Model construction and connectivity are inspired by the available anatomical and neurophysiological evidence that points to a barotopic organization in the NTS, and the presence of frequency-dependent synaptic depression, which provides a mechanism for generating non-linear local responses in NTS neurons that result in quantifiable dynamic global baroreflex responses. The entire physiological range of BP and rate of change of BP variables is encoded in a palisade of NTS neurons in that the spike responses approximate Gaussian 'tuning' curves. An adapting weighted-average decoding scheme computes the motor responses and a compensatory signal regulates the heart rate (HR). Model simulations suggest that: (1) the NTS neurons can encode the hydrostatic pressure difference between two vertically separated sensory receptor regions at +Gz, and use changes in that difference for the regulation of HR; (2) even though NTS neurons do not fire with a cardiac rhythm seen in the afferents, pulse-rhythmic activity is regained downstream provided the input phase information in preserved centrally; (3) frequency-dependent synaptic depression, which causes temporal variations in synaptic strength due to changes in input frequency, is a possible mechanism of non-linear dynamic baroreflex gain control. Synaptic depression enables the NTS neuron to encode dBP/dt but to lose information about the steady state firing of the afferents.

  12. Dynamic Information Encoding With Dynamic Synapses in Neural Adaptation

    PubMed Central

    Li, Luozheng; Mi, Yuanyuan; Zhang, Wenhao; Wang, Da-Hui; Wu, Si

    2018-01-01

    Adaptation refers to the general phenomenon that the neural system dynamically adjusts its response property according to the statistics of external inputs. In response to an invariant stimulation, neuronal firing rates first increase dramatically and then decrease gradually to a low level close to the background activity. This prompts a question: during the adaptation, how does the neural system encode the repeated stimulation with attenuated firing rates? It has been suggested that the neural system may employ a dynamical encoding strategy during the adaptation, the information of stimulus is mainly encoded by the strong independent spiking of neurons at the early stage of the adaptation; while the weak but synchronized activity of neurons encodes the stimulus information at the later stage of the adaptation. The previous study demonstrated that short-term facilitation (STF) of electrical synapses, which increases the synchronization between neurons, can provide a mechanism to realize dynamical encoding. In the present study, we further explore whether short-term plasticity (STP) of chemical synapses, an interaction form more common than electrical synapse in the cortex, can support dynamical encoding. We build a large-size network with chemical synapses between neurons. Notably, facilitation of chemical synapses only enhances pair-wise correlations between neurons mildly, but its effect on increasing synchronization of the network can be significant, and hence it can serve as a mechanism to convey the stimulus information. To read-out the stimulus information, we consider that a downstream neuron receives balanced excitatory and inhibitory inputs from the network, so that the downstream neuron only responds to synchronized firings of the network. Therefore, the response of the downstream neuron indicates the presence of the repeated stimulation. Overall, our study demonstrates that STP of chemical synapse can serve as a mechanism to realize dynamical neural encoding. We believe that our study shed lights on the mechanism underlying the efficient neural information processing via adaptation. PMID:29636675

  13. Distant supervision for neural relation extraction integrated with word attention and property features.

    PubMed

    Qu, Jianfeng; Ouyang, Dantong; Hua, Wen; Ye, Yuxin; Li, Ximing

    2018-04-01

    Distant supervision for neural relation extraction is an efficient approach to extracting massive relations with reference to plain texts. However, the existing neural methods fail to capture the critical words in sentence encoding and meanwhile lack useful sentence information for some positive training instances. To address the above issues, we propose a novel neural relation extraction model. First, we develop a word-level attention mechanism to distinguish the importance of each individual word in a sentence, increasing the attention weights for those critical words. Second, we investigate the semantic information from word embeddings of target entities, which can be developed as a supplementary feature for the extractor. Experimental results show that our model outperforms previous state-of-the-art baselines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Improving Odometric Accuracy for an Autonomous Electric Cart.

    PubMed

    Toledo, Jonay; Piñeiro, Jose D; Arnay, Rafael; Acosta, Daniel; Acosta, Leopoldo

    2018-01-12

    In this paper, a study of the odometric system for the autonomous cart Verdino, which is an electric vehicle based on a golf cart, is presented. A mathematical model of the odometric system is derived from cart movement equations, and is used to compute the vehicle position and orientation. The inputs of the system are the odometry encoders, and the model uses the wheels diameter and distance between wheels as parameters. With this model, a least square minimization is made in order to get the nominal best parameters. This model is updated, including a real time wheel diameter measurement improving the accuracy of the results. A neural network model is used in order to learn the odometric model from data. Tests are made using this neural network in several configurations and the results are compared to the mathematical model, showing that the neural network can outperform the first proposed model.

  15. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    PubMed

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-07-15

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Closed-Loop Estimation of Retinal Network Sensitivity by Local Empirical Linearization

    PubMed Central

    2018-01-01

    Abstract Understanding how sensory systems process information depends crucially on identifying which features of the stimulus drive the response of sensory neurons, and which ones leave their response invariant. This task is made difficult by the many nonlinearities that shape sensory processing. Here, we present a novel perturbative approach to understand information processing by sensory neurons, where we linearize their collective response locally in stimulus space. We added small perturbations to reference stimuli and tested if they triggered visible changes in the responses, adapting their amplitude according to the previous responses with closed-loop experiments. We developed a local linear model that accurately predicts the sensitivity of the neural responses to these perturbations. Applying this approach to the rat retina, we estimated the optimal performance of a neural decoder and showed that the nonlinear sensitivity of the retina is consistent with an efficient encoding of stimulus information. Our approach can be used to characterize experimentally the sensitivity of neural systems to external stimuli locally, quantify experimentally the capacity of neural networks to encode sensory information, and relate their activity to behavior. PMID:29379871

  17. Eye Velocity Gain Fields in MSTd During Optokinetic Stimulation

    PubMed Central

    Brostek, Lukas; Büttner, Ulrich; Mustari, Michael J.; Glasauer, Stefan

    2015-01-01

    Lesion studies argue for an involvement of cortical area dorsal medial superior temporal area (MSTd) in the control of optokinetic response (OKR) eye movements to planar visual stimulation. Neural recordings during OKR suggested that MSTd neurons directly encode stimulus velocity. On the other hand, studies using radial visual flow together with voluntary smooth pursuit eye movements showed that visual motion responses were modulated by eye movement-related signals. Here, we investigated neural responses in MSTd during continuous optokinetic stimulation using an information-theoretic approach for characterizing neural tuning with high resolution. We show that the majority of MSTd neurons exhibit gain-field-like tuning functions rather than directly encoding one variable. Neural responses showed a large diversity of tuning to combinations of retinal and extraretinal input. Eye velocity-related activity was observed prior to the actual eye movements, reflecting an efference copy. The observed tuning functions resembled those emerging in a network model trained to perform summation of 2 population-coded signals. Together, our findings support the hypothesis that MSTd implements the visuomotor transformation from retinal to head-centered stimulus velocity signals for the control of OKR. PMID:24557636

  18. High level cognitive information processing in neural networks

    NASA Technical Reports Server (NTRS)

    Barnden, John A.; Fields, Christopher A.

    1992-01-01

    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field.

  19. Dissecting contributions of prefrontal cortex and fusiform face area to face working memory.

    PubMed

    Druzgal, T Jason; D'Esposito, Mark

    2003-08-15

    Interactions between prefrontal cortex (PFC) and stimulus-specific visual cortical association areas are hypothesized to mediate visual working memory in behaving monkeys. To clarify the roles for homologous regions in humans, event-related fMRI was used to assess neural activity in PFC and fusiform face area (FFA) of subjects performing a delay-recognition task for faces. In both PFC and FFA, activity increased parametrically with memory load during encoding and maintenance of face stimuli, despite quantitative differences in the magnitude of activation. Moreover, timing differences in PFC and FFA activation during memory encoding and retrieval implied a context dependence in the flow of neural information. These results support existing neurophysiological models of visual working memory developed in the nonhuman primate.

  20. Increased Neural Activation during Picture Encoding and Retrieval in 60-Year-Olds Compared to 20-Year-Olds

    ERIC Educational Resources Information Center

    Burgmans, S.; van Boxtel, M. P. J.; Vuurman, E. F. P. M.; Evers, E. A. T.; Jolles, J.

    2010-01-01

    Brain aging has been associated with both reduced and increased neural activity during task execution. The purpose of the present study was to investigate whether increased neural activation during memory encoding and retrieval is already present at the age of 60 as well as to obtain more insight into the mechanism behind increased activity.…

  1. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    NASA Astrophysics Data System (ADS)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  2. Generating Poetry Title Based on Semantic Relevance with Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Li, Z.; Niu, K.; He, Z. Q.

    2017-09-01

    Several approaches have been proposed to automatically generate Chinese classical poetry (CCP) in the past few years, but automatically generating the title of CCP is still a difficult problem. The difficulties are mainly reflected in two aspects. First, the words used in CCP are very different from modern Chinese words and there are no valid word segmentation tools. Second, the semantic relevance of characters in CCP not only exists in one sentence but also exists between the same positions of adjacent sentences, which is hard to grasp by the traditional text summarization models. In this paper, we propose an encoder-decoder model for generating the title of CCP. Our model encoder is a convolutional neural network (CNN) with two kinds of filters. To capture the commonly used words in one sentence, one kind of filters covers two characters horizontally at each step. The other covers two characters vertically at each step and can grasp the semantic relevance of characters between adjacent sentences. Experimental results show that our model is better than several other related models and can capture the semantic relevance of CCP more accurately.

  3. Implementing Signature Neural Networks with Spiking Neurons

    PubMed Central

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence of inhibitory connections. These parameters also modulate the memory capabilities of the network. The dynamical modes observed in the different informational dimensions in a given moment are independent and they only depend on the parameters shaping the information processing in this dimension. In view of these results, we argue that plasticity mechanisms inside individual cells and multicoding strategies can provide additional computational properties to spiking neural networks, which could enhance their capacity and performance in a wide variety of real-world tasks. PMID:28066221

  4. Implementing Signature Neural Networks with Spiking Neurons.

    PubMed

    Carrillo-Medina, José Luis; Latorre, Roberto

    2016-01-01

    Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence of inhibitory connections. These parameters also modulate the memory capabilities of the network. The dynamical modes observed in the different informational dimensions in a given moment are independent and they only depend on the parameters shaping the information processing in this dimension. In view of these results, we argue that plasticity mechanisms inside individual cells and multicoding strategies can provide additional computational properties to spiking neural networks, which could enhance their capacity and performance in a wide variety of real-world tasks.

  5. Computation of linear acceleration through an internal model in the macaque cerebellum

    PubMed Central

    Laurens, Jean; Meng, Hui; Angelaki, Dora E.

    2013-01-01

    A combination of theory and behavioral findings has supported a role for internal models in the resolution of sensory ambiguities and sensorimotor processing. Although the cerebellum has been proposed as a candidate for implementation of internal models, concrete evidence from neural responses is lacking. Here we exploit un-natural motion stimuli, which induce incorrect self-motion perception and eye movements, to explore the neural correlates of an internal model proposed to compensate for Einstein’s equivalence principle and generate neural estimates of linear acceleration and gravity. We show that caudal cerebellar vermis Purkinje cells and cerebellar nuclei neurons selective for actual linear acceleration also encode erroneous linear acceleration, as expected from the internal model hypothesis, even when no actual linear acceleration occurs. These findings provide strong evidence that the cerebellum might be involved in the implementation of internal models that mimic physical principles to interpret sensory signals, as previously hypothesized by theorists. PMID:24077562

  6. Musicians change their tune: how hearing loss alters the neural code.

    PubMed

    Parbery-Clark, Alexandra; Anderson, Samira; Kraus, Nina

    2013-08-01

    Individuals with sensorineural hearing loss have difficulty understanding speech, especially in background noise. This deficit remains even when audibility is restored through amplification, suggesting that mechanisms beyond a reduction in peripheral sensitivity contribute to the perceptual difficulties associated with hearing loss. Given that normal-hearing musicians have enhanced auditory perceptual skills, including speech-in-noise perception, coupled with heightened subcortical responses to speech, we aimed to determine whether similar advantages could be observed in middle-aged adults with hearing loss. Results indicate that musicians with hearing loss, despite self-perceptions of average performance for understanding speech in noise, have a greater ability to hear in noise relative to nonmusicians. This is accompanied by more robust subcortical encoding of sound (e.g., stimulus-to-response correlations and response consistency) as well as more resilient neural responses to speech in the presence of background noise (e.g., neural timing). Musicians with hearing loss also demonstrate unique neural signatures of spectral encoding relative to nonmusicians: enhanced neural encoding of the speech-sound's fundamental frequency but not of its upper harmonics. This stands in contrast to previous outcomes in normal-hearing musicians, who have enhanced encoding of the harmonics but not the fundamental frequency. Taken together, our data suggest that although hearing loss modifies a musician's spectral encoding of speech, the musician advantage for perceiving speech in noise persists in a hearing-impaired population by adaptively strengthening underlying neural mechanisms for speech-in-noise perception. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Research on optimization of combustion efficiency of thermal power unit based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the economic performance and reduce pollutant emissions of thermal power units, the characteristics of neural network in establishing boiler combustion model are analyzed based on the analysis of the main factors affecting boiler efficiency by using orthogonal method. In addition, on the basis of this model, the genetic algorithm is used to find the best control amount of the furnace combustion in a certain working condition. Through the genetic algorithm based on real number encoding and roulette selection is concluded: the best control quantity at a condition of furnace combustion can be combined with the boiler combustion system model for neural network training. The precision of the neural network model is further improved, and the basic work is laid for the research of the whole boiler combustion optimization system.

  8. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters

    NASA Astrophysics Data System (ADS)

    Oby, Emily R.; Perel, Sagi; Sadtler, Patrick T.; Ruff, Douglas A.; Mischel, Jessica L.; Montez, David F.; Cohen, Marlene R.; Batista, Aaron P.; Chase, Steven M.

    2016-06-01

    Objective. A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach. We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.

  9. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters

    PubMed Central

    Oby, Emily R; Perel, Sagi; Sadtler, Patrick T; Ruff, Douglas A; Mischel, Jessica L; Montez, David F; Cohen, Marlene R; Batista, Aaron P; Chase, Steven M

    2018-01-01

    Objective A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain–computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). Approach We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. Main Results The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. Significance How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue. PMID:27097901

  10. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters.

    PubMed

    Oby, Emily R; Perel, Sagi; Sadtler, Patrick T; Ruff, Douglas A; Mischel, Jessica L; Montez, David F; Cohen, Marlene R; Batista, Aaron P; Chase, Steven M

    2016-06-01

    A traditional goal of neural recording with extracellular electrodes is to isolate action potential waveforms of an individual neuron. Recently, in brain-computer interfaces (BCIs), it has been recognized that threshold crossing events of the voltage waveform also convey rich information. To date, the threshold for detecting threshold crossings has been selected to preserve single-neuron isolation. However, the optimal threshold for single-neuron identification is not necessarily the optimal threshold for information extraction. Here we introduce a procedure to determine the best threshold for extracting information from extracellular recordings. We apply this procedure in two distinct contexts: the encoding of kinematic parameters from neural activity in primary motor cortex (M1), and visual stimulus parameters from neural activity in primary visual cortex (V1). We record extracellularly from multi-electrode arrays implanted in M1 or V1 in monkeys. Then, we systematically sweep the voltage detection threshold and quantify the information conveyed by the corresponding threshold crossings. The optimal threshold depends on the desired information. In M1, velocity is optimally encoded at higher thresholds than speed; in both cases the optimal thresholds are lower than are typically used in BCI applications. In V1, information about the orientation of a visual stimulus is optimally encoded at higher thresholds than is visual contrast. A conceptual model explains these results as a consequence of cortical topography. How neural signals are processed impacts the information that can be extracted from them. Both the type and quality of information contained in threshold crossings depend on the threshold setting. There is more information available in these signals than is typically extracted. Adjusting the detection threshold to the parameter of interest in a BCI context should improve our ability to decode motor intent, and thus enhance BCI control. Further, by sweeping the detection threshold, one can gain insights into the topographic organization of the nearby neural tissue.

  11. Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images.

    PubMed

    Johnson, J L

    1994-09-10

    The linking-field neural network model of Eckhorn et al. [Neural Comput. 2, 293-307 (1990)] was introduced to explain the experimentally observed synchronous activity among neural assemblies in the cat cortex induced by feature-dependent visual activity. The model produces synchronous bursts of pulses from neurons with similar activity, effectively grouping them by phase and pulse frequency. It gives a basic new function: grouping by similarity. The synchronous bursts are obtained in the limit of strong linking strengths. The linking-field model in the limit of moderate-to-weak linking characterized by few if any multiple bursts is investigated. In this limit dynamic, locally periodic traveling waves exist whose time signal encodes the geometrical structure of a two-dimensional input image. The signal can be made insensitive to translation, scale, rotation, distortion, and intensity. The waves transmit information beyond the physical interconnect distance. The model is implemented in an optical hybrid demonstration system. Results of the simulations and the optical system are presented.

  12. Oscillator Neural Network Retrieving Sparsely Coded Phase Patterns

    NASA Astrophysics Data System (ADS)

    Aoyagi, Toshio; Nomura, Masaki

    1999-08-01

    Little is known theoretically about the associative memory capabilities of neural networks in which information is encoded not only in the mean firing rate but also in the timing of firings. Particularly, in the case of sparsely coded patterns, it is biologically important to consider the timings of firings and to study how such consideration influences storage capacities and quality of recalled patterns. For this purpose, we propose a simple extended model of oscillator neural networks to allow for expression of a nonfiring state. Analyzing both equilibrium states and dynamical properties in recalling processes, we find that the system possesses good associative memory.

  13. A biophysical model for modulation frequency encoding in the cochlear nucleus.

    PubMed

    Eguia, Manuel C; Garcia, Guadalupe C; Romano, Sebastian A

    2010-01-01

    Encoding of amplitude modulated (AM) acoustical signals is one of the most compelling tasks for the mammalian auditory system: environmental sounds, after being filtered and transduced by the cochlea, become narrowband AM signals. Despite much experimental work dedicated to the comprehension of auditory system extraction and encoding of AM information, the neural mechanisms underlying this remarkable feature are far from being understood (Joris et al., 2004). One of the most accepted theories for this processing is the existence of a periodotopic organization (based on temporal information) across the more studied tonotopic axis (Frisina et al., 1990b). In this work, we will review some recent advances in the study of the mechanisms involved in neural processing of AM sounds, and propose an integrated model that runs from the external ear, through the cochlea and the auditory nerve, up to a sub-circuit of the cochlear nucleus (the first processing unit in the central auditory system). We will show that varying the amount of inhibition in our model we can obtain a range of best modulation frequencies (BMF) in some principal cells of the cochlear nucleus. This could be a basis for a synchronicity based, low-level periodotopic organization. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream

    PubMed Central

    Egner, Tobias; Monti, Jim M.; Summerfield, Christopher

    2014-01-01

    Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, “predictive coding” models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction (“face expectation”) and prediction error (“face surprise”), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects’ perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. PMID:21147999

  15. A decision-making model based on a spiking neural circuit and synaptic plasticity.

    PubMed

    Wei, Hui; Bu, Yijie; Dai, Dawei

    2017-10-01

    To adapt to the environment and survive, most animals can control their behaviors by making decisions. The process of decision-making and responding according to cues in the environment is stable, sustainable, and learnable. Understanding how behaviors are regulated by neural circuits and the encoding and decoding mechanisms from stimuli to responses are important goals in neuroscience. From results observed in Drosophila experiments, the underlying decision-making process is discussed, and a neural circuit that implements a two-choice decision-making model is proposed to explain and reproduce the observations. Compared with previous two-choice decision making models, our model uses synaptic plasticity to explain changes in decision output given the same environment. Moreover, biological meanings of parameters of our decision-making model are discussed. In this paper, we explain at the micro-level (i.e., neurons and synapses) how observable decision-making behavior at the macro-level is acquired and achieved.

  16. Neural reactivation links unconscious thought to decision-making performance.

    PubMed

    Creswell, John David; Bursley, James K; Satpute, Ajay B

    2013-12-01

    Brief periods of unconscious thought (UT) have been shown to improve decision making compared with making an immediate decision (ID). We reveal a neural mechanism for UT in decision making using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. Participants (N = 33) encoded information on a set of consumer products (e.g. 48 attributes describing four different cars), and we manipulated whether participants (i) consciously thought about this information (conscious thought), (ii) completed a difficult 2-back working memory task (UT) or (iii) made an immediate decision about the consumer products (ID) in a within-subjects blocked design. To differentiate UT neural activity from 2-back working memory neural activity, participants completed an independent 2-back task and this neural activity was subtracted from neural activity occurring during the UT 2-back task. Consistent with a neural reactivation account, we found that the same regions activated during the encoding of complex decision information (right dorsolateral prefrontal cortex and left intermediate visual cortex) continued to be activated during a subsequent 2-min UT period. Moreover, neural reactivation in these regions was predictive of subsequent behavioral decision-making performance after the UT period. These results provide initial evidence for post-encoding unconscious neural reactivation in facilitating decision making.

  17. Neural reactivation links unconscious thought to decision-making performance

    PubMed Central

    Bursley, James K.; Satpute, Ajay B.

    2013-01-01

    Brief periods of unconscious thought (UT) have been shown to improve decision making compared with making an immediate decision (ID). We reveal a neural mechanism for UT in decision making using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. Participants (N = 33) encoded information on a set of consumer products (e.g. 48 attributes describing four different cars), and we manipulated whether participants (i) consciously thought about this information (conscious thought), (ii) completed a difficult 2-back working memory task (UT) or (iii) made an immediate decision about the consumer products (ID) in a within-subjects blocked design. To differentiate UT neural activity from 2-back working memory neural activity, participants completed an independent 2-back task and this neural activity was subtracted from neural activity occurring during the UT 2-back task. Consistent with a neural reactivation account, we found that the same regions activated during the encoding of complex decision information (right dorsolateral prefrontal cortex and left intermediate visual cortex) continued to be activated during a subsequent 2-min UT period. Moreover, neural reactivation in these regions was predictive of subsequent behavioral decision-making performance after the UT period. These results provide initial evidence for post-encoding unconscious neural reactivation in facilitating decision making. PMID:23314012

  18. Deep hierarchical attention network for video description

    NASA Astrophysics Data System (ADS)

    Li, Shuohao; Tang, Min; Zhang, Jun

    2018-03-01

    Pairing video to natural language description remains a challenge in computer vision and machine translation. Inspired by image description, which uses an encoder-decoder model for reducing visual scene into a single sentence, we propose a deep hierarchical attention network for video description. The proposed model uses convolutional neural network (CNN) and bidirectional LSTM network as encoders while a hierarchical attention network is used as the decoder. Compared to encoder-decoder models used in video description, the bidirectional LSTM network can capture the temporal structure among video frames. Moreover, the hierarchical attention network has an advantage over single-layer attention network on global context modeling. To make a fair comparison with other methods, we evaluate the proposed architecture with different types of CNN structures and decoders. Experimental results on the standard datasets show that our model has a more superior performance than the state-of-the-art techniques.

  19. Encoder-Decoder Optimization for Brain-Computer Interfaces

    PubMed Central

    Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam

    2015-01-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919

  20. Encoder-decoder optimization for brain-computer interfaces.

    PubMed

    Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam

    2015-06-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  1. Neural encoding of the speech envelope by children with developmental dyslexia.

    PubMed

    Power, Alan J; Colling, Lincoln J; Mead, Natasha; Barnes, Lisa; Goswami, Usha

    2016-09-01

    Developmental dyslexia is consistently associated with difficulties in processing phonology (linguistic sound structure) across languages. One view is that dyslexia is characterised by a cognitive impairment in the "phonological representation" of word forms, which arises long before the child presents with a reading problem. Here we investigate a possible neural basis for developmental phonological impairments. We assess the neural quality of speech encoding in children with dyslexia by measuring the accuracy of low-frequency speech envelope encoding using EEG. We tested children with dyslexia and chronological age-matched (CA) and reading-level matched (RL) younger children. Participants listened to semantically-unpredictable sentences in a word report task. The sentences were noise-vocoded to increase reliance on envelope cues. Envelope reconstruction for envelopes between 0 and 10Hz showed that the children with dyslexia had significantly poorer speech encoding in the 0-2Hz band compared to both CA and RL controls. These data suggest that impaired neural encoding of low frequency speech envelopes, related to speech prosody, may underpin the phonological deficit that causes dyslexia across languages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. A loop-based neural architecture for structured behavior encoding and decoding.

    PubMed

    Gisiger, Thomas; Boukadoum, Mounir

    2018-02-01

    We present a new type of artificial neural network that generalizes on anatomical and dynamical aspects of the mammal brain. Its main novelty lies in its topological structure which is built as an array of interacting elementary motifs shaped like loops. These loops come in various types and can implement functions such as gating, inhibitory or executive control, or encoding of task elements to name a few. Each loop features two sets of neurons and a control region, linked together by non-recurrent projections. The two neural sets do the bulk of the loop's computations while the control unit specifies the timing and the conditions under which the computations implemented by the loop are to be performed. By functionally linking many such loops together, a neural network is obtained that may perform complex cognitive computations. To demonstrate the potential offered by such a system, we present two neural network simulations. The first illustrates the structure and dynamics of a single loop implementing a simple gating mechanism. The second simulation shows how connecting four loops in series can produce neural activity patterns that are sufficient to pass a simplified delayed-response task. We also show that this network reproduces electrophysiological measurements gathered in various regions of the brain of monkeys performing similar tasks. We also demonstrate connections between this type of neural network and recurrent or long short-term memory network models, and suggest ways to generalize them for future artificial intelligence research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Decoding and Reconstructing the Focus of Spatial Attention from the Topography of Alpha-band Oscillations.

    PubMed

    Samaha, Jason; Sprague, Thomas C; Postle, Bradley R

    2016-08-01

    Many aspects of perception and cognition are supported by activity in neural populations that are tuned to different stimulus features (e.g., orientation, spatial location, color). Goal-directed behavior, such as sustained attention, requires a mechanism for the selective prioritization of contextually appropriate representations. A candidate mechanism of sustained spatial attention is neural activity in the alpha band (8-13 Hz), whose power in the human EEG covaries with the focus of covert attention. Here, we applied an inverted encoding model to assess whether spatially selective neural responses could be recovered from the topography of alpha-band oscillations during spatial attention. Participants were cued to covertly attend to one of six spatial locations arranged concentrically around fixation while EEG was recorded. A linear classifier applied to EEG data during sustained attention demonstrated successful classification of the attended location from the topography of alpha power, although not from other frequency bands. We next sought to reconstruct the focus of spatial attention over time by applying inverted encoding models to the topography of alpha power and phase. Alpha power, but not phase, allowed for robust reconstructions of the specific attended location beginning around 450 msec postcue, an onset earlier than previous reports. These results demonstrate that posterior alpha-band oscillations can be used to track activity in feature-selective neural populations with high temporal precision during the deployment of covert spatial attention.

  4. Neural Encoding and Decoding with Deep Learning for Dynamic Natural Vision.

    PubMed

    Wen, Haiguang; Shi, Junxing; Zhang, Yizhen; Lu, Kun-Han; Cao, Jiayue; Liu, Zhongming

    2017-10-20

    Convolutional neural network (CNN) driven by image recognition has been shown to be able to explain cortical responses to static pictures at ventral-stream areas. Here, we further showed that such CNN could reliably predict and decode functional magnetic resonance imaging data from humans watching natural movies, despite its lack of any mechanism to account for temporal dynamics or feedback processing. Using separate data, encoding and decoding models were developed and evaluated for describing the bi-directional relationships between the CNN and the brain. Through the encoding models, the CNN-predicted areas covered not only the ventral stream, but also the dorsal stream, albeit to a lesser degree; single-voxel response was visualized as the specific pixel pattern that drove the response, revealing the distinct representation of individual cortical location; cortical activation was synthesized from natural images with high-throughput to map category representation, contrast, and selectivity. Through the decoding models, fMRI signals were directly decoded to estimate the feature representations in both visual and semantic spaces, for direct visual reconstruction and semantic categorization, respectively. These results corroborate, generalize, and extend previous findings, and highlight the value of using deep learning, as an all-in-one model of the visual cortex, to understand and decode natural vision. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Disruption of Boundary Encoding During Sensorimotor Sequence Learning: An MEG Study.

    PubMed

    Michail, Georgios; Nikulin, Vadim V; Curio, Gabriel; Maess, Burkhard; Herrojo Ruiz, María

    2018-01-01

    Music performance relies on the ability to learn and execute actions and their associated sounds. The process of learning these auditory-motor contingencies depends on the proper encoding of the serial order of the actions and sounds. Among the different serial positions of a behavioral sequence, the first and last (boundary) elements are particularly relevant. Animal and patient studies have demonstrated a specific neural representation for boundary elements in prefrontal cortical regions and in the basal ganglia, highlighting the relevance of their proper encoding. The neural mechanisms underlying the encoding of sequence boundaries in the general human population remain, however, largely unknown. In this study, we examined how alterations of auditory feedback, introduced at different ordinal positions (boundary or within-sequence element), affect the neural and behavioral responses during sensorimotor sequence learning. Analysing the neuromagnetic signals from 20 participants while they performed short piano sequences under the occasional effect of altered feedback (AF), we found that at around 150-200 ms post-keystroke, the neural activities in the dorsolateral prefrontal cortex (DLPFC) and supplementary motor area (SMA) were dissociated for boundary and within-sequence elements. Furthermore, the behavioral data demonstrated that feedback alterations on boundaries led to greater performance costs, such as more errors in the subsequent keystrokes. These findings jointly support the idea that the proper encoding of boundaries is critical in acquiring sensorimotor sequences. They also provide evidence for the involvement of a distinct neural circuitry in humans including prefrontal and higher-order motor areas during the encoding of the different classes of serial order.

  6. The list-composition effect in memory for emotional and neutral pictures: Differential contribution of ventral and dorsal attention networks to successful encoding.

    PubMed

    Barnacle, Gemma E; Montaldi, Daniela; Talmi, Deborah; Sommer, Tobias

    2016-09-01

    The Emotional enhancement of memory (EEM) is observed in immediate free-recall memory tests when emotional and neutral stimuli are encoded and tested together ("mixed lists"), but surprisingly, not when they are encoded and tested separately ("pure lists"). Here our aim was to investigate whether the effect of list-composition (mixed versus pure lists) on the EEM is due to differential allocation of attention. We scanned participants with fMRI during encoding of semantically-related emotional (negative valence only) and neutral pictures. Analysis of memory performance data replicated previous work, demonstrating an interaction between list composition and emotional valence. In mixed lists, neural subsequent memory effects in the dorsal attention network were greater for neutral stimulus encoding, while neural subsequent memory effects for emotional stimuli were found in a region associated with the ventral attention network. These results imply that when life experiences include both emotional and neutral elements, memory for the latter is more highly correlated with neural activity representing goal-directed attention processing at encoding. Copyright © 2016. Published by Elsevier Ltd.

  7. Assessing the Neural Correlates of Task-unrelated Thoughts during Episodic Encoding and Their Association with Subsequent Memory in Young and Older Adults.

    PubMed

    Maillet, David; Rajah, M Natasha

    2016-06-01

    Recent evidence indicates that young adults frequently exhibit task-unrelated thoughts (TUTs) such as mind-wandering during episodic encoding tasks and that TUTs negatively impact subsequent memory. In the current study, we assessed age-related differences in the frequency and neural correlates of TUTs during a source memory encoding task, as well as age-related differences in the relationship between the neural correlates of TUTs and subsequent source forgetting effects (i.e., source misses). We found no age-related differences in frequency of TUTs during fMRI scanning. Moreover, TUT frequency at encoding was positively correlated with source misses at retrieval across age groups. In both age groups, brain regions including bilateral middle/superior frontal gyri and precuneus were activated to a greater extent during encoding for subsequent source misses versus source hits and during TUTs versus on-task episodes. Overall, our results reveal that, during a source memory encoding task in an fMRI environment, young and older adults exhibit a similar frequency of TUTs and that experiencing TUTs at encoding is associated with decreased retrieval performance. In addition, in both age groups, experiencing TUTs at encoding is associated with increased activation in some of the same regions that exhibit subsequent source forgetting effects.

  8. Encoding Sequential Information in Semantic Space Models: Comparing Holographic Reduced Representation and Random Permutation

    PubMed Central

    Recchia, Gabriel; Sahlgren, Magnus; Kanerva, Pentti; Jones, Michael N.

    2015-01-01

    Circular convolution and random permutation have each been proposed as neurally plausible binding operators capable of encoding sequential information in semantic memory. We perform several controlled comparisons of circular convolution and random permutation as means of encoding paired associates as well as encoding sequential information. Random permutations outperformed convolution with respect to the number of paired associates that can be reliably stored in a single memory trace. Performance was equal on semantic tasks when using a small corpus, but random permutations were ultimately capable of achieving superior performance due to their higher scalability to large corpora. Finally, “noisy” permutations in which units are mapped to other units arbitrarily (no one-to-one mapping) perform nearly as well as true permutations. These findings increase the neurological plausibility of random permutations and highlight their utility in vector space models of semantics. PMID:25954306

  9. Artificial Neural Networks for Processing Graphs with Application to Image Understanding: A Survey

    NASA Astrophysics Data System (ADS)

    Bianchini, Monica; Scarselli, Franco

    In graphical pattern recognition, each data is represented as an arrangement of elements, that encodes both the properties of each element and the relations among them. Hence, patterns are modelled as labelled graphs where, in general, labels can be attached to both nodes and edges. Artificial neural networks able to process graphs are a powerful tool for addressing a great variety of real-world problems, where the information is naturally organized in entities and relationships among entities and, in fact, they have been widely used in computer vision, f.i. in logo recognition, in similarity retrieval, and for object detection. In this chapter, we propose a survey of neural network models able to process structured information, with a particular focus on those architectures tailored to address image understanding applications. Starting from the original recursive model (RNNs), we subsequently present different ways to represent images - by trees, forests of trees, multiresolution trees, directed acyclic graphs with labelled edges, general graphs - and, correspondingly, neural network architectures appropriate to process such structures.

  10. Neural Activity during Encoding Predicts False Memories Created by Misinformation

    ERIC Educational Resources Information Center

    Okado, Yoko; Stark, Craig E. L.

    2005-01-01

    False memories are often demonstrated using the misinformation paradigm, in which a person's recollection of a witnessed event is altered after exposure to misinformation about the event. The neural basis of this phenomenon, however, remains unknown. The authors used fMRI to investigate encoding processes during the viewing of an event and…

  11. Level of Processing Modulates the Neural Correlates of Emotional Memory Formation

    ERIC Educational Resources Information Center

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2011-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on…

  12. Neural Correlates of the Encoding of Multimodal Contextual Features

    ERIC Educational Resources Information Center

    Gottlieb, Lauren J.; Wong, Jenny; de Chastelaine, Marianne; Rugg, Michael D.

    2012-01-01

    Functional magnetic resonance imaging (fMRI) was employed to identify neural regions engaged during the encoding of contextual features belonging to different modalities. Subjects studied objects that were presented to the left or right of fixation. Each object was paired with its name, spoken in either a male or a female voice. The test…

  13. Regression-Based Identification of Behavior-Encoding Neurons During Large-Scale Optical Imaging of Neural Activity at Cellular Resolution

    PubMed Central

    Miri, Andrew; Daie, Kayvon; Burdine, Rebecca D.; Aksay, Emre

    2011-01-01

    The advent of methods for optical imaging of large-scale neural activity at cellular resolution in behaving animals presents the problem of identifying behavior-encoding cells within the resulting image time series. Rapid and precise identification of cells with particular neural encoding would facilitate targeted activity measurements and perturbations useful in characterizing the operating principles of neural circuits. Here we report a regression-based approach to semiautomatically identify neurons that is based on the correlation of fluorescence time series with quantitative measurements of behavior. The approach is illustrated with a novel preparation allowing synchronous eye tracking and two-photon laser scanning fluorescence imaging of calcium changes in populations of hindbrain neurons during spontaneous eye movement in the larval zebrafish. Putative velocity-to-position oculomotor integrator neurons were identified that showed a broad spatial distribution and diversity of encoding. Optical identification of integrator neurons was confirmed with targeted loose-patch electrical recording and laser ablation. The general regression-based approach we demonstrate should be widely applicable to calcium imaging time series in behaving animals. PMID:21084686

  14. Deep Neural Networks for Speech Separation With Application to Robust Speech Recognition

    DTIC Science & Technology

    acoustic -phonetic features. The second objective is integration of spectrotemporal context for improved separation performance. Conditional random fields...will be used to encode contextual constraints. The third objective is to achieve robust ASR in the DNN framework through integrated acoustic modeling

  15. Ghosts in the Machine II: Neural Correlates of Memory Interference from the Previous Trial.

    PubMed

    Papadimitriou, Charalampos; White, Robert L; Snyder, Lawrence H

    2017-04-01

    Previous memoranda interfere with working memory. For example, spatial memories are biased toward locations memorized on the previous trial. We predicted, based on attractor network models of memory, that activity in the frontal eye fields (FEFs) encoding a previous target location can persist into the subsequent trial and that this ghost will then bias the readout of the current target. Contrary to this prediction, we find that FEF memory representations appear biased away from (not toward) the previous target location. The behavioral and neural data can be reconciled by a model in which receptive fields of memory neurons converge toward remembered locations, much as receptive fields converge toward attended locations. Convergence increases the resources available to encode the relevant memoranda and decreases overall error in the network, but the residual convergence from the previous trial can give rise to an attractive behavioral bias on the next trial. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Laminar Neural Field Model of Laterally Propagating Waves of Orientation Selectivity

    PubMed Central

    2015-01-01

    We construct a laminar neural-field model of primary visual cortex (V1) consisting of a superficial layer of neurons that encode the spatial location and orientation of a local visual stimulus coupled to a deep layer of neurons that only encode spatial location. The spatially-structured connections in the deep layer support the propagation of a traveling front, which then drives propagating orientation-dependent activity in the superficial layer. Using a combination of mathematical analysis and numerical simulations, we establish that the existence of a coherent orientation-selective wave relies on the presence of weak, long-range connections in the superficial layer that couple cells of similar orientation preference. Moreover, the wave persists in the presence of feedback from the superficial layer to the deep layer. Our results are consistent with recent experimental studies that indicate that deep and superficial layers work in tandem to determine the patterns of cortical activity observed in vivo. PMID:26491877

  17. Testing sensory evidence against mnemonic templates

    PubMed Central

    Myers, Nicholas E; Rohenkohl, Gustavo; Wyart, Valentin; Woolrich, Mark W; Nobre, Anna C; Stokes, Mark G

    2015-01-01

    Most perceptual decisions require comparisons between current input and an internal template. Classic studies propose that templates are encoded in sustained activity of sensory neurons. However, stimulus encoding is itself dynamic, tracing a complex trajectory through activity space. Which part of this trajectory is pre-activated to reflect the template? Here we recorded magneto- and electroencephalography during a visual target-detection task, and used pattern analyses to decode template, stimulus, and decision-variable representation. Our findings ran counter to the dominant model of sustained pre-activation. Instead, template information emerged transiently around stimulus onset and quickly subsided. Cross-generalization between stimulus and template coding, indicating a shared neural representation, occurred only briefly. Our results are compatible with the proposal that template representation relies on a matched filter, transforming input into task-appropriate output. This proposal was consistent with a signed difference response at the perceptual decision stage, which can be explained by a simple neural model. DOI: http://dx.doi.org/10.7554/eLife.09000.001 PMID:26653854

  18. Human inferior colliculus activity relates to individual differences in spoken language learning.

    PubMed

    Chandrasekaran, Bharath; Kraus, Nina; Wong, Patrick C M

    2012-03-01

    A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural "sharpening" models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models.

  19. Acute ethanol effects on neural encoding of reward size and delay in the nucleus accumbens

    PubMed Central

    Gutman, Andrea L.

    2016-01-01

    Acute ethanol administration can cause impulsivity, resulting in increased preference for immediately available rewards over delayed but more valuable alternatives. The manner in which reward size and delay are represented in neural firing is not fully understood, and very little is known about ethanol effects on this encoding. To address this issue, we used in vivo electrophysiology to characterize neural firing in the core of the nucleus accumbens (NAcc) in rats responding for rewards that varied in size or delay after vehicle or ethanol administration. The NAcc is a central element in the circuit that governs decision-making and importantly, promotes choice of delayed rewards. We found that NAcc firing in response to reward-predictive cues encoded anticipated reward value after vehicle administration, but ethanol administration disrupted this encoding, resulting in a loss of discrimination between immediate and delayed rewards in cue-evoked neural responses. In addition, NAcc firing occurring at the time of the operant response (lever pressing) was inversely correlated with behavioral response latency, such that increased firing rates were associated with decreased latencies to lever press. Ethanol administration selectively attenuated this lever press-evoked firing when delayed but not immediate rewards were expected. These effects on neural firing were accompanied by increased behavioral latencies to respond for delayed rewards. Our results suggest that ethanol effects on NAcc cue- and lever press-evoked encoding may contribute to ethanol-induced impulsivity. PMID:27169507

  20. Rodent wearable ultrasound system for wireless neural recording.

    PubMed

    Piech, David K; Kay, Joshua E; Boser, Bernhard E; Maharbiz, Michel M

    2017-07-01

    Advances in minimally-invasive, distributed biological interface nodes enable possibilities for networks of sensors and actuators to connect the brain with external devices. The recent development of the neural dust sensor mote has shown that utilizing ultrasound backscatter communication enables untethered sub-mm neural recording devices. These implanted sensor motes require a wearable external ultrasound interrogation device to enable in-vivo, freely-behaving neural interface experiments. However, minimizing the complexity and size of the implanted sensors shifts the power and processing burden to the external interrogator. In this paper, we present an ultrasound backscatter interrogator that supports real-time backscatter processing in a rodent-wearable, completely wireless device. We demonstrate a generic digital encoding scheme which is intended for transmitting neural information. The system integrates a front-end ultrasonic interface ASIC with off-the-shelf components to enable a highly compact ultrasound interrogation device intended for rodent neural interface experiments but applicable to other model systems.

  1. The neural correlates of gist-based true and false recognition

    PubMed Central

    Gutchess, Angela H.; Schacter, Daniel L.

    2012-01-01

    When information is thematically related to previously studied information, gist-based processes contribute to false recognition. Using functional MRI, we examined the neural correlates of gist-based recognition as a function of increasing numbers of studied exemplars. Sixteen participants incidentally encoded small, medium, and large sets of pictures, and we compared the neural response at recognition using parametric modulation analyses. For hits, regions in middle occipital, middle temporal, and posterior parietal cortex linearly modulated their activity according to the number of related encoded items. For false alarms, visual, parietal, and hippocampal regions were modulated as a function of the encoded set size. The present results are consistent with prior work in that the neural regions supporting veridical memory also contribute to false memory for related information. The results also reveal that these regions respond to the degree of relatedness among similar items, and implicate perceptual and constructive processes in gist-based false memory. PMID:22155331

  2. Encoding and Decoding Models in Cognitive Electrophysiology

    PubMed Central

    Holdgraf, Christopher R.; Rieger, Jochem W.; Micheli, Cristiano; Martin, Stephanie; Knight, Robert T.; Theunissen, Frederic E.

    2017-01-01

    Cognitive neuroscience has seen rapid growth in the size and complexity of data recorded from the human brain as well as in the computational tools available to analyze this data. This data explosion has resulted in an increased use of multivariate, model-based methods for asking neuroscience questions, allowing scientists to investigate multiple hypotheses with a single dataset, to use complex, time-varying stimuli, and to study the human brain under more naturalistic conditions. These tools come in the form of “Encoding” models, in which stimulus features are used to model brain activity, and “Decoding” models, in which neural features are used to generated a stimulus output. Here we review the current state of encoding and decoding models in cognitive electrophysiology and provide a practical guide toward conducting experiments and analyses in this emerging field. Our examples focus on using linear models in the study of human language and audition. We show how to calculate auditory receptive fields from natural sounds as well as how to decode neural recordings to predict speech. The paper aims to be a useful tutorial to these approaches, and a practical introduction to using machine learning and applied statistics to build models of neural activity. The data analytic approaches we discuss may also be applied to other sensory modalities, motor systems, and cognitive systems, and we cover some examples in these areas. In addition, a collection of Jupyter notebooks is publicly available as a complement to the material covered in this paper, providing code examples and tutorials for predictive modeling in python. The aim is to provide a practical understanding of predictive modeling of human brain data and to propose best-practices in conducting these analyses. PMID:29018336

  3. Translating working memory into action: behavioral and neural evidence for using motor representations in encoding visuo-spatial sequences.

    PubMed

    Langner, Robert; Sternkopf, Melanie A; Kellermann, Tanja S; Grefkes, Christian; Kurth, Florian; Schneider, Frank; Zilles, Karl; Eickhoff, Simon B

    2014-07-01

    The neurobiological organization of action-oriented working memory is not well understood. To elucidate the neural correlates of translating visuo-spatial stimulus sequences into delayed (memory-guided) sequential actions, we measured brain activity using functional magnetic resonance imaging while participants encoded sequences of four to seven dots appearing on fingers of a left or right schematic hand. After variable delays, sequences were to be reproduced with the corresponding fingers. Recall became less accurate with longer sequences and was initiated faster after long delays. Across both hands, encoding and recall activated bilateral prefrontal, premotor, superior and inferior parietal regions as well as the basal ganglia, whereas hand-specific activity was found (albeit to a lesser degree during encoding) in contralateral premotor, sensorimotor, and superior parietal cortex. Activation differences after long versus short delays were restricted to motor-related regions, indicating that rehearsal during long delays might have facilitated the conversion of the memorandum into concrete motor programs at recall. Furthermore, basal ganglia activity during encoding selectively predicted correct recall. Taken together, the results suggest that to-be-reproduced visuo-spatial sequences are encoded as prospective action representations (motor intentions), possibly in addition to retrospective sensory codes. Overall, our study supports and extends multi-component models of working memory, highlighting the notion that sensory input can be coded in multiple ways depending on what the memorandum is to be used for. Copyright © 2013 Wiley Periodicals, Inc.

  4. Dissociation of the Neural Correlates of Visual and Auditory Contextual Encoding

    ERIC Educational Resources Information Center

    Gottlieb, Lauren J.; Uncapher, Melina R.; Rugg, Michael D.

    2010-01-01

    The present study contrasted the neural correlates of encoding item-context associations according to whether the contextual information was visual or auditory. Subjects (N = 20) underwent fMRI scanning while studying a series of visually presented pictures, each of which co-occurred with either a visually or an auditorily presented name. The task…

  5. Neural Mechanisms of Encoding Social and Non-Social Context Information in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Greimel, Ellen; Nehrkorn, Barbara; Fink, Gereon R.; Kukolja, Juraj; Kohls, Gregor; Muller, Kristin; Piefke, Martina; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Schulte-Ruther, Martin

    2012-01-01

    Individuals with autism spectrum disorder (ASD) often fail to attach context to their memories and are specifically impaired in processing social aspects of contextual information. The aim of the present study was to investigate the modulatory influence of social vs. non-social context on neural mechanisms during encoding in ASD. Using…

  6. A case for spiking neural network simulation based on configurable multiple-FPGA systems.

    PubMed

    Yang, Shufan; Wu, Qiang; Li, Renfa

    2011-09-01

    Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.

  7. Neural codes of seeing architectural styles

    PubMed Central

    Choo, Heeyoung; Nasar, Jack L.; Nikrahei, Bardia; Walther, Dirk B.

    2017-01-01

    Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people’s visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture. PMID:28071765

  8. Neural codes of seeing architectural styles.

    PubMed

    Choo, Heeyoung; Nasar, Jack L; Nikrahei, Bardia; Walther, Dirk B

    2017-01-10

    Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people's visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture.

  9. Critical and maximally informative encoding between neural populations in the retina

    PubMed Central

    Kastner, David B.; Baccus, Stephen A.; Sharpee, Tatyana O.

    2015-01-01

    Computation in the brain involves multiple types of neurons, yet the organizing principles for how these neurons work together remain unclear. Information theory has offered explanations for how different types of neurons can maximize the transmitted information by encoding different stimulus features. However, recent experiments indicate that separate neuronal types exist that encode the same filtered version of the stimulus, but then the different cell types signal the presence of that stimulus feature with different thresholds. Here we show that the emergence of these neuronal types can be quantitatively described by the theory of transitions between different phases of matter. The two key parameters that control the separation of neurons into subclasses are the mean and standard deviation (SD) of noise affecting neural responses. The average noise across the neural population plays the role of temperature in the classic theory of phase transitions, whereas the SD is equivalent to pressure or magnetic field, in the case of liquid–gas and magnetic transitions, respectively. Our results account for properties of two recently discovered types of salamander Off retinal ganglion cells, as well as the absence of multiple types of On cells. We further show that, across visual stimulus contrasts, retinal circuits continued to operate near the critical point whose quantitative characteristics matched those expected near a liquid–gas critical point and described by the nearest-neighbor Ising model in three dimensions. By operating near a critical point, neural circuits can maximize information transmission in a given environment while retaining the ability to quickly adapt to a new environment. PMID:25675497

  10. Normative shifts of cortical mechanisms of encoding contribute to adult age differences in visual-spatial working memory.

    PubMed

    Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman

    2013-06-01

    The capacity of visual-spatial working memory (WM) declines from early to late adulthood. Recent attempts at identifying neural correlates of WM capacity decline have focused on the maintenance phase of WM. Here, we investigate neural mechanisms during the encoding phase as another potential mechanism contributing to adult age differences in WM capacity. We used electroencephalography to track neural activity during encoding and maintenance on a millisecond timescale in 35 younger and 35 older adults performing a visual-spatial WM task. As predicted, we observed pronounced age differences in ERP indicators of WM encoding: Younger adults showed attentional selection during item encoding (N2pc component), but this selection mechanism was greatly attenuated in older adults. Conversely, older adults showed more pronounced signs of early perceptual stimulus processing (N1 component) than younger adults. The amplitude modulation of the N1 component predicted WM capacity in older adults, whereas the attentional amplitude modulation of the N2pc component predicted WM capacity in younger adults. Our findings suggest that adult age differences in mechanisms of WM encoding contribute to adult age differences in limits of visual-spatial WM capacity. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. False recognition depends on depth of prior word processing: a magnetoencephalographic (MEG) study.

    PubMed

    Walla, P; Hufnagl, B; Lindinger, G; Deecke, L; Imhof, H; Lang, W

    2001-04-01

    Brain activity was measured with a whole head magnetoencephalograph (MEG) during the test phases of word recognition experiments. Healthy young subjects had to discriminate between previously presented and new words. During prior study phases two different levels of word processing were provided according to two different kinds of instructions (shallow and deep encoding). Event-related fields (ERFs) associated with falsely recognized words (false alarms) were found to depend on the depth of processing during the prior study phase. False alarms elicited higher brain activity (as reflected by dipole strength) in case of prior deep encoding as compared to shallow encoding between 300 and 500 ms after stimulus onset at temporal brain areas. Between 500 and 700 ms we found evidence for differences in the involvement of neural structures related to both conditions of false alarms. Furthermore, the number of false alarms was found to depend on depth of processing. Shallow encoding led to a higher number of false alarms than deep encoding. All data are discussed as strong support for the ideas that a certain level of word processing is performed by a distinct set of neural systems and that the same neural systems which encode information are reactivated during the retrieval.

