Sample records for neural interface systems

  1. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  2. The science of neural interface systems.

    PubMed

    Hatsopoulos, Nicholas G; Donoghue, John P

    2009-01-01

    The ultimate goal of neural interface research is to create links between the nervous system and the outside world either by stimulating or by recording from neural tissue to treat or assist people with sensory, motor, or other disabilities of neural function. Although electrical stimulation systems have already reached widespread clinical application, neural interfaces that record neural signals to decipher movement intentions are only now beginning to develop into clinically viable systems to help paralyzed people. We begin by reviewing state-of-the-art research and early-stage clinical recording systems and focus on systems that record single-unit action potentials. We then address the potential for neural interface research to enhance basic scientific understanding of brain function by offering unique insights in neural coding and representation, plasticity, brain-behavior relations, and the neurobiology of disease. Finally, we discuss technical and scientific challenges faced by these systems before they are widely adopted by severely motor-disabled patients.

  3. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    PubMed

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-01-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.

  4. EDITORIAL: Focus on the neural interface Focus on the neural interface

    NASA Astrophysics Data System (ADS)

    Durand, Dominique M.

    2009-10-01

    The possibility of an effective connection between neural tissue and computers has inspired scientists and engineers to develop new ways of controlling and obtaining information from the nervous system. These applications range from `brain hacking' to neural control of artificial limbs with brain signals. Notwithstanding the significant advances in neural prosthetics in the last few decades and the success of some stimulation devices such as cochlear prosthesis, neurotechnology remains below its potential for restoring neural function in patients with nervous system disorders. One of the reasons for this limited impact can be found at the neural interface and close attention to the integration between electrodes and tissue should improve the possibility of successful outcomes. The neural interfaces research community consists of investigators working in areas such as deep brain stimulation, functional neuromuscular/electrical stimulation, auditory prostheses, cortical prostheses, neuromodulation, microelectrode array technology, brain-computer/machine interfaces. Following the success of previous neuroprostheses and neural interfaces workshops, funding (from NIH) was obtained to establish a biennial conference in the area of neural interfaces. The first Neural Interfaces Conference took place in Cleveland, OH in 2008 and several topics from this conference have been selected for publication in this special section of the Journal of Neural Engineering. Three `perspectives' review the areas of neural regeneration (Corredor and Goldberg), cochlear implants (O'Leary et al) and neural prostheses (Anderson). Seven articles focus on various aspects of neural interfacing. One of the most popular of these areas is the field of brain-computer interfaces. Fraser et al, report on a method to generate robust control with simple signal processing algorithms of signals obtained with electrodes implanted in the brain. One problem with implanted electrode arrays, however, is that they can fail to record reliably neural signals for long periods of time. McConnell et al show that by measuring the impedance of the tissue, one can evaluate the extent of the tissue response to the presence of the electrode. Another problem with the neural interface is the mismatch of the mechanical properties between electrode and tissue. Basinger et al use finite element modeling to analyze this mismatch in retinal prostheses and guide the design of new implantable devices. Electrical stimulation has been the method of choice to activate externally the nervous system. However, Zhang et al show that a novel dual hybrid device integrating electrical and optical stimulation can provide an effective interface for simultaneous recording and stimulation. By interfacing an EMG recording system and a movement detection system, Johnson and Fuglevand develop a model capable of predicting muscle activity during movement that could be important for the development of motor prostheses. Sensory restoration is another unsolved problem in neural prostheses. By developing a novel interface between the dorsal root ganglia and electrodes arrays, Gaunt et al show that it is possible to recruit afferent fibers for sensory substitution. Finally, by interfacing directly with muscles, Jung and colleagues show that stimulation of muscles involved in locomotion following spinal cord damage in rats can provide an effective treatment modality for incomplete spinal cord injury. This series of articles clearly shows that the interface is indeed one of the keys to successful therapeutic neural devices. The next Neural Interfaces Conference will take place in Los Angeles, CA in June 2010 and one can expect to see new developments in neural engineering obtained by focusing on the neural interface.

  5. Recent advances in neural dust: towards a neural interface platform.

    PubMed

    Neely, Ryan M; Piech, David K; Santacruz, Samantha R; Maharbiz, Michel M; Carmena, Jose M

    2018-06-01

    The neural dust platform uses ultrasonic power and communication to enable a scalable, wireless, and batteryless system for interfacing with the nervous system. Ultrasound offers several advantages over alternative wireless approaches, including a safe method for powering and communicating with sub mm-sized devices implanted deep in tissue. Early studies demonstrated that neural dust motes could wirelessly transmit high-fidelity electrophysiological data in vivo, and that theoretically, this system could be miniaturized well below the mm-scale. Future developments are focused on further minimization of the platform, better encapsulation methods as a path towards truly chronic neural interfaces, improved delivery mechanisms, stimulation capabilities, and finally refinements to enable deployment of neural dust in the central nervous system. Copyright © 2017. Published by Elsevier Ltd.

  6. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode.

    PubMed

    Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Kim, Hyungmin; Youn, Inchan

    2017-12-21

    Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

  7. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode

    PubMed Central

    Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Youn, Inchan

    2017-01-01

    Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time. PMID:29267230

  8. Rodent wearable ultrasound system for wireless neural recording.

    PubMed

    Piech, David K; Kay, Joshua E; Boser, Bernhard E; Maharbiz, Michel M

    2017-07-01

    Advances in minimally-invasive, distributed biological interface nodes enable possibilities for networks of sensors and actuators to connect the brain with external devices. The recent development of the neural dust sensor mote has shown that utilizing ultrasound backscatter communication enables untethered sub-mm neural recording devices. These implanted sensor motes require a wearable external ultrasound interrogation device to enable in-vivo, freely-behaving neural interface experiments. However, minimizing the complexity and size of the implanted sensors shifts the power and processing burden to the external interrogator. In this paper, we present an ultrasound backscatter interrogator that supports real-time backscatter processing in a rodent-wearable, completely wireless device. We demonstrate a generic digital encoding scheme which is intended for transmitting neural information. The system integrates a front-end ultrasonic interface ASIC with off-the-shelf components to enable a highly compact ultrasound interrogation device intended for rodent neural interface experiments but applicable to other model systems.

  9. Command and control interfaces for advanced neuroprosthetic applications.

    PubMed

    Scott, T R; Haugland, M

    2001-10-01

    Command and control interfaces permit the intention and situation of the user to influence the operation of the neural prosthesis. The wishes of the user are communicated via command interfaces to the neural prosthesis and the situation of the user by feedback control interfaces. Both these interfaces have been reviewed separately and are discussed in light of the current state of the art and projections for the future. It is apparent that as system functional complexity increases, the need for simpler command interfaces will increase. Such systems will demand more information to function effectively in order not to unreasonably increase user attention overhead. This will increase the need for bioelectric and biomechanical signals in a comprehensible form via elegant feedback control interfaces. Implementing such systems will also increase the computational demand on such neural prostheses.

  10. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems

    NASA Astrophysics Data System (ADS)

    Broccard, Frédéric D.; Joshi, Siddharth; Wang, Jun; Cauwenberghs, Gert

    2017-08-01

    Objective. Computation in nervous systems operates with different computational primitives, and on different hardware, than traditional digital computation and is thus subjected to different constraints from its digital counterpart regarding the use of physical resources such as time, space and energy. In an effort to better understand neural computation on a physical medium with similar spatiotemporal and energetic constraints, the field of neuromorphic engineering aims to design and implement electronic systems that emulate in very large-scale integration (VLSI) hardware the organization and functions of neural systems at multiple levels of biological organization, from individual neurons up to large circuits and networks. Mixed analog/digital neuromorphic VLSI systems are compact, consume little power and operate in real time independently of the size and complexity of the model. Approach. This article highlights the current efforts to interface neuromorphic systems with neural systems at multiple levels of biological organization, from the synaptic to the system level, and discusses the prospects for future biohybrid systems with neuromorphic circuits of greater complexity. Main results. Single silicon neurons have been interfaced successfully with invertebrate and vertebrate neural networks. This approach allowed the investigation of neural properties that are inaccessible with traditional techniques while providing a realistic biological context not achievable with traditional numerical modeling methods. At the network level, populations of neurons are envisioned to communicate bidirectionally with neuromorphic processors of hundreds or thousands of silicon neurons. Recent work on brain-machine interfaces suggests that this is feasible with current neuromorphic technology. Significance. Biohybrid interfaces between biological neurons and VLSI neuromorphic systems of varying complexity have started to emerge in the literature. Primarily intended as a computational tool for investigating fundamental questions related to neural dynamics, the sophistication of current neuromorphic systems now allows direct interfaces with large neuronal networks and circuits, resulting in potentially interesting clinical applications for neuroengineering systems, neuroprosthetics and neurorehabilitation.

  11. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics

    PubMed Central

    Szostak, Katarzyna M.; Grand, Laszlo; Constandinou, Timothy G.

    2017-01-01

    Implantable neural interfaces for central nervous system research have been designed with wire, polymer, or micromachining technologies over the past 70 years. Research on biocompatible materials, ideal probe shapes, and insertion methods has resulted in building more and more capable neural interfaces. Although the trend is promising, the long-term reliability of such devices has not yet met the required criteria for chronic human application. The performance of neural interfaces in chronic settings often degrades due to foreign body response to the implant that is initiated by the surgical procedure, and related to the probe structure, and material properties used in fabricating the neural interface. In this review, we identify the key requirements for neural interfaces for intracortical recording, describe the three different types of probes—microwire, micromachined, and polymer-based probes; their materials, fabrication methods, and discuss their characteristics and related challenges. PMID:29270103

  12. Neural Interfaces for Intracortical Recording: Requirements, Fabrication Methods, and Characteristics.

    PubMed

    Szostak, Katarzyna M; Grand, Laszlo; Constandinou, Timothy G

    2017-01-01

    Implantable neural interfaces for central nervous system research have been designed with wire, polymer, or micromachining technologies over the past 70 years. Research on biocompatible materials, ideal probe shapes, and insertion methods has resulted in building more and more capable neural interfaces. Although the trend is promising, the long-term reliability of such devices has not yet met the required criteria for chronic human application. The performance of neural interfaces in chronic settings often degrades due to foreign body response to the implant that is initiated by the surgical procedure, and related to the probe structure, and material properties used in fabricating the neural interface. In this review, we identify the key requirements for neural interfaces for intracortical recording, describe the three different types of probes-microwire, micromachined, and polymer-based probes; their materials, fabrication methods, and discuss their characteristics and related challenges.

  13. Conducting Polymers for Neural Prosthetic and Neural Interface Applications

    PubMed Central

    2015-01-01

    Neural interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural activity, the regeneration of neural tissue and the delivery of bioactive molecules for mediating device-tissue interactions. CPs form a flexible platform technology that enables the development of tailored materials for a range of neuronal diagnostic and treatment therapies. In this review the application of CPs for neural prostheses and other neural interfacing devices are discussed, with a specific focus on neural recording, neural stimulation, neural regeneration, and therapeutic drug delivery. PMID:26414302

  14. The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.

    PubMed

    Liu, Xilin; Zhang, Milin; Subei, Basheer; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2015-04-01

    In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the PC end. The neural signal analyzer features a four channel analog front-end with configurable bandpass filter, gain stage, digitization resolution, and sampling rate. The target frequency band is configurable from EEG to single unit activity. A noise floor of 4.69 μVrms is achieved over a bandwidth from 0.05 Hz to 6 kHz. Digital filtering, neural feature extraction, spike detection, sensing-stimulating modulation, and compressed sensing measurement are realized in a central processing unit integrated in the analyzer. A flash memory card is also integrated in the analyzer. A 2-channel neural stimulator with a compliance voltage up to ± 12 V is included. The stimulator is capable of delivering unipolar or bipolar, charge-balanced current pulses with programmable pulse shape, amplitude, width, pulse train frequency and latency. A multi-functional sensor node, including an accelerometer, a temperature sensor, a flexiforce sensor and a general sensor extension port has been designed. A computer interface is designed to monitor, control and configure all aforementioned devices via a wireless link, according to a custom designed communication protocol. Wireless closed-loop operation between the sensory devices, neural stimulator, and neural signal analyzer can be configured. The proposed system was designed to link two sites in the brain, bridging the brain and external hardware, as well as creating new sensory and motor pathways for clinical practice. Bench test and in vivo experiments are performed to verify the functions and performances of the system.

  15. A Review of Organic and Inorganic Biomaterials for Neural Interfaces

    PubMed Central

    Fattahi, Pouria; Yang, Guang; Kim, Gloria

    2015-01-01

    Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided first, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces. PMID:24677434

  16. A review of organic and inorganic biomaterials for neural interfaces.

    PubMed

    Fattahi, Pouria; Yang, Guang; Kim, Gloria; Abidian, Mohammad Reza

    2014-03-26

    Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.

  17. 3D hybrid electrode structure as implantable interface for a vestibular neural prosthesis in humans.

    PubMed

    Hoffmann, Klaus-P; Poppendieck, Wigand; Tätzner, Simon; DiGiovanna, Jack; Kos, Maria Izabel; Guinand, Nils; Guyot, Jean-P; Micera, Silvestro

    2011-01-01

    Implantable interfaces are essential components of vestibular neural prostheses. They interface the biological system with electrical stimulation that is used to restore transfer of vestibular information. Regarding the anatomical situation special 3D structures are required. In this paper, the design and the manufacturing process of a novel 3D hybrid microelectrode structure as interface to the human vestibular system are described. Photolithography techniques, assembling technology and rapid prototyping are used for manufacturing.

  18. Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces

    PubMed Central

    Hochberg, Leigh R.; Donoghue, John P.; Brown, Emery N.

    2015-01-01

    Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID:25265627

  19. Implantable neurotechnologies: bidirectional neural interfaces--applications and VLSI circuit implementations.

    PubMed

    Greenwald, Elliot; Masters, Matthew R; Thakor, Nitish V

    2016-01-01

    A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.

  20. Bidirectional Neural Interfaces

    PubMed Central

    Masters, Matthew R.; Thakor, Nitish V.

    2016-01-01

    A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very-large-scale integration (VLSI) has advanced the design of complex integrated circuits. System-on-chip (SoC) devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems. PMID:26753776

  1. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface

    NASA Astrophysics Data System (ADS)

    Gore, Russell K.; Choi, Yoonsu; Bellamkonda, Ravi; English, Arthur

    2015-02-01

    Objective. Neural interface technologies could provide controlling connections between the nervous system and external technologies, such as limb prosthetics. The recording of efferent, motor potentials is a critical requirement for a peripheral neural interface, as these signals represent the user-generated neural output intended to drive external devices. Our objective was to evaluate structural and functional neural regeneration through a microchannel neural interface and to characterize potentials recorded from electrodes placed within the microchannels in awake and behaving animals. Approach. Female rats were implanted with muscle EMG electrodes and, following unilateral sciatic nerve transection, the cut nerve was repaired either across a microchannel neural interface or with end-to-end surgical repair. During a 13 week recovery period, direct muscle responses to nerve stimulation proximal to the transection were monitored weekly. In two rats repaired with the neural interface, four wire electrodes were embedded in the microchannels and recordings were obtained within microchannels during proximal stimulation experiments and treadmill locomotion. Main results. In these proof-of-principle experiments, we found that axons from cut nerves were capable of functional reinnervation of distal muscle targets, whether regenerating through a microchannel device or after direct end-to-end repair. Discrete stimulation-evoked and volitional potentials were recorded within interface microchannels in a small group of awake and behaving animals and their firing patterns correlated directly with intramuscular recordings during locomotion. Of 38 potentials extracted, 19 were identified as motor axons reinnervating tibialis anterior or soleus muscles using spike triggered averaging. Significance. These results are evidence for motor axon regeneration through microchannels and are the first report of in vivo recordings from regenerated motor axons within microchannels in a small group of awake and behaving animals. These unique findings provide preliminary evidence that efferent, volitional motor potentials can be recorded from the microchannel-based peripheral neural interface; a critical requirement for any neural interface intended to facilitate direct neural control of external technologies.

  2. Model validation of untethered, ultrasonic neural dust motes for cortical recording.

    PubMed

    Seo, Dongjin; Carmena, Jose M; Rabaey, Jan M; Maharbiz, Michel M; Alon, Elad

    2015-04-15

    A major hurdle in brain-machine interfaces (BMI) is the lack of an implantable neural interface system that remains viable for a substantial fraction of the user's lifetime. Recently, sub-mm implantable, wireless electromagnetic (EM) neural interfaces have been demonstrated in an effort to extend system longevity. However, EM systems do not scale down in size well due to the severe inefficiency of coupling radio-waves at those scales within tissue. This paper explores fundamental system design trade-offs as well as size, power, and bandwidth scaling limits of neural recording systems built from low-power electronics coupled with ultrasonic power delivery and backscatter communication. Such systems will require two fundamental technology innovations: (1) 10-100 μm scale, free-floating, independent sensor nodes, or neural dust, that detect and report local extracellular electrophysiological data via ultrasonic backscattering and (2) a sub-cranial ultrasonic interrogator that establishes power and communication links with the neural dust. We provide experimental verification that the predicted scaling effects follow theory; (127 μm)(3) neural dust motes immersed in water 3 cm from the interrogator couple with 0.002064% power transfer efficiency and 0.04246 ppm backscatter, resulting in a maximum received power of ∼0.5 μW with ∼1 nW of change in backscatter power with neural activity. The high efficiency of ultrasonic transmission can enable the scaling of the sensing nodes down to 10s of micrometer. We conclude with a brief discussion of the application of neural dust for both central and peripheral nervous system recordings, and perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

    NASA Astrophysics Data System (ADS)

    Simeral, J. D.; Kim, S.-P.; Black, M. J.; Donoghue, J. P.; Hochberg, L. R.

    2011-04-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor.

  4. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

    PubMed Central

    Simeral, J D; Kim, S-P; Black, M J; Donoghue, J P; Hochberg, L R

    2013-01-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor. PMID:21436513

  5. EDITORIAL: Special issue containing contributions from the 39th Neural Interfaces Conference Special issue containing contributions from the 39th Neural Interfaces Conference

    NASA Astrophysics Data System (ADS)

    Weiland, James D.

    2011-07-01

    Implantable neural interfaces provide substantial benefits to individuals with neurological disorders. That was the unequivocal message delivered by speaker after speaker from the podium of the 39th Neural Interfaces Conference (NIC2010) held in Long Beach, California, in June 2010. Giving benefit to patients is the most important measure for any biomedical technology, and myriad presentations at NIC2010 made clear that implantable neurostimulation technology has achieved this goal. Cochlear implants allow deaf people to communicate through speech. Deep brain stimulators give back mobility and dexterity necessary for so many daily tasks that are often taken for granted. Chronic pain can be alleviated through spinal cord stimulation. Motor prosthesis systems have been demonstrated in humans, through both reanimation of paralyzed limbs and neural control of robotic arms. Earlier this year, a retinal prosthesis was approved for sale in Europe, providing some hope for the blind. In sum, current clinical implants have been tremendously beneficial for today's patients and experimental systems that will be translated to the clinic promise to expand the number of people helped through bioelectronic therapies. Yet there are significant opportunities for improvement. For sensory prostheses, patients report an artificial sensation, clearly different from the natural sensation they remember. Neuromodulation systems, such as deep brain stimulation and pain stimulators, often have side effects that are tolerated as long as the side effects are less impactful than the disease. The papers published in the special issue from NIC2010 reflect the maturing and expanding field of neural interfaces. Our field has moved past proof-of-principle demonstrations and is now focusing on proving the longevity required for clinical implementation of new devices, extending existing approaches to new diseases and improving current devices for better outcomes. Closed-loop neuromodulation is a strategy that can potentially optimize dosing, reduce side effects and extend implant battery life. The article by Liang et al investigates methods for closed loop control of epilepsy, using neural recording to detect imminent seizures and stimulation to halt the aberrant neural activity leading to seizure. Liu et al report on a model of basal ganglia function that could lead to optimized, closed-loop stimulation to reduce symptoms of Parkinson's disease while avoiding side effects. Our laboratory, as described in Ray et al, is investigating the interface between stimulating microelectrodes and the retina, to inform the design of a high-resolution retinal prosthesis. Three contributions address the issue of long-term stability of cortical recording, which remains a major hurdle to implementation of neural recording systems. The Utah group reports on the in vitro testing of a completely implantable, wireless neural recording system, demonstrating almost one year of reliable performance under simulated implant conditions. Shenoy's laboratory at Stanford demonstrates that useful signals can be recorded from research animals for over 2.5 years. Lempka et al describe a modeling approach to analyzing intracortical microelectrode recordings. These findings represent real and significant progress towards overcoming the final barriers to implementation of a reliable cortical interface. Planning is well underway for the 40th Neural Interfaces Conference, which will be held in Salt Lake City, Utah, in June 2012. The conference promises to continue the NIC tradition of showcasing the latest results from clinical trials of neural interface therapies while providing ample time for dynamic exchange amongst the interdisciplinary audience of engineers, scientists and clinicians.

  6. Evolvable Neural Software System

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  7. A TinyOS-based wireless neural interface.

    PubMed

    Farshchi, Shahin; Mody, Istvan; Judy, Jack W

    2004-01-01

    The overlay of a neural interface upon a TinyOS-based sensing and communication platform is described. The system amplifies, digitally encodes, and transmits two EEG channels of neural signals from an un-tethered subject to a remote gateway, which routes the signals to a client PC. This work demonstrates the viability of the TinyOS-based sensor technology as a foundation for chronic remote biological monitoring applications, and thus provides an opportunity to create a system that can leverage from the frequent networking and communications advancements being made by the global TinyOS-development community.

  8. Feasibility study for future implantable neural-silicon interface devices.

    PubMed

    Al-Armaghany, Allann; Yu, Bo; Mak, Terrence; Tong, Kin-Fai; Sun, Yihe

    2011-01-01

    The emerging neural-silicon interface devices bridge nerve systems with artificial systems and play a key role in neuro-prostheses and neuro-rehabilitation applications. Integrating neural signal collection, processing and transmission on a single device will make clinical applications more practical and feasible. This paper focuses on the wireless antenna part and real-time neural signal analysis part of implantable brain-machine interface (BMI) devices. We propose to use millimeter-wave for wireless connections between different areas of a brain. Various antenna, including microstrip patch, monopole antenna and substrate integrated waveguide antenna are considered for the intra-cortical proximity communication. A Hebbian eigenfilter based method is proposed for multi-channel neuronal spike sorting. Folding and parallel design techniques are employed to explore various structures and make a trade-off between area and power consumption. Field programmable logic arrays (FPGAs) are used to evaluate various structures.

  9. Neurophysiology and neural engineering: a review.

    PubMed

    Prochazka, Arthur

    2017-08-01

    Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight. Copyright © 2017 the American Physiological Society.

  10. Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems

    PubMed Central

    Malik, Wasim Q.; Truccolo, Wilson; Brown, Emery N.; Hochberg, Leigh R.

    2011-01-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5 ± 0.5 s (mean ± s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25 ± 3 single units by a factor of 7.0 ± 0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems. PMID:21078582

  11. An Implantable Wireless Neural Interface for Recording Cortical Circuit Dynamics in Moving Primates

    PubMed Central

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-01-01

    Objective Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims, and those living with severe neuromotor disease. Such systems must be chronically safe, durable, and effective. Approach We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous, and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based MEA via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1Hz to 7.8kHz, ×200 gain) and multiplexed by a custom application specific integrated circuit, digitized, and then packaged for transmission. The neural data (24 Mbps) was transmitted by a wireless data link carried on an frequency shift key modulated signal at 3.2GHz and 3.8GHz to a receiver 1 meter away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7-hour continuous operation between recharge via an inductive transcutaneous wireless power link at 2MHz. Main results Device verification and early validation was performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight on how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile patient use, have the potential for wider diagnosis of neurological conditions, and will advance brain research. PMID:23428937

  12. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

    NASA Astrophysics Data System (ADS)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile patient use, have the potential for wider diagnosis of neurological conditions and will advance brain research.

  13. Three-Dimensional Flexible Electronics Enabled by Shape Memory Polymer Substrates for Responsive Neural Interfaces.

    PubMed

    Ware, Taylor; Simon, Dustin; Hearon, Keith; Liu, Clive; Shah, Sagar; Reeder, Jonathan; Khodaparast, Navid; Kilgard, Michael P; Maitland, Duncan J; Rennaker, Robert L; Voit, Walter E

    2012-12-01

    Planar electronics processing methods have enabled neural interfaces to become more precise and deliver more information. However, this processing paradigm is inherently 2D and rigid. The resulting mechanical and geometrical mismatch at the biotic-abiotic interface can elicit an immune response that prevents effective stimulation. In this work, a thiol-ene/acrylate shape memory polymer is utilized to create 3D softening substrates for stimulation electrodes. This substrate system is shown to soften in vivo from more than 600 to 6 MPa. A nerve cuff electrode that coils around the vagus nerve in a rat and that drives neural activity is demonstrated.

  14. A VLSI Neural Monitoring System With Ultra-Wideband Telemetry for Awake Behaving Subjects.

    PubMed

    Greenwald, E; Mollazadeh, M; Hu, C; Wei Tang; Culurciello, E; Thakor, V

    2011-04-01

    Long-term monitoring of neuronal activity in awake behaving subjects can provide fundamental information about brain dynamics for neuroscience and neuroengineering applications. Here, we present a miniature, lightweight, and low-power recording system for monitoring neural activity in awake behaving animals. The system integrates two custom designed very-large-scale integrated chips, a neural interface module fabricated in 0.5 μm complementary metal-oxide semiconductor technology and an ultra-wideband transmitter module fabricated in a 0.5 μm silicon-on-sapphire (SOS) technology. The system amplifies, filters, digitizes, and transmits 16 channels of neural data at a rate of 1 Mb/s. The entire system, which includes the VLSI circuits, a digital interface board, a battery, and a custom housing, is small and lightweight (24 g) and, thus, can be chronically mounted on small animals. The system consumes 4.8 mA and records continuously for up to 40 h powered by a 3.7-V, 200-mAh rechargeable lithium-ion battery. Experimental benchtop characterizations as well as in vivo multichannel neural recordings from awake behaving rats are presented here.

  15. Selective electrical interfaces with the nervous system.

    PubMed

    Rutten, Wim L C

    2002-01-01

    To achieve selective electrical interfacing to the neural system it is necessary to approach neuronal elements on a scale of micrometers. This necessitates microtechnology fabrication and introduces the interdisciplinary field of neurotechnology, lying at the juncture of neuroscience with microtechnology. The neuroelectronic interface occurs where the membrane of a cell soma or axon meets a metal microelectrode surface. The seal between these may be narrow or may be leaky. In the latter case the surrounding volume conductor becomes part of the interface. Electrode design for successful interfacing, either for stimulation or recording, requires good understanding of membrane phenomena, natural and evoked action potential generation, volume conduction, and electrode behavior. Penetrating multimicroelectrodes have been produced as one-, two-, and three-dimensional arrays, mainly in silicon, glass, and metal microtechnology. Cuff electrodes circumvent a nerve; their selectivity aims at fascicles more than at nerve fibers. Other types of electrodes are regenerating sieves and cone-ingrowth electrodes. The latter may play a role in brain-computer interfaces. Planar substrate-embedded electrode arrays with cultured neural cells on top are used to study the activity and plasticity of developing neural networks. They also serve as substrates for future so-called cultured probes.

  16. High-Density Stretchable Electrode Grids for Chronic Neural Recording

    PubMed Central

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F.; Buzsáki, György; Vörös, János

    2018-01-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. PMID:29488263

  17. Controlling selective stimulations below a spinal cord hemisection using brain recordings with a neural interface system approach

    NASA Astrophysics Data System (ADS)

    Panetsos, Fivos; Sanchez-Jimenez, Abel; Torets, Carlos; Largo, Carla; Micera, Silvestro

    2011-08-01

    In this work we address the use of realtime cortical recordings for the generation of coherent, reliable and robust motor activity in spinal-lesioned animals through selective intraspinal microstimulation (ISMS). The spinal cord of adult rats was hemisectioned and groups of multielectrodes were implanted in both the central nervous system (CNS) and the spinal cord below the lesion level to establish a neural system interface (NSI). To test the reliability of this new NSI connection, highly repeatable neural responses recorded from the CNS were used as a pattern generator of an open-loop control strategy for selective ISMS of the spinal motoneurons. Our experimental procedure avoided the spontaneous non-controlled and non-repeatable neural activity that could have generated spurious ISMS and the consequent undesired muscle contractions. Combinations of complex CNS patterns generated precisely coordinated, reliable and robust motor actions.

  18. A Brain-Based Communication and Orientation System

    DTIC Science & Technology

    2014-10-06

    Review of the BCI Competition IV, Frontiers in Neuroscience, ( 2012): 0. doi: 10.3389/fnins.2012.00055 Eric C. Leuthardt, Xiao-Mei Pei, Jonathan...hardware and software for brain– computer interfaces ( BCIs ), Journal of Neural Engineering, (04 2011): 1. doi: 10.1088/1741-2560/8/2/025001...Cincotti, G. Schalk, Peter Brunner. Current Trends in Brain–Computer Interface ( BCI ) Research and Development, Journal of Neural Engineering, (3 2011

  19. MEART: The Semi-Living Artist

    PubMed Central

    Bakkum, Douglas J.; Gamblen, Philip M.; Ben-Ary, Guy; Chao, Zenas C.; Potter, Steve M.

    2007-01-01

    Here, we and others describe an unusual neurorobotic project, a merging of art and science called MEART, the semi-living artist. We built a pneumatically actuated robotic arm to create drawings, as controlled by a living network of neurons from rat cortex grown on a multi-electrode array (MEA). Such embodied cultured networks formed a real-time closed-loop system which could now behave and receive electrical stimulation as feedback on its behavior. We used MEART and simulated embodiments, or animats, to study the network mechanisms that produce adaptive, goal-directed behavior. This approach to neural interfacing will help instruct the design of other hybrid neural-robotic systems we call hybrots. The interfacing technologies and algorithms developed have potential applications in responsive deep brain stimulation systems and for motor prosthetics using sensory components. In a broader context, MEART educates the public about neuroscience, neural interfaces, and robotics. It has paved the way for critical discussions on the future of bio-art and of biotechnology. PMID:18958276

  20. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.

    PubMed

    Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.

  1. Implantable neurotechnologies: a review of integrated circuit neural amplifiers

    PubMed Central

    Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V.

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification. PMID:26798055

  2. Vertically aligned carbon nanofiber as nano-neuron interface for monitoring neural function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ericson, Milton Nance; McKnight, Timothy E; Melechko, Anatoli Vasilievich

    2012-01-01

    Neural chips, which are capable of simultaneous, multi-site neural recording and stimulation, have been used to detect and modulate neural activity for almost 30 years. As a neural interface, neural chips provide dynamic functional information for neural decoding and neural control. By improving sensitivity and spatial resolution, nano-scale electrodes may revolutionize neural detection and modulation at cellular and molecular levels as nano-neuron interfaces. We developed a carbon-nanofiber neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes and demonstrated its capability of both stimulating and monitoring electrophysiological signals from brain tissues in vitro and monitoring dynamic information ofmore » neuroplasticity. This novel nano-neuron interface can potentially serve as a precise, informative, biocompatible, and dual-mode neural interface for monitoring of both neuroelectrical and neurochemical activity at the single cell level and even inside the cell.« less

  3. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  4. Miniaturized neural interfaces and implants

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  5. Optimal input selection for neural machine interfaces predicting multiple non-explicit outputs.

    PubMed

    Krepkovich, Eileen T; Perreault, Eric J

    2008-01-01

    This study implemented a novel algorithm that optimally selects inputs for neural machine interface (NMI) devices intended to control multiple outputs and evaluated its performance on systems lacking explicit output. NMIs often incorporate signals from multiple physiological sources and provide predictions for multidimensional control, leading to multiple-input multiple-output systems. Further, NMIs often are used with subjects who have motor disabilities and thus lack explicit motor outputs. Our algorithm was tested on simulated multiple-input multiple-output systems and on electromyogram and kinematic data collected from healthy subjects performing arm reaches. Effects of output noise in simulated systems indicated that the algorithm could be useful for systems with poor estimates of the output states, as is true for systems lacking explicit motor output. To test efficacy on physiological data, selection was performed using inputs from one subject and outputs from a different subject. Selection was effective for these cases, again indicating that this algorithm will be useful for predictions where there is no motor output, as often is the case for disabled subjects. Further, prediction results generalized for different movement types not used for estimation. These results demonstrate the efficacy of this algorithm for the development of neural machine interfaces.

  6. High-Density Stretchable Electrode Grids for Chronic Neural Recording.

    PubMed

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F; Buzsáki, György; Vörös, János

    2018-04-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An integrated interface for peripheral neural system recording and stimulation: system design, electrical tests and in-vivo results.

    PubMed

    Carboni, Caterina; Bisoni, Lorenzo; Carta, Nicola; Puddu, Roberto; Raspopovic, Stanisa; Navarro, Xavier; Raffo, Luigi; Barbaro, Massimo

    2016-04-01

    The prototype of an electronic bi-directional interface between the Peripheral Nervous System (PNS) and a neuro-controlled hand prosthesis is presented. The system is composed of 2 integrated circuits: a standard CMOS device for neural recording and a HVCMOS device for neural stimulation. The integrated circuits have been realized in 2 different 0.35μ m CMOS processes available from ams. The complete system incorporates 8 channels each including the analog front-end, the A/D conversion, based on a sigma delta architecture and a programmable stimulation module implemented as a 5-bit current DAC; two voltage boosters supply the output stimulation stage with a programmable voltage scalable up to 17V. Successful in-vivo experiments with rats having a TIME electrode implanted in the sciatic nerve were carried out, showing the capability of recording neural signals in the tens of microvolts, with a global noise of 7μ V r m s , and to selectively elicit the tibial and plantar muscles using different active sites of the electrode.

  8. A TinyOS-enabled MICA2-based wireless neural interface.

    PubMed

    Farshchi, Shahin; Nuyujukian, Paul H; Pesterev, Aleksey; Mody, Istvan; Judy, Jack W

    2006-07-01

    Existing approaches used to develop compact low-power multichannel wireless neural recording systems range from creating custom-integrated circuits to assembling commercial-off-the-shelf (COTS) PC-based components. Custom-integrated-circuit designs yield extremely compact and low-power devices at the expense of high development and upgrade costs and turn-around times, while assembling COTS-PC-technology yields high performance at the expense of large system size and increased power consumption. To achieve a balance between implementing an ultra-compact custom-fabricated neural transceiver and assembling COTS-PC-technology, an overlay of a neural interface upon the TinyOS-based MICA2 platform is described. The system amplifies, digitally encodes, and transmits neural signals real-time at a rate of 9.6 kbps, while consuming less than 66 mW of power. The neural signals are received and forwarded to a client PC over a serial connection. This data rate can be divided for recording on up to 6 channels, with a resolution of 8 bits/sample. This work demonstrates the strengths and limitations of the TinyOS-based sensor technology as a foundation for chronic remote biological monitoring applications and, thus, provides an opportunity to create a system that can leverage from the frequent networking and communications advancements being made by the global TinyOS-development community.

  9. Time to address the problems at the neural interface

    NASA Astrophysics Data System (ADS)

    Durand, Dominique M.; Ghovanloo, Maysam; Krames, Elliot

    2014-04-01

    Neural engineers have made significant, if not remarkable, progress in interfacing with the nervous system in the last ten years. In particular, neuromodulation of the brain has generated significant therapeutic benefits [1-5]. EEG electrodes can be used to communicate with patients with locked-in syndrome [6]. In the central nervous system (CNS), electrode arrays placed directly over or within the cortex can record neural signals related to the intent of the subject or patient [7, 8]. A similar technology has allowed paralyzed patients to control an otherwise normal skeletal system with brain signals [9, 10]. This technology has significant potential to restore function in these and other patients with neural disorders such as stroke [11]. Although there are several multichannel arrays described in the literature, the workhorse for these cortical interfaces has been the Utah array [12]. This 100-channel electrode array has been used in most studies on animals and humans since the 1990s and is commercially available. This array and other similar microelectrode arrays can record neural signals with high quality (high signal-to-noise ratio), but these signals fade and disappear after a few months and therefore the current technology is not reliable for extended periods of time. Therefore, despite these major advances in communicating with the brain, clinical translation cannot be implemented. The reasons for this failure are not known but clearly involve the interface between the electrode and the neural tissue. The Defense Advanced Research Project Agency (DARPA) as well as other federal funding agencies such as the National Science Foundation (NSF) and the National Institutes of Health have provided significant financial support to investigate this problem without much success. A recent funding program from DARPA was designed to establish the failure modes in order to generate a reliable neural interface technology and again was unsuccessful at producing a robust interface with the CNS. In 2013, two symposia were held independently to discuss this problem: one was held at the International Neuromodulation Society's 11th World Congress in Berlin and supported by the International Neuromodulation Society1 and the other at the 6th International Neural Engineering conference in San Diego2 and was supported by the NSF. Clearly, the neuromodulation and the neural engineering communities are keen to solve this problem. Experts from the field were assembled to discuss the problems and potential solutions. Although many important points were raised, few emerged as key issues. (1) The ability to access remotely and reliably internal neural signals . Although some of the technological problems have already been solved, this ability to access neural signals is still a significant problem since reliable and robust transcutaneous telemetry systems with large numbers of signals, each with wide bandwidth, are not readily available to researchers. (2) A translation strategy taking basic research to the clinic . The lack of understanding of the biological response to implanted constructs and the inability to monitor the sites and match the mechanical properties of the probe to the neural tissue properties continue to be an unsolved problem. In addition, the low levels of collaboration among neuroscientists, clinicians, patients and other stakeholders throughout different phases of research and development were considered to be significant impediments to progress. (3) Fundamental tools development procedures for neural interfacing . There are many laboratories testing various devices with different sets of criteria, but there is no consensus on the failure modes. The reliability, robustness of metrics and testing standards for such devices have not been established, either in academia or in industry. To start addressing this problem, the FDA has established a laboratory to test the reliability of some neural devices. Although the discussion was mostly centered on interfacing with the CNS, it has recently become clear that the peripheral nervous system (PNS) could be an important target for interfacing, perhaps even more accessible for interfacing than the CNS. A recent initiative called Bioelectronic Medicines3 is a step in that direction. A recent summit held in New York was organized to investigate novel and disruptive neural technologies to interface specifically with the PNS in order to restore health and biological function to organs. With significant interest in neurotechnology for neural interfacing (see footnotes 1, 2 and 3) and uncovering new ways to treat, prevent and cure brain disorders (President Obama's brain initiative4), it seems clear that the problems at the interface will not remain unsolved for long. Finding solutions to the problem at the neural interface for interacting with the nervous system (PNS and CNS) is crucial for understanding and restoring brain function. This would in turn have a significant impact on health care and quality of life for patients with neural disorders. References [1] Follett K A et al 2010 Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease New Engl. J. Med. 362 2077-91 [2] Holtzheimer P E et al 2012 Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression Arch. Gen. Psychiatry 69 150 [3] Carron R, Chabardes S and Hammond C 2012 Mechanisms of action of high-frequency deep brain stimulation. A review of the literature and current concepts NeuroChirurgie 58 209-17 [4] Vidailhet M et al 2005 Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia New Engl. J. Med. 352 459-67 [5] Theodore W H and Fisher R S 2004 Brain stimulation for epilepsy Lancet Neurol. 3 111-8 [6] Kübler A, Kotchoubey B, Kaiser J, Wolpaw J R and Birbaumer N 2001 Brain-computer communication: unlocking the locked Psychol. Bull. 127 358-75 [7] Schalk G, Miller K J, Anderson N R, Wilson J A, Smyth M D, Ojemann J G, Moran D W, Wolpaw J R and Leuthardt E C 2008 Two-dimensional movement control using electrocorticographic signals in humans J. Neural Eng. 5 75 [8] Serruya M D, Hatsopoulos N G, Paninski L, Fellows M R and Donoghue J P 2002 Brain-machine interface: instant neural control of a movement signal Nature 416 141-2 [9] Hochberg L R, Serruya M D, Friehs G M, Mukand J A, Saleh M, Caplan A H, Branner A, Chen D, Penn R D and Donoghue J P 2006 Neuronal ensemble control of prosthetic devices by a human with tetraplegia Nature 442 164-71 [10] Collinger J L et al 2013 High-performance neuroprosthetic control by an individual with tetraplegia Lancet 381 557-64 [11] Leuthardt E C, Schalk G, Wolpaw J R, Ojemann J G and Moran D W 2004 A brain-computer interface using electrocorticographic signals in humans J. Neural Eng. 1 63 [12] Maynard E M, Nordhausen C T and Normann R A 1997 The Utah intracortical electrode array: a recording structure for potential brain-computer interfaces Electroencephalogr. Clin. Neurophysiol. 102 228-39 1 www.neuromodulation.com/8-june-2013 2 http://neuro.embs.org/wp-content/uploads/sites/2/2013/05/SymposiumAdvert1.pdf 3 www.gsk.com/explore-gsk/how-we-do-r-and-d/bioelectronics.html 4 www.whitehouse.gov/share/brain-initiative

  10. Carbon nanotubes in neural interfacing applications

    NASA Astrophysics Data System (ADS)

    Voge, Christopher M.; Stegemann, Jan P.