  12. Spiking Neurons for Analysis of Patterns

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological neurons). These features enable the neurons to adapt their responses to high-rate inputs from sensors, and to adapt their firing thresholds to mitigate noise or effects of potential sensor failure. The mathematical derivation of the SVM starts from a prior model, known in the art as the point soma model, which captures all of the salient properties of neuronal response while keeping the computational cost low. The point-soma latency time is modified to be an exponentially decaying function of the strength of the applied potential. Choosing computational efficiency over biological fidelity, the dendrites surrounding a neuron are represented by simplified compartmental submodels and there are no dendritic spines. Updates to the dendritic potential, calcium-ion concentrations and conductances, and potassium-ion conductances are done by use of equations similar to those of the point soma. Diffusion processes in dendrites are modeled by averaging among nearest-neighbor compartments. Inputs to each of the dendritic compartments come from sensors. Alternatively or in addition, when an affected neuron is part of a pool, inputs can come from other spiking neurons. At present, SVM neural networks are implemented by computational simulation, using algorithms that encode the SVM and its submodels. However, it should be possible to implement these neural networks in hardware: The differential equations for the dendritic and cellular processes in the SVM model of spiking neurons map to equivalent circuits that can be implemented directly in analog very-large-scale integrated (VLSI) circuits.

  13. The representation of order information in auditory-verbal short-term memory.

    PubMed

    Kalm, Kristjan; Norris, Dennis

    2014-05-14

    Here we investigate how order information is represented in auditory-verbal short-term memory (STM). We used fMRI and a serial recall task to dissociate neural activity patterns representing the phonological properties of the items stored in STM from the patterns representing their order. For this purpose, we analyzed fMRI activity patterns elicited by different item sets and different orderings of those items. These fMRI activity patterns were compared with the predictions made by positional and chaining models of serial order. The positional models encode associations between items and their positions in a sequence, whereas the chaining models encode associations between successive items and retain no position information. We show that a set of brain areas in the postero-dorsal stream of auditory processing store associations between items and order as predicted by a positional model. The chaining model of order representation generates a different pattern similarity prediction, which was shown to be inconsistent with the fMRI data. Our results thus favor a neural model of order representation that stores item codes, position codes, and the mapping between them. This study provides the first fMRI evidence for a specific model of order representation in the human brain. Copyright © 2014 the authors 0270-6474/14/346879-08$15.00/0.

  14. Neural adaptation accounts for the dynamic resizing of peripersonal space: evidence from a psychophysical-computational approach.

    PubMed

    Noel, Jean-Paul; Blanke, Olaf; Magosso, Elisa; Serino, Andrea

    2018-06-01

    Interactions between the body and the environment occur within the peripersonal space (PPS), the space immediately surrounding the body. The PPS is encoded by multisensory (audio-tactile, visual-tactile) neurons that possess receptive fields (RFs) anchored on the body and restricted in depth. The extension in depth of PPS neurons' RFs has been documented to change dynamically as a function of the velocity of incoming stimuli, but the underlying neural mechanisms are still unknown. Here, by integrating a psychophysical approach with neural network modeling, we propose a mechanistic explanation behind this inherent dynamic property of PPS. We psychophysically mapped the size of participant's peri-face and peri-trunk space as a function of the velocity of task-irrelevant approaching auditory stimuli. Findings indicated that the peri-trunk space was larger than the peri-face space, and, importantly, as for the neurophysiological delineation of RFs, both of these representations enlarged as the velocity of incoming sound increased. We propose a neural network model to mechanistically interpret these findings: the network includes reciprocal connections between unisensory areas and higher order multisensory neurons, and it implements neural adaptation to persistent stimulation as a mechanism sensitive to stimulus velocity. The network was capable of replicating the behavioral observations of PPS size remapping and relates behavioral proxies of PPS size to neurophysiological measures of multisensory neurons' RF size. We propose that a biologically plausible neural adaptation mechanism embedded within the network encoding for PPS can be responsible for the dynamic alterations in PPS size as a function of the velocity of incoming stimuli. NEW & NOTEWORTHY Interactions between body and environment occur within the peripersonal space (PPS). PPS neurons are highly dynamic, adapting online as a function of body-object interactions. The mechanistic underpinning PPS dynamic properties are unexplained. We demonstrate with a psychophysical approach that PPS enlarges as incoming stimulus velocity increases, efficiently preventing contacts with faster approaching objects. We present a neurocomputational model of multisensory PPS implementing neural adaptation to persistent stimulation to propose a neurophysiological mechanism underlying this effect.

  15. Altered neural encoding of prediction errors in assault-related posttraumatic stress disorder.

    PubMed

    Ross, Marisa C; Lenow, Jennifer K; Kilts, Clinton D; Cisler, Josh M

    2018-05-12

    Posttraumatic stress disorder (PTSD) is widely associated with deficits in extinguishing learned fear responses, which relies on mechanisms of reinforcement learning (e.g., updating expectations based on prediction errors). However, the degree to which PTSD is associated with impairments in general reinforcement learning (i.e., outside of the context of fear stimuli) remains poorly understood. Here, we investigate brain and behavioral differences in general reinforcement learning between adult women with and without a current diagnosis of PTSD. 29 adult females (15 PTSD with exposure to assaultive violence, 14 controls) underwent a neutral reinforcement-learning task (i.e., two arm bandit task) during fMRI. We modeled participant behavior using different adaptations of the Rescorla-Wagner (RW) model and used Independent Component Analysis to identify timecourses for large-scale a priori brain networks. We found that an anticorrelated and risk sensitive RW model best fit participant behavior, with no differences in computational parameters between groups. Women in the PTSD group demonstrated significantly less neural encoding of prediction errors in both a ventral striatum/mPFC and anterior insula network compared to healthy controls. Weakened encoding of prediction errors in the ventral striatum/mPFC and anterior insula during a general reinforcement learning task, outside of the context of fear stimuli, suggests the possibility of a broader conceptualization of learning differences in PTSD than currently proposed in current neurocircuitry models of PTSD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Bayesian modeling of flexible cognitive control

    PubMed Central

    Jiang, Jiefeng; Heller, Katherine; Egner, Tobias

    2014-01-01

    “Cognitive control” describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. PMID:24929218

  17. Study of the Gray Scale, Polychromatic, Distortion Invariant Neural Networks Using the Ipa Model.

    NASA Astrophysics Data System (ADS)

    Uang, Chii-Maw

    Research in the optical neural network field is primarily motivated by the fact that humans recognize objects better than the conventional digital computers and the massively parallel inherent nature of optics. This research represents a continuous effort during the past several years in the exploitation of using neurocomputing for pattern recognition. Based on the interpattern association (IPA) model and Hamming net model, many new systems and applications are introduced. A gray level discrete associative memory that is based on object decomposition/composition is proposed for recognizing gray-level patterns. This technique extends the processing ability from the binary mode to gray-level mode, and thus the information capacity is increased. Two polychromatic optical neural networks using color liquid crystal television (LCTV) panels for color pattern recognition are introduced. By introducing a color encoding technique in conjunction with the interpattern associative algorithm, a color associative memory was realized. Based on the color decomposition and composition technique, a color exemplar-based Hamming net was built for color image classification. A shift-invariant neural network is presented through use of the translation invariant property of the modulus of the Fourier transformation and the hetero-associative interpattern association (IPA) memory. To extract the main features, a quadrantal sampling method is used to sampled data and then replace the training patterns. Using the concept of hetero-associative memory to recall the distorted object. A shift and rotation invariant neural network using an interpattern hetero-association (IHA) model is presented. To preserve the shift and rotation invariant properties, a set of binarized-encoded circular harmonic expansion (CHE) functions at the Fourier domain is used as the training set. We use the shift and symmetric properties of the modulus of the Fourier spectrum to avoid the problem of centering the CHE functions. Almost all neural networks have the positive and negative weights, which increases the difficulty of optical implementation. A method to construct a unipolar IPA IWM is discussed. By searching the redundant interconnection links, an effective way that removes all negative links is discussed.

  18. Cognitive regulation alters social and dietary choice by changing attribute representations in domain-general and domain-specific brain circuits

    PubMed Central

    Hutcherson, Cendri A

    2018-01-01

    Are some people generally more successful using cognitive regulation or does it depend on the choice domain? Why? We combined behavioral computational modeling and multivariate decoding of fMRI responses to identify neural loci of regulation-related shifts in value representations across goals and domains (dietary or altruistic choice). Surprisingly, regulatory goals did not alter integrative value representations in the ventromedial prefrontal cortex, which represented all choice-relevant attributes across goals and domains. Instead, the dorsolateral prefrontal cortex (DLPFC) flexibly encoded goal-consistent values and predicted regulatory success for the majority of choice-relevant attributes, using attribute-specific neural codes. We also identified domain-specific exceptions: goal-dependent encoding of prosocial attributes localized to precuneus and temporo-parietal junction (not DLPFC). Our results suggest that cognitive regulation operated by changing specific attribute representations (not integrated values). Evidence of domain-general and domain-specific neural loci reveals important divisions of labor, explaining when and why regulatory success generalizes (or doesn’t) across contexts and domains. PMID:29813018

  19. Dynamic Encoding of Acoustic Features in Neural Responses to Continuous Speech.

    PubMed

    Khalighinejad, Bahar; Cruzatto da Silva, Guilherme; Mesgarani, Nima

    2017-02-22

    Humans are unique in their ability to communicate using spoken language. However, it remains unclear how the speech signal is transformed and represented in the brain at different stages of the auditory pathway. In this study, we characterized electroencephalography responses to continuous speech by obtaining the time-locked responses to phoneme instances (phoneme-related potential). We showed that responses to different phoneme categories are organized by phonetic features. We found that each instance of a phoneme in continuous speech produces multiple distinguishable neural responses occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Comparing the patterns of phoneme similarity in the neural responses and the acoustic signals confirms a repetitive appearance of acoustic distinctions of phonemes in the neural data. Analysis of the phonetic and speaker information in neural activations revealed that different time intervals jointly encode the acoustic similarity of both phonetic and speaker categories. These findings provide evidence for a dynamic neural transformation of low-level speech features as they propagate along the auditory pathway, and form an empirical framework to study the representational changes in learning, attention, and speech disorders. SIGNIFICANCE STATEMENT We characterized the properties of evoked neural responses to phoneme instances in continuous speech. We show that each instance of a phoneme in continuous speech produces several observable neural responses at different times occurring as early as 50 ms and as late as 400 ms after the phoneme onset. Each temporal event explicitly encodes the acoustic similarity of phonemes, and linguistic and nonlinguistic information are best represented at different time intervals. Finally, we show a joint encoding of phonetic and speaker information, where the neural representation of speakers is dependent on phoneme category. These findings provide compelling new evidence for dynamic processing of speech sounds in the auditory pathway. Copyright © 2017 Khalighinejad et al.

  20. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.

    PubMed

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2015-10-28

    Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world. Copyright © 2015 the authors 0270-6474/15/3514491-10$15.00/0.

  1. Item Memory, Context Memory and the Hippocampus: fMRI Evidence

    ERIC Educational Resources Information Center

    Rugg, Michael D.; Vilberg, Kaia L.; Mattson, Julia T.; Yu, Sarah S.; Johnson, Jeffrey D.; Suzuki, Maki

    2012-01-01

    Dual-process models of recognition memory distinguish between the retrieval of qualitative information about a prior event (recollection), and judgments of prior occurrence based on an acontextual sense of familiarity. fMRI studies investigating the neural correlates of memory encoding and retrieval conducted within the dual-process framework have…

  2. The Effects of Age, Memory Performance, and Callosal Integrity on the Neural Correlates of Successful Associative Encoding

    PubMed Central

    Wang, Tracy H.; Minton, Brian; Muftuler, L. Tugan; Rugg, Michael D.

    2011-01-01

    This functional magnetic resonance imaging study investigated the relationship between the neural correlates of associative memory encoding, callosal integrity, and memory performance in older adults. Thirty-six older and 18 young subjects were scanned while making relational judgments on word pairs. Neural correlates of successful encoding (subsequent memory effects) were identified by contrasting the activity elicited by study pairs that were correctly identified as having been studied together with the activity elicited by pairs wrongly judged to have come from different study trials. Subsequent memory effects common to the 2 age groups were identified in several regions, including left inferior frontal gyrus and bilateral hippocampus. Negative effects (greater activity for forgotten than for remembered items) in default network regions in young subjects were reversed in the older group, and the amount of reversal correlated negatively with memory performance. Additionally, older subjects' subsequent memory effects in right frontal cortex correlated positively with anterior callosal integrity and negatively with memory performance. It is suggested that recruitment of right frontal cortex during verbal memory encoding may reflect the engagement of processes that compensate only partially for age-related neural degradation. PMID:21282317

  3. The Dorsolateral Prefrontal Cortex Plays a Role in Self-Initiated Elaborative Cognitive Processing during Episodic Memory Encoding: rTMS Evidence

    PubMed Central

    Hawco, Colin; Berlim, Marcelo T.; Lepage, Martin

    2013-01-01

    During episodic memory encoding, elaborative cognitive processing can improve later recall or recognition. While multiple studies examined the neural correlates of encoding strategies, few studies have explicitly focused on the self-initiation of elaborative encoding. Repetitive transcranial magnetic stimulation (rTMS), a method which can transiently disrupt neural activity, was administered during an associative encoding task. rTMS was either applied to the left dorsolateral prefrontal cortex (DLPFC) or to the vertex (a control region not involved in memory encoding) during presentation of pairs of words. Pairs could be semantically related or not related. Two encoding instructions were given, either cueing participants to analyze semantic relationships (cued condition), or to memorize the pair without any specific strategy cues (the self-initiated condition). Participants filled out a questionnaire regarding their use of memory strategies and performed a cued-recall task. We hypothesized that if the DLPFC plays a role in the self-initiation of elaborative encoding we would observe a reduction in memory performance in the self-initiated condition, particularly for related. We found a significant correlation between the effects of rTMS and strategy use, only in the self-initiated condition with related pairs. High strategy users showed reduced performance following DLPFC stimulation, while low strategy users tended to show increased recall following DLPFC stimulation during encoding. These results suggest the left DLPFC may be involved in the self-initiation of memory strategy use, and individuals may utilize different neural networks depending on their use of encoding strategies. PMID:24040072

  4. Inhibition-Induced Forgetting Results from Resource Competition between Response Inhibition and Memory Encoding Processes.

    PubMed

    Chiu, Yu-Chin; Egner, Tobias

    2015-08-26

    Response inhibition is a key component of executive control, but its relation to other cognitive processes is not well understood. We recently documented the "inhibition-induced forgetting effect": no-go cues are remembered more poorly than go cues. We attributed this effect to central-resource competition, whereby response inhibition saps attention away from memory encoding. However, this proposal is difficult to test with behavioral means alone. We therefore used fMRI in humans to test two neural predictions of the "common resource hypothesis": (1) brain regions associated with response inhibition should exhibit greater resource demands during encoding of subsequently forgotten than remembered no-go cues; and (2) this higher inhibitory resource demand should lead to memory encoding regions having less resources available during encoding of subsequently forgotten no-go cues. Participants categorized face stimuli by gender in a go/no-go task and, following a delay, performed a surprise recognition memory test for those faces. Replicating previous findings, memory was worse for no-go than for go stimuli. Crucially, forgetting of no-go cues was predicted by high inhibitory resource demand, as quantified by the trial-by-trial ratio of activity in neural "no-go" versus "go" networks. Moreover, this index of inhibitory demand exhibited an inverse trial-by-trial relationship with activity in brain regions responsible for the encoding of no-go cues into memory, notably the ventrolateral prefrontal cortex. This seesaw pattern between the neural resource demand of response inhibition and activity related to memory encoding directly supports the hypothesis that response inhibition temporarily saps attentional resources away from stimulus processing. Recent behavioral experiments showed that inhibiting a motor response to a stimulus (a "no-go cue") impairs subsequent memory for that cue. Here, we used fMRI to test whether this "inhibition-induced forgetting effect" is caused by competition for neural resources between the processes of response inhibition and memory encoding. We found that trial-by-trial variations in neural inhibitory resource demand predicted subsequent forgetting of no-go cues and that higher inhibitory demand was furthermore associated with lower concurrent activation in brain regions responsible for successful memory encoding of no-go cues. Thus, motor inhibition and stimulus encoding appear to compete with each other: when more resources have to be devoted to inhibiting action, less are available for encoding sensory stimuli. Copyright © 2015 the authors 0270-6474/15/3511936-10$15.00/0.

  5. The visual system’s internal model of the world

    PubMed Central

    Lee, Tai Sing

    2015-01-01

    The Bayesian paradigm has provided a useful conceptual theory for understanding perceptual computation in the brain. While the detailed neural mechanisms of Bayesian inference are not fully understood, recent computational and neurophysiological works have illuminated the underlying computational principles and representational architecture. The fundamental insights are that the visual system is organized as a modular hierarchy to encode an internal model of the world, and that perception is realized by statistical inference based on such internal model. In this paper, I will discuss and analyze the varieties of representational schemes of these internal models and how they might be used to perform learning and inference. I will argue for a unified theoretical framework for relating the internal models to the observed neural phenomena and mechanisms in the visual cortex. PMID:26566294

  6. Concurrent encoding of frequency and amplitude modulation in human auditory cortex: encoding transition.

    PubMed

    Luo, Huan; Wang, Yadong; Poeppel, David; Simon, Jonathan Z

    2007-12-01

    Complex natural sounds (e.g., animal vocalizations or speech) can be characterized by specific spectrotemporal patterns the components of which change in both frequency (FM) and amplitude (AM). The neural coding of AM and FM has been widely studied in humans and animals but typically with either pure AM or pure FM stimuli. The neural mechanisms employed to perceptually unify AM and FM acoustic features remain unclear. Using stimuli with simultaneous sinusoidal AM (at rate f(AM) = 37 Hz) and FM (with varying rates f(FM)), magnetoencephalography (MEG) is used to investigate the elicited auditory steady-state response (aSSR) at relevant frequencies (f(AM), f(FM), f(AM) + f(FM)). Previous work demonstrated that for sounds with slower FM dynamics (f(FM) < 5 Hz), the phase of the aSSR at f(AM) tracked the FM; in other words, AM and FM features were co-tracked and co-represented by "phase modulation" encoding. This study explores the neural coding mechanism for stimuli with faster FM dynamics (< or =30 Hz), demonstrating that at faster rates (f(FM) > 5 Hz), there is a transition from pure phase modulation encoding to a single-upper-sideband (SSB) response (at frequency f(AM) + f(FM)) pattern. We propose that this unexpected SSB response can be explained by the additional involvement of subsidiary AM encoding responses simultaneously to, and in quadrature with, the ongoing phase modulation. These results, using MEG to reveal a possible neural encoding of specific acoustic properties, demonstrate more generally that physiological tests of encoding hypotheses can be performed noninvasively on human subjects, complementing invasive, single-unit recordings in animals.

  7. Decomposing Gratitude: Representation and Integration of Cognitive Antecedents of Gratitude in the Brain.

    PubMed

    Yu, Hongbo; Gao, Xiaoxue; Zhou, Yuanyuan; Zhou, Xiaolin

    2018-05-23

    Gratitude is a typical social-moral emotion that plays a crucial role in maintaining human cooperative interpersonal relationship. Although neural correlates of gratitude have been investigated, the neurocognitive processes that lead to gratitude, namely, the representation and integration of its cognitive antecedents, remain largely unknown. Here, we combined fMRI and a human social interactive task to investigate how benefactor's cost and beneficiary's benefit, two critical antecedents of gratitude, are encoded and integrated in beneficiary's brain, and how the neural processing of gratitude is converted to reciprocity. A coplayer decided whether to help a human participant (either male or female) avoid pain at his/her own monetary cost; the participants could transfer monetary points to the benefactor with the knowledge that the benefactor was unaware of this transfer. By independently manipulating monetary cost and the degree of pain reduction, we could identify the neural signatures of benefactor's cost and recipient's benefit and examine how they were integrated. Recipient's self-benefit was encoded in reward-sensitive regions (e.g., ventral striatum), whereas benefactor-cost was encoded in regions associated with mentalizing (e.g., temporoparietal junction). Gratitude was represented in perigenual anterior cingulate cortex (pgACC), the strength of which correlated with trait gratitude. Dynamic causal modeling showed that the neural signals representing benefactor-cost and self-benefit passed to pgACC via effective connectivities, suggesting an integrative role of pgACC in generating gratitude. Moreover, gyral ACC plays an intermediary role in converting gratitude representation into reciprocal behaviors. Our findings provide a neural mechanistic account of gratitude and its role in social-moral life. SIGNIFICANCE STATEMENT Gratitude plays an integral role in subjective well-being and harmonious interpersonal relationships. However, the neurocognitive processes through which various components and antecedents of gratitude are integrated remain largely unknown. We developed a new interpersonal paradigm to independently and parametrically manipulate two antecedents of gratitude in a helping context, namely, the benefit to beneficiary and the cost to benefactor, to examine their representation and integration in the beneficiary's brain using fMRI. We found the neural encoding of self-benefit and benefactor-cost in reward- and mentalizing-related brain areas, respectively. More importantly, by examining effective connectivity, we showed that these componential signals are passed to perigenual anterior cingulate cortex, which tracks trial-by-trial gratitude levels. Our study thus provides a neural mechanistic account of gratitude. Copyright © 2018 the authors 0270-6474/18/384887-13$15.00/0.

  8. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects.

    PubMed

    Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W

    2001-03-01

    Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.

  9. Learning in neural networks based on a generalized fluctuation theorem

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takashi; Aoyagi, Toshio

    2015-11-01

    Information maximization has been investigated as a possible mechanism of learning governing the self-organization that occurs within the neural systems of animals. Within the general context of models of neural systems bidirectionally interacting with environments, however, the role of information maximization remains to be elucidated. For bidirectionally interacting physical systems, universal laws describing the fluctuation they exhibit and the information they possess have recently been discovered. These laws are termed fluctuation theorems. In the present study, we formulate a theory of learning in neural networks bidirectionally interacting with environments based on the principle of information maximization. Our formulation begins with the introduction of a generalized fluctuation theorem, employing an interpretation appropriate for the present application, which differs from the original thermodynamic interpretation. We analytically and numerically demonstrate that the learning mechanism presented in our theory allows neural networks to efficiently explore their environments and optimally encode information about them.

  10. Harmonic Training and the Formation of Pitch Representation in a Neural Network Model of the Auditory Brain

    PubMed Central

    Ahmad, Nasir; Higgins, Irina; Walker, Kerry M. M.; Stringer, Simon M.

    2016-01-01

    Attempting to explain the perceptual qualities of pitch has proven to be, and remains, a difficult problem. The wide range of sounds which elicit pitch and a lack of agreement across neurophysiological studies on how pitch is encoded by the brain have made this attempt more difficult. In describing the potential neural mechanisms by which pitch may be processed, a number of neural networks have been proposed and implemented. However, no unsupervised neural networks with biologically accurate cochlear inputs have yet been demonstrated. This paper proposes a simple system in which pitch representing neurons are produced in a biologically plausible setting. Purely unsupervised regimes of neural network learning are implemented and these prove to be sufficient in identifying the pitch of sounds with a variety of spectral profiles, including sounds with missing fundamental frequencies and iterated rippled noises. PMID:27047368

  11. Talking Drums: Generating drum grooves with neural networks

    NASA Astrophysics Data System (ADS)

    Hutchings, P.

    2017-05-01

    Presented is a method of generating a full drum kit part for a provided kick-drum sequence. A sequence to sequence neural network model used in natural language translation was adopted to encode multiple musical styles and an online survey was developed to test different techniques for sampling the output of the softmax function. The strongest results were found using a sampling technique that drew from the three most probable outputs at each subdivision of the drum pattern but the consistency of output was found to be heavily dependent on style.

  12. Decoding the dynamic representation of musical pitch from human brain activity.

    PubMed

    Sankaran, N; Thompson, W F; Carlile, S; Carlson, T A

    2018-01-16

    In music, the perception of pitch is governed largely by its tonal function given the preceding harmonic structure of the music. While behavioral research has advanced our understanding of the perceptual representation of musical pitch, relatively little is known about its representational structure in the brain. Using Magnetoencephalography (MEG), we recorded evoked neural responses to different tones presented within a tonal context. Multivariate Pattern Analysis (MVPA) was applied to "decode" the stimulus that listeners heard based on the underlying neural activity. We then characterized the structure of the brain's representation using decoding accuracy as a proxy for representational distance, and compared this structure to several well established perceptual and acoustic models. The observed neural representation was best accounted for by a model based on the Standard Tonal Hierarchy, whereby differences in the neural encoding of musical pitches correspond to their differences in perceived stability. By confirming that perceptual differences honor those in the underlying neuronal population coding, our results provide a crucial link in understanding the cognitive foundations of musical pitch across psychological and neural domains.

  13. Embodied learning of a generative neural model for biological motion perception and inference

    PubMed Central

    Schrodt, Fabian; Layher, Georg; Neumann, Heiko; Butz, Martin V.

    2015-01-01

    Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons. PMID:26217215

  14. Embodied learning of a generative neural model for biological motion perception and inference.

    PubMed

    Schrodt, Fabian; Layher, Georg; Neumann, Heiko; Butz, Martin V

    2015-01-01

    Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons.

  15. Spatiotemporal discrimination in neural networks with short-term synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Shlaer, Benjamin; Miller, Paul

    2015-03-01

    Cells in recurrently connected neural networks exhibit bistability, which allows for stimulus information to persist in a circuit even after stimulus offset, i.e. short-term memory. However, such a system does not have enough hysteresis to encode temporal information about the stimuli. The biophysically described phenomenon of synaptic depression decreases synaptic transmission strengths due to increased presynaptic activity. This short-term reduction in synaptic strengths can destabilize attractor states in excitatory recurrent neural networks, causing the network to move along stimulus dependent dynamical trajectories. Such a network can successfully separate amplitudes and durations of stimuli from the number of successive stimuli. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression. Front. Comput. Neurosci. 7:59., and so provides a strong candidate network for the encoding of spatiotemporal information. Here we explicitly demonstrate the capability of a recurrent neural network with short-term synaptic depression to discriminate between the temporal sequences in which spatial stimuli are presented.

  16. Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish

    PubMed Central

    2017-01-01

    Understanding how neural populations encode sensory information thereby leading to perception and behavior (i.e., the neural code) remains an important problem in neuroscience. When investigating the neural code, one must take into account the fact that neural activities are not independent but are actually correlated with one another. Such correlations are seen ubiquitously and have a strong impact on neural coding. Here we investigated how differences in the antagonistic center-surround receptive field (RF) organization across three parallel sensory maps influence correlations between the activities of electrosensory pyramidal neurons. Using a model based on known anatomical differences in receptive field center size and overlap, we initially predicted large differences in correlated activity across the maps. However, in vivo electrophysiological recordings showed that, contrary to modeling predictions, electrosensory pyramidal neurons across all three segments displayed nearly identical correlations. To explain this surprising result, we incorporated the effects of RF surround in our model. By systematically varying both the RF surround gain and size relative to that of the RF center, we found that multiple RF structures gave rise to similar levels of correlation. In particular, incorporating known physiological differences in RF structure between the three maps in our model gave rise to similar levels of correlation. Our results show that RF center overlap alone does not determine correlations which has important implications for understanding how RF structure influences correlated neural activity. PMID:28863136

  17. Towards biological plausibility of electronic noses: A spiking neural network based approach for tea odour classification.

    PubMed

    Sarkar, Sankho Turjo; Bhondekar, Amol P; Macaš, Martin; Kumar, Ritesh; Kaur, Rishemjit; Sharma, Anupma; Gulati, Ashu; Kumar, Amod

    2015-11-01

    The paper presents a novel encoding scheme for neuronal code generation for odour recognition using an electronic nose (EN). This scheme is based on channel encoding using multiple Gaussian receptive fields superimposed over the temporal EN responses. The encoded data is further applied to a spiking neural network (SNN) for pattern classification. Two forms of SNN, a back-propagation based SpikeProp and a dynamic evolving SNN are used to learn the encoded responses. The effects of information encoding on the performance of SNNs have been investigated. Statistical tests have been performed to determine the contribution of the SNN and the encoding scheme to overall odour discrimination. The approach has been implemented in odour classification of orthodox black tea (Kangra-Himachal Pradesh Region) thereby demonstrating a biomimetic approach for EN data analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Encoding and decoding amplitude-modulated cochlear implant stimuli—a point process analysis

    PubMed Central

    Shea-Brown, Eric; Rubinstein, Jay T.

    2010-01-01

    Cochlear implant speech processors stimulate the auditory nerve by delivering amplitude-modulated electrical pulse trains to intracochlear electrodes. Studying how auditory nerve cells encode modulation information is of fundamental importance, therefore, to understanding cochlear implant function and improving speech perception in cochlear implant users. In this paper, we analyze simulated responses of the auditory nerve to amplitude-modulated cochlear implant stimuli using a point process model. First, we quantify the information encoded in the spike trains by testing an ideal observer’s ability to detect amplitude modulation in a two-alternative forced-choice task. We vary the amount of information available to the observer to probe how spike timing and averaged firing rate encode modulation. Second, we construct a neural decoding method that predicts several qualitative trends observed in psychophysical tests of amplitude modulation detection in cochlear implant listeners. We find that modulation information is primarily available in the sequence of spike times. The performance of an ideal observer, however, is inconsistent with observed trends in psychophysical data. Using a neural decoding method that jitters spike times to degrade its temporal resolution and then computes a common measure of phase locking from spike trains of a heterogeneous population of model nerve cells, we predict the correct qualitative dependence of modulation detection thresholds on modulation frequency and stimulus level. The decoder does not predict the observed loss of modulation sensitivity at high carrier pulse rates, but this framework can be applied to future models that better represent auditory nerve responses to high carrier pulse rate stimuli. The supplemental material of this article contains the article’s data in an active, re-usable format. PMID:20177761

  19. Brain and behavioral evidence for altered social learning mechanisms among women with assault-related posttraumatic stress disorder.

    PubMed

    Cisler, Josh M; Bush, Keith; Scott Steele, J; Lenow, Jennifer K; Smitherman, Sonet; Kilts, Clinton D

    2015-04-01

    Current neurocircuitry models of PTSD focus on the neural mechanisms that mediate hypervigilance for threat and fear inhibition/extinction learning. Less focus has been directed towards explaining social deficits and heightened risk of revictimization observed among individuals with PTSD related to physical or sexual assault. The purpose of the present study was to foster more comprehensive theoretical models of PTSD by testing the hypothesis that assault-related PTSD is associated with behavioral impairments in a social trust and reciprocity task and corresponding alterations in the neural encoding of social learning mechanisms. Adult women with assault-related PTSD (n = 25) and control women (n = 15) completed a multi-trial trust game outside of the MRI scanner. A subset of these participants (15 with PTSD and 14 controls) also completed a social and non-social reinforcement learning task during 3T fMRI. Brain regions that encoded the computationally modeled parameters of value expectation, prediction error, and volatility (i.e., uncertainty) were defined and compared between groups. The PTSD group demonstrated slower learning rates during the trust game and social prediction errors had a lesser impact on subsequent investment decisions. PTSD was also associated with greater encoding of negative expected social outcomes in perigenual anterior cingulate cortex and bilateral middle frontal gyri, and greater encoding of social prediction errors in the left temporoparietal junction. These data suggest mechanisms of PTSD-related deficits in social functioning and heightened risk for re-victimization in assault victims; however, comorbidity in the PTSD group and the lack of a trauma-exposed control group temper conclusions about PTSD specifically. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Signal-independent timescale analysis (SITA) and its application for neural coding during reaching and walking.

    PubMed

    Zacksenhouse, Miriam; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2014-01-01

    What are the relevant timescales of neural encoding in the brain? This question is commonly investigated with respect to well-defined stimuli or actions. However, neurons often encode multiple signals, including hidden or internal, which are not experimentally controlled, and thus excluded from such analysis. Here we consider all rate modulations as the signal, and define the rate-modulations signal-to-noise ratio (RM-SNR) as the ratio between the variance of the rate and the variance of the neuronal noise. As the bin-width increases, RM-SNR increases while the update rate decreases. This tradeoff is captured by the ratio of RM-SNR to bin-width, and its variations with the bin-width reveal the timescales of neural activity. Theoretical analysis and simulations elucidate how the interactions between the recovery properties of the unit and the spectral content of the encoded signals shape this ratio and determine the timescales of neural coding. The resulting signal-independent timescale analysis (SITA) is applied to investigate timescales of neural activity recorded from the motor cortex of monkeys during: (i) reaching experiments with Brain-Machine Interface (BMI), and (ii) locomotion experiments at different speeds. Interestingly, the timescales during BMI experiments did not change significantly with the control mode or training. During locomotion, the analysis identified units whose timescale varied consistently with the experimentally controlled speed of walking, though the specific timescale reflected also the recovery properties of the unit. Thus, the proposed method, SITA, characterizes the timescales of neural encoding and how they are affected by the motor task, while accounting for all rate modulations.

  1. Manifold decoding for neural representations of face viewpoint and gaze direction using magnetoencephalographic data.

    PubMed

    Kuo, Po-Chih; Chen, Yong-Sheng; Chen, Li-Fen

    2018-05-01

    The main challenge in decoding neural representations lies in linking neural activity to representational content or abstract concepts. The transformation from a neural-based to a low-dimensional representation may hold the key to encoding perceptual processes in the human brain. In this study, we developed a novel model by which to represent two changeable features of faces: face viewpoint and gaze direction. These features are embedded in spatiotemporal brain activity derived from magnetoencephalographic data. Our decoding results demonstrate that face viewpoint and gaze direction can be represented by manifold structures constructed from brain responses in the bilateral occipital face area and right superior temporal sulcus, respectively. Our results also show that the superposition of brain activity in the manifold space reveals the viewpoints of faces as well as directions of gazes as perceived by the subject. The proposed manifold representation model provides a novel opportunity to gain further insight into the processing of information in the human brain. © 2018 Wiley Periodicals, Inc.

  2. A computational model of conditioning inspired by Drosophila olfactory system.

    PubMed

    Faghihi, Faramarz; Moustafa, Ahmed A; Heinrich, Ralf; Wörgötter, Florentin

    2017-03-01

    Recent studies have demonstrated that Drosophila melanogaster (briefly Drosophila) can successfully perform higher cognitive processes including second order olfactory conditioning. Understanding the neural mechanism of this behavior can help neuroscientists to unravel the principles of information processing in complex neural systems (e.g. the human brain) and to create efficient and robust robotic systems. In this work, we have developed a biologically-inspired spiking neural network which is able to execute both first and second order conditioning. Experimental studies demonstrated that volume signaling (e.g. by the gaseous transmitter nitric oxide) contributes to memory formation in vertebrates and invertebrates including insects. Based on the existing knowledge of odor encoding in Drosophila, the role of retrograde signaling in memory function, and the integration of synaptic and non-synaptic neural signaling, a neural system is implemented as Simulated fly. Simulated fly navigates in a two-dimensional environment in which it receives odors and electric shocks as sensory stimuli. The model suggests some experimental research on retrograde signaling to investigate neural mechanisms of conditioning in insects and other animals. Moreover, it illustrates a simple strategy to implement higher cognitive capabilities in machines including robots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Is there "neural efficiency" during the processing of visuo-spatial information in male humans? An EEG study.

    PubMed

    Capotosto, Paolo; Perrucci, M Gianni; Brunetti, Marcella; Del Gratta, Cosimo; Doppelmayr, Michael; Grabner, Roland H; Klimesch, Wolfgang; Neubauer, Aljoscha; Neuper, Christa; Pfurtscheller, Gert; Romani, Gian Luca; Babiloni, Claudio

    2009-12-28

    More intelligent persons (high IQ) typically present a higher cortical activity during tasks requiring the encoding of visuo-spatial information, namely higher alpha (about 10 Hz) event-related desynchronization (ERD; Doppelmayr et al., 2005). The opposite is true ("neural efficiency") during the retrieval of the encoded information, as revealed by both lower alpha ERD and/or lower theta (about 5 Hz) event-related synchronization (ERS; Grabner et al., 2004). To reconcile these contrasting results, here we evaluated the working hypothesis that more intelligent male subjects are characterized by a high cortical activity during the encoding phase. This deep encoding would explain the relatively low cortical activity for the retrieval of the encoded information. To test this hypothesis, electroencephalographic (EEG) data were recorded in 22 healthy young male volunteers during visuo-spatial information processing (encoding) and short-term retrieval of the encoded information. Cortical activity was indexed by theta ERS and alpha ERD. It was found that the higher the subjects' total IQ, the stronger the frontal theta ERS during the encoding task. Furthermore, the higher the subjects' total IQ, the lower the frontal high-frequency alpha ERD (about 10-12 Hz) during the retrieval task. This was not true for parietal counterpart of these EEG rhythms. These results reconcile previous contrasting evidence confirming that more intelligent persons do not ever show event-related cortical responses compatible with "neural efficiency" hypothesis. Rather, their cortical activity would depend on flexible and task-adapting features of frontal activation.

  4. Brain computer interface to enhance episodic memory in human participants

    PubMed Central

    Burke, John F.; Merkow, Maxwell B.; Jacobs, Joshua; Kahana, Michael J.

    2015-01-01

    Recent research has revealed that neural oscillations in the theta (4–8 Hz) and alpha (9–14 Hz) bands are predictive of future success in memory encoding. Because these signals occur before the presentation of an upcoming stimulus, they are considered stimulus-independent in that they correlate with enhanced memory encoding independent of the item being encoded. Thus, such stimulus-independent activity has important implications for the neural mechanisms underlying episodic memory as well as the development of cognitive neural prosthetics. Here, we developed a brain computer interface (BCI) to test the ability of such pre-stimulus activity to modulate subsequent memory encoding. We recorded intracranial electroencephalography (iEEG) in neurosurgical patients as they performed a free recall memory task, and detected iEEG theta and alpha oscillations that correlated with optimal memory encoding. We then used these detected oscillatory changes to trigger the presentation of items in the free recall task. We found that item presentation contingent upon the presence of pre-stimulus theta and alpha oscillations modulated memory performance in more sessions than expected by chance. Our results suggest that an electrophysiological signal may be causally linked to a specific behavioral condition, and contingent stimulus presentation has the potential to modulate human memory encoding. PMID:25653605

  5. Distinct Patterns of Neural Activity during Memory Formation of Nonwords versus Words

    PubMed Central

    Otten, Leun J.; Sveen, Josefin; Quayle, Angela H.

    2008-01-01

    Research into the neural underpinnings of memory formation has focused on the encoding of familiar verbal information. Here, we address how the brain supports the encoding of novel information that does not have meaning. Electrical brain activity was recorded from the scalps of healthy young adults while they performed an incidental encoding task (syllable judgments) on separate series of words and ‘nonwords’ (nonsense letter strings that are orthographically legal and pronounceable). Memory for the items was then probed with a recognition memory test. For words as well as nonwords, event-related potentials differed depending on whether an item would subsequently be remembered or forgotten. However, the polarity and timing of the effect varied across item type. For words, subsequently remembered items showed the usually observed positive-going, frontally-distributed modulation from around 600 ms after word onset. For nonwords, by contrast, a negative-going, spatially widespread modulation predicted encoding success from 1000 ms onwards. Nonwords also showed a modulation shortly after item onset. These findings imply that the brain supports the encoding of familiar and unfamiliar letter strings in qualitatively different ways, including the engagement of distinct neural activity at different points in time. The processing of semantic attributes plays an important role in the encoding of words and the associated positive frontal modulation. PMID:17958481

  6. Fragments of a larger whole: retrieval cues constrain observed neural correlates of memory encoding.

    PubMed

    Otten, Leun J

    2007-09-01

    Laying down a new memory involves activity in a number of brain regions. Here, it is shown that the particular regions associated with successful encoding depend on the way in which memory is probed. Event-related functional magnetic resonance imaging signals were acquired while subjects performed an incidental encoding task on a series of visually presented words denoting objects. A recognition memory test using the Remember/Know procedure to separate responses based on recollection and familiarity followed 1 day later. Critically, half of the studied objects were cued with a corresponding spoken word, and half with a corresponding picture. Regardless of cue, activity in prefrontal and hippocampal regions predicted subsequent recollection of a word. Type of retrieval cue modulated activity in prefrontal, temporal, and parietal cortices. Words subsequently recognized on the basis of a sense of familiarity were at study also associated with differential activity in a number of brain regions, some of which were probe dependent. Thus, observed neural correlates of successful encoding are constrained by type of retrieval cue, and are only fragments of all encoding-related neural activity. Regions exhibiting cue-specific effects may be sites that support memory through the degree of overlap between the processes engaged during encoding and those engaged during retrieval.

  7. User Preference-Based Dual-Memory Neural Model With Memory Consolidation Approach.

    PubMed

    Nasir, Jauwairia; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan; Nasir, Jauwairia; Yong-Ho Yoo; Deok-Hwa Kim; Jong-Hwan Kim; Nasir, Jauwairia; Yoo, Yong-Ho; Kim, Deok-Hwa; Kim, Jong-Hwan

    2018-06-01

    Memory modeling has been a popular topic of research for improving the performance of autonomous agents in cognition related problems. Apart from learning distinct experiences correctly, significant or recurring experiences are expected to be learned better and be retrieved easier. In order to achieve this objective, this paper proposes a user preference-based dual-memory adaptive resonance theory network model, which makes use of a user preference to encode memories with various strengths and to learn and forget at various rates. Over a period of time, memories undergo a consolidation-like process at a rate proportional to the user preference at the time of encoding and the frequency of recall of a particular memory. Consolidated memories are easier to recall and are more stable. This dual-memory neural model generates distinct episodic memories and a flexible semantic-like memory component. This leads to an enhanced retrieval mechanism of experiences through two routes. The simulation results are presented to evaluate the proposed memory model based on various kinds of cues over a number of trials. The experimental results on Mybot are also presented. The results verify that not only are distinct experiences learned correctly but also that experiences associated with higher user preference and recall frequency are consolidated earlier. Thus, these experiences are recalled more easily relative to the unconsolidated experiences.

  8. Modulation of neural activity by reward in medial intraparietal cortex is sensitive to temporal sequence of reward

    PubMed Central

    Rajalingham, Rishi; Stacey, Richard Greg; Tsoulfas, Georgios

    2014-01-01

    To restore movements to paralyzed patients, neural prosthetic systems must accurately decode patients' intentions from neural signals. Despite significant advancements, current systems are unable to restore complex movements. Decoding reward-related signals from the medial intraparietal area (MIP) could enhance prosthetic performance. However, the dynamics of reward sensitivity in MIP is not known. Furthermore, reward-related modulation in premotor areas has been attributed to behavioral confounds. Here we investigated the stability of reward encoding in MIP by assessing the effect of reward history on reward sensitivity. We recorded from neurons in MIP while monkeys performed a delayed-reach task under two reward schedules. In the variable schedule, an equal number of small- and large-rewards trials were randomly interleaved. In the constant schedule, one reward size was delivered for a block of trials. The memory period firing rate of most neurons in response to identical rewards varied according to schedule. Using systems identification tools, we attributed the schedule sensitivity to the dependence of neural activity on the history of reward. We did not find schedule-dependent behavioral changes, suggesting that reward modulates neural activity in MIP. Neural discrimination between rewards was less in the variable than in the constant schedule, degrading our ability to decode reach target and reward simultaneously. The effect of schedule was mitigated by adding Haar wavelet coefficients to the decoding model. This raises the possibility of multiple encoding schemes at different timescales and reinforces the potential utility of reward information for prosthetic performance. PMID:25008408

  9. Modulation of neural activity by reward in medial intraparietal cortex is sensitive to temporal sequence of reward.

    PubMed

    Rajalingham, Rishi; Stacey, Richard Greg; Tsoulfas, Georgios; Musallam, Sam

    2014-10-01

    To restore movements to paralyzed patients, neural prosthetic systems must accurately decode patients' intentions from neural signals. Despite significant advancements, current systems are unable to restore complex movements. Decoding reward-related signals from the medial intraparietal area (MIP) could enhance prosthetic performance. However, the dynamics of reward sensitivity in MIP is not known. Furthermore, reward-related modulation in premotor areas has been attributed to behavioral confounds. Here we investigated the stability of reward encoding in MIP by assessing the effect of reward history on reward sensitivity. We recorded from neurons in MIP while monkeys performed a delayed-reach task under two reward schedules. In the variable schedule, an equal number of small- and large-rewards trials were randomly interleaved. In the constant schedule, one reward size was delivered for a block of trials. The memory period firing rate of most neurons in response to identical rewards varied according to schedule. Using systems identification tools, we attributed the schedule sensitivity to the dependence of neural activity on the history of reward. We did not find schedule-dependent behavioral changes, suggesting that reward modulates neural activity in MIP. Neural discrimination between rewards was less in the variable than in the constant schedule, degrading our ability to decode reach target and reward simultaneously. The effect of schedule was mitigated by adding Haar wavelet coefficients to the decoding model. This raises the possibility of multiple encoding schemes at different timescales and reinforces the potential utility of reward information for prosthetic performance. Copyright © 2014 the American Physiological Society.

  10. Brain activation while forming memories of fearful and neutral faces in women and men.

    PubMed

    Fischer, Håkan; Sandblom, Johan; Nyberg, Lars; Herlitz, Agneta; Bäckman, Lars

    2007-11-01

    Event-related functional MRI (fMRI) was used to assess brain activity during encoding of fearful and neutral faces in 12 women and 12 men. In a subsequent memory analysis, the authors separated successful from unsuccessful encoding of both types of faces, based on whether they were remembered or forgotten in a later recognition memory test. Overall, women and men recruited overlapping neural circuitries. Both sexes activated right-sided medial-temporal regions during successful encoding of fearful faces. Successful encoding of neutral faces was associated with left-sided lateral prefrontal and right-sided superior frontal activation in both sexes. In women, relatively greater encoding related activity for neutral faces was seen in the superior parietal and parahippocampal cortices. By contrast, men activated the left and right superior/middle frontal cortex more than women during successful encoding of the same neutral faces. These findings suggest that women and men use similar neural networks to encode facial information, with only subtle sex differences observed for neutral faces.

  11. An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks

    PubMed Central

    Xie, Xiurui; Qu, Hong; Liu, Guisong; Zhang, Malu; Kurths, Jürgen

    2016-01-01

    The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong computational capability. However, the hierarchical structure and temporal encoding approach require neurons to process information serially in space and time respectively, which reduce the training efficiency significantly. For training the hierarchical SNNs, most existing methods are based on the traditional back-propagation algorithm, inheriting its drawbacks of the gradient diffusion and the sensitivity on parameters. To keep the powerful computation capability of the hierarchical structure and temporal encoding mechanism, but to overcome the low efficiency of the existing algorithms, a new training algorithm, the Normalized Spiking Error Back Propagation (NSEBP) is proposed in this paper. In the feedforward calculation, the output spike times are calculated by solving the quadratic function in the spike response model instead of detecting postsynaptic voltage states at all time points in traditional algorithms. Besides, in the feedback weight modification, the computational error is propagated to previous layers by the presynaptic spike jitter instead of the gradient decent rule, which realizes the layer-wised training. Furthermore, our algorithm investigates the mathematical relation between the weight variation and voltage error change, which makes the normalization in the weight modification applicable. Adopting these strategies, our algorithm outperforms the traditional SNN multi-layer algorithms in terms of learning efficiency and parameter sensitivity, that are also demonstrated by the comprehensive experimental results in this paper. PMID:27044001

  12. How Does the Sparse Memory “Engram” Neurons Encode the Memory of a Spatial–Temporal Event?

    PubMed Central

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns. PMID:27601979

  13. How Does the Sparse Memory "Engram" Neurons Encode the Memory of a Spatial-Temporal Event?

    PubMed

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  14. Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.

    PubMed

    Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael

    2010-07-01

    The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain.

  15. Biological engineering applications of feedforward neural networks designed and parameterized by genetic algorithms.

    PubMed

    Ferentinos, Konstantinos P

    2005-09-01

    Two neural network (NN) applications in the field of biological engineering are developed, designed and parameterized by an evolutionary method based on the evolutionary process of genetic algorithms. The developed systems are a fault detection NN model and a predictive modeling NN system. An indirect or 'weak specification' representation was used for the encoding of NN topologies and training parameters into genes of the genetic algorithm (GA). Some a priori knowledge of the demands in network topology for specific application cases is required by this approach, so that the infinite search space of the problem is limited to some reasonable degree. Both one-hidden-layer and two-hidden-layer network architectures were explored by the GA. Except for the network architecture, each gene of the GA also encoded the type of activation functions in both hidden and output nodes of the NN and the type of minimization algorithm that was used by the backpropagation algorithm for the training of the NN. Both models achieved satisfactory performance, while the GA system proved to be a powerful tool that can successfully replace the problematic trial-and-error approach that is usually used for these tasks.

  16. Reward from bugs to bipeds: a comparative approach to understanding how reward circuits function

    PubMed Central

    Scaplen, Kristin M.; Kaun, Karla R.

    2016-01-01

    Abstract In a complex environment, animals learn from their responses to stimuli and events. Appropriate response to reward and punishment can promote survival, reproduction and increase evolutionary fitness. Interestingly, the neural processes underlying these responses are remarkably similar across phyla. In all species, dopamine is central to encoding reward and directing motivated behaviors, however, a comprehensive understanding of how circuits encode reward and direct motivated behaviors is still lacking. In part, this is a result of the sheer diversity of neurons, the heterogeneity of their responses and the complexity of neural circuits within which they are found. We argue that general features of reward circuitry are common across model organisms, and thus principles learned from invertebrate model organisms can inform research across species. In particular, we discuss circuit motifs that appear to be functionally equivalent from flies to primates. We argue that a comparative approach to studying and understanding reward circuit function provides a more comprehensive understanding of reward circuitry, and informs disorders that affect the brain’s reward circuitry. PMID:27328845

  17. Human inferior colliculus activity relates to individual differences in spoken language learning

    PubMed Central

    Chandrasekaran, Bharath; Kraus, Nina

    2012-01-01

    A challenge to learning words of a foreign language is encoding nonnative phonemes, a process typically attributed to cortical circuitry. Using multimodal imaging methods [functional magnetic resonance imaging-adaptation (fMRI-A) and auditory brain stem responses (ABR)], we examined the extent to which pretraining pitch encoding in the inferior colliculus (IC), a primary midbrain structure, related to individual variability in learning to successfully use nonnative pitch patterns to distinguish words in American English-speaking adults. fMRI-A indexed the efficiency of pitch representation localized to the IC, whereas ABR quantified midbrain pitch-related activity with millisecond precision. In line with neural “sharpening” models, we found that efficient IC pitch pattern representation (indexed by fMRI) related to superior neural representation of pitch patterns (indexed by ABR), and consequently more successful word learning following sound-to-meaning training. Our results establish a critical role for the IC in speech-sound representation, consistent with the established role for the IC in the representation of communication signals in other animal models. PMID:22131377

  18. Neuronal adaptation, novelty detection and regularity encoding in audition

    PubMed Central

    Malmierca, Manuel S.; Sanchez-Vives, Maria V.; Escera, Carles; Bendixen, Alexandra

    2014-01-01

    The ability to detect unexpected stimuli in the acoustic environment and determine their behavioral relevance to plan an appropriate reaction is critical for survival. This perspective article brings together several viewpoints and discusses current advances in understanding the mechanisms the auditory system implements to extract relevant information from incoming inputs and to identify unexpected events. This extraordinary sensitivity relies on the capacity to codify acoustic regularities, and is based on encoding properties that are present as early as the auditory midbrain. We review state-of-the-art studies on the processing of stimulus changes using non-invasive methods to record the summed electrical potentials in humans, and those that examine single-neuron responses in animal models. Human data will be based on mismatch negativity (MMN) and enhanced middle latency responses (MLR). Animal data will be based on the activity of single neurons at the cortical and subcortical levels, relating selective responses to novel stimuli to the MMN and to stimulus-specific neural adaptation (SSA). Theoretical models of the neural mechanisms that could create SSA and novelty responses will also be discussed. PMID:25009474

  19. Optical Neural Interfaces

    PubMed Central

    Warden, Melissa R.; Cardin, Jessica A.; Deisseroth, Karl

    2014-01-01

    Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals. PMID:25014785

  20. Modulating the focus of attention for spoken words at encoding affects frontoparietal activation for incidental verbal memory.