    2011-02-01

    Carbon nanotubes (CNT) are remarkable materials with a simple and inert molecular structure that gives rise to a range of potentially valuable physical and electronic properties, including high aspect ratio, high mechanical strength and excellent electrical conductivity. This review summarizes recent research on the application of CNT-based materials to study and control cells of the nervous system. It includes the use of CNT as cell culture substrates, to create patterned surfaces and to study cell-matrix interactions. It also summarizes recent investigations of CNT toxicity, particularly as related to neural cells. The application of CNT-based materials to directing the differentiation of progenitor and stem cells toward neural lineages is also discussed. The emphasis is on how CNT surface chemistry and nanotopography can be altered, and how such changes can affect neural cell function. This knowledge can be applied to creating improved neural interfaces and devices, as well as providing new approaches to neural tissue engineering and regeneration.

  11. Design and Evaluation of a Cable-Driven fMRI-Compatible Haptic Interface to Investigate Precision Grip Control

    PubMed Central

    Vigaru, Bogdan; Sulzer, James; Gassert, Roger

    2016-01-01

    Our hands and fingers are involved in almost all activities of daily living and, as such, have a disproportionately large neural representation. Functional magnetic resonance imaging investigations into the neural control of the hand have revealed great advances, but the harsh MRI environment has proven to be a challenge to devices capable of delivering a large variety of stimuli necessary for well-controlled studies. This paper presents a fMRI-compatible haptic interface to investigate the neural mechanisms underlying precision grasp control. The interface, located at the scanner bore, is controlled remotely through a shielded electromagnetic actuation system positioned at the end of the scanner bed and then through a high stiffness, low inertia cable transmission. We present the system design, taking into account requirements defined by the biomechanics and dynamics of the human hand, as well as the fMRI environment. Performance evaluation revealed a structural stiffness of 3.3 N/mm, renderable forces up to 94 N, and a position control bandwidth of at least 19 Hz. MRI-compatibility tests showed no degradation in the operation of the haptic interface or the image quality. A preliminary fMRI experiment during a pilot study validated the usability of the haptic interface, illustrating the possibilities offered by this device. PMID:26441454

  12. Vertically aligned carbon nanofiber as nano-neuron interface for monitoring neural function.

    PubMed

    Yu, Zhe; McKnight, Timothy E; Ericson, M Nance; Melechko, Anatoli V; Simpson, Michael L; Morrison, Barclay

    2012-05-01

    Neural chips, which are capable of simultaneous multisite neural recording and stimulation, have been used to detect and modulate neural activity for almost thirty years. As neural interfaces, neural chips provide dynamic functional information for neural decoding and neural control. By improving sensitivity and spatial resolution, nano-scale electrodes may revolutionize neural detection and modulation at cellular and molecular levels as nano-neuron interfaces. We developed a carbon-nanofiber neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes and demonstrated its capability of both stimulating and monitoring electrophysiological signals from brain tissues in vitro and monitoring dynamic information of neuroplasticity. This novel nano-neuron interface may potentially serve as a precise, informative, biocompatible, and dual-mode neural interface for monitoring of both neuroelectrical and neurochemical activity at the single-cell level and even inside the cell. The authors demonstrate the utility of a neural chip with lithographically defined arrays of vertically aligned carbon nanofiber electrodes. The new device can be used to stimulate and/or monitor signals from brain tissue in vitro and for monitoring dynamic information of neuroplasticity both intracellularly and at the single cell level including neuroelectrical and neurochemical activities. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Enabling Low-Power, Multi-Modal Neural Interfaces Through a Common, Low-Bandwidth Feature Space.

    PubMed

    Irwin, Zachary T; Thompson, David E; Schroeder, Karen E; Tat, Derek M; Hassani, Ali; Bullard, Autumn J; Woo, Shoshana L; Urbanchek, Melanie G; Sachs, Adam J; Cederna, Paul S; Stacey, William C; Patil, Parag G; Chestek, Cynthia A

    2016-05-01

    Brain-Machine Interfaces (BMIs) have shown great potential for generating prosthetic control signals. Translating BMIs into the clinic requires fully implantable, wireless systems; however, current solutions have high power requirements which limit their usability. Lowering this power consumption typically limits the system to a single neural modality, or signal type, and thus to a relatively small clinical market. Here, we address both of these issues by investigating the use of signal power in a single narrow frequency band as a decoding feature for extracting information from electrocorticographic (ECoG), electromyographic (EMG), and intracortical neural data. We have designed and tested the Multi-modal Implantable Neural Interface (MINI), a wireless recording system which extracts and transmits signal power in a single, configurable frequency band. In prerecorded datasets, we used the MINI to explore low frequency signal features and any resulting tradeoff between power savings and decoding performance losses. When processing intracortical data, the MINI achieved a power consumption 89.7% less than a more typical system designed to extract action potential waveforms. When processing ECoG and EMG data, the MINI achieved similar power reductions of 62.7% and 78.8%. At the same time, using the single signal feature extracted by the MINI, we were able to decode all three modalities with less than a 9% drop in accuracy relative to using high-bandwidth, modality-specific signal features. We believe this system architecture can be used to produce a viable, cost-effective, clinical BMI.

  14. Cortical control of intraspinal microstimulation: Toward a new approach for restoration of function after spinal cord injury.

    PubMed

    Shahdoost, Shahab; Frost, Shawn; Dunham, Caleb; DeJong, Stacey; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2015-08-01

    Approximately 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress toward developing a miniaturized brain-machine-spinal cord interface (BMSI) that converts in real time the neural command signals recorded from the cortical motor regions to electrical stimuli delivered to the spinal cord below the injury level. Using a combination of custom integrated circuit (IC) technology for corticospinal interfacing and field-programmable gate array (FPGA)-based technology for embedded signal processing, we demonstrate proof-of-concept of distinct muscle pattern activation via intraspinal microstimulation (ISMS) controlled in real time by intracortical neural spikes in an anesthetized laboratory rat.

  15. 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing.

    PubMed

    Piret, Gaëlle; Hébert, Clément; Mazellier, Jean-Paul; Rousseau, Lionel; Scorsone, Emmanuel; Cottance, Myline; Lissorgues, Gaelle; Heuschkel, Marc O; Picaud, Serge; Bergonzo, Philippe; Yvert, Blaise

    2015-06-01

    The electrode material is a key element in the design of long-term neural implants and neuroprostheses. To date, the ideal electrode material offering high longevity, biocompatibility, low-noise recording and high stimulation capabilities remains to be found. We show that 3D-nanostructured boron doped diamond (BDD), an innovative material consisting in a chemically stable material with a high aspect ratio structure obtained by encapsulation of a carbon nanotube template within two BDD nanolayers, allows neural cell attachment, survival and neurite extension. Further, we developed arrays of 20-μm-diameter 3D-nanostructured BDD microelectrodes for neural interfacing. These microelectrodes exhibited low impedances and low intrinsic recording noise levels. In particular, they allowed the detection of low amplitude (10-20 μV) local-field potentials, single units and multiunit bursts neural activity in both acute whole embryonic hindbrain-spinal cord preparations and long-term hippocampal cell cultures. Also, cyclic voltammetry measurements showed a wide potential window of about 3 V and a charge storage capacity of 10 mC.cm(-2), showing high potentiality of this material for neural stimulation. These results demonstrate the attractiveness of 3D-nanostructured BDD as a novel material for neural interfacing, with potential applications for the design of biocompatible neural implants for the exploration and rehabilitation of the nervous system. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. On Design and Implementation of Neural-Machine Interface for Artificial Legs

    PubMed Central

    Zhang, Xiaorong; Liu, Yuhong; Zhang, Fan; Ren, Jin; Sun, Yan (Lindsay); Yang, Qing

    2011-01-01

    The quality of life of leg amputees can be improved dramatically by using a cyber physical system (CPS) that controls artificial legs based on neural signals representing amputees’ intended movements. The key to the CPS is the neural-machine interface (NMI) that senses electromyographic (EMG) signals to make control decisions. This paper presents a design and implementation of a novel NMI using an embedded computer system to collect neural signals from a physical system - a leg amputee, provide adequate computational capability to interpret such signals, and make decisions to identify user’s intent for prostheses control in real time. A new deciphering algorithm, composed of an EMG pattern classifier and a post-processing scheme, was developed to identify the user’s intended lower limb movements. To deal with environmental uncertainty, a trust management mechanism was designed to handle unexpected sensor failures and signal disturbances. Integrating the neural deciphering algorithm with the trust management mechanism resulted in a highly accurate and reliable software system for neural control of artificial legs. The software was then embedded in a newly designed hardware platform based on an embedded microcontroller and a graphic processing unit (GPU) to form a complete NMI for real time testing. Real time experiments on a leg amputee subject and an able-bodied subject have been carried out to test the control accuracy of the new NMI. Our extensive experiments have shown promising results on both subjects, paving the way for clinical feasibility of neural controlled artificial legs. PMID:22389637

  17. This Neural Implant is designed to be implanted in the Human Central and Nervous System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A new class of neural implants being developed at the Livermore Lab are the first clinical quality devices capable of two-way conversations with the human nervous systems. Unlike existing interfaces that only sense or only stimulate, these devices are capable of stimulating and sensing using both electric and chemical signals.

  18. This Neural Implant is designed to be implanted in the Human Central and Nervous System

    ScienceCinema

    None

    2018-06-12

    A new class of neural implants being developed at the Livermore Lab are the first clinical quality devices capable of two-way conversations with the human nervous systems. Unlike existing interfaces that only sense or only stimulate, these devices are capable of stimulating and sensing using both electric and chemical signals.

  19. Brain machine interfaces combining microelectrode arrays with nanostructured optical biochemical sensors

    NASA Astrophysics Data System (ADS)

    Hajj-Hassan, Mohamad; Gonzalez, Timothy; Ghafer-Zadeh, Ebrahim; Chodavarapu, Vamsy; Musallam, Sam; Andrews, Mark

    2009-02-01

    Neural microelectrodes are an important component of neural prosthetic systems which assist paralyzed patients by allowing them to operate computers or robots using their neural activity. These microelectrodes are also used in clinical settings to localize the locus of seizure initiation in epilepsy or to stimulate sub-cortical structures in patients with Parkinson's disease. In neural prosthetic systems, implanted microelectrodes record the electrical potential generated by specific thoughts and relay the signals to algorithms trained to interpret these thoughts. In this paper, we describe novel elongated multi-site neural electrodes that can record electrical signals and specific neural biomarkers and that can reach depths greater than 8mm in the sulcus of non-human primates (monkeys). We hypothesize that additional signals recorded by the multimodal probes will increase the information yield when compared to standard probes that record just electropotentials. We describe integration of optical biochemical sensors with neural microelectrodes. The sensors are made using sol-gel derived xerogel thin films that encapsulate specific biomarker responsive luminophores in their nanostructured pores. The desired neural biomarkers are O2, pH, K+, and Na+ ions. As a prototype, we demonstrate direct-write patterning to create oxygen-responsive xerogel waveguide structures on the neural microelectrodes. The recording of neural biomarkers along with electrical activity could help the development of intelligent and more userfriendly neural prosthesis/brain machine interfaces as well as aid in providing answers to complex brain diseases and disorders.

  20. Online handwritten mathematical expression recognition

    NASA Astrophysics Data System (ADS)

    Büyükbayrak, Hakan; Yanikoglu, Berrin; Erçil, Aytül

    2007-01-01

    We describe a system for recognizing online, handwritten mathematical expressions. The system is designed with a user-interface for writing scientific articles, supporting the recognition of basic mathematical expressions as well as integrals, summations, matrices etc. A feed-forward neural network recognizes symbols which are assumed to be single-stroke and a recursive algorithm parses the expression by combining neural network output and the structure of the expression. Preliminary results show that writer-dependent recognition rates are very high (99.8%) while writer-independent symbol recognition rates are lower (75%). The interface associated with the proposed system integrates the built-in recognition capabilities of the Microsoft's Tablet PC API for recognizing textual input and supports conversion of hand-drawn figures into PNG format. This enables the user to enter text, mathematics and draw figures in a single interface. After recognition, all output is combined into one LATEX code and compiled into a PDF file.

  1. RatCar system for estimating locomotion states using neural signals with parameter monitoring: Vehicle-formed brain-machine interfaces for rat.

    PubMed

    Fukayama, Osamu; Taniguchi, Noriyuki; Suzuki, Takafumi; Mabuchi, Kunihiko

    2008-01-01

    An online brain-machine interface (BMI) in the form of a small vehicle, the 'RatCar,' has been developed. A rat had neural electrodes implanted in its primary motor cortex and basal ganglia regions to continuously record neural signals. Then, a linear state space model represents a correlation between the recorded neural signals and locomotion states (i.e., moving velocity and azimuthal variances) of the rat. The model parameters were set so as to minimize estimation errors, and the locomotion states were estimated from neural firing rates using a Kalman filter algorithm. The results showed a small oscillation to achieve smooth control of the vehicle in spite of fluctuating firing rates with noises applied to the model. Major variation of the model variables converged in a first 30 seconds of the experiments and lasted for the entire one hour session.

  2. A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm.

    PubMed

    Dethier, Julie; Nuyujukian, Paul; Eliasmith, Chris; Stewart, Terry; Elassaad, Shauki A; Shenoy, Krishna V; Boahen, Kwabena

    2011-01-01

    Motor prostheses aim to restore function to disabled patients. Despite compelling proof of concept systems, barriers to clinical translation remain. One challenge is to develop a low-power, fully-implantable system that dissipates only minimal power so as not to damage tissue. To this end, we implemented a Kalman-filter based decoder via a spiking neural network (SNN) and tested it in brain-machine interface (BMI) experiments with a rhesus monkey. The Kalman filter was trained to predict the arm's velocity and mapped on to the SNN using the Neural Engineering Framework (NEF). A 2,000-neuron embedded Matlab SNN implementation runs in real-time and its closed-loop performance is quite comparable to that of the standard Kalman filter. The success of this closed-loop decoder holds promise for hardware SNN implementations of statistical signal processing algorithms on neuromorphic chips, which may offer power savings necessary to overcome a major obstacle to the successful clinical translation of neural motor prostheses.

  3. AAAIC '88 - Aerospace Applications of Artificial Intelligence; Proceedings of the Fourth Annual Conference, Dayton, OH, Oct. 25-27, 1988. Volumes 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Netrologic, Inc., San Diego, CA)

    1988-01-01

    Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.

  4. ANNarchy: a code generation approach to neural simulations on parallel hardware

    PubMed Central

    Vitay, Julien; Dinkelbach, Helge Ü.; Hamker, Fred H.

    2015-01-01

    Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions. PMID:26283957

  5. Python scripting in the nengo simulator.

    PubMed

    Stewart, Terrence C; Tripp, Bryan; Eliasmith, Chris

    2009-01-01

    Nengo (http://nengo.ca) is an open-source neural simulator that has been greatly enhanced by the recent addition of a Python script interface. Nengo provides a wide range of features that are useful for physiological simulations, including unique features that facilitate development of population-coding models using the neural engineering framework (NEF). This framework uses information theory, signal processing, and control theory to formalize the development of large-scale neural circuit models. Notably, it can also be used to determine the synaptic weights that underlie observed network dynamics and transformations of represented variables. Nengo provides rich NEF support, and includes customizable models of spike generation, muscle dynamics, synaptic plasticity, and synaptic integration, as well as an intuitive graphical user interface. All aspects of Nengo models are accessible via the Python interface, allowing for programmatic creation of models, inspection and modification of neural parameters, and automation of model evaluation. Since Nengo combines Python and Java, it can also be integrated with any existing Java or 100% Python code libraries. Current work includes connecting neural models in Nengo with existing symbolic cognitive models, creating hybrid systems that combine detailed neural models of specific brain regions with higher-level models of remaining brain areas. Such hybrid models can provide (1) more realistic boundary conditions for the neural components, and (2) more realistic sub-components for the larger cognitive models.

  6. Python Scripting in the Nengo Simulator

    PubMed Central

    Stewart, Terrence C.; Tripp, Bryan; Eliasmith, Chris

    2008-01-01

    Nengo (http://nengo.ca) is an open-source neural simulator that has been greatly enhanced by the recent addition of a Python script interface. Nengo provides a wide range of features that are useful for physiological simulations, including unique features that facilitate development of population-coding models using the neural engineering framework (NEF). This framework uses information theory, signal processing, and control theory to formalize the development of large-scale neural circuit models. Notably, it can also be used to determine the synaptic weights that underlie observed network dynamics and transformations of represented variables. Nengo provides rich NEF support, and includes customizable models of spike generation, muscle dynamics, synaptic plasticity, and synaptic integration, as well as an intuitive graphical user interface. All aspects of Nengo models are accessible via the Python interface, allowing for programmatic creation of models, inspection and modification of neural parameters, and automation of model evaluation. Since Nengo combines Python and Java, it can also be integrated with any existing Java or 100% Python code libraries. Current work includes connecting neural models in Nengo with existing symbolic cognitive models, creating hybrid systems that combine detailed neural models of specific brain regions with higher-level models of remaining brain areas. Such hybrid models can provide (1) more realistic boundary conditions for the neural components, and (2) more realistic sub-components for the larger cognitive models. PMID:19352442

  7. Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems.

    PubMed

    Zumsteg, Zachary S; Kemere, Caleb; O'Driscoll, Stephen; Santhanam, Gopal; Ahmed, Rizwan E; Shenoy, Krishna V; Meng, Teresa H

    2005-09-01

    A new class of neural prosthetic systems aims to assist disabled patients by translating cortical neural activity into control signals for prosthetic devices. Based on the success of proof-of-concept systems in the laboratory, there is now considerable interest in increasing system performance and creating implantable electronics for use in clinical systems. A critical question that impacts system performance and the overall architecture of these systems is whether it is possible to identify the neural source of each action potential (spike sorting) in real-time and with low power. Low power is essential both for power supply considerations and heat dissipation in the brain. In this paper we report that state-of-the-art spike sorting algorithms are not only feasible using modern complementary metal oxide semiconductor very large scale integration processes, but may represent the best option for extracting large amounts of data in implantable neural prosthetic interfaces.

  8. Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems

    PubMed Central

    Chang, Sun-Il

    2018-01-01

    This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG) recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM) module. The core integrated circuit (IC) consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC) with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm2 and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µVrms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW. PMID:29342103

  9. Minimally-Invasive Neural Interface for Distributed Wireless Electrocorticogram Recording Systems.

    PubMed

    Chang, Sun-Il; Park, Sung-Yun; Yoon, Euisik

    2018-01-17

    This paper presents a minimally-invasive neural interface for distributed wireless electrocorticogram (ECoG) recording systems. The proposed interface equips all necessary components for ECoG recording, such as the high performance front-end integrated circuits, a fabricated flexible microelectrode array, and wireless communication inside a miniaturized custom-made platform. The multiple units of the interface systems can be deployed to cover a broad range of the target brain region and transmit signals via a built-in intra-skin communication (ISCOM) module. The core integrated circuit (IC) consists of 16-channel, low-power push-pull double-gated preamplifiers, in-channel successive approximation register analog-to-digital converters (SAR ADC) with a single-clocked bootstrapping switch and a time-delayed control unit, an ISCOM module for wireless data transfer through the skin instead of a power-hungry RF wireless transmitter, and a monolithic voltage/current reference generator to support the aforementioned analog and mixed-signal circuit blocks. The IC was fabricated using 250 nm CMOS processes in an area of 3.2 × 0.9 mm² and achieved the low-power operation of 2.5 µW per channel. Input-referred noise was measured as 5.62 µV rms for 10 Hz to 10 kHz and ENOB of 7.21 at 31.25 kS/s. The implemented system successfully recorded multi-channel neural activities in vivo from a primate and demonstrated modular expandability using the ISCOM with power consumption of 160 µW.

  10. Estimation of Muscle Force Based on Neural Drive in a Hemispheric Stroke Survivor.

    PubMed

    Dai, Chenyun; Zheng, Yang; Hu, Xiaogang

    2018-01-01

    Robotic assistant-based therapy holds great promise to improve the functional recovery of stroke survivors. Numerous neural-machine interface techniques have been used to decode the intended movement to control robotic systems for rehabilitation therapies. In this case report, we tested the feasibility of estimating finger extensor muscle forces of a stroke survivor, based on the decoded descending neural drive through population motoneuron discharge timings. Motoneuron discharge events were obtained by decomposing high-density surface electromyogram (sEMG) signals of the finger extensor muscle. The neural drive was extracted from the normalized frequency of the composite discharge of the motoneuron pool. The neural-drive-based estimation was also compared with the classic myoelectric-based estimation. Our results showed that the neural-drive-based approach can better predict the force output, quantified by lower estimation errors and higher correlations with the muscle force, compared with the myoelectric-based estimation. Our findings suggest that the neural-drive-based approach can potentially be used as a more robust interface signal for robotic therapies during the stroke rehabilitation.

  11. Using Reinforcement Learning to Provide Stable Brain-Machine Interface Control Despite Neural Input Reorganization

    PubMed Central

    Pohlmeyer, Eric A.; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline W.; Sanchez, Justin C.

    2014-01-01

    Brain-machine interface (BMI) systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder’s neural input space (e.g. neurons appearing or being lost amongst electrode recordings). These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI) to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled. PMID:24498055

  12. Swarm autonomic agents with self-destruct capability

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2009-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  13. Swarm autonomic agents with self-destruct capability

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  14. Angiogenesis in the Developing Spinal Cord: Blood Vessel Exclusion from Neural Progenitor Region Is Mediated by VEGF and Its Antagonists

    PubMed Central

    Takahashi, Teruaki; Takase, Yuta; Yoshino, Takashi; Saito, Daisuke; Tadokoro, Ryosuke; Takahashi, Yoshiko

    2015-01-01

    Blood vessels in the central nervous system supply a considerable amount of oxygen via intricate vascular networks. We studied how the initial vasculature of the spinal cord is formed in avian (chicken and quail) embryos. Vascular formation in the spinal cord starts by the ingression of intra-neural vascular plexus (INVP) from the peri-neural vascular plexus (PNVP) that envelops the neural tube. At the ventral region of the PNVP, the INVP grows dorsally in the neural tube, and we observed that these vessels followed the defined path at the interface between the medially positioned and undifferentiated neural progenitor zone and the laterally positioned differentiated zone. When the interface between these two zones was experimentally displaced, INVP faithfully followed a newly formed interface, suggesting that the growth path of the INVP is determined by surrounding neural cells. The progenitor zone expressed mRNA of vascular endothelial growth factor-A whereas its receptor VEGFR2 and FLT-1 (VEGFR1), a decoy for VEGF, were expressed in INVP. By manipulating the neural tube with either VEGF or the soluble form of FLT-1, we found that INVP grew in a VEGF-dependent manner, where VEGF signals appear to be fine-tuned by counteractions with anti-angiogenic activities including FLT-1 and possibly semaphorins. These results suggest that the stereotypic patterning of early INVP is achieved by interactions between these vessels and their surrounding neural cells, where VEGF and its antagonists play important roles. PMID:25585380

  15. Conjugated Polymer Actuators for Articulating Neural Probes and Electrode Interfaces

    NASA Astrophysics Data System (ADS)

    Daneshvar, Eugene Dariush

    This thesis investigated the potential use of polypyrrole (PPy) doped with dodecylbenzenesulfonate (DBS) to controllably articulate (bend or guide) flexible neural probes and electrodes. PPy(DBS) actuation performance was characterized in the ionic mixture and temperature found in the brain. Nearly all the ions in aCSF were exchanged into the PPy---the cations Na +, K+, Mg2+, Ca2+, as well as the anion PO43-; Cl- was not present. Nevertheless, deflections in aCSF were comparable to those in NaDBS and they were monotonic with oxidation level: strain increased upon reduction, with no reversal of motion despite the mixture of ionic charges and valences being exchanged. Actuation depended on temperature. Upon warming, the cyclic voltammograms showed additional peaks and an increase of 70% in the consumed charge. Actuation strain was monotonic under these conditions, demonstrating that conducting polymer actuators can indeed be used for neural interface and neural probe applications. In addition, a novel microelectro-mechanical system (MEMS) was developed to measure previously disregarded residual stress in a bilayer actuator. Residual stresses are a major concern for MEMS devices as that they can dramatically influence their yield and functionality. This device introduced a new technique to measure micro-scaled actuation forces that may be useful for characterization of other MEMS actuators. Finally, a functional movable parylene-based neural electrode prototype was developed. Employing PPy(DBS) actuators, electrode projections were successfully controlled to either remain flat or actuate out-of-plane and into a brain phantom during insertion. An electrode projection 800 microm long and 50 microm wide was able to deflect almost 800 microm away from the probe substrate. Applications that do not require insertion into tissue may also benefit from the electrode projections described here. Implantable neural interface devices are a critical component to a broad class of emerging neuroprosthetic and neurostimulation systems aimed to restore functionality, or abate symptoms related to physical impairments, loss of sensory abilities, and neurological disorders. The therapeutic outcome and performance of these systems hinge to a large degree on the proximity, size, and placement of the device or interface with respect to the targeted neurons or tissue.

  16. Sensory System for Implementing a Human—Computer Interface Based on Electrooculography

    PubMed Central

    Barea, Rafael; Boquete, Luciano; Rodriguez-Ascariz, Jose Manuel; Ortega, Sergio; López, Elena

    2011-01-01

    This paper describes a sensory system for implementing a human–computer interface based on electrooculography. An acquisition system captures electrooculograms and transmits them via the ZigBee protocol. The data acquired are analysed in real time using a microcontroller-based platform running the Linux operating system. The continuous wavelet transform and neural network are used to process and analyse the signals to obtain highly reliable results in real time. To enhance system usability, the graphical interface is projected onto special eyewear, which is also used to position the signal-capturing electrodes. PMID:22346579

  17. A symbolic/subsymbolic interface protocol for cognitive modeling

    PubMed Central

    Simen, Patrick; Polk, Thad

    2009-01-01

    Researchers studying complex cognition have grown increasingly interested in mapping symbolic cognitive architectures onto subsymbolic brain models. Such a mapping seems essential for understanding cognition under all but the most extreme viewpoints (namely, that cognition consists exclusively of digitally implemented rules; or instead, involves no rules whatsoever). Making this mapping reduces to specifying an interface between symbolic and subsymbolic descriptions of brain activity. To that end, we propose parameterization techniques for building cognitive models as programmable, structured, recurrent neural networks. Feedback strength in these models determines whether their components implement classically subsymbolic neural network functions (e.g., pattern recognition), or instead, logical rules and digital memory. These techniques support the implementation of limited production systems. Though inherently sequential and symbolic, these neural production systems can exploit principles of parallel, analog processing from decision-making models in psychology and neuroscience to explain the effects of brain damage on problem solving behavior. PMID:20711520

  18. A Fully Integrated Wireless Compressed Sensing Neural Signal Acquisition System for Chronic Recording and Brain Machine Interface.

    PubMed

    Liu, Xilin; Zhang, Milin; Xiong, Tao; Richardson, Andrew G; Lucas, Timothy H; Chin, Peter S; Etienne-Cummings, Ralph; Tran, Trac D; Van der Spiegel, Jan

    2016-07-18

    Reliable, multi-channel neural recording is critical to the neuroscience research and clinical treatment. However, most hardware development of fully integrated, multi-channel wireless neural recorders to-date, is still in the proof-of-concept stage. To be ready for practical use, the trade-offs between performance, power consumption, device size, robustness, and compatibility need to be carefully taken into account. This paper presents an optimized wireless compressed sensing neural signal recording system. The system takes advantages of both custom integrated circuits and universal compatible wireless solutions. The proposed system includes an implantable wireless system-on-chip (SoC) and an external wireless relay. The SoC integrates 16-channel low-noise neural amplifiers, programmable filters and gain stages, a SAR ADC, a real-time compressed sensing module, and a near field wireless power and data transmission link. The external relay integrates a 32 bit low-power microcontroller with Bluetooth 4.0 wireless module, a programming interface, and an inductive charging unit. The SoC achieves high signal recording quality with minimized power consumption, while reducing the risk of infection from through-skin connectors. The external relay maximizes the compatibility and programmability. The proposed compressed sensing module is highly configurable, featuring a SNDR of 9.78 dB with a compression ratio of 8×. The SoC has been fabricated in a 180 nm standard CMOS technology, occupying 2.1 mm × 0.6 mm silicon area. A pre-implantable system has been assembled to demonstrate the proposed paradigm. The developed system has been successfully used for long-term wireless neural recording in freely behaving rhesus monkey.

  19. A New Animal Model for Developing a Somatosensory Neural Interface for Prosthetic Limbs

    DTIC Science & Technology

    2008-02-12

    interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D. University of Pittsburgh 1 10/15/2007 Scientific progress and accomplishments. We...information to the brain. A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D...A new animal model for developing a somatosensory neural interface for neuroprosthetic limbs . PI: Douglas J. Weber, Ph.D. University of Pittsburgh

  20. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface

    PubMed Central

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S.; Lee, Sung Q.; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264

  1. Proceedings of the 1986 IEEE international conference on systems, man and cybernetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    This book presents the papers given at a conference on man-machine systems. Topics considered at the conference included neural model-based cognitive theory and engineering, user interfaces, adaptive and learning systems, human interaction with robotics, decision making, the testing and evaluation of expert systems, software development, international conflict resolution, intelligent interfaces, automation in man-machine system design aiding, knowledge acquisition in expert systems, advanced architectures for artificial intelligence, pattern recognition, knowledge bases, and machine vision.

  2. A chronic generalized bi-directional brain-machine interface.

    PubMed

    Rouse, A G; Stanslaski, S R; Cong, P; Jensen, R M; Afshar, P; Ullestad, D; Gupta, R; Molnar, G F; Moran, D W; Denison, T J

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.

  3. Reduced Synchronization Persistence in Neural Networks Derived from Atm-Deficient Mice

    PubMed Central

    Levine-Small, Noah; Yekutieli, Ziv; Aljadeff, Jonathan; Boccaletti, Stefano; Ben-Jacob, Eshel; Barzilai, Ari

    2011-01-01

    Many neurodegenerative diseases are characterized by malfunction of the DNA damage response. Therefore, it is important to understand the connection between system level neural network behavior and DNA. Neural networks drawn from genetically engineered animals, interfaced with micro-electrode arrays allowed us to unveil connections between networks’ system level activity properties and such genome instability. We discovered that Atm protein deficiency, which in humans leads to progressive motor impairment, leads to a reduced synchronization persistence compared to wild type synchronization, after chemically imposed DNA damage. Not only do these results suggest a role for DNA stability in neural network activity, they also establish an experimental paradigm for empirically determining the role a gene plays on the behavior of a neural network. PMID:21519382

  4. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    PubMed Central

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  5. Optical Neural Interfaces

    PubMed Central

    Warden, Melissa R.; Cardin, Jessica A.; Deisseroth, Karl

    2014-01-01

    Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals. PMID:25014785

  6. Neural network-based system for pattern recognition through a fiber optic bundle

    NASA Astrophysics Data System (ADS)

    Gamo-Aranda, Javier; Rodriguez-Horche, Paloma; Merchan-Palacios, Miguel; Rosales-Herrera, Pablo; Rodriguez, M.

    2001-04-01

    A neural network based system to identify images transmitted through a Coherent Fiber-optic Bundle (CFB) is presented. Patterns are generated in a computer, displayed on a Spatial Light Modulator, imaged onto the input face of the CFB, and recovered optically by a CCD sensor array for further processing. Input and output optical subsystems were designed and used to that end. The recognition step of the transmitted patterns is made by a powerful, widely-used, neural network simulator running on the control PC. A complete PC-based interface was developed to control the different tasks involved in the system. An optical analysis of the system capabilities was carried out prior to performing the recognition step. Several neural network topologies were tested, and the corresponding numerical results are also presented and discussed.

  7. Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.

    PubMed

    Liu, Xilin; Zhang, Milin; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan

    2017-08-01

    This paper presents a bidirectional brain machine interface (BMI) microsystem designed for closed-loop neuroscience research, especially experiments in freely behaving animals. The system-on-chip (SoC) consists of 16-channel neural recording front-ends, neural feature extraction units, 16-channel programmable neural stimulator back-ends, in-channel programmable closed-loop controllers, global analog-digital converters (ADC), and peripheral circuits. The proposed neural feature extraction units includes 1) an ultra low-power neural energy extraction unit enabling a 64-step natural logarithmic domain frequency tuning, and 2) a current-mode action potential (AP) detection unit with time-amplitude window discriminator. A programmable proportional-integral-derivative (PID) controller has been integrated in each channel enabling a various of closed-loop operations. The implemented ADCs include a 10-bit voltage-mode successive approximation register (SAR) ADC for the digitization of the neural feature outputs and/or local field potential (LFP) outputs, and an 8-bit current-mode SAR ADC for the digitization of the action potential outputs. The multi-mode stimulator can be programmed to perform monopolar or bipolar, symmetrical or asymmetrical charge balanced stimulation with a maximum current of 4 mA in an arbitrary channel configuration. The chip has been fabricated in 0.18 μ m CMOS technology, occupying a silicon area of 3.7 mm 2 . The chip dissipates 56 μW/ch on average. General purpose low-power microcontroller with Bluetooth module are integrated in the system to provide wireless link and SoC configuration. Methods, circuit techniques and system topology proposed in this work can be used in a wide range of relevant neurophysiology research, especially closed-loop BMI experiments.

  8. Neurotechnology for monitoring and restoring sensory, motor, and autonomic functions

    NASA Astrophysics Data System (ADS)

    Wu, Pae C.; Knaack, Gretchen; Weber, Douglas J.

    2016-05-01

    The rapid and exponential advances in micro- and nanotechnologies over the last decade have enabled devices that communicate directly with the nervous system to measure and influence neural activity. Many of the earliest implementations focused on restoration of sensory and motor function, but as knowledge of physiology advances and technology continues to improve in accuracy, precision, and safety, new modes of engaging with the autonomic system herald an era of health restoration that may augment or replace many conventional pharmacotherapies. DARPA's Biological Technologies Office is continuing to advance neurotechnology by investing in neural interface technologies that are effective, reliable, and safe for long-term use in humans. DARPA's Hand Proprioception and Touch Interfaces (HAPTIX) program is creating a fully implantable system that interfaces with peripheral nerves in amputees to enable natural control and sensation for prosthetic limbs. Beyond standard electrode implementations, the Electrical Prescriptions (ElectRx) program is investing in innovative approaches to minimally or non-invasively interface with the peripheral nervous system using novel magnetic, optogenetic, and ultrasound-based technologies. These new mechanisms of interrogating and stimulating the peripheral nervous system are driving towards unparalleled spatiotemporal resolution, specificity and targeting, and noninvasiveness to enable chronic, human-use applications in closed-loop neuromodulation for the treatment of disease.

  9. Neural networks for simultaneous classification and parameter estimation in musical instrument control

    NASA Astrophysics Data System (ADS)

    Lee, Michael; Freed, Adrian; Wessel, David

    1992-08-01

    In this report we present our tools for prototyping adaptive user interfaces in the context of real-time musical instrument control. Characteristic of most human communication is the simultaneous use of classified events and estimated parameters. We have integrated a neural network object into the MAX language to explore adaptive user interfaces that considers these facets of human communication. By placing the neural processing in the context of a flexible real-time musical programming environment, we can rapidly prototype experiments on applications of adaptive interfaces and learning systems to musical problems. We have trained networks to recognize gestures from a Mathews radio baton, Nintendo Power GloveTM, and MIDI keyboard gestural input devices. In one experiment, a network successfully extracted classification and attribute data from gestural contours transduced by a continuous space controller, suggesting their application in the interpretation of conducting gestures and musical instrument control. We discuss network architectures, low-level features extracted for the networks to operate on, training methods, and musical applications of adaptive techniques.

  10. At the interface: convergence of neural regeneration and neural prostheses for restoration of function.

    PubMed

    Grill, W M; McDonald, J W; Peckham, P H; Heetderks, W; Kocsis, J; Weinrich, M

    2001-01-01

    The rapid pace of recent advances in development and application of electrical stimulation of the nervous system and in neural regeneration has created opportunities to combine these two approaches to restoration of function. This paper relates the discussion on this topic from a workshop at the International Functional Electrical Stimulation Society. The goals of this workshop were to discuss the current state of interaction between the fields of neural regeneration and neural prostheses and to identify potential areas of future research that would have the greatest impact on achieving the common goal of restoring function after neurological damage. Identified areas include enhancement of axonal regeneration with applied electric fields, development of hybrid neural interfaces combining synthetic silicon and biologically derived elements, and investigation of the role of patterned neural activity in regulating various neuronal processes and neurorehabilitation. Increased communication and cooperation between the two communities and recognition by each field that the other has something to contribute to their efforts are needed to take advantage of these opportunities. In addition, creative grants combining the two approaches and more flexible funding mechanisms to support the convergence of their perspectives are necessary to achieve common objectives.

  11. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    PubMed

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  12. Application of Hierarchical Dissociated Neural Network in Closed-Loop Hybrid System Integrating Biological and Mechanical Intelligence

    PubMed Central

    Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579

  13. The receptive field is dead. Long live the receptive field?

    PubMed Central

    Fairhall, Adrienne

    2014-01-01

    Advances in experimental techniques, including behavioral paradigms using rich stimuli under closed loop conditions and the interfacing of neural systems with external inputs and outputs, reveal complex dynamics in the neural code and require a revisiting of standard concepts of representation. High-throughput recording and imaging methods along with the ability to observe and control neuronal subpopulations allow increasingly detailed access to the neural circuitry that subserves these representations and the computations they support. How do we harness theory to build biologically grounded models of complex neural function? PMID:24618227

  14. Adaptive Neurotechnology for Making Neural Circuits Functional .

    NASA Astrophysics Data System (ADS)

    Jung, Ranu

    2008-03-01

    Two of the most important trends in recent technological developments are that technology is increasingly integrated with biological systems and that it is increasingly adaptive in its capabilities. Neuroprosthetic systems that provide lost sensorimotor function after a neural disability offer a platform to investigate this interplay between biological and engineered systems. Adaptive neurotechnology (hardware and software) could be designed to be biomimetic, guided by the physical and programmatic constraints observed in biological systems, and allow for real-time learning, stability, and error correction. An example will present biomimetic neural-network hardware that can be interfaced with the isolated spinal cord of a lower vertebrate to allow phase-locked real-time neural control. Another will present adaptive neural network control algorithms for functional electrical stimulation of the peripheral nervous system to provide desired movements of paralyzed limbs in rodents or people. Ultimately, the frontier lies in being able to utilize the adaptive neurotechnology to promote neuroplasticity in the living system on a long-time scale under co-adaptive conditions.