    PubMed

    Christensen, Thomas A; Almryde, Kyle R; Fidler, Lesley J; Lockwood, Julie L; Antonucci, Sharon M; Plante, Elena

    2012-01-01

    Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as listeners heard a list of single English nouns. We then presented these words again in the context of a recognition task and assessed the effect of modulating attention at encoding on the BOLD responses to words that were either attended strongly, weakly, or not heard previously. MRI revealed activity in right-lateralized inferior parietal and prefrontal regions, and positive BOLD signals varied with the relative level of attention present at encoding. Temporal analysis of hemodynamic responses further showed that the time course of BOLD activity was modulated differentially by unintentionally encoded words compared to novel items. Our findings largely support current models of memory consolidation and retrieval, but they also provide fresh evidence for hemispheric differences and functional subdivisions in right frontoparietal attention networks that help shape auditory episodic recall.

  1. Modulating the Focus of Attention for Spoken Words at Encoding Affects Frontoparietal Activation for Incidental Verbal Memory

    PubMed Central

    Christensen, Thomas A.; Almryde, Kyle R.; Fidler, Lesley J.; Lockwood, Julie L.; Antonucci, Sharon M.; Plante, Elena

    2012-01-01

    Attention is crucial for encoding information into memory, and current dual-process models seek to explain the roles of attention in both recollection memory and incidental-perceptual memory processes. The present study combined an incidental memory paradigm with event-related functional MRI to examine the effect of attention at encoding on the subsequent neural activation associated with unintended perceptual memory for spoken words. At encoding, we systematically varied attention levels as listeners heard a list of single English nouns. We then presented these words again in the context of a recognition task and assessed the effect of modulating attention at encoding on the BOLD responses to words that were either attended strongly, weakly, or not heard previously. MRI revealed activity in right-lateralized inferior parietal and prefrontal regions, and positive BOLD signals varied with the relative level of attention present at encoding. Temporal analysis of hemodynamic responses further showed that the time course of BOLD activity was modulated differentially by unintentionally encoded words compared to novel items. Our findings largely support current models of memory consolidation and retrieval, but they also provide fresh evidence for hemispheric differences and functional subdivisions in right frontoparietal attention networks that help shape auditory episodic recall. PMID:22144982

  2. Conjunctive coding in an evolved spiking model of retrosplenial cortex.

    PubMed

    Rounds, Emily L; Alexander, Andrew S; Nitz, Douglas A; Krichmar, Jeffrey L

    2018-06-04

    Retrosplenial cortex (RSC) is an association cortex supporting spatial navigation and memory. However, critical issues remain concerning the forms by which its ensemble spiking patterns register spatial relationships that are difficult for experimental techniques to fully address. We therefore applied an evolutionary algorithmic optimization technique to create spiking neural network models that matched electrophysiologically observed spiking dynamics in rat RSC neuronal ensembles. Virtual experiments conducted on the evolved networks revealed a mixed selectivity coding capability that was not built into the optimization method, but instead emerged as a consequence of replicating biological firing patterns. The experiments reveal several important outcomes of mixed selectivity that may subserve flexible navigation and spatial representation: (a) robustness to loss of specific inputs, (b) immediate and stable encoding of novel routes and route locations, (c) automatic resolution of input variable conflicts, and (d) dynamic coding that allows rapid adaptation to changing task demands without retraining. These findings suggest that biological retrosplenial cortex can generate unique, first-trial, conjunctive encodings of spatial positions and actions that can be used by downstream brain regions for navigation and path integration. Moreover, these results are consistent with the proposed role for the RSC in the transformation of representations between reference frames and navigation strategy deployment. Finally, the specific modeling framework used for evolving synthetic retrosplenial networks represents an important advance for computational modeling by which synthetic neural networks can encapsulate, describe, and predict the behavior of neural circuits at multiple levels of function. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Selective Attention to Auditory Memory Neurally Enhances Perceptual Precision.

    PubMed

    Lim, Sung-Joo; Wöstmann, Malte; Obleser, Jonas

    2015-12-09

    Selective attention to a task-relevant stimulus facilitates encoding of that stimulus into a working memory representation. It is less clear whether selective attention also improves the precision of a stimulus already represented in memory. Here, we investigate the behavioral and neural dynamics of selective attention to representations in auditory working memory (i.e., auditory objects) using psychophysical modeling and model-based analysis of electroencephalographic signals. Human listeners performed a syllable pitch discrimination task where two syllables served as to-be-encoded auditory objects. Valid (vs neutral) retroactive cues were presented during retention to allow listeners to selectively attend to the to-be-probed auditory object in memory. Behaviorally, listeners represented auditory objects in memory more precisely (expressed by steeper slopes of a psychometric curve) and made faster perceptual decisions when valid compared to neutral retrocues were presented. Neurally, valid compared to neutral retrocues elicited a larger frontocentral sustained negativity in the evoked potential as well as enhanced parietal alpha/low-beta oscillatory power (9-18 Hz) during memory retention. Critically, individual magnitudes of alpha oscillatory power (7-11 Hz) modulation predicted the degree to which valid retrocues benefitted individuals' behavior. Our results indicate that selective attention to a specific object in auditory memory does benefit human performance not by simply reducing memory load, but by actively engaging complementary neural resources to sharpen the precision of the task-relevant object in memory. Can selective attention improve the representational precision with which objects are held in memory? And if so, what are the neural mechanisms that support such improvement? These issues have been rarely examined within the auditory modality, in which acoustic signals change and vanish on a milliseconds time scale. Introducing a new auditory memory paradigm and using model-based electroencephalography analyses in humans, we thus bridge this gap and reveal behavioral and neural signatures of increased, attention-mediated working memory precision. We further show that the extent of alpha power modulation predicts the degree to which individuals' memory performance benefits from selective attention. Copyright © 2015 the authors 0270-6474/15/3516094-11$15.00/0.

  4. Explaining neural signals in human visual cortex with an associative learning model.

    PubMed

    Jiang, Jiefeng; Schmajuk, Nestor; Egner, Tobias

    2012-08-01

    "Predictive coding" models posit a key role for associative learning in visual cognition, viewing perceptual inference as a process of matching (learned) top-down predictions (or expectations) against bottom-up sensory evidence. At the neural level, these models propose that each region along the visual processing hierarchy entails one set of processing units encoding predictions of bottom-up input, and another set computing mismatches (prediction error or surprise) between predictions and evidence. This contrasts with traditional views of visual neurons operating purely as bottom-up feature detectors. In support of the predictive coding hypothesis, a recent human neuroimaging study (Egner, Monti, & Summerfield, 2010) showed that neural population responses to expected and unexpected face and house stimuli in the "fusiform face area" (FFA) could be well-described as a summation of hypothetical face-expectation and -surprise signals, but not by feature detector responses. Here, we used computer simulations to test whether these imaging data could be formally explained within the broader framework of a mathematical neural network model of associative learning (Schmajuk, Gray, & Lam, 1996). Results show that FFA responses could be fit very closely by model variables coding for conditional predictions (and their violations) of stimuli that unconditionally activate the FFA. These data document that neural population signals in the ventral visual stream that deviate from classic feature detection responses can formally be explained by associative prediction and surprise signals.

  5. Artificial hair cell integrated with an artificial neuron: Interplay between criticality and excitability

    NASA Astrophysics Data System (ADS)

    Lee, Woo Seok; Jeong, Wonhee; Ahn, Kang-Hun

    2014-12-01

    We provide a simple dynamical model of a hair cell with an afferent neuron where the spectral and the temporal responses are controlled by the hair bundle's criticality and the neuron's excitability. To demonstrate that these parameters, indeed, specify the resolution of the sound encoding, we fabricate a neuromorphic device that models the hair cell bundle and its afferent neuron. Then, we show that the neural response of the biomimetic system encodes sounds with either high temporal or spectral resolution or with a combination of both resolutions. Our results suggest that the hair cells may easily specialize to fulfil various roles in spite of their similar physiological structures.

  6. Neural dynamics based on the recognition of neural fingerprints

    PubMed Central

    Carrillo-Medina, José Luis; Latorre, Roberto

    2015-01-01

    Experimental evidence has revealed the existence of characteristic spiking features in different neural signals, e.g., individual neural signatures identifying the emitter or functional signatures characterizing specific tasks. These neural fingerprints may play a critical role in neural information processing, since they allow receptors to discriminate or contextualize incoming stimuli. This could be a powerful strategy for neural systems that greatly enhances the encoding and processing capacity of these networks. Nevertheless, the study of information processing based on the identification of specific neural fingerprints has attracted little attention. In this work, we study (i) the emerging collective dynamics of a network of neurons that communicate with each other by exchange of neural fingerprints and (ii) the influence of the network topology on the self-organizing properties within the network. Complex collective dynamics emerge in the network in the presence of stimuli. Predefined inputs, i.e., specific neural fingerprints, are detected and encoded into coexisting patterns of activity that propagate throughout the network with different spatial organization. The patterns evoked by a stimulus can survive after the stimulation is over, which provides memory mechanisms to the network. The results presented in this paper suggest that neural information processing based on neural fingerprints can be a plausible, flexible, and powerful strategy. PMID:25852531

  7. Cued Memory Retrieval Exhibits Reinstatement of High Gamma Power on a Faster Timescale in the Left Temporal Lobe and Prefrontal Cortex

    PubMed Central

    Shaikhouni, Ammar

    2017-01-01

    Converging evidence suggests that reinstatement of neural activity underlies our ability to successfully retrieve memories. However, the temporal dynamics of reinstatement in the human cortex remain poorly understood. One possibility is that neural activity during memory retrieval, like replay of spiking neurons in the hippocampus, occurs at a faster timescale than during encoding. We tested this hypothesis in 34 participants who performed a verbal episodic memory task while we recorded high gamma (62–100 Hz) activity from subdural electrodes implanted for seizure monitoring. We show that reinstatement of distributed patterns of high gamma activity occurs faster than during encoding. Using a time-warping algorithm, we quantify the timescale of the reinstatement and identify brain regions that show significant timescale differences between encoding and retrieval. Our data suggest that temporally compressed reinstatement of cortical activity is a feature of cued memory retrieval. SIGNIFICANCE STATEMENT We show that cued memory retrieval reinstates neural activity on a faster timescale than was present during encoding. Our data therefore provide a link between reinstatement of neural activity in the cortex and spontaneous replay of cortical and hippocampal spiking activity, which also exhibits temporal compression, and suggest that temporal compression may be a universal feature of memory retrieval. PMID:28336569

  8. Criteria for robustness of heteroclinic cycles in neural microcircuits

    PubMed Central

    2011-01-01

    We introduce a test for robustness of heteroclinic cycles that appear in neural microcircuits modeled as coupled dynamical cells. Robust heteroclinic cycles (RHCs) can appear as robust attractors in Lotka-Volterra-type winnerless competition (WLC) models as well as in more general coupled and/or symmetric systems. It has been previously suggested that RHCs may be relevant to a range of neural activities, from encoding and binding to spatio-temporal sequence generation. The robustness or otherwise of such cycles depends both on the coupling structure and the internal structure of the neurons. We verify that robust heteroclinic cycles can appear in systems of three identical cells, but only if we require perturbations to preserve some invariant subspaces for the individual cells. On the other hand, heteroclinic attractors can appear robustly in systems of four or more identical cells for some symmetric coupling patterns, without restriction on the internal dynamics of the cells. PMID:22656192

  9. Financial time series prediction using spiking neural networks.

    PubMed

    Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam

    2014-01-01

    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.

  10. The Laplacian spectrum of neural networks

    PubMed Central

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  11. Linking dynamic patterns of neural activity in orbitofrontal cortex with decision making.

    PubMed

    Rich, Erin L; Stoll, Frederic M; Rudebeck, Peter H

    2018-04-01

    Humans and animals demonstrate extraordinary flexibility in choice behavior, particularly when deciding based on subjective preferences. We evaluate options on different scales, deliberate, and often change our minds. Little is known about the neural mechanisms that underlie these dynamic aspects of decision-making, although neural activity in orbitofrontal cortex (OFC) likely plays a central role. Recent evidence from studies in macaques shows that attention modulates value responses in OFC, and that ensembles of OFC neurons dynamically signal different options during choices. When contexts change, these ensembles flexibly remap to encode the new task. Determining how these dynamic patterns emerge and relate to choices will inform models of decision-making and OFC function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Light, heat, action: neural control of fruit fly behaviour.

    PubMed

    Owald, David; Lin, Suewei; Waddell, Scott

    2015-09-19

    The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory.

  13. Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis

    PubMed Central

    Hanslmayr, Simon; Staudigl, Tobias; Fellner, Marie-Christin

    2012-01-01

    The traditional belief is that brain oscillations are important for human long-term memory, because they induce synchronized firing between cell assemblies which shapes synaptic plasticity. Therefore, most prior studies focused on the role of synchronization for episodic memory, as reflected in theta (∼5 Hz) and gamma (>40 Hz) power increases. These studies, however, neglect the role that is played by neural desynchronization, which is usually reflected in power decreases in the alpha and beta frequency band (8–30 Hz). In this paper we present a first idea, derived from information theory that gives a mechanistic explanation of how neural desynchronization aids human memory encoding and retrieval. Thereby we will review current studies investigating the role of alpha and beta power decreases during long-term memory tasks and show that alpha and beta power decreases play an important and active role for human memory. Applying mathematical models of information theory, we demonstrate that neural desynchronization is positively related to the richness of information represented in the brain, thereby enabling encoding and retrieval of long-term memories. This information via desynchronization hypothesis makes several predictions, which can be tested in future experiments. PMID:22514527

  14. Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis.

    PubMed

    Hanslmayr, Simon; Staudigl, Tobias; Fellner, Marie-Christin

    2012-01-01

    The traditional belief is that brain oscillations are important for human long-term memory, because they induce synchronized firing between cell assemblies which shapes synaptic plasticity. Therefore, most prior studies focused on the role of synchronization for episodic memory, as reflected in theta (∼5 Hz) and gamma (>40 Hz) power increases. These studies, however, neglect the role that is played by neural desynchronization, which is usually reflected in power decreases in the alpha and beta frequency band (8-30 Hz). In this paper we present a first idea, derived from information theory that gives a mechanistic explanation of how neural desynchronization aids human memory encoding and retrieval. Thereby we will review current studies investigating the role of alpha and beta power decreases during long-term memory tasks and show that alpha and beta power decreases play an important and active role for human memory. Applying mathematical models of information theory, we demonstrate that neural desynchronization is positively related to the richness of information represented in the brain, thereby enabling encoding and retrieval of long-term memories. This information via desynchronization hypothesis makes several predictions, which can be tested in future experiments.

  15. Neuronal encoding of sound, gravity, and wind in the fruit fly.

    PubMed

    Matsuo, Eriko; Kamikouchi, Azusa

    2013-04-01

    The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Exposure to male courtship songs results in reduced locomotion in females, whereas males begin to chase each other. When agitated, fruit flies tend to move against gravity. When faced with air currents, they 'freeze' in place. Based on recent studies, Johnston's hearing organ, the antennal ear of the fruit fly, serves as a sensor for all of these mechanosensory stimuli. Compartmentalization of sense cells in Johnston's organ into vibration-sensitive and deflection-sensitive neural groups allows this single organ to mediate such varied functions. Sound and gravity/wind signals sensed by these two neuronal groups travel in parallel from the fly ear to the brain, feeding into neural pathways reminiscent of the auditory and vestibular pathways in the human brain. Studies of the similarities between mammals and flies will lead to a better understanding of the principles of how sound and gravity information is encoded in the brain. Here, we review recent advances in our understanding of these principles and discuss the advantages of the fruit fly as a model system to explore the fundamental principles of how neural circuits and their ensembles process and integrate sensory information in the brain.

  16. Computational neuroanatomy: ontology-based representation of neural components and connectivity.

    PubMed

    Rubin, Daniel L; Talos, Ion-Florin; Halle, Michael; Musen, Mark A; Kikinis, Ron

    2009-02-05

    A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future.

  17. Neural Encoding and Integration of Learned Probabilistic Sequences in Avian Sensory-Motor Circuitry

    PubMed Central

    Brainard, Michael S.

    2013-01-01

    Many complex behaviors, such as human speech and birdsong, reflect a set of categorical actions that can be flexibly organized into variable sequences. However, little is known about how the brain encodes the probabilities of such sequences. Behavioral sequences are typically characterized by the probability of transitioning from a given action to any subsequent action (which we term “divergence probability”). In contrast, we hypothesized that neural circuits might encode the probability of transitioning to a given action from any preceding action (which we term “convergence probability”). The convergence probability of repeatedly experienced sequences could naturally become encoded by Hebbian plasticity operating on the patterns of neural activity associated with those sequences. To determine whether convergence probability is encoded in the nervous system, we investigated how auditory-motor neurons in vocal premotor nucleus HVC of songbirds encode different probabilistic characterizations of produced syllable sequences. We recorded responses to auditory playback of pseudorandomly sequenced syllables from the bird's repertoire, and found that variations in responses to a given syllable could be explained by a positive linear dependence on the convergence probability of preceding sequences. Furthermore, convergence probability accounted for more response variation than other probabilistic characterizations, including divergence probability. Finally, we found that responses integrated over >7–10 syllables (∼700–1000 ms) with the sign, gain, and temporal extent of integration depending on convergence probability. Our results demonstrate that convergence probability is encoded in sensory-motor circuitry of the song-system, and suggest that encoding of convergence probability is a general feature of sensory-motor circuits. PMID:24198363

  18. A Spiking Neural Network System for Robust Sequence Recognition.

    PubMed

    Yu, Qiang; Yan, Rui; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2016-03-01

    This paper proposes a biologically plausible network architecture with spiking neurons for sequence recognition. This architecture is a unified and consistent system with functional parts of sensory encoding, learning, and decoding. This is the first systematic model attempting to reveal the neural mechanisms considering both the upstream and the downstream neurons together. The whole system is a consistent temporal framework, where the precise timing of spikes is employed for information processing and cognitive computing. Experimental results show that the system is competent to perform the sequence recognition, being robust to noisy sensory inputs and invariant to changes in the intervals between input stimuli within a certain range. The classification ability of the temporal learning rule used in the system is investigated through two benchmark tasks that outperform the other two widely used learning rules for classification. The results also demonstrate the computational power of spiking neurons over perceptrons for processing spatiotemporal patterns. In summary, the system provides a general way with spiking neurons to encode external stimuli into spatiotemporal spikes, to learn the encoded spike patterns with temporal learning rules, and to decode the sequence order with downstream neurons. The system structure would be beneficial for developments in both hardware and software.

  19. Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations

    PubMed Central

    Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus

    2017-01-01

    Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509

  20. On-Chip Neural Data Compression Based On Compressed Sensing With Sparse Sensing Matrices.

    PubMed

    Zhao, Wenfeng; Sun, Biao; Wu, Tong; Yang, Zhi

    2018-02-01

    On-chip neural data compression is an enabling technique for wireless neural interfaces that suffer from insufficient bandwidth and power budgets to transmit the raw data. The data compression algorithm and its implementation should be power and area efficient and functionally reliable over different datasets. Compressed sensing is an emerging technique that has been applied to compress various neurophysiological data. However, the state-of-the-art compressed sensing (CS) encoders leverage random but dense binary measurement matrices, which incur substantial implementation costs on both power and area that could offset the benefits from the reduced wireless data rate. In this paper, we propose two CS encoder designs based on sparse measurement matrices that could lead to efficient hardware implementation. Specifically, two different approaches for the construction of sparse measurement matrices, i.e., the deterministic quasi-cyclic array code (QCAC) matrix and -sparse random binary matrix [-SRBM] are exploited. We demonstrate that the proposed CS encoders lead to comparable recovery performance. And efficient VLSI architecture designs are proposed for QCAC-CS and -SRBM encoders with reduced area and total power consumption.

  1. Led into temptation? Rewarding brand logos bias the neural encoding of incidental economic decisions.

    PubMed

    Murawski, Carsten; Harris, Philip G; Bode, Stefan; Domínguez D, Juan F; Egan, Gary F

    2012-01-01

    Human decision-making is driven by subjective values assigned to alternative choice options. These valuations are based on reward cues. It is unknown, however, whether complex reward cues, such as brand logos, may bias the neural encoding of subjective value in unrelated decisions. In this functional magnetic resonance imaging (fMRI) study, we subliminally presented brand logos preceding intertemporal choices. We demonstrated that priming biased participants' preferences towards more immediate rewards in the subsequent temporal discounting task. This was associated with modulations of the neural encoding of subjective values of choice options in a network of brain regions, including but not restricted to medial prefrontal cortex. Our findings demonstrate the general susceptibility of the human decision making system to apparently incidental contextual information. We conclude that the brain incorporates seemingly unrelated value information that modifies decision making outside the decision-maker's awareness.

  2. Led into Temptation? Rewarding Brand Logos Bias the Neural Encoding of Incidental Economic Decisions

    PubMed Central

    Murawski, Carsten; Harris, Philip G.; Bode, Stefan; Domínguez D., Juan F.; Egan, Gary F.

    2012-01-01

    Human decision-making is driven by subjective values assigned to alternative choice options. These valuations are based on reward cues. It is unknown, however, whether complex reward cues, such as brand logos, may bias the neural encoding of subjective value in unrelated decisions. In this functional magnetic resonance imaging (fMRI) study, we subliminally presented brand logos preceding intertemporal choices. We demonstrated that priming biased participants' preferences towards more immediate rewards in the subsequent temporal discounting task. This was associated with modulations of the neural encoding of subjective values of choice options in a network of brain regions, including but not restricted to medial prefrontal cortex. Our findings demonstrate the general susceptibility of the human decision making system to apparently incidental contextual information. We conclude that the brain incorporates seemingly unrelated value information that modifies decision making outside the decision-maker's awareness. PMID:22479547

  3. Musical experience strengthens the neural representation of sounds important for communication in middle-aged adults

    PubMed Central

    Parbery-Clark, Alexandra; Anderson, Samira; Hittner, Emily; Kraus, Nina

    2012-01-01

    Older adults frequently complain that while they can hear a person talking, they cannot understand what is being said; this difficulty is exacerbated by background noise. Peripheral hearing loss cannot fully account for this age-related decline in speech-in-noise ability, as declines in central processing also contribute to this problem. Given that musicians have enhanced speech-in-noise perception, we aimed to define the effects of musical experience on subcortical responses to speech and speech-in-noise perception in middle-aged adults. Results reveal that musicians have enhanced neural encoding of speech in quiet and noisy settings. Enhancements include faster neural response timing, higher neural response consistency, more robust encoding of speech harmonics, and greater neural precision. Taken together, we suggest that musical experience provides perceptual benefits in an aging population by strengthening the underlying neural pathways necessary for the accurate representation of important temporal and spectral features of sound. PMID:23189051

  4. Multiple Regions of a Cortical Network Commonly Encode the Meaning of Words in Multiple Grammatical Positions of Read Sentences.

    PubMed

    Anderson, Andrew James; Lalor, Edmund C; Lin, Feng; Binder, Jeffrey R; Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Raizada, Rajeev D S; Grimm, Scott; Wang, Xixi

    2018-05-16

    Deciphering how sentence meaning is represented in the brain remains a major challenge to science. Semantically related neural activity has recently been shown to arise concurrently in distributed brain regions as successive words in a sentence are read. However, what semantic content is represented by different regions, what is common across them, and how this relates to words in different grammatical positions of sentences is weakly understood. To address these questions, we apply a semantic model of word meaning to interpret brain activation patterns elicited in sentence reading. The model is based on human ratings of 65 sensory/motor/emotional and cognitive features of experience with words (and their referents). Through a process of mapping functional Magnetic Resonance Imaging activation back into model space we test: which brain regions semantically encode content words in different grammatical positions (e.g., subject/verb/object); and what semantic features are encoded by different regions. In left temporal, inferior parietal, and inferior/superior frontal regions we detect the semantic encoding of words in all grammatical positions tested and reveal multiple common components of semantic representation. This suggests that sentence comprehension involves a common core representation of multiple words' meaning being encoded in a network of regions distributed across the brain.

  5. Neuron’s eye view: Inferring features of complex stimuli from neural responses

    PubMed Central

    Chen, Xin; Beck, Jeffrey M.

    2017-01-01

    Experiments that study neural encoding of stimuli at the level of individual neurons typically choose a small set of features present in the world—contrast and luminance for vision, pitch and intensity for sound—and assemble a stimulus set that systematically varies along these dimensions. Subsequent analysis of neural responses to these stimuli typically focuses on regression models, with experimenter-controlled features as predictors and spike counts or firing rates as responses. Unfortunately, this approach requires knowledge in advance about the relevant features coded by a given population of neurons. For domains as complex as social interaction or natural movement, however, the relevant feature space is poorly understood, and an arbitrary a priori choice of features may give rise to confirmation bias. Here, we present a Bayesian model for exploratory data analysis that is capable of automatically identifying the features present in unstructured stimuli based solely on neuronal responses. Our approach is unique within the class of latent state space models of neural activity in that it assumes that firing rates of neurons are sensitive to multiple discrete time-varying features tied to the stimulus, each of which has Markov (or semi-Markov) dynamics. That is, we are modeling neural activity as driven by multiple simultaneous stimulus features rather than intrinsic neural dynamics. We derive a fast variational Bayesian inference algorithm and show that it correctly recovers hidden features in synthetic data, as well as ground-truth stimulus features in a prototypical neural dataset. To demonstrate the utility of the algorithm, we also apply it to cluster neural responses and demonstrate successful recovery of features corresponding to monkeys and faces in the image set. PMID:28827790

  6. Neural Correlates of Encoding Within- and Across-Domain Inter-Item Associations

    PubMed Central

    Park, Heekyeong; Rugg, Michael D.

    2012-01-01

    The neural correlates of the encoding of associations between pairs of words, pairs of pictures, and word-picture pairs were compared. The aims were to determine first, whether the neural correlates of associative encoding vary according to study material and second, whether encoding of across- versus within-material item pairs is associated with dissociable patterns of hippocampal and perirhinal activity, as predicted by the ‘domain dichotomy’ hypothesis of medial temporal lobe (MTL) function. While undergoing fMRI scanning, subjects (n = 24) were presented with the three classes of study pairs, judging which of the denoted objects fit into the other. Outside of the scanner, subjects then undertook an associative recognition task, discriminating between intact study pairs, rearranged pairs comprising items that had been presented on different study trials, and unstudied item pairs. The neural correlates of successful associative encoding – subsequent associative memory effects – were operationalized as the difference in activity between study pairs correctly judged intact versus pairs incorrectly judged rearranged on the subsequent memory test. Pair type-independent subsequent memory effects were evident in the left inferior frontal gyrus (IFG) and the hippocampus. Picture-picture pairs elicited material-selective effects in regions of fusiform cortex that were also activated to a greater extent on picture trials than word trials, while word-word pairs elicited material-selective subsequent memory effects in left lateral temporal cortex. Contrary to the domain-dichotomy hypothesis, neither hippocampal nor perirhinal subsequent memory effects differed depending on whether they were elicited by within- versus across-material study pairs. It is proposed that the left IFG plays a domain-general role in associative encoding, that associative encoding can also be facilitated by enhanced processing in material-selective cortical regions, and that the hippocampus and perirhinal cortex contribute equally to the formation of inter-item associations regardless of whether the items belong to the same or to different processing domains. PMID:21254802

  7. A plausible neural circuit for decision making and its formation based on reinforcement learning.

    PubMed

    Wei, Hui; Dai, Dawei; Bu, Yijie

    2017-06-01

    A human's, or lower insects', behavior is dominated by its nervous system. Each stable behavior has its own inner steps and control rules, and is regulated by a neural circuit. Understanding how the brain influences perception, thought, and behavior is a central mandate of neuroscience. The phototactic flight of insects is a widely observed deterministic behavior. Since its movement is not stochastic, the behavior should be dominated by a neural circuit. Based on the basic firing characteristics of biological neurons and the neural circuit's constitution, we designed a plausible neural circuit for this phototactic behavior from logic perspective. The circuit's output layer, which generates a stable spike firing rate to encode flight commands, controls the insect's angular velocity when flying. The firing pattern and connection type of excitatory and inhibitory neurons are considered in this computational model. We simulated the circuit's information processing using a distributed PC array, and used the real-time average firing rate of output neuron clusters to drive a flying behavior simulation. In this paper, we also explored how a correct neural decision circuit is generated from network flow view through a bee's behavior experiment based on the reward and punishment feedback mechanism. The significance of this study: firstly, we designed a neural circuit to achieve the behavioral logic rules by strictly following the electrophysiological characteristics of biological neurons and anatomical facts. Secondly, our circuit's generality permits the design and implementation of behavioral logic rules based on the most general information processing and activity mode of biological neurons. Thirdly, through computer simulation, we achieved new understanding about the cooperative condition upon which multi-neurons achieve some behavioral control. Fourthly, this study aims in understanding the information encoding mechanism and how neural circuits achieve behavior control. Finally, this study also helps establish a transitional bridge between the microscopic activity of the nervous system and macroscopic animal behavior.

  8. Visual attention mitigates information loss in small- and large-scale neural codes

    PubMed Central

    Sprague, Thomas C; Saproo, Sameer; Serences, John T

    2015-01-01

    Summary The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires processing sensory signals in a manner that protects information about relevant stimuli from degradation. Such selective processing – or selective attention – is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. PMID:25769502

  9. Encoding electric signals by Gymnotus omarorum: heuristic modeling of tuberous electroreceptor organs.

    PubMed

    Cilleruelo, Esteban R; Caputi, Angel Ariel

    2012-01-24

    The role of different substructures of electroreceptor organs in signal encoding was explored using a heuristic computational model. This model consists of four modules representing the pre-receptor structures, the transducer cells, the synapses and the afferent fiber, respectively. Simulations reproduced previously obtained experimental data. We showed that different electroreceptor types described in the literature can be qualitative modeled with the same set of equations by changing only two parameters, one affecting the filtering properties of the pre-receptor, and the other affecting the transducer module. We studied the responses of different electroreceptor types to natural stimuli using simulations derived from an experimentally-obtained database in which the fish were exposed to resistive or capacitive objects. Our results indicate that phase and frequency spectra are differentially encoded by different subpopulations of tuberous electroreceptors. A different type of receptor responses to the same input is a necessary condition for encoding a multidimensional space of stimuli as in the waveform of the EOD. Our simulation analysis suggested that the electroreceptive mosaic may perform a waveform analysis of electrosensory signals. As in color vision or tactile texture perception, a secondary attribute, "electric color" may be encoded as a parallel activity of various electroreceptor types. This article is part of a Special Issue entitled Neural Coding. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Hippocampal Contribution to Context Encoding across Development Is Disrupted following Early-Life Adversity.

    PubMed

    Lambert, Hilary K; Sheridan, Margaret A; Sambrook, Kelly A; Rosen, Maya L; Askren, Mary K; McLaughlin, Katie A

    2017-02-15

    Context can drastically influence responses to environmental stimuli. For example, a gunshot should provoke a different response at a public park than a shooting range. Little is known about how contextual processing and neural correlates change across human development or about individual differences related to early environmental experiences. Children ( N = 60; 8-19 years, 24 exposed to interpersonal violence) completed a context encoding task during fMRI scanning using a delayed match-to-sample design with neutral, happy, and angry facial cues embedded in realistic background scenes. Outside the scanner, participants completed a memory test for context-face pairings. Context memory and neural correlates of context encoding did not vary with age. Larger hippocampal volume was associated with better context memory. Posterior hippocampus was recruited during context encoding, and greater activation in this region predicted better memory for contexts paired with angry faces. Children exposed to violence had poor memory of contexts paired with angry faces, reduced hippocampal volume, and atypical neural recruitment on encoding trials with angry faces, including reduced hippocampal activation and greater functional connectivity between hippocampus and ventrolateral prefrontal cortex (vlPFC). Greater hippocampus-vlPFC connectivity was associated with worse memory for contexts paired with angry faces. Posterior hippocampus appears to support context encoding, a process that does not exhibit age-related variation from middle childhood to late adolescence. Exposure to dangerous environments in childhood is associated with poor context encoding in the presence of threat, likely due to greater vlPFC-dependent attentional narrowing on threat cues at the expense of hippocampus-dependent processing of the broader context. SIGNIFICANCE STATEMENT The ability to use context to guide reactions to environmental stimuli promotes flexible behavior. Remarkably little research has examined how contextual processing changes across development or about influences of the early environment. We provide evidence for posterior hippocampus involvement in context encoding in youth and lack of age-related variation from middle childhood to late adolescence. Children exposed to interpersonal violence exhibited poor memory of contexts paired with angry faces and atypical neural recruitment during context encoding in the presence of threatening facial cues. Heightened attention to threat following violence exposure may come at the expense of encoding contextual information, which may ultimately contribute to pathological fear expressed in safe contexts. Copyright © 2017 the authors 0270-6474/17/371925-10$15.00/0.

  11. Developmental differences in the neural correlates of relational encoding and recall in children: An event-related fMRI study

    PubMed Central

    Güler, O. Evren; Thomas, Kathleen M.

    2012-01-01

    Despite vast knowledge on the behavioral processes mediating the development of episodic memory, little is known about the neural mechanisms underlying these changes. We used event-related fMRI to examine the neural correlates of both encoding and recall processes during an episodic memory task in two different groups of school age children (8–9 & 12–13 years). The memory task was composed of an encoding phase in which children were presented with a series of unrelated pictorial pairs, and a retrieval phase during which one of these items acted as a cue to prompt recall of the paired item. Age-related differences in activations were observed for both encoding and recall. Younger children recruited additional regions in the right dorsolateral prefrontal and right temporal cortex compared to older children during successful encoding of the pairs. During successful recall, older children recruited additional regions in the left ventrolateral prefrontal and left inferior parietal cortex compared to younger children. The results suggest that the prefrontal cortex contributes to not only the formation of memories but also access to them, and this contribution changes with development. The protracted development of the prefrontal cortex has implications for our understanding of the development of episodic memory. PMID:22884992

  12. The feature-weighted receptive field: an interpretable encoding model for complex feature spaces.

    PubMed

    St-Yves, Ghislain; Naselaris, Thomas

    2017-06-20

    We introduce the feature-weighted receptive field (fwRF), an encoding model designed to balance expressiveness, interpretability and scalability. The fwRF is organized around the notion of a feature map-a transformation of visual stimuli into visual features that preserves the topology of visual space (but not necessarily the native resolution of the stimulus). The key assumption of the fwRF model is that activity in each voxel encodes variation in a spatially localized region across multiple feature maps. This region is fixed for all feature maps; however, the contribution of each feature map to voxel activity is weighted. Thus, the model has two separable sets of parameters: "where" parameters that characterize the location and extent of pooling over visual features, and "what" parameters that characterize tuning to visual features. The "where" parameters are analogous to classical receptive fields, while "what" parameters are analogous to classical tuning functions. By treating these as separable parameters, the fwRF model complexity is independent of the resolution of the underlying feature maps. This makes it possible to estimate models with thousands of high-resolution feature maps from relatively small amounts of data. Once a fwRF model has been estimated from data, spatial pooling and feature tuning can be read-off directly with no (or very little) additional post-processing or in-silico experimentation. We describe an optimization algorithm for estimating fwRF models from data acquired during standard visual neuroimaging experiments. We then demonstrate the model's application to two distinct sets of features: Gabor wavelets and features supplied by a deep convolutional neural network. We show that when Gabor feature maps are used, the fwRF model recovers receptive fields and spatial frequency tuning functions consistent with known organizational principles of the visual cortex. We also show that a fwRF model can be used to regress entire deep convolutional networks against brain activity. The ability to use whole networks in a single encoding model yields state-of-the-art prediction accuracy. Our results suggest a wide variety of uses for the feature-weighted receptive field model, from retinotopic mapping with natural scenes, to regressing the activities of whole deep neural networks onto measured brain activity. Copyright © 2017. Published by Elsevier Inc.

  13. Cued Memory Retrieval Exhibits Reinstatement of High Gamma Power on a Faster Timescale in the Left Temporal Lobe and Prefrontal Cortex.

    PubMed

    Yaffe, Robert B; Shaikhouni, Ammar; Arai, Jennifer; Inati, Sara K; Zaghloul, Kareem A

    2017-04-26

    Converging evidence suggests that reinstatement of neural activity underlies our ability to successfully retrieve memories. However, the temporal dynamics of reinstatement in the human cortex remain poorly understood. One possibility is that neural activity during memory retrieval, like replay of spiking neurons in the hippocampus, occurs at a faster timescale than during encoding. We tested this hypothesis in 34 participants who performed a verbal episodic memory task while we recorded high gamma (62-100 Hz) activity from subdural electrodes implanted for seizure monitoring. We show that reinstatement of distributed patterns of high gamma activity occurs faster than during encoding. Using a time-warping algorithm, we quantify the timescale of the reinstatement and identify brain regions that show significant timescale differences between encoding and retrieval. Our data suggest that temporally compressed reinstatement of cortical activity is a feature of cued memory retrieval. SIGNIFICANCE STATEMENT We show that cued memory retrieval reinstates neural activity on a faster timescale than was present during encoding. Our data therefore provide a link between reinstatement of neural activity in the cortex and spontaneous replay of cortical and hippocampal spiking activity, which also exhibits temporal compression, and suggest that temporal compression may be a universal feature of memory retrieval. Copyright © 2017 the authors 0270-6474/17/374472-09$15.00/0.

  14. Population clocks: motor timing with neural dynamics

    PubMed Central

    Buonomano, Dean V.; Laje, Rodrigo

    2010-01-01

    An understanding of sensory and motor processing will require elucidation of the mechanisms by which the brain tells time. Open questions relate to whether timing relies on dedicated or intrinsic mechanisms and whether distinct mechanisms underlie timing across scales and modalities. Although experimental and theoretical studies support the notion that neural circuits are intrinsically capable of sensory timing on short scales, few general models of motor timing have been proposed. For one class of models, population clocks, it is proposed that time is encoded in the time-varying patterns of activity of a population of neurons. We argue that population clocks emerge from the internal dynamics of recurrently connected networks, are biologically realistic and account for many aspects of motor timing. PMID:20889368

  15. High school music classes enhance the neural processing of speech.

    PubMed

    Tierney, Adam; Krizman, Jennifer; Skoe, Erika; Johnston, Kathleen; Kraus, Nina

    2013-01-01

    Should music be a priority in public education? One argument for teaching music in school is that private music instruction relates to enhanced language abilities and neural function. However, the directionality of this relationship is unclear and it is unknown whether school-based music training can produce these enhancements. Here we show that 2 years of group music classes in high school enhance the neural encoding of speech. To tease apart the relationships between music and neural function, we tested high school students participating in either music or fitness-based training. These groups were matched at the onset of training on neural timing, reading ability, and IQ. Auditory brainstem responses were collected to a synthesized speech sound presented in background noise. After 2 years of training, the neural responses of the music training group were earlier than at pre-training, while the neural timing of students in the fitness training group was unchanged. These results represent the strongest evidence to date that in-school music education can cause enhanced speech encoding. The neural benefits of musical training are, therefore, not limited to expensive private instruction early in childhood but can be elicited by cost-effective group instruction during adolescence.

  16. End-to-End ASR-Free Keyword Search From Speech

    NASA Astrophysics Data System (ADS)

    Audhkhasi, Kartik; Rosenberg, Andrew; Sethy, Abhinav; Ramabhadran, Bhuvana; Kingsbury, Brian

    2017-12-01

    End-to-end (E2E) systems have achieved competitive results compared to conventional hybrid hidden Markov model (HMM)-deep neural network based automatic speech recognition (ASR) systems. Such E2E systems are attractive due to the lack of dependence on alignments between input acoustic and output grapheme or HMM state sequence during training. This paper explores the design of an ASR-free end-to-end system for text query-based keyword search (KWS) from speech trained with minimal supervision. Our E2E KWS system consists of three sub-systems. The first sub-system is a recurrent neural network (RNN)-based acoustic auto-encoder trained to reconstruct the audio through a finite-dimensional representation. The second sub-system is a character-level RNN language model using embeddings learned from a convolutional neural network. Since the acoustic and text query embeddings occupy different representation spaces, they are input to a third feed-forward neural network that predicts whether the query occurs in the acoustic utterance or not. This E2E ASR-free KWS system performs respectably despite lacking a conventional ASR system and trains much faster.

  17. Memory processes during sleep: beyond the standard consolidation theory.

    PubMed

    Axmacher, Nikolai; Draguhn, Andreas; Elger, Christian E; Fell, Juergen

    2009-07-01

    Two-step theories of memory formation suggest that an initial encoding stage, during which transient neural assemblies are formed in the hippocampus, is followed by a second step called consolidation, which involves re-processing of activity patterns and is associated with an increasing involvement of the neocortex. Several studies in human subjects as well as in animals suggest that memory consolidation occurs predominantly during sleep (standard consolidation model). Alternatively, it has been suggested that consolidation may occur during waking state as well and that the role of sleep is rather to restore encoding capabilities of synaptic connections (synaptic downscaling theory). Here, we review the experimental evidence favoring and challenging these two views and suggest an integrative model of memory consolidation.

  18. Slow cortical potentials and "inner time consciousness" - A neuro-phenomenal hypothesis about the "width of present".

    PubMed

    Northoff, Georg

    2016-05-01

    William James postulated a "stream of consciousness" that presupposes temporal continuity. The neuronal mechanisms underlying the construction of such temporal continuity remain unclear, however, in my contribution, I propose a neuro-phenomenal hypothesis that is based on slow cortical potentials and their extension of the present moment as described in the phenomenal term of "width of present". More specifically, I focus on the way the brain's neural activity needs to be encoded in order to make possible the "stream of consciousness." This leads us again to the low-frequency fluctuations of the brain's neural activity and more specifically to slow cortical potentials (SCPs). Due to their long phase duration as low-frequency fluctuations, SCPs can integrate different stimuli and their associated neural activity from different regions in one converging region. Such integration may be central for consciousness to occur, as it was recently postulated by He and Raichle. They leave open, however, the question of the exact neuronal mechanisms, like the encoding strategy, that make possible the association of the otherwise purely neuronal SCP with consciousness and its phenomenal features. I hypothesize that SCPs allow for linking and connecting different discrete points in physical time by encoding their statistically based temporal differences rather than the single discrete time points by themselves. This presupposes difference-based coding rather than stimulus-based coding. The encoding of such statistically based temporal differences makes it possible to "go beyond" the merely physical features of the stimuli; that is, their single discrete time points and their conduction delays (as related to their neural processing in the brain). This, in turn, makes possible the constitution of "local temporal continuity" of neural activity in one particular region. The concept of "local temporal continuity" signifies the linkage and integration of different discrete time points into one neural activity in a particular region. How does such local temporal continuity predispose the experience of time in consciousness? For that, I turn to phenomenological philosopher Edmund Husserl and his description of what he calls "inner time consciousness" (Husserl and Brough, 1990). One hallmark of humans' "inner time consciousness" is that we experience events and objects in succession and duration in our consciousness; according to Husserl, this amounts to what he calls the "width of [the] present." The concept of the width of present describes the extension of the present beyond the single discrete time point, such as, for instance, when we perceive different tones as a melody. I now hypothesize the degree of the width of present to be directly dependent upon and thus predisposed by the degree of the temporal differences between two (or more) discrete time points as they are encoded into neural activity. I therefore conclude that the SCPs and their encoding of neural activity in terms of temporal differences must be regarded a neural predisposition of consciousness (NPC) as distinguished from a neural correlate of consciousness (NCC). Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Risk of punishment influences discrete and coordinated encoding of reward-guided actions by prefrontal cortex and VTA neurons

    PubMed Central

    Park, Junchol

    2017-01-01

    Actions motivated by rewards are often associated with risk of punishment. Little is known about the neural representation of punishment risk during reward-seeking behavior. We modeled this circumstance in rats by designing a task where actions were consistently rewarded but probabilistically punished. Spike activity and local field potentials were recorded during task performance simultaneously from VTA and mPFC, two reciprocally connected regions implicated in reward-seeking and aversive behaviors. At the single unit level, we found that ensembles of putative dopamine and non-dopamine VTA neurons and mPFC neurons encode the relationship between action and punishment. At the network level, we found that coherent theta oscillations synchronize VTA and mPFC in a bottom-up direction, effectively phase-modulating the neuronal spike activity in the two regions during punishment-free actions. This synchrony declined as a function of punishment probability, suggesting that during reward-seeking actions, risk of punishment diminishes VTA-driven neural synchrony between the two regions. PMID:29058673

  20. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification

    NASA Astrophysics Data System (ADS)

    Anwer, Rao Muhammad; Khan, Fahad Shahbaz; van de Weijer, Joost; Molinier, Matthieu; Laaksonen, Jorma

    2018-04-01

    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene classification.

  1. The effects of aging on ERP correlates of source memory retrieval for self-referential information.

    PubMed

    Dulas, Michael R; Newsome, Rachel N; Duarte, Audrey

    2011-03-04

    Numerous behavioral studies have suggested that normal aging negatively affects source memory accuracy for various kinds of associations. Neuroimaging evidence suggests that less efficient retrieval processing (temporally delayed and attenuated) may contribute to these impairments. Previous aging studies have not compared source memory accuracy and corresponding neural activity for different kinds of source details; namely, those that have been encoded via a more or less effective strategy. Thus, it is not yet known whether encoding source details in a self-referential manner, a strategy suggested to promote successful memory in the young and old, may enhance source memory accuracy and reduce the commonly observed age-related changes in neural activity associated with source memory retrieval. Here, we investigated these issues by using event-related potentials (ERPs) to measure the effects of aging on the neural correlates of successful source memory retrieval ("old-new effects") for objects encoded either self-referentially or self-externally. Behavioral results showed that both young and older adults demonstrated better source memory accuracy for objects encoded self-referentially. ERP results showed that old-new effects onsetted earlier for self-referentially encoded items in both groups and that age-related differences in the onset latency of these effects were reduced for self-referentially, compared to self-externally, encoded items. These results suggest that the implementation of an effective encoding strategy, like self-referential processing, may lead to more efficient retrieval, which in turn may improve source memory accuracy in both young and older adults. Published by Elsevier B.V.

  2. Thalamic neuron models encode stimulus information by burst-size modulation

    PubMed Central

    Elijah, Daniel H.; Samengo, Inés; Montemurro, Marcelo A.

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons. PMID:26441623

  3. Thalamic neuron models encode stimulus information by burst-size modulation.

    PubMed

    Elijah, Daniel H; Samengo, Inés; Montemurro, Marcelo A

    2015-01-01

    Thalamic neurons have been long assumed to fire in tonic mode during perceptive states, and in burst mode during sleep and unconsciousness. However, recent evidence suggests that bursts may also be relevant in the encoding of sensory information. Here, we explore the neural code of such thalamic bursts. In order to assess whether the burst code is generic or whether it depends on the detailed properties of each bursting neuron, we analyzed two neuron models incorporating different levels of biological detail. One of the models contained no information of the biophysical processes entailed in spike generation, and described neuron activity at a phenomenological level. The second model represented the evolution of the individual ionic conductances involved in spiking and bursting, and required a large number of parameters. We analyzed the models' input selectivity using reverse correlation methods and information theory. We found that n-spike bursts from both models transmit information by modulating their spike count in response to changes to instantaneous input features, such as slope, phase, amplitude, etc. The stimulus feature that is most efficiently encoded by bursts, however, need not coincide with one of such classical features. We therefore searched for the optimal feature among all those that could be expressed as a linear transformation of the time-dependent input current. We found that bursting neurons transmitted 6 times more information about such more general features. The relevant events in the stimulus were located in a time window spanning ~100 ms before and ~20 ms after burst onset. Most importantly, the neural code employed by the simple and the biologically realistic models was largely the same, implying that the simple thalamic neuron model contains the essential ingredients that account for the computational properties of the thalamic burst code. Thus, our results suggest the n-spike burst code is a general property of thalamic neurons.

  4. Light, heat, action: neural control of fruit fly behaviour

    PubMed Central

    Owald, David; Lin, Suewei; Waddell, Scott

    2015-01-01

    The fruit fly Drosophila melanogaster has emerged as a popular model to investigate fundamental principles of neural circuit operation. The sophisticated genetics and small brain permit a cellular resolution understanding of innate and learned behavioural processes. Relatively recent genetic and technical advances provide the means to specifically and reproducibly manipulate the function of many fly neurons with temporal resolution. The same cellular precision can also be exploited to express genetically encoded reporters of neural activity and cell-signalling pathways. Combining these approaches in living behaving animals has great potential to generate a holistic view of behavioural control that transcends the usual molecular, cellular and systems boundaries. In this review, we discuss these approaches with particular emphasis on the pioneering studies and those involving learning and memory. PMID:26240426

  5. Hebbian Plasticity Realigns Grid Cell Activity with External Sensory Cues in Continuous Attractor Models

    PubMed Central

    Mulas, Marcello; Waniek, Nicolai; Conradt, Jörg

    2016-01-01

    After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN), is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors over time due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments. PMID:26924979

  6. Neural Network Grasping Controller for Continuum Robots

    DTIC Science & Technology

    2006-01-01

    string encoders attached to the base of section 1 and optical encoders located at the end plates of section 1 and 2. The cables from each of the...string encoders run the entire length of the arm through the optical encoders at the lower sections, as seen in Figure 1. This configuration enables the...encoders at the base section and the optical encoders at the end plates of the distal sections, there were a number of protrusions on the surface of the arm

  7. Visual attention mitigates information loss in small- and large-scale neural codes.

    PubMed

    Sprague, Thomas C; Saproo, Sameer; Serences, John T

    2015-04-01

    The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires that sensory signals are processed in a manner that protects information about relevant stimuli from degradation. Such selective processing--or selective attention--is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, thereby providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Evaluating dedicated and intrinsic models of temporal encoding by varying context

    PubMed Central

    Spencer, Rebecca M.C.; Karmarkar, Uma; Ivry, Richard B.

    2009-01-01

    Two general classes of models have been proposed to account for how people process temporal information in the milliseconds range. Dedicated models entail a mechanism in which time is explicitly encoded; examples include clock–counter models and functional delay lines. Intrinsic models, such as state-dependent networks (SDN), represent time as an emergent property of the dynamics of neural processing. An important property of SDN is that the encoding of duration is context dependent since the representation of an interval will vary as a function of the initial state of the network. Consistent with this assumption, duration discrimination thresholds for auditory intervals spanning 100 ms are elevated when an irrelevant tone is presented at varying times prior to the onset of the test interval. We revisit this effect in two experiments, considering attentional issues that may also produce such context effects. The disruptive effect of a variable context was eliminated or attenuated when the intervals between the irrelevant tone and test interval were made dissimilar or the duration of the test interval was increased to 300 ms. These results indicate how attentional processes can influence the perception of brief intervals, as well as point to important constraints for SDN models. PMID:19487188

  9. Auditory Attentional Capture during Serial Recall: Violations at Encoding of an Algorithm-Based Neural Model?

    ERIC Educational Resources Information Center

    Hughes, Robert W.; Vachon, Francois; Jones, Dylan M.