  15. Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation

    PubMed Central

    Krucoff, Max O.; Rahimpour, Shervin; Slutzky, Marc W.; Edgerton, V. Reggie; Turner, Dennis A.

    2016-01-01

    After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required—a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery. PMID:28082858

  16. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture.

    PubMed

    Preynat-Seauve, Olivier; Suter, David M; Tirefort, Diderik; Turchi, Laurent; Virolle, Thierry; Chneiweiss, Herve; Foti, Michelangelo; Lobrinus, Johannes-Alexander; Stoppini, Luc; Feki, Anis; Dubois-Dauphin, Michel; Krause, Karl Heinz

    2009-03-01

    Researches on neural differentiation using embryonic stem cells (ESC) require analysis of neurogenesis in conditions mimicking physiological cellular interactions as closely as possible. In this study, we report an air-liquid interface-based culture of human ESC. This culture system allows three-dimensional cell expansion and neural differentiation in the absence of added growth factors. Over a 3-month period, a macroscopically visible, compact tissue developed. Histological coloration revealed a dense neural-like neural tissue including immature tubular structures. Electron microscopy, immunochemistry, and electrophysiological recordings demonstrated a dense network of neurons, astrocytes, and oligodendrocytes able to propagate signals. Within this tissue, tubular structures were niches of cells resembling germinal layers of human fetal brain. Indeed, the tissue contained abundant proliferating cells expressing markers of neural progenitors. Finally, the capacity to generate neural tissues on air-liquid interface differed for different ESC lines, confirming variations of their neurogenic potential. In conclusion, this study demonstrates in vitro engineering of a human neural-like tissue with an organization that bears resemblance to early developing brain. As opposed to previously described methods, this differentiation (a) allows three-dimensional organization, (b) yields dense interconnected neural tissue with structurally and functionally distinct areas, and (c) is spontaneously guided by endogenous developmental cues.

  17. A Procedure for Measuring Latencies in Brain-Computer Interfaces

    PubMed Central

    Wilson, J. Adam; Mellinger, Jürgen; Schalk, Gerwin; Williams, Justin

    2011-01-01

    Brain-computer interface (BCI) systems must process neural signals with consistent timing in order to support adequate system performance. Thus, it is important to have the capability to determine whether a particular BCI configuration (i.e., hardware, software) provides adequate timing performance for a particular experiment. This report presents a method of measuring and quantifying different aspects of system timing in several typical BCI experiments across a range of settings, and presents comprehensive measures of expected overall system latency for each experimental configuration. PMID:20403781

  18. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) is used to test and develop these algorithms. Modifications to this airplane include adding canards and changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals include demonstration of revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions and advancement of neural-network-based flight control technology for new aerospace system designs. This report presents an overview of the processes utilized to develop adaptive controller algorithms during a flight-test program, including a description of initial adaptive controller concepts and a discussion of modeling formulation and performance testing. Design finalization led to integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness; these are also discussed.

  19. Elastomeric and soft conducting microwires for implantable neural interfaces

    PubMed Central

    Kolarcik, Christi L.; Luebben, Silvia D.; Sapp, Shawn A.; Hanner, Jenna; Snyder, Noah; Kozai, Takashi D.Y.; Chang, Emily; Nabity, James A.; Nabity, Shawn T.; Lagenaur, Carl F.; Cui, X. Tracy

    2015-01-01

    Current designs for microelectrodes used for interfacing with the nervous system elicit a characteristic inflammatory response that leads to scar tissue encapsulation, electrical insulation of the electrode from the tissue and ultimately failure. Traditionally, relatively stiff materials like tungsten and silicon are employed which have mechanical properties several orders of magnitude different from neural tissue. This mechanical mismatch is thought to be a major cause of chronic inflammation and degeneration around the device. In an effort to minimize the disparity between neural interface devices and the brain, novel soft electrodes consisting of elastomers and intrinsically conducting polymers were fabricated. The physical, mechanical and electrochemical properties of these materials were extensively characterized to identify the formulations with the optimal combination of parameters including Young’s modulus, elongation at break, ultimate tensile strength, conductivity, impedance and surface charge injection. Our final electrode has a Young’s modulus of 974 kPa which is five orders of magnitude lower than tungsten and significantly lower than other polymer-based neural electrode materials. In vitro cell culture experiments demonstrated the favorable interaction between these soft materials and neurons, astrocytes and microglia, with higher neuronal attachment and a two-fold reduction in inflammatory microglia attachment on soft devices compared to stiff controls. Surface immobilization of neuronal adhesion proteins on these microwires further improved the cellular response. Finally, in vivo electrophysiology demonstrated the functionality of the elastomeric electrodes in recording single unit activity in the rodent visual cortex. The results presented provide initial evidence in support of the use of soft materials in neural interface applications. PMID:25993261

  20. Human facial neural activities and gesture recognition for machine-interfacing applications.

    PubMed

    Hamedi, M; Salleh, Sh-Hussain; Tan, T S; Ismail, K; Ali, J; Dee-Uam, C; Pavaganun, C; Yupapin, P P

    2011-01-01

    The authors present a new method of recognizing different human facial gestures through their neural activities and muscle movements, which can be used in machine-interfacing applications. Human-machine interface (HMI) technology utilizes human neural activities as input controllers for the machine. Recently, much work has been done on the specific application of facial electromyography (EMG)-based HMI, which have used limited and fixed numbers of facial gestures. In this work, a multipurpose interface is suggested that can support 2-11 control commands that can be applied to various HMI systems. The significance of this work is finding the most accurate facial gestures for any application with a maximum of eleven control commands. Eleven facial gesture EMGs are recorded from ten volunteers. Detected EMGs are passed through a band-pass filter and root mean square features are extracted. Various combinations of gestures with a different number of gestures in each group are made from the existing facial gestures. Finally, all combinations are trained and classified by a Fuzzy c-means classifier. In conclusion, combinations with the highest recognition accuracy in each group are chosen. An average accuracy >90% of chosen combinations proved their ability to be used as command controllers.

  1. Automatic Speech Recognition from Neural Signals: A Focused Review.

    PubMed

    Herff, Christian; Schultz, Tanja

    2016-01-01

    Speech interfaces have become widely accepted and are nowadays integrated in various real-life applications and devices. They have become a part of our daily life. However, speech interfaces presume the ability to produce intelligible speech, which might be impossible due to either loud environments, bothering bystanders or incapabilities to produce speech (i.e., patients suffering from locked-in syndrome). For these reasons it would be highly desirable to not speak but to simply envision oneself to say words or sentences. Interfaces based on imagined speech would enable fast and natural communication without the need for audible speech and would give a voice to otherwise mute people. This focused review analyzes the potential of different brain imaging techniques to recognize speech from neural signals by applying Automatic Speech Recognition technology. We argue that modalities based on metabolic processes, such as functional Near Infrared Spectroscopy and functional Magnetic Resonance Imaging, are less suited for Automatic Speech Recognition from neural signals due to low temporal resolution but are very useful for the investigation of the underlying neural mechanisms involved in speech processes. In contrast, electrophysiologic activity is fast enough to capture speech processes and is therefor better suited for ASR. Our experimental results indicate the potential of these signals for speech recognition from neural data with a focus on invasively measured brain activity (electrocorticography). As a first example of Automatic Speech Recognition techniques used from neural signals, we discuss the Brain-to-text system.

  2. Development of Open Brain Simulator for Human Biomechatronics

    NASA Astrophysics Data System (ADS)

    Otake, Mihoko; Takagi, Toshihisa; Asama, Hajime

    Modeling and simulation based on mechanisms is important in order to design and control mechatronic systems. In particular, in-depth understanding and realistic modeling of biological systems is indispensable for biomechatronics. This paper presents open brain simulator, which estimates the neural state of human through external measurement for the purpose of improving motor and social skills. Macroscopic anatomical nervous systems model was built which can be connected to the musculoskeletal model. Microscopic anatomical and physiological neural models were interfaced to the macroscopic model. Neural activities of somatosensory area and Purkinje cell were calculated from motion capture data. The simulator provides technical infrastructure for human biomechatronics, which is promising for the novel diagnosis of neurological disorders and their treatments through medication and movement therapy, and for motor learning support system supporting acquisition of motor skill considering neural mechanism.

  3. Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in-situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation.

    PubMed

    Huang, Wei-Chen; Lo, Yu-Chih; Chu, Chao-Yi; Lai, Hsin-Yi; Chen, You-Yin; Chen, San-Yuan

    2017-04-01

    Chronic brain stimulation has become a promising physical therapy with increased efficacy and efficiency in the treatment of neurodegenerative diseases. The application of deep brain electrical stimulation (DBS) combined with manganese-enhanced magnetic resonance imaging (MEMRI) provides an unbiased representation of the functional anatomy, which shows the communication between areas of the brain responding to the therapy. However, it is challenging for the current system to provide a real-time high-resolution image because the incorporated MnCl 2 solution through microinjection usually results in image blurring or toxicity due to the uncontrollable diffusion of Mn 2+ . In this study, we developed a new type of conductive nanogel-based neural interface composed of amphiphilic chitosan-modified poly(3,4 -ethylenedioxythiophene) (PMSDT) that can exhibit biomimic structural/mechanical properties and ionic/electrical conductivity comparable to that of Au. More importantly, the PMSDT enables metal-ligand bonding with Mn 2+ ions, so that the system can release Mn 2+ ions rather than MnCl 2 solution directly and precisely controlled by electrical stimulation (ES) to achieve real-time high-resolution MEMRI. With the integration of PMSDT nanogel-based coating in polyimide-based microelectrode arrays, the post-implantation DBS enables frequency-dependent MR imaging in vivo, as well as small focal imaging in response to channel site-specific stimulation on the implant. The MR imaging of the implanted brain treated with 5-min electrical stimulation showed a thalamocortical neuronal pathway after 36 h, confirming the effective activation of a downstream neuronal circuit following DBS. By eliminating the susceptibility to artifact and toxicity, this system, in combination with a MR-compatible implant and a bio-compliant neural interface, provides a harmless and synchronic functional anatomy for DBS. The study demonstrates a model of MEMRI-functionalized DBS based on functional neural interface engineering and controllable delivery technology, which can be utilized in more detailed exploration of the functional anatomy in the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant.

    PubMed

    Mastinu, Enzo; Doguet, Pascal; Botquin, Yohan; Hakansson, Bo; Ortiz-Catalan, Max

    2017-08-01

    Despite the technological progress in robotics achieved in the last decades, prosthetic limbs still lack functionality, reliability, and comfort. Recently, an implanted neuromusculoskeletal interface built upon osseointegration was developed and tested in humans, namely the Osseointegrated Human-Machine Gateway. Here, we present an embedded system to exploit the advantages of this technology. Our artificial limb controller allows for bioelectric signals acquisition, processing, decoding of motor intent, prosthetic control, and sensory feedback. It includes a neurostimulator to provide direct neural feedback based on sensory information. The system was validated using real-time tasks characterization, power consumption evaluation, and myoelectric pattern recognition performance. Functionality was proven in a first pilot patient from whom results of daily usage were obtained. The system was designed to be reliably used in activities of daily living, as well as a research platform to monitor prosthesis usage and training, machine-learning-based control algorithms, and neural stimulation paradigms.

  5. Neural prostheses in clinical applications--trends from precision mechanics towards biomedical microsystems in neurological rehabilitation.

    PubMed

    Stieglitz, T; Schuettler, M; Koch, K P

    2004-04-01

    Neural prostheses partially restore body functions by technical nerve excitation after trauma or neurological diseases. External devices and implants have been developed since the early 1960s for many applications. Several systems have reached nowadays clinical practice: Cochlea implants help the deaf to hear, micturition is induced by bladder stimulators in paralyzed persons and deep brain stimulation helps patients with Parkinson's disease to participate in daily life again. So far, clinical neural prostheses are fabricated with means of precision mechanics. Since microsystem technology opens the opportunity to design and develop complex systems with a high number of electrodes to interface with the nervous systems, the opportunity for selective stimulation and complex implant scenarios seems to be feasible in the near future. The potentials and limitations with regard to biomedical microdevices are introduced and discussed in this paper. Target specifications are derived from existing implants and are discussed on selected applications that has been investigated in experimental research: a micromachined implant to interface a nerve stump with a sieve electrode, cuff electrodes with integrated electronics, and an epiretinal vision prosthesis.

  6. Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks

    NASA Astrophysics Data System (ADS)

    Dana, Hod; Marom, Anat; Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy

    2014-06-01

    Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bioengineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes per second of structures with mm-scale dimensions containing a network of over 1,000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances.

  7. Improving Neural Recording Technology at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Ferguson, John Eric

    Neural recording electrodes are widely used to study normal brain function (e.g., learning, memory, and sensation) and abnormal brain function (e.g., epilepsy, addiction, and depression) and to interface with the nervous system for neuroprosthetics. With a deep understanding of the electrode interface at the nanoscale and the use of novel nanofabrication processes, neural recording electrodes can be designed that surpass previous limits and enable new applications. In this thesis, I will discuss three projects. In the first project, we created an ultralow-impedance electrode coating by controlling the nanoscale texture of electrode surfaces. In the second project, we developed a novel nanowire electrode for long-term intracellular recordings. In the third project, we created a means of wirelessly communicating with ultra-miniature, implantable neural recording devices. The techniques developed for these projects offer significant improvements in the quality of neural recordings. They can also open the door to new types of experiments and medical devices, which can lead to a better understanding of the brain and can enable novel and improved tools for clinical applications.

  8. Neurofeedback Training for BCI Control

    NASA Astrophysics Data System (ADS)

    Neuper, Christa; Pfurtscheller, Gert

    Brain-computer interface (BCI) systems detect changes in brain signals that reflect human intention, then translate these signals to control monitors or external devices (for a comprehensive review, see [1]). BCIs typically measure electrical signals resulting from neural firing (i.e. neuronal action potentials, Electroencephalogram (ECoG), or Electroencephalogram (EEG)). Sophisticated pattern recognition and classification algorithms convert neural activity into the required control signals. BCI research has focused heavily on developing powerful signal processing and machine learning techniques to accurately classify neural activity [2-4].

  9. Neural Network Prototyping Package Within IRAF

    NASA Technical Reports Server (NTRS)

    Bazell, David

    1997-01-01

    The purpose of this contract was to develop a neural network package within the IRAF environment to allow users to easily understand and use different neural network algorithms the analysis of astronomical data. The package was developed for use within IRAF to allow portability to different computing environments and to provide a familiar and easy to use interface with the routines. In addition to developing the software and supporting documentation, we planned to use the system for the analysis of several sample problems to prove its viability and usefulness.

  10. Third Conference on Artificial Intelligence for Space Applications, part 1

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  11. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing

    NASA Astrophysics Data System (ADS)

    Lu, Yichen; Lyu, Hongming; Richardson, Andrew G.; Lucas, Timothy H.; Kuzum, Duygu

    2016-09-01

    Neural sensing and stimulation have been the backbone of neuroscience research, brain-machine interfaces and clinical neuromodulation therapies for decades. To-date, most of the neural stimulation systems have relied on sharp metal microelectrodes with poor electrochemical properties that induce extensive damage to the tissue and significantly degrade the long-term stability of implantable systems. Here, we demonstrate a flexible cortical microelectrode array based on porous graphene, which is capable of efficient electrophysiological sensing and stimulation from the brain surface, without penetrating into the tissue. Porous graphene electrodes show superior impedance and charge injection characteristics making them ideal for high efficiency cortical sensing and stimulation. They exhibit no physical delamination or degradation even after 1 million biphasic stimulation cycles, confirming high endurance. In in vivo experiments with rodents, same array is used to sense brain activity patterns with high spatio-temporal resolution and to control leg muscles with high-precision electrical stimulation from the cortical surface. Flexible porous graphene array offers a minimally invasive but high efficiency neuromodulation scheme with potential applications in cortical mapping, brain-computer interfaces, treatment of neurological disorders, where high resolution and simultaneous recording and stimulation of neural activity are crucial.

  12. Preparing for Future Learning with a Tangible User Interface: The Case of Neuroscience

    ERIC Educational Resources Information Center

    Schneider, B.; Wallace, J.; Blikstein, P.; Pea, R.

    2013-01-01

    In this paper, we describe the development and evaluation of a microworld-based learning environment for neuroscience. Our system, BrainExplorer, allows students to discover the way neural pathways work by interacting with a tangible user interface. By severing and reconfiguring connections, users can observe how the visual field is impaired and,…

  13. Cerebellar neurocontroller project, for aerospace applications, in a civilian neurocomputing initiative in the 'decade of the brain'

    NASA Technical Reports Server (NTRS)

    Pellionisz, Andras J.; Jorgensen, Charles C.; Werbos, Paul J.

    1992-01-01

    A key question is how to utilize civilian government agencies along with an industrial consortium to successfully complement the so far primarily defense-oriented neural network research. Civilian artificial neural system projects, such as artificial cerebellar neurocontrollers aimed at duplicating nature's existing neural network solutions for adaptive sensorimotor coordination, are proposed by such a synthesis. The cerebellum provides an intelligent interface between higher possibly symbolic levels of human intelligence and repetitious demands of real world conventional controllers. The generation of such intelligent interfaces could be crucial to the economic feasibility of the human settlement of space and an improvement in telerobotics techniques to permit the cost-effective exploitation of nonterrestrial materials and planetary exploration and monitoring. The authors propose a scientific framework within which such interagency activities could effectively cooperate.

  14. Development of closed-loop neural interface technology in a rat model: combining motor cortex operant conditioning with visual cortex microstimulation.

    PubMed

    Marzullo, Timothy Charles; Lehmkuhle, Mark J; Gage, Gregory J; Kipke, Daryl R

    2010-04-01

    Closed-loop neural interface technology that combines neural ensemble decoding with simultaneous electrical microstimulation feedback is hypothesized to improve deep brain stimulation techniques, neuromotor prosthetic applications, and epilepsy treatment. Here we describe our iterative results in a rat model of a sensory and motor neurophysiological feedback control system. Three rats were chronically implanted with microelectrode arrays in both the motor and visual cortices. The rats were subsequently trained over a period of weeks to modulate their motor cortex ensemble unit activity upon delivery of intra-cortical microstimulation (ICMS) of the visual cortex in order to receive a food reward. Rats were given continuous feedback via visual cortex ICMS during the response periods that was representative of the motor cortex ensemble dynamics. Analysis revealed that the feedback provided the animals with indicators of the behavioral trials. At the hardware level, this preparation provides a tractable test model for improving the technology of closed-loop neural devices.

  15. Materials and technologies for soft implantable neuroprostheses

    NASA Astrophysics Data System (ADS)

    Lacour, Stéphanie P.; Courtine, Grégoire; Guck, Jochen

    2016-10-01

    Implantable neuroprostheses are engineered systems designed to restore or substitute function for individuals with neurological deficits or disabilities. These systems involve at least one uni- or bidirectional interface between a living neural tissue and a synthetic structure, through which information in the form of electrons, ions or photons flows. Despite a few notable exceptions, the clinical dissemination of implantable neuroprostheses remains limited, because many implants display inconsistent long-term stability and performance, and are ultimately rejected by the body. Intensive research is currently being conducted to untangle the complex interplay of failure mechanisms. In this Review, we emphasize the importance of minimizing the physical and mechanical mismatch between neural tissues and implantable interfaces. We explore possible materials solutions to design and manufacture neurointegrated prostheses, and outline their immense therapeutic potential.

  16. The Realization of Drilling Fault Diagnosis Based on Hybrid Programming with Matlab and VB

    NASA Astrophysics Data System (ADS)

    Wang, Jiangping; Hu, Yingcai

    This paper presents a method using hybrid programming with Matlab and VB based on ActiveX to design the system of drilling accident prediction and diagnosis. So that the powerful calculating function and graphical display function of Matlab and visual development interface of VB are combined fully. The main interface of the diagnosis system is compiled in VB,and the analysis and fault diagnosis are implemented by neural network tool boxes in Matlab.The system has favorable interactive interface,and the fault example validation shows that the diagnosis result is feasible and can meet the demands of drilling accident prediction and diagnosis.

  17. The Evolution of Neuroprosthetic Interfaces

    PubMed Central

    Adewole, Dayo O.; Serruya, Mijail D.; Harris, James P.; Burrell, Justin C.; Petrov, Dmitriy; Chen, H. Isaac; Wolf, John A.; Cullen, D. Kacy

    2017-01-01

    The ideal neuroprosthetic interface permits high-quality neural recording and stimulation of the nervous system while reliably providing clinical benefits over chronic periods. Although current technologies have made notable strides in this direction, significant improvements must be made to better achieve these design goals and satisfy clinical needs. This article provides an overview of the state of neuroprosthetic interfaces, starting with the design and placement of these interfaces before exploring the stimulation and recording platforms yielded from contemporary research. Finally, we outline emerging research trends in an effort to explore the potential next generation of neuroprosthetic interfaces. PMID:27652455

  18. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    PubMed

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury.

  19. Next-generation probes, particles, and proteins for neural interfacing

    PubMed Central

    Rivnay, Jonathan; Wang, Huiliang; Fenno, Lief; Deisseroth, Karl; Malliaras, George G.

    2017-01-01

    Bidirectional interfacing with the nervous system enables neuroscience research, diagnosis, and therapy. This two-way communication allows us to monitor the state of the brain and its composite networks and cells as well as to influence them to treat disease or repair/restore sensory or motor function. To provide the most stable and effective interface, the tools of the trade must bridge the soft, ion-rich, and evolving nature of neural tissue with the largely rigid, static realm of microelectronics and medical instruments that allow for readout, analysis, and/or control. In this Review, we describe how the understanding of neural signaling and material-tissue interactions has fueled the expansion of the available tool set. New probe architectures and materials, nanoparticles, dyes, and designer genetically encoded proteins push the limits of recording and stimulation lifetime, localization, and specificity, blurring the boundary between living tissue and engineered tools. Understanding these approaches, their modality, and the role of cross-disciplinary development will support new neurotherapies and prostheses and provide neuroscientists and neurologists with unprecedented access to the brain. PMID:28630894

  20. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.

    PubMed

    Arreaga-Salas, David E; Avendaño-Bolívar, Adrian; Simon, Dustin; Reit, Radu; Garcia-Sandoval, Aldo; Rennaker, Robert L; Voit, Walter

    2015-12-09

    Softening neural interfaces are implanted stiff to enable precise insertion, and they soften in physiological conditions to minimize modulus mismatch with tissue. In this work, a high-charge-injection-capacity iridium electrode fabrication process is detailed. For the first time, this process enables integration of iridium electrodes onto softening substrates using photolithography to define all features in the device. Importantly, no electroplated layers are utilized, leading to a highly scalable method for consistent device fabrication. The iridium electrode is metallically bonded to the gold conductor layer, which is covalently bonded to the softening substrate via sulfur-based click chemistry. The resulting shape-memory polymer neural interfaces can deliver more than 2 billion symmetric biphasic pulses (100 μs/phase), with a charge of 200 μC/cm(2) and geometric surface area (GSA) of 300 μm(2). A transfer-by-polymerization method is used in combination with standard semiconductor processing techniques to fabricate functional neural probes onto a thiol-ene-based, thin film substrate. Electrical stability is tested under simulated physiological conditions in an accelerated electrical aging paradigm with periodic measurement of electrochemical impedance spectra (EIS) and charge storage capacity (CSC) at various intervals. Electrochemical characterization and both optical and scanning electron microscopy suggest significant breakdown of the 600 nm-thick parylene-C insulation, although no delamination of the conductors or of the final electrode interface was observed. Minor cracking at the edges of the thin film iridium electrodes was occasionally observed. The resulting devices will provide electrical recording and stimulation of the nervous system to better understand neural wiring and timing, to target treatments for debilitating diseases, and to give neuroscientists spatially selective and specific tools to interact with the body. This approach has uses for cochlear implants, nerve cuff electrodes, penetrating cortical probes, spinal stimulators, blanket electrodes for the gut, stomach, and visceral organs and a host of other custom nerve-interfacing devices.

  1. Encoder-Decoder Optimization for Brain-Computer Interfaces

    PubMed Central

    Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam

    2015-01-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919

  2. Encoder-decoder optimization for brain-computer interfaces.

    PubMed

    Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam

    2015-06-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  3. Braided Multi-Electrode Probes (BMEPs) for Neural Interfaces

    NASA Astrophysics Data System (ADS)

    Kim, Tae Gyo

    Although clinical use of invasive neural interfaces is very limited, due to safety and reliability concerns, the potential benefits of their use in brain machine interfaces (BMIs) seem promising and so they have been widely used in the research field. Microelectrodes as invasive neural interfaces are the core tool to record neural activities and their failure is a critical issue for BMI systems. Possible sources of this failure are neural tissue motions and their interactions with stiff electrode arrays or probes fixed to the skull. To overcome these tissue motion problems, we have developed novel braided multi-electrode probes (BMEPs). By interweaving ultra-fine wires into a tubular braid structure, we obtained a highly flexible multi-electrode probe. In this thesis we described BMEP designs and how to fabricate BMEPs, and explore experiments to show the advantages of BMEPs through a mechanical compliance comparison and a chronic immunohistological comparison with single 50microm nichrome wires used as a reference electrode type. Results from the mechanical compliance test showed that the bodies of BMEPs have 4 to 21 times higher compliance than the single 50microm wire and the tethers of BMEPs were 6 to 96 times higher compliance, depending on combinations of the wire size (9.6microm or 12.7microm), the wire numbers (12 or 24), and the length of tether (3, 5 or 10 mm). Results from the immunohistological comparison showed that both BMEPs and 50microm wires anchored to the skull caused stronger tissue reactions than unanchored BMEPs and 50microm wires, and 50microm wires caused stronger tissue reactions than BMEPs. In in-vivo tests with BMEPs, we succeeded in chronic recordings from the spinal cord of freely jumping frogs and in acute recordings from the spinal cord of decerebrate rats during air stepping which was evoked by mesencephalic locomotor region (MLR) stimulation. This technology may provide a stable and reliable neural interface to spinal cord researches with freely moving animals as well as to BMI researches. In addition this is extensible to various applications.

  4. Progress Toward Adaptive Integration and Optimization of Automated and Neural Processing Systems: Establishing Neural and Behavioral Benchmarks of Optimized Performance

    DTIC Science & Technology

    2014-11-01

    Paradigm ............................................................................19 3.4 Collaborative BCI for Improving Overall Performance...interfaces ( BCIs ) provide the biggest improvement in performance? Can we demonstrate clear advantages with BCIs ? 2 2. Simulator Development and...stimuli in real time. Fig. 18 ROC curves for each subject after the combination of 2 trials 3.4 Collaborative BCI for Improving Overall

  5. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) was used for these algorithms. This airplane has been modified by the addition of canards and by changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals included demonstration of revolutionary control approaches that can efficiently optimize aircraft performance for both normal and failure conditions, and to advance neural-network-based flight control technology for new aerospace systems designs. Before the NF-15B IFCS airplane was certified for flight test, however, certain processes needed to be completed. This paper presents an overview of these processes, including a description of the initial adaptive controller concepts followed by a discussion of modeling formulation and performance testing. Upon design finalization, the next steps are: integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness.

  6. PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems

    PubMed Central

    Stefanini, Fabio; Neftci, Emre O.; Sheik, Sadique; Indiveri, Giacomo

    2014-01-01

    Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS. PMID:25232314

  7. PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems.

    PubMed

    Stefanini, Fabio; Neftci, Emre O; Sheik, Sadique; Indiveri, Giacomo

    2014-01-01

    Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS.

  8. A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability.

    PubMed

    Mora Lopez, Carolina; Prodanov, Dimiter; Braeken, Dries; Gligorijevic, Ivan; Eberle, Wolfgang; Bartic, Carmen; Puers, Robert; Gielen, Georges

    2012-04-01

    Since a few decades, micro-fabricated neural probes are being used, together with microelectronic interfaces, to get more insight in the activity of neuronal networks. The need for higher temporal and spatial recording resolutions imposes new challenges on the design of integrated neural interfaces with respect to power consumption, data handling and versatility. In this paper, we present an integrated acquisition system for in vitro and in vivo recording of neural activity. The ASIC consists of 16 low-noise, fully-differential input channels with independent programmability of its amplification (from 100 to 6000 V/V) and filtering (1-6000 Hz range) capabilities. Each channel is AC-coupled and implements a fourth-order band-pass filter in order to steeply attenuate out-of-band noise and DC input offsets. The system achieves an input-referred noise density of 37 nV/√Hz, a NEF of 5.1, a CMRR > 60 dB, a THD < 1% and a sampling rate of 30 kS/s per channel, while consuming a maximum of 70 μA per channel from a single 3.3 V. The ASIC was implemented in a 0.35 μm CMOS technology and has a total area of 5.6 × 4.5 mm². The recording system was successfully validated in in vitro and in vivo experiments, achieving simultaneous multichannel recordings of cell activity with satisfactory signal-to-noise ratios.

  9. Recent Advances in Neural Electrode-Tissue Interfaces.

    PubMed

    Woeppel, Kevin; Yang, Qianru; Cui, Xinyan Tracy

    2017-12-01

    Neurotechnology is facing an exponential growth in the recent decades. Neural electrode-tissue interface research has been well recognized as an instrumental component of neurotechnology development. While satisfactory long-term performance was demonstrated in some applications, such as cochlear implants and deep brain stimulators, more advanced neural electrode devices requiring higher resolution for single unit recording or microstimulation still face significant challenges in reliability and longevity. In this article, we review the most recent findings that contribute to our current understanding of the sources of poor reliability and longevity in neural recording or stimulation, including the material failure, biological tissue response and the interplay between the two. The newly developed characterization tools are introduced from electrophysiology models, molecular and biochemical analysis, material characterization to live imaging. The effective strategies that have been applied to improve the interface are also highlighted. Finally, we discuss the challenges and opportunities in improving the interface and achieving seamless integration between the implanted electrodes and neural tissue both anatomically and functionally.

  10. An ovine model of cerebral catheter venography for implantation of an endovascular neural interface.

    PubMed

    Oxley, Thomas James; Opie, Nicholas Lachlan; Rind, Gil Simon; Liyanage, Kishan; John, Sam Emmanuel; Ronayne, Stephen; McDonald, Alan James; Dornom, Anthony; Lovell, Timothy John Haynes; Mitchell, Peter John; Bennett, Iwan; Bauquier, Sebastien; Warne, Leon Norris; Steward, Chris; Grayden, David Bruce; Desmond, Patricia; Davis, Stephen M; O'Brien, Terence John; May, Clive N

    2018-04-01

    OBJECTIVE Neural interface technology may enable the development of novel therapies to treat neurological conditions, including motor prostheses for spinal cord injury. Intracranial neural interfaces currently require a craniotomy to achieve implantation and may result in chronic tissue inflammation. Novel approaches are required that achieve less invasive implantation methods while maintaining high spatial resolution. An endovascular stent electrode array avoids direct brain trauma and is able to record electrocorticography in local cortical tissue from within the venous vasculature. The motor area in sheep runs in a parasagittal plane immediately adjacent to the superior sagittal sinus (SSS). The authors aimed to develop a sheep model of cerebral venography that would enable validation of an endovascular neural interface. METHODS Cerebral catheter venography was performed in 39 consecutive sheep. Contrast-enhanced MRI of the brain was performed on 13 animals. Multiple telescoping coaxial catheter systems were assessed to determine the largest wide-bore delivery catheter that could be delivered into the anterior SSS. Measurements of SSS diameter and distance from the motor area were taken. The location of the motor area was determined in relation to lateral and superior projections of digital subtraction venography images and confirmed on MRI. RESULTS The venous pathway from the common jugular vein (7.4 mm) to the anterior SSS (1.2 mm) was technically challenging to selectively catheterize. The SSS coursed immediately adjacent to the motor cortex (< 1 mm) for a length of 40 mm, or the anterior half of the SSS. Attempted access with 5-Fr and 6-Fr delivery catheters was associated with longer procedure times and higher complication rates. A 4-Fr catheter (internal lumen diameter 1.1 mm) was successful in accessing the SSS in 100% of cases with no associated complications. Complications included procedure-related venous dissection in two major areas: the torcular herophili, and the anterior formation of the SSS. The bifurcation of the cruciate sulcal veins with the SSS was a reliable predictor of the commencement of the motor area. CONCLUSIONS The ovine model for cerebral catheter venography has generalizability to the human cerebral venous system in relation to motor cortex location. This novel model may facilitate the development of the novel field of endovascular neural interfaces that may include preclinical investigations for cortical recording applications such as paralysis and epilepsy, as well as other potential applications in neuromodulation.

  11. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.

    PubMed

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung

    2018-02-01

    Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  12. All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation.

    PubMed

    Paluch-Siegler, Shir; Mayblum, Tom; Dana, Hod; Brosh, Inbar; Gefen, Inna; Shoham, Shy

    2015-07-01

    Our understanding of neural information processing could potentially be advanced by combining flexible three-dimensional (3-D) neuroimaging and stimulation. Recent developments in optogenetics suggest that neurophotonic approaches are in principle highly suited for noncontact stimulation of network activity patterns. In particular, two-photon holographic optical neural stimulation (2P-HONS) has emerged as a leading approach for multisite 3-D excitation, and combining it with temporal focusing (TF) further enables axially confined yet spatially extended light patterns. Here, we study key steps toward bidirectional cell-targeted 3-D interfacing by introducing and testing a hybrid new 2P-TF-HONS stimulation path for accurate parallel optogenetic excitation into a recently developed hybrid multiphoton 3-D imaging system. The system is shown to allow targeted all-optical probing of in vitro cortical networks expressing channelrhodopsin-2 using a regeneratively amplified femtosecond laser source tuned to 905 nm. These developments further advance a prospective new tool for studying and achieving distributed control over 3-D neuronal circuits both in vitro and in vivo.

  13. A Brain-Machine-Muscle Interface for Restoring Hindlimb Locomotion after Complete Spinal Transection in Rats

    PubMed Central

    Alam, Monzurul; Chen, Xi; Zhang, Zicong; Li, Yan; He, Jufang

    2014-01-01

    A brain-machine interface (BMI) is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking) could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics. PMID:25084446

  14. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.

    PubMed

    Alam, Monzurul; Chen, Xi; Zhang, Zicong; Li, Yan; He, Jufang

    2014-01-01

    A brain-machine interface (BMI) is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking) could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.

  15. Estimation of locomotion speed and directions changes to control a vehicle using neural signals from the motor cortex of rat.

    PubMed

    Fukayama, Osamu; Taniguchi, Noriyuki; Suzuki, Takafumi; Mabuchi, Kunihiko

    2006-01-01

    We have developed a brain-machine interface (BMI) in the form of a small vehicle, which we call the RatCar. In this system, we implanted wire electrodes in the motor cortices of rat's brain to continuously record neural signals. We applied a linear model to estimate the locomotion state (e.g., speed and directions) of a rat using a weighted summation model for the neural firing rates. With this information, we then determined the approximate movement of a rat. Although the estimation is still imprecise, results suggest that our model is able to control the system to some degree. In this paper, we give an overview of our system and describe the methods used, which include continuous neural recording, spike detection and a discrimination algorithm, and a locomotion estimation model minimizes the square error of the locomotion speed and changes in direction.

  16. First Annual Workshop on Space Operations Automation and Robotics (SOAR 87)

    NASA Technical Reports Server (NTRS)

    Griffin, Sandy (Editor)

    1987-01-01

    Several topics relative to automation and robotics technology are discussed. Automation of checkout, ground support, and logistics; automated software development; man-machine interfaces; neural networks; systems engineering and distributed/parallel processing architectures; and artificial intelligence/expert systems are among the topics covered.

  17. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology

    NASA Astrophysics Data System (ADS)

    Aravanis, Alexander M.; Wang, Li-Ping; Zhang, Feng; Meltzer, Leslie A.; Mogri, Murtaza Z.; Schneider, M. Bret; Deisseroth, Karl

    2007-09-01

    Neural interface technology has made enormous strides in recent years but stimulating electrodes remain incapable of reliably targeting specific cell types (e.g. excitatory or inhibitory neurons) within neural tissue. This obstacle has major scientific and clinical implications. For example, there is intense debate among physicians, neuroengineers and neuroscientists regarding the relevant cell types recruited during deep brain stimulation (DBS); moreover, many debilitating side effects of DBS likely result from lack of cell-type specificity. We describe here a novel optical neural interface technology that will allow neuroengineers to optically address specific cell types in vivo with millisecond temporal precision. Channelrhodopsin-2 (ChR2), an algal light-activated ion channel we developed for use in mammals, can give rise to safe, light-driven stimulation of CNS neurons on a timescale of milliseconds. Because ChR2 is genetically targetable, specific populations of neurons even sparsely embedded within intact circuitry can be stimulated with high temporal precision. Here we report the first in vivo behavioral demonstration of a functional optical neural interface (ONI) in intact animals, involving integrated fiberoptic and optogenetic technology. We developed a solid-state laser diode system that can be pulsed with millisecond precision, outputs 20 mW of power at 473 nm, and is coupled to a lightweight, flexible multimode optical fiber, ~200 µm in diameter. To capitalize on the unique advantages of this system, we specifically targeted ChR2 to excitatory cells in vivo with the CaMKIIα promoter. Under these conditions, the intensity of light exiting the fiber (~380 mW mm-2) was sufficient to drive excitatory neurons in vivo and control motor cortex function with behavioral output in intact rodents. No exogenous chemical cofactor was needed at any point, a crucial finding for in vivo work in large mammals. Achieving modulation of behavior with optical control of neuronal subtypes may give rise to fundamental network-level insights complementary to what electrode methodologies have taught us, and the emerging optogenetic toolkit may find application across a broad range of neuroscience, neuroengineering and clinical questions.

  18. Toward multi-area distributed network of implanted neural interrogators

    NASA Astrophysics Data System (ADS)

    Powell, Marc P.; Hou, Xiaoxiao; Galligan, Craig; Ashe, Jeffrey; Borton, David A.

    2017-08-01

    As we aim to improve our understanding of the brain, it is critical that researchers have simultaneous multi-area, large-scale access to the brain. Information processing in the brain occurs through close and distant coupling of functional sub-domains, as opposed to within isolated single neurons. However, commercially available neural interfaces capable of sensing electrophysiology of single neurons, currently allow access to only a small, mm3 volume of cortical cells, are not scalable to recording from orders of magnitude more neurons, and leverage bulky, skull mounted hardware and cabling sensitive to relative movements of the skull and brain. In this work, we propose a system capable of recording from many individual distributed neural interrogator nodes, untethered from any external electronics. Using an array of epidural inductive coils to wirelessly power the implanted electronics, the system is intended to be agnostic to the surgical placement of any individual node. Here, we demonstrate the ability to transmit nearly 15mW of power with greater than 50% power transfer efficiency, benchtop testing of individual subcircuit system components showing successful digitization of neural signals, and wireless transmission currently supporting a data rate of 3.84Mbps. We leverage a software defined radio based RF receiver to demodulate the data which can be stored in memory for later retrieval. Finally, we introduce a packaging technology capable of isolating active electronics from the surrounding tissue while providing capability for electrical feed-through assemblies for external neural interfacing. We expect, based on the presented preliminary findings, that the system can be integrated into a platform technology for the study of the intricate interactions between cortical domains.

  19. Neural recording and modulation technologies

    NASA Astrophysics Data System (ADS)

    Chen, Ritchie; Canales, Andres; Anikeeva, Polina

    2017-01-01

    In the mammalian nervous system, billions of neurons connected by quadrillions of synapses exchange electrical, chemical and mechanical signals. Disruptions to this network manifest as neurological or psychiatric conditions. Despite decades of neuroscience research, our ability to treat or even to understand these conditions is limited by the capability of tools to probe the signalling complexity of the nervous system. Although orders of magnitude smaller and computationally faster than neurons, conventional substrate-bound electronics do not recapitulate the chemical and mechanical properties of neural tissue. This mismatch results in a foreign-body response and the encapsulation of devices by glial scars, suggesting that the design of an interface between the nervous system and a synthetic sensor requires additional materials innovation. Advances in genetic tools for manipulating neural activity have fuelled the demand for devices that are capable of simultaneously recording and controlling individual neurons at unprecedented scales. Recently, flexible organic electronics and bio- and nanomaterials have been developed for multifunctional and minimally invasive probes for long-term interaction with the nervous system. In this Review, we discuss the design lessons from the quarter-century-old field of neural engineering, highlight recent materials-driven progress in neural probes and look at emergent directions inspired by the principles of neural transduction.

  20. An externally head-mounted wireless neural recording device for laboratory animal research and possible human clinical use.

    PubMed

    Yin, Ming; Li, Hao; Bull, Christopher; Borton, David A; Aceros, Juan; Larson, Lawrence; Nurmikko, Arto V

    2013-01-01

    In this paper we present a new type of head-mounted wireless neural recording device in a highly compact package, dedicated for untethered laboratory animal research and designed for future mobile human clinical use. The device, which takes its input from an array of intracortical microelectrode arrays (MEA) has ninety-seven broadband parallel neural recording channels and was integrated on to two custom designed printed circuit boards. These house several low power, custom integrated circuits, including a preamplifier ASIC, a controller ASIC, plus two SAR ADCs, a 3-axis accelerometer, a 48MHz clock source, and a Manchester encoder. Another ultralow power RF chip supports an OOK transmitter with the center frequency tunable from 3GHz to 4GHz, mounted on a separate low loss dielectric board together with a 3V LDO, with output fed to a UWB chip antenna. The IC boards were interconnected and packaged in a polyether ether ketone (PEEK) enclosure which is compatible with both animal and human use (e.g. sterilizable). The entire system consumes 17mA from a 1.2Ahr 3.6V Li-SOCl2 1/2AA battery, which operates the device for more than 2 days. The overall system includes a custom RF receiver electronics which are designed to directly interface with any number of commercial (or custom) neural signal processors for multi-channel broadband neural recording. Bench-top measurements and in vivo testing of the device in rhesus macaques are presented to demonstrate the performance of the wireless neural interface.

  1. Intelligent Tutoring Systems: Formalization as Automata and Interface Design Using Neural Networks

    ERIC Educational Resources Information Center

    Curilem, S. Gloria; Barbosa, Andrea R.; de Azevedo, Fernando M.

    2007-01-01

    This article proposes a mathematical model of Intelligent Tutoring Systems (ITS), based on observations of the behaviour of these systems. One of the most important problems of pedagogical software is to establish a common language between the knowledge areas involved in their development, basically pedagogical, computing and domain areas. A…

  2. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application

    PubMed Central

    Kwon, Ki Yong; Lee, Hyung-Min; Ghovanloo, Maysam; Weber, Arthur; Li, Wen

    2015-01-01

    The recent development of optogenetics has created an increased demand for advancing engineering tools for optical modulation of neural circuitry. This paper details the design, fabrication, integration, and packaging procedures of a wirelessly-powered, light emitting diode (LED) coupled optrode neural interface for optogenetic studies. The LED-coupled optrode array employs microscale LED (μLED) chips and polymer-based microwaveguides to deliver light into multi-level cortical networks, coupled with microelectrodes to record spontaneous changes in neural activity. An integrated, implantable, switched-capacitor based stimulator (SCS) system provides high instantaneous power to the μLEDs through an inductive link to emit sufficient light and evoke neural activities. The presented system is mechanically flexible, biocompatible, miniaturized, and lightweight, suitable for chronic implantation in small freely behaving animals. The design of this system is scalable and its manufacturing is cost effective through batch fabrication using microelectromechanical systems (MEMS) technology. It can be adopted by other groups and customized for specific needs of individual experiments. PMID:25999823

  3. Fast neural net simulation with a DSP processor array.

    PubMed

    Muller, U A; Gunzinger, A; Guggenbuhl, W

    1995-01-01

    This paper describes the implementation of a fast neural net simulator on a novel parallel distributed-memory computer. A 60-processor system, named MUSIC (multiprocessor system with intelligent communication), is operational and runs the backpropagation algorithm at a speed of 330 million connection updates per second (continuous weight update) using 32-b floating-point precision. This is equal to 1.4 Gflops sustained performance. The complete system with 3.8 Gflops peak performance consumes less than 800 W of electrical power and fits into a 19-in rack. While reaching the speed of modern supercomputers, MUSIC still can be used as a personal desktop computer at a researcher's own disposal. In neural net simulation, this gives a computing performance to a single user which was unthinkable before. The system's real-time interfaces make it especially useful for embedded applications.

  4. A wireless transmission neural interface system for unconstrained non-human primates.

    PubMed

    Fernandez-Leon, Jose A; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J; Hansen, Bryan J; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  5. A wireless transmission neural interface system for unconstrained non-human primates

    PubMed Central

    Fernandez-Leon, Jose A.; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J.; Hansen, Bryan J.; Hu, Ming; Dragoi, Valentin

    2018-01-01

    Objective Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. Approach To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency shift key modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3-V batteries for 2 hours of operation. Main results We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely-moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. Significance We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates which can potentially move systems neuroscience to a new direction by allowing to record neural signals while animals interact with their environment. PMID:26269496

  6. A wireless transmission neural interface system for unconstrained non-human primates

    NASA Astrophysics Data System (ADS)

    Fernandez-Leon, Jose A.; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J.; Hansen, Bryan J.; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Objective. Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. Approach. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. Main results. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. Significance. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  7. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung

    2018-02-01

    Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.

  8. A 1microW 85nV/ radicalHz pseudo open-loop preamplifier with programmable band-pass filter for neural interface system.

    PubMed

    Chang, Sun-Il; Yoon, Euisik

    2009-01-01

    We report an energy efficient pseudo open-loop amplifier with programmable band-pass filter developed for neural interface systems. The proposed amplifier consumes 400nA at 2.5V power supply. The measured thermal noise level is 85nV/ radicalHz and input-referred noise is 1.69microV(rms) from 0.3Hz to 1 kHz. The amplifier has a noise efficiency factor of 2.43, the lowest in the differential topologies reported up to date to our knowledge. By programming the switched-capacitor frequency and bias current, we could control the bandwidth of the preamplifier from 138 mHz to 2.2 kHz to meet various application requirements. The entire preamplifier including band-pass filters has been realized in a small area of 0.043mm(2) using a 0.25microm CMOS technology.

  9. Engineering monitoring expert system's developer

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.

    1991-01-01

    This research project is designed to apply artificial intelligence technology including expert systems, dynamic interface of neural networks, and hypertext to construct an expert system developer. The developer environment is specifically suited to building expert systems which monitor the performance of ground support equipment for propulsion systems and testing facilities. The expert system developer, through the use of a graphics interface and a rule network, will be transparent to the user during rule constructing and data scanning of the knowledge base. The project will result in a software system that allows its user to build specific monitoring type expert systems which monitor various equipments used for propulsion systems or ground testing facilities and accrues system performance information in a dynamic knowledge base.

  10. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications

    NASA Astrophysics Data System (ADS)

    Jorfi, Mehdi; Skousen, John L.; Weder, Christoph; Capadona, Jeffrey R.

    2015-02-01

    To ensure long-term consistent neural recordings, next-generation intracortical microelectrodes are being developed with an increased emphasis on reducing the neuro-inflammatory response. The increased emphasis stems from the improved understanding of the multifaceted role that inflammation may play in disrupting both biologic and abiologic components of the overall neural interface circuit. To combat neuro-inflammation and improve recording quality, the field is actively progressing from traditional inorganic materials towards approaches that either minimizes the microelectrode footprint or that incorporate compliant materials, bioactive molecules, conducting polymers or nanomaterials. However, the immune-privileged cortical tissue introduces an added complexity compared to other biomedical applications that remains to be fully understood. This review provides a comprehensive reflection on the current understanding of the key failure modes that may impact intracortical microelectrode performance. In addition, a detailed overview of the current status of various materials-based approaches that have gained interest for neural interfacing applications is presented, and key challenges that remain to be overcome are discussed. Finally, we present our vision on the future directions of materials-based treatments to improve intracortical microelectrodes for neural interfacing.

  11. Progress Towards Biocompatible Intracortical Microelectrodes for Neural Interfacing Applications

    PubMed Central

    Jorfi, Mehdi; Skousen, John L.; Weder, Christoph; Capadona, Jeffrey R.

    2015-01-01

    To ensure long-term consistent neural recordings, next-generation intracortical microelectrodes are being developed with an increased emphasis on reducing the neuro-inflammatory response. The increased emphasis stems from the improved understanding of the multifaceted role that inflammation may play in disrupting both biologic and abiologic components of the overall neural interface circuit. To combat neuro-inflammation and improve recording quality, the field is actively progressing from traditional inorganic materials towards approaches that either minimizes the microelectrode footprint or that incorporate compliant materials, bioactive molecules, conducting polymers or nanomaterials. However, the immune-privileged cortical tissue introduces an added complexity compared to other biomedical applications that remains to be fully understood. This review provides a comprehensive reflection on the current understanding of the key failure modes that may impact intracortical microelectrode performance. In addition, a detailed overview of the current status of various materials-based approaches that have gained interest for neural interfacing applications is presented, and key challenges that remain to be overcome are discussed. Finally, we present our vision on the future directions of materials-based treatments to improve intracortical microelectrodes for neural interfacing. PMID:25460808

  12. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases.

    PubMed

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-04-15

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.

  13. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases

    PubMed Central

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-01-01

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients’ brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies. PMID:25206907

  14. System and method for embedding emotion in logic systems

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2012-01-01

    A system, method, and computer readable-media for creating a stable synthetic neural system. The method includes training an intellectual choice-driven synthetic neural system (SNS), training an emotional rule-driven SNS by generating emotions from rules, incorporating the rule-driven SNS into the choice-driven SNS through an evolvable interface, and balancing the emotional SNS and the intellectual SNS to achieve stability in a nontrivial autonomous environment with a Stability Algorithm for Neural Entities (SANE). Generating emotions from rules can include coding the rules into the rule-driven SNS in a self-consistent way. Training the emotional rule-driven SNS can occur during a training stage in parallel with training the choice-driven SNS. The training stage can include a self assessment loop which measures performance characteristics of the rule-driven SNS against core genetic code. The method uses a stability threshold to measure stability of the incorporated rule-driven SNS and choice-driven SNS using SANE.

  15. Reinforcement learning interfaces for biomedical database systems.

    PubMed

    Rudowsky, I; Kulyba, O; Kunin, M; Parsons, S; Raphan, T

    2006-01-01

    Studies of neural function that are carried out in different laboratories and that address different questions use a wide range of descriptors for data storage, depending on the laboratory and the individuals that input the data. A common approach to describe non-textual data that are referenced through a relational database is to use metadata descriptors. We have recently designed such a prototype system, but to maintain efficiency and a manageable metadata table, free formatted fields were designed as table entries. The database interface application utilizes an intelligent agent to improve integrity of operation. The purpose of this study was to investigate how reinforcement learning algorithms can assist the user in interacting with the database interface application that has been developed to improve the performance of the system.

  16. An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces.

    PubMed

    Patrick, Erin; Sankar, Viswanath; Rowe, William; Sanchez, Justin C; Nishida, Toshikazu

    2010-01-01

    One of the important challenges in designing Brain-Machine Interfaces (BMI) is to build implantable systems that have the ability to reliably process the activity of large ensembles of cortical neurons. In this paper, we report the design, fabrication, and testing of a polyimide-based microelectrode array integrated with a low-power amplifier as part of the Florida Wireless Integrated Recording Electrode (FWIRE) project at the University of Florida developing a fully implantable neural recording system for BMI applications. The electrode array was fabricated using planar micromachining MEMS processes and hybrid packaged with the amplifier die using a flip-chip bonding technique. The system was tested both on bench and in-vivo. Acute and chronic neural recordings were obtained from a rodent for a period of 42 days. The electrode-amplifier performance was analyzed over the chronic recording period with the observation of a noise floor of 4.5 microVrms, and an average signal-to-noise ratio of 3.8.

  17. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.

    PubMed

    Kim, Yoon Jae; Park, Sung Woo; Yeom, Hong Gi; Bang, Moon Suk; Kim, June Sic; Chung, Chun Kee; Kim, Sungwan

    2015-08-20

    A brain-machine interface (BMI) should be able to help people with disabilities by replacing their lost motor functions. To replace lost functions, robot arms have been developed that are controlled by invasive neural signals. Although invasive neural signals have a high spatial resolution, non-invasive neural signals are valuable because they provide an interface without surgery. Thus, various researchers have developed robot arms driven by non-invasive neural signals. However, robot arm control based on the imagined trajectory of a human hand can be more intuitive for patients. In this study, therefore, an integrated robot arm-gripper system (IRAGS) that is driven by three-dimensional (3D) hand trajectories predicted from non-invasive neural signals was developed and verified. The IRAGS was developed by integrating a six-degree of freedom robot arm and adaptive robot gripper. The system was used to perform reaching and grasping motions for verification. The non-invasive neural signals, magnetoencephalography (MEG) and electroencephalography (EEG), were obtained to control the system. The 3D trajectories were predicted by multiple linear regressions. A target sphere was placed at the terminal point of the real trajectories, and the system was commanded to grasp the target at the terminal point of the predicted trajectories. The average correlation coefficient between the predicted and real trajectories in the MEG case was [Formula: see text] ([Formula: see text]). In the EEG case, it was [Formula: see text] ([Formula: see text]). The success rates in grasping the target plastic sphere were 18.75 and 7.50 % with MEG and EEG, respectively. The success rates of touching the target were 52.50 and 58.75 % respectively. A robot arm driven by 3D trajectories predicted from non-invasive neural signals was implemented, and reaching and grasping motions were performed. In most cases, the robot closely approached the target, but the success rate was not very high because the non-invasive neural signal is less accurate. However the success rate could be sufficiently improved for practical applications by using additional sensors. Robot arm control based on hand trajectories predicted from EEG would allow for portability, and the performance with EEG was comparable to that with MEG.

  18. New Insights on Neurobiological Mechanisms underlying Alcohol Addiction

    PubMed Central

    Cui, Changhai; Noronha, Antonio; Morikawa, Hitoshi; Alvarez, Veronica A.; Stuber, Garret D.; Szumlinski, Karen K.; Kash, Thomas L.; Roberto, Marisa; Wilcox, Mark V.

    2012-01-01

    Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence. It provides insights on cross talks of different mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking and alcohol dependence. PMID:23159531

  19. Single-trial dynamics of motor cortex and their applications to brain-machine interfaces

    PubMed Central

    Kao, Jonathan C.; Nuyujukian, Paul; Ryu, Stephen I.; Churchland, Mark M.; Cunningham, John P.; Shenoy, Krishna V.

    2015-01-01

    Increasing evidence suggests that neural population responses have their own internal drive, or dynamics, that describe how the neural population evolves through time. An important prediction of neural dynamical models is that previously observed neural activity is informative of noisy yet-to-be-observed activity on single-trials, and may thus have a denoising effect. To investigate this prediction, we built and characterized dynamical models of single-trial motor cortical activity. We find these models capture salient dynamical features of the neural population and are informative of future neural activity on single trials. To assess how neural dynamics may beneficially denoise single-trial neural activity, we incorporate neural dynamics into a brain–machine interface (BMI). In online experiments, we find that a neural dynamical BMI achieves substantially higher performance than its non-dynamical counterpart. These results provide evidence that neural dynamics beneficially inform the temporal evolution of neural activity on single trials and may directly impact the performance of BMIs. PMID:26220660

  20. Knowledge engineering tools for reasoning with scientific observations and interpretations: a neural connectivity use case.

    PubMed

    Russ, Thomas A; Ramakrishnan, Cartic; Hovy, Eduard H; Bota, Mihail; Burns, Gully A P C

    2011-08-22

    We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain Architecture Management System (BAMS).

  1. Knowledge engineering tools for reasoning with scientific observations and interpretations: a neural connectivity use case

    PubMed Central

    2011-01-01

    Background We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. Results The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. Conclusions We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized bioinformatics system: the Brain Architecture Management System (BAMS). PMID:21859449

  2. Operant conditioning of a multiple degree-of-freedom brain-machine interface in a primate model of amputation.

    PubMed

    Balasubramanian, Karthikeyan; Southerland, Joshua; Vaidya, Mukta; Qian, Kai; Eleryan, Ahmed; Fagg, Andrew H; Sluzky, Marc; Oweiss, Karim; Hatsopoulos, Nicholas

    2013-01-01

    Operant conditioning with biofeedback has been shown to be an effective method to modify neural activity to generate goal-directed actions in a brain-machine interface. It is particularly useful when neural activity cannot be mathematically mapped to motor actions of the actual body such as in the case of amputation. Here, we implement an operant conditioning approach with visual feedback in which an amputated monkey is trained to control a multiple degree-of-freedom robot to perform a reach-to-grasp behavior. A key innovation is that each controlled dimension represents a behaviorally relevant synergy among a set of joint degrees-of-freedom. We present a number of behavioral metrics by which to assess improvements in BMI control with exposure to the system. The use of non-human primates with chronic amputation is arguably the most clinically-relevant model of human amputation that could have direct implications for developing a neural prosthesis to treat humans with missing upper limbs.

  3. Listening to Brain Microcircuits for Interfacing With External World-Progress in Wireless Implantable Microelectronic Neuroengineering Devices: Experimental systems are described for electrical recording in the brain using multiple microelectrodes and short range implantable or wearable broadcasting units.

    PubMed

    Nurmikko, Arto V; Donoghue, John P; Hochberg, Leigh R; Patterson, William R; Song, Yoon-Kyu; Bull, Christopher W; Borton, David A; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan

    2010-01-01

    Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.

  4. Multisite two-photon imaging of neurons on multielectrode arrays

    NASA Astrophysics Data System (ADS)

    Potter, Steve M.; Lukina, Natalia; Longmuir, Kenneth J.; Wu, Yan

    2001-04-01

    We wish to understand how neural systems store, recall, and process information. We are using cultured networks of cortical neurons grown on microelectrode arrays as a model system for studying the emergent properties of ensembles of living neurons. We have developed a 2-way communication interface between the cultured network and a computer- generated animal, the Neurally Controlled Animat. Neural activity is used to control the behavior of the Animat, and 2- photon time-lapse imaging is carried out in order to observe the morphological changes that might underlie changes in neural processing. The 2-photon microscope is ideal for repeated imaging over hours or days, with submicron resolution and little photodamage. We have designed a computer-controlled microscope stage that allows imaging several locations in sequence, in order to collect more image data. For the latest progress, see: http://www.caltech.edu/~pinelab/PotterGroup.htm.

  5. Closed Loop Interactions between Spiking Neural Network and Robotic Simulators Based on MUSIC and ROS.

    PubMed

    Weidel, Philipp; Djurfeldt, Mikael; Duarte, Renato C; Morrison, Abigail

    2016-01-01

    In order to properly assess the function and computational properties of simulated neural systems, it is necessary to account for the nature of the stimuli that drive the system. However, providing stimuli that are rich and yet both reproducible and amenable to experimental manipulations is technically challenging, and even more so if a closed-loop scenario is required. In this work, we present a novel approach to solve this problem, connecting robotics and neural network simulators. We implement a middleware solution that bridges the Robotic Operating System (ROS) to the Multi-Simulator Coordinator (MUSIC). This enables any robotic and neural simulators that implement the corresponding interfaces to be efficiently coupled, allowing real-time performance for a wide range of configurations. This work extends the toolset available for researchers in both neurorobotics and computational neuroscience, and creates the opportunity to perform closed-loop experiments of arbitrary complexity to address questions in multiple areas, including embodiment, agency, and reinforcement learning.

  6. Closed Loop Interactions between Spiking Neural Network and Robotic Simulators Based on MUSIC and ROS

    PubMed Central

    Weidel, Philipp; Djurfeldt, Mikael; Duarte, Renato C.; Morrison, Abigail

    2016-01-01

    In order to properly assess the function and computational properties of simulated neural systems, it is necessary to account for the nature of the stimuli that drive the system. However, providing stimuli that are rich and yet both reproducible and amenable to experimental manipulations is technically challenging, and even more so if a closed-loop scenario is required. In this work, we present a novel approach to solve this problem, connecting robotics and neural network simulators. We implement a middleware solution that bridges the Robotic Operating System (ROS) to the Multi-Simulator Coordinator (MUSIC). This enables any robotic and neural simulators that implement the corresponding interfaces to be efficiently coupled, allowing real-time performance for a wide range of configurations. This work extends the toolset available for researchers in both neurorobotics and computational neuroscience, and creates the opportunity to perform closed-loop experiments of arbitrary complexity to address questions in multiple areas, including embodiment, agency, and reinforcement learning. PMID:27536234

  7. First CLIPS Conference Proceedings, volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The topics of volume 2 of First CLIPS Conference are associated with following applications: quality control; intelligent data bases and networks; Space Station Freedom; Space Shuttle and satellite; user interface; artificial neural systems and fuzzy logic; parallel and distributed processing; enchancements to CLIPS; aerospace; simulation and defense; advisory systems and tutors; and intelligent control.

  8. Higher-order neural network software for distortion invariant object recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly

    1991-01-01

    The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.

  9. Invasive Intraneural Interfaces: Foreign Body Reaction Issues

    PubMed Central

    Lotti, Fiorenza; Ranieri, Federico; Vadalà, Gianluca; Zollo, Loredana; Di Pino, Giovanni

    2017-01-01

    Intraneural interfaces are stimulation/registration devices designed to couple the peripheral nervous system (PNS) with the environment. Over the last years, their use has increased in a wide range of applications, such as the control of a new generation of neural-interfaced prostheses. At present, the success of this technology is limited by an electrical impedance increase, due to an inflammatory response called foreign body reaction (FBR), which leads to the formation of a fibrotic tissue around the interface, eventually causing an inefficient transduction of the electrical signal. Based on recent developments in biomaterials and inflammatory/fibrotic pathologies, we explore and select the biological solutions that might be adopted in the neural interfaces FBR context: modifications of the interface surface, such as organic and synthetic coatings; the use of specific drugs or molecular biology tools to target the microenvironment around the interface; the development of bio-engineered-scaffold to reduce immune response and promote interface-tissue integration. By linking what we believe are the major crucial steps of the FBR process with related solutions, we point out the main issues that future research has to focus on: biocompatibility without losing signal conduction properties, good reproducible in vitro/in vivo models, drugs exhaustion and undesired side effects. The underlined pros and cons of proposed solutions show clearly the importance of a better understanding of all the molecular and cellular pathways involved and the need of a multi-target action based on a bio-engineered combination approach. PMID:28932181

  10. Method and apparatus for detecting concealed weapons

    DOEpatents

    Kotter, Dale K.; Fluck, Frederick D.

    2006-03-14

    Apparatus for classifying a ferromagnetic object within a sensing area may include a magnetic field sensor that produces magnetic field data. A signal processing system operatively associated with the magnetic field sensor includes a neural network. The neural network compares the magnetic field data with magnetic field data produced by known ferromagnetic objects to make a probabilistic determination as to the classification of the ferromagnetic object within the sensing area. A user interface operatively associated with the signal processing system produces a user-discernable output indicative of the probabilistic determination of the classification of the ferromagnetic object within a sensing area.

  11. Optimizing growth and post treatment of diamond for high capacitance neural interfaces.

    PubMed

    Tong, Wei; Fox, Kate; Zamani, Akram; Turnley, Ann M; Ganesan, Kumaravelu; Ahnood, Arman; Cicione, Rosemary; Meffin, Hamish; Prawer, Steven; Stacey, Alastair; Garrett, David J

    2016-10-01

    Electrochemical and biological properties are two crucial criteria in the selection of the materials to be used as electrodes for neural interfaces. For neural stimulation, materials are required to exhibit high capacitance and to form intimate contact with neurons for eliciting effective neural responses at acceptably low voltages. Here we report on a new high capacitance material fabricated using nitrogen included ultrananocrystalline diamond (N-UNCD). After exposure to oxygen plasma for 3 h, the activated N-UNCD exhibited extremely high electrochemical capacitance greater than 1 mF/cm(2), which originates from the special hybrid sp(2)/sp(3) structure of N-UNCD. The in vitro biocompatibility of the activated N-UNCD was then assessed using rat cortical neurons and surface roughness was found to be critical for healthy neuron growth, with best results observed on surfaces with a roughness of approximately 20 nm. Therefore, by using oxygen plasma activated N-UNCD with appropriate surface roughness, and considering the chemical and mechanical stability of diamond, the fabricated neural interfaces are expected to exhibit high efficacy, long-term stability and a healthy neuron/electrode interface. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Inversion of Density Interfaces Using the Pseudo-Backpropagation Neural Network Method

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohong; Du, Yukun; Liu, Zhan; Zhao, Wenju; Chen, Xiaocheng

    2018-05-01

    This paper presents a new pseudo-backpropagation (BP) neural network method that can invert multi-density interfaces at one time. The new method is based on the conventional forward modeling and inverse modeling theories in addition to conventional pseudo-BP neural network arithmetic. A 3D inversion model for gravity anomalies of multi-density interfaces using the pseudo-BP neural network method is constructed after analyzing the structure and function of the artificial neural network. The corresponding iterative inverse formula of the space field is presented at the same time. Based on trials of gravity anomalies and density noise, the influence of the two kinds of noise on the inverse result is discussed and the scale of noise requested for the stability of the arithmetic is analyzed. The effects of the initial model on the reduction of the ambiguity of the result and improvement of the precision of inversion are discussed. The correctness and validity of the method were verified by the 3D model of the three interfaces. 3D inversion was performed on the observed gravity anomaly data of the Okinawa trough using the program presented herein. The Tertiary basement and Moho depth were obtained from the inversion results, which also testify the adaptability of the method. This study has made a useful attempt for the inversion of gravity density interfaces.

  13. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    NASA Astrophysics Data System (ADS)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  14. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease.

    PubMed

    Swann, Nicole C; de Hemptinne, Coralie; Miocinovic, Svjetlana; Qasim, Salman; Ostrem, Jill L; Galifianakis, Nicholas B; Luciano, Marta San; Wang, Sarah S; Ziman, Nathan; Taylor, Robin; Starr, Philip A

    2018-02-01

    OBJECTIVE Dysfunction of distributed neural networks underlies many brain disorders. The development of neuromodulation therapies depends on a better understanding of these networks. Invasive human brain recordings have a favorable temporal and spatial resolution for the analysis of network phenomena but have generally been limited to acute intraoperative recording or short-term recording through temporarily externalized leads. Here, the authors describe their initial experience with an investigational, first-generation, totally implantable, bidirectional neural interface that allows both continuous therapeutic stimulation and recording of field potentials at multiple sites in a neural network. METHODS Under a physician-sponsored US Food and Drug Administration investigational device exemption, 5 patients with Parkinson's disease were implanted with the Activa PC+S system (Medtronic Inc.). The device was attached to a quadripolar lead placed in the subdural space over motor cortex, for electrocorticography potential recordings, and to a quadripolar lead in the subthalamic nucleus (STN), for both therapeutic stimulation and recording of local field potentials. Recordings from the brain of each patient were performed at multiple time points over a 1-year period. RESULTS There were no serious surgical complications or interruptions in deep brain stimulation therapy. Signals in both the cortex and the STN were relatively stable over time, despite a gradual increase in electrode impedance. Canonical movement-related changes in specific frequency bands in the motor cortex were identified in most but not all recordings. CONCLUSIONS The acquisition of chronic multisite field potentials in humans is feasible. The device performance characteristics described here may inform the design of the next generation of totally implantable neural interfaces. This research tool provides a platform for translating discoveries in brain network dynamics to improved neurostimulation paradigms. Clinical trial registration no.: NCT01934296 (clinicaltrials.gov).

  15. Toward a Proprioceptive Neural Interface That Mimics Natural Cortical Activity

    PubMed Central

    Tomlinson, Tucker

    2017-01-01

    The dramatic advances in efferent neural interfaces over the past decade are remarkable, with cortical signals used to allow paralyzed patients to control the movement of a prosthetic limb or even their own hand. However, this success has thrown into relief, the relative lack of progress in our ability to restore somatosensation to these same patients. Somatosensation, including proprioception, the sense of limb position and movement, plays a crucial role in even basic motor tasks like reaching and walking. Its loss results in crippling deficits. Historical work dating back decades and even centuries has demonstrated that modality-specific sensations can be elicited by activating the central nervous system electrically. Recent work has focused on the challenge of refining these sensations by stimulating the somatosensory cortex (S1) directly. Animals are able to detect particular patterns of stimulation and even associate those patterns with particular sensory cues. Most of this work has involved areas of the somatosensory cortex that mediate the sense of touch. Very little corresponding work has been done for proprioception. Here we describe the effort to develop afferent neural interfaces through spatiotemporally precise intracortical microstimulation (ICMS). We review what is known of the cortical representation of proprioception, and describe recent work in our lab that demonstrates for the first time, that sensations like those of natural proprioception may be evoked by ICMS in S1. These preliminary findings are an important first step to the development of an afferent cortical interface to restore proprioception. PMID:28035576

  16. Toward a Proprioceptive Neural Interface that Mimics Natural Cortical Activity.

    PubMed

    Tomlinson, Tucker; Miller, Lee E

    2016-01-01

    The dramatic advances in efferent neural interfaces over the past decade are remarkable, with cortical signals used to allow paralyzed patients to control the movement of a prosthetic limb or even their own hand. However, this success has thrown into relief, the relative lack of progress in our ability to restore somatosensation to these same patients. Somatosensation, including proprioception, the sense of limb position and movement, plays a crucial role in even basic motor tasks like reaching and walking. Its loss results in crippling deficits. Historical work dating back decades and even centuries has demonstrated that modality-specific sensations can be elicited by activating the central nervous system electrically. Recent work has focused on the challenge of refining these sensations by stimulating the somatosensory cortex (S1) directly. Animals are able to detect particular patterns of stimulation and even associate those patterns with particular sensory cues. Most of this work has involved areas of the somatosensory cortex that mediate the sense of touch. Very little corresponding work has been done for proprioception. Here we describe the effort to develop afferent neural interfaces through spatiotemporally precise intracortical microstimulation (ICMS). We review what is known of the cortical representation of proprioception, and describe recent work in our lab that demonstrates for the first time, that sensations like those of natural proprioception may be evoked by ICMS in S1. These preliminary findings are an important first step to the development of an afferent cortical interface to restore proprioception.

  17. Parsing learning in networks using brain-machine interfaces.

    PubMed

    Orsborn, Amy L; Pesaran, Bijan

    2017-10-01

    Brain-machine interfaces (BMIs) define new ways to interact with our environment and hold great promise for clinical therapies. Motor BMIs, for instance, re-route neural activity to control movements of a new effector and could restore movement to people with paralysis. Increasing experience shows that interfacing with the brain inevitably changes the brain. BMIs engage and depend on a wide array of innate learning mechanisms to produce meaningful behavior. BMIs precisely define the information streams into and out of the brain, but engage wide-spread learning. We take a network perspective and review existing observations of learning in motor BMIs to show that BMIs engage multiple learning mechanisms distributed across neural networks. Recent studies demonstrate the advantages of BMI for parsing this learning and its underlying neural mechanisms. BMIs therefore provide a powerful tool for studying the neural mechanisms of learning that highlights the critical role of learning in engineered neural therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.

    PubMed

    Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall

    2014-01-01

    The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.

  19. Interfacing Neural Network Components and Nucleic Acids

    PubMed Central

    Lissek, Thomas

    2017-01-01

    Translating neural activity into nucleic acid modifications in a controlled manner harbors unique advantages for basic neurobiology and bioengineering. It would allow for a new generation of biological computers that store output in ultra-compact and long-lived DNA and enable the investigation of animal nervous systems at unprecedented scales. Furthermore, by exploiting the ability of DNA to precisely influence neuronal activity and structure, it could be possible to more effectively create cellular therapy approaches for psychiatric diseases that are currently difficult to treat. PMID:29255707

  20. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.

    PubMed

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive.

  1. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder

    PubMed Central

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive. PMID:28018162

  2. A fresh look at functional link neural network for motor imagery-based brain-computer interface.

    PubMed

    Hettiarachchi, Imali T; Babaei, Toktam; Nguyen, Thanh; Lim, Chee P; Nahavandi, Saeid

    2018-05-04

    Artificial neural networks (ANNs) are one of the widely used classifiers in the brain-computer interface (BCI) systems-based on noninvasive electroencephalography (EEG) signals. Among the different ANN architectures, the most commonly applied for BCI classifiers is the multilayer perceptron (MLP). When appropriately designed with optimal number of neuron layers and number of neurons per layer, the ANN can act as a universal approximator. However, due to the low signal-to-noise ratio of EEG signal data, overtraining problem may become an inherent issue, causing these universal approximators to fail in real-time applications. In this study we introduce a higher order neural network, namely the functional link neural network (FLNN) as a classifier for motor imagery (MI)-based BCI systems, to remedy the drawbacks in MLP. We compare the proposed method with competing classifiers such as linear decomposition analysis, naïve Bayes, k-nearest neighbours, support vector machine and three MLP architectures. Two multi-class benchmark datasets from the BCI competitions are used. Common spatial pattern algorithm is utilized for feature extraction to build classification models. FLNN reports the highest average Kappa value over multiple subjects for both the BCI competition datasets, under similarly preprocessed data and extracted features. Further, statistical comparison results over multiple subjects show that the proposed FLNN classification method yields the best performance among the competing classifiers. Findings from this study imply that the proposed method, which has less computational complexity compared to the MLP, can be implemented effectively in practical MI-based BCI systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Nanomaterials at the neural interface.

    PubMed

    Scaini, Denis; Ballerini, Laura

    2018-06-01

    Interfacing the nervous system with devices able to efficiently record or modulate the electrical activity of neuronal cells represents the underlying foundation of future theranostic applications in neurology and of current openings in neuroscience research. These devices, usually sensing cell activity via microelectrodes, should be characterized by safe working conditions in the biological milieu together with a well-controlled operation-life. The stable device/neuronal electrical coupling at the interface requires tight interactions between the electrode surface and the cell membrane. This neuro-electrode hybrid represents the hyphen between the soft nature of neural tissue, generating electrical signals via ion motions, and the rigid realm of microelectronics and medical devices, dealing with electrons in motion. Efficient integration of these entities is essential for monitoring, analyzing and controlling neuronal signaling but poses significant technological challenges. Improving the cell/electrode interaction and thus the interface performance requires novel engineering of (nano)materials: tuning at the nanoscale electrode's properties may lead to engineer interfacing probes that better camouflaged with their biological target. In this brief review, we highlight the most recent concepts in nanotechnologies and nanomaterials that might help reducing the mismatch between tissue and electrode, focusing on the device's mechanical properties and its biological integration with the tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Incorporating an optical waveguide into a neural interface

    DOEpatents

    Tolosa, Vanessa; Delima, Terri L.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tooker, Angela C.

    2016-11-08

    An optical waveguide integrated into a multielectrode array (MEA) neural interface includes a device body, at least one electrode in the device body, at least one electrically conducting lead coupled to the at least one electrode, at least one optical channel in the device body, and waveguide material in the at least one optical channel. The fabrication of a neural interface device includes the steps of providing a device body, providing at least one electrode in the device body, providing at least one electrically conducting lead coupled to the at least one electrode, providing at least one optical channel in the device body, and providing a waveguide material in the at least one optical channel.

  5. Implantable Neural Interfaces for Sharks

    DTIC Science & Technology

    2007-05-01

    technology for recording and stimulating from the auditory and olfactory sensory nervous systems of the awake , swimming nurse shark, G. cirratum (Figures...and awake animals. Finally, evidence exists that microstimulation of the olfactory system could lead to patterned behavioral responses in the...auditory-evoked local field potentials (multi- modal sensory responses) from both anesthetized and awake animals. Figure 1: Pre-operative MR

  6. A neural network controller for automated composite manufacturing

    NASA Technical Reports Server (NTRS)

    Lichtenwalner, Peter F.

    1994-01-01

    At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.

  7. A Neural Network Approach to Intention Modeling for User-Adapted Conversational Agents

    PubMed Central

    Griol, David

    2016-01-01

    Spoken dialogue systems have been proposed to enable a more natural and intuitive interaction with the environment and human-computer interfaces. In this contribution, we present a framework based on neural networks that allows modeling of the user's intention during the dialogue and uses this prediction to dynamically adapt the dialogue model of the system taking into consideration the user's needs and preferences. We have evaluated our proposal to develop a user-adapted spoken dialogue system that facilitates tourist information and services and provide a detailed discussion of the positive influence of our proposal in the success of the interaction, the information and services provided, and the quality perceived by the users. PMID:26819592

  8. Decoding the non-stationary neuron spike trains by dual Monte Carlo point process estimation in motor Brain Machine Interfaces.

    PubMed

    Liao, Yuxi; Li, Hongbao; Zhang, Qiaosheng; Fan, Gong; Wang, Yiwen; Zheng, Xiaoxiang

    2014-01-01

    Decoding algorithm in motor Brain Machine Interfaces translates the neural signals to movement parameters. They usually assume the connection between the neural firings and movements to be stationary, which is not true according to the recent studies that observe the time-varying neuron tuning property. This property results from the neural plasticity and motor learning etc., which leads to the degeneration of the decoding performance when the model is fixed. To track the non-stationary neuron tuning during decoding, we propose a dual model approach based on Monte Carlo point process filtering method that enables the estimation also on the dynamic tuning parameters. When applied on both simulated neural signal and in vivo BMI data, the proposed adaptive method performs better than the one with static tuning parameters, which raises a promising way to design a long-term-performing model for Brain Machine Interfaces decoder.

  9. Interfacing to the brain’s motor decisions

    PubMed Central

    2017-01-01

    It has been long known that neural activity, recorded with electrophysiological methods, contains rich information about a subject’s motor intentions, sensory experiences, allocation of attention, action planning, and even abstract thoughts. All these functions have been the subject of neurophysiological investigations, with the goal of understanding how neuronal activity represents behavioral parameters, sensory inputs, and cognitive functions. The field of brain-machine interfaces (BMIs) strives for a somewhat different goal: it endeavors to extract information from neural modulations to create a communication link between the brain and external devices. Although many remarkable successes have been already achieved in the BMI field, questions remain regarding the possibility of decoding high-order neural representations, such as decision making. Could BMIs be employed to decode the neural representations of decisions underlying goal-directed actions? In this review we lay out a framework that describes the computations underlying goal-directed actions as a multistep process performed by multiple cortical and subcortical areas. We then discuss how BMIs could connect to different decision-making steps and decode the neural processing ongoing before movements are initiated. Such decision-making BMIs could operate as a system with prediction that offers many advantages, such as shorter reaction time, better error processing, and improved unsupervised learning. To present the current state of the art, we review several recent BMIs incorporating decision-making components. PMID:28003406

  10. The Pursuit of Chronically Reliable Neural Interfaces: A Materials Perspective.

    PubMed

    Guo, Liang

    2016-01-01

    Brain-computer interfaces represent one of the most astonishing technologies in our era. However, the grand challenge of chronic instability and limited throughput of the electrode-tissue interface has significantly hindered the further development and ultimate deployment of such exciting technologies. A multidisciplinary research workforce has been called upon to respond to this engineering need. In this paper, I briefly review this multidisciplinary pursuit of chronically reliable neural interfaces from a materials perspective by analyzing the problem, abstracting the engineering principles, and summarizing the corresponding engineering strategies. I further draw my future perspectives by extending the proposed engineering principles.

  11. Real-time data acquisition and control system for the measurement of motor and neural data

    PubMed Central

    Bryant, Christopher L.; Gandhi, Neeraj J.