    2005-01-01

    A novel attentional capture effect is reported in which visual-verbal serial recall was disrupted if a single deviation in the interstimulus interval occurred within otherwise regularly presented task-irrelevant spoken items. The degree of disruption was the same whether the temporal deviant was embedded in a sequence made up of a repeating item…

  10. When encoding yields remembering: insights from event-related neuroimaging.

    PubMed Central

    Wagner, A D; Koutstaal, W; Schacter, D L

    1999-01-01

    To understand human memory, it is important to determine why some experiences are remembered whereas others are forgotten. Until recently, insights into the neural bases of human memory encoding, the processes by which information is transformed into an enduring memory trace, have primarily been derived from neuropsychological studies of humans with select brain lesions. The advent of functional neuroimaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has provided a new opportunity to gain additional understanding of how the brain supports memory formation. Importantly, the recent development of event-related fMRI methods now allows for examination of trial-by-trial differences in neural activity during encoding and of the consequences of these differences for later remembering. In this review, we consider the contributions of PET and fMRI studies to the understanding of memory encoding, placing a particular emphasis on recent event-related fMRI studies of the Dm effect: that is, differences in neural activity during encoding that are related to differences in subsequent memory. We then turn our attention to the rich literature on the Dm effect that has emerged from studies using event-related potentials (ERPs). It is hoped that the integration of findings from ERP studies, which offer higher temporal resolution, with those from event-related fMRI studies, which offer higher spatial resolution, will shed new light on when and why encoding yields subsequent remembering. PMID:10466153

  11. Biologically Plausible, Human-Scale Knowledge Representation.

    PubMed

    Crawford, Eric; Gingerich, Matthew; Eliasmith, Chris

    2016-05-01

    Several approaches to implementing symbol-like representations in neurally plausible models have been proposed. These approaches include binding through synchrony (Shastri & Ajjanagadde, ), "mesh" binding (van der Velde & de Kamps, ), and conjunctive binding (Smolensky, ). Recent theoretical work has suggested that most of these methods will not scale well, that is, that they cannot encode structured representations using any of the tens of thousands of terms in the adult lexicon without making implausible resource assumptions. Here, we empirically demonstrate that the biologically plausible structured representations employed in the Semantic Pointer Architecture (SPA) approach to modeling cognition (Eliasmith, ) do scale appropriately. Specifically, we construct a spiking neural network of about 2.5 million neurons that employs semantic pointers to successfully encode and decode the main lexical relations in WordNet, which has over 100,000 terms. In addition, we show that the same representations can be employed to construct recursively structured sentences consisting of arbitrary WordNet concepts, while preserving the original lexical structure. We argue that these results suggest that semantic pointers are uniquely well-suited to providing a biologically plausible account of the structured representations that underwrite human cognition. Copyright © 2015 Cognitive Science Society, Inc.

  12. With you or against you: social orientation dependent learning signals guide actions made for others.

    PubMed

    Christopoulos, George I; King-Casas, Brooks

    2015-01-01

    In social environments, it is crucial that decision-makers take account of the impact of their actions not only for oneself, but also on other social agents. Previous work has identified neural signals in the striatum encoding value-based prediction errors for outcomes to oneself; also, recent work suggests that neural activity in prefrontal cortex may similarly encode value-based prediction errors related to outcomes to others. However, prior work also indicates that social valuations are not isomorphic, with social value orientations of decision-makers ranging on a cooperative to competitive continuum; this variation has not been examined within social learning environments. Here, we combine a computational model of learning with functional neuroimaging to examine how individual differences in orientation impact neural mechanisms underlying 'other-value' learning. Across four experimental conditions, reinforcement learning signals for other-value were identified in medial prefrontal cortex, and were distinct from self-value learning signals identified in striatum. Critically, the magnitude and direction of the other-value learning signal depended strongly on an individual's cooperative or competitive orientation toward others. These data indicate that social decisions are guided by a social orientation-dependent learning system that is computationally similar but anatomically distinct from self-value learning. The sensitivity of the medial prefrontal learning signal to social preferences suggests a mechanism linking such preferences to biases in social actions and highlights the importance of incorporating heterogeneous social predispositions in neurocomputational models of social behavior. Published by Elsevier Inc.

  13. With you or against you: Social orientation dependent learning signals guide actions made for others

    PubMed Central

    Christopoulos, George I.; King-Casas, Brooks

    2014-01-01

    In social environments, it is crucial that decision-makers take account of the impact of their actions not only for oneself, but also on other social agents. Previous work has identified neural signals in the striatum encoding value-based prediction errors for outcomes to oneself; also, recent work suggests neural activity in prefrontal cortex may similarly encode value-based prediction errors related to outcomes to others. However, prior work also indicates that social valuations are not isomorphic, with social value orientations of decision-makers ranging on a cooperative to competitive continuum; this variation has not been examined within social learning environments. Here, we combine a computational model of learning with functional neuroimaging to examine how individual differences in orientation impact neural mechanisms underlying ‘other-value’ learning. Across four experimental conditions, reinforcement learning signals for other-value were identified in medial prefrontal cortex, and were distinct from self-value learning signals identified in striatum. Critically, the magnitude and direction of the other-value learning signal depended strongly on an individual’s cooperative or competitive orientation towards others. These data indicate that social decisions are guided by a social orientation-dependent learning system that is computationally similar but anatomically distinct from self-value learning. The sensitivity of the medial prefrontal learning signal to social preferences suggests a mechanism linking such preferences to biases in social actions and highlights the importance of incorporating heterogeneous social predispositions in neurocomputational models of social behavior. PMID:25224998

  14. Distributed Neural Processing Predictors of Multi-dimensional Properties of Affect

    PubMed Central

    Bush, Keith A.; Inman, Cory S.; Hamann, Stephan; Kilts, Clinton D.; James, G. Andrew

    2017-01-01

    Recent evidence suggests that emotions have a distributed neural representation, which has significant implications for our understanding of the mechanisms underlying emotion regulation and dysregulation as well as the potential targets available for neuromodulation-based emotion therapeutics. This work adds to this evidence by testing the distribution of neural representations underlying the affective dimensions of valence and arousal using representational models that vary in both the degree and the nature of their distribution. We used multi-voxel pattern classification (MVPC) to identify whole-brain patterns of functional magnetic resonance imaging (fMRI)-derived neural activations that reliably predicted dimensional properties of affect (valence and arousal) for visual stimuli viewed by a normative sample (n = 32) of demographically diverse, healthy adults. Inter-subject leave-one-out cross-validation showed whole-brain MVPC significantly predicted (p < 0.001) binarized normative ratings of valence (positive vs. negative, 59% accuracy) and arousal (high vs. low, 56% accuracy). We also conducted group-level univariate general linear modeling (GLM) analyses to identify brain regions whose response significantly differed for the contrasts of positive versus negative valence or high versus low arousal. Multivoxel pattern classifiers using voxels drawn from all identified regions of interest (all-ROIs) exhibited mixed performance; arousal was predicted significantly better than chance but worse than the whole-brain classifier, whereas valence was not predicted significantly better than chance. Multivoxel classifiers derived using individual ROIs generally performed no better than chance. Although performance of the all-ROI classifier improved with larger ROIs (generated by relaxing the clustering threshold), performance was still poorer than the whole-brain classifier. These findings support a highly distributed model of neural processing for the affective dimensions of valence and arousal. Finally, joint error analyses of the MVPC hyperplanes encoding valence and arousal identified regions within the dimensional affect space where multivoxel classifiers exhibited the greatest difficulty encoding brain states – specifically, stimuli of moderate arousal and high or low valence. In conclusion, we highlight new directions for characterizing affective processing for mechanistic and therapeutic applications in affective neuroscience. PMID:28959198

  15. Neural integration underlying a time-compensated sun compass in the migratory monarch butterfly

    PubMed Central

    Shlizerman, Eli; Phillips-Portillo, James; Reppert, Steven M.

    2016-01-01

    Migrating Eastern North American monarch butterflies use a time-compensated sun compass to adjust their flight to the southwest direction. While the antennal genetic circadian clock and the azimuth of the sun are instrumental for proper function of the compass, it is unclear how these signals are represented on a neuronal level and how they are integrated to produce flight control. To address these questions, we constructed a receptive field model of the compound eye that encodes the solar azimuth. We then derived a neural circuit model, which integrates azimuthal and circadian signals to correct flight direction. The model demonstrates an integration mechanism, which produces robust trajectories reaching the southwest regardless of the time of day and includes a configuration for remigration. Comparison of model simulations with flight trajectories of butterflies in a flight simulator shows analogous behaviors and affirms the prediction that midday is the optimal time for migratory flight. PMID:27149852

  16. Assembling old tricks for new tasks: a neural model of instructional learning and control.

    PubMed

    Huang, Tsung-Ren; Hazy, Thomas E; Herd, Seth A; O'Reilly, Randall C

    2013-06-01

    We can learn from the wisdom of others to maximize success. However, it is unclear how humans take advice to flexibly adapt behavior. On the basis of data from neuroanatomy, neurophysiology, and neuroimaging, a biologically plausible model is developed to illustrate the neural mechanisms of learning from instructions. The model consists of two complementary learning pathways. The slow-learning parietal pathway carries out simple or habitual stimulus-response (S-R) mappings, whereas the fast-learning hippocampal pathway implements novel S-R rules. Specifically, the hippocampus can rapidly encode arbitrary S-R associations, and stimulus-cued responses are later recalled into the basal ganglia-gated pFC to bias response selection in the premotor and motor cortices. The interactions between the two model learning pathways explain how instructions can override habits and how automaticity can be achieved through motor consolidation.

  17. Financial Time Series Prediction Using Spiking Neural Networks

    PubMed Central

    Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam

    2014-01-01

    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two “traditional”, rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments. PMID:25170618

  18. Prior perceptual processing enhances the effect of emotional arousal on the neural correlates of memory retrieval

    PubMed Central

    Dew, Ilana T. Z.; Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2014-01-01

    A fundamental idea in memory research is that items are more likely to be remembered if encoded with a semantic, rather than perceptual, processing strategy. Interestingly, this effect has been shown to reverse for emotionally arousing materials, such that perceptual processing enhances memory for emotional information or events. The current fMRI study investigated the neural mechanisms of this effect by testing how neural activations during emotional memory retrieval are influenced by the prior encoding strategy. Participants incidentally encoded emotional and neutral pictures under instructions to attend to either semantic or perceptual properties of each picture. Recognition memory was tested two days later. fMRI analyses yielded three main findings. First, right amygdalar activity associated with emotional memory strength was enhanced by prior perceptual processing. Second, prior perceptual processing of emotional pictures produced a stronger effect on recollection- than familiarity-related activations in the right amygdala and left hippocampus. Finally, prior perceptual processing enhanced amygdalar connectivity with regions strongly associated with retrieval success, including hippocampal/parahippocampal regions, visual cortex, and ventral parietal cortex. Taken together, the results specify how encoding orientations yield alterations in brain systems that retrieve emotional memories. PMID:24380867

  19. Cross-Cultural Differences in the Neural Correlates of Specific and General Recognition

    PubMed Central

    Paige, Laura E.; Ksander, John C.; Johndro, Hunter A.; Gutchess, Angela H.

    2017-01-01

    Research suggests that culture influences how people perceive the world, which extends to memory specificity, or how much perceptual detail is remembered. The present study investigated cross-cultural differences (Americans vs. East Asians) at the time of encoding in the neural correlates of specific vs. general memory formation. Participants encoded photos of everyday items in the scanner and 48 hours later completed a surprise recognition test. The recognition test consisted of same (i.e., previously seen in scanner), similar (i.e., same name, different features), or new photos (i.e., items not previously seen in scanner). For Americans compared to East Asians, we predicted greater activation in the hippocampus and right fusiform for specific memory at recognition, as these regions were implicated previously in encoding perceptual details. Results revealed that East Asians activated the left fusiform and left hippocampus more than Americans for specific vs. general memory. Follow-up analyses ruled out alternative explanations of retrieval difficulty and familiarity for this pattern of cross-cultural differences at encoding. Results overall suggest that culture should be considered as another individual difference that affects memory specificity and modulates neural regions underlying these processes. PMID:28256199

  20. Cross-cultural differences in the neural correlates of specific and general recognition.

    PubMed

    Paige, Laura E; Ksander, John C; Johndro, Hunter A; Gutchess, Angela H

    2017-06-01

    Research suggests that culture influences how people perceive the world, which extends to memory specificity, or how much perceptual detail is remembered. The present study investigated cross-cultural differences (Americans vs East Asians) at the time of encoding in the neural correlates of specific versus general memory formation. Participants encoded photos of everyday items in the scanner and 48 h later completed a surprise recognition test. The recognition test consisted of same (i.e., previously seen in scanner), similar (i.e., same name, different features), or new photos (i.e., items not previously seen in scanner). For Americans compared to East Asians, we predicted greater activation in the hippocampus and right fusiform for specific memory at recognition, as these regions were implicated previously in encoding perceptual details. Results revealed that East Asians activated the left fusiform and left hippocampus more than Americans for specific versus general memory. Follow-up analyses ruled out alternative explanations of retrieval difficulty and familiarity for this pattern of cross-cultural differences at encoding. Results overall suggest that culture should be considered as another individual difference that affects memory specificity and modulates neural regions underlying these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Actionability and Simulation: No Representation without Communication

    PubMed Central

    Feldman, Jerome A.

    2016-01-01

    There remains considerable controversy about how the brain operates. This review focuses on brain activity rather than just structure and on concepts of action and actionability rather than truth conditions. Neural Communication is reviewed as a crucial aspect of neural encoding. Consequently, logical inference is superseded by neural simulation. Some remaining mysteries are discussed. PMID:27725807

  2. Identifying musical pieces from fMRI data using encoding and decoding models.

    PubMed

    Hoefle, Sebastian; Engel, Annerose; Basilio, Rodrigo; Alluri, Vinoo; Toiviainen, Petri; Cagy, Maurício; Moll, Jorge

    2018-02-02

    Encoding models can reveal and decode neural representations in the visual and semantic domains. However, a thorough understanding of how distributed information in auditory cortices and temporal evolution of music contribute to model performance is still lacking in the musical domain. We measured fMRI responses during naturalistic music listening and constructed a two-stage approach that first mapped musical features in auditory cortices and then decoded novel musical pieces. We then probed the influence of stimuli duration (number of time points) and spatial extent (number of voxels) on decoding accuracy. Our approach revealed a linear increase in accuracy with duration and a point of optimal model performance for the spatial extent. We further showed that Shannon entropy is a driving factor, boosting accuracy up to 95% for music with highest information content. These findings provide key insights for future decoding and reconstruction algorithms and open new venues for possible clinical applications.

  3. Determining the Neural Substrate for Encoding a Memory of Human Pain and the Influence of Anxiety

    PubMed Central

    Kong, Yazhuo; Tracey, Irene

    2017-01-01

    To convert a painful stimulus into a briefly maintainable construct when the painful stimulus is no longer accessible is essential to guide human behavior and avoid dangerous situations. Because of the aversive nature of pain, this encoding process might be influenced by emotional aspects and could thus vary across individuals, but we have yet to understand both the basic underlying neural mechanisms as well as potential interindividual differences. Using fMRI in combination with a delayed-discrimination task in healthy volunteers of both sexes, we discovered that brain regions involved in this working memory encoding process were dissociable according to whether the to-be-remembered stimulus was painful or not, with the medial thalamus and the rostral anterior cingulate cortex encoding painful and the primary somatosensory cortex encoding nonpainful stimuli. Encoding of painful stimuli furthermore significantly enhanced functional connectivity between the thalamus and medial prefrontal cortex (mPFC). With regards to emotional aspects influencing encoding processes, we observed that more anxious participants showed significant performance advantages when encoding painful stimuli. Importantly, only during the encoding of pain, the interindividual differences in anxiety were associated with the strength of coupling between medial thalamus and mPFC, which was furthermore related to activity in the amygdala. These results indicate not only that there is a distinct signature for the encoding of a painful experience in humans, but also that this encoding process involves a strong affective component. SIGNIFICANCE STATEMENT To convert the sensation of pain into a briefly maintainable construct is essential to guide human behavior and avoid dangerous situations. Although this working memory encoding process is implicitly contained in the majority of studies, the underlying neural mechanisms remain unclear. Using fMRI in a delayed-discrimination task, we found that the encoding of pain engaged the activation of the medial thalamus and the functional connectivity between the thalamus and medial prefrontal cortex. These fMRI data were directly and indirectly related to participants' self-reported trait and state anxiety. Our findings indicate that the mechanisms responsible for the encoding of noxious stimuli differ from those for the encoding of innocuous stimuli, and that these mechanisms are shaped by an individual's anxiety levels. PMID:29097595

  4. Determining the Neural Substrate for Encoding a Memory of Human Pain and the Influence of Anxiety.

    PubMed

    Tseng, Ming-Tsung; Kong, Yazhuo; Eippert, Falk; Tracey, Irene

    2017-12-06

    To convert a painful stimulus into a briefly maintainable construct when the painful stimulus is no longer accessible is essential to guide human behavior and avoid dangerous situations. Because of the aversive nature of pain, this encoding process might be influenced by emotional aspects and could thus vary across individuals, but we have yet to understand both the basic underlying neural mechanisms as well as potential interindividual differences. Using fMRI in combination with a delayed-discrimination task in healthy volunteers of both sexes, we discovered that brain regions involved in this working memory encoding process were dissociable according to whether the to-be-remembered stimulus was painful or not, with the medial thalamus and the rostral anterior cingulate cortex encoding painful and the primary somatosensory cortex encoding nonpainful stimuli. Encoding of painful stimuli furthermore significantly enhanced functional connectivity between the thalamus and medial prefrontal cortex (mPFC). With regards to emotional aspects influencing encoding processes, we observed that more anxious participants showed significant performance advantages when encoding painful stimuli. Importantly, only during the encoding of pain, the interindividual differences in anxiety were associated with the strength of coupling between medial thalamus and mPFC, which was furthermore related to activity in the amygdala. These results indicate not only that there is a distinct signature for the encoding of a painful experience in humans, but also that this encoding process involves a strong affective component. SIGNIFICANCE STATEMENT To convert the sensation of pain into a briefly maintainable construct is essential to guide human behavior and avoid dangerous situations. Although this working memory encoding process is implicitly contained in the majority of studies, the underlying neural mechanisms remain unclear. Using fMRI in a delayed-discrimination task, we found that the encoding of pain engaged the activation of the medial thalamus and the functional connectivity between the thalamus and medial prefrontal cortex. These fMRI data were directly and indirectly related to participants' self-reported trait and state anxiety. Our findings indicate that the mechanisms responsible for the encoding of noxious stimuli differ from those for the encoding of innocuous stimuli, and that these mechanisms are shaped by an individual's anxiety levels. Copyright © 2017 Tseng et al.

  5. ANN modeling of DNA sequences: new strategies using DNA shape code.

    PubMed

    Parbhane, R V; Tambe, S S; Kulkarni, B D

    2000-09-01

    Two new encoding strategies, namely, wedge and twist codes, which are based on the DNA helical parameters, are introduced to represent DNA sequences in artificial neural network (ANN)-based modeling of biological systems. The performance of the new coding strategies has been evaluated by conducting three case studies involving mapping (modeling) and classification applications of ANNs. The proposed coding schemes have been compared rigorously and shown to outperform the existing coding strategies especially in situations wherein limited data are available for building the ANN models.

  6. Different Timescales for the Neural Coding of Consonant and Vowel Sounds

    PubMed Central

    Perez, Claudia A.; Engineer, Crystal T.; Jakkamsetti, Vikram; Carraway, Ryan S.; Perry, Matthew S.

    2013-01-01

    Psychophysical, clinical, and imaging evidence suggests that consonant and vowel sounds have distinct neural representations. This study tests the hypothesis that consonant and vowel sounds are represented on different timescales within the same population of neurons by comparing behavioral discrimination with neural discrimination based on activity recorded in rat inferior colliculus and primary auditory cortex. Performance on 9 vowel discrimination tasks was highly correlated with neural discrimination based on spike count and was not correlated when spike timing was preserved. In contrast, performance on 11 consonant discrimination tasks was highly correlated with neural discrimination when spike timing was preserved and not when spike timing was eliminated. These results suggest that in the early stages of auditory processing, spike count encodes vowel sounds and spike timing encodes consonant sounds. These distinct coding strategies likely contribute to the robust nature of speech sound representations and may help explain some aspects of developmental and acquired speech processing disorders. PMID:22426334

  7. Dissociating movement from movement timing in the rat primary motor cortex.

    PubMed

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  8. A neural mechanism for background information-gated learning based on axonal-dendritic overlaps.

    PubMed

    Mainetti, Matteo; Ascoli, Giorgio A

    2015-03-01

    Experiencing certain events triggers the acquisition of new memories. Although necessary, however, actual experience is not sufficient for memory formation. One-trial learning is also gated by knowledge of appropriate background information to make sense of the experienced occurrence. Strong neurobiological evidence suggests that long-term memory storage involves formation of new synapses. On the short time scale, this form of structural plasticity requires that the axon of the pre-synaptic neuron be physically proximal to the dendrite of the post-synaptic neuron. We surmise that such "axonal-dendritic overlap" (ADO) constitutes the neural correlate of background information-gated (BIG) learning. The hypothesis is based on a fundamental neuroanatomical constraint: an axon must pass close to the dendrites that are near other neurons it contacts. The topographic organization of the mammalian cortex ensures that nearby neurons encode related information. Using neural network simulations, we demonstrate that ADO is a suitable mechanism for BIG learning. We model knowledge as associations between terms, concepts or indivisible units of thought via directed graphs. The simplest instantiation encodes each concept by single neurons. Results are then generalized to cell assemblies. The proposed mechanism results in learning real associations better than spurious co-occurrences, providing definitive cognitive advantages.

  9. Dissociating neural variability related to stimulus quality and response times in perceptual decision-making.

    PubMed

    Bode, Stefan; Bennett, Daniel; Sewell, David K; Paton, Bryan; Egan, Gary F; Smith, Philip L; Murawski, Carsten

    2018-03-01

    According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A Neural Mechanism for Background Information-Gated Learning Based on Axonal-Dendritic Overlaps

    PubMed Central

    Mainetti, Matteo; Ascoli, Giorgio A.

    2015-01-01

    Experiencing certain events triggers the acquisition of new memories. Although necessary, however, actual experience is not sufficient for memory formation. One-trial learning is also gated by knowledge of appropriate background information to make sense of the experienced occurrence. Strong neurobiological evidence suggests that long-term memory storage involves formation of new synapses. On the short time scale, this form of structural plasticity requires that the axon of the pre-synaptic neuron be physically proximal to the dendrite of the post-synaptic neuron. We surmise that such “axonal-dendritic overlap” (ADO) constitutes the neural correlate of background information-gated (BIG) learning. The hypothesis is based on a fundamental neuroanatomical constraint: an axon must pass close to the dendrites that are near other neurons it contacts. The topographic organization of the mammalian cortex ensures that nearby neurons encode related information. Using neural network simulations, we demonstrate that ADO is a suitable mechanism for BIG learning. We model knowledge as associations between terms, concepts or indivisible units of thought via directed graphs. The simplest instantiation encodes each concept by single neurons. Results are then generalized to cell assemblies. The proposed mechanism results in learning real associations better than spurious co-occurrences, providing definitive cognitive advantages. PMID:25767887

  11. Computational neuroanatomy: ontology-based representation of neural components and connectivity

    PubMed Central

    Rubin, Daniel L; Talos, Ion-Florin; Halle, Michael; Musen, Mark A; Kikinis, Ron

    2009-01-01

    Background A critical challenge in neuroscience is organizing, managing, and accessing the explosion in neuroscientific knowledge, particularly anatomic knowledge. We believe that explicit knowledge-based approaches to make neuroscientific knowledge computationally accessible will be helpful in tackling this challenge and will enable a variety of applications exploiting this knowledge, such as surgical planning. Results We developed ontology-based models of neuroanatomy to enable symbolic lookup, logical inference and mathematical modeling of neural systems. We built a prototype model of the motor system that integrates descriptive anatomic and qualitative functional neuroanatomical knowledge. In addition to modeling normal neuroanatomy, our approach provides an explicit representation of abnormal neural connectivity in disease states, such as common movement disorders. The ontology-based representation encodes both structural and functional aspects of neuroanatomy. The ontology-based models can be evaluated computationally, enabling development of automated computer reasoning applications. Conclusion Neuroanatomical knowledge can be represented in machine-accessible format using ontologies. Computational neuroanatomical approaches such as described in this work could become a key tool in translational informatics, leading to decision support applications that inform and guide surgical planning and personalized care for neurological disease in the future. PMID:19208191

  12. Distinct medial temporal networks encode surprise during motivation by reward versus punishment

    PubMed Central

    Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison

    2016-01-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. PMID:26854903

  13. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.

    PubMed

    Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison

    2016-10-01

    Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity.

    PubMed

    Bashivan, Pouya; Bidelman, Gavin M; Yeasin, Mohammed

    2014-12-01

    We investigated the effect of memory load on encoding and maintenance of information in working memory. Electroencephalography (EEG) signals were recorded while participants performed a modified Sternberg visual memory task. Independent component analysis (ICA) was used to factorise the EEG signals into distinct temporal activations to perform spectrotemporal analysis and localisation of source activities. We found 'encoding' and 'maintenance' operations were correlated with negative and positive changes in α-band power, respectively. Transient activities were observed during encoding of information in the bilateral cuneus, precuneus, inferior parietal gyrus and fusiform gyrus, and a sustained activity in the inferior frontal gyrus. Strong correlations were also observed between changes in α-power and behavioral performance during both encoding and maintenance. Furthermore, it was also found that individuals with higher working memory capacity experienced stronger neural oscillatory responses during the encoding of visual objects into working memory. Our results suggest an interplay between two distinct neural pathways and different spatiotemporal operations during the encoding and maintenance of information which predict individual differences in working memory capacity observed at the behavioral level. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans.

    PubMed

    Kasi, Patrick; Wright, James; Khamis, Heba; Birznieks, Ingvars; van Schaik, André

    2016-01-01

    It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force's rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions--consistent with neural systems--with little computational resources. This makes it suitable for interfacing with prostheses.

  16. The Bayesian Decoding of Force Stimuli from Slowly Adapting Type I Fibers in Humans

    PubMed Central

    Wright, James; Khamis, Heba; Birznieks, Ingvars; van Schaik, André

    2016-01-01

    It is well known that signals encoded by mechanoreceptors facilitate precise object manipulation in humans. It is therefore of interest to study signals encoded by the mechanoreceptors because this will contribute further towards the understanding of fundamental sensory mechanisms that are responsible for coordinating force components during object manipulation. From a practical point of view, this may suggest strategies for designing sensory-controlled biomedical devices and robotic manipulators. We use a two-stage nonlinear decoding paradigm to reconstruct the force stimulus given signals from slowly adapting type one (SA-I) tactile afferents. First, we describe a nonhomogeneous Poisson encoding model which is a function of the force stimulus and the force’s rate of change. In the decoding phase, we use a recursive nonlinear Bayesian filter to reconstruct the force profile, given the SA-I spike patterns and parameters described by the encoding model. Under the current encoding model, the mode ratio of force to its derivative is: 1.26 to 1.02. This indicates that the force derivative contributes significantly to the rate of change to the SA-I afferent spike modulation. Furthermore, using recursive Bayesian decoding algorithms is advantageous because it can incorporate past and current information in order to make predictions—consistent with neural systems—with little computational resources. This makes it suitable for interfacing with prostheses. PMID:27077750

  17. ERPs and oscillations during encoding predict retrieval of digit memory in superior mnemonists.

    PubMed

    Pan, Yafeng; Li, Xianchun; Chen, Xi; Ku, Yixuan; Dong, Yujie; Dou, Zheng; He, Lin; Hu, Yi; Li, Weidong; Zhou, Xiaolin

    2017-10-01

    Previous studies have consistently demonstrated that superior mnemonists (SMs) outperform normal individuals in domain-specific memory tasks. However, the neural correlates of memory-related processes remain unclear. In the current EEG study, SMs and control participants performed a digit memory task during which their brain activity was recorded. Chinese SMs used a digit-image mnemonic for encoding digits, in which they associated 2-digit groups with images immediately after the presentation of each even-position digit in sequences. Behaviorally, SMs' memory of digit sequences was better than the controls'. During encoding in the study phase, SMs showed an increased right central P2 (150-250ms post onset) and a larger right posterior high-alpha (10-14Hz, 500-1720ms) oscillation on digits at even-positions compared with digits at odd-positions. Both P2 and high-alpha oscillations in the study phase co-varied with performance in the recall phase, but only in SMs, indicating that neural dynamics during encoding could predict successful retrieval of digit memory in SMs. Our findings suggest that representation of a digit sequence in SMs using mnemonics may recruit both the early-stage attention allocation process and the sustained information preservation process. This study provides evidence for the role of dynamic and efficient neural encoding processes in mnemonists. Copyright © 2017. Published by Elsevier Inc.

  18. Modular neuron-based body estimation: maintaining consistency over different limbs, modalities, and frames of reference

    PubMed Central

    Ehrenfeld, Stephan; Herbort, Oliver; Butz, Martin V.

    2013-01-01

    This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control. PMID:24191151

  19. The central role of recognition in auditory perception: a neurobiological model.

    PubMed

    McLachlan, Neil; Wilson, Sarah

    2010-01-01

    The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior colliculus neurons and regulates the encoding of the echoic trace in the thalamus. Identification involves correlation of sequential spectral slices of the stimulus-driven neural activity with stored representations in association with multimodal memories, verbal lexicons, and contextual information. Identities are then consolidated in auditory short-term memory and bound with attribute information (usually pitch, loudness, and direction) that has been integrated according to the identities' spectral properties. Attention to, or recall of, a particular identity will excite a particular sequence in the identification hierarchies and so lead to modulation of thalamus and inferior colliculus neural spectrotemporal response fields. This operates as an adaptive filter for identities, or their attributes, and explains many puzzling human auditory behaviors, such as the cocktail party effect, selective attention, and continuity illusions.

  20. Efficient Training of Supervised Spiking Neural Network via Accurate Synaptic-Efficiency Adjustment Method.

    PubMed

    Xie, Xiurui; Qu, Hong; Yi, Zhang; Kurths, Jurgen

    2017-06-01

    The spiking neural network (SNN) is the third generation of neural networks and performs remarkably well in cognitive tasks, such as pattern recognition. The temporal neural encode mechanism found in biological hippocampus enables SNN to possess more powerful computation capability than networks with other encoding schemes. However, this temporal encoding approach requires neurons to process information serially on time, which reduces learning efficiency significantly. To keep the powerful computation capability of the temporal encoding mechanism and to overcome its low efficiency in the training of SNNs, a new training algorithm, the accurate synaptic-efficiency adjustment method is proposed in this paper. Inspired by the selective attention mechanism of the primate visual system, our algorithm selects only the target spike time as attention areas, and ignores voltage states of the untarget ones, resulting in a significant reduction of training time. Besides, our algorithm employs a cost function based on the voltage difference between the potential of the output neuron and the firing threshold of the SNN, instead of the traditional precise firing time distance. A normalized spike-timing-dependent-plasticity learning window is applied to assigning this error to different synapses for instructing their training. Comprehensive simulations are conducted to investigate the learning properties of our algorithm, with input neurons emitting both single spike and multiple spikes. Simulation results indicate that our algorithm possesses higher learning performance than the existing other methods and achieves the state-of-the-art efficiency in the training of SNN.

  1. Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding

    PubMed Central

    Resnik, Andrey; Celikel, Tansu; Englitz, Bernhard

    2016-01-01

    Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information. PMID:27304526

  2. Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding.

    PubMed

    Huang, Chao; Resnik, Andrey; Celikel, Tansu; Englitz, Bernhard

    2016-06-01

    Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information.

  3. Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity

    PubMed Central

    Waddington, Amelia; Appleby, Peter A.; De Kamps, Marc; Cohen, Netta

    2012-01-01

    Synfire chains have long been proposed to generate precisely timed sequences of neural activity. Such activity has been linked to numerous neural functions including sensory encoding, cognitive and motor responses. In particular, it has been argued that synfire chains underlie the precise spatiotemporal firing patterns that control song production in a variety of songbirds. Previous studies have suggested that the development of synfire chains requires either initial sparse connectivity or strong topological constraints, in addition to any synaptic learning rules. Here, we show that this necessity can be removed by using a previously reported but hitherto unconsidered spike-timing-dependent plasticity (STDP) rule and activity-dependent excitability. Under this rule the network develops stable synfire chains that possess a non-trivial, scalable multi-layer structure, in which relative layer sizes appear to follow a universal function. Using computational modeling and a coarse grained random walk model, we demonstrate the role of the STDP rule in growing, molding and stabilizing the chain, and link model parameters to the resulting structure. PMID:23162457

  4. A Unified Model of Heading and Path Perception in Primate MSTd

    PubMed Central

    Layton, Oliver W.; Browning, N. Andrew

    2014-01-01

    Self-motion, steering, and obstacle avoidance during navigation in the real world require humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature, which humans accurately perceive and is critical to everyday locomotion. In primates, including humans, dorsal medial superior temporal area (MSTd) has been implicated in heading perception. However, the majority of MSTd neurons respond optimally to spiral patterns, rather than to the radial expansion patterns associated with heading. No existing theory of curved path perception explains the neural mechanisms by which humans accurately assess path and no functional role for spiral-tuned cells has yet been proposed. Here we present a computational model that demonstrates how the continuum of observed cells (radial to circular) in MSTd can simultaneously code curvature and heading across the neural population. Curvature is encoded through the spirality of the most active cell, and heading is encoded through the visuotopic location of the center of the most active cell's receptive field. Model curvature and heading errors fit those made by humans. Our model challenges the view that the function of MSTd is heading estimation, based on our analysis we claim that it is primarily concerned with trajectory estimation and the simultaneous representation of both curvature and heading. In our model, temporal dynamics afford time-history in the neural representation of optic flow, which may modulate its structure. This has far-reaching implications for the interpretation of studies that assume that optic flow is, and should be, represented as an instantaneous vector field. Our results suggest that spiral motion patterns that emerge in spatio-temporal optic flow are essential for guiding self-motion along complex trajectories, and that cells in MSTd are specifically tuned to extract complex trajectory estimation from flow. PMID:24586130

  5. Neural interface methods and apparatus to provide artificial sensory capabilities to a subject

    DOEpatents

    Buerger, Stephen P.; Olsson, III, Roy H.; Wojciechowski, Kenneth E.; Novick, David K.; Kholwadwala, Deepesh K.

    2017-01-24

    Embodiments of neural interfaces according to the present invention comprise sensor modules for sensing environmental attributes beyond the natural sensory capability of a subject, and communicating the attributes wirelessly to an external (ex-vivo) portable module attached to the subject. The ex-vivo module encodes and communicates the attributes via a transcutaneous inductively coupled link to an internal (in-vivo) module implanted within the subject. The in-vivo module converts the attribute information into electrical neural stimuli that are delivered to a peripheral nerve bundle within the subject, via an implanted electrode. Methods and apparatus according to the invention incorporate implantable batteries to power the in-vivo module allowing for transcutaneous bidirectional communication of low voltage (e.g. on the order of 5 volts) encoded signals as stimuli commands and neural responses, in a robust, low-error rate, communication channel with minimal effects to the subjects' skin.

  6. A neural circuit encoding sexual preference in humans

    PubMed Central

    Poeppl, Timm B.; Langguth, Berthold; Rupprecht, Rainer; Laird, Angela R; Eickhoff, Simon B.

    2016-01-01

    Sexual preference determines mate choice for reproduction and hence guarantees conservation of species in mammals. Despite this fundamental role in human behavior, current knowledge on its target-specific neurofunctional substrate is based on lesion studies and therefore limited. We used meta-analytic remodeling of neuroimaging data from 364 human subjects with diverse sexual interests during sexual stimulation to quantify neural regions associated with sexual preference manipulations. We found that sexual preference is encoded by four phylogenetically old, subcortical brain structures. More specifically, sexual preference is controlled by the anterior and preoptic area of the hypothalamus, the anterior and mediodorsal thalamus, the septal area, and the perirhinal parahippocampus including the dentate gyrus. In contrast, sexual non-preference is regulated by the substantia innominata. We anticipate the identification of a core neural circuit for sexual preferences to be a starting point for further sophisticated investigations into the neural principles of sexual behavior and particularly of its aberrations. PMID:27339689

  7. The Influence of Music on Prefrontal Cortex during Episodic Encoding and Retrieval of Verbal Information: A Multichannel fNIRS Study

    PubMed Central

    Ferreri, Laura; Bigand, Emmanuel; Bard, Patrick; Bugaiska, Aurélia

    2015-01-01

    Music can be thought of as a complex stimulus able to enrich the encoding of an event thus boosting its subsequent retrieval. However, several findings suggest that music can also interfere with memory performance. A better understanding of the behavioral and neural processes involved can substantially improve knowledge and shed new light on the most efficient music-based interventions. Based on fNIRS studies on music, episodic encoding, and the dorsolateral prefrontal cortex (PFC), this work aims to extend previous findings by monitoring the entire lateral PFC during both encoding and retrieval of verbal material. Nineteen participants were asked to encode lists of words presented with either background music or silence and subsequently tested during a free recall task. Meanwhile, their PFC was monitored using a 48-channel fNIRS system. Behavioral results showed greater chunking of words under the music condition, suggesting the employment of associative strategies for items encoded with music. fNIRS results showed that music provided a less demanding way of modulating both episodic encoding and retrieval, with a general prefrontal decreased activity under the music versus silence condition. This suggests that music-related memory processes rely on specific neural mechanisms and that music can positively influence both episodic encoding and retrieval of verbal information. PMID:26508813

  8. The Influence of Music on Prefrontal Cortex during Episodic Encoding and Retrieval of Verbal Information: A Multichannel fNIRS Study.

    PubMed

    Ferreri, Laura; Bigand, Emmanuel; Bard, Patrick; Bugaiska, Aurélia

    2015-01-01

    Music can be thought of as a complex stimulus able to enrich the encoding of an event thus boosting its subsequent retrieval. However, several findings suggest that music can also interfere with memory performance. A better understanding of the behavioral and neural processes involved can substantially improve knowledge and shed new light on the most efficient music-based interventions. Based on fNIRS studies on music, episodic encoding, and the dorsolateral prefrontal cortex (PFC), this work aims to extend previous findings by monitoring the entire lateral PFC during both encoding and retrieval of verbal material. Nineteen participants were asked to encode lists of words presented with either background music or silence and subsequently tested during a free recall task. Meanwhile, their PFC was monitored using a 48-channel fNIRS system. Behavioral results showed greater chunking of words under the music condition, suggesting the employment of associative strategies for items encoded with music. fNIRS results showed that music provided a less demanding way of modulating both episodic encoding and retrieval, with a general prefrontal decreased activity under the music versus silence condition. This suggests that music-related memory processes rely on specific neural mechanisms and that music can positively influence both episodic encoding and retrieval of verbal information.

  9. Center for Neural Engineering: applications of pulse-coupled neural networks

    NASA Astrophysics Data System (ADS)

    Malkani, Mohan; Bodruzzaman, Mohammad; Johnson, John L.; Davis, Joel

    1999-03-01

    Pulsed-Coupled Neural Network (PCNN) is an oscillatory model neural network where grouping of cells and grouping among the groups that form the output time series (number of cells that fires in each input presentation also called `icon'). This is based on the synchronicity of oscillations. Recent work by Johnson and others demonstrated the functional capabilities of networks containing such elements for invariant feature extraction using intensity maps. PCNN thus presents itself as a more biologically plausible model with solid functional potential. This paper will present the summary of several projects and their results where we successfully applied PCNN. In project one, the PCNN was applied for object recognition and classification through a robotic vision system. The features (icons) generated by the PCNN were then fed into a feedforward neural network for classification. In project two, we developed techniques for sensory data fusion. The PCNN algorithm was implemented and tested on a B14 mobile robot. The PCNN-based features were extracted from the images taken from the robot vision system and used in conjunction with the map generated by data fusion of the sonar and wheel encoder data for the navigation of the mobile robot. In our third project, we applied the PCNN for speaker recognition. The spectrogram image of speech signals are fed into the PCNN to produce invariant feature icons which are then fed into a feedforward neural network for speaker identification.

  10. The neural basis of episodic memory: evidence from functional neuroimaging.

    PubMed Central

    Rugg, Michael D; Otten, Leun J; Henson, Richard N A

    2002-01-01

    We review some of our recent research using functional neuroimaging to investigate neural activity supporting the encoding and retrieval of episodic memories, that is, memories for unique events. Findings from studies of encoding indicate that, at the cortical level, the regions responsible for the effective encoding of a stimulus event as an episodic memory include some of the regions that are also engaged to process the event 'online'. Thus, it appears that there is no single cortical site or circuit responsible for episodic encoding. The results of retrieval studies indicate that successful recollection of episodic information is associated with activation of lateral parietal cortex, along with more variable patterns of activity in dorsolateral and anterior prefrontal cortex. Whereas parietal regions may play a part in the representation of retrieved information, prefrontal areas appear to support processes that act on the products of retrieval to align behaviour with the demands of the retrieval task. PMID:12217177

  11. Information recall using relative spike timing in a spiking neural network.

    PubMed

    Sterne, Philip

    2012-08-01

    We present a neural network that is capable of completing and correcting a spiking pattern given only a partial, noisy version. It operates in continuous time and represents information using the relative timing of individual spikes. The network is capable of correcting and recalling multiple patterns simultaneously. We analyze the network's performance in terms of information recall. We explore two measures of the capacity of the network: one that values the accurate recall of individual spike times and another that values only the presence or absence of complete patterns. Both measures of information are found to scale linearly in both the number of neurons and the period of the patterns, suggesting these are natural measures of network information. We show a smooth transition from encodings that provide precise spike times to flexible encodings that can encode many scenes. This makes it plausible that many diverse tasks could be learned with such an encoding.

  12. An Information Theoretic Characterisation of Auditory Encoding

    PubMed Central

    Overath, Tobias; Cusack, Rhodri; Kumar, Sukhbinder; von Kriegstein, Katharina; Warren, Jason D; Grube, Manon; Carlyon, Robert P; Griffiths, Timothy D

    2007-01-01

    The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content. PMID:17958472

  13. Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing

    NASA Astrophysics Data System (ADS)

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2013-12-01

    Objective. Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s, ageing and dementia resulting from impaired hippocampal function in the medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach. NHPs trained to perform a short-term delayed match-to-sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main results. The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for the successful encoding of sample phase information on more difficult DMS trials. This was validated by the delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the sample phase which facilitated task performance in the subsequent, delayed match phase, on difficult trials that required more precise encoding of sample information. Significance. These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain.

  14. Facilitation of Memory Encoding in Primate Hippocampus by a Neuroprosthesis that Promotes Task Specific Neural Firing

    PubMed Central

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2014-01-01

    Objective Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s’, aging and dementia resulting from impaired hippocampal function in medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach NHPs trained to perform a short-term delayed match to sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main Results The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for successful encoding of Sample phase information on more difficult DMS trials. This was validated by delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the Sample phase which facilitated task performance in the subsequent delayed Match phase on difficult trials that required more precise encoding of Sample information. Significance These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain. PMID:24216292

  15. Smelling time: a neural basis for olfactory scene analysis

    PubMed Central

    Ache, Barry W.; Hein, Andrew M.; Bobkov, Yuriy V.; Principe, Jose C.

    2016-01-01

    Behavioral evidence from phylogenetically diverse animals and humans suggests that olfaction could be much more involved in interpreting space and time than heretofore imagined by extracting temporal information inherent in the olfactory signal. If this is the case, the olfactory system must have neural mechanisms capable of encoding time at intervals relevant to the turbulent odor world in which many animals live. We review evidence that animals can use populations of rhythmically active or ‘bursting’ olfactory receptor neurons (bORNs) to extract and encode temporal information inherent in natural olfactory signals. We postulate that bORNs represent an unsuspected neural mechanism through which time can be accurately measured, and that ‘smelling time’ completes the requirements for true olfactory scene analysis. PMID:27594700

  16. Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer's disease mice.

    PubMed

    Perusini, Jennifer N; Cajigas, Stephanie A; Cohensedgh, Omid; Lim, Sean C; Pavlova, Ina P; Donaldson, Zoe R; Denny, Christine A

    2017-10-01

    Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. APPswe/PS1dE9 (APP/PS1) mice have been developed as an AD model and are characterized by plaque formation at 4-6 months of age. Here, we sought to better understand AD-related cognitive decline by characterizing various types of memory. In order to better understand how memory declines with AD, APP/PS1 mice were bred with ArcCreER T2 mice. In this line, neural ensembles activated during memory encoding can be indelibly tagged and directly compared with neural ensembles activated during memory retrieval (i.e., memory traces/engrams). We first administered a battery of tests examining depressive- and anxiety-like behaviors, as well as spatial, social, and cognitive memory to APP/PS1 × ArcCreER T2 × channelrhodopsin (ChR2)-enhanced yellow fluorescent protein (EYFP) mice. Dentate gyrus (DG) neural ensembles were then optogenetically stimulated in these mice to improve memory impairment. AD mice had the most extensive differences in fear memory, as assessed by contextual fear conditioning (CFC), which was accompanied by impaired DG memory traces. Optogenetic stimulation of DG neural ensembles representing a CFC memory increased memory retrieval in the appropriate context in AD mice when compared with control (Ctrl) mice. Moreover, optogenetic stimulation facilitated reactivation of the neural ensembles that were previously activated during memory encoding. These data suggest that activating previously learned DG memory traces can rescue cognitive impairments and point to DG manipulation as a potential target to treat memory loss commonly seen in AD. © 2017 Wiley Periodicals, Inc.

  17. The neural representation of social networks.

    PubMed

    Weaverdyck, Miriam E; Parkinson, Carolyn

    2018-05-24

    The computational demands associated with navigating large, complexly bonded social groups are thought to have significantly shaped human brain evolution. Yet, research on social network representation and cognitive neuroscience have progressed largely independently. Thus, little is known about how the human brain encodes the structure of the social networks in which it is embedded. This review highlights recent work seeking to bridge this gap in understanding. While the majority of research linking social network analysis and neuroimaging has focused on relating neuroanatomy to social network size, researchers have begun to define the neural architecture that encodes social network structure, cognitive and behavioral consequences of encoding this information, and individual differences in how people represent the structure of their social world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Neural Correlates of Encoding Predict Infants' Memory in the Paired-Comparison Procedure

    ERIC Educational Resources Information Center

    Snyder, Kelly A.

    2010-01-01

    The present study used event-related potentials (ERPs) to monitor infant brain activity during the initial encoding of a previously novel visual stimulus, and examined whether ERP measures of encoding predicted infants' subsequent performance on a visual memory task (i.e., the paired-comparison task). A late slow wave component of the ERP measured…

  19. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.

    PubMed

    Di Pierro, Michele; Cheng, Ryan R; Lieberman Aiden, Erez; Wolynes, Peter G; Onuchic, José N

    2017-11-14

    Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible. Copyright © 2017 the Author(s). Published by PNAS.

  20. Probabilistic vs. non-probabilistic approaches to the neurobiology of perceptual decision-making

    PubMed Central

    Drugowitsch, Jan; Pouget, Alexandre

    2012-01-01

    Optimal binary perceptual decision making requires accumulation of evidence in the form of a probability distribution that specifies the probability of the choices being correct given the evidence so far. Reward rates can then be maximized by stopping the accumulation when the confidence about either option reaches a threshold. Behavioral and neuronal evidence suggests that humans and animals follow such a probabilitistic decision strategy, although its neural implementation has yet to be fully characterized. Here we show that that diffusion decision models and attractor network models provide an approximation to the optimal strategy only under certain circumstances. In particular, neither model type is sufficiently flexible to encode the reliability of both the momentary and the accumulated evidence, which is a pre-requisite to accumulate evidence of time-varying reliability. Probabilistic population codes, in contrast, can encode these quantities and, as a consequence, have the potential to implement the optimal strategy accurately. PMID:22884815

  1. Intrusive Memories of Distressing Information: An fMRI Study

    PubMed Central

    Battaglini, Eva; Liddell, Belinda; Das, Pritha; Malhi, Gin; Felmingham, Kim

    2016-01-01

    Although intrusive memories are characteristic of many psychological disorders, the neurobiological underpinning of these involuntary recollections are largely unknown. In this study we used functional magentic resonance imaging (fMRI) to identify the neural networks associated with encoding of negative stimuli that are subsequently experienced as intrusive memories. Healthy partipants (N = 42) viewed negative and neutral images during a visual/verbal processing task in an fMRI context. Two days later they were assessed on the Impact of Event Scale for occurrence of intrusive memories of the encoded images. A sub-group of participants who reported significant intrusions (n = 13) demonstrated stronger activation in the amygdala, bilateral ACC and parahippocampal gyrus during verbal encoding relative to a group who reported no intrusions (n = 13). Within-group analyses also revealed that the high intrusion group showed greater activity in the dorsomedial (dmPFC) and dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus and occipital regions during negative verbal processing compared to neutral verbal processing. These results do not accord with models of intrusions that emphasise visual processing of information at encoding but are consistent with models that highlight the role of inhibitory and suppression processes in the formation of subsequent intrusive memories. PMID:27685784

  2. Measuring Fisher Information Accurately in Correlated Neural Populations

    PubMed Central

    Kohn, Adam; Pouget, Alexandre

    2015-01-01

    Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively. PMID:26030735

  3. Encoding-related brain activity dissociates between the recollective processes underlying successful recall and recognition: a subsequent-memory study.

    PubMed

    Sadeh, Talya; Maril, Anat; Goshen-Gottstein, Yonatan

    2012-07-01

    The subsequent-memory (SM) paradigm uncovers brain mechanisms that are associated with mnemonic activity during encoding by measuring participants' neural activity during encoding and classifying the encoding trials according to performance in the subsequent retrieval phase. The majority of these studies have converged on the notion that the mechanism supporting recognition is mediated by familiarity and recollection. The process of recollection is often assumed to be a recall-like process, implying that the active search for the memory trace is similar, if not identical, for recall and recognition. Here we challenge this assumption and hypothesize - based on previous findings obtained in our lab - that the recollective processes underlying recall and recognition might show dissociative patterns of encoding-related brain activity. To this end, our design controlled for familiarity, thereby focusing on contextual, recollective processes. We found evidence for dissociative neurocognitive encoding mechanisms supporting subsequent-recall and subsequent-recognition. Specifically, the contrast of subsequent-recognition versus subsequent-recall revealed activation in the Parahippocampal cortex (PHc) and the posterior hippocampus--regions associated with contextual processing. Implications of our findings and their relation to current cognitive models of recollection are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Emergence of neural encoding of auditory objects while listening to competing speakers

    PubMed Central

    Ding, Nai; Simon, Jonathan Z.