    2013-01-01

    This paper outlines a powerful, yet flexible real-time data acquisition and control system for use in the triggering and measurement of both analog and digital events. Built using the LabVIEW development architecture (version 7.1) and freely available, this system provides precisely timed auditory and visual stimuli to a subject while recording analog data and timestamps of neural activity retrieved from a window discriminator. The system utilizes the most recent real-time (RT) technology in order to provide not only a guaranteed data acquisition rate of 1 kHz, but a much more difficult to achieve guaranteed system response time of 1 ms. The system interface is windows-based and easy to use, providing a host of configurable options for end-user customization. PMID:15698659

  12. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.

    PubMed

    Dethier, Julie; Nuyujukian, Paul; Ryu, Stephen I; Shenoy, Krishna V; Boahen, Kwabena

    2013-06-01

    Cortically-controlled motor prostheses aim to restore functions lost to neurological disease and injury. Several proof of concept demonstrations have shown encouraging results, but barriers to clinical translation still remain. In particular, intracortical prostheses must satisfy stringent power dissipation constraints so as not to damage cortex. One possible solution is to use ultra-low power neuromorphic chips to decode neural signals for these intracortical implants. The first step is to explore in simulation the feasibility of translating decoding algorithms for brain-machine interface (BMI) applications into spiking neural networks (SNNs). Here we demonstrate the validity of the approach by implementing an existing Kalman-filter-based decoder in a simulated SNN using the Neural Engineering Framework (NEF), a general method for mapping control algorithms onto SNNs. To measure this system's robustness and generalization, we tested it online in closed-loop BMI experiments with two rhesus monkeys. Across both monkeys, a Kalman filter implemented using a 2000-neuron SNN has comparable performance to that of a Kalman filter implemented using standard floating point techniques. These results demonstrate the tractability of SNN implementations of statistical signal processing algorithms on different monkeys and for several tasks, suggesting that a SNN decoder, implemented on a neuromorphic chip, may be a feasible computational platform for low-power fully-implanted prostheses. The validation of this closed-loop decoder system and the demonstration of its robustness and generalization hold promise for SNN implementations on an ultra-low power neuromorphic chip using the NEF.

  13. EDITORIAL: Why we need a new journal in neural engineering

    NASA Astrophysics Data System (ADS)

    Durand, Dominique M.

    2004-03-01

    The field of neural engineering crystallizes for many engineers and scientists an area of research at the interface between neuroscience and engineering. For the last 15 years or so, the discipline of neural engineering (neuroengineering) has slowly appeared at conferences as a theme or track. The first conference devoted entirely to this area was the 1st International IEEE EMBS Conference on Neural Engineering which took place in Capri, Italy in 2003. Understanding how the brain works is considered the ultimate frontier and challenge in science. The complexity of the brain is so great that understanding even the most basic functions will require that we fully exploit all the tools currently at our disposal in science and engineering and simultaneously develop new methods of analysis. While neuroscientists and engineers from varied fields such as brain anatomy, neural development and electrophysiology have made great strides in the analysis of this complex organ, there remains a great deal yet to be uncovered. The potential for applications and remedies deriving from scientific discoveries and breakthroughs is extremely high. As a result of the growing availability of micromachining technology, research into neurotechnology has grown relatively rapidly in recent years and appears to be approaching a critical mass. For example, by understanding how neuronal circuits process and store information, we could design computers with capabilities beyond current limits. By understanding how neurons develop and grow, we could develop new technologies for spinal cord repair or central nervous system repair following neurological disorders. Moreover, discoveries related to higher-level cognitive function and consciousness could have a profound influence on how humans make sense of their surroundings and interact with each other. The ability to successfully interface the brain with external electronics would have enormous implications for our society and facilitate a revolutionary change in the quality of life of persons with sensory and/or motor deficits. Microelectrode technology represents the initial step towards this goal and has already improved the quality of life of many patients, as is evident from the success of auditory prostheses. The cost to society of neurological disorders such as stroke, Parkinson's disease, Alzheimer's disease and epilepsy is staggering. Stroke, which is the third leading cause of death in North America, runs up costs of 40 billion to society per year for its treatment. Costs associated with brain disorders are estimated at 285 billion. Breakthroughs in this field will have a significant impact on the market for enabling technologies. The market for neurological medical devices totaled 2 billion in 1999 and is projected to grow at a rate of 20 to 30% in the next ten years, far outpacing the market for cardiac devices. Although we have all recognized the importance of interdisciplinary research (see the NIH Road map at http://nihroadmap.nih.gov/), the fields of neuroscience and engineering have remained compartmentalized. Collaboration is still difficult since the language of these disciplines is different. Moreover, the scientific journals in these fields are also clearly separate. Researchers involved in neural engineering have a choice of publishing their research in either neuroscience-oriented journals such as Journal of Neuroscience, Journal of Neurophysiology and Brain Research or in engineering journals such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Neural Systems and Rehabilitation and Annals of Biomedical Engineering. There is no journal currently available focusing on the interdisciplinary field of neural engineering. In order to capitalize on the potential of neural engineering to investigate neural function and to solve problems related to neural disorders, it is necessary to break down the traditional barriers between neuroscientists and engineers not just in the laboratory but also in the publication of scientific papers. We do, therefore, need a new journal that provides a platform for this emerging interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that spans the disciplines. Journal of Neural Engineering will provide this platform. The new journal will publish full-length articles of the highest quality and importance in the field of neural engineering at the molecular, cellular and systems levels. The scope of Journal of Neural Engineering encompasses experimental, computational and theoretical aspects of neural interfacing, neuroelectronics, neuromechanical systems, neuroinformatics, neuroimaging, neural prostheses, artificial and biological neural circuits, neural control, neural tissue regeneration, neural signal processing, neural modeling and neuro-computation. The scope of the journal has both depth and breadth in areas relevant to the interface between neuroscience and engineering. There will be two Editors-in-Chief, with expertise covering both engineering and neuroscience. Experts in the areas encompassed by the journal's scope have been identified for the Editorial Board and the composition of the board will be continually updated to address the developments in this new and exciting field. The first issue of this new journal covers a variety of topics that combine neuroscience and engineering: mental state recognition from EEG signals, analysis of body motion in Parkinson's patients, non-linear dynamics of the respiratory system, automatic identification of saccade-related visual evoked potentials, multiple electrode stimulators, algorithms to estimate the causal relationship between brain sources, diffusion tensor imaging in the brain and phase synchronization of neural activity in vitro. This broad array of manuscripts focusing on neural imaging, neurophysiology, neural signal processing, neuroelectronics and neuro-dynamics can be found for the first time within the pages of a single journal: Journal of Neural Engineering. I am grateful to Institute of Physics Publishing and Jane Roscoe in particular for putting together this new journal to accommodate the fast-growing field of neural engineering. I am also grateful to Andrew Schwartz who has agreed to be the co-Editor-in-Chief for the journal.

  14. Enhancement of electrical signaling in neural networks on graphene films.

    PubMed

    Tang, Mingliang; Song, Qin; Li, Ning; Jiang, Ziyun; Huang, Rong; Cheng, Guosheng

    2013-09-01

    One of the key challenges for neural tissue engineering is to exploit supporting materials with robust functionalities not only to govern cell-specific behaviors, but also to form functional neural network. The unique electrical and mechanical properties of graphene imply it as a promising candidate for neural interfaces, but little is known about the details of neural network formation on graphene as a scaffold material for tissue engineering. Therapeutic regenerative strategies aim to guide and enhance the intrinsic capacity of the neurons to reorganize by promoting plasticity mechanisms in a controllable manner. Here, we investigated the impact of graphene on the formation and performance in the assembly of neural networks in neural stem cell (NSC) culture. Using calcium imaging and electrophysiological recordings, we demonstrate the capabilities of graphene to support the growth of functional neural circuits, and improve neural performance and electrical signaling in the network. These results offer a better understanding of interactions between graphene and NSCs, also they clearly present the great potentials of graphene as neural interface in tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Image understanding and the man-machine interface II; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989

    NASA Technical Reports Server (NTRS)

    Barrett, Eamon B. (Editor); Pearson, James J. (Editor)

    1989-01-01

    Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.

  16. A preferential design approach for energy-efficient and robust implantable neural signal processing hardware.

    PubMed

    Narasimhan, Seetharam; Chiel, Hillel J; Bhunia, Swarup

    2009-01-01

    For implantable neural interface applications, it is important to compress data and analyze spike patterns across multiple channels in real time. Such a computational task for online neural data processing requires an innovative circuit-architecture level design approach for low-power, robust and area-efficient hardware implementation. Conventional microprocessor or Digital Signal Processing (DSP) chips would dissipate too much power and are too large in size for an implantable system. In this paper, we propose a novel hardware design approach, referred to as "Preferential Design" that exploits the nature of the neural signal processing algorithm to achieve a low-voltage, robust and area-efficient implementation using nanoscale process technology. The basic idea is to isolate the critical components with respect to system performance and design them more conservatively compared to the noncritical ones. This allows aggressive voltage scaling for low power operation while ensuring robustness and area efficiency. We have applied the proposed approach to a neural signal processing algorithm using the Discrete Wavelet Transform (DWT) and observed significant improvement in power and robustness over conventional design.

  17. A Wirelessly Powered Micro-Spectrometer for Neural Probe-Pin Device

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn

    2015-01-01

    Treatment of neurological anomalies, places stringent demands on device functionality and size. A micro-spectrometer has been developed for use as an implantable neural probe to monitor neuro-chemistry in synapses. The microspectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) enabling operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, allow real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.

  18. A wirelessly powered microspectrometer for neural probe-pin device

    NASA Astrophysics Data System (ADS)

    Choi, Sang H.; Kim, Min H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn

    2015-12-01

    Treatment of neurological anomalies, whether done invasively or not, places stringent demands on device functionality and size. We have developed a micro-spectrometer for use as an implantable neural probe to monitor neuro-chemistry in synapses. The micro-spectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) to enable operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, enable real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.

  19. Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface

    PubMed Central

    Novellino, A.; D'Angelo, P.; Cozzi, L.; Chiappalone, M.; Sanguineti, V.; Martinoia, S.

    2007-01-01

    One of the key properties of intelligent behaviors is the capability to learn and adapt to changing environmental conditions. These features are the result of the continuous and intense interaction of the brain with the external world, mediated by the body. For this reason “embodiment” represents an innovative and very suitable experimental paradigm when studying the neural processes underlying learning new behaviors and adapting to unpredicted situations. To this purpose, we developed a novel bidirectional neural interface. We interconnected in vitro neurons, extracted from rat embryos and plated on a microelectrode array (MEA), to external devices, thus allowing real-time closed-loop interaction. The novelty of this experimental approach entails the necessity to explore different computational schemes and experimental hypotheses. In this paper, we present an open, scalable architecture, which allows fast prototyping of different modules and where coding and decoding schemes and different experimental configurations can be tested. This hybrid system can be used for studying the computational properties and information coding in biological neuronal networks with far-reaching implications for the future development of advanced neuroprostheses. PMID:18350128

  20. Wireless microsensor network solutions for neurological implantable devices

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.

    2005-05-01

    The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and trigger the feed back system or contact a point-of-care office that can remotely control the implantable system. The remote monitoring technology can be adaptable to EEG monitoring of children with epilepsy, implantable cardioverters/defibrillators, pacemakers, chronic pain management systems, treatment for sleep disorders, patients with implantable devices for diabetes. In addition, the development of a wireless neural electronics interface to detect, transmit and analyze neural signals could help patients with spinal injuries to regain some semblance of mobile activity.

  1. Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity

    PubMed Central

    Bassett, Danielle S.; Khambhati, Ankit N.; Grafton, Scott T.

    2018-01-01

    Neuroengineering is faced with unique challenges in repairing or replacing complex neural systems that are composed of many interacting parts. These interactions form intricate patterns over large spatiotemporal scales and produce emergent behaviors that are difficult to predict from individual elements. Network science provides a particularly appropriate framework in which to study and intervene in such systems by treating neural elements (cells, volumes) as nodes in a graph and neural interactions (synapses, white matter tracts) as edges in that graph. Here, we review the emerging discipline of network neuroscience, which uses and develops tools from graph theory to better understand and manipulate neural systems from micro- to macroscales. We present examples of how human brain imaging data are being modeled with network analysis and underscore potential pitfalls. We then highlight current computational and theoretical frontiers and emphasize their utility in informing diagnosis and monitoring, brain–machine interfaces, and brain stimulation. A flexible and rapidly evolving enterprise, network neuroscience provides a set of powerful approaches and fundamental insights that are critical for the neuroengineer’s tool kit. PMID:28375650

  2. A programmable closed-loop recording and stimulating wireless system for behaving small laboratory animals

    PubMed Central

    Angotzi, Gian Nicola; Boi, Fabio; Zordan, Stefano; Bonfanti, Andrea; Vato, Alessandro

    2014-01-01

    A portable 16-channels microcontroller-based wireless system for a bi-directional interaction with the central nervous system is presented in this work. The device is designed to be used with freely behaving small laboratory animals and allows recording of spontaneous and evoked neural activity wirelessly transmitted and stored on a personal computer. Biphasic current stimuli with programmable duration, frequency and amplitude may be triggered in real-time on the basis of the recorded neural activity as well as by the animal behavior within a specifically designed experimental setup. An intuitive graphical user interface was developed to configure and to monitor the whole system. The system was successfully tested through bench tests and in vivo measurements on behaving rats chronically implanted with multi-channels microwire arrays. PMID:25096831

  3. Competition in high dimensional spaces using a sparse approximation of neural fields.

    PubMed

    Quinton, Jean-Charles; Girau, Bernard; Lefort, Mathieu

    2011-01-01

    The Continuum Neural Field Theory implements competition within topologically organized neural networks with lateral inhibitory connections. However, due to the polynomial complexity of matrix-based implementations, updating dense representations of the activity becomes computationally intractable when an adaptive resolution or an arbitrary number of input dimensions is required. This paper proposes an alternative to self-organizing maps with a sparse implementation based on Gaussian mixture models, promoting a trade-off in redundancy for higher computational efficiency and alleviating constraints on the underlying substrate.This version reproduces the emergent attentional properties of the original equations, by directly applying them within a continuous approximation of a high dimensional neural field. The model is compatible with preprocessed sensory flows but can also be interfaced with artificial systems. This is particularly important for sensorimotor systems, where decisions and motor actions must be taken and updated in real-time. Preliminary tests are performed on a reactive color tracking application, using spatially distributed color features.

  4. Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording

    NASA Astrophysics Data System (ADS)

    Black, Christopher; Voigts, Jakob; Agrawal, Uday; Ladow, Max; Santoyo, Juan; Moore, Christopher; Jones, Stephanie

    2017-06-01

    Objective. Electroencephalography (EEG) offers a unique opportunity to study human neural activity non-invasively with millisecond resolution using minimal equipment in or outside of a lab setting. EEG can be combined with a number of techniques for closed-loop experiments, where external devices are driven by specific neural signals. However, reliable, commercially available EEG systems are expensive, often making them impractical for individual use and research development. Moreover, by design, a majority of these systems cannot be easily altered to the specification needed by the end user. We focused on mitigating these issues by implementing open-source tools to develop a new EEG platform to drive down research costs and promote collaboration and innovation. Approach. Here, we present methods to expand the open-source electrophysiology system, Open Ephys (www.openephys.org), to include human EEG recordings. We describe the equipment and protocol necessary to interface various EEG caps with the Open Ephys acquisition board, and detail methods for processing data. We present applications of Open Ephys  +  EEG as a research tool and discuss how this innovative EEG technology lays a framework for improved closed-loop paradigms and novel brain-computer interface experiments. Main results. The Open Ephys  +  EEG system can record reliable human EEG data, as well as human EMG data. A side-by-side comparison of eyes closed 8-14 Hz activity between the Open Ephys  +  EEG system and the Brainvision ActiCHamp EEG system showed similar average power and signal to noise. Significance. Open Ephys  +  EEG enables users to acquire high-quality human EEG data comparable to that of commercially available systems, while maintaining the price point and extensibility inherent to open-source systems.

  5. Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording.

    PubMed

    Black, Christopher; Voigts, Jakob; Agrawal, Uday; Ladow, Max; Santoyo, Juan; Moore, Christopher; Jones, Stephanie

    2017-06-01

    Electroencephalography (EEG) offers a unique opportunity to study human neural activity non-invasively with millisecond resolution using minimal equipment in or outside of a lab setting. EEG can be combined with a number of techniques for closed-loop experiments, where external devices are driven by specific neural signals. However, reliable, commercially available EEG systems are expensive, often making them impractical for individual use and research development. Moreover, by design, a majority of these systems cannot be easily altered to the specification needed by the end user. We focused on mitigating these issues by implementing open-source tools to develop a new EEG platform to drive down research costs and promote collaboration and innovation. Here, we present methods to expand the open-source electrophysiology system, Open Ephys (www.openephys.org), to include human EEG recordings. We describe the equipment and protocol necessary to interface various EEG caps with the Open Ephys acquisition board, and detail methods for processing data. We present applications of Open Ephys  +  EEG as a research tool and discuss how this innovative EEG technology lays a framework for improved closed-loop paradigms and novel brain-computer interface experiments. The Open Ephys  +  EEG system can record reliable human EEG data, as well as human EMG data. A side-by-side comparison of eyes closed 8-14 Hz activity between the Open Ephys  +  EEG system and the Brainvision ActiCHamp EEG system showed similar average power and signal to noise. Open Ephys  +  EEG enables users to acquire high-quality human EEG data comparable to that of commercially available systems, while maintaining the price point and extensibility inherent to open-source systems.

  6. Development of a brain monitoring system for multimodality investigation in awake rats.

    PubMed

    Limnuson, Kanokwan; Narayan, Raj K; Chiluwal, Amrit; Bouton, Chad; Ping Wang; Chunyan Li

    2016-08-01

    Multimodal brain monitoring is an important approach to gain insight into brain function, modulation, and pathology. We have developed a unique micromachined neural probe capable of real-time continuous monitoring of multiple physiological, biochemical and electrophysiological variables. However, to date, it has only been used in anesthetized animals due to a lack of an appropriate interface for awake animals. We have developed a versatile headstage for recording the small neural signal and bridging the sensors to the remote sensing units for multimodal brain monitoring in awake rats. The developed system has been successfully validated in awake rats by simultaneously measuring four cerebral variables: electrocorticography, oxygen tension, temperature and cerebral blood flow. Reliable signal recordings were obtained with minimal artifacts from movement and environmental noise. For the first time, multiple variables of cerebral function and metabolism were simultaneously recorded from awake rats using a single neural probe. The system is envisioned for studying the effects of pharmacologic treatments, mapping the development of central nervous system diseases, and better understanding normal cerebral physiology.

  7. Restoration of neurological functions by neuroprosthetic technologies: future prospects and trends towards micro-, nano-, and biohybrid systems.

    PubMed

    Stieglitz, T

    2007-01-01

    Today applications of neural prostheses that successfully help patients to increase their activities of daily living and participate in social life again are quite simple implants that yield definite tissue response and are well recognized as foreign body. Latest developments in genetic engineering, nanotechnologies and materials sciences have paved the way to new scenarios towards highly complex systems to interface the human nervous system. Combinations of neural cells with microimplants promise stable biohybrid interfaces. Nanotechnology opens the door to macromolecular landscapes on implants that mimic the biologic topology and surface interaction of biologic cells. Computer sciences dream of technical cognitive systems that act and react due to knowledge-based conclusion mechanisms to a changing or adaptive environment. Different sciences start to interact and discuss the synergies when methods and paradigms from biology, computer sciences and engineering, neurosciences, psychology will be combined. They envision the era of "converging technologies" to completely change the understanding of science and postulate a new vision of humans. In this chapter, these research lines will be discussed on some examples as well as the societal implications and ethical questions that arise from these new opportunities.

  8. An integrated neuro-robotic interface for stroke rehabilitation using the NASA X1 powered lower limb exoskeleton.

    PubMed

    He, Yongtian; Nathan, Kevin; Venkatakrishnan, Anusha; Rovekamp, Roger; Beck, Christopher; Ozdemir, Recep; Francisco, Gerard E; Contreras-Vidal, Jose L

    2014-01-01

    Stroke remains a leading cause of disability, limiting independent ambulation in survivors, and consequently affecting quality of life (QOL). Recent technological advances in neural interfacing with robotic rehabilitation devices are promising in the context of gait rehabilitation. Here, the X1, NASA's powered robotic lower limb exoskeleton, is introduced as a potential diagnostic, assistive, and therapeutic tool for stroke rehabilitation. Additionally, the feasibility of decoding lower limb joint kinematics and kinetics during walking with the X1 from scalp electroencephalographic (EEG) signals--the first step towards the development of a brain-machine interface (BMI) system to the X1 exoskeleton--is demonstrated.

  9. Integrating Functional Brain Neuroimaging and Developmental Cognitive Neuroscience in Child Psychiatry Research

    ERIC Educational Resources Information Center

    Pavuluri, Mani N.; Sweeney, John A.

    2008-01-01

    The use of cognitive neuroscience and functional brain neuroimaging to understand brain dysfunction in pediatric psychiatric disorders is discussed. Results show that bipolar youths demonstrate impairment in affective and cognitive neural systems and in these two circuits' interface. Implications for the diagnosis and treatment of psychiatric…

  10. Visual communication interface for severe physically disabled patients

    NASA Astrophysics Data System (ADS)

    Savino, M. J.; Fernández, E. A.

    2007-11-01

    During the last years several interfaces have been developed to allow communication to those patients suffering serious physical disabilities. In this work, a computer based communication interface is presented. It was designed to allow communication to those patients that cannot use neither their hands nor their voice but they can do it through their eyes. The system monitors the eyes movements by means of a webcam. Then, by means of an Artificial Neural Network, the system allows the identification of specified position on the screen through the identification of the eyes positions. This way the user can control a virtual keyboard on a screen that allows him to write and browse the system and enables him to send e-mails, SMS, activate video/music programs and control environmental devices. A patient was simulated to evaluate the versatility of the system. Its operation was satisfactory and it allowed the evaluation of the system potential. The development of this system requires low cost elements that are easily found in the market.

  11. High-density stretchable microelectrode arrays: An integrated technology platform for neural and muscular surface interfacing

    NASA Astrophysics Data System (ADS)

    Guo, Liang

    2011-12-01

    Numerous applications in neuroscience research and neural prosthetics, such as retinal prostheses, spinal-cord surface stimulation for prosthetics, electrocorticogram (ECoG) recording for epilepsy detection, etc., involve electrical interaction with soft excitable tissues using a surface stimulation and/or recording approach. These applications require an interface that is able to set up electrical communications with a high throughput between electronics and the excitable tissue and that can dynamically conform to the shape of the soft tissue. Being a compliant and biocompatible material with mechanical impedance close to that of soft tissues, polydimethylsiloxane (PDMS) offers excellent potential as the substrate material for such neural interfaces. However, fabrication of electrical functionalities on PDMS has long been very challenging. This thesis work has successfully overcome many challenges associated with PDMS-based microfabrication and achieved an integrated technology platform for PDMS-based stretchable microelectrode arrays (sMEAs). This platform features a set of technological advances: (1) we have fabricated uniform current density profile microelectrodes as small as 10 mum in diameter; (2) we have patterned high-resolution (feature as small as 10 mum), high-density (pitch as small as 20 mum) thin-film gold interconnects on PDMS substrate; (3) we have developed a multilayer wiring interconnect technology within the PDMS substrate to further boost the achievable integration density of such sMEA; and (4) we have invented a bonding technology---via-bonding---to facilitate high-resolution, high-density integration of the sMEA with integrated circuits (ICs) to form a compact implant. Taken together, this platform provides a high-resolution, high-density integrated system solution for neural and muscular surface interfacing. sMEAs of example designs are evaluated through in vitro and in vivo experimentations on their biocompatibility, surface conformability, and surface recording/stimulation capabilities, with a focus on epimysial (i.e. on the surface of muscle) applications. Finally, as an example medical application, we investigate a prosthesis for unilateral vocal cord paralysis (UVCP) based on simultaneous multichannel epimysial recording and stimulation.

  12. A CMOS Neural Interface for a Multichannel Vestibular Prosthesis

    PubMed Central

    Hageman, Kristin N.; Kalayjian, Zaven K.; Tejada, Francisco; Chiang, Bryce; Rahman, Mehdi A.; Fridman, Gene Y.; Dai, Chenkai; Pouliquen, Philippe O.; Georgiou, Julio; Della Santina, Charles C.; Andreou, Andreas G.

    2015-01-01

    We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45 ± 0.06 mA with durations as short as 10 µs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68–130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9–16.7°/s for the MVP2 and 2.0–14.2°/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference (t-test, p = 0.034), suggesting that the MVP2A achieves performance at least as good as the larger MVP2. PMID:25974945

  13. Graphene-Based Interfaces Do Not Alter Target Nerve Cells.

    PubMed

    Fabbro, Alessandra; Scaini, Denis; León, Verónica; Vázquez, Ester; Cellot, Giada; Privitera, Giulia; Lombardi, Lucia; Torrisi, Felice; Tomarchio, Flavia; Bonaccorso, Francesco; Bosi, Susanna; Ferrari, Andrea C; Ballerini, Laura; Prato, Maurizio

    2016-01-26

    Neural-interfaces rely on the ability of electrodes to transduce stimuli into electrical patterns delivered to the brain. In addition to sensitivity to the stimuli, stability in the operating conditions and efficient charge transfer to neurons, the electrodes should not alter the physiological properties of the target tissue. Graphene is emerging as a promising material for neuro-interfacing applications, given its outstanding physico-chemical properties. Here, we use graphene-based substrates (GBSs) to interface neuronal growth. We test our GBSs on brain cell cultures by measuring functional and synaptic integrity of the emerging neuronal networks. We show that GBSs are permissive interfaces, even when uncoated by cell adhesion layers, retaining unaltered neuronal signaling properties, thus being suitable for carbon-based neural prosthetic devices.

  14. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system.

    PubMed

    Perge, János A; Homer, Mark L; Malik, Wasim Q; Cash, Sydney; Eskandar, Emad; Friehs, Gerhard; Donoghue, John P; Hochberg, Leigh R

    2013-06-01

    Motor neural interface systems (NIS) aim to convert neural signals into motor prosthetic or assistive device control, allowing people with paralysis to regain movement or control over their immediate environment. Effector or prosthetic control can degrade if the relationship between recorded neural signals and intended motor behavior changes. Therefore, characterizing both biological and technological sources of signal variability is important for a reliable NIS. To address the frequency and causes of neural signal variability in a spike-based NIS, we analyzed within-day fluctuations in spiking activity and action potential amplitude recorded with silicon microelectrode arrays implanted in the motor cortex of three people with tetraplegia (BrainGate pilot clinical trial, IDE). 84% of the recorded units showed a statistically significant change in apparent firing rate (3.8 ± 8.71 Hz or 49% of the mean rate) across several-minute epochs of tasks performed on a single session, and 74% of the units showed a significant change in spike amplitude (3.7 ± 6.5 µV or 5.5% of mean spike amplitude). 40% of the recording sessions showed a significant correlation in the occurrence of amplitude changes across electrodes, suggesting array micro-movement. Despite the relatively frequent amplitude changes, only 15% of the observed within-day rate changes originated from recording artifacts such as spike amplitude change or electrical noise, while 85% of the rate changes most likely emerged from physiological mechanisms. Computer simulations confirmed that systematic rate changes of individual neurons could produce a directional 'bias' in the decoded neural cursor movements. Instability in apparent neuronal spike rates indeed yielded a directional bias in 56% of all performance assessments in participant cursor control (n = 2 participants, 108 and 20 assessments over two years), resulting in suboptimal performance in these sessions. We anticipate that signal acquisition and decoding methods that can adapt to the reported instabilities will further improve the performance of intracortically-based NISs.

  15. A Symbiotic Brain-Machine Interface through Value-Based Decision Making

    PubMed Central

    Mahmoudi, Babak; Sanchez, Justin C.

    2011-01-01

    Background In the development of Brain Machine Interfaces (BMIs), there is a great need to enable users to interact with changing environments during the activities of daily life. It is expected that the number and scope of the learning tasks encountered during interaction with the environment as well as the pattern of brain activity will vary over time. These conditions, in addition to neural reorganization, pose a challenge to decoding neural commands for BMIs. We have developed a new BMI framework in which a computational agent symbiotically decoded users' intended actions by utilizing both motor commands and goal information directly from the brain through a continuous Perception-Action-Reward Cycle (PARC). Methodology The control architecture designed was based on Actor-Critic learning, which is a PARC-based reinforcement learning method. Our neurophysiology studies in rat models suggested that Nucleus Accumbens (NAcc) contained a rich representation of goal information in terms of predicting the probability of earning reward and it could be translated into an evaluative feedback for adaptation of the decoder with high precision. Simulated neural control experiments showed that the system was able to maintain high performance in decoding neural motor commands during novel tasks or in the presence of reorganization in the neural input. We then implanted a dual micro-wire array in the primary motor cortex (M1) and the NAcc of rat brain and implemented a full closed-loop system in which robot actions were decoded from the single unit activity in M1 based on an evaluative feedback that was estimated from NAcc. Conclusions Our results suggest that adapting the BMI decoder with an evaluative feedback that is directly extracted from the brain is a possible solution to the problem of operating BMIs in changing environments with dynamic neural signals. During closed-loop control, the agent was able to solve a reaching task by capturing the action and reward interdependency in the brain. PMID:21423797

  16. TOPICAL REVIEW: Prosthetic interfaces with the visual system: biological issues

    NASA Astrophysics Data System (ADS)

    Cohen, Ethan D.

    2007-06-01

    The design of effective visual prostheses for the blind represents a challenge for biomedical engineers and neuroscientists. Significant progress has been made in the miniaturization and processing power of prosthesis electronics; however development lags in the design and construction of effective machine brain interfaces with visual system neurons. This review summarizes what has been learned about stimulating neurons in the human and primate retina, lateral geniculate nucleus and visual cortex. Each level of the visual system presents unique challenges for neural interface design. Blind patients with the retinal degenerative disease retinitis pigmentosa (RP) are a common population in clinical trials of visual prostheses. The visual performance abilities of normals and RP patients are compared. To generate pattern vision in blind patients, the visual prosthetic interface must effectively stimulate the retinotopically organized neurons in the central visual field to elicit patterned visual percepts. The development of more biologically compatible methods of stimulating visual system neurons is critical to the development of finer spatial percepts. Prosthesis electrode arrays need to adapt to different optimal stimulus locations, stimulus patterns, and patient disease states.

  17. Neural circuitry and immunity

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.

    2015-01-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000

  18. SpineCreator: a Graphical User Interface for the Creation of Layered Neural Models.

    PubMed

    Cope, A J; Richmond, P; James, S S; Gurney, K; Allerton, D J

    2017-01-01

    There is a growing requirement in computational neuroscience for tools that permit collaborative model building, model sharing, combining existing models into a larger system (multi-scale model integration), and are able to simulate models using a variety of simulation engines and hardware platforms. Layered XML model specification formats solve many of these problems, however they are difficult to write and visualise without tools. Here we describe a new graphical software tool, SpineCreator, which facilitates the creation and visualisation of layered models of point spiking neurons or rate coded neurons without requiring the need for programming. We demonstrate the tool through the reproduction and visualisation of published models and show simulation results using code generation interfaced directly into SpineCreator. As a unique application for the graphical creation of neural networks, SpineCreator represents an important step forward for neuronal modelling.

  19. A neural-based remote eye gaze tracker under natural head motion.

    PubMed

    Torricelli, Diego; Conforto, Silvia; Schmid, Maurizio; D'Alessio, Tommaso

    2008-10-01

    A novel approach to view-based eye gaze tracking for human computer interface (HCI) is presented. The proposed method combines different techniques to address the problems of head motion, illumination and usability in the framework of low cost applications. Feature detection and tracking algorithms have been designed to obtain an automatic setup and strengthen the robustness to light conditions. An extensive analysis of neural solutions has been performed to deal with the non-linearity associated with gaze mapping under free-head conditions. No specific hardware, such as infrared illumination or high-resolution cameras, is needed, rather a simple commercial webcam working in visible light spectrum suffices. The system is able to classify the gaze direction of the user over a 15-zone graphical interface, with a success rate of 95% and a global accuracy of around 2 degrees , comparable with the vast majority of existing remote gaze trackers.

  20. Addition of visual noise boosts evoked potential-based brain-computer interface.

    PubMed

    Xie, Jun; Xu, Guanghua; Wang, Jing; Zhang, Sicong; Zhang, Feng; Li, Yeping; Han, Chengcheng; Li, Lili

    2014-05-14

    Although noise has a proven beneficial role in brain functions, there have not been any attempts on the dedication of stochastic resonance effect in neural engineering applications, especially in researches of brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential (SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve better offline and online performance due to enhancement of periodic components in brain responses, which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped resonance-like functionality and 7-36% online performance improvements can be achieved when identical visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these phenomena can be explained as noise-induced input-output synchronization in human sensory systems which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in addressing human needs.

  1. Covalent bonding of YIGSR and RGD to PEDOT/PSS/MWCNT-COOH composite material to improve the neural interface.

    PubMed

    Wang, Kun; Tang, Rong-Yu; Zhao, Xiao-Bo; Li, Jun-Jie; Lang, Yi-Ran; Jiang, Xiao-Xia; Sun, Hong-Ji; Lin, Qiu-Xia; Wang, Chang-Yong

    2015-11-28

    The development of coating materials for neural interfaces has been a pursued to improve the electrical, mechanical and biological performances. For these goals, a bioactive coating was developed in this work featuring a poly(3,4-ethylenedioxythiophene) (PEDOT)/carbon nanotube (CNT) composite and covalently bonded YIGSR and RGD. Its biological effect and electrical characteristics were assessed in vivo on microwire arrays (MWA). The coated electrodes exhibited a significantly higher charge storage capacity (CSC) and lower electrochemical impedance at 1 kHz which are desired to improve the stimulating and recording performances, respectively. Acute neural recording experiments revealed that coated MWA possess a higher signal/noise ratio capturing spikes undetected by uncoated electrodes. Moreover, coated MWA possessed more active sites and single units, and the noise floor of coated electrodes was lower than that of uncoated electrodes. There is little information in the literature concerning the chronic performance of bioactively modified neural interfaces in vivo. Therefore in this work, chronic in vivo tests were conducted and the PEDOT/PSS/MWCNT-polypeptide coated arrays exhibited excellent performances with the highest mean maximal amplitude from day 4 to day 12 during which the acute response severely compromised the performance of the electrodes. In brief, we developed a simple method of covalently bonding YIGSR and RGD to a PEDOT/PSS/MWCNT-COOH composite improving both the biocompatibility and electrical performance of the neural interface. Our findings suggest that YIGSR and RGD modified PEDOT/PSS/MWCNT is a promising bioactivated composite coating for neural recording and stimulating.

  2. Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware.

    PubMed

    Rast, Alexander; Galluppi, Francesco; Davies, Sergio; Plana, Luis; Patterson, Cameron; Sharp, Thomas; Lester, David; Furber, Steve

    2011-11-01

    Dedicated hardware is becoming increasingly essential to simulate emerging very-large-scale neural models. Equally, however, it needs to be able to support multiple models of the neural dynamics, possibly operating simultaneously within the same system. This may be necessary either to simulate large models with heterogeneous neural types, or to simplify simulation and analysis of detailed, complex models in a large simulation by isolating the new model to a small subpopulation of a larger overall network. The SpiNNaker neuromimetic chip is a dedicated neural processor able to support such heterogeneous simulations. Implementing these models on-chip uses an integrated library-based tool chain incorporating the emerging PyNN interface that allows a modeller to input a high-level description and use an automated process to generate an on-chip simulation. Simulations using both LIF and Izhikevich models demonstrate the ability of the SpiNNaker system to generate and simulate heterogeneous networks on-chip, while illustrating, through the network-scale effects of wavefront synchronisation and burst gating, methods that can provide effective behavioural abstractions for large-scale hardware modelling. SpiNNaker's asynchronous virtual architecture permits greater scope for model exploration, with scalable levels of functional and temporal abstraction, than conventional (or neuromorphic) computing platforms. The complete system illustrates a potential path to understanding the neural model of computation, by building (and breaking) neural models at various scales, connecting the blocks, then comparing them against the biology: computational cognitive neuroscience. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo

    NASA Astrophysics Data System (ADS)

    FitzGerald, James J.; Lago, Natalia; Benmerah, Samia; Serra, Jordi; Watling, Christopher P.; Cameron, Ruth E.; Tarte, Edward; Lacour, Stéphanie P.; McMahon, Stephen B.; Fawcett, James W.

    2012-02-01

    Neural interfaces are implanted devices that couple the nervous system to electronic circuitry. They are intended for long term use to control assistive technologies such as muscle stimulators or prosthetics that compensate for loss of function due to injury. Here we present a novel design of interface for peripheral nerves. Recording from axons is complicated by the small size of extracellular potentials and the concentration of current flow at nodes of Ranvier. Confining axons to microchannels of ˜100 µm diameter produces amplified potentials that are independent of node position. After implantation of microchannel arrays into rat sciatic nerve, axons regenerated through the channels forming ‘mini-fascicles’, each typically containing ˜100 myelinated fibres and one or more blood vessels. Regenerated motor axons reconnected to distal muscles, as demonstrated by the recovery of an electromyogram and partial prevention of muscle atrophy. Efferent motor potentials and afferent signals evoked by muscle stretch or cutaneous stimulation were easily recorded from the mini-fascicles and were in the range of 35-170 µV. Individual motor units in distal musculature were activated from channels using stimulus currents in the microampere range. Microchannel interfaces are a potential solution for applications such as prosthetic limb control or enhancing recovery after nerve injury.

  4. An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    DTIC Science & Technology

    2007-03-01

    Intelligence AIS Artificial Immune System ANN Artificial Neural Networks API Application Programming Interface BFS Breadth-First Search BIS Biological...problem domain is too large for only one algorithm’s application . It ranges from network - based sniffer systems, responsible for Enterprise-wide coverage...options to network administrators in choosing detectors to employ in future ID applications . Objectives Our hypothesis validity is based on a set

  5. [Neural prostheses and neuromodulation : Research and clinical practice in therapy and rehabilitation].

    PubMed

    Stieglitz, T

    2010-08-01

    Stimulation of the nervous system with the aid of electrical active implants has changed the therapy of neurological diseases and rehabilitation of lost functions and has expanded clinical practice within the last few years. Alleviation of effects of neurodegenerative diseases, therapy of psychiatric diseases, the functional restoration of hearing as well as other applications have been transferred successfully into clinical practice. Other approaches are still under development in preclinical and clinical trials. The restoration of sight by implantable electronic systems that interface with the retina in the eye is an example how technological progress promotes novel medical devices. The idea of using the electrical signal of the brain to control technical devices and (neural) prostheses is driving current research in the field of brain-computer interfaces. The benefit for the patient always has to be balanced with the risks and side effects of those implants in comparison to medicinal and surgical treatments. How these and other developments become established in practice depends finally on their acceptance by the patients and the reimbursement of their costs.

  6. Time-recovering PCI-AER interface for bio-inspired spiking systems

    NASA Astrophysics Data System (ADS)

    Paz-Vicente, R.; Linares-Barranco, A.; Cascado, D.; Vicente, S.; Jimenez, G.; Civit, A.

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. When building multi-chip muti-layered AER systems it is absolutely necessary to have a computer interface that allows (a) to read AER interchip traffic into the computer and visualize it on screen, and (b) inject a sequence of events at some point of the AER structure. This is necessary for testing and debugging complex AER systems. This paper presents a PCI to AER interface, that dispatches a sequence of events received from the PCI bus with embedded timing information to establish when each event will be delivered. A set of specialized states machines has been introduced to recovery the possible time delays introduced by the asynchronous AER bus. On the input channel, the interface capture events assigning a timestamp and delivers them through the PCI bus to MATLAB applications. It has been implemented in real time hardware using VHDL and it has been tested in a PCI-AER board, developed by authors, that includes a Spartan II 200 FPGA. The demonstration hardware is currently capable to send and receive events at a peak rate of 8,3 Mev/sec, and a typical rate of 1 Mev/sec.