    2012-01-01

    A visual scene is perceived in terms of visual objects. Similar ideas have been proposed for the analogous case of auditory scene analysis, although their hypothesized neural underpinnings have not yet been established. Here, we address this question by recording from subjects selectively listening to one of two competing speakers, either of different or the same sex, using magnetoencephalography. Individual neural representations are seen for the speech of the two speakers, with each being selectively phase locked to the rhythm of the corresponding speech stream and from which can be exclusively reconstructed the temporal envelope of that speech stream. The neural representation of the attended speech dominates responses (with latency near 100 ms) in posterior auditory cortex. Furthermore, when the intensity of the attended and background speakers is separately varied over an 8-dB range, the neural representation of the attended speech adapts only to the intensity of that speaker but not to the intensity of the background speaker, suggesting an object-level intensity gain control. In summary, these results indicate that concurrent auditory objects, even if spectrotemporally overlapping and not resolvable at the auditory periphery, are neurally encoded individually in auditory cortex and emerge as fundamental representational units for top-down attentional modulation and bottom-up neural adaptation. PMID:22753470

  5. Stress affects the neural ensemble for integrating new information and prior knowledge.

    PubMed

    Vogel, Susanne; Kluen, Lisa Marieke; Fernández, Guillén; Schwabe, Lars

    2018-06-01

    Prior knowledge, represented as a schema, facilitates memory encoding. This schema-related learning is assumed to rely on the medial prefrontal cortex (mPFC) that rapidly integrates new information into the schema, whereas schema-incongruent or novel information is encoded by the hippocampus. Stress is a powerful modulator of prefrontal and hippocampal functioning and first studies suggest a stress-induced deficit of schema-related learning. However, the underlying neural mechanism is currently unknown. To investigate the neural basis of a stress-induced schema-related learning impairment, participants first acquired a schema. One day later, they underwent a stress induction or a control procedure before learning schema-related and novel information in the MRI scanner. In line with previous studies, learning schema-related compared to novel information activated the mPFC, angular gyrus, and precuneus. Stress, however, affected the neural ensemble activated during learning. Whereas the control group distinguished between sets of brain regions for related and novel information, stressed individuals engaged the hippocampus even when a relevant schema was present. Additionally, stressed participants displayed aberrant functional connectivity between brain regions involved in schema processing when encoding novel information. The failure to segregate functional connectivity patterns depending on the presence of prior knowledge was linked to impaired performance after stress. Our results show that stress affects the neural ensemble underlying the efficient use of schemas during learning. These findings may have relevant implications for clinical and educational settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Effects of Aging on the Neural Correlates of Successful Item and Source Memory Encoding

    PubMed Central

    Dennis, Nancy A.; Hayes, Scott M.; Prince, Steven E.; Madden, David J.; Huettel, Scott A.; Cabeza, Roberto

    2009-01-01

    To investigate the neural basis of age-related source memory (SM) deficits, young and older adults were scanned with fMRI while encoding faces, scenes, and face-scene pairs. Successful encoding activity was identified by comparing encoding activity for subsequently remembered versus forgotten items or pairs. Age deficits in successful encoding activity in hippocampal and prefrontal regions were more pronounced for SM (pairs) compared to item memory (faces and scenes). Age-related reductions were also found in regions specialized in processing faces (fusiform face area) and scenes (parahippocampal place area), but these reductions were similar for item and SM. Functional connectivity between the hippocampus and the rest of the brain was also affected by aging; whereas connections with posterior cortices were weaker in older adults, connections with anterior cortices including prefrontal regions were stronger in older adults. Taken together, the results provide a link between SM deficits in older adults and reduced recruitment of hippocampal and prefrontal regions during encoding. The functional connectivity findings are consistent with a posterior-anterior shift with aging (PASA), previously reported in several cognitive domains and linked to functional compensation. PMID:18605869

  7. Neural activation patterns of successful episodic encoding: Reorganization during childhood, maintenance in old age.

    PubMed

    Shing, Yee Lee; Brehmer, Yvonne; Heekeren, Hauke R; Bäckman, Lars; Lindenberger, Ulman

    2016-08-01

    The two-component framework of episodic memory (EM) development posits that the contributions of medial temporal lobe (MTL) and prefrontal cortex (PFC) to successful encoding differ across the lifespan. To test the framework's hypotheses, we compared subsequent memory effects (SME) of 10-12 year-old children, younger adults, and older adults using functional magnetic resonance imaging (fMRI). Memory was probed by cued recall, and SME were defined as regional activation differences during encoding between subsequently correctly recalled versus omitted items. In MTL areas, children's SME did not differ in magnitude from those of younger and older adults. In contrast, children's SME in PFC were weaker than the corresponding SME in younger and older adults, in line with the hypothesis that PFC contributes less to successful encoding in childhood. Differences in SME between younger and older adults were negligible. The present results suggest that, among individuals with high memory functioning, the neural circuitry contributing to successful episodic encoding is reorganized from middle childhood to adulthood. Successful episodic encoding in later adulthood, however, is characterized by the ability to maintain the activation patterns that emerged in young adulthood. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Common neural substrates for visual working memory and attention.

    PubMed

    Mayer, Jutta S; Bittner, Robert A; Nikolić, Danko; Bledowski, Christoph; Goebel, Rainer; Linden, David E J

    2007-06-01

    Humans are severely limited in their ability to memorize visual information over short periods of time. Selective attention has been implicated as a limiting factor. Here we used functional magnetic resonance imaging to test the hypothesis that this limitation is due to common neural resources shared by visual working memory (WM) and selective attention. We combined visual search and delayed discrimination of complex objects and independently modulated the demands on selective attention and WM encoding. Participants were presented with a search array and performed easy or difficult visual search in order to encode one or three complex objects into visual WM. Overlapping activation for attention-demanding visual search and WM encoding was observed in distributed posterior and frontal regions. In the right prefrontal cortex and bilateral insula blood oxygen-level-dependent activation additively increased with increased WM load and attentional demand. Conversely, several visual, parietal and premotor areas showed overlapping activation for the two task components and were severely reduced in their WM load response under the condition with high attentional demand. Regions in the left prefrontal cortex were selectively responsive to WM load. Areas selectively responsive to high attentional demand were found within the right prefrontal and bilateral occipital cortex. These results indicate that encoding into visual WM and visual selective attention require to a high degree access to common neural resources. We propose that competition for resources shared by visual attention and WM encoding can limit processing capabilities in distributed posterior brain regions.

  9. Mutations in CSPP1 lead to classical Joubert syndrome.

    PubMed

    Akizu, Naiara; Silhavy, Jennifer L; Rosti, Rasim Ozgur; Scott, Eric; Fenstermaker, Ali G; Schroth, Jana; Zaki, Maha S; Sanchez, Henry; Gupta, Neerja; Kabra, Madhulika; Kara, Majdi; Ben-Omran, Tawfeg; Rosti, Basak; Guemez-Gamboa, Alicia; Spencer, Emily; Pan, Roger; Cai, Na; Abdellateef, Mostafa; Gabriel, Stacey; Halbritter, Jan; Hildebrandt, Friedhelm; van Bokhoven, Hans; Gunel, Murat; Gleeson, Joseph G

    2014-01-02

    Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Dynamic Encoding of Speech Sequence Probability in Human Temporal Cortex

    PubMed Central

    Leonard, Matthew K.; Bouchard, Kristofer E.; Tang, Claire

    2015-01-01

    Sensory processing involves identification of stimulus features, but also integration with the surrounding sensory and cognitive context. Previous work in animals and humans has shown fine-scale sensitivity to context in the form of learned knowledge about the statistics of the sensory environment, including relative probabilities of discrete units in a stream of sequential auditory input. These statistics are a defining characteristic of one of the most important sequential signals humans encounter: speech. For speech, extensive exposure to a language tunes listeners to the statistics of sound sequences. To address how speech sequence statistics are neurally encoded, we used high-resolution direct cortical recordings from human lateral superior temporal cortex as subjects listened to words and nonwords with varying transition probabilities between sound segments. In addition to their sensitivity to acoustic features (including contextual features, such as coarticulation), we found that neural responses dynamically encoded the language-level probability of both preceding and upcoming speech sounds. Transition probability first negatively modulated neural responses, followed by positive modulation of neural responses, consistent with coordinated predictive and retrospective recognition processes, respectively. Furthermore, transition probability encoding was different for real English words compared with nonwords, providing evidence for online interactions with high-order linguistic knowledge. These results demonstrate that sensory processing of deeply learned stimuli involves integrating physical stimulus features with their contextual sequential structure. Despite not being consciously aware of phoneme sequence statistics, listeners use this information to process spoken input and to link low-level acoustic representations with linguistic information about word identity and meaning. PMID:25948269

  11. Neural correlates of encoding processes predicting subsequent cued recall and source memory.

    PubMed

    Angel, Lucie; Isingrini, Michel; Bouazzaoui, Badiâa; Fay, Séverine

    2013-03-06

    In this experiment, event-related potentials were used to examine whether the neural correlates of encoding processes predicting subsequent successful recall differed from those predicting successful source memory retrieval. During encoding, participants studied lists of words and were instructed to memorize each word and the list in which it occurred. At test, they had to complete stems (the first four letters) with a studied word and then make a judgment of the initial temporal context (i.e. list). Event-related potentials recorded during encoding were segregated according to subsequent memory performance to examine subsequent memory effects (SMEs) reflecting successful cued recall (cued recall SME) and successful source retrieval (source memory SME). Data showed a cued recall SME on parietal electrode sites from 400 to 1200 ms and a late inversed cued recall SME on frontal sites in the 1200-1400 ms period. Moreover, a source memory SME was reported from 400 to 1400 ms on frontal areas. These findings indicate that patterns of encoding-related activity predicting successful recall and source memory are clearly dissociated.

  12. Discrete-state phasor neural networks

    NASA Astrophysics Data System (ADS)

    Noest, André J.

    1988-08-01

    An associative memory network with local variables assuming one of q equidistant positions on the unit circle (q-state phasors) is introduced, and its recall behavior is solved exactly for any q when the interactions are sparse and asymmetric. Such models can describe natural or artifical networks of (neuro-)biological, chemical, or electronic limit-cycle oscillators with q-fold instead of circular symmetry, or similar optical computing devices using a phase-encoded data representation.

  13. Real-time modeling of primitive environments through wavelet sensors and Hebbian learning

    NASA Astrophysics Data System (ADS)

    Vaccaro, James M.; Yaworsky, Paul S.

    1999-06-01

    Modeling the world through sensory input necessarily provides a unique perspective for the observer. Given a limited perspective, objects and events cannot always be encoded precisely but must involve crude, quick approximations to deal with sensory information in a real- time manner. As an example, when avoiding an oncoming car, a pedestrian needs to identify the fact that a car is approaching before ascertaining the model or color of the vehicle. In our methodology, we use wavelet-based sensors with self-organized learning to encode basic sensory information in real-time. The wavelet-based sensors provide necessary transformations while a rank-based Hebbian learning scheme encodes a self-organized environment through translation, scale and orientation invariant sensors. Such a self-organized environment is made possible by combining wavelet sets which are orthonormal, log-scale with linear orientation and have automatically generated membership functions. In earlier work we used Gabor wavelet filters, rank-based Hebbian learning and an exponential modulation function to encode textural information from images. Many different types of modulation are possible, but based on biological findings the exponential modulation function provided a good approximation of first spike coding of `integrate and fire' neurons. These types of Hebbian encoding schemes (e.g., exponential modulation, etc.) are useful for quick response and learning, provide several advantages over contemporary neural network learning approaches, and have been found to quantize data nonlinearly. By combining wavelets with Hebbian learning we can provide a real-time front-end for modeling an intelligent process, such as the autonomous control of agents in a simulated environment.

  14. Gamma Oscillations of Spiking Neural Populations Enhance Signal Discrimination

    PubMed Central

    Masuda, Naoki; Doiron, Brent

    2007-01-01

    Selective attention is an important filter for complex environments where distractions compete with signals. Attention increases both the gamma-band power of cortical local field potentials and the spike-field coherence within the receptive field of an attended object. However, the mechanisms by which gamma-band activity enhances, if at all, the encoding of input signals are not well understood. We propose that gamma oscillations induce binomial-like spike-count statistics across noisy neural populations. Using simplified models of spiking neurons, we show how the discrimination of static signals based on the population spike-count response is improved with gamma induced binomial statistics. These results give an important mechanistic link between the neural correlates of attention and the discrimination tasks where attention is known to enhance performance. Further, they show how a rhythmicity of spike responses can enhance coding schemes that are not temporally sensitive. PMID:18052541

  15. Neural representation of orientation relative to gravity in the macaque cerebellum

    PubMed Central

    Laurens, Jean; Meng, Hui; Angelaki, Dora E.

    2013-01-01

    Summary A fundamental challenge for maintaining spatial orientation and interacting with the world is knowledge of our orientation relative to gravity, i.e. tilt. Sensing gravity is complicated because of Einstein’s equivalence principle, where gravitational and translational accelerations are physically indistinguishable. Theory has proposed that this ambiguity is solved by tracking head tilt through multisensory integration. Here we identify a group of Purkinje cells in the caudal cerebellar vermis with responses that reflect an estimate of head tilt. These tilt-selective cells are complementary to translation-selective Purkinje cells, such that their population activities sum to the net gravito-inertial acceleration encoded by the otolith organs, as predicted by theory. These findings reflect the remarkable ability of the cerebellum for neural computation and provide novel quantitative evidence for a neural representation of gravity, whose calculation relies on long-postulated theoretical concepts such as internal models and Bayesian priors. PMID:24360549

  16. Hippocampal-cortical interaction in decision making

    PubMed Central

    Yu, Jai Y.; Frank, Loren M.

    2014-01-01

    When making a decision it is often necessary to consider the available alternatives in order to choose the most appropriate option. This deliberative process, where the pros and cons of each option are considered, relies on memories of past actions and outcomes. The hippocampus and prefrontal cortex are required for memory encoding, memory retrieval and decision making, but it is unclear how these areas support deliberation. Here we examine the potential neural substrates of these processes in the rat. The rat is a powerful model to investigate the network mechanisms underlying deliberation in the mammalian brain given the anatomical and functional conservation of its hippocampus and prefrontal cortex to other mammalian systems. Importantly, it is amenable to large scale neural recording while performing laboratory tasks that exploit its natural decisionmaking behavior. Focusing on findings in the rat, we discuss how hippocampal-cortical interactions could provide a neural substrate for deliberative decision making. PMID:24530374

  17. The neural correlates of self-referential memory encoding and retrieval in schizophrenia.

    PubMed

    Jimenez, Amy M; Lee, Junghee; Wynn, Jonathan K; Green, Michael F

    2018-01-31

    Enhanced memory for self-oriented information is known as the self-referential memory (SRM) effect. fMRI studies of the SRM effect have focused almost exclusively on encoding, revealing selective engagement of the medial prefrontal cortex (mPFC) during "self" relative to other processing conditions. Other critical areas for self-processing include ventrolateral prefrontal cortex (vlPFC), temporo-parietal junction (TPJ) and posterior cingulate/precuneus (PCC/PC). Previous behavioral studies show that individuals with schizophrenia fail to benefit from this memory boost. However, the neural correlates of this deficit, at either encoding or retrieval, are unknown. Twenty individuals with schizophrenia and 16 healthy controls completed an event-related fMRI SRM paradigm. During encoding, trait adjectives were judged in terms of structural features ("case" condition), social desirability ("other" condition), or as self-referential ("self" condition). Participants then completed an unexpected recognition test (retrieval phase). We examined BOLD activation during both encoding and retrieval within mPFC, vlPFC, TPJ, and PCC/PC regions-of-interest (ROIs). During encoding, fMRI data indicated both groups had greater activation during the "self" relative to the "other" condition across ROIs. Controls showed this primarily in mPFC whereas patients showed this in PCC/PC. During retrieval, fMRI data indicated controls showed differentiation across ROIs between "self" and "other" conditions, but patients did not. Results suggest regional differences in the neural processing of self-referential information in individuals with schizophrenia, perhaps because representation of the self is not as well established in patients relative to controls. The current study presents novel findings that add to the literature implicating impaired self-oriented processing in schizophrenia. Published by Elsevier Ltd.

  18. Component Neural Systems for the Creation of Emotional Memories during Free Viewing of a Complex, Real-World Event

    PubMed Central

    Botzung, Anne; LaBar, Kevin S.; Kragel, Philip; Miles, Amanda; Rubin, David C.

    2010-01-01

    To investigate the neural systems that contribute to the formation of complex, self-relevant emotional memories, dedicated fans of rival college basketball teams watched a competitive game while undergoing functional magnetic resonance imaging (fMRI). During a subsequent recognition memory task, participants were shown video clips depicting plays of the game, stemming either from previously-viewed game segments (targets) or from non-viewed portions of the same game (foils). After an old–new judgment, participants provided emotional valence and intensity ratings of the clips. A data driven approach was first used to decompose the fMRI signal acquired during free viewing of the game into spatially independent components. Correlations were then calculated between the identified components and post-scanning emotion ratings for successfully encoded targets. Two components were correlated with intensity ratings, including temporal lobe regions implicated in memory and emotional functions, such as the hippocampus and amygdala, as well as a midline fronto-cingulo-parietal network implicated in social cognition and self-relevant processing. These data were supported by a general linear model analysis, which revealed additional valence effects in fronto-striatal-insular regions when plays were divided into positive and negative events according to the fan's perspective. Overall, these findings contribute to our understanding of how emotional factors impact distributed neural systems to successfully encode dynamic, personally-relevant event sequences. PMID:20508750

  19. Active touch and self-motion encoding by Merkel cell-associated afferents

    PubMed Central

    Severson, Kyle S.; Xu, Duo; Van de Loo, Margaret; Bai, Ling; Ginty, David D.; O’Connor, Daniel H.

    2017-01-01

    Summary Touch perception depends on integrating signals from multiple types of peripheral mechanoreceptors. Merkel-cell associated afferents are thought to play a major role in form perception by encoding surface features of touched objects. However, activity of Merkel afferents during active touch has not been directly measured. Here, we show that Merkel and unidentified slowly adapting afferents in the whisker system of behaving mice respond to both self-motion and active touch. Touch responses were dominated by sensitivity to bending moment (torque) at the base of the whisker and its rate of change, and largely explained by a simple mechanical model. Self-motion responses encoded whisker position within a whisk cycle (phase), not absolute whisker angle, and arose from stresses reflecting whisker inertia and activity of specific muscles. Thus, Merkel afferents send to the brain multiplexed information about whisker position and surface features, suggesting that proprioception and touch converge at the earliest neural level. PMID:28434802

  20. Neural correlates of the spacing effect in explicit verbal semantic encoding support the deficient-processing theory.

    PubMed

    Callan, Daniel E; Schweighofer, Nicolas

    2010-04-01

    Spaced presentations of to-be-learned items during encoding leads to superior long-term retention over massed presentations. Despite over a century of research, the psychological and neural basis of this spacing effect however is still under investigation. To test the hypotheses that the spacing effect results either from reduction in encoding-related verbal maintenance rehearsal in massed relative to spaced presentations (deficient processing hypothesis) or from greater encoding-related elaborative rehearsal of relational information in spaced relative to massed presentations (encoding variability hypothesis), we designed a vocabulary learning experiment in which subjects encoded paired-associates, each composed of a known word paired with a novel word, in both spaced and massed conditions during functional magnetic resonance imaging. As expected, recall performance in delayed cued-recall tests was significantly better for spaced over massed conditions. Analysis of brain activity during encoding revealed that the left frontal operculum, known to be involved in encoding via verbal maintenance rehearsal, was associated with greater performance-related increased activity in the spaced relative to massed condition. Consistent with the deficient processing hypothesis, a significant decrease in activity with subsequent episodes of presentation was found in the frontal operculum for the massed but not the spaced condition. Our results suggest that the spacing effect is mediated by activity in the frontal operculum, presumably by encoding-related increased verbal maintenance rehearsal, which facilitates binding of phonological and word level verbal information for transfer into long-term memory. Copyright 2009 Wiley-Liss, Inc.

  1. The relationship between level of processing and hippocampal-cortical functional connectivity during episodic memory formation in humans.

    PubMed

    Schott, Björn H; Wüstenberg, Torsten; Wimber, Maria; Fenker, Daniela B; Zierhut, Kathrin C; Seidenbecher, Constanze I; Heinze, Hans-Jochen; Walter, Henrik; Düzel, Emrah; Richardson-Klavehn, Alan

    2013-02-01

    New episodic memory traces represent a record of the ongoing neocortical processing engaged during memory formation (encoding). Thus, during encoding, deep (semantic) processing typically establishes more distinctive and retrievable memory traces than does shallow (perceptual) processing, as assessed by later episodic memory tests. By contrast, the hippocampus appears to play a processing-independent role in encoding, because hippocampal lesions impair encoding regardless of level of processing. Here, we clarified the neural relationship between processing and encoding by examining hippocampal-cortical connectivity during deep and shallow encoding. Participants studied words during functional magnetic resonance imaging and freely recalled these words after distraction. Deep study processing led to better recall than shallow study processing. For both levels of processing, successful encoding elicited activations of bilateral hippocampus and left prefrontal cortex, and increased functional connectivity between left hippocampus and bilateral medial prefrontal, cingulate and extrastriate cortices. Successful encoding during deep processing was additionally associated with increased functional connectivity between left hippocampus and bilateral ventrolateral prefrontal cortex and right temporoparietal junction. In the shallow encoding condition, on the other hand, pronounced functional connectivity increases were observed between the right hippocampus and the frontoparietal attention network activated during shallow study processing. Our results further specify how the hippocampus coordinates recording of ongoing neocortical activity into long-term memory, and begin to provide a neural explanation for the typical advantage of deep over shallow study processing for later episodic memory. Copyright © 2011 Wiley Periodicals, Inc.

  2. Induced Pluripotent Stem Cells for Disease Modeling and Evaluation of Therapeutics for Niemann-Pick Disease Type A.

    PubMed

    Long, Yan; Xu, Miao; Li, Rong; Dai, Sheng; Beers, Jeanette; Chen, Guokai; Soheilian, Ferri; Baxa, Ulrich; Wang, Mengqiao; Marugan, Juan J; Muro, Silvia; Li, Zhiyuan; Brady, Roscoe; Zheng, Wei

    2016-12-01

    : Niemann-Pick disease type A (NPA) is a lysosomal storage disease caused by mutations in the SMPD1 gene that encodes acid sphingomyelinase (ASM). Deficiency in ASM function results in lysosomal accumulation of sphingomyelin and neurodegeneration. Currently, there is no effective treatment for NPA. To accelerate drug discovery for treatment of NPA, we generated induced pluripotent stem cells from two patient dermal fibroblast lines and differentiated them into neural stem cells. The NPA neural stem cells exhibit a disease phenotype of lysosomal sphingomyelin accumulation and enlarged lysosomes. By using this disease model, we also evaluated three compounds that reportedly reduced lysosomal lipid accumulation in Niemann-Pick disease type C as well as enzyme replacement therapy with ASM. We found that α-tocopherol, δ-tocopherol, hydroxypropyl-β-cyclodextrin, and ASM reduced sphingomyelin accumulation and enlarged lysosomes in NPA neural stem cells. Therefore, the NPA neural stem cells possess the characteristic NPA disease phenotype that can be ameliorated by tocopherols, cyclodextrin, and ASM. Our results demonstrate the efficacies of cyclodextrin and tocopherols in the NPA cell-based model. Our data also indicate that the NPA neural stem cells can be used as a new cell-based disease model for further study of disease pathophysiology and for high-throughput screening to identify new lead compounds for drug development. Currently, there is no effective treatment for Niemann-Pick disease type A (NPA). To accelerate drug discovery for treatment of NPA, NPA-induced pluripotent stem cells were generated from patient dermal fibroblasts and differentiated into neural stem cells. By using the differentiated NPA neuronal cells as a cell-based disease model system, α-tocopherol, δ-tocopherol, and hydroxypropyl-β-cyclodextrin significantly reduced sphingomyelin accumulation in these NPA neuronal cells. Therefore, this cell-based NPA model can be used for further study of disease pathophysiology and for high-throughput screening of compound libraries to identify lead compounds for drug development. ©AlphaMed Press.

  3. Functional neuroanatomical correlates of episodic memory impairment in early phase psychosis

    PubMed Central

    Hummer, Tom A.; Vohs, Jenifer L.; Yung, Matthew G.; Liffick, Emily; Mehdiyoun, Nicole F.; Radnovich, Alexander J.; McDonald, Brenna C.; Saykin, Andrew J.; Breier, Alan

    2015-01-01

    Studies have demonstrated that episodic memory (EM) is often preferentially disrupted in schizophrenia. The neural substrates that mediate EM impairment in this illness are not fully understood. Several functional magnetic resonance imaging (fMRI) studies have employed EM probe tasks to elucidate the neural underpinnings of impairment, though results have been inconsistent. The majority of EM imaging studies have been conducted in chronic forms of schizophrenia with relatively few studies in early phase patients. Early phase schizophrenia studies are important because they may provide information regarding when EM deficits occur and address potential confounds more frequently observed in chronic populations. In this study, we assessed brain activation during the performance of visual scene encoding and recognition fMRI tasks in patients with earlyphase psychosis (n=35) and age, sex, and race matched healthy control subjects (n = 20). Patients demonstrated significantly lower activation than controls in the right hippocampus and left fusiform gyrus during scene encoding and lower activation in the posterior cingulate, precuneus, and left middle temporal cortex during recognition of target scenes. Symptom levels were not related to the imaging findings, though better cognitive performance in patients was associated with greater right hippocampal activation during encoding. These results provide evidence of altered function in neuroanatomical circuitry subserving EM early in the course of psychotic illness, which may have implications for pathophysiological models of this illness. PMID:25749917

  4. Amygdala neural activity reflects spatial attention towards stimuli promising reward or threatening punishment

    PubMed Central

    Peck, Christopher J; Salzman, C Daniel

    2014-01-01

    Humans and other animals routinely identify and attend to sensory stimuli so as to rapidly acquire rewards or avoid aversive experiences. Emotional arousal, a process mediated by the amygdala, can enhance attention to stimuli in a non-spatial manner. However, amygdala neural activity was recently shown to encode spatial information about reward-predictive stimuli, and to correlate with spatial attention allocation. If representing the motivational significance of sensory stimuli within a spatial framework reflects a general principle of amygdala function, then spatially selective neural responses should also be elicited by sensory stimuli threatening aversive events. Recordings from amygdala neurons were therefore obtained while monkeys directed spatial attention towards stimuli promising reward or threatening punishment. Neural responses encoded spatial information similarly for stimuli associated with both valences of reinforcement, and responses reflected spatial attention allocation. The amygdala therefore may act to enhance spatial attention to sensory stimuli associated with rewarding or aversive experiences. DOI: http://dx.doi.org/10.7554/eLife.04478.001 PMID:25358090

  5. Consolidation in older adults depends upon competition between resting-state networks

    PubMed Central

    Jacobs, Heidi I. L.; Dillen, Kim N. H.; Risius, Okka; Göreci, Yasemin; Onur, Oezguer A.; Fink, Gereon R.; Kukolja, Juraj

    2015-01-01

    Memory encoding and retrieval problems are inherent to aging. To date, however, the effect of aging upon the neural correlates of forming memory traces remains poorly understood. Resting-state fMRI connectivity can be used to investigate initial consolidation. We compared within and between network connectivity differences between healthy young and older participants before encoding, after encoding and before retrieval by means of resting-state fMRI. Alterations over time in the between-network connectivity analyses correlated with retrieval performance, whereas within-network connectivity did not: a higher level of negative coupling or competition between the default mode and the executive networks during the after encoding condition was associated with increased retrieval performance in the older adults, but not in the young group. Data suggest that the effective formation of memory traces depends on an age-dependent, dynamic reorganization of the interaction between multiple, large-scale functional networks. Our findings demonstrate that a cross-network based approach can further the understanding of the neural underpinnings of aging-associated memory decline. PMID:25620930

  6. Neural Correlates of the In-Group Memory Advantage on the Encoding and Recognition of Faces

    PubMed Central

    Herzmann, Grit; Curran, Tim

    2013-01-01

    People have a memory advantage for faces that belong to the same group, for example, that attend the same university or have the same personality type. Faces from such in-group members are assumed to receive more attention during memory encoding and are therefore recognized more accurately. Here we use event-related potentials related to memory encoding and retrieval to investigate the neural correlates of the in-group memory advantage. Using the minimal group procedure, subjects were classified based on a bogus personality test as belonging to one of two personality types. While the electroencephalogram was recorded, subjects studied and recognized faces supposedly belonging to the subject’s own and the other personality type. Subjects recognized in-group faces more accurately than out-group faces but the effect size was small. Using the individual behavioral in-group memory advantage in multivariate analyses of covariance, we determined neural correlates of the in-group advantage. During memory encoding (300 to 1000 ms after stimulus onset), subjects with a high in-group memory advantage elicited more positive amplitudes for subsequently remembered in-group than out-group faces, showing that in-group faces received more attention and elicited more neural activity during initial encoding. Early during memory retrieval (300 to 500 ms), frontal brain areas were more activated for remembered in-group faces indicating an early detection of group membership. Surprisingly, the parietal old/new effect (600 to 900 ms) thought to indicate recollection processes differed between in-group and out-group faces independent from the behavioral in-group memory advantage. This finding suggests that group membership affects memory retrieval independent of memory performance. Comparisons with a previous study on the other-race effect, another memory phenomenon influenced by social classification of faces, suggested that the in-group memory advantage is dominated by top-down processing whereas the other-race effect is also influenced by extensive perceptual experience. PMID:24358226

  7. Understanding the Implications of Neural Population Activity on Behavior

    NASA Astrophysics Data System (ADS)

    Briguglio, John

    Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in frequency discrimination acuity on an individual basis by examining the Fisher information from the neural population with and without optogenetic manipulation. In the third line of work, we address the question of what a neural population should encode given that its inputs are responses from another group of neurons. Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory cortex. This work establishes and tests a variety of hypotheses that will be useful in helping to understand the relationship between neural activity and behavior as recorded neural populations continue to grow.

  8. Patterns of effective connectivity during memory encoding and retrieval differ between patients with mild cognitive impairment and healthy older adults.

    PubMed

    Hampstead, B M; Khoshnoodi, M; Yan, W; Deshpande, G; Sathian, K

    2016-01-01

    Previous research has shown that there is considerable overlap in the neural networks mediating successful memory encoding and retrieval. However, little is known about how the relevant human brain regions interact during these distinct phases of memory or how such interactions are affected by memory deficits that characterize mild cognitive impairment (MCI), a condition that often precedes dementia due to Alzheimer's disease. Here we employed multivariate Granger causality analysis using autoregressive modeling of inferred neuronal time series obtained by deconvolving the hemodynamic response function from measured blood oxygenation level-dependent (BOLD) time series data, in order to examine the effective connectivity between brain regions during successful encoding and/or retrieval of object location associations in MCI patients and comparable healthy older adults. During encoding, healthy older adults demonstrated a left hemisphere dominant pattern where the inferior frontal junction, anterior intraparietal sulcus (likely involving the parietal eye fields), and posterior cingulate cortex drove activation in most left hemisphere regions and virtually every right hemisphere region tested. These regions are part of a frontoparietal network that mediates top-down cognitive control and is implicated in successful memory formation. In contrast, in the MCI patients, the right frontal eye field drove activation in every left hemisphere region examined, suggesting reliance on more basic visual search processes. Retrieval in the healthy older adults was primarily driven by the right hippocampus with lesser contributions of the right anterior thalamic nuclei and right inferior frontal sulcus, consistent with theoretical models holding the hippocampus as critical for the successful retrieval of memories. The pattern differed in MCI patients, in whom the right inferior frontal junction and right anterior thalamus drove successful memory retrieval, reflecting the characteristic hippocampal dysfunction of these patients. These findings demonstrate that neural network interactions differ markedly between MCI patients and healthy older adults. Future efforts will investigate the impact of cognitive rehabilitation of memory on these connectivity patterns. Published by Elsevier Inc.

  9. Neural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off

    PubMed Central

    Kennerley, Steven W.; Friston, Karl; Bestmann, Sven

    2016-01-01

    Integrating costs and benefits is crucial for optimal decision-making. Although much is known about decisions that involve outcome-related costs (e.g., delay, risk), many of our choices are attached to actions and require an evaluation of the associated motor costs. Yet how the brain incorporates motor costs into choices remains largely unclear. We used human fMRI during choices involving monetary reward and physical effort to identify brain regions that serve as a choice comparator for effort-reward trade-offs. By independently varying both options' effort and reward levels, we were able to identify the neural signature of a comparator mechanism. A network involving supplementary motor area and the caudal portion of dorsal anterior cingulate cortex encoded the difference in reward (positively) and effort levels (negatively) between chosen and unchosen choice options. We next modeled effort-discounted subjective values using a novel behavioral model. This revealed that the same network of regions involving dorsal anterior cingulate cortex and supplementary motor area encoded the difference between the chosen and unchosen options' subjective values, and that activity was best described using a concave model of effort-discounting. In addition, this signal reflected how precisely value determined participants' choices. By contrast, separate signals in supplementary motor area and ventromedial prefrontal cortex correlated with participants' tendency to avoid effort and seek reward, respectively. This suggests that the critical neural signature of decision-making for choices involving motor costs is found in human cingulate cortex and not ventromedial prefrontal cortex as typically reported for outcome-based choice. Furthermore, distinct frontal circuits seem to drive behavior toward reward maximization and effort minimization. SIGNIFICANCE STATEMENT The neural processes that govern the trade-off between expected benefits and motor costs remain largely unknown. This is striking because energetic requirements play an integral role in our day-to-day choices and instrumental behavior, and a diminished willingness to exert effort is a characteristic feature of a range of neurological disorders. We use a new behavioral characterization of how humans trade off reward maximization with effort minimization to examine the neural signatures that underpin such choices, using BOLD MRI neuroimaging data. We find the critical neural signature of decision-making, a signal that reflects the comparison of value between choice options, in human cingulate cortex, whereas two distinct brain circuits drive behavior toward reward maximization or effort minimization. PMID:27683898

  10. Neural Signatures of Value Comparison in Human Cingulate Cortex during Decisions Requiring an Effort-Reward Trade-off.

    PubMed

    Klein-Flügge, Miriam C; Kennerley, Steven W; Friston, Karl; Bestmann, Sven

    2016-09-28

    Integrating costs and benefits is crucial for optimal decision-making. Although much is known about decisions that involve outcome-related costs (e.g., delay, risk), many of our choices are attached to actions and require an evaluation of the associated motor costs. Yet how the brain incorporates motor costs into choices remains largely unclear. We used human fMRI during choices involving monetary reward and physical effort to identify brain regions that serve as a choice comparator for effort-reward trade-offs. By independently varying both options' effort and reward levels, we were able to identify the neural signature of a comparator mechanism. A network involving supplementary motor area and the caudal portion of dorsal anterior cingulate cortex encoded the difference in reward (positively) and effort levels (negatively) between chosen and unchosen choice options. We next modeled effort-discounted subjective values using a novel behavioral model. This revealed that the same network of regions involving dorsal anterior cingulate cortex and supplementary motor area encoded the difference between the chosen and unchosen options' subjective values, and that activity was best described using a concave model of effort-discounting. In addition, this signal reflected how precisely value determined participants' choices. By contrast, separate signals in supplementary motor area and ventromedial prefrontal cortex correlated with participants' tendency to avoid effort and seek reward, respectively. This suggests that the critical neural signature of decision-making for choices involving motor costs is found in human cingulate cortex and not ventromedial prefrontal cortex as typically reported for outcome-based choice. Furthermore, distinct frontal circuits seem to drive behavior toward reward maximization and effort minimization. The neural processes that govern the trade-off between expected benefits and motor costs remain largely unknown. This is striking because energetic requirements play an integral role in our day-to-day choices and instrumental behavior, and a diminished willingness to exert effort is a characteristic feature of a range of neurological disorders. We use a new behavioral characterization of how humans trade off reward maximization with effort minimization to examine the neural signatures that underpin such choices, using BOLD MRI neuroimaging data. We find the critical neural signature of decision-making, a signal that reflects the comparison of value between choice options, in human cingulate cortex, whereas two distinct brain circuits drive behavior toward reward maximization or effort minimization. Copyright © 2016 Klein-Flügge et al.

  11. Comparison of Neural Networks and Tabular Nearest Neighbor Encoding for Hyperspectral Signature Classification in Unresolved Object Detection

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Ritter, G.; Key, R.

    Accurate and computationally efficient spectral signature classification is a crucial step in the nonimaging detection and recognition of spaceborne objects. In classical hyperspectral recognition applications using linear mixing models, signature classification accuracy depends on accurate spectral endmember discrimination [1]. If the endmembers cannot be classified correctly, then the signatures cannot be classified correctly, and object recognition from hyperspectral data will be inaccurate. In practice, the number of endmembers accurately classified often depends linearly on the number of inputs. This can lead to potentially severe classification errors in the presence of noise or densely interleaved signatures. In this paper, we present an comparison of emerging technologies for nonimaging spectral signature classfication based on a highly accurate, efficient search engine called Tabular Nearest Neighbor Encoding (TNE) [3,4] and a neural network technology called Morphological Neural Networks (MNNs) [5]. Based on prior results, TNE can optimize its classifier performance to track input nonergodicities, as well as yield measures of confidence or caution for evaluation of classification results. Unlike neural networks, TNE does not have a hidden intermediate data structure (e.g., the neural net weight matrix). Instead, TNE generates and exploits a user-accessible data structure called the agreement map (AM), which can be manipulated by Boolean logic operations to effect accurate classifier refinement algorithms. The open architecture and programmability of TNE's agreement map processing allows a TNE programmer or user to determine classification accuracy, as well as characterize in detail the signatures for which TNE did not obtain classification matches, and why such mis-matches occurred. In this study, we will compare TNE and MNN based endmember classification, using performance metrics such as probability of correct classification (Pd) and rate of false detections (Rfa). As proof of principle, we analyze classification of multiple closely spaced signatures from a NASA database of space material signatures. Additional analysis pertains to computational complexity and noise sensitivity, which are superior to Bayesian techniques based on classical neural networks. [1] Winter, M.E. "Fast autonomous spectral end-member determination in hyperspectral data," in Proceedings of the 13th International Conference On Applied Geologic Remote Sensing, Vancouver, B.C., Canada, pp. 337-44 (1999). [2] N. Keshava, "A survey of spectral unmixing algorithms," Lincoln Laboratory Journal 14:55-78 (2003). [3] Key, G., M.S. SCHMALZ, F.M. Caimi, and G.X. Ritter. "Performance analysis of tabular nearest neighbor encoding algorithm for joint compression and ATR", in Proceedings SPIE 3814:115-126 (1999). [4] Schmalz, M.S. and G. Key. "Algorithms for hyperspectral signature classification in unresolved object detection using tabular nearest neighbor encoding" in Proceedings of the 2007 AMOS Conference, Maui HI (2007). [5] Ritter, G.X., G. Urcid, and M.S. Schmalz. "Autonomous single-pass endmember approximation using lattice auto-associative memories", Neurocomputing (Elsevier), accepted (June 2008).

  12. Population coding in sparsely connected networks of noisy neurons.

    PubMed

    Tripp, Bryan P; Orchard, Jeff

    2012-01-01

    This study examines the relationship between population coding and spatial connection statistics in networks of noisy neurons. Encoding of sensory information in the neocortex is thought to require coordinated neural populations, because individual cortical neurons respond to a wide range of stimuli, and exhibit highly variable spiking in response to repeated stimuli. Population coding is rooted in network structure, because cortical neurons receive information only from other neurons, and because the information they encode must be decoded by other neurons, if it is to affect behavior. However, population coding theory has often ignored network structure, or assumed discrete, fully connected populations (in contrast with the sparsely connected, continuous sheet of the cortex). In this study, we modeled a sheet of cortical neurons with sparse, primarily local connections, and found that a network with this structure could encode multiple internal state variables with high signal-to-noise ratio. However, we were unable to create high-fidelity networks by instantiating connections at random according to spatial connection probabilities. In our models, high-fidelity networks required additional structure, with higher cluster factors and correlations between the inputs to nearby neurons.

  13. Cognitive architecture of perceptual organization: from neurons to gnosons.

    PubMed

    van der Helm, Peter A

    2012-02-01

    What, if anything, is cognitive architecture and how is it implemented in neural architecture? Focusing on perceptual organization, this question is addressed by way of a pluralist approach which, supported by metatheoretical considerations, combines complementary insights from representational, connectionist, and dynamic systems approaches to cognition. This pluralist approach starts from a representationally inspired model which implements the intertwined but functionally distinguishable subprocesses of feedforward feature encoding, horizontal feature binding, and recurrent feature selection. As sustained by a review of neuroscientific evidence, these are the subprocesses that are believed to take place in the visual hierarchy in the brain. Furthermore, the model employs a special form of processing, called transparallel processing, whose neural signature is proposed to be gamma-band synchronization in transient horizontal neural assemblies. In neuroscience, such assemblies are believed to mediate binding of similar features. Their formal counterparts in the model are special input-dependent distributed representations, called hyperstrings, which allow many similar features to be processed in a transparallel fashion, that is, simultaneously as if only one feature were concerned. This form of processing does justice to both the high combinatorial capacity and the high speed of the perceptual organization process. A naturally following proposal is that those temporarily synchronized neural assemblies are "gnosons", that is, constituents of flexible self-organizing cognitive architecture in between the relatively rigid level of neurons and the still elusive level of consciousness.

  14. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.

    PubMed

    Beyeler, Michael; Dutt, Nikil D; Krichmar, Jeffrey L

    2013-12-01

    Understanding how the human brain is able to efficiently perceive and understand a visual scene is still a field of ongoing research. Although many studies have focused on the design and optimization of neural networks to solve visual recognition tasks, most of them either lack neurobiologically plausible learning rules or decision-making processes. Here we present a large-scale model of a hierarchical spiking neural network (SNN) that integrates a low-level memory encoding mechanism with a higher-level decision process to perform a visual classification task in real-time. The model consists of Izhikevich neurons and conductance-based synapses for realistic approximation of neuronal dynamics, a spike-timing-dependent plasticity (STDP) synaptic learning rule with additional synaptic dynamics for memory encoding, and an accumulator model for memory retrieval and categorization. The full network, which comprised 71,026 neurons and approximately 133 million synapses, ran in real-time on a single off-the-shelf graphics processing unit (GPU). The network was constructed on a publicly available SNN simulator that supports general-purpose neuromorphic computer chips. The network achieved 92% correct classifications on MNIST in 100 rounds of random sub-sampling, which is comparable to other SNN approaches and provides a conservative and reliable performance metric. Additionally, the model correctly predicted reaction times from psychophysical experiments. Because of the scalability of the approach and its neurobiological fidelity, the current model can be extended to an efficient neuromorphic implementation that supports more generalized object recognition and decision-making architectures found in the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Social memory engram in the hippocampus.

    PubMed

    Okuyama, Teruhiro

    2018-04-01

    Social memory is one of the crucial components of episodic memories. Gregarious animals living in societies utilize social memory to exhibit the appropriate social behaviors such as aggression, avoidance, cooperative behavior, and even mating behavior. However, the neural mechanisms underlying social memory in the hippocampus remains mysterious. Here, I review some evidence from work done in rodents and primates on the brain region(s) and circuits encoding and/or retrieving social memory, as well as a storage for social memory (i.e. social memory engram neurons). Based on our recent findings that neural ensemble in ventral CA1 sub-region of the hippocampus possesses social memory engram, I would discuss the neural network for social information processing in order to encode social memory; and its evolutionary conservation between rodents and human. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  16. fMRI differences in encoding and retrieval of pictures due to encoding strategy in the elderly.

    PubMed

    Mandzia, Jennifer L; Black, Sandra E; McAndrews, Mary Pat; Grady, Cheryl; Graham, Simon

    2004-01-01

    Functional MRI (fMRI) was used to examine the neural correlates of depth of processing during encoding and retrieval of photographs in older normal volunteers (n = 12). Separate scans were run during deep (natural vs. man-made decision) and shallow (color vs. black-and-white decision) encoding and during old/new recognition of pictures initially presented in one of the two encoding conditions. A baseline condition consisting of a scrambled, color photograph was used as a contrast in each scan. Recognition accuracy was greater for the pictures on which semantic decisions were made at encoding, consistent with the expected levels of processing effect. A mixed-effects model was used to compare fMRI differences between conditions (deep-baseline vs. shallow-baseline) in both encoding and retrieval. For encoding, this contrast revealed greater activation associated with deep encoding in several areas, including the left parahippocampal gyrus (PHG), left middle temporal gyrus, and left anterior thalamus. Increased left hippocampal, right dorsolateral, and inferior frontal activations were found for recognition of items that had been presented in the deep relative to the shallow encoding condition. We speculate that the modulation of activity in these regions by the depth of processing manipulation shows that these regions support effective encoding and successful retrieval. A direct comparison between encoding and retrieval revealed greater activation during retrieval in the medial temporal (right hippocampus and bilateral PHG), anterior cingulate, and bilateral prefrontal (inferior and dorsolateral). Most notably, greater right posterior PHG was found during encoding compared to recognition. Focusing on the medial temporal lobe (MTL) region, our results suggest a greater involvement of both anterior MTL and prefrontal regions in retrieval compared to encoding. Copyright 2003 Wiley-Liss, Inc.

  17. A class of cellular automata modeling winnerless competition

    NASA Astrophysics Data System (ADS)

    Afraimovich, V.; Ordaz, F. C.; Urías, J.

    2002-06-01

    Neural units introduced by Rabinovich et al. ("Sensory coding with dynamically competitive networks," UCSD and CIT, February 1999) motivate a class of cellular automata (CA) where spatio-temporal encoding is feasible. The spatio-temporal information capacity of a CA is estimated by the information capacity of the attractor set, which happens to be finitely specified. Two-dimensional CA are studied in detail. An example is given for which the attractor is not a subshift.

  18. Muscle synergies evoked by microstimulation are preferentially encoded during behavior

    PubMed Central

    Overduin, Simon A.; d'Avella, Andrea; Carmena, Jose M.; Bizzi, Emilio

    2014-01-01

    Electrical microstimulation studies provide some of the most direct evidence for the neural representation of muscle synergies. These synergies, i.e., coordinated activations of groups of muscles, have been proposed as building blocks for the construction of motor behaviors by the nervous system. Intraspinal or intracortical microstimulation (ICMS) has been shown to evoke muscle patterns that can be resolved into a small set of synergies similar to those seen in natural behavior. However, questions remain about the validity of microstimulation as a probe of neural function, particularly given the relatively long trains of supratheshold stimuli used in these studies. Here, we examined whether muscle synergies evoked during ICMS in two rhesus macaques were similarly encoded by nearby motor cortical units during a purely voluntary behavior involving object reach, grasp, and carry movements. At each microstimulation site we identified the synergy most strongly evoked among those extracted from muscle patterns evoked over all microstimulation sites. For each cortical unit recorded at the same microstimulation site, we then identified the synergy most strongly encoded among those extracted from muscle patterns recorded during the voluntary behavior. We found that the synergy most strongly evoked at an ICMS site matched the synergy most strongly encoded by proximal units more often than expected by chance. These results suggest a common neural substrate for microstimulation-evoked motor responses and for the generation of muscle patterns during natural behaviors. PMID:24634652

  19. Familial or Sporadic Idiopathic Scoliosis – classification based on artificial neural network and GAPDH and ACTB transcription profile

    PubMed Central

    2013-01-01

    Background Importance of hereditary factors in the etiology of Idiopathic Scoliosis is widely accepted. In clinical practice some of the IS patients present with positive familial history of the deformity and some do not. Traditionally about 90% of patients have been considered as sporadic cases without familial recurrence. However the exact proportion of Familial and Sporadic Idiopathic Scoliosis is still unknown. Housekeeping genes encode proteins that are usually essential for the maintenance of basic cellular functions. ACTB and GAPDH are two housekeeping genes encoding respectively a cytoskeletal protein β-actin, and glyceraldehyde-3-phosphate dehydrogenase, an enzyme of glycolysis. Although their expression levels can fluctuate between different tissues and persons, human housekeeping genes seem to exhibit a preserved tissue-wide expression ranking order. It was hypothesized that expression ranking order of two representative housekeeping genes ACTB and GAPDH might be disturbed in the tissues of patients with Familial Idiopathic Scoliosis (with positive family history of idiopathic scoliosis) opposed to the patients with no family members affected (Sporadic Idiopathic Scoliosis). An artificial neural network (ANN) was developed that could serve to differentiate between familial and sporadic cases of idiopathic scoliosis based on the expression levels of ACTB and GAPDH in different tissues of scoliotic patients. The aim of the study was to investigate whether the expression levels of ACTB and GAPDH in different tissues of idiopathic scoliosis patients could be used as a source of data for specially developed artificial neural network in order to predict the positive family history of index patient. Results The comparison of developed models showed, that the most satisfactory classification accuracy was achieved for ANN model with 18 nodes in the first hidden layer and 16 nodes in the second hidden layer. The classification accuracy for positive Idiopathic Scoliosis anamnesis only with the expression measurements of ACTB and GAPDH with the use of ANN based on 6-18-16-1 architecture was 8 of 9 (88%). Only in one case the prediction was ambiguous. Conclusions Specially designed artificial neural network model proved possible association between expression level of ACTB, GAPDH and positive familial history of Idiopathic Scoliosis. PMID:23289769

  20. Male veterans with PTSD exhibit aberrant neural dynamics during working memory processing: an MEG study

    PubMed Central

    McDermott, Timothy J.; Badura-Brack, Amy S.; Becker, Katherine M.; Ryan, Tara J.; Khanna, Maya M.; Heinrichs-Graham, Elizabeth; Wilson, Tony W.

    2016-01-01

    Background Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory. In this study, we examined the neural dynamics of working memory processing in veterans with PTSD and a matched healthy control sample using magnetoencephalography (MEG). Methods Our sample of recent combat veterans with PTSD and demographically matched participants without PTSD completed a working memory task during a 306-sensor MEG recording. The MEG data were preprocessed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach to identify spatiotemporal dynamics. Results Fifty-one men were included in our analyses: 27 combat veterans with PTSD and 24 controls. Across all participants, a dynamic wave of neural activity spread from posterior visual cortices to left frontotemporal regions during encoding, consistent with a verbal working memory task, and was sustained throughout maintenance. Differences related to PTSD emerged during early encoding, with patients exhibiting stronger α oscillatory responses than controls in the right inferior frontal gyrus (IFG). Differences spread to the right supramarginal and temporal cortices during later encoding where, along with the right IFG, they persisted throughout the maintenance period. Limitations This study focused on men with combat-related PTSD using a verbal working memory task. Future studies should evaluate women and the impact of various traumatic experiences using diverse tasks. Conclusion Posttraumatic stress disorder is associated with neurophysiological abnormalities during working memory encoding and maintenance. Veterans with PTSD engaged a bilateral network, including the inferior prefrontal cortices and supramarginal gyri. Right hemispheric neural activity likely reflects compensatory processing, as veterans with PTSD work to maintain accurate performance despite known cognitive deficits associated with the disorder. PMID:26645740

  1. Selecting for memory? The influence of selective attention on the mnemonic binding of contextual information.

    PubMed

    Uncapher, Melina R; Rugg, Michael D

    2009-06-24

    Not all of what is experienced is remembered later. Behavioral evidence suggests that the manner in which an event is processed influences which aspects of the event will later be remembered. The present experiment investigated the neural correlates of "selective encoding," or the mechanisms that support the encoding of some elements of an event in preference to others. Event-related MRI data were acquired while volunteers selectively attended to one of two different contextual features of study items (color or location). A surprise memory test for the items and both contextual features was subsequently administered to determine the influence of selective attention on the neural correlates of contextual encoding. Activity in several cortical regions indexed later memory success selectively for color or location information, and this encoding-related activity was enhanced by selective attention to the relevant feature. Critically, a region in the hippocampus responded selectively to attended source information (whether color or location), demonstrating encoding-related activity for attended but not for nonattended source features. Together, the findings suggest that selective attention modulates the magnitude of activity in cortical regions engaged by different aspects of an event, and hippocampal encoding mechanisms seem to be sensitive to this modulation. Thus, the information that is encoded into a memory representation is biased by selective attention, and this bias is mediated by cortical-hippocampal interactions.

  2. Increasingly complex representations of natural movies across the dorsal stream are shared between subjects.

    PubMed

    Güçlü, Umut; van Gerven, Marcel A J

    2017-01-15

    Recently, deep neural networks (DNNs) have been shown to provide accurate predictions of neural responses across the ventral visual pathway. We here explore whether they also provide accurate predictions of neural responses across the dorsal visual pathway, which is thought to be devoted to motion processing and action recognition. This is achieved by training deep neural networks to recognize actions in videos and subsequently using them to predict neural responses while subjects are watching natural movies. Moreover, we explore whether dorsal stream representations are shared between subjects. In order to address this question, we examine if individual subject predictions can be made in a common representational space estimated via hyperalignment. Results show that a DNN trained for action recognition can be used to accurately predict how dorsal stream responds to natural movies, revealing a correspondence in representations of DNN layers and dorsal stream areas. It is also demonstrated that models operating in a common representational space can generalize to responses of multiple or even unseen individual subjects to novel spatio-temporal stimuli in both encoding and decoding settings, suggesting that a common representational space underlies dorsal stream responses across multiple subjects. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities.

    PubMed

    Dixon, Jill; Jones, Natalie C; Sandell, Lisa L; Jayasinghe, Sachintha M; Crane, Jennifer; Rey, Jean-Philippe; Dixon, Michael J; Trainor, Paul A

    2006-09-05

    Neural crest cells are a migratory cell population that give rise to the majority of the cartilage, bone, connective tissue, and sensory ganglia in the head. Abnormalities in the formation, proliferation, migration, and differentiation phases of the neural crest cell life cycle can lead to craniofacial malformations, which constitute one-third of all congenital birth defects. Treacher Collins syndrome (TCS) is characterized by hypoplasia of the facial bones, cleft palate, and middle and external ear defects. Although TCS results from autosomal dominant mutations of the gene TCOF1, the mechanistic origins of the abnormalities observed in this condition are unknown, and the function of Treacle, the protein encoded by TCOF1, remains poorly understood. To investigate the developmental basis of TCS we generated a mouse model through germ-line mutation of Tcof1. Haploinsufficiency of Tcof1 leads to a deficiency in migrating neural crest cells, which results in severe craniofacial malformations. We demonstrate that Tcof1/Treacle is required cell-autonomously for the formation and proliferation of neural crest cells. Tcof1/Treacle regulates proliferation by controlling the production of mature ribosomes. Therefore, Tcof1/Treacle is a unique spatiotemporal regulator of ribosome biogenesis, a deficiency that disrupts neural crest cell formation and proliferation, causing the hypoplasia characteristic of TCS craniofacial anomalies.

  4. Deep Recurrent Neural Networks for Human Activity Recognition

    PubMed Central

    Murad, Abdulmajid

    2017-01-01

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs. PMID:29113103

  5. Deep Recurrent Neural Networks for Human Activity Recognition.

    PubMed

    Murad, Abdulmajid; Pyun, Jae-Young

    2017-11-06

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.

  6. Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series.

    PubMed

    Hoppe, Elisabeth; Körzdörfer, Gregor; Würfl, Tobias; Wetzl, Jens; Lugauer, Felix; Pfeuffer, Josef; Maier, Andreas

    2017-01-01

    The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitative parameter maps. Currently, the comparison is done by matching a dictionary of simulated signals to the acquired signals. To accelerate the computation of quantitative maps we train a Convolutional Neural Network (CNN) on simulated dictionary data. As a proof of principle we show that the neural network implicitly encodes the dictionary and can replace the matching process.

  7. Solving the quantum many-body problem with artificial neural networks

    NASA Astrophysics Data System (ADS)

    Carleo, Giuseppe; Troyer, Matthias

    2017-02-01

    The challenge posed by the many-body problem in quantum physics originates from the difficulty of describing the nontrivial correlations encoded in the exponential complexity of the many-body wave function. Here we demonstrate that systematic machine learning of the wave function can reduce this complexity to a tractable computational form for some notable cases of physical interest. We introduce a variational representation of quantum states based on artificial neural networks with a variable number of hidden neurons. A reinforcement-learning scheme we demonstrate is capable of both finding the ground state and describing the unitary time evolution of complex interacting quantum systems. Our approach achieves high accuracy in describing prototypical interacting spins models in one and two dimensions.

  8. The Neural Regions Sustaining Episodic Encoding and Recognition of Objects

    ERIC Educational Resources Information Center

    Hofer, Alex; Siedentopf, Christian M.; Ischebeck, Anja; Rettenbacher, Maria A.; Widschwendter, Christian G.; Verius, Michael; Golaszewski, Stefan M.; Koppelstaetter, Florian; Felber, Stephan; Wolfgang Fleischhacker, W.

    2007-01-01

    In this functional MRI experiment, encoding of objects was associated with activation in left ventrolateral prefrontal/insular and right dorsolateral prefrontal and fusiform regions as well as in the left putamen. By contrast, correct recognition of previously learned objects (R judgments) produced activation in left superior frontal, bilateral…

  9. Dopamine prediction errors in reward learning and addiction: from theory to neural circuitry

    PubMed Central

    Keiflin, Ronald; Janak, Patricia H.

    2015-01-01

    Summary Midbrain dopamine (DA) neurons are proposed to signal reward prediction error (RPE), a fundamental parameter in associative learning models. This RPE hypothesis provides a compelling theoretical framework for understanding DA function in reward learning and addiction. New studies support a causal role for DA-mediated RPE activity in promoting learning about natural reward; however, this question has not been explicitly tested in the context of drug addiction. In this review, we integrate theoretical models with experimental findings on the activity of DA systems, and on the causal role of specific neuronal projections and cell types, to provide a circuit-based framework for probing DA-RPE function in addiction. By examining error-encoding DA neurons in the neural network in which they are embedded, hypotheses regarding circuit-level adaptations that possibly contribute to pathological error-signaling and addiction can be formulated and tested. PMID:26494275

  10. Spatial attention improves the quality of population codes in human visual cortex.

    PubMed

    Saproo, Sameer; Serences, John T

    2010-08-01

    Selective attention enables sensory input from behaviorally relevant stimuli to be processed in greater detail, so that these stimuli can more accurately influence thoughts, actions, and future goals. Attention has been shown to modulate the spiking activity of single feature-selective neurons that encode basic stimulus properties (color, orientation, etc.). However, the combined output from many such neurons is required to form stable representations of relevant objects and little empirical work has formally investigated the relationship between attentional modulations on population responses and improvements in encoding precision. Here, we used functional MRI and voxel-based feature tuning functions to show that spatial attention induces a multiplicative scaling in orientation-selective population response profiles in early visual cortex. In turn, this multiplicative scaling correlates with an improvement in encoding precision, as evidenced by a concurrent increase in the mutual information between population responses and the orientation of attended stimuli. These data therefore demonstrate how multiplicative scaling of neural responses provides at least one mechanism by which spatial attention may improve the encoding precision of population codes. Increased encoding precision in early visual areas may then enhance the speed and accuracy of perceptual decisions computed by higher-order neural mechanisms.

  11. Weak encoding of faces predicts socially influenced judgments of facial attractiveness.

    PubMed

    Schnuerch, Robert; Koppehele-Gossel, Judith; Gibbons, Henning

    2015-01-01

    Conforming to the majority can be seen as a heuristic type of judgment, as it allows the individual to easily choose the most accurate or most socially acceptable type of behavior. People who process the currently to-be-judged items in a superficial, heuristic way should tend to conform to group judgment more than people processing these items in a systematic and elaborate way. We investigated this hypothesis using electroencephalography (EEG), analyzing whether the strength of neural encoding of faces was related to the tendency to adopt a group's evaluative judgments regarding these faces. As expected, we found that the amplitude of the N170, a specific neural correlate of face encoding, was inversely related to conformity across participants: The weaker the faces were encoded, the more the majority response regarding the faces' attractiveness was adopted instead of relying on the actual qualities of the faces. Applying neurophysiological methodology, we thus provide support for previous claims, based on behavioral data and theorizing, that social conformity is a heuristic type of judgment. We propose that weak encoding of judgment-relevant information is a typical, possibly even necessary, precursor of socially adjusted judgments, irrespective of one's current motivational goal (i.e., to be accurate or accepted).

  12. Computational modeling of the neural representation of object shape in the primate ventral visual system

    PubMed Central

    Eguchi, Akihiro; Mender, Bedeho M. W.; Evans, Benjamin D.; Humphreys, Glyn W.; Stringer, Simon M.

    2015-01-01

    Neurons in successive stages of the primate ventral visual pathway encode the spatial structure of visual objects. In this paper, we investigate through computer simulation how these cell firing properties may develop through unsupervised visually-guided learning. Individual neurons in the model are shown to exploit statistical regularity and temporal continuity of the visual inputs during training to learn firing properties that are similar to neurons in V4 and TEO. Neurons in V4 encode the conformation of boundary contour elements at a particular position within an object regardless of the location of the object on the retina, while neurons in TEO integrate information from multiple boundary contour elements. This representation goes beyond mere object recognition, in which neurons simply respond to the presence of a whole object, but provides an essential foundation from which the brain is subsequently able to recognize the whole object. PMID:26300766

  13. Image statistics underlying natural texture selectivity of neurons in macaque V4

    PubMed Central

    Okazawa, Gouki; Tajima, Satohiro; Komatsu, Hidehiko

    2015-01-01

    Our daily visual experiences are inevitably linked to recognizing the rich variety of textures. However, how the brain encodes and differentiates a plethora of natural textures remains poorly understood. Here, we show that many neurons in macaque V4 selectively encode sparse combinations of higher-order image statistics to represent natural textures. We systematically explored neural selectivity in a high-dimensional texture space by combining texture synthesis and efficient-sampling techniques. This yielded parameterized models for individual texture-selective neurons. The models provided parsimonious but powerful predictors for each neuron’s preferred textures using a sparse combination of image statistics. As a whole population, the neuronal tuning was distributed in a way suitable for categorizing textures and quantitatively predicts human ability to discriminate textures. Together, we suggest that the collective representation of visual image statistics in V4 plays a key role in organizing the natural texture perception. PMID:25535362

  14. Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis

    PubMed Central

    Evans, Samuel; Davis, Matthew H.

    2015-01-01

    How humans extract the identity of speech sounds from highly variable acoustic signals remains unclear. Here, we use searchlight representational similarity analysis (RSA) to localize and characterize neural representations of syllables at different levels of the hierarchically organized temporo-frontal pathways for speech perception. We asked participants to listen to spoken syllables that differed considerably in their surface acoustic form by changing speaker and degrading surface acoustics using noise-vocoding and sine wave synthesis while we recorded neural responses with functional magnetic resonance imaging. We found evidence for a graded hierarchy of abstraction across the brain. At the peak of the hierarchy, neural representations in somatomotor cortex encoded syllable identity but not surface acoustic form, at the base of the hierarchy, primary auditory cortex showed the reverse. In contrast, bilateral temporal cortex exhibited an intermediate response, encoding both syllable identity and the surface acoustic form of speech. Regions of somatomotor cortex associated with encoding syllable identity in perception were also engaged when producing the same syllables in a separate session. These findings are consistent with a hierarchical account of how variable acoustic signals are transformed into abstract representations of the identity of speech sounds. PMID:26157026

  15. Effects of the BDNF Val66Met polymorphism and met allele load on declarative memory related neural networks.

    PubMed

    Dodds, Chris M; Henson, Richard N; Suckling, John; Miskowiak, Kamilla W; Ooi, Cinly; Tait, Roger; Soltesz, Fruzsina; Lawrence, Phil; Bentley, Graham; Maltby, Kay; Skeggs, Andrew; Miller, Sam R; McHugh, Simon; Bullmore, Edward T; Nathan, Pradeep J

    2013-01-01

    It has been suggested that the BDNF Val66Met polymorphism modulates episodic memory performance via effects on hippocampal neural circuitry. However, fMRI studies have yielded inconsistent results in this respect. Moreover, very few studies have examined the effect of met allele load on activation of memory circuitry. In the present study, we carried out a comprehensive analysis of the effects of the BDNF polymorphism on brain responses during episodic memory encoding and retrieval, including an investigation of the effect of met allele load on memory related activation in the medial temporal lobe. In contrast to previous studies, we found no evidence for an effect of BDNF genotype or met load during episodic memory encoding. Met allele carriers showed increased activation during successful retrieval in right hippocampus but this was contrast-specific and unaffected by met allele load. These results suggest that the BDNF Val66Met polymorphism does not, as previously claimed, exert an observable effect on neural systems underlying encoding of new information into episodic memory but may exert a subtle effect on the efficiency with which such information can be retrieved.

  16. The duality of temporal encoding – the intrinsic and extrinsic representation of time

    PubMed Central

    Golan, Ronen; Zakay, Dan

    2015-01-01

    While time is well acknowledged for having a fundamental part in our perception, questions on how it is represented are still matters of great debate. One of the main issues in question is whether time is represented intrinsically at the neural level, or is it represented within dedicated brain regions. We used an fMRI block design to test if we can impose covert encoding of temporal features of faces and natural scenes stimuli within category selective neural populations by exposing subjects to four types of temporal variance, ranging from 0% up to 50% variance. We found a gradual increase in neural activation associated with the gradual increase in temporal variance within category selective areas. A second level analysis showed the same pattern of activations within known brain regions associated with time representation, such as the Cerebellum, the Caudate, and the Thalamus. We concluded that temporal features are integral to perception and are simultaneously represented within category selective regions and globally within dedicated regions. Our second conclusion, drown from our covert procedure, is that time encoding, at its basic level, is an automated process that does not require attention allocated toward the temporal features nor does it require dedicated resources. PMID:26379604

  17. A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia.

    PubMed

    Johnson, Matthew R; Morris, Nicholas A; Astur, Robert S; Calhoun, Vince D; Mathalon, Daniel H; Kiehl, Kent A; Pearlson, Godfrey D

    2006-07-01

    Previous neuroimaging studies of working memory (WM) in schizophrenia, typically focusing on dorsolateral prefrontal cortex, yield conflicting results, possibly because of varied choice of tasks and analysis techniques. We examined neural function changes at several WM loads to derive a more complete picture of WM dysfunction in schizophrenia. We used a version of the Sternberg Item Recognition Paradigm to test WM function at five distinct loads. Eighteen schizophrenia patients and 18 matched healthy controls were scanned with functional magnetic resonance imaging at 3 Tesla. Patterns of both overactivation and underactivation in patients were observed depending on WM load. Patients' activation was generally less responsive to load changes than control subjects', and different patterns of between-group differences were observed for memory encoding and retrieval. In the specific case of successful retrieval, patients recruited additional neural circuits unused by control subjects. Behavioral effects were generally consistent with these imaging results. Differential findings of overactivation and underactivation may be attributable to patients' decreased ability to focus and allocate neural resources at task-appropriate levels. Additionally, differences between encoding and retrieval suggest that WM dysfunction may be manifested differently during the distinct phases of encoding, maintenance, and retrieval.

  18. Feature-selective Attention in Frontoparietal Cortex: Multivoxel Codes Adjust to Prioritize Task-relevant Information.

    PubMed

    Jackson, Jade; Rich, Anina N; Williams, Mark A; Woolgar, Alexandra

    2017-02-01

    Human cognition is characterized by astounding flexibility, enabling us to select appropriate information according to the objectives of our current task. A circuit of frontal and parietal brain regions, often referred to as the frontoparietal attention network or multiple-demand (MD) regions, are believed to play a fundamental role in this flexibility. There is evidence that these regions dynamically adjust their responses to selectively process information that is currently relevant for behavior, as proposed by the "adaptive coding hypothesis" [Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820-829, 2001]. Could this provide a neural mechanism for feature-selective attention, the process by which we preferentially process one feature of a stimulus over another? We used multivariate pattern analysis of fMRI data during a perceptually challenging categorization task to investigate whether the representation of visual object features in the MD regions flexibly adjusts according to task relevance. Participants were trained to categorize visually similar novel objects along two orthogonal stimulus dimensions (length/orientation) and performed short alternating blocks in which only one of these dimensions was relevant. We found that multivoxel patterns of activation in the MD regions encoded the task-relevant distinctions more strongly than the task-irrelevant distinctions: The MD regions discriminated between stimuli of different lengths when length was relevant and between the same objects according to orientation when orientation was relevant. The data suggest a flexible neural system that adjusts its representation of visual objects to preferentially encode stimulus features that are currently relevant for behavior, providing a neural mechanism for feature-selective attention.

  19. Theta phase precession and phase selectivity: a cognitive device description of neural coding

    NASA Astrophysics Data System (ADS)

    Zalay, Osbert C.; Bardakjian, Berj L.

    2009-06-01

    Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to guide downstream processes such as phase precession, because of their demonstrated frequency-selective properties.

  20. Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network.

    PubMed

    Dempere-Marco, Laura; Melcher, David P; Deco, Gustavo

    2012-01-01

    The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.

  1. Effective Visual Working Memory Capacity: An Emergent Effect from the Neural Dynamics in an Attractor Network

    PubMed Central

    Dempere-Marco, Laura; Melcher, David P.; Deco, Gustavo

    2012-01-01

    The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions. PMID:22952608

  2. The neural dynamics of song syntax in songbirds

    NASA Astrophysics Data System (ADS)

    Jin, Dezhe

    2010-03-01

    Songbird is ``the hydrogen atom'' of the neuroscience of complex, learned vocalizations such as human speech. Songs of Bengalese finch consist of sequences of syllables. While syllables are temporally stereotypical, syllable sequences can vary and follow complex, probabilistic syntactic rules, which are rudimentarily similar to grammars in human language. Songbird brain is accessible to experimental probes, and is understood well enough to construct biologically constrained, predictive computational models. In this talk, I will discuss the structure and dynamics of neural networks underlying the stereotypy of the birdsong syllables and the flexibility of syllable sequences. Recent experiments and computational models suggest that a syllable is encoded in a chain network of projection neurons in premotor nucleus HVC (proper name). Precisely timed spikes propagate along the chain, driving vocalization of the syllable through downstream nuclei. Through a computational model, I show that that variable syllable sequences can be generated through spike propagations in a network in HVC in which the syllable-encoding chain networks are connected into a branching chain pattern. The neurons mutually inhibit each other through the inhibitory HVC interneurons, and are driven by external inputs from nuclei upstream of HVC. At a branching point that connects the final group of a chain to the first groups of several chains, the spike activity selects one branch to continue the propagation. The selection is probabilistic, and is due to the winner-take-all mechanism mediated by the inhibition and noise. The model predicts that the syllable sequences statistically follow partially observable Markov models. Experimental results supporting this and other predictions of the model will be presented. We suggest that the syntax of birdsong syllable sequences is embedded in the connection patterns of HVC projection neurons.

  3. Locus Coeruleus Activity Strengthens Prioritized Memories Under Arousal.

    PubMed

    Clewett, David V; Huang, Ringo; Velasco, Rico; Lee, Tae-Ho; Mather, Mara

    2018-02-07

    Recent models posit that bursts of locus ceruleus (LC) activity amplify neural gain such that limited attention and encoding resources focus even more on prioritized mental representations under arousal. Here, we tested this hypothesis in human males and females using fMRI, neuromelanin MRI, and pupil dilation, a biomarker of arousal and LC activity. During scanning, participants performed a monetary incentive encoding task in which threat of punishment motivated them to prioritize encoding of scene images over superimposed objects. Threat of punishment elicited arousal and selectively enhanced memory for goal-relevant scenes. Furthermore, trial-level pupil dilations predicted better scene memory under threat, but were not related to object memory outcomes. fMRI analyses revealed that greater threat-evoked pupil dilations were positively associated with greater scene encoding activity in LC and parahippocampal cortex, a region specialized to process scene information. Across participants, this pattern of LC engagement for goal-relevant encoding was correlated with neuromelanin signal intensity, providing the first evidence that LC structure relates to its activation pattern during cognitive processing. Threat also reduced dynamic functional connectivity between high-priority (parahippocampal place area) and lower-priority (lateral occipital cortex) category-selective visual cortex in ways that predicted increased memory selectivity. Together, these findings support the idea that, under arousal, LC activity selectively strengthens prioritized memory representations by modulating local and functional network-level patterns of information processing. SIGNIFICANCE STATEMENT Adaptive behavior relies on the ability to select and store important information amid distraction. Prioritizing encoding of task-relevant inputs is especially critical in threatening or arousing situations, when forming these memories is essential for avoiding danger in the future. However, little is known about the arousal mechanisms that support such memory selectivity. Using fMRI, neuromelanin MRI, and pupil measures, we demonstrate that locus ceruleus (LC) activity amplifies neural gain such that limited encoding resources focus even more on prioritized mental representations under arousal. For the first time, we also show that LC structure relates to its involvement in threat-related encoding processes. These results shed new light on the brain mechanisms by which we process important information when it is most needed. Copyright © 2018 the authors 0270-6474/18/381558-17$15.00/0.

  4. The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information

    PubMed Central

    Bendor, Daniel

    2015-01-01

    In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843

  5. The neural representation of unexpected uncertainty during value-based decision making.

    PubMed

    Payzan-LeNestour, Elise; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P

    2013-07-10

    Uncertainty is an inherent property of the environment and a central feature of models of decision-making and learning. Theoretical propositions suggest that one form, unexpected uncertainty, may be used to rapidly adapt to changes in the environment, while being influenced by two other forms: risk and estimation uncertainty. While previous studies have reported neural representations of estimation uncertainty and risk, relatively little is known about unexpected uncertainty. Here, participants performed a decision-making task while undergoing functional magnetic resonance imaging (fMRI), which, in combination with a Bayesian model-based analysis, enabled us to separately examine each form of uncertainty examined. We found representations of unexpected uncertainty in multiple cortical areas, as well as the noradrenergic brainstem nucleus locus coeruleus. Other unique cortical regions were found to encode risk, estimation uncertainty, and learning rate. Collectively, these findings support theoretical models in which several formally separable uncertainty computations determine the speed of learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Sensorimotor Learning Biases Choice Behavior: A Learning Neural Field Model for Decision Making

    PubMed Central

    Schöner, Gregor; Gail, Alexander

    2012-01-01

    According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making) should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject's learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action selection required for decision making in ambiguous choice situations. PMID:23166483

  7. Learning receptive fields using predictive feedback.

    PubMed

    Jehee, Janneke F M; Rothkopf, Constantin; Beck, Jeffrey M; Ballard, Dana H

    2006-01-01

    Previously, it was suggested that feedback connections from higher- to lower-level areas carry predictions of lower-level neural activities, whereas feedforward connections carry the residual error between the predictions and the actual lower-level activities [Rao, R.P.N., Ballard, D.H., 1999. Nature Neuroscience 2, 79-87.]. A computational model implementing the hypothesis learned simple cell receptive fields when exposed to natural images. Here, we use predictive feedback to explain tuning properties in medial superior temporal area (MST). We implement the hypothesis using a new, biologically plausible, algorithm based on matching pursuit, which retains all the features of the previous implementation, including its ability to efficiently encode input. When presented with natural images, the model developed receptive field properties as found in primary visual cortex. In addition, when exposed to visual motion input resulting from movements through space, the model learned receptive field properties resembling those in MST. These results corroborate the idea that predictive feedback is a general principle used by the visual system to efficiently encode natural input.

  8. Shared neural coding for social hierarchy and reward value in primate amygdala.

    PubMed

    Munuera, Jérôme; Rigotti, Mattia; Salzman, C Daniel

    2018-03-01

    The social brain hypothesis posits that dedicated neural systems process social information. In support of this, neurophysiological data have shown that some brain regions are specialized for representing faces. It remains unknown, however, whether distinct anatomical substrates also represent more complex social variables, such as the hierarchical rank of individuals within a social group. Here we show that the primate amygdala encodes the hierarchical rank of individuals in the same neuronal ensembles that encode the rewards associated with nonsocial stimuli. By contrast, orbitofrontal and anterior cingulate cortices lack strong representations of hierarchical rank while still representing reward values. These results challenge the conventional view that dedicated neural systems process social information. Instead, information about hierarchical rank-which contributes to the assessment of the social value of individuals within a group-is linked in the amygdala to representations of rewards associated with nonsocial stimuli.

  9. Open source tools for the information theoretic analysis of neural data.

    PubMed

    Ince, Robin A A; Mazzoni, Alberto; Petersen, Rasmus S; Panzeri, Stefano

    2010-01-01

    The recent and rapid development of open source software tools for the analysis of neurophysiological datasets consisting of simultaneous multiple recordings of spikes, field potentials and other neural signals holds the promise for a significant advance in the standardization, transparency, quality, reproducibility and variety of techniques used to analyze neurophysiological data and for the integration of information obtained at different spatial and temporal scales. In this review we focus on recent advances in open source toolboxes for the information theoretic analysis of neural responses. We also present examples of their use to investigate the role of spike timing precision, correlations across neurons, and field potential fluctuations in the encoding of sensory information. These information toolboxes, available both in MATLAB and Python programming environments, hold the potential to enlarge the domain of application of information theory to neuroscience and to lead to new discoveries about how neurons encode and transmit information.

  10. Creating buzz: the neural correlates of effective message propagation.

    PubMed

    Falk, Emily B; Morelli, Sylvia A; Welborn, B Locke; Dambacher, Karl; Lieberman, Matthew D

    2013-07-01

    Social interaction promotes the spread of values, attitudes, and behaviors. Here, we report on neural responses to ideas that are destined to spread. We scanned message communicators using functional MRI during their initial exposure to the to-be-communicated ideas. These message communicators then had the opportunity to spread the messages and their corresponding subjective evaluations to message recipients outside the scanner. Successful ideas were associated with neural responses in the communicators' mentalizing systems and reward systems when they first heard the messages, prior to spreading them. Similarly, individuals more able to spread their own views to others produced greater mentalizing-system activity during initial encoding. Unlike prior social-influence studies that focused on the individuals being influenced, this investigation focused on the brains of influencers. Successful social influence is reliably associated with an influencer-to-be's state of mind when first encoding ideas.

  11. The neural fate of neutral information in emotion-enhanced memory.

    PubMed

    Watts, Sarah; Buratto, Luciano G; Brotherhood, Emilie V; Barnacle, Gemma E; Schaefer, Alexandre

    2014-07-01

    In this study, we report evidence that neural activity reflecting the encoding of emotionally neutral information in memory is reduced when neutral and emotional stimuli are intermixed during encoding. Specifically, participants studied emotional and neutral pictures organized in mixed lists (in which emotional and neutral pictures were intermixed) or in pure lists (only-neutral or only-emotional pictures) and performed a recall test. To estimate encoding efficiency, we used the Dm effect, measured with event-related potentials. Recall for neutral items was lower in mixed compared to pure lists and posterior Dm activity for neutral items was reduced in mixed lists, whereas it remained robust in pure lists. These findings might be caused by an asymmetrical competition for attentional and working memory resources between emotional and neutral information, which could be a major determinant of emotional memory effects. Copyright © 2014 Society for Psychophysiological Research.

  12. Neural encoding of competitive effort in the anterior cingulate cortex.

    PubMed

    Hillman, Kristin L; Bilkey, David K

    2012-09-01

    In social environments, animals often compete to obtain limited resources. Strategically electing to work against another animal represents a cost-benefit decision. Is the resource worth an investment of competitive effort? The anterior cingulate cortex (ACC) has been implicated in cost-benefit decision-making, but its role in competitive effort has not been examined. We recorded ACC neurons in freely moving rats as they performed a competitive foraging choice task. When at least one of the two choice options demanded competitive effort, the majority of ACC neurons exhibited heightened and differential firing between the goal trajectories. Inter- and intrasession manipulations revealed that differential firing was not attributable to effort or reward in isolation; instead ACC encoding patterns appeared to indicate net utility assessments of available choice options. Our findings suggest that the ACC is important for encoding competitive effort, a cost-benefit domain that has received little neural-level investigation despite its predominance in nature.

  13. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm.

    PubMed

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-12-08

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.

  14. EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm

    NASA Astrophysics Data System (ADS)

    Kim, Seong Gon; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-12-01

    We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type (IMR90). We train EP-DNN using p300 binding sites, as enhancers, and TSS and random non-DHS sites, as non-enhancers. We perform same-cell and cross-cell predictions to quantify the validation rate and compare against two state-of-the-art methods, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy with a validation rate of 91.6%, relative to 85.3% for DEEP-ENCODE and 85.5% for RFECS, for a given number of enhancer predictions and also scales better for a larger number of enhancer predictions. Moreover, our H1 → IMR90 predictions turn out to be more accurate than IMR90 → IMR90, potentially because H1 exhibits a richer signature set and our EP-DNN model is expressive enough to extract these subtleties. Our work shows how to leverage the full expressivity of deep learning models, using multiple hidden layers, while avoiding overfitting on the training data. We also lay the foundation for exploration of cross-cell enhancer predictions, potentially reducing the need for expensive experimentation.

  15. CNTRICS Imaging Biomarkers Final Task Selection: Long-Term Memory and Reinforcement Learning

    PubMed Central

    Ragland, John D.; Cohen, Neal J.; Cools, Roshan; Frank, Michael J.; Hannula, Deborah E.; Ranganath, Charan

    2012-01-01

    Functional imaging paradigms hold great promise as biomarkers for schizophrenia research as they can detect altered neural activity associated with the cognitive and emotional processing deficits that are so disabling to this patient population. In an attempt to identify the most promising functional imaging biomarkers for research on long-term memory (LTM), the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) initiative selected “item encoding and retrieval,” “relational encoding and retrieval,” and “reinforcement learning” as key LTM constructs to guide the nomination process. This manuscript reports on the outcome of the third CNTRICS biomarkers meeting in which nominated paradigms in each of these domains were discussed by a review panel to arrive at a consensus on which of the nominated paradigms could be recommended for immediate translational development. After briefly describing this decision process, information is presented from the nominating authors describing the 4 functional imaging paradigms that were selected for immediate development. In addition to describing the tasks, information is provided on cognitive and neural construct validity, sensitivity to behavioral or pharmacological manipulations, availability of animal models, psychometric characteristics, effects of schizophrenia, and avenues for future development. PMID:22102094

  16. Dynamical encoding of looming, receding, and focussing

    NASA Astrophysics Data System (ADS)

    Longtin, Andre; Clarke, Stephen Elisha; Maler, Leonard; CenterNeural Dynamics Collaboration

    This talk will discuss a non-conventional neural coding task that may apply more broadly to many senses in higher vertebrates. We ask whether and how a non-visual sensory system can focus on an object. We present recent experimental and modeling work that shows how the early sensory circuitry of electric sense can perform such neuronal focusing that is manifested behaviorally. This sense is the main one used by weakly electric fish to navigate, locate prey and communicate in the murky waters of their natural habitat. We show that there is a distance at which the Fisher information of a neuron's response to a looming and receding object is maximized, and that this distance corresponds to a behaviorally relevant one chosen by these animals. Strikingly, this maximum occurs at a bifurcation between tonic firing and bursting. We further discuss how the invariance of this distance to signal attributes can arise, a process that first involves power-law spike frequency adaptation. The talk will also highlight the importance of expanding the classic dual neural encoding of contrast using ON and OFF cells in the context of looming and receding stimuli. The authors acknowledge support from CIHR and NSERC.

  17. Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.

    PubMed

    Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R

    2016-09-21

    The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations. Copyright © 2016 the authors 0270-6474/16/369763-07$15.00/0.

  18. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex.

    PubMed

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  19. Tau and β-Amyloid Are Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in Normal Aging

    PubMed Central

    2017-01-01

    Normal aging is associated with a decline in episodic memory and also with aggregation of the β-amyloid (Aβ) and tau proteins and atrophy of medial temporal lobe (MTL) structures crucial to memory formation. Although some evidence suggests that Aβ is associated with aberrant neural activity, the relationships among these two aggregated proteins, neural function, and brain structure are poorly understood. Using in vivo human Aβ and tau imaging, we demonstrate that increased Aβ and tau are both associated with aberrant fMRI activity in the MTL during memory encoding in cognitively normal older adults. This pathological neural activity was in turn associated with worse memory performance and atrophy within the MTL. A mediation analysis revealed that the relationship with regional atrophy was explained by MTL tau. These findings broaden the concept of cognitive aging to include evidence of Alzheimer's disease-related protein aggregation as an underlying mechanism of age-related memory impairment. SIGNIFICANCE STATEMENT Alterations in episodic memory and the accumulation of Alzheimer's pathology are common in cognitively normal older adults. However, evidence of pathological effects on episodic memory has largely been limited to β-amyloid (Aβ). Because Aβ and tau often cooccur in older adults, previous research offers an incomplete understanding of the relationship between pathology and episodic memory. With the recent development of in vivo tau PET radiotracers, we show that Aβ and tau are associated with different aspects of memory encoding, leading to aberrant neural activity that is behaviorally detrimental. In addition, our results provide evidence linking Aβ- and tau-associated neural dysfunction to brain atrophy. PMID:28213439

  20. Oscillatory EEG dynamics underlying automatic chunking during sentence processing.

    PubMed

    Bonhage, Corinna E; Meyer, Lars; Gruber, Thomas; Friederici, Angela D; Mueller, Jutta L

    2017-05-15

    Sentences are easier to remember than random word sequences, likely because linguistic regularities facilitate chunking of words into meaningful groups. The present electroencephalography study investigated the neural oscillations modulated by this so-called sentence superiority effect during the encoding and maintenance of sentence fragments versus word lists. We hypothesized a chunking-related modulation of neural processing during the encoding and retention of sentences (i.e., sentence fragments) as compared to word lists. Time-frequency analysis revealed a two-fold oscillatory pattern for the memorization of sentences: Sentence encoding was accompanied by higher delta amplitude (4Hz), originating both from regions processing syntax as well as semantics (bilateral superior/middle temporal regions and fusiform gyrus). Subsequent sentence retention was reflected in decreased theta (6Hz) and beta/gamma (27-32Hz) amplitude instead. Notably, whether participants simply read or properly memorized the sentences did not impact chunking-related activity during encoding. Therefore, we argue that the sentence superiority effect is grounded in highly automatized language processing mechanisms, which generate meaningful memory chunks irrespective of task demands. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Perceptual priming versus explicit memory: dissociable neural correlates at encoding.

    PubMed

    Schott, Björn; Richardson-Klavehn, Alan; Heinze, Hans-Jochen; Düzel, Emrah

    2002-05-15

    We addressed the hypothesis that perceptual priming and explicit memory have distinct neural correlates at encoding. Event-related potentials (ERPs) were recorded while participants studied visually presented words at deep versus shallow levels of processing (LOPs). The ERPs were sorted by whether or not participants later used studied words as completions to three-letter word stems in an intentional memory test, and by whether or not they indicated that these completions were remembered from the study list. Study trials from which words were later used and not remembered (primed trials) and study trials from which words were later used and remembered (remembered trials) were compared to study trials from which words were later not used (forgotten trials), in order to measure the ERP difference associated with later memory (DM effect). Primed trials involved an early (200-450 msec) centroparietal negative-going DM effect. Remembered trials involved a late (900-1200 msec) right frontal, positive-going DM effect regardless of LOP, as well as an earlier (600-800 msec) central, positive-going DM effect during shallow study processing only. All three DM effects differed topographically, and, in terms of their onset or duration, from the extended (600-1200 msec) fronto-central, positive-going shift for deep compared with shallow study processing. The results provide the first clear evidence that perceptual priming and explicit memory have distinct neural correlates at encoding, consistent with Tulving and Schacter's (1990) distinction between brain systems concerned with perceptual representation versus semantic and episodic memory. They also shed additional light on encoding processes associated with later explicit memory, by suggesting that brain processes influenced by LOP set the stage for other, at least partially separable, brain processes that are more directly related to encoding success.

  2. A neural model of valuation and information virality

    PubMed Central

    Baek, Elisa C.; O’Donnell, Matthew Brook; Kim, Hyun Suk; Cappella, Joseph N.

    2017-01-01

    Information sharing is an integral part of human interaction that serves to build social relationships and affects attitudes and behaviors in individuals and large groups. We present a unifying neurocognitive framework of mechanisms underlying information sharing at scale (virality). We argue that expectations regarding self-related and social consequences of sharing (e.g., in the form of potential for self-enhancement or social approval) are integrated into a domain-general value signal that encodes the value of sharing a piece of information. This value signal translates into population-level virality. In two studies (n = 41 and 39 participants), we tested these hypotheses using functional neuroimaging. Neural activity in response to 80 New York Times articles was observed in theory-driven regions of interest associated with value, self, and social cognitions. This activity then was linked to objectively logged population-level data encompassing n = 117,611 internet shares of the articles. In both studies, activity in neural regions associated with self-related and social cognition was indirectly related to population-level sharing through increased neural activation in the brain's value system. Neural activity further predicted population-level outcomes over and above the variance explained by article characteristics and commonly used self-report measures of sharing intentions. This parsimonious framework may help advance theory, improve predictive models, and inform new approaches to effective intervention. More broadly, these data shed light on the core functions of sharing—to express ourselves in positive ways and to strengthen our social bonds. PMID:28242678

  3. Aging affects neural precision of speech encoding

    PubMed Central

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2012-01-01

    Older adults frequently report they can hear what is said but cannot understand the meaning, especially in noise. This difficulty may arise from the inability to process rapidly changing elements of speech. Aging is accompanied by a general slowing of neural processing and decreased neural inhibition, both of which likely interfere with temporal processing in auditory and other sensory domains. Age-related reductions in inhibitory neurotransmitter levels and delayed neural recovery can contribute to decreases in the auditory system’s temporal precision. Decreased precision may lead to neural timing delays, reductions in neural response magnitude, and a disadvantage in processing the rapid acoustic changes in speech. The auditory brainstem response (ABR), a scalp-recorded electrical potential, is known for its ability to capture precise neural synchrony within subcortical auditory nuclei; therefore, we hypothesized that a loss of temporal precision results in subcortical timing delays and decreases in response consistency and magnitude. To assess this hypothesis, we recorded ABRs to the speech syllable /da/ in normal hearing younger (ages 18 to 30) and older adult humans (60 to 67). Older adults had delayed ABRs, especially in response to the rapidly changing formant transition, and greater response variability. We also found that older adults had decreased phase locking and smaller response magnitudes than younger adults. Taken together, our results support the theory that older adults have a loss of temporal precision in subcortical encoding of sound, which may account, at least in part, for their difficulties with speech perception. PMID:23055485

  4. Brainstem transcription of speech is disrupted in children with autism spectrum disorders

    PubMed Central

    Russo, Nicole; Nicol, Trent; Trommer, Barbara; Zecker, Steve; Kraus, Nina

    2009-01-01

    Language impairment is a hallmark of autism spectrum disorders (ASD). The origin of the deficit is poorly understood although deficiencies in auditory processing have been detected in both perception and cortical encoding of speech sounds. Little is known about the processing and transcription of speech sounds at earlier (brainstem) levels or about how background noise may impact this transcription process. Unlike cortical encoding of sounds, brainstem representation preserves stimulus features with a degree of fidelity that enables a direct link between acoustic components of the speech syllable (e.g., onsets) to specific aspects of neural encoding (e.g., waves V and A). We measured brainstem responses to the syllable /da/, in quiet and background noise, in children with and without ASD. Children with ASD exhibited deficits in both the neural synchrony (timing) and phase locking (frequency encoding) of speech sounds, despite normal click-evoked brainstem responses. They also exhibited reduced magnitude and fidelity of speech-evoked responses and inordinate degradation of responses by background noise in comparison to typically developing controls. Neural synchrony in noise was significantly related to measures of core and receptive language ability. These data support the idea that abnormalities in the brainstem processing of speech contribute to the language impairment in ASD. Because it is both passively-elicited and malleable, the speech-evoked brainstem response may serve as a clinical tool to assess auditory processing as well as the effects of auditory training in the ASD population. PMID:19635083

  5. Self-organized Evaluation of Dynamic Hand Gestures for Sign Language Recognition

    NASA Astrophysics Data System (ADS)

    Buciu, Ioan; Pitas, Ioannis

    Two main theories exist with respect to face encoding and representation in the human visual system (HVS). The first one refers to the dense (holistic) representation of the face, where faces have "holon"-like appearance. The second one claims that a more appropriate face representation is given by a sparse code, where only a small fraction of the neural cells corresponding to face encoding is activated. Theoretical and experimental evidence suggest that the HVS performs face analysis (encoding, storing, face recognition, facial expression recognition) in a structured and hierarchical way, where both representations have their own contribution and goal. According to neuropsychological experiments, it seems that encoding for face recognition, relies on holistic image representation, while a sparse image representation is used for facial expression analysis and classification. From the computer vision perspective, the techniques developed for automatic face and facial expression recognition fall into the same two representation types. Like in Neuroscience, the techniques which perform better for face recognition yield a holistic image representation, while those techniques suitable for facial expression recognition use a sparse or local image representation. The proposed mathematical models of image formation and encoding try to simulate the efficient storing, organization and coding of data in the human cortex. This is equivalent with embedding constraints in the model design regarding dimensionality reduction, redundant information minimization, mutual information minimization, non-negativity constraints, class information, etc. The presented techniques are applied as a feature extraction step followed by a classification method, which also heavily influences the recognition results.

  6. Differences in Brain Activity during a Verbal Associative Memory Encoding Task in High- and Low-fit Adolescents

    PubMed Central

    Herting, Megan M.; Nagel, Bonnie J.

    2013-01-01

    Aerobic fitness is associated with better memory performance as well as larger volumes in memory-related brain regions in children, adolescents, and elderly. It is unclear if aerobic exercise also influences learning and memory functional neural circuitry. Here, we examine brain activity in 17 high-fit (HF) and 17 low-fit (LF) adolescents during a subsequent memory encoding paradigm using fMRI. Despite similar memory performance, HF and LF youth displayed a number of differences in memory-related and default mode (DMN) brain regions during encoding later remembered versus forgotten word pairs. Specifically, HF youth displayed robust deactivation in DMN areas, including the ventral medial PFC and posterior cingulate cortex, whereas LF youth did not show this pattern. Furthermore, LF youth showed greater bilateral hippocampal and right superior frontal gyrus activation during encoding of later remembered versus forgotten word pairs. Follow-up task-dependent functional correlational analyses showed differences in hippocampus and DMN activity coupling during successful encoding between the groups, suggesting aerobic fitness during adolescents may impact functional connectivity of the hippocampus and DMN during memory encoding. To our knowledge, this study is the first to examine the influence of aerobic fitness on hippocampal function and memory-related neural circuitry using fMRI. Taken together with previous research, these findings suggest aerobic fitness can influence not only memory-related brain structure, but also brain function. PMID:23249350

  7. Selecting for memory? The influence of selective attention on the mnemonic binding of contextual information

    PubMed Central

    Uncapher, Melina R.; Rugg, Michael D.

    2009-01-01

    Not all of what is experienced is remembered later. Behavioral evidence suggests that the manner in which an event is processed influences which aspects of the event will later be remembered. The present experiment investigated the neural correlates of ‘selective encoding’, or the mechanisms that support the encoding of some elements of an event in preference to others. Event-related functional magnetic resonance imaging (fMRI) data were acquired while volunteers selectively attended to one of two different contextual features of study items (color or location). A surprise memory test for the items and both contextual features was subsequently administered to determine the influence of selective attention on the neural correlates of contextual encoding. Activity in several cortical regions indexed later memory success selectively for color or location information, and this encoding-related activity was enhanced by selective attention to the relevant feature. Critically, a region in the hippocampus responded selectively to attended source information (whether color or location), demonstrating encoding-related activity for attended but not for nonattended source features. Together, the findings suggest that selective attention modulates the magnitude of activity in cortical regions engaged by different aspects of an event, and hippocampal encoding mechanisms seem to be sensitive to this modulation. Thus, the information that is encoded into a memory representation is biased by selective attention, and this bias is mediated by cortico-hippocampal interactions. PMID:19553466

  8. Implicit emotion regulation in adolescent girls: An exploratory investigation of Hidden Markov Modeling and its neural correlates.

    PubMed

    Steele, James S; Bush, Keith; Stowe, Zachary N; James, George A; Smitherman, Sonet; Kilts, Clint D; Cisler, Josh

    2018-01-01

    Numerous data demonstrate that distracting emotional stimuli cause behavioral slowing (i.e. emotional conflict) and that behavior dynamically adapts to such distractors. However, the cognitive and neural mechanisms that mediate these behavioral findings are poorly understood. Several theoretical models have been developed that attempt to explain these phenomena, but these models have not been directly tested on human behavior nor compared. A potential tool to overcome this limitation is Hidden Markov Modeling (HMM), which is a computational approach to modeling indirectly observed systems. Here, we administered an emotional Stroop task to a sample of healthy adolescent girls (N = 24) during fMRI and used HMM to implement theoretical behavioral models. We then compared the model fits and tested for neural representations of the hidden states of the most supported model. We found that a modified variant of the model posited by Mathews et al. (1998) was most concordant with observed behavior and that brain activity was related to the model-based hidden states. Particularly, while the valences of the stimuli themselves were encoded primarily in the ventral visual cortex, the model-based detection of threatening targets was associated with increased activity in the bilateral anterior insula, while task effort (i.e. adaptation) was associated with reduction in the activity of these areas. These findings suggest that emotional target detection and adaptation are accomplished partly through increases and decreases, respectively, in the perceived immediate relevance of threatening cues and also demonstrate the efficacy of using HMM to apply theoretical models to human behavior.

  9. Implicit emotion regulation in adolescent girls: An exploratory investigation of Hidden Markov Modeling and its neural correlates

    PubMed Central

    Bush, Keith; Stowe, Zachary N.; James, George A.; Smitherman, Sonet; Kilts, Clint D.; Cisler, Josh

    2018-01-01

    Numerous data demonstrate that distracting emotional stimuli cause behavioral slowing (i.e. emotional conflict) and that behavior dynamically adapts to such distractors. However, the cognitive and neural mechanisms that mediate these behavioral findings are poorly understood. Several theoretical models have been developed that attempt to explain these phenomena, but these models have not been directly tested on human behavior nor compared. A potential tool to overcome this limitation is Hidden Markov Modeling (HMM), which is a computational approach to modeling indirectly observed systems. Here, we administered an emotional Stroop task to a sample of healthy adolescent girls (N = 24) during fMRI and used HMM to implement theoretical behavioral models. We then compared the model fits and tested for neural representations of the hidden states of the most supported model. We found that a modified variant of the model posited by Mathews et al. (1998) was most concordant with observed behavior and that brain activity was related to the model-based hidden states. Particularly, while the valences of the stimuli themselves were encoded primarily in the ventral visual cortex, the model-based detection of threatening targets was associated with increased activity in the bilateral anterior insula, while task effort (i.e. adaptation) was associated with reduction in the activity of these areas. These findings suggest that emotional target detection and adaptation are accomplished partly through increases and decreases, respectively, in the perceived immediate relevance of threatening cues and also demonstrate the efficacy of using HMM to apply theoretical models to human behavior. PMID:29489856

  10. Automatic anatomy recognition using neural network learning of object relationships via virtual landmarks

    NASA Astrophysics Data System (ADS)

    Yan, Fengxia; Udupa, Jayaram K.; Tong, Yubing; Xu, Guoping; Odhner, Dewey; Torigian, Drew A.

    2018-03-01

    The recently developed body-wide Automatic Anatomy Recognition (AAR) methodology depends on fuzzy modeling of individual objects, hierarchically arranging objects, constructing an anatomy ensemble of these models, and a dichotomous object recognition-delineation process. The parent-to-offspring spatial relationship in the object hierarchy is crucial in the AAR method. We have found this relationship to be quite complex, and as such any improvement in capturing this relationship information in the anatomy model will improve the process of recognition itself. Currently, the method encodes this relationship based on the layout of the geometric centers of the objects. Motivated by the concept of virtual landmarks (VLs), this paper presents a new one-shot AAR recognition method that utilizes the VLs to learn object relationships by training a neural network to predict the pose and the VLs of an offspring object given the VLs of the parent object in the hierarchy. We set up two neural networks for each parent-offspring object pair in a body region, one for predicting the VLs and another for predicting the pose parameters. The VL-based learning/prediction method is evaluated on two object hierarchies involving 14 objects. We utilize 54 computed tomography (CT) image data sets of head and neck cancer patients and the associated object contours drawn by dosimetrists for routine radiation therapy treatment planning. The VL neural network method is found to yield more accurate object localization than the currently used simple AAR method.

  11. The associative memory deficit in aging is related to reduced selectivity of brain activity during encoding

    PubMed Central

    Saverino, Cristina; Fatima, Zainab; Sarraf, Saman; Oder, Anita; Strother, Stephen C.; Grady, Cheryl L.

    2016-01-01

    Human aging is characterized by reductions in the ability to remember associations between items, despite intact memory for single items. Older adults also show less selectivity in task-related brain activity, such that patterns of activation become less distinct across multiple experimental tasks. This reduced selectivity, or dedifferentiation, has been found for episodic memory, which is often reduced in older adults, but not for semantic memory, which is maintained with age. We used functional magnetic resonance imaging (fMRI) to investigate whether there is a specific reduction in selectivity of brain activity during associative encoding in older adults, but not during item encoding, and whether this reduction predicts associative memory performance. Healthy young and older adults were scanned while performing an incidental-encoding task for pictures of objects and houses under item or associative instructions. An old/new recognition test was administered outside the scanner. We used agnostic canonical variates analysis and split-half resampling to detect whole brain patterns of activation that predicted item vs. associative encoding for stimuli that were later correctly recognized. Older adults had poorer memory for associations than did younger adults, whereas item memory was comparable across groups. Associative encoding trials, but not item encoding trials, were predicted less successfully in older compared to young adults, indicating less distinct patterns of associative-related activity in the older group. Importantly, higher probability of predicting associative encoding trials was related to better associative memory after accounting for age and performance on a battery of neuropsychological tests. These results provide evidence that neural distinctiveness at encoding supports associative memory and that a specific reduction of selectivity in neural recruitment underlies age differences in associative memory. PMID:27082043

  12. Disparity channels in early vision

    PubMed Central

    Roe, AW; Parker, AJ; Born, RT; DeAngelis, GC

    2008-01-01

    The last decade has seen a dramatic increase in our knowledge of the neural basis of stereopsis. New cortical areas have been found to represent binocular disparities, new representations of disparity information (e.g., relative disparity signals) have been uncovered, the first topographic maps of disparity have been measured, and the first causal links between neural activity and depth perception have been established. Equally exciting is the finding that training and experience affects how signals are channeled through different brain areas, a flexibility that may be crucial for learning, plasticity, and recovery of function. The collective efforts of several laboratories have established stereo vision as one of the most productive model systems for elucidating the neural basis of perception. Much remains to be learned about how the disparity signals that are initially encoded in primary visual cortex are routed to and processed by extrastriate areas to mediate the diverse capacities of 3D vision that enhance our daily experience of the world. PMID:17978018

  13. Encoding of Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory Cortex

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, Rainer; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2014-01-01

    Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex. PMID:24391486

  14. The attentional blink reveals serial working memory encoding: evidence from virtual and human event-related potentials.