  7. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces.

    PubMed

    Benyamini, Miri; Zacksenhouse, Miriam

    2015-01-01

    Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal.

  8. Optimal feedback control successfully explains changes in neural modulations during experiments with brain-machine interfaces

    PubMed Central

    Benyamini, Miri; Zacksenhouse, Miriam

    2015-01-01

    Recent experiments with brain-machine-interfaces (BMIs) indicate that the extent of neural modulations increased abruptly upon starting to operate the interface, and especially after the monkey stopped moving its hand. In contrast, neural modulations that are correlated with the kinematics of the movement remained relatively unchanged. Here we demonstrate that similar changes are produced by simulated neurons that encode the relevant signals generated by an optimal feedback controller during simulated BMI experiments. The optimal feedback controller relies on state estimation that integrates both visual and proprioceptive feedback with prior estimations from an internal model. The processing required for optimal state estimation and control were conducted in the state-space, and neural recording was simulated by modeling two populations of neurons that encode either only the estimated state or also the control signal. Spike counts were generated as realizations of doubly stochastic Poisson processes with linear tuning curves. The model successfully reconstructs the main features of the kinematics and neural activity during regular reaching movements. Most importantly, the activity of the simulated neurons successfully reproduces the observed changes in neural modulations upon switching to brain control. Further theoretical analysis and simulations indicate that increasing the process noise during normal reaching movement results in similar changes in neural modulations. Thus, we conclude that the observed changes in neural modulations during BMI experiments can be attributed to increasing process noise associated with the imperfect BMI filter, and, more directly, to the resulting increase in the variance of the encoded signals associated with state estimation and the required control signal. PMID:26042002

  9. Control of Prosthetic Hands via the Peripheral Nervous System

    PubMed Central

    Ciancio, Anna Lisa; Cordella, Francesca; Barone, Roberto; Romeo, Rocco Antonio; Bellingegni, Alberto Dellacasa; Sacchetti, Rinaldo; Davalli, Angelo; Di Pino, Giovanni; Ranieri, Federico; Di Lazzaro, Vincenzo; Guglielmelli, Eugenio; Zollo, Loredana

    2016-01-01

    This paper intends to provide a critical review of the literature on the technological issues on control and sensorization of hand prostheses interfacing with the Peripheral Nervous System (i.e., PNS), and their experimental validation on amputees. The study opens with an in-depth analysis of control solutions and sensorization features of research and commercially available prosthetic hands. Pros and cons of adopted technologies, signal processing techniques and motion control solutions are investigated. Special emphasis is then dedicated to the recent studies on the restoration of tactile perception in amputees through neural interfaces. The paper finally proposes a number of suggestions for designing the prosthetic system able to re-establish a bidirectional communication with the PNS and foster the prosthesis natural control. PMID:27092041

  10. Functional and Histological Effects of Chronic Neural Electrode Implantation.

    PubMed

    Sahyouni, Ronald; Chang, David T; Moshtaghi, Omid; Mahmoodi, Amin; Djalilian, Hamid R; Lin, Harrison W

    2017-04-01

    Permanent injury to the cranial nerves can often result in a substantial reduction in quality of life. Novel and innovative interventions can help restore form and function in nerve paralysis, with bioelectric interfaces among the more promising of these approaches. The foreign body response is an important consideration for any bioelectric device as it influences the function and effectiveness of the implant. The purpose of this review is to describe tissue and functional effects of chronic neural implantation among the different categories of neural implants and highlight advances in peripheral and cranial nerve stimulation. Data Sources : PubMed, IEEE, and Web of Science literature search. Review Methods : A review of the current literature was conducted to examine functional and histologic effects of bioelectric interfaces for neural implants. Bioelectric devices can be characterized as intraneural, epineural, perineural, intranuclear, or cortical depending on their placement relative to nerves and neuronal cell bodies. Such devices include nerve-specific stimulators, neuroprosthetics, brainstem implants, and deep brain stimulators. Regardless of electrode location and interface type, acute and chronic histological, macroscopic and functional changes can occur as a result of both passive and active tissue responses to the bioelectric implant. A variety of chronically implantable electrodes have been developed to treat disorders of the peripheral and cranial nerves, to varying degrees of efficacy. Consideration and mitigation of detrimental effects at the neural interface with further optimization of functional nerve stimulation will facilitate the development of these technologies and translation to the clinic. 3.

  11. Unlocking the brain's mysteries: Meet the bioengineers behind next-generation neural devices

    ScienceCinema

    Pannu, Sat; Shah, Kedar; Tolosa, Vanessa; Tooker, Angela

    2018-01-16

    Bioengineers in the Neural Technologies Group at Lawrence Livermore are creating the next generation of clinical- and research-quality neural interfaces. The goal is to gain a fundamental understanding of neuroscience, treat a variety of debilitating neurological disorders (such as Parkinson's, depression, and epilepsy), and restore lost neural functions such as sight, hearing, and mobility.

  12. Unlocking the brain's mysteries: Meet the bioengineers behind next-generation neural devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannu, Sat; Shah, Kedar; Tolosa, Vanessa

    Bioengineers in the Neural Technologies Group at Lawrence Livermore are creating the next generation of clinical- and research-quality neural interfaces. The goal is to gain a fundamental understanding of neuroscience, treat a variety of debilitating neurological disorders (such as Parkinson's, depression, and epilepsy), and restore lost neural functions such as sight, hearing, and mobility.

  13. Control Strategies for the DAB Based PV Interface System

    PubMed Central

    El-Helw, Hadi M.; Al-Hasheem, Mohamed; Marei, Mostafa I.

    2016-01-01

    This paper presents an interface system based on the Dual Active Bridge (DAB) converter for Photovoltaic (PV) arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN) to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system. PMID:27560138

  14. Engineering platform and experimental protocol for design and evaluation of a neurally-controlled powered transfemoral prosthesis.

    PubMed

    Zhang, Fan; Liu, Ming; Harper, Stephen; Lee, Michael; Huang, He

    2014-07-22

    To enable intuitive operation of powered artificial legs, an interface between user and prosthesis that can recognize the user's movement intent is desired. A novel neural-machine interface (NMI) based on neuromuscular-mechanical fusion developed in our previous study has demonstrated a great potential to accurately identify the intended movement of transfemoral amputees. However, this interface has not yet been integrated with a powered prosthetic leg for true neural control. This study aimed to report (1) a flexible platform to implement and optimize neural control of powered lower limb prosthesis and (2) an experimental setup and protocol to evaluate neural prosthesis control on patients with lower limb amputations. First a platform based on a PC and a visual programming environment were developed to implement the prosthesis control algorithms, including NMI training algorithm, NMI online testing algorithm, and intrinsic control algorithm. To demonstrate the function of this platform, in this study the NMI based on neuromuscular-mechanical fusion was hierarchically integrated with intrinsic control of a prototypical transfemoral prosthesis. One patient with a unilateral transfemoral amputation was recruited to evaluate our implemented neural controller when performing activities, such as standing, level-ground walking, ramp ascent, and ramp descent continuously in the laboratory. A novel experimental setup and protocol were developed in order to test the new prosthesis control safely and efficiently. The presented proof-of-concept platform and experimental setup and protocol could aid the future development and application of neurally-controlled powered artificial legs.

  15. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface

    NASA Astrophysics Data System (ADS)

    Michelson, Nicholas J.; Vazquez, Alberto L.; Eles, James R.; Salatino, Joseph W.; Purcell, Erin K.; Williams, Jordan J.; Cui, X. Tracy; Kozai, Takashi D. Y.

    2018-06-01

    Objective. Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations. This can greatly impact the interpretations of results pertaining to device performance and tissue health surrounding the implant. Approach. In this work, electrophysiological activity and immunohistological analysis are compared after controlling for motion artifacts, quiescent neuronal activity, and material failure of devices in order to better understand the relationship between histology and electrophysiological outcomes. Main results. Even after carefully accounting for these factors, the presence of viable neurons and lack of glial scarring does not convey single unit recording performance. Significance. To better understand the biological factors influencing neural activity, detailed cellular and molecular tissue responses were examined. Decreases in neural activity and blood oxygenation in the tissue surrounding the implant, shift in expression levels of vesicular transporter proteins and ion channels, axon and myelin injury, and interrupted blood flow in nearby capillaries can impact neural activity around implanted neural interfaces. Combined, these tissue changes highlight the need for more comprehensive, basic science research to elucidate the relationship between biology and chronic electrophysiology performance in order to advance neural technologies.

  16. Advanced integrated enhanced vision systems

    NASA Astrophysics Data System (ADS)

    Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha

    2003-09-01

    In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.

  17. A Wireless Implantable Switched-Capacitor Based Optogenetic Stimulating System

    PubMed Central

    Lee, Hyung-Min; Kwon, Ki-Yong; Li, Wen

    2015-01-01

    This paper presents a power-efficient implantable optogenetic interface using a wireless switched-capacitor based stimulating (SCS) system. The SCS efficiently charges storage capacitors directly from an inductive link and periodically discharges them into an array of micro-LEDs, providing high instantaneous power without affecting wireless link and system supply voltage. A custom-designed computer interface in LabVIEW environment wirelessly controls stimulation parameters through the inductive link, and an optrode array enables simultaneous neural recording along with optical stimulation. The 4-channel SCS system prototype has been implemented in a 0.35-μm CMOS process and combined with the optrode array. In vivo experiments involving light-induced local field potentials verified the efficacy of the SCS system. An implantable version of the SCS system with flexible hermetic sealing is under development for chronic experiments. PMID:25570099

  18. A neural network ActiveX based integrated image processing environment.

    PubMed

    Ciuca, I; Jitaru, E; Alaicescu, M; Moisil, I

    2000-01-01

    The paper outlines an integrated image processing environment that uses neural networks ActiveX technology for object recognition and classification. The image processing environment which is Windows based, encapsulates a Multiple-Document Interface (MDI) and is menu driven. Object (shape) parameter extraction is focused on features that are invariant in terms of translation, rotation and scale transformations. The neural network models that can be incorporated as ActiveX components into the environment allow both clustering and classification of objects from the analysed image. Mapping neural networks perform an input sensitivity analysis on the extracted feature measurements and thus facilitate the removal of irrelevant features and improvements in the degree of generalisation. The program has been used to evaluate the dimensions of the hydrocephalus in a study for calculating the Evans index and the angle of the frontal horns of the ventricular system modifications.

  19. Glove-talk II - a neural-network interface which maps gestures to parallel formant speech synthesizer controls.

    PubMed

    Fels, S S; Hinton, G E

    1997-01-01

    Glove-Talk II is a system which translates hand gestures to speech through an adaptive interface. Hand gestures are mapped continuously to ten control parameters of a parallel formant speech synthesizer. The mapping allows the hand to act as an artificial vocal tract that produces speech in real time. This gives an unlimited vocabulary in addition to direct control of fundamental frequency and volume. Currently, the best version of Glove-Talk II uses several input devices, a parallel formant speech synthesizer, and three neural networks. The gesture-to-speech task is divided into vowel and consonant production by using a gating network to weight the outputs of a vowel and a consonant neural network. The gating network and the consonant network are trained with examples from the user. The vowel network implements a fixed user-defined relationship between hand position and vowel sound and does not require any training examples from the user. Volume, fundamental frequency, and stop consonants are produced with a fixed mapping from the input devices. With Glove-Talk II, the subject can speak slowly but with far more natural sounding pitch variations than a text-to-speech synthesizer.

  20. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.

    PubMed

    Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong

    2018-01-01

    The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.

  1. Flexible neural interfaces with integrated stiffening shank

    DOEpatents

    Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa

    2016-07-26

    A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.

  2. Vacuum-actuated percutaneous insertion/implantation tool for flexible neural probes and interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheth, Heeral; Bennett, William J.; Pannu, Satinderpall S.

    A flexible device insertion tool including an elongated stiffener with one or more suction ports, and a vacuum connector for interfacing the stiffener to a vacuum source, for attaching the flexible device such as a flexible neural probe to the stiffener during insertion by a suction force exerted through the suction ports to, and to release the flexible device by removing the suction force.

  3. Interfacing with Neural Activity via Femtosecond Laser Stimulation of Drug-Encapsulating Liposomal Nanostructures

    PubMed Central

    Mackay, Sean M.; Wui Tan, Eng

    2016-01-01

    External control over rapid and precise release of chemicals in the brain potentially provides a powerful interface with neural activity. Optical manipulation techniques, such as optogenetics and caged compounds, enable remote control of neural activity and behavior with fine spatiotemporal resolution. However, these methods are limited to chemicals that are naturally present in the brain or chemically suitable for caging. Here, we demonstrate the ability to interface with neural functioning via a wide range of neurochemicals released by stimulating loaded liposomal nanostructures with femtosecond lasers. Using a commercial two-photon microscope, we released inhibitory or excitatory neurochemicals to evoke subthreshold and suprathreshold changes in membrane potential in a live mouse brain slice. The responses were repeatable and could be controlled by adjusting laser stimulation characteristics. We also demonstrate the release of a wider range of chemicals—which previously were impossible to release by optogenetics or uncaging—including synthetic analogs of naturally occurring neurochemicals. In particular, we demonstrate the release of a synthetic receptor-specific agonist that exerts physiological effects on long-term synaptic plasticity. Further, we show that the loaded liposomal nanostructures remain functional for weeks in a live mouse. In conclusion, we demonstrate new techniques capable of interfacing with live neurons, and extendable to in vivo applications. PMID:27896311

  4. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2013-09-01

    implemented to significantly decrease the IIR system response time, especially when artifacts were highly reproducible in consecutive stimulation...cycles. The proposed system architecture was hardware- implemented on a field- programmable gate array (FPGA) and tested using two sets of prerecorded...its FPGA implementation and testing with prerecorded neural datasets are reported in a manuscript currently in press with the IEEE Transactions on

  5. Encapsulating Elastically Stretchable Neural Interfaces: Yield, Resolution, and Recording/Stimulation of Neural Activity

    PubMed Central

    Morrison, Barclay; Goletiani, Cezar; Yu, Zhe; Wagner, Sigurd

    2013-01-01

    A high resolution elastically stretchable microelectrode array (SMEA) to interface with neural tissue is described. The SMEA consists of an elastomeric substrate, such as poly(dimethylsiloxane) (PDMS), elastically stretchable gold conductors, and an electrically insulating encapsulating layer in which contact holes are opened. We demonstrate the feasibility of producing contact holes with 40 µm × 40 µm openings, show why the adhesion of the encapsulation layer to the underlying silicone substrate is weakened during contact hole fabrication, and provide remedies. These improvements result in greatly increased fabrication yield and reproducibility. An SMEA with 28 microelectrodes was fabricated. The contact holes (100 µm × 100 µm) in the encapsulation layer are only ~10% the size of the previous generation, allowing a larger number of microelectrodes per unit area, thus affording the capability to interface with a smaller neural population per electrode. This new SMEA is used to record spontaneous and evoked activity in organotypic hippocampal tissue slices at 0% strain before stretching, at 5 % and 10 % equibiaxial strain, and again at 0% strain after relaxation. The noise of the recordings increases with increasing strain. The frequency of spontaneous neural activity also increases when the SMEA is stretched. Upon relaxation, the noise returns to pre-stretch levels, while the frequency of neural activity remains elevated. Stimulus-response curves at each strain level are measured. The SMEA shows excellent biocompatibility for at least two weeks. PMID:24093006

  6. Navigating the Neural Space in Search of the Neural Code.

    PubMed

    Jazayeri, Mehrdad; Afraz, Arash

    2017-03-08

    The advent of powerful perturbation tools, such as optogenetics, has created new frontiers for probing causal dependencies in neural and behavioral states. These approaches have significantly enhanced the ability to characterize the contribution of different cells and circuits to neural function in health and disease. They have shifted the emphasis of research toward causal interrogations and increased the demand for more precise and powerful tools to control and manipulate neural activity. Here, we clarify the conditions under which measurements and perturbations support causal inferences. We note that the brain functions at multiple scales and that causal dependencies may be best inferred with perturbation tools that interface with the system at the appropriate scale. Finally, we develop a geometric framework to facilitate the interpretation of causal experiments when brain perturbations do or do not respect the intrinsic patterns of brain activity. We describe the challenges and opportunities of applying perturbations in the presence of dynamics, and we close with a general perspective on navigating the activity space of neurons in the search for neural codes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions.

    PubMed

    Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V

    2017-07-05

    Neural circuits must transform new inputs into outputs without prematurely affecting downstream circuits while still maintaining other ongoing communication with these targets. We investigated how this isolation is achieved in the motor cortex when macaques received visual feedback signaling a movement perturbation. To overcome limitations in estimating the mapping from cortex to arm movements, we also conducted brain-machine interface (BMI) experiments where we could definitively identify neural firing patterns as output-null or output-potent. This revealed that perturbation-evoked responses were initially restricted to output-null patterns that cancelled out at the neural population code readout and only later entered output-potent neural dimensions. This mechanism was facilitated by the circuit's large null space and its ability to strongly modulate output-potent dimensions when generating corrective movements. These results show that the nervous system can temporarily isolate portions of a circuit's activity from its downstream targets by restricting this activity to the circuit's output-null neural dimensions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A closed-loop compressive-sensing-based neural recording system.

    PubMed

    Zhang, Jie; Mitra, Srinjoy; Suo, Yuanming; Cheng, Andrew; Xiong, Tao; Michon, Frederic; Welkenhuysen, Marleen; Kloosterman, Fabian; Chin, Peter S; Hsiao, Steven; Tran, Trac D; Yazicioglu, Firat; Etienne-Cummings, Ralph

    2015-06-01

    This paper describes a low power closed-loop compressive sensing (CS) based neural recording system. This system provides an efficient method to reduce data transmission bandwidth for implantable neural recording devices. By doing so, this technique reduces a majority of system power consumption which is dissipated at data readout interface. The design of the system is scalable and is a viable option for large scale integration of electrodes or recording sites onto a single device. The entire system consists of an application-specific integrated circuit (ASIC) with 4 recording readout channels with CS circuits, a real time off-chip CS recovery block and a recovery quality evaluation block that provides a closed feedback to adaptively adjust compression rate. Since CS performance is strongly signal dependent, the ASIC has been tested in vivo and with standard public neural databases. Implemented using efficient digital circuit, this system is able to achieve >10 times data compression on the entire neural spike band (500-6KHz) while consuming only 0.83uW (0.53 V voltage supply) additional digital power per electrode. When only the spikes are desired, the system is able to further compress the detected spikes by around 16 times. Unlike other similar systems, the characteristic spikes and inter-spike data can both be recovered which guarantes a >95% spike classification success rate. The compression circuit occupied 0.11mm(2)/electrode in a 180nm CMOS process. The complete signal processing circuit consumes <16uW/electrode. Power and area efficiency demonstrated by the system make it an ideal candidate for integration into large recording arrays containing thousands of electrode. Closed-loop recording and reconstruction performance evaluation further improves the robustness of the compression method, thus making the system more practical for long term recording.

  9. Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze

    PubMed Central

    Kent, Brendon W.; Yang, Fang-Chi; Burwell, Rebecca D.

    2014-01-01

    Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes. PMID:24638057

  10. A wideband wireless neural stimulation platform for high-density microelectrode arrays.

    PubMed

    Myers, Frank B; Simpson, Jim A; Ghovanloo, Maysam

    2006-01-01

    We describe a system that allows researchers to control an implantable neural microstimulator from a PC via a USB 2.0 interface and a novel dual-carrier wireless link, which provides separate data and power transmission. Our wireless stimulator, Interestim-2B (IS-2B), is a modular device capable of generating controlled-current stimulation pulse trains across 32 sites per module with support for a variety of stimulation schemes (biphasic/monophasic, bipolar/monopolar). We have developed software to generate multi-site stimulation commands for the IS-2B based on streaming data from artificial sensory devices such as cameras and microphones. For PC interfacing, we have developed a USB 2.0 microcontroller-based interface. Data is transmitted using frequency-shift keying (FSK) at 6/12 MHz to achieve a data rate of 3 Mb/s via a pair of rectangular coils. Power is generated using a class-E power amplifier operating at 1 MHz and transmitted via a separate pair of spiral planar coils which are oriented perpendicular to the data coils to minimize cross-coupling. We have successfully demonstrated the operation of the system by applying it as a visual prosthesis. Pulse-frequency modulated stimuli are generated in real-time based on a grayscale image from a webcam. These pulses are projected onto an 11x11 LED matrix that represents a 2D microelectrode array.

  11. [Neural engineering and neural prostheses].

    PubMed

    Gao, Shang-Kai; Zhang, Zhi-Guang; Gao, Xiao-Rong; Hong, Bo; Yang, Fu-Sheng

    2006-03-01

    The motivation of the brain-computer interface (BCI) research and its potential applications are introduced in this paper. Some of the problems in BCI-based medical device developments are also discussed.

  12. Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications.

    PubMed

    Vallejo-Giraldo, Catalina; Pugliese, Eugenia; Larrañaga, Aitor; Fernandez-Yague, Marc A; Britton, James J; Trotier, Alexandre; Tadayyon, Ghazal; Kelly, Adriona; Rago, Ilaria; Sarasua, Jose-Ramon; Dowd, Eilís; Quinlan, Leo R; Pandit, Abhay; Biggs, Manus Jp

    2016-10-01

    Medium chain length-polyhydroxyalkanoate/multi-walled carbon nanotube (MWCNTs) nanocomposites with a range of mechanical and electrochemical properties were fabricated via assisted dispersion and solvent casting, and their suitability as neural interface biomaterials was investigated. Mechanical and electrical properties of medium chain length-polyhydroxyalkanoate/MWCNTs nanocomposite films were evaluated by tensile test and electrical impedance spectroscopy, respectively. Primary rat mesencephalic cells were seeded on the composites and quantitative immunostaining of relevant neural biomarkers, and electrical stimulation studies were performed. Incorporation of MWCNTs to the polymeric matrix modulated the mechanical and electrical properties of resulting composites, and promoted differential cell viability, morphology and function as a function of MWCNT concentration. This study demonstrates the feasibility of a green thermoplastic MWCNTs nanocomposite for potential use in neural interfacing applications.

  13. Advances in neuroprosthetic learning and control.

    PubMed

    Carmena, Jose M

    2013-01-01

    Significant progress has occurred in the field of brain-machine interfaces (BMI) since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic technologies, existing neural interfaces cannot as yet master the control of prosthetic, paralyzed, or otherwise disabled limbs. Here I briefly discuss recent advances from our laboratory into the neural basis of BMIs that should lead to better prosthetic control and clinically viable solutions, as well as new insights into the neurobiology of action.

  14. Advances in Neuroprosthetic Learning and Control

    PubMed Central

    Carmena, Jose M.

    2013-01-01

    Significant progress has occurred in the field of brain–machine interfaces (BMI) since the first demonstrations with rodents, monkeys, and humans controlling different prosthetic devices directly with neural activity. This technology holds great potential to aid large numbers of people with neurological disorders. However, despite this initial enthusiasm and the plethora of available robotic technologies, existing neural interfaces cannot as yet master the control of prosthetic, paralyzed, or otherwise disabled limbs. Here I briefly discuss recent advances from our laboratory into the neural basis of BMIs that should lead to better prosthetic control and clinically viable solutions, as well as new insights into the neurobiology of action. PMID:23700383

  15. Flexible Organic Electronics for Use in Neural Sensing

    PubMed Central

    Bink, Hank; Lai, Yuming; Saudari, Sangameshwar R.; Helfer, Brian; Viventi, Jonathan; Van der Spiegel, Jan; Litt, Brian; Kagan, Cherie

    2016-01-01

    Recent research in brain-machine interfaces and devices to treat neurological disease indicate that important network activity exists at temporal and spatial scales beyond the resolution of existing implantable devices. High density, active electrode arrays hold great promise in enabling high-resolution interface with the brain to access and influence this network activity. Integrating flexible electronic devices directly at the neural interface can enable thousands of multiplexed electrodes to be connected using many fewer wires. Active electrode arrays have been demonstrated using flexible, inorganic silicon transistors. However, these approaches may be limited in their ability to be cost-effectively scaled to large array sizes (8×8 cm). Here we show amplifiers built using flexible organic transistors with sufficient performance for neural signal recording. We also demonstrate a pathway for a fully integrated, amplified and multiplexed electrode array built from these devices. PMID:22255558

  16. Open Platform for Limit Protection with Carefree Maneuver Applications

    NASA Technical Reports Server (NTRS)

    Jeram, Geoffrey J.

    2004-01-01

    This Open Platform for Limit Protection guides the open design of maneuver limit protection systems in general, and manned, rotorcraft, aerospace applications in particular. The platform uses three stages of limit protection modules: limit cue creation, limit cue arbitration, and control system interface. A common set of limit cue modules provides commands that can include constraints, alerts, transfer functions, and friction. An arbitration module selects the "best" limit protection cues and distributes them to the most appropriate control path interface. This platform adopts a holistic approach to limit protection whereby it considers all potential interface points, including the pilot's visual, aural, and tactile displays; and automatic command restraint shaping for autonomous limit protection. For each functional module, this thesis guides the control system designer through the design choices and information interfaces among the modules. Limit cue module design choices include type of prediction, prediction mechanism, method of critical control calculation, and type of limit cue. Special consideration is given to the nature of the limit, particularly the level of knowledge about it, and the ramifications for limit protection design, especially with respect to intelligent control methods such as fuzzy inference systems and neural networks.

  17. Modeling the Electrode-Neuron Interface of Cochlear Implants: Effects of Neural Survival, Electrode Placement, and the Partial Tripolar Configuration

    PubMed Central

    Goldwyn, Joshua H.; Bierer, Steven M.; Bierer, Julie A.

    2010-01-01

    The partial tripolar electrode configuration is a relatively novel stimulation strategies that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. PMID:20580801

  18. State-Dependent Decoding Algorithms Improve the Performance of a Bidirectional BMI in Anesthetized Rats.

    PubMed

    De Feo, Vito; Boi, Fabio; Safaai, Houman; Onken, Arno; Panzeri, Stefano; Vato, Alessandro

    2017-01-01

    Brain-machine interfaces (BMIs) promise to improve the quality of life of patients suffering from sensory and motor disabilities by creating a direct communication channel between the brain and the external world. Yet, their performance is currently limited by the relatively small amount of information that can be decoded from neural activity recorded form the brain. We have recently proposed that such decoding performance may be improved when using state-dependent decoding algorithms that predict and discount the large component of the trial-to-trial variability of neural activity which is due to the dependence of neural responses on the network's current internal state. Here we tested this idea by using a bidirectional BMI to investigate the gain in performance arising from using a state-dependent decoding algorithm. This BMI, implemented in anesthetized rats, controlled the movement of a dynamical system using neural activity decoded from motor cortex and fed back to the brain the dynamical system's position by electrically microstimulating somatosensory cortex. We found that using state-dependent algorithms that tracked the dynamics of ongoing activity led to an increase in the amount of information extracted form neural activity by 22%, with a consequently increase in all of the indices measuring the BMI's performance in controlling the dynamical system. This suggests that state-dependent decoding algorithms may be used to enhance BMIs at moderate computational cost.

  19. Using synthetic biology to interface with physical micro and nano-sized sensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hanson, Russell; Fuller, Jason; Cheng, Andrew

    2017-05-01

    This talk will discuss the current goals and efforts of point of care and personal health monitoring systems: what they can do now and what is in the works. These interfaces can be used in a precision medicine context—making diagnoses and getting the right drugs to the right patients at the right time. Many of the same sensors and engineering are being prototyped now for neural interfaces and recording devices with applications in visual, auditory, and motor cortex, allowing basic research along with preliminary applications in actuation and sensing. While miniaturization and electronics development using established manufacturing protocols can provide the current engineering foundations, novel biochemical ligands and molecular detectors can provide the needed flexibility for next-generation devices.

  20. A primer on brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration.

    PubMed

    Lee, Brian; Liu, Charles Y; Apuzzo, Michael L J

    2013-01-01

    Conventionally, the practice of neurosurgery has been characterized by the removal of pathology, congenital or acquired. The emerging complement to the removal of pathology is surgery for the specific purpose of restoration of function. Advents in neuroscience, technology, and the understanding of neural circuitry are creating opportunities to intervene in disease processes in a reparative manner, thereby advancing toward the long-sought-after concept of neurorestoration. Approaching the issue of neurorestoration from a biomedical engineering perspective is the rapidly growing arena of implantable devices. Implantable devices are becoming more common in medicine and are making significant advancements to improve a patient's functional outcome. Devices such as deep brain stimulators, vagus nerve stimulators, and spinal cord stimulators are now becoming more commonplace in neurosurgery as we utilize our understanding of the nervous system to interpret neural activity and restore function. One of the most exciting prospects in neurosurgery is the technologically driven field of brain-machine interface, also known as brain-computer interface, or neuroprosthetics. The successful development of this technology will have far-reaching implications for patients suffering from a great number of diseases, including but not limited to spinal cord injury, paralysis, stroke, or loss of limb. This article provides an overview of the issues related to neurorestoration using implantable devices with a specific focus on brain-machine interface technology. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. The software application and classification algorithms for welds radiograms analysis

    NASA Astrophysics Data System (ADS)

    Sikora, R.; Chady, T.; Baniukiewicz, P.; Grzywacz, B.; Lopato, P.; Misztal, L.; Napierała, L.; Piekarczyk, B.; Pietrusewicz, T.; Psuj, G.

    2013-01-01

    The paper presents a software implementation of an Intelligent System for Radiogram Analysis (ISAR). The system has to support radiologists in welds quality inspection. The image processing part of software with a graphical user interface and a welds classification part are described with selected classification results. Classification was based on a few algorithms: an artificial neural network, a k-means clustering, a simplified k-means and a rough sets theory.

  2. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates

    NASA Astrophysics Data System (ADS)

    Malaga, Karlo A.; Schroeder, Karen E.; Patel, Paras R.; Irwin, Zachary T.; Thompson, David E.; Bentley, J. Nicole; Lempka, Scott F.; Chestek, Cynthia A.; Patil, Parag G.

    2016-02-01

    Objective. We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. Approach. A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. Main results. From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. Significance. This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the recording site-tissue interface rather than elimination of the glial scar.

  3. Expert systems and advanced automation for space missions operations

    NASA Technical Reports Server (NTRS)

    Durrani, Sajjad H.; Perkins, Dorothy C.; Carlton, P. Douglas

    1990-01-01

    Increased complexity of space missions during the 1980s led to the introduction of expert systems and advanced automation techniques in mission operations. This paper describes several technologies in operational use or under development at the National Aeronautics and Space Administration's Goddard Space Flight Center. Several expert systems are described that diagnose faults, analyze spacecraft operations and onboard subsystem performance (in conjunction with neural networks), and perform data quality and data accounting functions. The design of customized user interfaces is discussed, with examples of their application to space missions. Displays, which allow mission operators to see the spacecraft position, orientation, and configuration under a variety of operating conditions, are described. Automated systems for scheduling are discussed, and a testbed that allows tests and demonstrations of the associated architectures, interface protocols, and operations concepts is described. Lessons learned are summarized.

  4. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system

    PubMed Central

    Perge, János A.; Homer, Mark L.; Malik, Wasim Q.; Cash, Sydney; Eskandar, Emad; Friehs, Gerhard; Donoghue, John P.; Hochberg, Leigh R.

    2013-01-01

    Objective Motor Neural Interface Systems (NIS) aim to convert neural signals into motor prosthetic or assistive device control, allowing people with paralysis to regain movement or control over their immediate environment. Effector or prosthetic control can degrade if the relationship between recorded neural signals and intended motor behavior changes. Therefore, characterizing both biological and technological sources of signal variability is important for a reliable NIS. Approach To address the frequency and causes of neural signal variability in a spike-based NIS, we analyzed within-day fluctuations in spiking activity and action potential amplitude recorded with silicon microelectrode arrays implanted in the motor cortex of three people with tetraplegia (BrainGate pilot clinical trial, IDE). Main results Eighty-four percent of the recorded units showed a statistically significant change in apparent firing rate (3.8±8.71Hz or 49% of the mean rate) across several-minute epochs of tasks performed on a single session, and seventy-four percent of the units showed a significant change in spike amplitude (3.7±6.5μV or 5.5% of mean spike amplitude). Forty percent of the recording sessions showed a significant correlation in the occurrence of amplitude changes across electrodes, suggesting array micro-movement. Despite the relatively frequent amplitude changes, only 15% of the observed within-day rate changes originated from recording artifacts such as spike amplitude change or electrical noise, while 85% of the rate changes most likely emerged from physiological mechanisms. Computer simulations confirmed that systematic rate changes of individual neurons could produce a directional “bias” in the decoded neural cursor movements. Instability in apparent neuronal spike rates indeed yielded a directional bias in fifty-six percent of all performance assessments in participant cursor control (n=2 participants, 108 and 20 assessments over two years), resulting in suboptimal performance in these sessions. Significance We anticipate that signal acquisition and decoding methods that can adapt to the reported instabilities will further improve the performance of intracortically-based NISs. PMID:23574741

  5. Ultra-low noise miniaturized neural amplifier with hardware averaging.

    PubMed

    Dweiri, Yazan M; Eggers, Thomas; McCallum, Grant; Durand, Dominique M

    2015-08-01

    Peripheral nerves carry neural signals that could be used to control hybrid bionic systems. Cuff electrodes provide a robust and stable interface but the recorded signal amplitude is small (<3 μVrms 700 Hz-7 kHz), thereby requiring a baseline noise of less than 1 μVrms for a useful signal-to-noise ratio (SNR). Flat interface nerve electrode (FINE) contacts alone generate thermal noise of at least 0.5 μVrms therefore the amplifier should add as little noise as possible. Since mainstream neural amplifiers have a baseline noise of 2 μVrms or higher, novel designs are required. Here we apply the concept of hardware averaging to nerve recordings obtained with cuff electrodes. An optimization procedure is developed to minimize noise and power simultaneously. The novel design was based on existing neural amplifiers (Intan Technologies, LLC) and is validated with signals obtained from the FINE in chronic dog experiments. We showed that hardware averaging leads to a reduction in the total recording noise by a factor of 1/√N or less depending on the source resistance. Chronic recording of physiological activity with FINE using the presented design showed significant improvement on the recorded baseline noise with at least two parallel operation transconductance amplifiers leading to a 46.1% reduction at N = 8. The functionality of these recordings was quantified by the SNR improvement and shown to be significant for N = 3 or more. The present design was shown to be capable of generating <1.5 μVrms total recording baseline noise when connected to a FINE placed on the sciatic nerve of an awake animal. An algorithm was introduced to find the value of N that can minimize both the power consumption and the noise in order to design a miniaturized ultralow-noise neural amplifier. These results demonstrate the efficacy of hardware averaging on noise improvement for neural recording with cuff electrodes, and can accommodate the presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.

  6. Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives

    PubMed Central

    Yuan, Han; He, Bin

    2014-01-01

    Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. PMID:24759276

  7. A 32-channel fully implantable wireless neurosensor for simultaneous recording from two cortical regions.

    PubMed

    Aceros, Juan; Yin, Ming; Borton, David A; Patterson, William R; Nurmikko, Arto V

    2011-01-01

    We present a fully implantable, wireless, neurosensor for multiple-location neural interface applications. The device integrates two independent 16-channel intracortical microelectrode arrays and can simultaneously acquire 32 channels of broadband neural data from two separate cortical areas. The system-on-chip implantable sensor is built on a flexible Kapton polymer substrate and incorporates three very low power subunits: two cortical subunits connected to a common subcutaneous subunit. Each cortical subunit has an ultra-low power 16-channel preamplifier and multiplexer integrated onto a cortical microelectrode array. The subcutaneous epicranial unit has an inductively coupled power supply, two analog-to-digital converters, a low power digital controller chip, and microlaser-based infrared telemetry. The entire system is soft encapsulated with biocompatible flexible materials for in vivo applications. Broadband neural data is conditioned, amplified, and analog multiplexed by each of the cortical subunits and passed to the subcutaneous component, where it is digitized and combined with synchronization data and wirelessly transmitted transcutaneously using high speed infrared telemetry.

  8. Intelligent approach to prognostic enhancements of diagnostic systems

    NASA Astrophysics Data System (ADS)

    Vachtsevanos, George; Wang, Peng; Khiripet, Noppadon; Thakker, Ash; Galie, Thomas R.

    2001-07-01

    This paper introduces a novel methodology to prognostics based on a dynamic wavelet neural network construct and notions from the virtual sensor area. This research has been motivated and supported by the U.S. Navy's active interest in integrating advanced diagnostic and prognostic algorithms in existing Naval digital control and monitoring systems. A rudimentary diagnostic platform is assumed to be available providing timely information about incipient or impending failure conditions. We focus on the development of a prognostic algorithm capable of predicting accurately and reliably the remaining useful lifetime of a failing machine or component. The prognostic module consists of a virtual sensor and a dynamic wavelet neural network as the predictor. The virtual sensor employs process data to map real measurements into difficult to monitor fault quantities. The prognosticator uses a dynamic wavelet neural network as a nonlinear predictor. Means to manage uncertainty and performance metrics are suggested for comparison purposes. An interface to an available shipboard Integrated Condition Assessment System is described and applications to shipboard equipment are discussed. Typical results from pump failures are presented to illustrate the effectiveness of the methodology.

  9. Two-Dimensional Optoelectronic Graphene Nanoprobes for Neural Nerwork

    NASA Astrophysics Data System (ADS)

    Hong, Tu; Kitko, Kristina; Wang, Rui; Zhang, Qi; Xu, Yaqiong

    2014-03-01

    Brain is the most complex network created by nature, with billions of neurons connected by trillions of synapses through sophisticated wiring patterns and countless modulatory mechanisms. Current methods to study the neuronal process, either by electrophysiology or optical imaging, have significant limitations on throughput and sensitivity. Here, we use graphene, a monolayer of carbon atoms, as a two-dimensional nanoprobe for neural network. Scanning photocurrent measurement is applied to detect the local integration of electrical and chemical signals in mammalian neurons. Such interface between nanoscale electronic device and biological system provides not only ultra-high sensitivity, but also sub-millisecond temporal resolution, owing to the high carrier mobility of graphene.