    PubMed

    Craston, Patrick; Wyble, Brad; Chennu, Srivas; Bowman, Howard

    2009-03-01

    Observers often miss a second target (T2) if it follows an identified first target item (T1) within half a second in rapid serial visual presentation (RSVP), a finding termed the attentional blink. If two targets are presented in immediate succession, however, accuracy is excellent (Lag 1 sparing). The resource sharing hypothesis proposes a dynamic distribution of resources over a time span of up to 600 msec during the attentional blink. In contrast, the ST(2) model argues that working memory encoding is serial during the attentional blink and that, due to joint consolidation, Lag 1 is the only case where resources are shared. Experiment 1 investigates the P3 ERP component evoked by targets in RSVP. The results suggest that, in this context, P3 amplitude is an indication of bottom-up strength rather than a measure of cognitive resource allocation. Experiment 2, employing a two-target paradigm, suggests that T1 consolidation is not affected by the presentation of T2 during the attentional blink. However, if targets are presented in immediate succession (Lag 1 sparing), they are jointly encoded into working memory. We use the ST(2) model's neural network implementation, which replicates a range of behavioral results related to the attentional blink, to generate "virtual ERPs" by summing across activation traces. We compare virtual to human ERPs and show how the results suggest a serial nature of working memory encoding as implied by the ST(2) model.

  15. Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis.

    PubMed

    Wang, Yuan; Wang, Yao; Lui, Yvonne W

    2018-05-18

    Dynamic Causal Modeling (DCM) is an advanced biophysical model which explicitly describes the entire process from experimental stimuli to functional magnetic resonance imaging (fMRI) signals via neural activity and cerebral hemodynamics. To conduct a DCM study, one needs to represent the experimental stimuli as a compact vector-valued function of time, which is hard in complex tasks such as book reading and natural movie watching. Deep learning provides the state-of-the-art signal representation solution, encoding complex signals into compact dense vectors while preserving the essence of the original signals. There is growing interest in using Recurrent Neural Networks (RNNs), a major family of deep learning techniques, in fMRI modeling. However, the generic RNNs used in existing studies work as black boxes, making the interpretation of results in a neuroscience context difficult and obscure. In this paper, we propose a new biophysically interpretable RNN built on DCM, DCM-RNN. We generalize the vanilla RNN and show that DCM can be cast faithfully as a special form of the generalized RNN. DCM-RNN uses back propagation for parameter estimation. We believe DCM-RNN is a promising tool for neuroscience. It can fit seamlessly into classical DCM studies. We demonstrate face validity of DCM-RNN in two principal applications of DCM: causal brain architecture hypotheses testing and effective connectivity estimation. We also demonstrate construct validity of DCM-RNN in an attention-visual experiment. Moreover, DCM-RNN enables end-to-end training of DCM and representation learning deep neural networks, extending DCM studies to complex tasks. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Experiments on neural network architectures for fuzzy logic

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1991-01-01

    The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.

  17. Lingering representations of stimuli influence recall organization

    PubMed Central

    Chan, Stephanie C.Y.; Applegate, Marissa C.; Morton, Neal W; Polyn, Sean M.; Norman, Kenneth A.

    2017-01-01

    Several prominent theories posit that information about recent experiences lingers in the brain and organizes memories for current experiences, by forming a temporal context that is linked to those memories at encoding. According to these theories, if the thoughts preceding an experience X resemble the thoughts preceding an experience Y, then X and Y should show an elevated probability of being recalled together. We tested this prediction by using multi-voxel pattern analysis (MVPA) of fMRI data to measure neural evidence for lingering processing of preceding stimuli. As predicted, memories encoded with similar lingering thoughts about the category of preceding stimuli were more likely to be recalled together. Our results demonstrate that the “fading embers” of previous stimuli help to organize recall, confirming a key prediction of computational models of episodic memory. PMID:28132858

  18. A neural coding scheme reproducing foraging trajectories

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Esther D.; Cabrera, Juan Luis

    2015-12-01

    The movement of many animals may follow Lévy patterns. The underlying generating neuronal dynamics of such a behavior is unknown. In this paper we show that a novel discovery of multifractality in winnerless competition (WLC) systems reveals a potential encoding mechanism that is translatable into two dimensional superdiffusive Lévy movements. The validity of our approach is tested on a conductance based neuronal model showing WLC and through the extraction of Lévy flights inducing fractals from recordings of rat hippocampus during open field foraging. Further insights are gained analyzing mice motor cortex neurons and non motor cell signals. The proposed mechanism provides a plausible explanation for the neuro-dynamical fundamentals of spatial searching patterns observed in animals (including humans) and illustrates an until now unknown way to encode information in neuronal temporal series.

  19. Breast tumor malignancy modelling using evolutionary neural logic networks.

    PubMed

    Tsakonas, Athanasios; Dounias, Georgios; Panagi, Georgia; Panourgias, Evangelia

    2006-01-01

    The present work proposes a computer assisted methodology for the effective modelling of the diagnostic decision for breast tumor malignancy. The suggested approach is based on innovative hybrid computational intelligence algorithms properly applied in related cytological data contained in past medical records. The experimental data used in this study were gathered in the early 1990s in the University of Wisconsin, based in post diagnostic cytological observations performed by expert medical staff. Data were properly encoded in a computer database and accordingly, various alternative modelling techniques were applied on them, in an attempt to form diagnostic models. Previous methods included standard optimisation techniques, as well as artificial intelligence approaches, in a way that a variety of related publications exists in modern literature on the subject. In this report, a hybrid computational intelligence approach is suggested, which effectively combines modern mathematical logic principles, neural computation and genetic programming in an effective manner. The approach proves promising either in terms of diagnostic accuracy and generalization capabilities, or in terms of comprehensibility and practical importance for the related medical staff.

  20. The modular modality frame model: continuous body state estimation and plausibility-weighted information fusion.

    PubMed

    Ehrenfeld, Stephan; Butz, Martin V

    2013-02-01

    Humans show admirable capabilities in movement planning and execution. They can perform complex tasks in various contexts, using the available sensory information very effectively. Body models and continuous body state estimations appear necessary to realize such capabilities. We introduce the Modular Modality Frame (MMF) model, which maintains a highly distributed, modularized body model continuously updating, modularized probabilistic body state estimations over time. Modularization is realized with respect to modality frames, that is, sensory modalities in particular frames of reference and with respect to particular body parts. We evaluate MMF performance on a simulated, nine degree of freedom arm in 3D space. The results show that MMF is able to maintain accurate body state estimations despite high sensor and motor noise. Moreover, by comparing the sensory information available in different modality frames, MMF can identify faulty sensory measurements on the fly. In the near future, applications to lightweight robot control should be pursued. Moreover, MMF may be enhanced with neural encodings by introducing neural population codes and learning techniques. Finally, more dexterous goal-directed behavior should be realized by exploiting the available redundant state representations.

  1. Successful physiological aging and episodic memory: a brain stimulation study.

    PubMed

    Manenti, Rosa; Cotelli, Maria; Miniussi, Carlo

    2011-01-01

    Functional neuroimaging studies have shown that younger adults tend to asymmetrically recruit specific regions of an hemisphere in an episodic memory task (Hemispheric Encoding Retrieval Asymmetry-HERA model). In older adults, this hemispheric asymmetry is generally reduced as suggested by the Hemispheric Asymmetry Reduction for OLDer Adults-HAROLD-model. Recent works suggest that while low-performing older adults do not show this reduced asymmetry, high-performing older adults counteract age-related neural decline through a plastic reorganization of cerebral networks that results in reduced functional asymmetry. However, the issue of whether high- and low-performing older adults show different degrees of asymmetry and the relevance of this process for counteracting aging have not been clarified. We used transcranial magnetic stimulation (TMS) to transiently interfere with the function of the dorsolateral prefrontal cortex (DLPFC) during encoding or retrieval of associated and non-associated word pairs. A group of healthy older adults was studied during encoding and retrieval of word pairs. The subjects were divided in two subgroups according to their experimental performance (i.e., high- and low-performing). TMS effects on retrieval differed according to the subject's subgroup. In particular, the predominance of left vs. right DLPFC effects during encoding, predicted by the HERA model, was observed only in low-performing older adults, while the asymmetry reduction predicted by the HAROLD model was selectively shown for the high-performing group. The present data confirm that older adults with higher memory performance show less prefrontal asymmetry as an efficient strategy to counteract age-related memory decline. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Neural Population Coding of Multiple Stimuli

    PubMed Central

    Ma, Wei Ji

    2015-01-01

    In natural scenes, objects generally appear together with other objects. Yet, theoretical studies of neural population coding typically focus on the encoding of single objects in isolation. Experimental studies suggest that neural responses to multiple objects are well described by linear or nonlinear combinations of the responses to constituent objects, a phenomenon we call stimulus mixing. Here, we present a theoretical analysis of the consequences of common forms of stimulus mixing observed in cortical responses. We show that some of these mixing rules can severely compromise the brain's ability to decode the individual objects. This cost is usually greater than the cost incurred by even large reductions in the gain or large increases in neural variability, explaining why the benefits of attention can be understood primarily in terms of a stimulus selection, or demixing, mechanism rather than purely as a gain increase or noise reduction mechanism. The cost of stimulus mixing becomes even higher when the number of encoded objects increases, suggesting a novel mechanism that might contribute to set size effects observed in myriad psychophysical tasks. We further show that a specific form of neural correlation and heterogeneity in stimulus mixing among the neurons can partially alleviate the harmful effects of stimulus mixing. Finally, we derive simple conditions that must be satisfied for unharmful mixing of stimuli. PMID:25740513

  3. A review and analysis of neural networks for classification of remotely sensed multispectral imagery

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1993-01-01

    A literature survey and analysis of the use of neural networks for the classification of remotely sensed multispectral imagery is presented. As part of a brief mathematical review, the backpropagation algorithm, which is the most common method of training multi-layer networks, is discussed with an emphasis on its application to pattern recognition. The analysis is divided into five aspects of neural network classification: (1) input data preprocessing, structure, and encoding; (2) output encoding and extraction of classes; (3) network architecture, (4) training algorithms; and (5) comparisons to conventional classifiers. The advantages of the neural network method over traditional classifiers are its non-parametric nature, arbitrary decision boundary capabilities, easy adaptation to different types of data and input structures, fuzzy output values that can enhance classification, and good generalization for use with multiple images. The disadvantages of the method are slow training time, inconsistent results due to random initial weights, and the requirement of obscure initialization values (e.g., learning rate and hidden layer size). Possible techniques for ameliorating these problems are discussed. It is concluded that, although the neural network method has several unique capabilities, it will become a useful tool in remote sensing only if it is made faster, more predictable, and easier to use.

  4. How the prior information shapes couplings in neural fields performing optimal multisensory integration

    NASA Astrophysics Data System (ADS)

    Wang, He; Zhang, Wen-Hao; Wong, K. Y. Michael; Wu, Si

    Extensive studies suggest that the brain integrates multisensory signals in a Bayesian optimal way. However, it remains largely unknown how the sensory reliability and the prior information shape the neural architecture. In this work, we propose a biologically plausible neural field model, which can perform optimal multisensory integration and encode the whole profile of the posterior. Our model is composed of two modules, each for one modality. The crosstalks between the two modules can be carried out through feedforwad cross-links and reciprocal connections. We found that the reciprocal couplings are crucial to optimal multisensory integration in that the reciprocal coupling pattern is shaped by the correlation in the joint prior distribution of the sensory stimuli. A perturbative approach is developed to illustrate the relation between the prior information and features in coupling patterns quantitatively. Our results show that a decentralized architecture based on reciprocal connections is able to accommodate complex correlation structures across modalities and utilize this prior information in optimal multisensory integration. This work is supported by the Research Grants Council of Hong Kong (N_HKUST606/12 and 605813) and National Basic Research Program of China (2014CB846101) and the Natural Science Foundation of China (31261160495).

  5. A neural mechanism for detecting the distance of a selected target by modulating the FM sweep rate of biosonar in echolocation of bat.

    PubMed

    Kamata, Eigo; Inoue, Satoru; Zheng, MeiHong; Kashimori, Yoshiki; Kambara, Takeshi

    2004-01-01

    Most species of bats making echolocation use frequency modulated (FM) ultrasonic pulses to measure the distance to targets. These bats detect with a high accuracy the arrival time differences between emitted pulses and their echoes generated by targets. In order to clarify the neural mechanism for echolocation, we present neural model of inferior colliculus (IC), medial geniculate body (MGB) and auditory cortex (AC) along which information of echo delay times is processed. The bats increase the downward frequency sweep rate of emitted FM pulse as they approach the target. The functional role of this modulation of sweep rate is not yet clear. In order to investigate the role, we calculated the response properties of our models of IC, MGB, and AC changing the target distance and the sweep rate. We found based on the simulations that the distance of a target in various ranges may be encoded the most clearly into the activity pattern of delay time map network in AC, when the sweep rate of FM pulse used is coincided with the observed value which the bats adopt for each range of target distance.

  6. The neuronal encoding of information in the brain.

    PubMed

    Rolls, Edmund T; Treves, Alessandro

    2011-11-01

    We describe the results of quantitative information theoretic analyses of neural encoding, particularly in the primate visual, olfactory, taste, hippocampal, and orbitofrontal cortex. Most of the information turns out to be encoded by the firing rates of the neurons, that is by the number of spikes in a short time window. This has been shown to be a robust code, for the firing rate representations of different neurons are close to independent for small populations of neurons. Moreover, the information can be read fast from such encoding, in as little as 20 ms. In quantitative information theoretic studies, only a little additional information is available in temporal encoding involving stimulus-dependent synchronization of different neurons, or the timing of spikes within the spike train of a single neuron. Feature binding appears to be solved by feature combination neurons rather than by temporal synchrony. The code is sparse distributed, with the spike firing rate distributions close to exponential or gamma. A feature of the code is that it can be read by neurons that take a synaptically weighted sum of their inputs. This dot product decoding is biologically plausible. Understanding the neural code is fundamental to understanding not only how the cortex represents, but also processes, information. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Level of processing modulates the neural correlates of emotional memory formation

    PubMed Central

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2010-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study employed a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. FMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral prefrontal cortex demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information. PMID:20350176

  8. Level of processing modulates the neural correlates of emotional memory formation.

    PubMed

    Ritchey, Maureen; LaBar, Kevin S; Cabeza, Roberto

    2011-04-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. fMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral PFC demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information.

  9. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities

    PubMed Central

    Dixon, Jill; Jones, Natalie C.; Sandell, Lisa L.; Jayasinghe, Sachintha M.; Crane, Jennifer; Rey, Jean-Philippe; Dixon, Michael J.; Trainor, Paul A.

    2006-01-01

    Neural crest cells are a migratory cell population that give rise to the majority of the cartilage, bone, connective tissue, and sensory ganglia in the head. Abnormalities in the formation, proliferation, migration, and differentiation phases of the neural crest cell life cycle can lead to craniofacial malformations, which constitute one-third of all congenital birth defects. Treacher Collins syndrome (TCS) is characterized by hypoplasia of the facial bones, cleft palate, and middle and external ear defects. Although TCS results from autosomal dominant mutations of the gene TCOF1, the mechanistic origins of the abnormalities observed in this condition are unknown, and the function of Treacle, the protein encoded by TCOF1, remains poorly understood. To investigate the developmental basis of TCS we generated a mouse model through germ-line mutation of Tcof1. Haploinsufficiency of Tcof1 leads to a deficiency in migrating neural crest cells, which results in severe craniofacial malformations. We demonstrate that Tcof1/Treacle is required cell-autonomously for the formation and proliferation of neural crest cells. Tcof1/Treacle regulates proliferation by controlling the production of mature ribosomes. Therefore, Tcof1/Treacle is a unique spatiotemporal regulator of ribosome biogenesis, a deficiency that disrupts neural crest cell formation and proliferation, causing the hypoplasia characteristic of TCS craniofacial anomalies. PMID:16938878

  10. The COP9 Signalosome Converts Temporal Hormone Signaling to Spatial Restriction on Neural Competence

    PubMed Central

    Huang, Yi-Chun; Lu, Yu-Nung; Wu, June-Tai; Chien, Cheng-Ting; Pi, Haiwei

    2014-01-01

    During development, neural competence is conferred and maintained by integrating spatial and temporal regulations. The Drosophila sensory bristles that detect mechanical and chemical stimulations are arranged in stereotypical positions. The anterior wing margin (AWM) is arrayed with neuron-innervated sensory bristles, while posterior wing margin (PWM) bristles are non-innervated. We found that the COP9 signalosome (CSN) suppresses the neural competence of non-innervated bristles at the PWM. In CSN mutants, PWM bristles are transformed into neuron-innervated, which is attributed to sustained expression of the neural-determining factor Senseless (Sens). The CSN suppresses Sens through repression of the ecdysone signaling target gene broad (br) that encodes the BR-Z1 transcription factor to activate sens expression. Strikingly, CSN suppression of BR-Z1 is initiated at the prepupa-to-pupa transition, leading to Sens downregulation, and termination of the neural competence of PWM bristles. The role of ecdysone signaling to repress br after the prepupa-to-pupa transition is distinct from its conventional role in activation, and requires CSN deneddylating activity and multiple cullins, the major substrates of deneddylation. Several CSN subunits physically associate with ecdysone receptors to represses br at the transcriptional level. We propose a model in which nuclear hormone receptors cooperate with the deneddylation machinery to temporally shutdown downstream target gene expression, conferring a spatial restriction on neural competence at the PWM. PMID:25393278

  11. Musical Training during Early Childhood Enhances the Neural Encoding of Speech in Noise

    ERIC Educational Resources Information Center

    Strait, Dana L.; Parbery-Clark, Alexandra; Hittner, Emily; Kraus, Nina

    2012-01-01

    For children, learning often occurs in the presence of background noise. As such, there is growing desire to improve a child's access to a target signal in noise. Given adult musicians' perceptual and neural speech-in-noise enhancements, we asked whether similar effects are present in musically-trained children. We assessed the perception and…

  12. Effects of Study Task on the Neural Correlates of Source Encoding

    ERIC Educational Resources Information Center

    Park, Heekyeong; Uncapher, Melina R.; Rugg, Michael D.

    2008-01-01

    The present study investigated whether the neural correlates of source memory vary according to study task. Subjects studied visually presented words in one of two background contexts. In each test, subjects made old/new recognition and source memory judgments. In one study test cycle, study words were subjected to animacy judgments, whereas in…

  13. Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders

    NASA Astrophysics Data System (ADS)

    Rußwurm, Marc; Körner, Marco

    2018-03-01

    Earth observation (EO) sensors deliver data with daily or weekly temporal resolution. Most land use and land cover (LULC) approaches, however, expect cloud-free and mono-temporal observations. The increasing temporal capabilities of today's sensors enables the use of temporal, along with spectral and spatial features. Domains, such as speech recognition or neural machine translation, work with inherently temporal data and, today, achieve impressive results using sequential encoder-decoder structures. Inspired by these sequence-to-sequence models, we adapt an encoder structure with convolutional recurrent layers in order to approximate a phenological model for vegetation classes based on a temporal sequence of Sentinel 2 (S2) images. In our experiments, we visualize internal activations over a sequence of cloudy and non-cloudy images and find several recurrent cells, which reduce the input activity for cloudy observations. Hence, we assume that our network has learned cloud-filtering schemes solely from input data, which could alleviate the need for tedious cloud-filtering as a preprocessing step for many EO approaches. Moreover, using unfiltered temporal series of top-of-atmosphere (TOA) reflectance data, we achieved in our experiments state-of-the-art classification accuracies on a large number of crop classes with minimal preprocessing compared to other classification approaches.

  14. Language-Dependent Pitch Encoding Advantage in the Brainstem Is Not Limited to Acceleration Rates that Occur in Natural Speech

    ERIC Educational Resources Information Center

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Smalt, Christopher J.; Bidelman, Gavin M.

    2010-01-01

    Experience-dependent enhancement of neural encoding of pitch in the auditory brainstem has been observed for only specific portions of native pitch contours exhibiting high rates of pitch acceleration, irrespective of speech or nonspeech contexts. This experiment allows us to determine whether this language-dependent advantage transfers to…

  15. Deep feature representation with stacked sparse auto-encoder and convolutional neural network for hyperspectral imaging-based detection of cucumber defects

    USDA-ARS?s Scientific Manuscript database

    It is challenging to achieve rapid and accurate processing of large amounts of hyperspectral image data. This research was aimed to develop a novel classification method by employing deep feature representation with the stacked sparse auto-encoder (SSAE) and the SSAE combined with convolutional neur...

  16. Glucose Administration Enhances fMRI Brain Activation and Connectivity Related to Episodic Memory Encoding for Neutral and Emotional Stimuli

    ERIC Educational Resources Information Center

    Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan

    2011-01-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…

  17. Sf3b4-depleted Xenopus embryos: a model to study the pathogenesis of craniofacial defects in Nager syndrome

    PubMed Central

    Devotta, Arun; Juraver-Geslin, Hugo; Gonzalez, Jose Antonio; Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre

    2016-01-01

    Mandibulofacial dysostosis (MFD) is a human developmental disorder characterized by defects of the facial bones. It is the second most frequent craniofacial malformation after cleft lip and palate. Nager syndrome combines many features of MFD with a variety of limb defects. Mutations in SF3B4 (splicing factor 3b, subunit 4) gene, which encodes a component of the pre-mRNA spliceosomal complex, were recently identified as a cause for Nager syndrome, accounting for 60% of affected individuals. Nothing is known about the cellular pathogenesis underlying Nager type MFD. Here we describe the first animal model for Nager syndrome, generated by knocking down Sf3b4 function in Xenopus laevis embryos, using morpholino antisense oligonucleotides. Our results indicate that Sf3b4-depleted embryos show reduced expression of the neural crest genes sox10, snail2 and twist at the neural plate border, associated with a broadening of the neural plate. This phenotype can be rescued by injection of wild-type human SF3B4 mRNA but not by mRNAs carrying mutations that cause Nager syndrome. At the tailbud stage, morphant embryos had decreased sox10 and tfap2a expression in the pharyngeal arches, indicative of a reduced number of neural crest cells. Later in development, Sf3b4-depleted tadpoles exhibited hypoplasia of neural crest-derived craniofacial cartilages, phenocopying aspects of the craniofacial skeletal defects seen in Nager syndrome patients. With this animal model we are now poised to gain important insights into the etiology and pathogenesis of Nager type MFD, and to identify the molecular targets of Sf3b4. PMID:26874011

  18. Inhibition delay increases neural network capacity through Stirling transform.

    PubMed

    Nogaret, Alain; King, Alastair

    2018-03-01

    Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2)^{-N}-fold increase in capacity for an N-neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.

  19. Inhibition delay increases neural network capacity through Stirling transform

    NASA Astrophysics Data System (ADS)

    Nogaret, Alain; King, Alastair

    2018-03-01

    Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2) -N-fold increase in capacity for an N -neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.

  20. A brain-based account of “basic-level” concepts

    PubMed Central

    Bauer, Andrew James; Just, Marcel Adam

    2017-01-01

    This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. PMID:28826947

  1. A brain-based account of "basic-level" concepts.

    PubMed

    Bauer, Andrew James; Just, Marcel Adam

    2017-11-01

    This study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction. The representation of basic-level concepts (e.g. bird) was spatially broad, encompassing sensorimotor brain areas that encode concrete object properties, and also language and heteromodal integrative areas that encode abstract semantic content. The representation of subordinate-level concepts (robin) was less widely distributed, concentrated in perceptual areas that underlie concrete content. Furthermore, basic-level concepts were representative of their subordinates in that they were neurally similar to their typical but not atypical subordinates (bird was neurally similar to robin but not woodpecker). The findings provide a brain-based account of the advantages that basic-level concepts enjoy in everyday life over subordinate-level concepts: the basic level is a broad topographical representation that encompasses both concrete and abstract semantic content, reflecting the multifaceted yet intuitive meaning of basic-level concepts. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis.

    PubMed

    Evans, Samuel; Davis, Matthew H

    2015-12-01

    How humans extract the identity of speech sounds from highly variable acoustic signals remains unclear. Here, we use searchlight representational similarity analysis (RSA) to localize and characterize neural representations of syllables at different levels of the hierarchically organized temporo-frontal pathways for speech perception. We asked participants to listen to spoken syllables that differed considerably in their surface acoustic form by changing speaker and degrading surface acoustics using noise-vocoding and sine wave synthesis while we recorded neural responses with functional magnetic resonance imaging. We found evidence for a graded hierarchy of abstraction across the brain. At the peak of the hierarchy, neural representations in somatomotor cortex encoded syllable identity but not surface acoustic form, at the base of the hierarchy, primary auditory cortex showed the reverse. In contrast, bilateral temporal cortex exhibited an intermediate response, encoding both syllable identity and the surface acoustic form of speech. Regions of somatomotor cortex associated with encoding syllable identity in perception were also engaged when producing the same syllables in a separate session. These findings are consistent with a hierarchical account of how variable acoustic signals are transformed into abstract representations of the identity of speech sounds. © The Author 2015. Published by Oxford University Press.

  3. Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis.

    PubMed

    Patel, Aniruddh D

    2011-01-01

    Mounting evidence suggests that musical training benefits the neural encoding of speech. This paper offers a hypothesis specifying why such benefits occur. The "OPERA" hypothesis proposes that such benefits are driven by adaptive plasticity in speech-processing networks, and that this plasticity occurs when five conditions are met. These are: (1) Overlap: there is anatomical overlap in the brain networks that process an acoustic feature used in both music and speech (e.g., waveform periodicity, amplitude envelope), (2) Precision: music places higher demands on these shared networks than does speech, in terms of the precision of processing, (3) Emotion: the musical activities that engage this network elicit strong positive emotion, (4) Repetition: the musical activities that engage this network are frequently repeated, and (5) Attention: the musical activities that engage this network are associated with focused attention. According to the OPERA hypothesis, when these conditions are met neural plasticity drives the networks in question to function with higher precision than needed for ordinary speech communication. Yet since speech shares these networks with music, speech processing benefits. The OPERA hypothesis is used to account for the observed superior subcortical encoding of speech in musically trained individuals, and to suggest mechanisms by which musical training might improve linguistic reading abilities.

  4. Diabetes and apoptosis: neural crest cells and neural tube.

    PubMed

    Chappell, James H; Wang, Xiao Dan; Loeken, Mary R

    2009-12-01

    Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy.

  5. Diabetes and apoptosis: neural crest cells and neural tube

    PubMed Central

    Chappell, James H.; Dan Wang, Xiao

    2016-01-01

    Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy. PMID:19333760

  6. Cracking the Neural Code for Sensory Perception by Combining Statistics, Intervention, and Behavior.

    PubMed

    Panzeri, Stefano; Harvey, Christopher D; Piasini, Eugenio; Latham, Peter E; Fellin, Tommaso

    2017-02-08

    The two basic processes underlying perceptual decisions-how neural responses encode stimuli, and how they inform behavioral choices-have mainly been studied separately. Thus, although many spatiotemporal features of neural population activity, or "neural codes," have been shown to carry sensory information, it is often unknown whether the brain uses these features for perception. To address this issue, we propose a new framework centered on redefining the neural code as the neural features that carry sensory information used by the animal to drive appropriate behavior; that is, the features that have an intersection between sensory and choice information. We show how this framework leads to a new statistical analysis of neural activity recorded during behavior that can identify such neural codes, and we discuss how to combine intersection-based analysis of neural recordings with intervention on neural activity to determine definitively whether specific neural activity features are involved in a task. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing

    PubMed Central

    Ache, Jan M.; Dürr, Volker

    2015-01-01

    Many animals, including humans, rely on active tactile sensing to explore the environment and negotiate obstacles, especially in the dark. Here, we model a descending neural pathway that mediates short-latency proprioceptive information from a tactile sensor on the head to thoracic neural networks. We studied the nocturnal stick insect Carausius morosus, a model organism for the study of adaptive locomotion, including tactually mediated reaching movements. Like mammals, insects need to move their tactile sensors for probing the environment. Cues about sensor position and motion are therefore crucial for the spatial localization of tactile contacts and the coordination of fast, adaptive motor responses. Our model explains how proprioceptive information about motion and position of the antennae, the main tactile sensors in insects, can be encoded by a single type of mechanosensory afferents. Moreover, it explains how this information is integrated and mediated to thoracic neural networks by a diverse population of descending interneurons (DINs). First, we quantified responses of a DIN population to changes in antennal position, motion and direction of movement. Using principal component (PC) analysis, we find that only two PCs account for a large fraction of the variance in the DIN response properties. We call the two-dimensional space spanned by these PCs ‘coding-space’ because it captures essential features of the entire DIN population. Second, we model the mechanoreceptive input elements of this descending pathway, a population of proprioceptive mechanosensory hairs monitoring deflection of the antennal joints. Finally, we propose a computational framework that can model the response properties of all important DIN types, using the hair field model as its only input. This DIN model is validated by comparison of tuning characteristics, and by mapping the modelled neurons into the two-dimensional coding-space of the real DIN population. This reveals the versatility of the framework for modelling a complete descending neural pathway. PMID:26158851

  8. The neural representation of the gender of faces in the primate visual system: A computer modeling study.

    PubMed

    Minot, Thomas; Dury, Hannah L; Eguchi, Akihiro; Humphreys, Glyn W; Stringer, Simon M

    2017-03-01

    We use an established neural network model of the primate visual system to show how neurons might learn to encode the gender of faces. The model consists of a hierarchy of 4 competitive neuronal layers with associatively modifiable feedforward synaptic connections between successive layers. During training, the network was presented with many realistic images of male and female faces, during which the synaptic connections are modified using biologically plausible local associative learning rules. After training, we found that different subsets of output neurons have learned to respond exclusively to either male or female faces. With the inclusion of short range excitation within each neuronal layer to implement a self-organizing map architecture, neurons representing either male or female faces were clustered together in the output layer. This learning process is entirely unsupervised, as the gender of the face images is not explicitly labeled and provided to the network as a supervisory training signal. These simulations are extended to training the network on rotating faces. It is found that by using a trace learning rule incorporating a temporal memory trace of recent neuronal activity, neurons responding selectively to either male or female faces were also able to learn to respond invariantly over different views of the faces. This kind of trace learning has been previously shown to operate within the primate visual system by neurophysiological and psychophysical studies. The computer simulations described here predict that similar neurons encoding the gender of faces will be present within the primate visual system. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. The Functional Role of Neural Oscillations in Non-Verbal Emotional Communication

    PubMed Central

    Symons, Ashley E.; El-Deredy, Wael; Schwartze, Michael; Kotz, Sonja A.

    2016-01-01

    Effective interpersonal communication depends on the ability to perceive and interpret nonverbal emotional expressions from multiple sensory modalities. Current theoretical models propose that visual and auditory emotion perception involves a network of brain regions including the primary sensory cortices, the superior temporal sulcus (STS), and orbitofrontal cortex (OFC). However, relatively little is known about how the dynamic interplay between these regions gives rise to the perception of emotions. In recent years, there has been increasing recognition of the importance of neural oscillations in mediating neural communication within and between functional neural networks. Here we review studies investigating changes in oscillatory activity during the perception of visual, auditory, and audiovisual emotional expressions, and aim to characterize the functional role of neural oscillations in nonverbal emotion perception. Findings from the reviewed literature suggest that theta band oscillations most consistently differentiate between emotional and neutral expressions. While early theta synchronization appears to reflect the initial encoding of emotionally salient sensory information, later fronto-central theta synchronization may reflect the further integration of sensory information with internal representations. Additionally, gamma synchronization reflects facilitated sensory binding of emotional expressions within regions such as the OFC, STS, and, potentially, the amygdala. However, the evidence is more ambiguous when it comes to the role of oscillations within the alpha and beta frequencies, which vary as a function of modality (or modalities), presence or absence of predictive information, and attentional or task demands. Thus, the synchronization of neural oscillations within specific frequency bands mediates the rapid detection, integration, and evaluation of emotional expressions. Moreover, the functional coupling of oscillatory activity across multiples frequency bands supports a predictive coding model of multisensory emotion perception in which emotional facial and body expressions facilitate the processing of emotional vocalizations. PMID:27252638

  10. The Functional Role of Neural Oscillations in Non-Verbal Emotional Communication.

    PubMed

    Symons, Ashley E; El-Deredy, Wael; Schwartze, Michael; Kotz, Sonja A

    2016-01-01

    Effective interpersonal communication depends on the ability to perceive and interpret nonverbal emotional expressions from multiple sensory modalities. Current theoretical models propose that visual and auditory emotion perception involves a network of brain regions including the primary sensory cortices, the superior temporal sulcus (STS), and orbitofrontal cortex (OFC). However, relatively little is known about how the dynamic interplay between these regions gives rise to the perception of emotions. In recent years, there has been increasing recognition of the importance of neural oscillations in mediating neural communication within and between functional neural networks. Here we review studies investigating changes in oscillatory activity during the perception of visual, auditory, and audiovisual emotional expressions, and aim to characterize the functional role of neural oscillations in nonverbal emotion perception. Findings from the reviewed literature suggest that theta band oscillations most consistently differentiate between emotional and neutral expressions. While early theta synchronization appears to reflect the initial encoding of emotionally salient sensory information, later fronto-central theta synchronization may reflect the further integration of sensory information with internal representations. Additionally, gamma synchronization reflects facilitated sensory binding of emotional expressions within regions such as the OFC, STS, and, potentially, the amygdala. However, the evidence is more ambiguous when it comes to the role of oscillations within the alpha and beta frequencies, which vary as a function of modality (or modalities), presence or absence of predictive information, and attentional or task demands. Thus, the synchronization of neural oscillations within specific frequency bands mediates the rapid detection, integration, and evaluation of emotional expressions. Moreover, the functional coupling of oscillatory activity across multiples frequency bands supports a predictive coding model of multisensory emotion perception in which emotional facial and body expressions facilitate the processing of emotional vocalizations.

  11. Inferior colliculus contributions to phase encoding of stop consonants in an animal model

    PubMed Central

    Warrier, Catherine M; Abrams, Daniel A; Nicol, Trent G; Kraus, Nina

    2011-01-01

    The human auditory brainstem is known to be exquisitely sensitive to fine-grained spectro-temporal differences between speech sound contrasts, and the ability of the brainstem to discriminate between these contrasts is important for speech perception. Recent work has described a novel method for translating brainstem timing differences in response to speech contrasts into frequency-specific phase differentials. Results from this method have shown that the human brainstem response is surprisingly sensitive to phase-differences inherent to the stimuli across a wide extent of the spectrum. Here we use an animal model of the auditory brainstem to examine whether the stimulus-specific phase signatures measured in human brainstem responses represent an epiphenomenon associated with far field (i.e., scalp-recorded) measurement of neural activity, or alternatively whether these specific activity patterns are also evident in auditory nuclei that contribute to the scalp-recorded response, thereby representing a more fundamental temporal processing phenomenon. Responses in anaesthetized guinea pigs to three minimally-contrasting consonant-vowel stimuli were collected simultaneously from the cortical surface vertex and directly from central nucleus of the inferior colliculus (ICc), measuring volume conducted neural activity and multiunit, near-field activity, respectively. Guinea pig surface responses were similar to human scalp-recorded responses to identical stimuli in gross morphology as well as phase characteristics. Moreover, surface recorded potentials shared many phase characteristics with near-field ICc activity. Response phase differences were prominent during formant transition periods, reflecting spectro-temporal differences between syllables, and showed more subtle differences during the identical steady-state periods. ICc encoded stimulus distinctions over a broader frequency range, with differences apparent in the highest frequency ranges analyzed, up to 3000 Hz. Based on the similarity of phase encoding across sites, and the consistency and sensitivity of response phase measured within ICc, results suggest that a general property of the auditory system is a high degree of sensitivity to fine-grained phase information inherent to complex acoustical stimuli. Furthermore, results suggest that temporal encoding in ICc contributes to temporal features measured in speech-evoked scalp-recorded responses. PMID:21945200

  12. Neural Signatures of Stimulus Features in Visual Working Memory—A Spatiotemporal Approach

    PubMed Central

    Jackson, Margaret C.; Klein, Christoph; Mohr, Harald; Shapiro, Kimron L.; Linden, David E. J.

    2010-01-01

    We examined the neural signatures of stimulus features in visual working memory (WM) by integrating functional magnetic resonance imaging (fMRI) and event-related potential data recorded during mental manipulation of colors, rotation angles, and color–angle conjunctions. The N200, negative slow wave, and P3b were modulated by the information content of WM, and an fMRI-constrained source model revealed a progression in neural activity from posterior visual areas to higher order areas in the ventral and dorsal processing streams. Color processing was associated with activity in inferior frontal gyrus during encoding and retrieval, whereas angle processing involved right parietal regions during the delay interval. WM for color–angle conjunctions did not involve any additional neural processes. The finding that different patterns of brain activity underlie WM for color and spatial information is consistent with ideas that the ventral/dorsal “what/where” segregation of perceptual processing influences WM organization. The absence of characteristic signatures of conjunction-related brain activity, which was generally intermediate between the 2 single conditions, suggests that conjunction judgments are based on the coordinated activity of these 2 streams. PMID:19429863

  13. Development of a Bayesian Estimator for Audio-Visual Integration: A Neurocomputational Study

    PubMed Central

    Ursino, Mauro; Crisafulli, Andrea; di Pellegrino, Giuseppe; Magosso, Elisa; Cuppini, Cristiano

    2017-01-01

    The brain integrates information from different sensory modalities to generate a coherent and accurate percept of external events. Several experimental studies suggest that this integration follows the principle of Bayesian estimate. However, the neural mechanisms responsible for this behavior, and its development in a multisensory environment, are still insufficiently understood. We recently presented a neural network model of audio-visual integration (Neural Computation, 2017) to investigate how a Bayesian estimator can spontaneously develop from the statistics of external stimuli. Model assumes the presence of two unimodal areas (auditory and visual) topologically organized. Neurons in each area receive an input from the external environment, computed as the inner product of the sensory-specific stimulus and the receptive field synapses, and a cross-modal input from neurons of the other modality. Based on sensory experience, synapses were trained via Hebbian potentiation and a decay term. Aim of this work is to improve the previous model, including a more realistic distribution of visual stimuli: visual stimuli have a higher spatial accuracy at the central azimuthal coordinate and a lower accuracy at the periphery. Moreover, their prior probability is higher at the center, and decreases toward the periphery. Simulations show that, after training, the receptive fields of visual and auditory neurons shrink to reproduce the accuracy of the input (both at the center and at the periphery in the visual case), thus realizing the likelihood estimate of unimodal spatial position. Moreover, the preferred positions of visual neurons contract toward the center, thus encoding the prior probability of the visual input. Finally, a prior probability of the co-occurrence of audio-visual stimuli is encoded in the cross-modal synapses. The model is able to simulate the main properties of a Bayesian estimator and to reproduce behavioral data in all conditions examined. In particular, in unisensory conditions the visual estimates exhibit a bias toward the fovea, which increases with the level of noise. In cross modal conditions, the SD of the estimates decreases when using congruent audio-visual stimuli, and a ventriloquism effect becomes evident in case of spatially disparate stimuli. Moreover, the ventriloquism decreases with the eccentricity. PMID:29046631

  14. Maximising information recovery from rank-order codes

    NASA Astrophysics Data System (ADS)

    Sen, B.; Furber, S.

    2007-04-01

    The central nervous system encodes information in sequences of asynchronously generated voltage spikes, but the precise details of this encoding are not well understood. Thorpe proposed rank-order codes as an explanation of the observed speed of information processing in the human visual system. The work described in this paper is inspired by the performance of SpikeNET, a biologically inspired neural architecture using rank-order codes for information processing, and is based on the retinal model developed by VanRullen and Thorpe. This model mimics retinal information processing by passing an input image through a bank of Difference of Gaussian (DoG) filters and then encoding the resulting coefficients in rank-order. To test the effectiveness of this encoding in capturing the information content of an image, the rank-order representation is decoded to reconstruct an image that can be compared with the original. The reconstruction uses a look-up table to infer the filter coefficients from their rank in the encoded image. Since the DoG filters are approximately orthogonal functions, they are treated as their own inverses in the reconstruction process. We obtained a quantitative measure of the perceptually important information retained in the reconstructed image relative to the original using a slightly modified version of an objective metric proposed by Petrovic. It is observed that around 75% of the perceptually important information is retained in the reconstruction. In the present work we reconstruct the input using a pseudo-inverse of the DoG filter-bank with the aim of improving the reconstruction and thereby extracting more information from the rank-order encoded stimulus. We observe that there is an increase of 10 - 15% in the information retrieved from a reconstructed stimulus as a result of inverting the filter-bank.

  15. Dynamic Encoding of Incentive Salience in the Ventral Pallidum: Dependence on the Form of the Reward Cue.

    PubMed

    Ahrens, Allison M; Ferguson, Lindsay M; Robinson, Terry E; Aldridge, J Wayne

    2018-01-01

    Some rats are especially prone to attribute incentive salience to a cue (conditioned stimulus, CS) paired with food reward (sign-trackers, STs), but the extent they do so varies as a function of the form of the CS. Other rats respond primarily to the predictive value of a cue (goal-trackers, GTs), regardless of its form. Sign-tracking is associated with greater cue-induced activation of mesolimbic structures than goal-tracking; however, it is unclear how the form of the CS itself influences activity in neural systems involved in incentive salience attribution. Thus, our goal was to determine how different cue modalities affect neural activity in the ventral pallidum (VP), which is known to encode incentive salience attribution, as rats performed a two-CS Pavlovian conditioned approach task in which both a lever-CS and a tone-CS predicted identical food reward. The lever-CS elicited sign-tracking in some rats (STs) and goal-tracking in others (GTs), whereas the tone-CS elicited only goal-tracking in all rats. The lever-CS elicited robust changes in neural activity (sustained tonic increases or decreases in firing) throughout the VP in STs, relative to GTs. These changes were not seen when STs were exposed to the tone-CS, and in GTs there were no differences in firing between the lever-CS and tone-CS. We conclude that neural activity throughout the VP encodes incentive signals and is especially responsive when a cue is of a form that promotes the attribution of incentive salience to it, especially in predisposed individuals.

  16. fMRI studies of successful emotional memory encoding: a quantitative meta-analysis

    PubMed Central

    Murty, Vishnu P.; Ritchey, Maureen; Adcock, R. Alison; LaBar, Kevin S.

    2010-01-01

    Over the past decade, fMRI techniques have been increasingly used to interrogate the neural correlates of successful emotional memory encoding. These investigations have typically aimed to either characterize the contributions of the amygdala and medial temporal lobe (MTL) memory system, replicating results in animals, or delineate the neural correlates of specific behavioral phenomena. It has remained difficult, however, to synthesize these findings into a systems neuroscience account of how networks across the whole brain support the enhancing effects of emotion on memory encoding. To this end, the present study employed a meta-analytic approach using activation likelihood estimates to assess the anatomical specificity and reliability of event-related fMRI activations related to successful memory encoding for emotional versus neutral information. The meta-analysis revealed consistent clusters within bilateral amygdala, anterior hippocampus, anterior and posterior parahippocampal gyrus, the ventral visual stream, left lateral prefrontal cortex and right ventral parietal cortex. The results within the amygdala and MTL support a wealth of findings from the animal literature linking these regions to arousal-mediated memory effects. The consistency of findings in cortical targets, including the visual, prefrontal, and parietal cortices, underscores the importance of generating hypotheses regarding their participation in emotional memory formation. In particular, we propose that the amygdala interacts with these structures to promote enhancements in perceptual processing, semantic elaboration, and attention, which serve to benefit subsequent memory for emotional material. These findings may motivate future research on emotional modulation of widespread neural systems and the implications of this modulation for cognition. PMID:20688087

  17. Cross-Domain Effects of Music and Language Experience on the Representation of Pitch in the Human Auditory Brainstem

    ERIC Educational Resources Information Center

    Bidelman, Gavin M.; Gandour, Jackson T.; Krishnan, Ananthanarayan

    2011-01-01

    Neural encoding of pitch in the auditory brainstem is known to be shaped by long-term experience with language or music, implying that early sensory processing is subject to experience-dependent neural plasticity. In language, pitch patterns consist of sequences of continuous, curvilinear contours; in music, pitch patterns consist of relatively…

  18. Tau and β-Amyloid Are Associated with Medial Temporal Lobe Structure, Function, and Memory Encoding in Normal Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Shawn M.; Lockhart, Samuel N.; Baker, Suzanne L.

    Normal aging is associated with a decline in episodic memory and also with aggregation of the β-amyloid (Aβ) and tau proteins and atrophy of medial temporal lobe (MTL) structures crucial to memory formation. Although some evidence suggests that Aβ is associated with aberrant neural activity, the relationships among these two aggregated proteins, neural function, and brain structure are poorly understood. Using in vivo human Aβ and tau imaging, we demonstrate that increased Aβ and tau are both associated with aberrant fMRI activity in the MTL during memory encoding in cognitively normal older adults. This pathological neural activity was in turnmore » associated with worse memory performance and atrophy within the MTL. A mediation analysis revealed that the relationship with regional atrophy was explained by MTL tau. These findings broaden the concept of cognitive aging to include evidence of Alzheimer’s disease-related protein aggregation as an underlying mechanism of age-related memory impairment.« less

  19. Invigoration of reward-seeking by cue and proximity encoding in the nucleus accumbens

    PubMed Central

    McGinty, Vincent B.; Lardeux, Sylvie; Taha, Sharif A.; Kim, James J.; Nicola, Saleem M.

    2014-01-01

    Summary A key function of the nucleus accumbens is to promote vigorous reward-seeking, but the corresponding neural mechanism has not been identified despite many years of research. Here we study cued flexible approach behavior, a form of reward-seeking that strongly depends on the accumbens, and we describe a robust, single-cell neural correlate of behavioral vigor in the excitatory response of accumbens neurons to reward-predictive cues. Well before locomotion begins, this cue-evoked excitation predicts both the movement initiation latency and speed of subsequent flexible approach responses, but not of stereotyped, inflexible responses. Moreover, the excitation simultaneously signals the subject’s proximity to the approach target, a signal that appears to mediate greater response vigor on trials that begin with the subject closer to the target. These results demonstrate a neural mechanism for response invigoration whereby accumbens neuronal encoding of reward availability and target proximity together drive the onset and speed of reward-seeking locomotion. PMID:23764290

  20. Neural activity, neural connectivity, and the processing of emotionally valenced information in older adults: links with life satisfaction.

    PubMed

    Waldinger, Robert J; Kensinger, Elizabeth A; Schulz, Marc S

    2011-09-01

    This study examines whether differences in late-life well-being are linked to how older adults encode emotionally valenced information. Using fMRI with 39 older adults varying in life satisfaction, we examined how viewing positive and negative images would affect activation and connectivity of an emotion-processing network. Participants engaged most regions within this network more robustly for positive than for negative images, but within the PFC this effect was moderated by life satisfaction, with individuals higher in satisfaction showing lower levels of activity during the processing of positive images. Participants high in satisfaction showed stronger correlations among network regions-particularly between the amygdala and other emotion processing regions-when viewing positive, as compared with negative, images. Participants low in satisfaction showed no valence effect. Findings suggest that late-life satisfaction is linked with how emotion-processing regions are engaged and connected during processing of valenced information. This first demonstration of a link between neural recruitment and late-life well-being suggests that differences in neural network activation and connectivity may account for the preferential encoding of positive information seen in some older adults.

  1. Neural Activity, Neural Connectivity, and the Processing of Emotionally-Valenced Information in Older Adults: Links with Life Satisfaction

    PubMed Central

    Waldinger, Robert J.; Kensinger, Elizabeth A.; Schulz, Marc S.

    2013-01-01

    This study examines whether differences in late-life well-being are linked to how older adults encode emotionally-valenced information. Using fMRI with 39 older adults varying in life satisfaction, we examined how viewing positive and negative images affected activation and connectivity of an emotion-processing network. Participants engaged most regions within this network more robustly for positive than for negative images, but within the PFC this effect was moderated by life satisfaction, with individuals higher in satisfaction showing lower levels of activity during the processing of positive images. Participants high in satisfaction showed stronger correlations among network regions – particularly between the amygdala and other emotion processing regions – when viewing positive as compared to negative images. Participants low in satisfaction showed no valence effect. Findings suggest that late-life satisfaction is linked with how emotion-processing regions are engaged and connected during processing of valenced information. This first demonstration of a link between neural recruitment and late-life well-being suggests that differences in neural network activation and connectivity may account for the preferential encoding of positive information seen in some older adults. PMID:21590504

  2. Event-Related fMRI Studies of Episodic Encoding and Retrieval: Meta-Analyses Using Activation Likelihood Estimation

    ERIC Educational Resources Information Center

    Spaniol, Julia; Davidson, Patrick S. R.; Kim, Alice S. N.; Han, Hua; Moscovitch, Morris; Grady, Cheryl L.

    2009-01-01

    The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of…

  3. Staying Cool when Things Get Hot: Emotion Regulation Modulates Neural Mechanisms of Memory Encoding

    PubMed Central

    Hayes, Jasmeet Pannu; Morey, Rajendra A.; Petty, Christopher M.; Seth, Srishti; Smoski, Moria J.; McCarthy, Gregory; LaBar, Kevin S.

    2010-01-01

    During times of emotional stress, individuals often engage in emotion regulation to reduce the experiential and physiological impact of negative emotions. Interestingly, emotion regulation strategies also influence memory encoding of the event. Cognitive reappraisal is associated with enhanced memory while expressive suppression is associated with impaired explicit memory of the emotional event. However, the mechanism by which these emotion regulation strategies affect memory is unclear. We used event-related fMRI to investigate the neural mechanisms that give rise to memory formation during emotion regulation. Twenty-five participants viewed negative pictures while alternately engaging in cognitive reappraisal, expressive suppression, or passive viewing. As part of the subsequent memory design, participants returned to the laboratory two weeks later for a surprise memory test. Behavioral results showed a reduction in negative affect and a retention advantage for reappraised stimuli relative to the other conditions. Imaging results showed that successful encoding during reappraisal was uniquely associated with greater co-activation of the left inferior frontal gyrus, amygdala, and hippocampus, suggesting a possible role for elaborative encoding of negative memories. This study provides neurobehavioral evidence that engaging in cognitive reappraisal is advantageous to both affective and mnemonic processes. PMID:21212840

  4. Temporal-pattern similarity analysis reveals the beneficial and detrimental effects of context reinstatement on human memory.

    PubMed

    Staudigl, Tobias; Vollmar, Christian; Noachtar, Soheyl; Hanslmayr, Simon

    2015-04-01

    A powerful force in human memory is the context in which memories are encoded (Tulving and Thomson, 1973). Several studies suggest that the reinstatement of neural encoding patterns is beneficial for memory retrieval (Manning et al., 2011; Staresina et al., 2012; Jafarpour et al., 2014). However, reinstatement of the original encoding context is not always helpful, for instance, when retrieving a memory in a different contextual situation (Smith and Vela, 2001). It is an open question whether such context-dependent memory effects can be captured by the reinstatement of neural patterns. We investigated this question by applying temporal and spatial pattern similarity analysis in MEG and intracranial EEG in a context-match paradigm. Items (words) were tagged by individual dynamic context stimuli (movies). The results show that beta oscillatory phase in visual regions and the parahippocampal cortex tracks the incidental reinstatement of individual context trajectories on a single-trial level. Crucially, memory benefitted from reinstatement when the encoding and retrieval contexts matched but suffered from reinstatement when the contexts did not match. Copyright © 2015 the authors 0270-6474/15/355373-12$15.00/0.