  10. PCSIM: A Parallel Simulation Environment for Neural Circuits Fully Integrated with Python

    PubMed Central

    Pecevski, Dejan; Natschläger, Thomas; Schuch, Klaus

    2008-01-01

    The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It is primarily designed for distributed simulation of large scale networks of spiking point neurons. Although its computational core is written in C++, PCSIM's primary interface is implemented in the Python programming language, which is a powerful programming environment and allows the user to easily integrate the neural circuit simulator with data analysis and visualization tools to manage the full neural modeling life cycle. The main focus of this paper is to describe PCSIM's full integration into Python and the benefits thereof. In particular we will investigate how the automatically generated bidirectional interface and PCSIM's object-oriented modular framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM's functionality either employing pure Python or C++ and thus combining the advantages of both worlds. Furthermore, we describe several supplementary PCSIM packages written in pure Python and tailored towards setting up and analyzing neural simulations. PMID:19543450

  11. Integrating Speech and Iconic Gestures in a Stroop-Like Task: Evidence for Automatic Processing

    ERIC Educational Resources Information Center

    Kelly, Spencer D.; Creigh, Peter; Bartolotti, James

    2010-01-01

    Previous research has demonstrated a link between language and action in the brain. The present study investigates the strength of this neural relationship by focusing on a potential interface between the two systems: cospeech iconic gesture. Participants performed a Stroop-like task in which they watched videos of a man and a woman speaking and…

  12. Assessing the Depth of Cognitive Processing as the Basis for Potential User-State Adaptation

    PubMed Central

    Nicolae, Irina-Emilia; Acqualagna, Laura; Blankertz, Benjamin

    2017-01-01

    Objective: Decoding neurocognitive processes on a single-trial basis with Brain-Computer Interface (BCI) techniques can reveal the user's internal interpretation of the current situation. Such information can potentially be exploited to make devices and interfaces more user aware. In this line of research, we took a further step by studying neural correlates of different levels of cognitive processes and developing a method that allows to quantify how deeply presented information is processed in the brain. Methods/Approach: Seventeen participants took part in an EEG study in which we evaluated different levels of cognitive processing (no processing, shallow, and deep processing) within three distinct domains (memory, language, and visual imagination). Our investigations showed gradual differences in the amplitudes of event-related potentials (ERPs) and in the extend and duration of event-related desynchronization (ERD) which both correlate with task difficulty. We performed multi-modal classification to map the measured correlates of neurocognitive processing to the corresponding level of processing. Results: Successful classification of the neural components was achieved, which reflects the level of cognitive processing performed by the participants. The results show performances above chance level for each participant and a mean performance of 70–90% for all conditions and classification pairs. Significance: The successful estimation of the level of cognition on a single-trial basis supports the feasibility of user-state adaptation based on ongoing neural activity. There is a variety of potential use cases such as: a user-friendly adaptive design of an interface or the development of assistance systems in safety critical workplaces. PMID:29046625

  13. Assessing the Depth of Cognitive Processing as the Basis for Potential User-State Adaptation.

    PubMed

    Nicolae, Irina-Emilia; Acqualagna, Laura; Blankertz, Benjamin

    2017-01-01

    Objective: Decoding neurocognitive processes on a single-trial basis with Brain-Computer Interface (BCI) techniques can reveal the user's internal interpretation of the current situation. Such information can potentially be exploited to make devices and interfaces more user aware. In this line of research, we took a further step by studying neural correlates of different levels of cognitive processes and developing a method that allows to quantify how deeply presented information is processed in the brain. Methods/Approach: Seventeen participants took part in an EEG study in which we evaluated different levels of cognitive processing (no processing, shallow, and deep processing) within three distinct domains (memory, language, and visual imagination). Our investigations showed gradual differences in the amplitudes of event-related potentials (ERPs) and in the extend and duration of event-related desynchronization (ERD) which both correlate with task difficulty. We performed multi-modal classification to map the measured correlates of neurocognitive processing to the corresponding level of processing. Results: Successful classification of the neural components was achieved, which reflects the level of cognitive processing performed by the participants. The results show performances above chance level for each participant and a mean performance of 70-90% for all conditions and classification pairs. Significance: The successful estimation of the level of cognition on a single-trial basis supports the feasibility of user-state adaptation based on ongoing neural activity. There is a variety of potential use cases such as: a user-friendly adaptive design of an interface or the development of assistance systems in safety critical workplaces.

  14. Improved head direction command classification using an optimised Bayesian neural network.

    PubMed

    Nguyen, Son T; Nguyen, Hung T; Taylor, Philip B; Middleton, James

    2006-01-01

    Assistive technologies have recently emerged to improve the quality of life of severely disabled people by enhancing their independence in daily activities. Since many of those individuals have limited or non-existing control from the neck downward, alternative hands-free input modalities have become very important for these people to access assistive devices. In hands-free control, head movement has been proved to be a very effective user interface as it can provide a comfortable, reliable and natural way to access the device. Recently, neural networks have been shown to be useful not only for real-time pattern recognition but also for creating user-adaptive models. Since multi-layer perceptron neural networks trained using standard back-propagation may cause poor generalisation, the Bayesian technique has been proposed to improve the generalisation and robustness of these networks. This paper describes the use of Bayesian neural networks in developing a hands-free wheelchair control system. The experimental results show that with the optimised architecture, classification Bayesian neural networks can detect head commands of wheelchair users accurately irrespective to their levels of injuries.

  15. New Perspectives on Neuroengineering and Neurotechnologies: NSF-DFG Workshop Report.

    PubMed

    Moritz, Chet T; Ruther, Patrick; Goering, Sara; Stett, Alfred; Ball, Tonio; Burgard, Wolfram; Chudler, Eric H; Rao, Rajesh P N

    2016-07-01

    To identify and overcome barriers to creating new neurotechnologies capable of restoring both motor and sensory function in individuals with neurological conditions. This report builds upon the outcomes of a joint workshop between the US National Science Foundation and the German Research Foundation on New Perspectives in Neuroengineering and Neurotechnology convened in Arlington, VA, USA, November 13-14, 2014. The participants identified key technological challenges for recording and manipulating neural activity, decoding, and interpreting brain data in the presence of plasticity, and early considerations of ethical and social issues pertinent to the adoption of neurotechnologies. The envisaged progress in neuroengineering requires tightly integrated hardware and signal processing efforts, advances in understanding of physiological adaptations to closed-loop interactions with neural devices, and an open dialog with stakeholders and potential end-users of neurotechnology. The development of new neurotechnologies (e.g., bidirectional brain-computer interfaces) could significantly improve the quality of life of people living with the effects of brain or spinal cord injury, or other neurodegenerative diseases. Focused efforts aimed at overcoming the remaining barriers at the electrode tissue interface, developing implantable hardware with on-board computation, and refining stimulation methods to precisely activate neural tissue will advance both our understanding of brain function and our ability to treat currently intractable disorders of the nervous system.

  16. Decoding 3-D Reach and Grasp Kinematics from High-Frequency Local Field Potentials in Primate Primary Motor Cortex

    PubMed Central

    Zhuang, Jun; Vargas-Irwin, Carlos; Donoghue, John P.

    2011-01-01

    Intracortical microelectrode array recordings generate a variety of neural signals with potential application as control signals in neural interface systems. Previous studies have focused on single and multiunit activity, as well as low frequency local field potentials (LFPs), but have not explored higher frequency (>200 Hz) LFPs. In addition, the potential to decode three dimensional (3-D) reach and grasp kinematics based on LFPs has not been demonstrated. Here, we use mutual information and decoding analyses to probe the information content about 3-D reaching and grasping of 7 different LFP frequency bands in the range of 0.3 Hz – 400 Hz. LFPs were recorded via 96-microelectrode arrays in primary motor cortex (M1) of two monkeys performing free reaching to grasp moving objects. Mutual information analyses revealed that higher frequency bands (e.g. 100 – 200 Hz and 200 – 400 Hz) carried the most information about the examined kinematics. Furthermore, Kalman filter decoding revealed that broadband high frequency LFPs, likely reflecting multiunit activity, provided the best decoding performance as well as substantial accuracy in reconstructing reach kinematics, grasp aperture and aperture velocity. These results indicate that LFPs, especially high frequency bands, could be useful signals for neural interfaces controlling 3-D reach and grasp kinematics. PMID:20403782

  17. Glove-TalkII--a neural-network interface which maps gestures to parallel formant speech synthesizer controls.

    PubMed

    Fels, S S; Hinton, G E

    1998-01-01

    Glove-TalkII is a system which translates hand gestures to speech through an adaptive interface. Hand gestures are mapped continuously to ten control parameters of a parallel formant speech synthesizer. The mapping allows the hand to act as an artificial vocal tract that produces speech in real time. This gives an unlimited vocabulary in addition to direct control of fundamental frequency and volume. Currently, the best version of Glove-TalkII uses several input devices (including a Cyberglove, a ContactGlove, a three-space tracker, and a foot pedal), a parallel formant speech synthesizer, and three neural networks. The gesture-to-speech task is divided into vowel and consonant production by using a gating network to weight the outputs of a vowel and a consonant neural network. The gating network and the consonant network are trained with examples from the user. The vowel network implements a fixed user-defined relationship between hand position and vowel sound and does not require any training examples from the user. Volume, fundamental frequency, and stop consonants are produced with a fixed mapping from the input devices. One subject has trained to speak intelligibly with Glove-TalkII. He speaks slowly but with far more natural sounding pitch variations than a text-to-speech synthesizer.

  18. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration.

    PubMed

    Goldwyn, Joshua H; Bierer, Steven M; Bierer, Julie Arenberg

    2010-09-01

    The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  19. Building a Decision Support System for Inpatient Admission Prediction With the Manchester Triage System and Administrative Check-in Variables.

    PubMed

    Zlotnik, Alexander; Alfaro, Miguel Cuchí; Pérez, María Carmen Pérez; Gallardo-Antolín, Ascensión; Martínez, Juan Manuel Montero

    2016-05-01

    The usage of decision support tools in emergency departments, based on predictive models, capable of estimating the probability of admission for patients in the emergency department may give nursing staff the possibility of allocating resources in advance. We present a methodology for developing and building one such system for a large specialized care hospital using a logistic regression and an artificial neural network model using nine routinely collected variables available right at the end of the triage process.A database of 255.668 triaged nonobstetric emergency department presentations from the Ramon y Cajal University Hospital of Madrid, from January 2011 to December 2012, was used to develop and test the models, with 66% of the data used for derivation and 34% for validation, with an ordered nonrandom partition. On the validation dataset areas under the receiver operating characteristic curve were 0.8568 (95% confidence interval, 0.8508-0.8583) for the logistic regression model and 0.8575 (95% confidence interval, 0.8540-0. 8610) for the artificial neural network model. χ Values for Hosmer-Lemeshow fixed "deciles of risk" were 65.32 for the logistic regression model and 17.28 for the artificial neural network model. A nomogram was generated upon the logistic regression model and an automated software decision support system with a Web interface was built based on the artificial neural network model.

  20. Spatial and Time Domain Feature of ERP Speller System Extracted via Convolutional Neural Network.

    PubMed

    Yoon, Jaehong; Lee, Jungnyun; Whang, Mincheol

    2018-01-01

    Feature of event-related potential (ERP) has not been completely understood and illiteracy problem remains unsolved. To this end, P300 peak has been used as the feature of ERP in most brain-computer interface applications, but subjects who do not show such peak are common. Recent development of convolutional neural network provides a way to analyze spatial and temporal features of ERP. Here, we train the convolutional neural network with 2 convolutional layers whose feature maps represented spatial and temporal features of event-related potential. We have found that nonilliterate subjects' ERP show high correlation between occipital lobe and parietal lobe, whereas illiterate subjects only show correlation between neural activities from frontal lobe and central lobe. The nonilliterates showed peaks in P300, P500, and P700, whereas illiterates mostly showed peaks in around P700. P700 was strong in both subjects. We found that P700 peak may be the key feature of ERP as it appears in both illiterate and nonilliterate subjects.

  1. Spatial and Time Domain Feature of ERP Speller System Extracted via Convolutional Neural Network

    PubMed Central

    2018-01-01

    Feature of event-related potential (ERP) has not been completely understood and illiteracy problem remains unsolved. To this end, P300 peak has been used as the feature of ERP in most brain–computer interface applications, but subjects who do not show such peak are common. Recent development of convolutional neural network provides a way to analyze spatial and temporal features of ERP. Here, we train the convolutional neural network with 2 convolutional layers whose feature maps represented spatial and temporal features of event-related potential. We have found that nonilliterate subjects' ERP show high correlation between occipital lobe and parietal lobe, whereas illiterate subjects only show correlation between neural activities from frontal lobe and central lobe. The nonilliterates showed peaks in P300, P500, and P700, whereas illiterates mostly showed peaks in around P700. P700 was strong in both subjects. We found that P700 peak may be the key feature of ERP as it appears in both illiterate and nonilliterate subjects.

  2. [Not Available].

    PubMed

    Pecevski, Dejan; Natschläger, Thomas; Schuch, Klaus

    2009-01-01

    The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It is primarily designed for distributed simulation of large scale networks of spiking point neurons. Although its computational core is written in C++, PCSIM's primary interface is implemented in the Python programming language, which is a powerful programming environment and allows the user to easily integrate the neural circuit simulator with data analysis and visualization tools to manage the full neural modeling life cycle. The main focus of this paper is to describe PCSIM's full integration into Python and the benefits thereof. In particular we will investigate how the automatically generated bidirectional interface and PCSIM's object-oriented modular framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM's functionality either employing pure Python or C++ and thus combining the advantages of both worlds. Furthermore, we describe several supplementary PCSIM packages written in pure Python and tailored towards setting up and analyzing neural simulations.

  3. Neural interface methods and apparatus to provide artificial sensory capabilities to a subject

    DOEpatents

    Buerger, Stephen P.; Olsson, III, Roy H.; Wojciechowski, Kenneth E.; Novick, David K.; Kholwadwala, Deepesh K.

    2017-01-24

    Embodiments of neural interfaces according to the present invention comprise sensor modules for sensing environmental attributes beyond the natural sensory capability of a subject, and communicating the attributes wirelessly to an external (ex-vivo) portable module attached to the subject. The ex-vivo module encodes and communicates the attributes via a transcutaneous inductively coupled link to an internal (in-vivo) module implanted within the subject. The in-vivo module converts the attribute information into electrical neural stimuli that are delivered to a peripheral nerve bundle within the subject, via an implanted electrode. Methods and apparatus according to the invention incorporate implantable batteries to power the in-vivo module allowing for transcutaneous bidirectional communication of low voltage (e.g. on the order of 5 volts) encoded signals as stimuli commands and neural responses, in a robust, low-error rate, communication channel with minimal effects to the subjects' skin.

  4. A physiological and behavioral system for hearing restoration with cochlear implants

    PubMed Central

    King, Julia; Shehu, Ina; Roland, J. Thomas; Svirsky, Mario A.

    2016-01-01

    Cochlear implants are neuroprosthetic devices that provide hearing to deaf patients, although outcomes are highly variable even with prolonged training and use. The central auditory system must process cochlear implant signals, but it is unclear how neural circuits adapt—or fail to adapt—to such inputs. The knowledge of these mechanisms is required for development of next-generation neuroprosthetics that interface with existing neural circuits and enable synaptic plasticity to improve perceptual outcomes. Here, we describe a new system for cochlear implant insertion, stimulation, and behavioral training in rats. Animals were first ensured to have significant hearing loss via physiological and behavioral criteria. We developed a surgical approach for multichannel (2- or 8-channel) array insertion, comparable with implantation procedures and depth in humans. Peripheral and cortical responses to stimulation were used to program the implant objectively. Animals fitted with implants learned to use them for an auditory-dependent task that assesses frequency detection and recognition in a background of environmentally and self-generated noise and ceased responding appropriately to sounds when the implant was temporarily inactivated. This physiologically calibrated and behaviorally validated system provides a powerful opportunity to study the neural basis of neuroprosthetic device use and plasticity. PMID:27281743

  5. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    NASA Technical Reports Server (NTRS)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  6. Comparison of Mono-, Bi-, and Tripolar Configurations for Stimulation and Recording With an Interfascicular Interface.

    PubMed

    Nielsen, Thomas N; Sevcencu, Cristian; Struijk, Johannes J

    2014-01-01

    Previous studies have indicated that electrodes placed between fascicles can provide nerve recruitment with high topological selectivity if the areas of interest in the nerve are separated with passive elements. In this study, we investigated if this separation of fascicles also can provide topologically selective nerve recordings and compared the performance of mono-, bi-, and tripolar configurations for stimulation and recording with an intra-neural interface. The interface was implanted in the sciatic nerve of 10 rabbits and achieved a median selectivity of Ŝ=0.98-0.99 for all stimulation configurations, while recording selectivity configurations was in the range of Ŝ=0.70-0.80 with the monopolar configuration providing the lowest and the average reference configuration the highest recording selectivity. Interfascicular electrodes could provide an interesting addition to the bulk of peripheral nerve interfaces available for neural prosthetic devices. The separation of the nerve into chambers by the passive elements of the electrode could ensure a higher selectivity than comparable cuff electrodes and the intra-neural location could provide an option of targeting mainly central fascicles. Further studies are, however, still required to develop biocompatible electrodes and test their stability and safety in chronic experiments.

  7. Switchable Polymer Based Thin Film Coils as a Power Module for Wireless Neural Interfaces.

    PubMed

    Kim, S; Zoschke, K; Klein, M; Black, D; Buschick, K; Toepper, M; Tathireddy, P; Harrison, R; Solzbacher, F

    2007-05-01

    Reliable chronic operation of implantable medical devices such as the Utah Electrode Array (UEA) for neural interface requires elimination of transcutaneous wire connections for signal processing, powering and communication of the device. A wireless power source that allows integration with the UEA is therefore necessary. While (rechargeable) micro batteries as well as biological micro fuel cells are yet far from meeting the power density and lifetime requirements of an implantable neural interface device, inductive coupling between two coils is a promising approach to power such a device with highly restricted dimensions. The power receiving coils presented in this paper were designed to maximize the inductance and quality factor of the coils and microfabricated using polymer based thin film technologies. A flexible configuration of stacked thin film coils allows parallel and serial switching, thereby allowing to tune the coil's resonance frequency. The electrical properties of the fabricated coils were characterized and their power transmission performance was investigated in laboratory condition.

  8. Neural Parallel Engine: A toolbox for massively parallel neural signal processing.

    PubMed

    Tam, Wing-Kin; Yang, Zhi

    2018-05-01

    Large-scale neural recordings provide detailed information on neuronal activities and can help elicit the underlying neural mechanisms of the brain. However, the computational burden is also formidable when we try to process the huge data stream generated by such recordings. In this study, we report the development of Neural Parallel Engine (NPE), a toolbox for massively parallel neural signal processing on graphical processing units (GPUs). It offers a selection of the most commonly used routines in neural signal processing such as spike detection and spike sorting, including advanced algorithms such as exponential-component-power-component (EC-PC) spike detection and binary pursuit spike sorting. We also propose a new method for detecting peaks in parallel through a parallel compact operation. Our toolbox is able to offer a 5× to 110× speedup compared with its CPU counterparts depending on the algorithms. A user-friendly MATLAB interface is provided to allow easy integration of the toolbox into existing workflows. Previous efforts on GPU neural signal processing only focus on a few rudimentary algorithms, are not well-optimized and often do not provide a user-friendly programming interface to fit into existing workflows. There is a strong need for a comprehensive toolbox for massively parallel neural signal processing. A new toolbox for massively parallel neural signal processing has been created. It can offer significant speedup in processing signals from large-scale recordings up to thousands of channels. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Volunteers Oriented Interface Design for the Remote Navigation of Rescue Robots at Large-Scale Disaster Sites

    NASA Astrophysics Data System (ADS)

    Yang, Zhixiao; Ito, Kazuyuki; Saijo, Kazuhiko; Hirotsune, Kazuyuki; Gofuku, Akio; Matsuno, Fumitoshi

    This paper aims at constructing an efficient interface being similar to those widely used in human daily life, to fulfill the need of many volunteer rescuers operating rescue robots at large-scale disaster sites. The developed system includes a force feedback steering wheel interface and an artificial neural network (ANN) based mouse-screen interface. The former consists of a force feedback steering control and a six monitors’ wall. It provides a manual operation like driving cars to navigate a rescue robot. The latter consists of a mouse and a camera’s view displayed in a monitor. It provides a semi-autonomous operation by mouse clicking to navigate a rescue robot. Results of experiments show that a novice volunteer can skillfully navigate a tank rescue robot through both interfaces after 20 to 30 minutes of learning their operation respectively. The steering wheel interface has high navigating speed in open areas, without restriction of terrains and surface conditions of a disaster site. The mouse-screen interface is good at exact navigation in complex structures, while bringing little tension to operators. The two interfaces are designed to switch into each other at any time to provide a combined efficient navigation method.

  10. Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System

    PubMed Central

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2008-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated. PMID:19562085

  11. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system.

    PubMed

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2009-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  12. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates.

    PubMed

    Barz, F; Livi, A; Lanzilotto, M; Maranesi, M; Bonini, L; Paul, O; Ruther, P

    2017-06-01

    Application-specific designs of electrode arrays offer an improved effectiveness for providing access to targeted brain regions in neuroscientific research and brain machine interfaces. The simultaneous and stable recording of neuronal ensembles is the main goal in the design of advanced neural interfaces. Here, we describe the development and assembly of highly customizable 3D microelectrode arrays and demonstrate their recording performance in chronic applications in non-human primates. System assembly relies on a microfabricated stacking component that is combined with Michigan-style silicon-based electrode arrays interfacing highly flexible polyimide cables. Based on the novel stacking component, the lead time for implementing prototypes with altered electrode pitches is minimal. Once the fabrication and assembly accuracy of the stacked probes have been characterized, their recording performance is assessed during in vivo chronic experiments in awake rhesus macaques (Macaca mulatta) trained to execute reaching-grasping motor tasks. Using a single set of fabrication tools, we implemented three variants of the stacking component for electrode distances of 250, 300 and 350 µm in the stacking direction. We assembled neural probes with up to 96 channels and an electrode density of 98 electrodes mm -2 . Furthermore, we demonstrate that the shank alignment is accurate to a few µm at an angular alignment better than 1°. Three 64-channel probes were chronically implanted in two monkeys providing single-unit activity on more than 60% of all channels and excellent recording stability. Histological tissue sections, obtained 52 d after implantation from one of the monkeys, showed minimal tissue damage, in accordance with the high quality and stability of the recorded neural activity. The versatility of our fabrication and assembly approach should significantly support the development of ideal interface geometries for a broad spectrum of applications. With the demonstrated performance, these probes are suitable for both semi-chronic and chronic applications.

  13. Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates

    NASA Astrophysics Data System (ADS)

    Barz, F.; Livi, A.; Lanzilotto, M.; Maranesi, M.; Bonini, L.; Paul, O.; Ruther, P.

    2017-06-01

    Objective. Application-specific designs of electrode arrays offer an improved effectiveness for providing access to targeted brain regions in neuroscientific research and brain machine interfaces. The simultaneous and stable recording of neuronal ensembles is the main goal in the design of advanced neural interfaces. Here, we describe the development and assembly of highly customizable 3D microelectrode arrays and demonstrate their recording performance in chronic applications in non-human primates. Approach. System assembly relies on a microfabricated stacking component that is combined with Michigan-style silicon-based electrode arrays interfacing highly flexible polyimide cables. Based on the novel stacking component, the lead time for implementing prototypes with altered electrode pitches is minimal. Once the fabrication and assembly accuracy of the stacked probes have been characterized, their recording performance is assessed during in vivo chronic experiments in awake rhesus macaques (Macaca mulatta) trained to execute reaching-grasping motor tasks. Main results. Using a single set of fabrication tools, we implemented three variants of the stacking component for electrode distances of 250, 300 and 350 µm in the stacking direction. We assembled neural probes with up to 96 channels and an electrode density of 98 electrodes mm-2. Furthermore, we demonstrate that the shank alignment is accurate to a few µm at an angular alignment better than 1°. Three 64-channel probes were chronically implanted in two monkeys providing single-unit activity on more than 60% of all channels and excellent recording stability. Histological tissue sections, obtained 52 d after implantation from one of the monkeys, showed minimal tissue damage, in accordance with the high quality and stability of the recorded neural activity. Significance. The versatility of our fabrication and assembly approach should significantly support the development of ideal interface geometries for a broad spectrum of applications. With the demonstrated performance, these probes are suitable for both semi-chronic and chronic applications.

  14. Emotion, decision-making and the brain.

    PubMed

    Chang, Luke J; Sanfey, Alan G

    2008-01-01

    Initial explorations in the burgeoning field of neuroeconomics have highlighted evidence supporting a potential dissociation between a fast automatic system and a slow deliberative controlled system. Growing research in the role of emotion in decision-making has attempted to draw parallels to the automatic system. This chapter will discuss a theoretical framework for understanding the role of emotion in decision-making and evidence supporting the underlying neural substrates. This chapter applies a conceptual framework to understanding the role of emotion in decision-making, and emphasizes a distinction between expected and immediate emotions. Expected emotions refer to anticipated emotional states associated with a given decision that are never actually experienced. Immediate emotions, however, are experienced at the time of decision, and either can occur in response to a particular decision or merely as a result of a transitory fluctuation. This chapter will review research from the neuroeconomics literature that supports a neural dissociation between these two classes of emotion and also discuss a few interpretive caveats. Several lines of research including regret, uncertainty, social decision-making, and moral decision-making have yielded evidence consistent with our formulization--expected and immediate emotions may invoke dissociable neural systems. This chapter provides a more specific conceptualization of the mediating role of emotions in the decision-making process, which has important implications for understanding the interacting neural systems underlying the interface between emotion and cognition--a topic of immediate value to anyone investigating topics within the context of social-cognitive-affective-neuroscience.

  15. Non-invasive neural stimulation

    NASA Astrophysics Data System (ADS)

    Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas

    2017-05-01

    Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.

  16. The neuron classification problem

    PubMed Central

    Bota, Mihail; Swanson, Larry W.

    2007-01-01

    A systematic account of neuron cell types is a basic prerequisite for determining the vertebrate nervous system global wiring diagram. With comprehensive lineage and phylogenetic information unavailable, a general ontology based on structure-function taxonomy is proposed and implemented in a knowledge management system, and a prototype analysis of select regions (including retina, cerebellum, and hypothalamus) presented. The supporting Brain Architecture Knowledge Management System (BAMS) Neuron ontology is online and its user interface allows queries about terms and their definitions, classification criteria based on the original literature and “Petilla Convention” guidelines, hierarchies, and relations—with annotations documenting each ontology entry. Combined with three BAMS modules for neural regions, connections between regions and neuron types, and molecules, the Neuron ontology provides a general framework for physical descriptions and computational modeling of neural systems. The knowledge management system interacts with other web resources, is accessible in both XML and RDF/OWL, is extendible to the whole body, and awaits large-scale data population requiring community participation for timely implementation. PMID:17582506

  17. Neural feedback for instantaneous spatiotemporal modulation of afferent pathways in bi-directional brain-machine interfaces.

    PubMed

    Liu, Jianbo; Khalil, Hassan K; Oweiss, Karim G

    2011-10-01

    In bi-directional brain-machine interfaces (BMIs), precisely controlling the delivery of microstimulation, both in space and in time, is critical to continuously modulate the neural activity patterns that carry information about the state of the brain-actuated device to sensory areas in the brain. In this paper, we investigate the use of neural feedback to control the spatiotemporal firing patterns of neural ensembles in a model of the thalamocortical pathway. Control of pyramidal (PY) cells in the primary somatosensory cortex (S1) is achieved based on microstimulation of thalamic relay cells through multiple-input multiple-output (MIMO) feedback controllers. This closed loop feedback control mechanism is achieved by simultaneously varying the stimulation parameters across multiple stimulation electrodes in the thalamic circuit based on continuous monitoring of the difference between reference patterns and the evoked responses of the cortical PY cells. We demonstrate that it is feasible to achieve a desired level of performance by controlling the firing activity pattern of a few "key" neural elements in the network. Our results suggest that neural feedback could be an effective method to facilitate the delivery of information to the cortex to substitute lost sensory inputs in cortically controlled BMIs.

  18. Fast attainment of computer cursor control with noninvasively acquired brain signals

    NASA Astrophysics Data System (ADS)

    Bradberry, Trent J.; Gentili, Rodolphe J.; Contreras-Vidal, José L.

    2011-06-01

    Brain-computer interface (BCI) systems are allowing humans and non-human primates to drive prosthetic devices such as computer cursors and artificial arms with just their thoughts. Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while noninvasive BCI systems typically acquire neural signals with scalp electroencephalography (EEG). Some drawbacks of invasive BCI systems are the inherent risks of surgery and gradual degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional control of a cursor, in particular those based on sensorimotor rhythms, is the lengthy training time required by users to achieve satisfactory performance. Here we describe a novel approach to continuously decoding imagined movements from EEG signals in a BCI experiment with reduced training time. We demonstrate that, using our noninvasive BCI system and observational learning, subjects were able to accomplish two-dimensional control of a cursor with performance levels comparable to those of invasive BCI systems. Compared to other studies of noninvasive BCI systems, training time was substantially reduced, requiring only a single session of decoder calibration (~20 min) and subject practice (~20 min). In addition, we used standardized low-resolution brain electromagnetic tomography to reveal that the neural sources that encoded observed cursor movement may implicate a human mirror neuron system. These findings offer the potential to continuously control complex devices such as robotic arms with one's mind without lengthy training or surgery.

  19. Use of artificial intelligence in analytical systems for the clinical laboratory

    PubMed Central

    Truchaud, Alain; Ozawa, Kyoichi; Pardue, Harry; Schnipelsky, Paul

    1995-01-01

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories. PMID:18924784

  20. A Cognitive Neural Architecture Able to Learn and Communicate through Natural Language.

    PubMed

    Golosio, Bruno; Cangelosi, Angelo; Gamotina, Olesya; Masala, Giovanni Luca

    2015-01-01

    Communicative interactions involve a kind of procedural knowledge that is used by the human brain for processing verbal and nonverbal inputs and for language production. Although considerable work has been done on modeling human language abilities, it has been difficult to bring them together to a comprehensive tabula rasa system compatible with current knowledge of how verbal information is processed in the brain. This work presents a cognitive system, entirely based on a large-scale neural architecture, which was developed to shed light on the procedural knowledge involved in language elaboration. The main component of this system is the central executive, which is a supervising system that coordinates the other components of the working memory. In our model, the central executive is a neural network that takes as input the neural activation states of the short-term memory and yields as output mental actions, which control the flow of information among the working memory components through neural gating mechanisms. The proposed system is capable of learning to communicate through natural language starting from tabula rasa, without any a priori knowledge of the structure of phrases, meaning of words, role of the different classes of words, only by interacting with a human through a text-based interface, using an open-ended incremental learning process. It is able to learn nouns, verbs, adjectives, pronouns and other word classes, and to use them in expressive language. The model was validated on a corpus of 1587 input sentences, based on literature on early language assessment, at the level of about 4-years old child, and produced 521 output sentences, expressing a broad range of language processing functionalities.

  1. Adaptive Neuron Model: An architecture for the rapid learning of nonlinear topological transformations

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    1994-01-01

    A method for the rapid learning of nonlinear mappings and topological transformations using a dynamically reconfigurable artificial neural network is presented. This fully-recurrent Adaptive Neuron Model (ANM) network was applied to the highly degenerate inverse kinematics problem in robotics, and its performance evaluation is bench-marked. Once trained, the resulting neuromorphic architecture was implemented in custom analog neural network hardware and the parameters capturing the functional transformation downloaded onto the system. This neuroprocessor, capable of 10(exp 9) ops/sec, was interfaced directly to a three degree of freedom Heathkit robotic manipulator. Calculation of the hardware feed-forward pass for this mapping was benchmarked at approximately 10 microsec.

  2. Efficiently passing messages in distributed spiking neural network simulation.

    PubMed

    Thibeault, Corey M; Minkovich, Kirill; O'Brien, Michael J; Harris, Frederick C; Srinivasa, Narayan

    2013-01-01

    Efficiently passing spiking messages in a neural model is an important aspect of high-performance simulation. As the scale of networks has increased so has the size of the computing systems required to simulate them. In addition, the information exchange of these resources has become more of an impediment to performance. In this paper we explore spike message passing using different mechanisms provided by the Message Passing Interface (MPI). A specific implementation, MVAPICH, designed for high-performance clusters with Infiniband hardware is employed. The focus is on providing information about these mechanisms for users of commodity high-performance spiking simulators. In addition, a novel hybrid method for spike exchange was implemented and benchmarked.

  3. Implantable brain computer interface: challenges to neurotechnology translation.

    PubMed

    Konrad, Peter; Shanks, Todd

    2010-06-01

    This article reviews three concepts related to implantable brain computer interface (BCI) devices being designed for human use: neural signal extraction primarily for motor commands, signal insertion to restore sensation, and technological challenges that remain. A significant body of literature has occurred over the past four decades regarding motor cortex signal extraction for upper extremity movement or computer interface. However, little is discussed regarding postural or ambulation command signaling. Auditory prosthesis research continues to represent the majority of literature on BCI signal insertion. Significant hurdles continue in the technological translation of BCI implants. These include developing a stable neural interface, significantly increasing signal processing capabilities, and methods of data transfer throughout the human body. The past few years, however, have provided extraordinary human examples of BCI implant potential. Despite technological hurdles, proof-of-concept animal and human studies provide significant encouragement that BCI implants may well find their way into mainstream medical practice in the foreseeable future.

  4. Generation of complex motor patterns in american grasshopper via current-controlled thoracic electrical interfacing.

    PubMed

    Giampalmo, Susan L; Absher, Benjamin F; Bourne, W Tucker; Steves, Lida E; Vodenski, Vassil V; O'Donnell, Peter M; Erickson, Jonathan C

    2011-01-01

    Micro-air vehicles (MAVs) have attracted attention for their potential application to military applications, environmental sensing, and search and rescue missions. While progress is being made toward fabrication of a completely human-engineered MAV, another promising approach seeks to interface to, and take control of, an insect's nervous system. Cyborg insects take advantage of their innate exquisite loco-motor, navigation, and sensing abilities. Recently, several groups have demonstrated the feasibility of radio-controlled flight in the hawkmoth and beetle via electrical neural interfaces. Here, we report a method for eliciting the "jump" response in the American grasshopper (S. Americana). We found that stimulating the metathoracic T3 ganglion with constant-current square wave pulses with amplitude 186 ± 40 μA and frequency 190 ± 13 Hz reproducibly evoked (≥95% success rate) the desired motor activity in N=3 test subjects. To the best of our knowledge, this is the first report of an insect cyborg with a synchronous neuromuscular system.

  5. The 128-channel fully differential digital integrated neural recording and stimulation interface.

    PubMed

    Shahrokhi, Farzaneh; Abdelhalim, Karim; Serletis, Demitre; Carlen, Peter L; Genov, Roman

    2010-06-01

    We present a fully differential 128-channel integrated neural interface. It consists of an array of 8 X 16 low-power low-noise signal-recording and generation circuits for electrical neural activity monitoring and stimulation, respectively. The recording channel has two stages of signal amplification and conditioning with and a fully differential 8-b column-parallel successive approximation (SAR) analog-to-digital converter (ADC). The total measured power consumption of each recording channel, including the SAR ADC, is 15.5 ¿W. The measured input-referred noise is 6.08 ¿ Vrms over a 5-kHz bandwidth, resulting in a noise efficiency factor of 5.6. The stimulation channel performs monophasic or biphasic voltage-mode stimulation, with a maximum stimulation current of 5 mA and a quiescent power dissipation of 51.5 ¿W. The design is implemented in 0.35-¿m complementary metal-oxide semiconductor technology with the channel pitch of 200 ¿m for a total die size of 3.4 mm × 2.5 mm and a total power consumption of 9.33 mW. The neural interface was validated in in vitro recording of a low-Mg(2+)/high-K(+) epileptic seizure model in an intact hippocampus of a mouse.

  6. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Dethier, Julie; Nuyujukian, Paul; Ryu, Stephen I.; Shenoy, Krishna V.; Boahen, Kwabena

    2013-06-01

    Objective. Cortically-controlled motor prostheses aim to restore functions lost to neurological disease and injury. Several proof of concept demonstrations have shown encouraging results, but barriers to clinical translation still remain. In particular, intracortical prostheses must satisfy stringent power dissipation constraints so as not to damage cortex. Approach. One possible solution is to use ultra-low power neuromorphic chips to decode neural signals for these intracortical implants. The first step is to explore in simulation the feasibility of translating decoding algorithms for brain-machine interface (BMI) applications into spiking neural networks (SNNs). Main results. Here we demonstrate the validity of the approach by implementing an existing Kalman-filter-based decoder in a simulated SNN using the Neural Engineering Framework (NEF), a general method for mapping control algorithms onto SNNs. To measure this system’s robustness and generalization, we tested it online in closed-loop BMI experiments with two rhesus monkeys. Across both monkeys, a Kalman filter implemented using a 2000-neuron SNN has comparable performance to that of a Kalman filter implemented using standard floating point techniques. Significance. These results demonstrate the tractability of SNN implementations of statistical signal processing algorithms on different monkeys and for several tasks, suggesting that a SNN decoder, implemented on a neuromorphic chip, may be a feasible computational platform for low-power fully-implanted prostheses. The validation of this closed-loop decoder system and the demonstration of its robustness and generalization hold promise for SNN implementations on an ultra-low power neuromorphic chip using the NEF.

  7. Limb-state information encoded by peripheral and central somatosensory neurons: Implications for an afferent interface

    PubMed Central

    Weber, Douglas J.; London, Brian M.; Hokanson, James A.; Ayers, Christopher A.; Gaunt, Robert A.; Torres, Ricardo R.; Zaaimi, Boubker; Miller, Lee E.

    2013-01-01

    A major issue to be addressed in the development of neural interfaces for prosthetic control is the need for somatosensory feedback. Here, we investigate two possible strategies: electrical stimulation of either dorsal root ganglia (DRG) or primary somatosensory cortex (S1). In each approach, we must determine a model that reflects the representation of limb state in terms of neural discharge. This model can then be used to design stimuli that artificially activate the nervous system to convey information about limb state to the subject. Electrically activating DRG neurons using naturalistic stimulus patterns, modeled on recordings made during passive limb movement, evoked activity in S1 that was similar to that of the original movement. We also found that S1 neural populations could accurately discriminate different patterns of DRG stimulation across a wide range of stimulus pulse-rates. In studying the neural coding of limb-state in S1, we also decoded the kinematics of active limb movement using multi-electrode recordings in the monkey. Neurons having both proprioceptive and cutaneous receptive fields contributed equally to this decoding. Some neurons were most informative of limb state in the recent past, but many others appeared to signal upcoming movements suggesting that they also were modulated by an efference copy signal. Finally, we show that a monkey was able to detect stimulation through a large percentage of electrodes implanted in area 2. We discuss the design of appropriate stimulus paradigms for conveying time-varying limb state information, and the relative merits and limitations of central and peripheral approaches. PMID:21878419

  8. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.

    PubMed

    Jimenez-Romero, Cristian; Johnson, Jeffrey

    2017-01-01

    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.

  9. A training platform for many-dimensional prosthetic devices using a virtual reality environment

    PubMed Central

    Putrino, David; Wong, Yan T.; Weiss, Adam; Pesaran, Bijan

    2014-01-01

    Brain machine interfaces (BMIs) have the potential to assist in the rehabilitation of millions of patients worldwide. Despite recent advancements in BMI technology for the restoration of lost motor function, a training environment to restore full control of the anatomical segments of an upper limb extremity has not yet been presented. Here, we develop a virtual upper limb prosthesis with 27 independent dimensions, the anatomical dimensions of the human arm and hand, and deploy the virtual prosthesis as an avatar in a virtual reality environment (VRE) that can be controlled in real-time. The prosthesis avatar accepts kinematic control inputs that can be captured from movements of the arm and hand as well as neural control inputs derived from processed neural signals. We characterize the system performance under kinematic control using a commercially available motion capture system. We also present the performance under kinematic control achieved by two non-human primates (Macaca Mulatta) trained to use the prosthetic avatar to perform reaching and grasping tasks. This is the first virtual prosthetic device that is capable of emulating all the anatomical movements of a healthy upper limb in real-time. Since the system accepts both neural and kinematic inputs for a variety of many-dimensional skeletons, we propose it provides a customizable training platform for the acquisition of many-dimensional neural prosthetic control. PMID:24726625

  10. GUI Type Fault Diagnostic Program for a Turboshaft Engine Using Fuzzy and Neural Networks

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Koo, Youngju

    2011-04-01

    The helicopter to be operated in a severe flight environmental condition must have a very reliable propulsion system. On-line condition monitoring and fault detection of the engine can promote reliability and availability of the helicopter propulsion system. A hybrid health monitoring program using Fuzzy Logic and Neural Network Algorithms can be proposed. In this hybrid method, the Fuzzy Logic identifies easily the faulted components from engine measuring parameter changes, and the Neural Networks can quantify accurately its identified faults. In order to use effectively the fault diagnostic system, a GUI (Graphical User Interface) type program is newly proposed. This program is composed of the real time monitoring part, the engine condition monitoring part and the fault diagnostic part. The real time monitoring part can display measuring parameters of the study turboshaft engine such as power turbine inlet temperature, exhaust gas temperature, fuel flow, torque and gas generator speed. The engine condition monitoring part can evaluate the engine condition through comparison between monitoring performance parameters the base performance parameters analyzed by the base performance analysis program using look-up tables. The fault diagnostic part can identify and quantify the single faults the multiple faults from the monitoring parameters using hybrid method.