  5. Medial prefrontal cortex supports source memory accuracy for self-referenced items.

    PubMed

    Leshikar, Eric D; Duarte, Audrey

    2012-01-01

    Previous behavioral work suggests that processing information in relation to the self enhances subsequent item recognition. Neuroimaging evidence further suggests that regions along the cortical midline, particularly those of the medial prefrontal cortex (PFC), underlie this benefit. There has been little work to date, however, on the effects of self-referential encoding on source memory accuracy or whether the medial PFC might contribute to source memory for self-referenced materials. In the current study, we used fMRI to measure neural activity while participants studied and subsequently retrieved pictures of common objects superimposed on one of two background scenes (sources) under either self-reference or self-external encoding instructions. Both item recognition and source recognition were better for objects encoded self-referentially than self-externally. Neural activity predictive of source accuracy was observed in the medial PFC (Brodmann area 10) at the time of study for self-referentially but not self-externally encoded objects. The results of this experiment suggest that processing information in relation to the self leads to a mnemonic benefit for source level features, and that activity in the medial PFC contributes to this source memory benefit. This evidence expands the purported role that the medial PFC plays in self-referencing.

  6. Face Encoding and Recognition in the Human Brain

    NASA Astrophysics Data System (ADS)

    Haxby, James V.; Ungerleider, Leslie G.; Horwitz, Barry; Maisog, Jose Ma.; Rapoport, Stanley I.; Grady, Cheryl L.

    1996-01-01

    A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.

  7. Distinct neural patterns enable grasp types decoding in monkey dorsal premotor cortex

    NASA Astrophysics Data System (ADS)

    Hao, Yaoyao; Zhang, Qiaosheng; Controzzi, Marco; Cipriani, Christian; Li, Yue; Li, Juncheng; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Chiara Carrozza, Maria; Zheng, Xiaoxiang

    2014-12-01

    Objective. Recent studies have shown that dorsal premotor cortex (PMd), a cortical area in the dorsomedial grasp pathway, is involved in grasp movements. However, the neural ensemble firing property of PMd during grasp movements and the extent to which it can be used for grasp decoding are still unclear. Approach. To address these issues, we used multielectrode arrays to record both spike and local field potential (LFP) signals in PMd in macaque monkeys performing reaching and grasping of one of four differently shaped objects. Main results. Single and population neuronal activity showed distinct patterns during execution of different grip types. Cluster analysis of neural ensemble signals indicated that the grasp related patterns emerged soon (200-300 ms) after the go cue signal, and faded away during the hold period. The timing and duration of the patterns varied depending on the behaviors of individual monkey. Application of support vector machine model to stable activity patterns revealed classification accuracies of 94% and 89% for each of the two monkeys, indicating a robust, decodable grasp pattern encoded in the PMd. Grasp decoding using LFPs, especially the high-frequency bands, also produced high decoding accuracies. Significance. This study is the first to specify the neuronal population encoding of grasp during the time course of grasp. We demonstrate high grasp decoding performance in PMd. These findings, combined with previous evidence for reach related modulation studies, suggest that PMd may play an important role in generation and maintenance of grasp action and may be a suitable locus for brain-machine interface applications.

  8. Stochastic, adaptive sampling of information by microvilli in fly photoreceptors.

    PubMed

    Song, Zhuoyi; Postma, Marten; Billings, Stephen A; Coca, Daniel; Hardie, Roger C; Juusola, Mikko

    2012-08-07

    In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform. We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (~100-200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies. These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Levels of processing in working memory: differential involvement of frontotemporal networks.

    PubMed

    Rose, Nathan S; Craik, Fergus I M; Buchsbaum, Bradley R

    2015-03-01

    How does the brain maintain to-be-remembered information in working memory (WM), particularly when the focus of attention is drawn to processing other information? Cognitive models of WM propose that when items are displaced from focal attention recall involves retrieval from long-term memory (LTM). In this fMRI study, we tried to clarify the role of LTM in performance on a WM task and the type of representation that is used to maintain an item in WM during rehearsal-filled versus distractor-filled delays. Participants made a deep or shallow levels-of-processing (LOP) decision about a single word at encoding and tried to recall the word after a delay filled with either rehearsal of the word or a distracting math task. Recalling one word after 10 sec of distraction demonstrated behavioral and neural indices of retrieval from LTM (i.e., LOP effects and medial-temporal lobe activity). In contrast, recall after rehearsal activated cortical areas that reflected reporting the word from focal attention. In addition, areas that showed an LOP effect at encoding (e.g., left ventrolateral VLPFC and the anterior temporal lobes [ATLs]) were reactivated at recall, especially when recall followed distraction. Moreover, activity in left VLPFC during encoding, left ATL during the delay, and left hippocampus during retrieval predicted recall success after distraction. Whereas shallow LOP and rehearsal-related areas supported active maintenance of one item in focal attention, the behavioral processes and neural substrates that support LTM supported recall of one item after it was displaced from focal attention.

  10. Stochastic, Adaptive Sampling of Information by Microvilli in Fly Photoreceptors

    PubMed Central

    Song, Zhuoyi; Postma, Marten; Billings, Stephen A.; Coca, Daniel; Hardie, Roger C.; Juusola, Mikko

    2012-01-01

    Summary Background In fly photoreceptors, light is focused onto a photosensitive waveguide, the rhabdomere, consisting of tens of thousands of microvilli. Each microvillus is capable of generating elementary responses, quantum bumps, in response to single photons using a stochastically operating phototransduction cascade. Whereas much is known about the cascade reactions, less is known about how the concerted action of the microvilli population encodes light changes into neural information and how the ultrastructure and biochemical machinery of photoreceptors of flies and other insects evolved in relation to the information sampling and processing they perform. Results We generated biophysically realistic fly photoreceptor models, which accurately simulate the encoding of visual information. By comparing stochastic simulations with single cell recordings from Drosophila photoreceptors, we show how adaptive sampling by 30,000 microvilli captures the temporal structure of natural contrast changes. Following each bump, individual microvilli are rendered briefly (∼100–200 ms) refractory, thereby reducing quantum efficiency with increasing intensity. The refractory period opposes saturation, dynamically and stochastically adjusting availability of microvilli (bump production rate: sample rate), whereas intracellular calcium and voltage adapt bump amplitude and waveform (sample size). These adapting sampling principles result in robust encoding of natural light changes, which both approximates perceptual contrast constancy and enhances novel events under different light conditions, and predict information processing across a range of species with different visual ecologies. Conclusions These results clarify why fly photoreceptors are structured the way they are and function as they do, linking sensory information to sensory evolution and revealing benefits of stochasticity for neural information processing. PMID:22704990

  11. Distinct Sources of Deterministic and Stochastic Components of Action Timing Decisions in Rodent Frontal Cortex.

    PubMed

    Murakami, Masayoshi; Shteingart, Hanan; Loewenstein, Yonatan; Mainen, Zachary F

    2017-05-17

    The selection and timing of actions are subject to determinate influences such as sensory cues and internal state as well as to effectively stochastic variability. Although stochastic choice mechanisms are assumed by many theoretical models, their origin and mechanisms remain poorly understood. Here we investigated this issue by studying how neural circuits in the frontal cortex determine action timing in rats performing a waiting task. Electrophysiological recordings from two regions necessary for this behavior, medial prefrontal cortex (mPFC) and secondary motor cortex (M2), revealed an unexpected functional dissociation. Both areas encoded deterministic biases in action timing, but only M2 neurons reflected stochastic trial-by-trial fluctuations. This differential coding was reflected in distinct timescales of neural dynamics in the two frontal cortical areas. These results suggest a two-stage model in which stochastic components of action timing decisions are injected by circuits downstream of those carrying deterministic bias signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Neural mechanisms of motivated forgetting

    PubMed Central

    Anderson, Michael C.; Hanslmayr, Simon

    2014-01-01

    Not all memories are equally welcome in awareness. People limit the time they spend thinking about unpleasant experiences, a process that begins during encoding, but that continues when cues later remind someone of the memory. Here, we review the emerging behavioural and neuroimaging evidence that suppressing awareness of an unwelcome memory, at encoding or retrieval, is achieved by inhibitory control processes mediated by the lateral prefrontal cortex. These mechanisms interact with neural structures that represent experiences in memory, disrupting traces that support retention. Thus, mechanisms engaged to regulate momentary awareness introduce lasting biases in which experiences remain accessible. We argue that theories of forgetting that neglect the motivated control of awareness omit a powerful force shaping the retention of our past. PMID:24747000

  13. Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex

    PubMed Central

    Tafazoli, Sina; Safaai, Houman; De Franceschi, Gioia; Rosselli, Federica Bianca; Vanzella, Walter; Riggi, Margherita; Buffolo, Federica; Panzeri, Stefano; Zoccolan, Davide

    2017-01-01

    Rodents are emerging as increasingly popular models of visual functions. Yet, evidence that rodent visual cortex is capable of advanced visual processing, such as object recognition, is limited. Here we investigate how neurons located along the progression of extrastriate areas that, in the rat brain, run laterally to primary visual cortex, encode object information. We found a progressive functional specialization of neural responses along these areas, with: (1) a sharp reduction of the amount of low-level, energy-related visual information encoded by neuronal firing; and (2) a substantial increase in the ability of both single neurons and neuronal populations to support discrimination of visual objects under identity-preserving transformations (e.g., position and size changes). These findings strongly argue for the existence of a rat object-processing pathway, and point to the rodents as promising models to dissect the neuronal circuitry underlying transformation-tolerant recognition of visual objects. DOI: http://dx.doi.org/10.7554/eLife.22794.001 PMID:28395730

  14. Population activity statistics dissect subthreshold and spiking variability in V1.

    PubMed

    Bányai, Mihály; Koman, Zsombor; Orbán, Gergő

    2017-07-01

    Response variability, as measured by fluctuating responses upon repeated performance of trials, is a major component of neural responses, and its characterization is key to interpret high dimensional population recordings. Response variability and covariability display predictable changes upon changes in stimulus and cognitive or behavioral state, providing an opportunity to test the predictive power of models of neural variability. Still, there is little agreement on which model to use as a building block for population-level analyses, and models of variability are often treated as a subject of choice. We investigate two competing models, the doubly stochastic Poisson (DSP) model assuming stochasticity at spike generation, and the rectified Gaussian (RG) model tracing variability back to membrane potential variance, to analyze stimulus-dependent modulation of both single-neuron and pairwise response statistics. Using a pair of model neurons, we demonstrate that the two models predict similar single-cell statistics. However, DSP and RG models have contradicting predictions on the joint statistics of spiking responses. To test the models against data, we build a population model to simulate stimulus change-related modulations in pairwise response statistics. We use single-unit data from the primary visual cortex (V1) of monkeys to show that while model predictions for variance are qualitatively similar to experimental data, only the RG model's predictions are compatible with joint statistics. These results suggest that models using Poisson-like variability might fail to capture important properties of response statistics. We argue that membrane potential-level modeling of stochasticity provides an efficient strategy to model correlations. NEW & NOTEWORTHY Neural variability and covariability are puzzling aspects of cortical computations. For efficient decoding and prediction, models of information encoding in neural populations hinge on an appropriate model of variability. Our work shows that stimulus-dependent changes in pairwise but not in single-cell statistics can differentiate between two widely used models of neuronal variability. Contrasting model predictions with neuronal data provides hints on the noise sources in spiking and provides constraints on statistical models of population activity. Copyright © 2017 the American Physiological Society.

  15. Patient-Specific Deep Architectural Model for ECG Classification

    PubMed Central

    Luo, Kan; Cuschieri, Alfred

    2017-01-01

    Heartbeat classification is a crucial step for arrhythmia diagnosis during electrocardiographic (ECG) analysis. The new scenario of wireless body sensor network- (WBSN-) enabled ECG monitoring puts forward a higher-level demand for this traditional ECG analysis task. Previously reported methods mainly addressed this requirement with the applications of a shallow structured classifier and expert-designed features. In this study, modified frequency slice wavelet transform (MFSWT) was firstly employed to produce the time-frequency image for heartbeat signal. Then the deep learning (DL) method was performed for the heartbeat classification. Here, we proposed a novel model incorporating automatic feature abstraction and a deep neural network (DNN) classifier. Features were automatically abstracted by the stacked denoising auto-encoder (SDA) from the transferred time-frequency image. DNN classifier was constructed by an encoder layer of SDA and a softmax layer. In addition, a deterministic patient-specific heartbeat classifier was achieved by fine-tuning on heartbeat samples, which included a small subset of individual samples. The performance of the proposed model was evaluated on the MIT-BIH arrhythmia database. Results showed that an overall accuracy of 97.5% was achieved using the proposed model, confirming that the proposed DNN model is a powerful tool for heartbeat pattern recognition. PMID:29065597

  16. Gain Modulation by an Urgency Signal Controls the Speed–Accuracy Trade-Off in a Network Model of a Cortical Decision Circuit

    PubMed Central

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C.

    2011-01-01

    The speed–accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time. PMID:21415911

  17. Gain modulation by an urgency signal controls the speed-accuracy trade-off in a network model of a cortical decision circuit.

    PubMed

    Standage, Dominic; You, Hongzhi; Wang, Da-Hui; Dorris, Michael C

    2011-01-01

    The speed-accuracy trade-off (SAT) is ubiquitous in decision tasks. While the neural mechanisms underlying decisions are generally well characterized, the application of decision-theoretic methods to the SAT has been difficult to reconcile with experimental data suggesting that decision thresholds are inflexible. Using a network model of a cortical decision circuit, we demonstrate the SAT in a manner consistent with neural and behavioral data and with mathematical models that optimize speed and accuracy with respect to one another. In simulations of a reaction time task, we modulate the gain of the network with a signal encoding the urgency to respond. As the urgency signal builds up, the network progresses through a series of processing stages supporting noise filtering, integration of evidence, amplification of integrated evidence, and choice selection. Analysis of the network's dynamics formally characterizes this progression. Slower buildup of urgency increases accuracy by slowing down the progression. Faster buildup has the opposite effect. Because the network always progresses through the same stages, decision-selective firing rates are stereotyped at decision time.

  18. Lingering representations of stimuli influence recall organization.

    PubMed

    Chan, Stephanie C Y; Applegate, Marissa C; Morton, Neal W; Polyn, Sean M; Norman, Kenneth A

    2017-03-01

    Several prominent theories posit that information about recent experiences lingers in the brain and organizes memories for current experiences, by forming a temporal context that is linked to those memories at encoding. According to these theories, if the thoughts preceding an experience X resemble the thoughts preceding an experience Y, then X and Y should show an elevated probability of being recalled together. We tested this prediction by using multi-voxel pattern analysis (MVPA) of fMRI data to measure neural evidence for lingering processing of preceding stimuli. As predicted, memories encoded with similar lingering thoughts about the category of preceding stimuli were more likely to be recalled together. Our results demonstrate that the "fading embers" of previous stimuli help to organize recall, confirming a key prediction of computational models of episodic memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A neural coding scheme reproducing foraging trajectories

    PubMed Central

    Gutiérrez, Esther D.; Cabrera, Juan Luis

    2015-01-01

    The movement of many animals may follow Lévy patterns. The underlying generating neuronal dynamics of such a behavior is unknown. In this paper we show that a novel discovery of multifractality in winnerless competition (WLC) systems reveals a potential encoding mechanism that is translatable into two dimensional superdiffusive Lévy movements. The validity of our approach is tested on a conductance based neuronal model showing WLC and through the extraction of Lévy flights inducing fractals from recordings of rat hippocampus during open field foraging. Further insights are gained analyzing mice motor cortex neurons and non motor cell signals. The proposed mechanism provides a plausible explanation for the neuro-dynamical fundamentals of spatial searching patterns observed in animals (including humans) and illustrates an until now unknown way to encode information in neuronal temporal series. PMID:26648311

  20. How Prediction Errors Shape Perception, Attention, and Motivation

    PubMed Central

    den Ouden, Hanneke E. M.; Kok, Peter; de Lange, Floris P.

    2012-01-01

    Prediction errors (PE) are a central notion in theoretical models of reinforcement learning, perceptual inference, decision-making and cognition, and prediction error signals have been reported across a wide range of brain regions and experimental paradigms. Here, we will make an attempt to see the forest for the trees and consider the commonalities and differences of reported PE signals in light of recent suggestions that the computation of PE forms a fundamental mode of brain function. We discuss where different types of PE are encoded, how they are generated, and the different functional roles they fulfill. We suggest that while encoding of PE is a common computation across brain regions, the content and function of these error signals can be very different and are determined by the afferent and efferent connections within the neural circuitry in which they arise. PMID:23248610

  1. Infant Joint Attention, Neural Networks and Social Cognition

    PubMed Central

    Mundy, Peter; Jarrold, William

    2010-01-01

    Neural network models of attention can provide a unifying approach to the study of human cognitive and emotional development (Posner & Rothbart, 2007). This paper we argue that a neural networks approach to the infant development of joint attention can inform our understanding of the nature of human social learning, symbolic thought process and social cognition. At its most basic, joint attention involves the capacity to coordinate one’s own visual attention with that of another person. We propose that joint attention development involves increments in the capacity to engage in simultaneous or parallel processing of information about one’s own attention and the attention of other people. Infant practice with joint attention is both a consequence and organizer of the development of a distributed and integrated brain network involving frontal and parietal cortical systems. This executive distributed network first serves to regulate the capacity of infants to respond to and direct the overt behavior of other people in order to share experience with others through the social coordination of visual attention. In this paper we describe this parallel and distributed neural network model of joint attention development and discuss two hypotheses that stem from this model. One is that activation of this distributed network during coordinated attention enhances to depth of information processing and encoding beginning in the first year of life. We also propose that with development joint attention becomes internalized as the capacity to socially coordinate mental attention to internal representations. As this occurs the executive joint attention network makes vital contributions to the development of human symbolic thinking and social cognition. PMID:20884172

  2. Limb-state information encoded by peripheral and central somatosensory neurons: Implications for an afferent interface

    PubMed Central

    Weber, Douglas J.; London, Brian M.; Hokanson, James A.; Ayers, Christopher A.; Gaunt, Robert A.; Torres, Ricardo R.; Zaaimi, Boubker; Miller, Lee E.

    2013-01-01

    A major issue to be addressed in the development of neural interfaces for prosthetic control is the need for somatosensory feedback. Here, we investigate two possible strategies: electrical stimulation of either dorsal root ganglia (DRG) or primary somatosensory cortex (S1). In each approach, we must determine a model that reflects the representation of limb state in terms of neural discharge. This model can then be used to design stimuli that artificially activate the nervous system to convey information about limb state to the subject. Electrically activating DRG neurons using naturalistic stimulus patterns, modeled on recordings made during passive limb movement, evoked activity in S1 that was similar to that of the original movement. We also found that S1 neural populations could accurately discriminate different patterns of DRG stimulation across a wide range of stimulus pulse-rates. In studying the neural coding of limb-state in S1, we also decoded the kinematics of active limb movement using multi-electrode recordings in the monkey. Neurons having both proprioceptive and cutaneous receptive fields contributed equally to this decoding. Some neurons were most informative of limb state in the recent past, but many others appeared to signal upcoming movements suggesting that they also were modulated by an efference copy signal. Finally, we show that a monkey was able to detect stimulation through a large percentage of electrodes implanted in area 2. We discuss the design of appropriate stimulus paradigms for conveying time-varying limb state information, and the relative merits and limitations of central and peripheral approaches. PMID:21878419

  3. Neural reactivation reveals mechanisms for updating memory

    PubMed Central

    Kuhl, Brice A.; Bainbridge, Wilma A.; Chun, Marvin M.

    2012-01-01

    Our ability to remember new information is often compromised by competition from prior learning, leading to many instances of forgetting. One of the challenges in studying why these lapses occur and how they can be prevented is that it is methodologically difficult to ‘see’ competition between memories as it occurs. Here, we used multi-voxel pattern analysis of human fMRI data to measure the neural reactivation of both older (competing) and newer (target) memories during individual attempts to retrieve newer memories. Of central interest was (a) whether older memories were reactivated during retrieval of newer memories, (b) how reactivation of older memories related to retrieval performance, and (c) whether neural mechanisms engaged during the encoding of newer memories were predictive of neural competition experienced during retrieval. Our results indicate that older and newer visual memories were often simultaneously reactivated in ventral temporal cortex—even when target memories were successfully retrieved. Importantly, stronger reactivation of older memories was associated with less accurate retrieval of newer memories, slower mnemonic decisions, and increased activity in anterior cingulate cortex. Finally, greater activity in the inferior frontal gyrus during the encoding of newer memories (memory updating) predicted lower competition in ventral temporal cortex during subsequent retrieval. Together, these results provide novel insight into how older memories compete with newer memories and specify neural mechanisms that allow competition to be overcome and memories to be updated. PMID:22399768

  4. A TinyOS-based wireless neural interface.

    PubMed

    Farshchi, Shahin; Mody, Istvan; Judy, Jack W

    2004-01-01

    The overlay of a neural interface upon a TinyOS-based sensing and communication platform is described. The system amplifies, digitally encodes, and transmits two EEG channels of neural signals from an un-tethered subject to a remote gateway, which routes the signals to a client PC. This work demonstrates the viability of the TinyOS-based sensor technology as a foundation for chronic remote biological monitoring applications, and thus provides an opportunity to create a system that can leverage from the frequent networking and communications advancements being made by the global TinyOS-development community.

  5. Learning Orthographic Structure With Sequential Generative Neural Networks.

    PubMed

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain. Copyright © 2015 Cognitive Science Society, Inc.

  6. Techniques and instrumental complex for research of influence of microwaves encoded by brain neural signals on biological objects’ psycho physiological state

    NASA Astrophysics Data System (ADS)

    Gurkovskiy, B. V.; Zhuravlev, B. V.; Onishchenko, E. M.; Simakov, A. B.; Trifonova, N. Yu; Voronov, Yu A.

    2016-10-01

    New instrumental technique for research of the psycho-physiological reactions of the bio-objects under the microwave electromagnetic radiation, modulated by interval patterns of neural activity in the brain registered under different biological motivations, are suggested. The preliminary results of these new tool tests in real psycho physiological experiments on rats are presented.

  7. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA)

    PubMed Central

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-01-01

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA. PMID:26258776

  8. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA).

    PubMed

    Luchetti, Andrea; Ciafrè, Silvia Anna; Murdocca, Michela; Malgieri, Arianna; Masotti, Andrea; Sanchez, Massimo; Farace, Maria Giulia; Novelli, Giuseppe; Sangiuolo, Federica

    2015-08-06

    Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1), encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs), leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs) are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs) derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT) counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA.

  9. Expression of the Immediate-Early Gene-Encoded Protein Egr-1 ("zif268") during in Vitro Classical Conditioning

    ERIC Educational Resources Information Center

    Mokin, Maxim; Keifer, Joyce

    2005-01-01

    Expression of the immediate-early genes (IEGs) has been shown to be induced by activity-dependent synaptic plasticity or behavioral training and is thought to play an important role in long-term memory. In the present study, we examined the induction and expression of the IEG-encoded protein Egr-1 during an in vitro neural correlate of eyeblink…

  10. Perception of speech in noise: neural correlates.

    PubMed

    Song, Judy H; Skoe, Erika; Banai, Karen; Kraus, Nina

    2011-09-01

    The presence of irrelevant auditory information (other talkers, environmental noises) presents a major challenge to listening to speech. The fundamental frequency (F(0)) of the target speaker is thought to provide an important cue for the extraction of the speaker's voice from background noise, but little is known about the relationship between speech-in-noise (SIN) perceptual ability and neural encoding of the F(0). Motivated by recent findings that music and language experience enhance brainstem representation of sound, we examined the hypothesis that brainstem encoding of the F(0) is diminished to a greater degree by background noise in people with poorer perceptual abilities in noise. To this end, we measured speech-evoked auditory brainstem responses to /da/ in quiet and two multitalker babble conditions (two-talker and six-talker) in native English-speaking young adults who ranged in their ability to perceive and recall SIN. Listeners who were poorer performers on a standardized SIN measure demonstrated greater susceptibility to the degradative effects of noise on the neural encoding of the F(0). Particularly diminished was their phase-locked activity to the fundamental frequency in the portion of the syllable known to be most vulnerable to perceptual disruption (i.e., the formant transition period). Our findings suggest that the subcortical representation of the F(0) in noise contributes to the perception of speech in noisy conditions.

  11. A Fly's Eye View of Natural and Drug Reward.

    PubMed

    Lowenstein, Eve G; Velazquez-Ulloa, Norma A

    2018-01-01

    Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster , dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila . This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster , including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism.

  12. A Fly’s Eye View of Natural and Drug Reward

    PubMed Central

    Lowenstein, Eve G.; Velazquez-Ulloa, Norma A.

    2018-01-01

    Animals encounter multiple stimuli each day. Some of these stimuli are innately appetitive or aversive, while others are assigned valence based on experience. Drugs like ethanol can elicit aversion in the short term and attraction in the long term. The reward system encodes the predictive value for different stimuli, mediating anticipation for attractive or punishing stimuli and driving animal behavior to approach or avoid conditioned stimuli. The neurochemistry and neurocircuitry of the reward system is partly evolutionarily conserved. In both vertebrates and invertebrates, including Drosophila melanogaster, dopamine is at the center of a network of neurotransmitters and neuromodulators acting in concert to encode rewards. Behavioral assays in D. melanogaster have become increasingly sophisticated, allowing more direct comparison with mammalian research. Moreover, recent evidence has established the functional modularity of the reward neural circuits in Drosophila. This functional modularity resembles the organization of reward circuits in mammals. The powerful genetic and molecular tools for D. melanogaster allow characterization and manipulation at the single-cell level. These tools are being used to construct a detailed map of the neural circuits mediating specific rewarding stimuli and have allowed for the identification of multiple genes and molecular pathways that mediate the effects of reinforcing stimuli, including their rewarding effects. This report provides an overview of the research on natural and drug reward in D. melanogaster, including natural rewards such as sugar and other food nutrients, and drug rewards including ethanol, cocaine, amphetamine, methamphetamine, and nicotine. We focused mainly on the known genetic and neural mechanisms underlying appetitive reward for sugar and reward for ethanol. We also include genes, molecular pathways, and neural circuits that have been identified using assays that test the palatability of the rewarding stimulus, the preference for the rewarding stimulus, or other effects of the stimulus that indicate how it can modify behavior. Commonalities between mechanisms of natural and drug reward are highlighted and future directions are presented, putting forward questions best suited for research using D. melanogaster as a model organism. PMID:29720947

  13. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model

    PubMed Central

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-01-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction. PMID:27617747

  14. Uncertainty-Dependent Extinction of Fear Memory in an Amygdala-mPFC Neural Circuit Model.

    PubMed

    Li, Yuzhe; Nakae, Ken; Ishii, Shin; Naoki, Honda

    2016-09-01

    Uncertainty of fear conditioning is crucial for the acquisition and extinction of fear memory. Fear memory acquired through partial pairings of a conditioned stimulus (CS) and an unconditioned stimulus (US) is more resistant to extinction than that acquired through full pairings; this effect is known as the partial reinforcement extinction effect (PREE). Although the PREE has been explained by psychological theories, the neural mechanisms underlying the PREE remain largely unclear. Here, we developed a neural circuit model based on three distinct types of neurons (fear, persistent and extinction neurons) in the amygdala and medial prefrontal cortex (mPFC). In the model, the fear, persistent and extinction neurons encode predictions of net severity, of unconditioned stimulus (US) intensity, and of net safety, respectively. Our simulation successfully reproduces the PREE. We revealed that unpredictability of the US during extinction was represented by the combined responses of the three types of neurons, which are critical for the PREE. In addition, we extended the model to include amygdala subregions and the mPFC to address a recent finding that the ventral mPFC (vmPFC) is required for consolidating extinction memory but not for memory retrieval. Furthermore, model simulations led us to propose a novel procedure to enhance extinction learning through re-conditioning with a stronger US; strengthened fear memory up-regulates the extinction neuron, which, in turn, further inhibits the fear neuron during re-extinction. Thus, our models increased the understanding of the functional roles of the amygdala and vmPFC in the processing of uncertainty in fear conditioning and extinction.

  15. Neural mechanisms of selective attention in the somatosensory system.

    PubMed

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. Copyright © 2016 the American Physiological Society.

  16. The Evolution and Development of Neural Superposition

    PubMed Central

    Agi, Egemen; Langen, Marion; Altschuler, Steven J.; Wu, Lani F.; Zimmermann, Timo

    2014-01-01

    Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically “hard-wired” synaptic connectivity in the brain. PMID:24912630

  17. Neural mechanisms of selective attention in the somatosensory system

    PubMed Central

    Hysaj, Kristjana; Niebur, Ernst

    2016-01-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates. PMID:27334956

  18. The evolution and development of neural superposition.

    PubMed

    Agi, Egemen; Langen, Marion; Altschuler, Steven J; Wu, Lani F; Zimmermann, Timo; Hiesinger, Peter Robin

    2014-01-01

    Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically "hard-wired" synaptic connectivity in the brain.

  19. A model of cerebellar computations for dynamical state estimation

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.; Assad, C.

    2001-01-01

    The cerebellum is a neural structure that is essential for agility in vertebrate movements. Its contribution to motor control appears to be due to a fundamental role in dynamical state estimation, which also underlies its role in various non-motor tasks. Single spikes in vestibular sensory neurons carry information about head state. We show how computations for optimal dynamical state estimation may be accomplished when signals are encoded in spikes. This provides a novel way to design dynamical state estimators, and a novel way to interpret the structure and function of the cerebellum.

  20. Identifying QCD Transition Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Pang, Long-gang; Su, Nan; Petersen, Hannah; Stoecker, Horst; Wang, Xin-Nian

    2018-02-01

    In this proceeding we review our recent work using supervised learning with a deep convolutional neural network (CNN) to identify the QCD equation of state (EoS) employed in hydrodynamic modeling of heavy-ion collisions given only final-state particle spectra ρ(pT, V). We showed that there is a traceable encoder of the dynamical information from phase structure (EoS) that survives the evolution and exists in the final snapshot, which enables the trained CNN to act as an effective "EoS-meter" in detecting the nature of the QCD transition.

  1. Electrical resistivity measurements in the mammalian cochlea after neural degeneration.

    PubMed

    Micco, Alan G; Richter, Claus-Peter

    2006-08-01

    In the present series of experiments, the effect of neural degeneration on the cochlear structure electrical resistivities was evaluated to test if it alters the current flow in the cochlea and if increased current levels are needed to stimulate the impaired cochlea. In cochlear implants, frequency information is encoded in part by stimulating discrete populations of spiral ganglion cells along the cochlea. However, electrical properties of the cochlear structures result in shunting of the current away from the auditory neurons. This consumes energy, makes cochlear implants less efficient, and drastically reduces battery life. Models of the electrically stimulated cochlea serve to make predictions on current paths using modified and improved cochlear implant electrodes. However, one of the model's shortcomings is that most of the values for tissue impedances are not direct measurements. They are derived from bulk impedance measurements, which are fitted to lumped-element models. The four-electrode reflection-coefficient technique was used to measure resistivities in the gerbil cochlea. In vivo and in vitro (the hemicochlea) models were used. Measurements were made in normal and in deafened animals. Cochlear damage was induced by neomycin injection into the animals' middle ears. Neural degeneration was allowed to occur over 2 months before performing the measurements in the deafened animals. The resistivity values in deafened animals were smaller than in the normal-hearing animals, thus altering the current flow within the cochlea. Resistivity changes and subsequent changes in current path should be considered in future designs of cochlear implants.

  2. Perception of Upright: Multisensory Convergence and the Role of Temporo-Parietal Cortex

    PubMed Central

    Kheradmand, Amir; Winnick, Ariel

    2017-01-01

    We inherently maintain a stable perception of the world despite frequent changes in the head, eye, and body positions. Such “orientation constancy” is a prerequisite for coherent spatial perception and sensorimotor planning. As a multimodal sensory reference, perception of upright represents neural processes that subserve orientation constancy through integration of sensory information encoding the eye, head, and body positions. Although perception of upright is distinct from perception of body orientation, they share similar neural substrates within the cerebral cortical networks involved in perception of spatial orientation. These cortical networks, mainly within the temporo-parietal junction, are crucial for multisensory processing and integration that generate sensory reference frames for coherent perception of self-position and extrapersonal space transformations. In this review, we focus on these neural mechanisms and discuss (i) neurobehavioral aspects of orientation constancy, (ii) sensory models that address the neurophysiology underlying perception of upright, and (iii) the current evidence for the role of cerebral cortex in perception of upright and orientation constancy, including findings from the neurological disorders that affect cortical function. PMID:29118736

  3. Neural response to reward anticipation under risk is nonlinear in probabilities.

    PubMed

    Hsu, Ming; Krajbich, Ian; Zhao, Chen; Camerer, Colin F

    2009-02-18

    A widely observed phenomenon in decision making under risk is the apparent overweighting of unlikely events and the underweighting of nearly certain events. This violates standard assumptions in expected utility theory, which requires that expected utility be linear (objective) in probabilities. Models such as prospect theory have relaxed this assumption and introduced the notion of a "probability weighting function," which captures the key properties found in experimental data. This study reports functional magnetic resonance imaging (fMRI) data that neural response to expected reward is nonlinear in probabilities. Specifically, we found that activity in the striatum during valuation of monetary gambles are nonlinear in probabilities in the pattern predicted by prospect theory, suggesting that probability distortion is reflected at the level of the reward encoding process. The degree of nonlinearity reflected in individual subjects' decisions is also correlated with striatal activity across subjects. Our results shed light on the neural mechanisms of reward processing, and have implications for future neuroscientific studies of decision making involving extreme tails of the distribution, where probability weighting provides an explanation for commonly observed behavioral anomalies.

  4. Functional identification of spike-processing neural circuits.

    PubMed

    Lazar, Aurel A; Slutskiy, Yevgeniy B

    2014-02-01

    We introduce a novel approach for a complete functional identification of biophysical spike-processing neural circuits. The circuits considered accept multidimensional spike trains as their input and comprise a multitude of temporal receptive fields and conductance-based models of action potential generation. Each temporal receptive field describes the spatiotemporal contribution of all synapses between any two neurons and incorporates the (passive) processing carried out by the dendritic tree. The aggregate dendritic current produced by a multitude of temporal receptive fields is encoded into a sequence of action potentials by a spike generator modeled as a nonlinear dynamical system. Our approach builds on the observation that during any experiment, an entire neural circuit, including its receptive fields and biophysical spike generators, is projected onto the space of stimuli used to identify the circuit. Employing the reproducing kernel Hilbert space (RKHS) of trigonometric polynomials to describe input stimuli, we quantitatively describe the relationship between underlying circuit parameters and their projections. We also derive experimental conditions under which these projections converge to the true parameters. In doing so, we achieve the mathematical tractability needed to characterize the biophysical spike generator and identify the multitude of receptive fields. The algorithms obviate the need to repeat experiments in order to compute the neurons' rate of response, rendering our methodology of interest to both experimental and theoretical neuroscientists.

  5. Application of the artificial neural network in quantitative structure-gradient elution retention relationship of phenylthiocarbamyl amino acids derivatives.

    PubMed

    Tham, S Y; Agatonovic-Kustrin, S

    2002-05-15

    Quantitative structure-retention relationship(QSRR) method was used to model reversed-phase high-performance liquid chromatography (RP-HPLC) separation of 18 selected amino acids. Retention data for phenylthiocarbamyl (PTC) amino acids derivatives were obtained using gradient elution on ODS column with mobile phase of varying acetonitrile, acetate buffer and containing 0.5 ml/l of triethylamine (TEA). Molecular structure of each amino acid was encoded with 36 calculated molecular descriptors. The correlation between the molecular descriptors and the retention time of the compounds in the calibration set was established using the genetic neural network method. A genetic algorithm (GA) was used to select important molecular descriptors and supervised artificial neural network (ANN) was used to correlate mobile phase composition and selected descriptors with the experimentally derived retention times. Retention time values were used as the network's output and calculated molecular descriptors and mobile phase composition as the inputs. The best model with five input descriptors was chosen, and the significance of the selected descriptors for amino acid separation was examined. Results confirmed the dominant role of the organic modifier in such chromatographic systems in addition to lipophilicity (log P) and molecular size and shape (topological indices) of investigated solutes.

  6. Cocaine self-administration abolishes associative neural encoding in the nucleus accumbens necessary for higher-order learning.

    PubMed

    Saddoris, Michael P; Carelli, Regina M

    2014-01-15

    Cocaine use is often associated with diminished cognitive function, persisting even after abstinence from the drug. Likely targets for these changes are the core and shell of the nucleus accumbens (NAc), which are critical for mediating the rewarding aspects of drugs of abuse as well as supporting associative learning. To understand this deficit, we recorded neural activity in the NAc of rats with a history of cocaine self-administration or control subjects while they learned Pavlovian first- and second-order associations. Rats were trained for 2 weeks to self-administer intravenous cocaine or water. Later, rats learned a first-order Pavlovian discrimination where a conditioned stimulus (CS)+ predicted food, and a control (CS-) did not. Rats then learned a second-order association where, absent any food reinforcement, a novel cued (SOC+) predicted the CS+ and another (SOC-) predicted the CS-. Electrophysiological recordings were taken during performance of these tasks in the NAc core and shell. Both control subjects and cocaine-experienced rats learned the first-order association, but only control subjects learned the second-order association. Neural recordings indicated that core and shell neurons encoded task-relevant information that correlated with behavioral performance, whereas this type of encoding was abolished in cocaine-experienced rats. The NAc core and shell perform complementary roles in supporting normal associative learning, functions that are impaired after cocaine experience. This impoverished encoding of motivational behavior, even after abstinence from the drug, might provide a key mechanism to understand why addiction remains a chronically relapsing disorder despite repeated attempts at sobriety. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Event Boundaries Trigger Rapid Memory Reinstatement of the Prior Events to Promote Their Representation in Long-Term Memory.

    PubMed

    Sols, Ignasi; DuBrow, Sarah; Davachi, Lila; Fuentemilla, Lluís

    2017-11-20

    Although everyday experiences unfold continuously over time, shifts in context, or event boundaries, can influence how those events come to be represented in memory [1-4]. Specifically, mnemonic binding across sequential representations is more challenging at context shifts, such that successful temporal associations are more likely to be formed within than across contexts [1, 2, 5-9]. However, in order to preserve a subjective sense of continuity, it is important that the memory system bridge temporally adjacent events, even if they occur in seemingly distinct contexts. Here, we used pattern similarity analysis to scalp electroencephalographic (EEG) recordings during a sequential learning task [2, 3] in humans and showed that the detection of event boundaries triggered a rapid memory reinstatement of the just-encoded sequence episode. Memory reactivation was detected rapidly (∼200-800 ms from the onset of the event boundary) and was specific to context shifts that were preceded by an event sequence with episodic content. Memory reinstatement was not observed during the sequential encoding of events within an episode, indicating that memory reactivation was induced specifically upon context shifts. Finally, the degree of neural similarity between neural responses elicited during sequence encoding and at event boundaries correlated positively with participants' ability to later link across sequences of events, suggesting a critical role in binding temporally adjacent events in long-term memory. Current results shed light onto the neural mechanisms that promote episodic encoding not only for information within the event, but also, importantly, in the ability to link across events to create a memory representation of continuous experience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A spiking neural network model of the midbrain superior colliculus that generates saccadic motor commands.

    PubMed

    Kasap, Bahadir; van Opstal, A John

    2017-08-01

    Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons' burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center-surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.

  9. LRIG2 Mutations Cause Urofacial Syndrome

    PubMed Central

    Stuart, Helen M.; Roberts, Neil A.; Burgu, Berk; Daly, Sarah B.; Urquhart, Jill E.; Bhaskar, Sanjeev; Dickerson, Jonathan E.; Mermerkaya, Murat; Silay, Mesrur Selcuk; Lewis, Malcolm A.; Olondriz, M. Beatriz Orive; Gener, Blanca; Beetz, Christian; Varga, Rita E.; Gülpınar, Ömer; Süer, Evren; Soygür, Tarkan; Özçakar, Zeynep B.; Yalçınkaya, Fatoş; Kavaz, Aslı; Bulum, Burcu; Gücük, Adnan; Yue, Wyatt W.; Erdogan, Firat; Berry, Andrew; Hanley, Neil A.; McKenzie, Edward A.; Hilton, Emma N.; Woolf, Adrian S.; Newman, William G.

    2013-01-01

    Urofacial syndrome (UFS) (or Ochoa syndrome) is an autosomal-recessive disease characterized by congenital urinary bladder dysfunction, associated with a significant risk of kidney failure, and an abnormal facial expression upon smiling, laughing, and crying. We report that a subset of UFS-affected individuals have biallelic mutations in LRIG2, encoding leucine-rich repeats and immunoglobulin-like domains 2, a protein implicated in neural cell signaling and tumorigenesis. Importantly, we have demonstrated that rare variants in LRIG2 might be relevant to nonsyndromic bladder disease. We have previously shown that UFS is also caused by mutations in HPSE2, encoding heparanase-2. LRIG2 and heparanase-2 were immunodetected in nerve fascicles growing between muscle bundles within the human fetal bladder, directly implicating both molecules in neural development in the lower urinary tract. PMID:23313374

  10. Neural correlates of Self and its interaction with memory in healthy adolescents

    PubMed Central

    Dégeilh, Fanny; Guillery-Girard, Bérengère; Dayan, Jacques; Gaubert, Malo; Chételat, Gael; Egler, Pierre-Jean; Baleyte, Jean-Marc; Eustache, Francis; Viard, Armelle

    2015-01-01

    Adolescence is marked by the development of personal identity and is associated with structural and functional changes in brain regions associated with Self processing. Yet, little is known about the neural correlates of self-reference processing and self-reference effect in adolescents. This fMRI study consists in a self-reference paradigm followed by a recognition test proposed to 30 healthy adolescents aged 13–18 years old. Results showed that the rostral anterior cingulate cortex is specifically involved in self-reference processing and that this specialization develops gradually from 13 to 18 years old. The self-reference effect is associated with increased brain activation changes during encoding, suggesting that the beneficial effect of Self on memory may occur at encoding of self-referential information, rather than at retrieval. PMID:26443236

  11. The neural signature of emotional memories in serial crimes.

    PubMed

    Chassy, Philippe

    2017-10-01

    Neural plasticity is the process whereby semantic information and emotional responses are stored in neural networks. It is hypothesized that the neural networks built over time to encode the sexual fantasies that motivate serial killers to act should display a unique, detectable activation pattern. The pathological neural watermark hypothesis posits that such networks comprise activation of brain sites that reflect four cognitive components: autobiographical memory, sexual arousal, aggression, and control over aggression. The neural sites performing these cognitive functions have been successfully identified by previous research. The key findings are reviewed to hypothesise the typical pattern of activity that serial killers should display. Through the integration of biological findings into one framework, the neural approach proposed in this paper is in stark contrast with the many theories accounting for serial killers that offer non-medical taxonomies. The pathological neural watermark hypothesis offers a new framework to understand and detect deviant individuals. The technical and legal issues are briefly discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Neural correlates and neural computations in posterior parietal cortex during perceptual decision-making

    PubMed Central

    Huk, Alexander C.; Meister, Miriam L. R.

    2012-01-01

    A recent line of work has found remarkable success in relating perceptual decision-making and the spiking activity in the macaque lateral intraparietal area (LIP). In this review, we focus on questions about the neural computations in LIP that are not answered by demonstrations of neural correlates of psychological processes. We highlight three areas of limitations in our current understanding of the precise neural computations that might underlie neural correlates of decisions: (1) empirical questions not yet answered by existing data; (2) implementation issues related to how neural circuits could actually implement the mechanisms suggested by both extracellular neurophysiology and psychophysics; and (3) ecological constraints related to the use of well-controlled laboratory tasks and whether they provide an accurate window on sensorimotor computation. These issues motivate the adoption of a more general “encoding-decoding framework” that will be fruitful for more detailed contemplation of how neural computations in LIP relate to the formation of perceptual decisions. PMID:23087623

  13. Neural Mechanisms of Context Effects on Face Recognition: Automatic Binding and Context Shift Decrements

    PubMed Central

    Hayes, Scott M.; Baena, Elsa; Truong, Trong-Kha; Cabeza, Roberto

    2011-01-01

    Although people do not normally try to remember associations between faces and physical contexts, these associations are established automatically, as indicated by the difficulty of recognizing familiar faces in different contexts (“butcher-on-the-bus” phenomenon). The present functional MRI (fMRI) study investigated the automatic binding of faces and scenes. In the Face-Face (F-F) condition, faces were presented alone during both encoding and retrieval, whereas in the Face/Scene-Face (FS-F) condition, they were presented overlaid on scenes during encoding but alone during retrieval (context change). Although participants were instructed to focus only on the faces during both encoding and retrieval, recognition performance was worse in the FS-F than the F-F condition (“context shift decrement”—CSD), confirming automatic face-scene binding during encoding. This binding was mediated by the hippocampus as indicated by greater subsequent memory effects (remembered > forgotten) in this region for the FS-F than the F-F condition. Scene memory was mediated by the right parahippocampal cortex, which was reactivated during successful retrieval when the faces were associated with a scene during encoding (FS-F condition). Analyses using the CSD as a regressor yielded a clear hemispheric asymmetry in medial temporal lobe activity during encoding: left hippocampal and parahippocampal activity was associated with a smaller CSD, indicating more flexible memory representations immune to context changes, whereas right hippocampal/rhinal activity was associated with a larger CSD, indicating less flexible representations sensitive to context change. Taken together, the results clarify the neural mechanisms of context effects on face recognition. PMID:19925208

  14. Greater neural pattern similarity across repetitions is associated with better memory.

    PubMed

    Xue, Gui; Dong, Qi; Chen, Chuansheng; Lu, Zhonglin; Mumford, Jeanette A; Poldrack, Russell A

    2010-10-01

    Repeated study improves memory, but the underlying neural mechanisms of this improvement are not well understood. Using functional magnetic resonance imaging and representational similarity analysis of brain activity, we found that, compared with forgotten items, subsequently remembered faces and words showed greater similarity in neural activation across multiple study in many brain regions, including (but not limited to) the regions whose mean activities were correlated with subsequent memory. This result addresses a longstanding debate in the study of memory by showing that successful episodic memory encoding occurs when the same neural representations are more precisely reactivated across study episodes, rather than when patterns of activation are more variable across time.

  15. Parallel protein secondary structure prediction based on neural networks.

    PubMed

    Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi

    2004-01-01

    Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.

  16. Thinking about thinking: Neural mechanisms and effects on memory.

    PubMed

    Bonhage, Corinna; Weber, Friederike; Exner, Cornelia; Kanske, Philipp

    2016-02-15

    It is a well-established finding that memory encoding is impaired if an external secondary task (e.g. tone discrimination) is performed simultaneously. Yet, while studying we are also often engaged in internal secondary tasks such as planning, ruminating, or daydreaming. It remains unclear whether such a secondary internal task has similar effects on memory and what the neural mechanisms underlying such an influence are. We therefore measured participants' blood oxygenation level dependent responses while they learned word-pairs and simultaneously performed different types of secondary tasks (i.e., internal, external, and control). Memory performance decreased in both internal and external secondary tasks compared to the easy control condition. However, while the external task reduced activity in memory-encoding related regions (hippocampus), the internal task increased neural activity in brain regions associated with self-reflection (anterior medial prefrontal cortex), as well as in regions associated with performance monitoring and the perception of salience (anterior insula, dorsal anterior cingulate cortex). Resting-state functional connectivity analyses confirmed that anterior medial prefrontal cortex and anterior insula/dorsal anterior cingulate cortex are part of the default mode network and salience network, respectively. In sum, a secondary internal task impairs memory performance just as a secondary external task, but operates through different neural mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Altered neural reward and loss processing and prediction error signalling in depression

    PubMed Central

    Ubl, Bettina; Kuehner, Christine; Kirsch, Peter; Ruttorf, Michaela

    2015-01-01

    Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression. PMID:25567763

  18. Medial prefrontal cortex supports source memory accuracy for self-referenced items

    PubMed Central

    Leshikar, Eric D.; Duarte, Audrey

    2013-01-01

    Previous behavioral work suggests that processing information in relation to the self enhances subsequent item recognition. Neuroimaging evidence further suggests that regions along the cortical midline, particularly those of the medial prefrontal cortex, underlie this benefit. There has been little work to date, however, on the effects of self-referential encoding on source memory accuracy or whether the medial prefrontal cortex might contribute to source memory for self-referenced materials. In the current study, we used fMRI to measure neural activity while participants studied and subsequently retrieved pictures of common objects superimposed on one of two background scenes (sources) under either self-reference or self-external encoding instructions. Both item recognition and source recognition were better for objects encoded self-referentially than self-externally. Neural activity predictive of source accuracy was observed in the medial prefrontal cortex (BA 10) at the time of study for self-referentially but not self-externally encoded objects. The results of this experiment suggest that processing information in relation to the self leads to a mnemonic benefit for source level features, and that activity in the medial prefrontal cortex contributes to this source memory benefit. This evidence expands the purported role that the medial prefrontal cortex plays in self-referencing. PMID:21936739

  19. Hippocampus, Retrosplenial and Parahippocampal Cortices Encode Multicompartment 3D Space in a Hierarchical Manner.

    PubMed

    Kim, Misun; Maguire, Eleanor A

    2018-05-01

    Humans commonly operate within 3D environments such as multifloor buildings and yet there is a surprising dearth of studies that have examined how these spaces are represented in the brain. Here, we had participants learn the locations of paintings within a virtual multilevel gallery building and then used behavioral tests and fMRI repetition suppression analyses to investigate how this 3D multicompartment space was represented, and whether there was a bias in encoding vertical and horizontal information. We found faster response times for within-room egocentric spatial judgments and behavioral priming effects of visiting the same room, providing evidence for a compartmentalized representation of space. At the neural level, we observed a hierarchical encoding of 3D spatial information, with left anterior hippocampus representing local information within a room, while retrosplenial cortex, parahippocampal cortex, and posterior hippocampus represented room information within the wider building. Of note, both our behavioral and neural findings showed that vertical and horizontal location information was similarly encoded, suggesting an isotropic representation of 3D space even in the context of a multicompartment environment. These findings provide much-needed information about how the human brain supports spatial memory and navigation in buildings with numerous levels and rooms.

  20. Learning of spatio-temporal codes in a coupled oscillator system.

    PubMed

    Orosz, Gábor; Ashwin, Peter; Townley, Stuart

    2009-07-01

    In this paper, we consider a learning strategy that allows one to transmit information between two coupled phase oscillator systems (called teaching and learning systems) via frequency adaptation. The dynamics of these systems can be modeled with reference to a number of partially synchronized cluster states and transitions between them. Forcing the teaching system by steady but spatially nonhomogeneous inputs produces cyclic sequences of transitions between the cluster states, that is, information about inputs is encoded via a "winnerless competition" process into spatio-temporal codes. The large variety of codes can be learned by the learning system that adapts its frequencies to those of the teaching system. We visualize the dynamics using "weighted order parameters (WOPs)" that are analogous to "local field potentials" in neural systems. Since spatio-temporal coding is a mechanism that appears in olfactory systems, the developed learning rules may help to extract information from these neural ensembles.

Top