  11. Development and Evaluation of Micro-Electrocorticography Arrays for Neural Interfacing Applications

    NASA Astrophysics Data System (ADS)

    Schendel, Amelia Ann

    Neural interfaces have great promise for both electrophysiological research and therapeutic applications. Whether for the study of neural circuitry or for neural prosthetic or other therapeutic applications, micro-electrocorticography (micro-ECoG) arrays have proven extremely useful as neural interfacing devices. These devices strike a balance between invasiveness and signal resolution, an important step towards eventual human application. The objective of this research was to make design improvements to micro-ECoG devices to enhance both biocompatibility and device functionality. To best evaluate the effectiveness of these improvements, a cranial window imaging method for in vivo monitoring of the longitudinal tissue response post device implant was developed. Employment of this method provided valuable insight into the way tissue grows around micro-ECoG arrays after epidural implantation, spurring a study of the effects of substrate geometry on the meningeal tissue response. The results of the substrate footprint comparison suggest that a more open substrate geometry provides an easy path for the tissue to grow around to the top side of the device, whereas a solid device substrate encourages the tissue to thicken beneath the device, between the electrode sites and the brain. The formation of thick scar tissue between the recording electrode sites and the neural tissue is disadvantageous for long-term recorded signal quality, and thus future micro-ECoG device designs should incorporate open-architecture substrates for enhanced longitudinal in vivo function. In addition to investigating improvements for long-term device reliability, it was also desired to enhance the functionality of micro-ECoG devices for neural electrophysiology research applications. To achieve this goal, a completely transparent graphene-based device was fabricated for use with the cranial window imaging method and optogenetic techniques. The use of graphene as the conductive material provided the transparency necessary to image tissues directly below the micro-ECoG electrode sites, and to transmit light through the electrode sites to underlying neural tissue, for optical stimulation of neural cells. The flexibility and broad-spectrum transparency of graphene make it an ideal choice for thin-film, flexible electronic devices.

  12. Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants.

    PubMed

    Sanchez, Justin C; Mahmoudi, Babak; DiGiovanna, Jack; Principe, Jose C

    2009-04-01

    The success of brain-machine interfaces (BMI) is enabled by the remarkable ability of the brain to incorporate the artificial neuroprosthetic 'tool' into its own cognitive space and use it as an extension of the user's body. Unlike other tools, neuroprosthetics create a shared space that seamlessly spans the user's internal goal representation of the world and the external physical environment enabling a much deeper human-tool symbiosis. A key factor in the transformation of 'simple tools' into 'intelligent tools' is the concept of co-adaptation where the tool becomes functionally involved in the extraction and definition of the user's goals. Recent advancements in the neuroscience and engineering of neuroprosthetics are providing a blueprint for how new co-adaptive designs based on reinforcement learning change the nature of a user's ability to accomplish tasks that were not possible using conventional methodologies. By designing adaptive controls and artificial intelligence into the neural interface, tools can become active assistants in goal-directed behavior and further enhance human performance in particular for the disabled population. This paper presents recent advances in computational and neural systems supporting the development of symbiotic neuroprosthetic assistants.

  13. Implementation of neuromorphic systems: from discrete components to analog VLSI chips (testing and communication issues).

    PubMed

    Dante, V; Del Giudice, P; Mattia, M

    2001-01-01

    We review a series of implementations of electronic devices aiming at imitating to some extent structure and function of simple neural systems, with particular emphasis on communication issues. We first provide a short overview of general features of such "neuromorphic" devices and the implications of setting up "tests" for them. We then review the developments directly related to our work at the Istituto Superiore di Sanità (ISS): a pilot electronic neural network implementing a simple classifier, autonomously developing internal representations of incoming stimuli; an output network, collecting information from the previous classifier and extracting the relevant part to be forwarded to the observer; an analog, VLSI (very large scale integration) neural chip implementing a recurrent network of spiking neurons and plastic synapses, and the test setup for it; a board designed to interface the standard PCI (peripheral component interconnect) bus of a PC with a special purpose, asynchronous bus for communication among neuromorphic chips; a short and preliminary account of an application-oriented device, taking advantage of the above communication infrastructure.

  14. Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment

    PubMed Central

    Kasemeier-Kulesa, Jennifer C.; Teddy, Jessica M.; Postovit, Lynne-Marie; Seftor, Elisabeth A.; Seftor, Richard E.B.; Hendrix, Mary J.C.; Kulesa, Paul M.

    2008-01-01

    The embryonic microenvironment is an important source of signals that program multipotent cells to adopt a particular fate and migratory path, yet its potential to reprogram and restrict multipotent tumor cell fate and invasion is unrealized. Aggressive tumor cells share many characteristics with multipotent, invasive embryonic progenitors, contributing to the paradigm of tumour cell plasticity. In the vertebrate embryo, multiple cell types originate from a highly invasive cell population called the neural crest. The neural crest and the embryonic microenvironments they migrate through represent an excellent model system to study cell diversification during embryogenesis and phenotype determination. Recent exciting studies of tumor cells transplanted into various embryo models, including the neural crest rich chick microenvironment, have revealed the potential to control and revert the metastatic phenotype, suggesting further work may help to identify new targets for therapeutic intervention derived from a convergence of tumorigenic and embryonic signals. In this mini-review, we summarize markers that are common to the neural crest and highly aggressive human melanoma cells. We highlight advances in our understanding of tumor cell behaviors and plasticity studied within the chick neural crest rich microenvironment. In so doing, we honor the tremendous contributions of Professor Elizabeth D. Hay towards this important interface of developmental and cancer biology. PMID:18629870

  15. Biocompatibility of nanostructured boron doped diamond for the attachment and proliferation of human neural stem cells.

    PubMed

    Taylor, Alice C; Vagaska, Barbora; Edgington, Robert; Hébert, Clément; Ferretti, Patrizia; Bergonzo, Philippe; Jackman, Richard B

    2015-12-01

    We quantitatively investigate the biocompatibility of chemical vapour deposited (CVD) nanocrystalline diamond (NCD) after the inclusion of boron, with and without nanostructuring. The nanostructuring method involves a novel approach of growing NCD over carbon nanotubes (CNTs) that act as a 3D scaffold. This nanostructuring of BNCD leads to a material with increased capacitance, and this along with wide electrochemical window makes BNCD an ideal material for neural interface applications, and thus it is essential that their biocompatibility is investigated. Biocompatibility was assessed by observing the interaction of human neural stem cells (hNSCs) with a variety of NCD substrates including un-doped ones, and NCD doped with boron, which are both planar, and nanostructured. hNSCs were chosen due to their sensitivity, and various methods including cell population and confluency were used to quantify biocompatibility. Boron inclusion into NCD film was shown to have no observable effect on hNSC attachment, proliferation and viability. Furthermore, the biocompatibility of nanostructured boron-doped NCD is increased upon nanostructuring, potentially due to the increased surface area. Diamond is an attractive material for supporting the attachment and development of cells as it can show exceptional biocompatibility. When boron is used as a dopant within diamond it becomes a p-type semiconductor, and at high concentrations the diamond becomes quasi-metallic, offering the prospect of a direct electrical device-cell interfacing system.

  16. Neurofeedback-based functional near-infrared spectroscopy upregulates motor cortex activity in imagined motor tasks

    PubMed Central

    Lapborisuth, Pawan; Zhang, Xian; Noah, Adam; Hirsch, Joy

    2017-01-01

    Abstract. Neurofeedback is a method for using neural activity displayed on a computer to regulate one’s own brain function and has been shown to be a promising technique for training individuals to interact with brain–machine interface applications such as neuroprosthetic limbs. The goal of this study was to develop a user-friendly functional near-infrared spectroscopy (fNIRS)-based neurofeedback system to upregulate neural activity associated with motor imagery, which is frequently used in neuroprosthetic applications. We hypothesized that fNIRS neurofeedback would enhance activity in motor cortex during a motor imagery task. Twenty-two participants performed active and imaginary right-handed squeezing movements using an elastic ball while wearing a 98-channel fNIRS device. Neurofeedback traces representing localized cortical hemodynamic responses were graphically presented to participants in real time. Participants were instructed to observe this graphical representation and use the information to increase signal amplitude. Neural activity was compared during active and imaginary squeezing with and without neurofeedback. Active squeezing resulted in activity localized to the left premotor and supplementary motor cortex, and activity in the motor cortex was found to be modulated by neurofeedback. Activity in the motor cortex was also shown in the imaginary squeezing condition only in the presence of neurofeedback. These findings demonstrate that real-time fNIRS neurofeedback is a viable platform for brain–machine interface applications. PMID:28680906

  17. Neurofeedback-based functional near-infrared spectroscopy upregulates motor cortex activity in imagined motor tasks.

    PubMed

    Lapborisuth, Pawan; Zhang, Xian; Noah, Adam; Hirsch, Joy

    2017-04-01

    Neurofeedback is a method for using neural activity displayed on a computer to regulate one's own brain function and has been shown to be a promising technique for training individuals to interact with brain-machine interface applications such as neuroprosthetic limbs. The goal of this study was to develop a user-friendly functional near-infrared spectroscopy (fNIRS)-based neurofeedback system to upregulate neural activity associated with motor imagery, which is frequently used in neuroprosthetic applications. We hypothesized that fNIRS neurofeedback would enhance activity in motor cortex during a motor imagery task. Twenty-two participants performed active and imaginary right-handed squeezing movements using an elastic ball while wearing a 98-channel fNIRS device. Neurofeedback traces representing localized cortical hemodynamic responses were graphically presented to participants in real time. Participants were instructed to observe this graphical representation and use the information to increase signal amplitude. Neural activity was compared during active and imaginary squeezing with and without neurofeedback. Active squeezing resulted in activity localized to the left premotor and supplementary motor cortex, and activity in the motor cortex was found to be modulated by neurofeedback. Activity in the motor cortex was also shown in the imaginary squeezing condition only in the presence of neurofeedback. These findings demonstrate that real-time fNIRS neurofeedback is a viable platform for brain-machine interface applications.

  18. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System

    PubMed Central

    Milde, Moritz B.; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware. PMID:28747883

  19. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called ''Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres'', (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the ''Robust design of artificial neural networks methodology'' and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored atmore » synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of {sup 252}Cf, {sup 241}AmBe and {sup 239}PuBe neutron sources measured with a Bonner spheres system.« less

  20. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.

    PubMed

    Milde, Moritz B; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.

  1. Employing TDMA Protocol in Neural Nanonetworks in Case of Neuron Specific Faults.

    PubMed

    Tezcan, Hakan; Oktug, Sema F; Kök, Fatma Neşe

    2015-09-01

    Many neurodegenerative diseases arise from the malfunctioning neurons in the pathway where the signal is carried. In this paper, we propose neuron specific TDMA/multiplexing and demultiplexing mechanisms to convey the spikes of a receptor neuron over a neighboring path in case of an irreversible path fault existing in its original path. The multiplexing mechanism depends on neural delay box (NDB) which is composed of a relay unit and a buffering unit. The relay unit can be realized as a nanoelectronic device. The buffering unit can be implemented either via neural delay lines as employed in optical switching systems or via nanoelectronic delay lines, i.e., delay flip flops. Demultiplexing is realized by a demultiplexer unit according to the time slot assignment information. Besides, we propose the use of neural interfaces in the NDBs and the demultiplexer unit for detecting and stimulating the generation of spikes. The objective of the proposed mechanisms is to substitute a malfunctioning path, increase the number of spikes delivered and correctly deliver the spikes to the intended part of the somatosensory cortex. The results demonstrate that significant performance improvement on the successively delivered number of spikes is achievable when delay lines are employed as neural buffers in NDBs.

  2. NSDann2BS, a neutron spectrum unfolding code based on neural networks technology and two bonner spheres

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work a neutron spectrum unfolding code, based on artificial intelligence technology is presented. The code called "Neutron Spectrometry and Dosimetry with Artificial Neural Networks and two Bonner spheres", (NSDann2BS), was designed in a graphical user interface under the LabVIEW programming environment. The main features of this code are to use an embedded artificial neural network architecture optimized with the "Robust design of artificial neural networks methodology" and to use two Bonner spheres as the only piece of information. In order to build the code here presented, once the net topology was optimized and properly trained, knowledge stored at synaptic weights was extracted and using a graphical framework build on the LabVIEW programming environment, the NSDann2BS code was designed. This code is friendly, intuitive and easy to use for the end user. The code is freely available upon request to authors. To demonstrate the use of the neural net embedded in the NSDann2BS code, the rate counts of 252Cf, 241AmBe and 239PuBe neutron sources measured with a Bonner spheres system.

  3. Neural constraints on learning.

    PubMed

    Sadtler, Patrick T; Quick, Kristin M; Golub, Matthew D; Chase, Steven M; Ryu, Stephen I; Tyler-Kabara, Elizabeth C; Yu, Byron M; Batista, Aaron P

    2014-08-28

    Learning, whether motor, sensory or cognitive, requires networks of neurons to generate new activity patterns. As some behaviours are easier to learn than others, we asked if some neural activity patterns are easier to generate than others. Here we investigate whether an existing network constrains the patterns that a subset of its neurons is capable of exhibiting, and if so, what principles define this constraint. We employed a closed-loop intracortical brain-computer interface learning paradigm in which Rhesus macaques (Macaca mulatta) controlled a computer cursor by modulating neural activity patterns in the primary motor cortex. Using the brain-computer interface paradigm, we could specify and alter how neural activity mapped to cursor velocity. At the start of each session, we observed the characteristic activity patterns of the recorded neural population. The activity of a neural population can be represented in a high-dimensional space (termed the neural space), wherein each dimension corresponds to the activity of one neuron. These characteristic activity patterns comprise a low-dimensional subspace (termed the intrinsic manifold) within the neural space. The intrinsic manifold presumably reflects constraints imposed by the underlying neural circuitry. Here we show that the animals could readily learn to proficiently control the cursor using neural activity patterns that were within the intrinsic manifold. However, animals were less able to learn to proficiently control the cursor using activity patterns that were outside of the intrinsic manifold. These results suggest that the existing structure of a network can shape learning. On a timescale of hours, it seems to be difficult to learn to generate neural activity patterns that are not consistent with the existing network structure. These findings offer a network-level explanation for the observation that we are more readily able to learn new skills when they are related to the skills that we already possess.

  4. Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence

    PubMed Central

    Lourenco, Stella F.; Bonny, Justin W.; Fernandez, Edmund P.; Rao, Sonia

    2012-01-01

    Humans and nonhuman animals share the capacity to estimate, without counting, the number of objects in a set by relying on an approximate number system (ANS). Only humans, however, learn the concepts and operations of symbolic mathematics. Despite vast differences between these two systems of quantification, neural and behavioral findings suggest functional connections. Another line of research suggests that the ANS is part of a larger, more general system of magnitude representation. Reports of cognitive interactions and common neural coding for number and other magnitudes such as spatial extent led us to ask whether, and how, nonnumerical magnitude interfaces with mathematical competence. On two magnitude comparison tasks, college students estimated (without counting or explicit calculation) which of two arrays was greater in number or cumulative area. They also completed a battery of standardized math tests. Individual differences in both number and cumulative area precision (measured by accuracy on the magnitude comparison tasks) correlated with interindividual variability in math competence, particularly advanced arithmetic and geometry, even after accounting for general aspects of intelligence. Moreover, analyses revealed that whereas number precision contributed unique variance to advanced arithmetic, cumulative area precision contributed unique variance to geometry. Taken together, these results provide evidence for shared and unique contributions of nonsymbolic number and cumulative area representations to formally taught mathematics. More broadly, they suggest that uniquely human branches of mathematics interface with an evolutionarily primitive general magnitude system, which includes partially overlapping representations of numerical and nonnumerical magnitude. PMID:23091023

  5. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications

    PubMed Central

    Park, Dong-Wook; Schendel, Amelia A.; Mikael, Solomon; Brodnick, Sarah K.; Richner, Thomas J.; Ness, Jared P.; Hayat, Mohammed R.; Atry, Farid; Frye, Seth T.; Pashaie, Ramin; Thongpang, Sanitta; Ma, Zhenqiang; Williams, Justin C.

    2014-01-01

    Neural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording. We characterize optical transparency of the device at >90% transmission over the ultraviolet to infrared spectrum and demonstrate its utility through optical interface experiments that use this broad spectrum transparency. These include optogenetic activation of focal cortical areas directly beneath electrodes, in vivo imaging of the cortical vasculature via fluorescence microscopy and 3D optical coherence tomography. This study demonstrates an array of interfacing abilities of the CLEAR device and its utility for neural applications. PMID:25327513

  6. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces

    PubMed Central

    Kozai, Takashi D. Yoshida; Langhals, Nicholas B.; Patel, Paras R.; Deng, Xiaopei; Zhang, Huanan; Smith, Karen L.; Lahann, Joerg; Kotov, Nicholas A.; Kipke, Daryl R.

    2012-01-01

    Implantable neural microelectrodes that can record extracellular biopotentials from small, targeted groups of neurons are critical for neuroscience research and emerging clinical applications including brain-controlled prosthetic devices. The crucial material-dependent problem is developing microelectrodes that record neural activity from the same neurons for years with high fidelity and reliability. Here, we report the development of an integrated composite electrode consisting of a carbon-fibre core, a poly(p-xylylene)-based thin-film coating that acts as a dielectric barrier and that is functionalized to control intrinsic biological processes, and a poly(thiophene)-based recording pad. The resulting implants are an order of magnitude smaller than traditional recording electrodes, and more mechanically compliant with brain tissue. They were found to elicit much reduced chronic reactive tissue responses and enabled single-neuron recording in acute and early chronic experiments in rats. This technology, taking advantage of new composites, makes possible highly selective and stealthy neural interface devices towards realizing long-lasting implants. PMID:23142839

  7. A Feasibility Study of Synthesizing Subsurfaces Modeled with Computational Neural Networks

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Housner, Jerrold M.; Szewczyk, Z. Peter

    1998-01-01

    This paper investigates the feasibility of synthesizing substructures modeled with computational neural networks. Substructures are modeled individually with computational neural networks and the response of the assembled structure is predicted by synthesizing the neural networks. A superposition approach is applied to synthesize models for statically determinate substructures while an interface displacement collocation approach is used to synthesize statically indeterminate substructure models. Beam and plate substructures along with components of a complicated Next Generation Space Telescope (NGST) model are used in this feasibility study. In this paper, the limitations and difficulties of synthesizing substructures modeled with neural networks are also discussed.

  8. Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar.

    PubMed

    Lomp, Oliver; Richter, Mathis; Zibner, Stephan K U; Schöner, Gregor

    2016-01-01

    Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar , which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.

  9. Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar

    PubMed Central

    Lomp, Oliver; Richter, Mathis; Zibner, Stephan K. U.; Schöner, Gregor

    2016-01-01

    Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar, which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs. PMID:27853431

  10. Real-time Experiment Interface for Biological Control Applications

    PubMed Central

    Lin, Risa J.; Bettencourt, Jonathan; White, John A.; Christini, David J.; Butera, Robert J.

    2013-01-01

    The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org). PMID:21096883

  11. The impact of neurotechnology on rehabilitation.

    PubMed

    Berger, Theodore W; Gerhardt, Greg; Liker, Mark A; Soussou, Walid

    2008-01-01

    This paper present results of a multi-disciplinary project that is developing a microchip-based neural prosthesis for the hippocampus, a region of the brain responsible for the formation of long-term memories. Damage to the hippocampus is frequently associated with epilepsy, stroke, and dementia (Alzheimer's disease) and is considered to underlie the memory deficits related to these neurological conditions. The essential goals of the multi-laboratory effort include: (1) experimental study of neuron and neural network function--how does the hippocampus encode information? (2) formulation of biologically realistic models of neural system dynamics--can that encoding process be described mathematically to realize a predictive model of how the hippocampus responds to any event? (3) microchip implementation of neural system models--can the mathematical model be realized as a set of electronic circuits to achieve parallel processing, rapid computational speed, and miniaturization? and (4) creation of hybrid neuron-silicon interfaces-can structural and functional connections between electronic devices and neural tissue be achieved for long-term, bi-directional communication with the brain? By integrating solutions to these component problems, we are realizing a microchip-based model of hippocampal nonlinear dynamics that can perform the same function as part of the hippocampus. Through bi-directional communication with other neural tissue that normally provides the inputs and outputs to/from a damaged hippocampal area, the biomimetic model could serve as a neural prosthesis. A proof-of-concept will be presented in which the CA3 region of the hippocampal slice is surgically removed and is replaced by a microchip model of CA3 nonlinear dynamics--the "hybrid" hippocampal circuit displays normal physiological properties. How the work in brain slices is being extended to behaving animals also will be described.

  12. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.

    PubMed

    Wang, Yiwen; Wang, Fang; Xu, Kai; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang

    2015-05-01

    Reinforcement learning (RL)-based brain machine interfaces (BMIs) enable the user to learn from the environment through interactions to complete the task without desired signals, which is promising for clinical applications. Previous studies exploited Q-learning techniques to discriminate neural states into simple directional actions providing the trial initial timing. However, the movements in BMI applications can be quite complicated, and the action timing explicitly shows the intention when to move. The rich actions and the corresponding neural states form a large state-action space, imposing generalization difficulty on Q-learning. In this paper, we propose to adopt attention-gated reinforcement learning (AGREL) as a new learning scheme for BMIs to adaptively decode high-dimensional neural activities into seven distinct movements (directional moves, holdings and resting) due to the efficient weight-updating. We apply AGREL on neural data recorded from M1 of a monkey to directly predict a seven-action set in a time sequence to reconstruct the trajectory of a center-out task. Compared to Q-learning techniques, AGREL could improve the target acquisition rate to 90.16% in average with faster convergence and more stability to follow neural activity over multiple days, indicating the potential to achieve better online decoding performance for more complicated BMI tasks.

  13. Unscented Kalman Filter for Brain-Machine Interfaces

    PubMed Central

    Li, Zheng; O'Doherty, Joseph E.; Hanson, Timothy L.; Lebedev, Mikhail A.; Henriquez, Craig S.; Nicolelis, Miguel A. L.

    2009-01-01

    Brain machine interfaces (BMIs) are devices that convert neural signals into commands to directly control artificial actuators, such as limb prostheses. Previous real-time methods applied to decoding behavioral commands from the activity of populations of neurons have generally relied upon linear models of neural tuning and were limited in the way they used the abundant statistical information contained in the movement profiles of motor tasks. Here, we propose an n-th order unscented Kalman filter which implements two key features: (1) use of a non-linear (quadratic) model of neural tuning which describes neural activity significantly better than commonly-used linear tuning models, and (2) augmentation of the movement state variables with a history of n-1 recent states, which improves prediction of the desired command even before incorporating neural activity information and allows the tuning model to capture relationships between neural activity and movement at multiple time offsets simultaneously. This new filter was tested in BMI experiments in which rhesus monkeys used their cortical activity, recorded through chronically implanted multielectrode arrays, to directly control computer cursors. The 10th order unscented Kalman filter outperformed the standard Kalman filter and the Wiener filter in both off-line reconstruction of movement trajectories and real-time, closed-loop BMI operation. PMID:19603074

  14. Flexible microelectrode array for interfacing with the surface of neural ganglia

    NASA Astrophysics Data System (ADS)

    Sperry, Zachariah J.; Na, Kyounghwan; Parizi, Saman S.; Chiel, Hillel J.; Seymour, John; Yoon, Euisik; Bruns, Tim M.

    2018-06-01

    Objective. The dorsal root ganglia (DRG) are promising nerve structures for sensory neural interfaces because they provide centralized access to primary afferent cell bodies and spinal reflex circuitry. In order to harness this potential, new electrode technologies are needed which take advantage of the unique properties of DRG, specifically the high density of neural cell bodies at the dorsal surface. Here we report initial in vivo results from the development of a flexible non-penetrating polyimide electrode array interfacing with the surface of ganglia. Approach. Multiple layouts of a 64-channel iridium electrode (420 µm2) array were tested, with pitch as small as 25 µm. The buccal ganglia of invertebrate sea slug Aplysia californica were used to develop handling and recording techniques with ganglionic surface electrode arrays (GSEAs). We also demonstrated the GSEA’s capability to record single- and multi-unit activity from feline lumbosacral DRG related to a variety of sensory inputs, including cutaneous brushing, joint flexion, and bladder pressure. Main results. We recorded action potentials from a variety of Aplysia neurons activated by nerve stimulation, and units were observed firing simultaneously on closely spaced electrode sites. We also recorded single- and multi-unit activity associated with sensory inputs from feline DRG. We utilized spatial oversampling of action potentials on closely-spaced electrode sites to estimate the location of neural sources at between 25 µm and 107 µm below the DRG surface. We also used the high spatial sampling to demonstrate a possible spatial sensory map of one feline’s DRG. We obtained activation of sensory fibers with low-amplitude stimulation through individual or groups of GSEA electrode sites. Significance. Overall, the GSEA has been shown to provide a variety of information types from ganglia neurons and to have significant potential as a tool for neural mapping and interfacing.

  15. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task

    NASA Astrophysics Data System (ADS)

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.

    2014-12-01

    Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.

  16. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.

    PubMed

    Revechkis, Boris; Aflalo, Tyson N S; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A

    2014-12-01

    To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like 'Face in a Crowd' task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the 'Crowd') using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a 'Crowd Off' condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.

  17. Manufacturing, assembling and packaging of miniaturized implants for neural prostheses and brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas

    2009-05-01

    Implantable medical devices to interface with muscles, peripheral nerves, and the brain have been developed for many applications over the last decades. They have been applied in fundamental neuroscientific studies as well as in diagnosis, therapy and rehabilitation in clinical practice. Success stories of these implants have been written with help of precision mechanics manufacturing techniques. Latest cutting edge research approaches to restore vision in blind persons and to develop an interface with the human brain as motor control interface, however, need more complex systems and larger scales of integration and higher degrees of miniaturization. Microsystems engineering offers adequate tools, methods, and materials but so far, no MEMS based active medical device has been transferred into clinical practice. Silicone rubber, polyimide, parylene as flexible materials and silicon and alumina (aluminum dioxide ceramics) as substrates and insulation or packaging materials, respectively, and precious metals as electrodes have to be combined to systems that do not harm the biological target structure and have to work reliably in a wet environment with ions and proteins. Here, different design, manufacturing and packaging paradigms will be presented and strengths and drawbacks will be discussed in close relation to the envisioned biological and medical applications.

  18. A Low-Cost Multielectrode System for Data Acquisition Enabling Real-Time Closed-Loop Processing with Rapid Recovery from Stimulation Artifacts

    PubMed Central

    Rolston, John D.; Gross, Robert E.; Potter, Steve M.

    2009-01-01

    Commercially available data acquisition systems for multielectrode recording from freely moving animals are expensive, often rely on proprietary software, and do not provide detailed, modifiable circuit schematics. When used in conjunction with electrical stimulation, they are prone to prolonged, saturating stimulation artifacts that prevent the recording of short-latency evoked responses. Yet electrical stimulation is integral to many experimental designs, and critical for emerging brain-computer interfacing and neuroprosthetic applications. To address these issues, we developed an easy-to-use, modifiable, and inexpensive system for multielectrode neural recording and stimulation. Setup costs are less than US$10,000 for 64 channels, an order of magnitude lower than comparable commercial systems. Unlike commercial equipment, the system recovers rapidly from stimulation and allows short-latency action potentials (<1 ms post-stimulus) to be detected, facilitating closed-loop applications and exposing neural activity that would otherwise remain hidden. To illustrate this capability, evoked activity from microstimulation of the rodent hippocampus is presented. System noise levels are similar to existing platforms, and extracellular action potentials and local field potentials can be recorded simultaneously. The system is modular, in banks of 16 channels, and flexible in usage: while primarily designed for in vivo use, it can be combined with commercial preamplifiers to record from in vitro multielectrode arrays. The system's open-source control software, NeuroRighter, is implemented in C#, with an easy-to-use graphical interface. As C# functions in a managed code environment, which may impact performance, analysis was conducted to ensure comparable speed to C++ for this application. Hardware schematics, layout files, and software are freely available. Since maintaining wired headstage connections with freely moving animals is difficult, we describe a new method of electrode-headstage coupling using neodymium magnets. PMID:19668698

  19. Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release.

    PubMed

    Castagnola, Elisa; Carli, Stefano; Vomero, Maria; Scarpellini, Alice; Prato, Mirko; Goshi, Noah; Fadiga, Luciano; Kassegne, Sam; Ricci, Davide

    2017-07-13

    The authors present an electrochemically controlled, drug releasing neural interface composed of a glassy carbon (GC) microelectrode array combined with a multilayer poly(3,4-ethylenedioxythiophene) (PEDOT) coating. The system integrates the high stability of the GC electrode substrate, ideal for electrical stimulation and electrochemical detection of neurotransmitters, with the on-demand drug-releasing capabilities of PEDOT-dexamethasone compound, through a mechanically stable interlayer of PEDOT-polystyrene sulfonate (PSS)-carbon nanotubes (CNT). The authors demonstrate that such interlayer improves both the mechanical and electrochemical properties of the neural interface, when compared with a single PEDOT-dexamethasone coating. Moreover, the multilayer coating is able to withstand 10 × 10 6 biphasic pulses and delamination test with negligible change to the impedance spectra. Cross-section scanning electron microscopy images support that the PEDOT-PSS-CNT interlayer significantly improves the adhesion between the GC substrate and PEDOT-dexamethasone coating, showing no discontinuities between the three well-interconnected layers. Furthermore, the multilayer coating has superior electrochemical properties, in terms of impedance and charge transfer capabilities as compared to a single layer of either PEDOT coating or the GC substrate alone. The authors verified the drug releasing capabilities of the PEDOT-dexamethasone layer when integrated into the multilayer interface through repeated stimulation protocols in vitro, and found a pharmacologically relevant release of dexamethasone.

  20. Power plant fault detection using artificial neural network

    NASA Astrophysics Data System (ADS)

    Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul

    2018-02-01

    The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.

  1. Programmable neural processing on a smartdust for brain-computer interfaces.

    PubMed

    Yuwen Sun; Shimeng Huang; Oresko, Joseph J; Cheng, Allen C

    2010-10-01

    Brain-computer interfaces (BCIs) offer tremendous promise for improving the quality of life for disabled individuals. BCIs use spike sorting to identify the source of each neural firing. To date, spike sorting has been performed by either using off-chip analysis, which requires a wired connection penetrating the skull to a bulky external power/processing unit, or via custom application-specific integrated circuits that lack the programmability to perform different algorithms and upgrades. In this research, we propose and test the feasibility of performing on-chip, real-time spike sorting on a programmable smartdust, including feature extraction, classification, compression, and wireless transmission. A detailed power/performance tradeoff analysis using DVFS is presented. Our experimental results show that the execution time and power density meet the requirements to perform real-time spike sorting and wireless transmission on a single neural channel.

  2. Acoustic emission data assisted process monitoring.

    PubMed

    Yen, Gary G; Lu, Haiming

    2002-07-01

    Gas-liquid two-phase flows are widely used in the chemical industry. Accurate measurements of flow parameters, such as flow regimes, are the key of operating efficiency. Due to the interface complexity of a two-phase flow, it is very difficult to monitor and distinguish flow regimes on-line and real time. In this paper we propose a cost-effective and computation-efficient acoustic emission (AE) detection system combined with artificial neural network technology to recognize four major patterns in an air-water vertical two-phase flow column. Several crucial AE parameters are explored and validated, and we found that the density of acoustic emission events and ring-down counts are two excellent indicators for the flow pattern recognition problems. Instead of the traditional Fair map, a hit-count map is developed and a multilayer Perceptron neural network is designed as a decision maker to describe an approximate transmission stage of a given two-phase flow system.

  3. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex.

    PubMed

    Yu, Ki Jun; Kuzum, Duygu; Hwang, Suk-Won; Kim, Bong Hoon; Juul, Halvor; Kim, Nam Heon; Won, Sang Min; Chiang, Ken; Trumpis, Michael; Richardson, Andrew G; Cheng, Huanyu; Fang, Hui; Thomson, Marissa; Bink, Hank; Talos, Delia; Seo, Kyung Jin; Lee, Hee Nam; Kang, Seung-Kyun; Kim, Jae-Hwan; Lee, Jung Yup; Huang, Younggang; Jensen, Frances E; Dichter, Marc A; Lucas, Timothy H; Viventi, Jonathan; Litt, Brian; Rogers, John A

    2016-07-01

    Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required.

  4. Smart-Pixel Array Processors Based on Optimal Cellular Neural Networks for Space Sensor Applications

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Sheu, Bing J.; Venus, Holger; Sandau, Rainer

    1997-01-01

    A smart-pixel cellular neural network (CNN) with hardware annealing capability, digitally programmable synaptic weights, and multisensor parallel interface has been under development for advanced space sensor applications. The smart-pixel CNN architecture is a programmable multi-dimensional array of optoelectronic neurons which are locally connected with their local neurons and associated active-pixel sensors. Integration of the neuroprocessor in each processor node of a scalable multiprocessor system offers orders-of-magnitude computing performance enhancements for on-board real-time intelligent multisensor processing and control tasks of advanced small satellites. The smart-pixel CNN operation theory, architecture, design and implementation, and system applications are investigated in detail. The VLSI (Very Large Scale Integration) implementation feasibility was illustrated by a prototype smart-pixel 5x5 neuroprocessor array chip of active dimensions 1380 micron x 746 micron in a 2-micron CMOS technology.

  5. A lysinated thiophene-based semiconductor as a multifunctional neural bioorganic interface.

    PubMed

    Bonetti, Simone; Pistone, Assunta; Brucale, Marco; Karges, Saskia; Favaretto, Laura; Zambianchi, Massimo; Posati, Tamara; Sagnella, Anna; Caprini, Marco; Toffanin, Stefano; Zamboni, Roberto; Camaioni, Nadia; Muccini, Michele; Melucci, Manuela; Benfenati, Valentina

    2015-06-03

    Lysinated molecular organic semiconductors are introduced as valuable multifunctional platforms for neural cells growth and interfacing. Cast films of quaterthiophene (T4) semiconductor covalently modified with lysine-end moieties (T4Lys) are fabricated and their stability, morphology, optical/electrical, and biocompatibility properties are characterized. T4Lys films exhibit fluorescence and electronic transport as generally observed for unsubstituted oligothiophenes combined to humidity-activated ionic conduction promoted by the charged lysine-end moieties. The Lys insertion in T4 enables adhesion of primary culture of rat dorsal root ganglion (DRG), which is not achievable by plating cells on T4. Notably, on T4Lys, the number on adhering neurons/area is higher and displays a twofold longer neurite length than neurons plated on glass coated with poly-l-lysine. Finally, by whole-cell patch-clamp, it is shown that the biofunctionality of neurons cultured on T4Lys is preserved. The present study introduces an innovative concept for organic material neural interface that combines optical and iono-electronic functionalities with improved biocompatibility and neuron affinity promoted by Lys linkage and the softness of organic semiconductors. Lysinated organic semiconductors could set the scene for the fabrication of simplified bioorganic devices geometry for cells bidirectional communication or optoelectronic control of neural cells biofunctionality. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Spiking Neural Network in sEMG Feature Extraction.

    PubMed

    Lobov, Sergey; Mironov, Vasiliy; Kastalskiy, Innokentiy; Kazantsev, Victor

    2015-11-03

    We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control.

  7. Applying cybernetic technology to diagnose human pulmonary sounds.

    PubMed

    Chen, Mei-Yung; Chou, Cheng-Han

    2014-06-01

    Chest auscultation is a crucial and efficient method for diagnosing lung disease; however, it is a subjective process that relies on physician experience and the ability to differentiate between various sound patterns. Because the physiological signals composed of heart sounds and pulmonary sounds (PSs) are greater than 120 Hz and the human ear is not sensitive to low frequencies, successfully making diagnostic classifications is difficult. To solve this problem, we constructed various PS recognition systems for classifying six PS classes: vesicular breath sounds, bronchial breath sounds, tracheal breath sounds, crackles, wheezes, and stridor sounds. First, we used a piezoelectric microphone and data acquisition card to acquire PS signals and perform signal preprocessing. A wavelet transform was used for feature extraction, and the PS signals were decomposed into frequency subbands. Using a statistical method, we extracted 17 features that were used as the input vectors of a neural network. We proposed a 2-stage classifier combined with a back-propagation (BP) neural network and learning vector quantization (LVQ) neural network, which improves classification accuracy by using a haploid neural network. The receiver operating characteristic (ROC) curve verifies the high performance level of the neural network. To expand traditional auscultation methods, we constructed various PS diagnostic systems that can correctly classify the six common PSs. The proposed device overcomes the lack of human sensitivity to low-frequency sounds and various PS waves, characteristic values, and a spectral analysis charts are provided to elucidate the design of the human-machine interface.

  8. Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice

    PubMed Central

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Ivashkina, O. I.; Zots, M. A.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2013-01-01

    Seeing the big picture of functional responses within large neural networks in a freely functioning brain is crucial for understanding the cellular mechanisms behind the higher nervous activity, including the most complex brain functions, such as cognition and memory. As a breakthrough toward meeting this challenge, implantable fiber-optic interfaces integrating advanced optogenetic technologies and cutting-edge fiber-optic solutions have been demonstrated, enabling a long-term optogenetic manipulation of neural circuits in freely moving mice. Here, we show that a specifically designed implantable fiber-optic interface provides a powerful tool for parallel long-term optical interrogation of distinctly separate, functionally different sites in the brain of freely moving mice. This interface allows the same groups of neurons lying deeply in the brain of a freely behaving mouse to be reproducibly accessed and optically interrogated over many weeks, providing a long-term dynamic detection of genome activity in response to a broad variety of pharmacological and physiological stimuli. PMID:24253232

  9. Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Ivashkina, O. I.; Zots, M. A.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2013-11-01

    Seeing the big picture of functional responses within large neural networks in a freely functioning brain is crucial for understanding the cellular mechanisms behind the higher nervous activity, including the most complex brain functions, such as cognition and memory. As a breakthrough toward meeting this challenge, implantable fiber-optic interfaces integrating advanced optogenetic technologies and cutting-edge fiber-optic solutions have been demonstrated, enabling a long-term optogenetic manipulation of neural circuits in freely moving mice. Here, we show that a specifically designed implantable fiber-optic interface provides a powerful tool for parallel long-term optical interrogation of distinctly separate, functionally different sites in the brain of freely moving mice. This interface allows the same groups of neurons lying deeply in the brain of a freely behaving mouse to be reproducibly accessed and optically interrogated over many weeks, providing a long-term dynamic detection of genome activity in response to a broad variety of pharmacological and physiological stimuli.

  10. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.

    PubMed

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A; Panilaitis, Bruce; Frechette, Eric S; Contreras, Diego; Kaplan, David L; Omenetto, Fiorenzo G; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R; Litt, Brian; Rogers, John A

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  11. Dissolvable Films of Silk Fibroin for Ultrathin, Conformal Bio-Integrated Electronics

    PubMed Central

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2011-01-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain-machine interfaces. This paper describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable or surgical devices. PMID:20400953

  12. Treatment effectiveness of brain-computer interface training for patients with focal hand dystonia: A double-case study.

    PubMed

    Hashimoto, Yasunari; Ota, Tetsuo; Mukaino, Masahiko; Ushiba, Junichi

    2013-01-01

    Neuronal mechanism underlying dystonia is poorly understood. Dystonia can be treated with botulinum toxin injections or deep brain stimulation but these methods are not available for every patient therefore we need to consider other methods Our study aimed to develop a novel rehabilitation training using brain-computer interface system that decreases neural overexcitation in the sensorimotor cortex by bypassing brain and external world without the normal neuromuscular pathway. To achieve this purpose, we recorded electroencephalograms (10 channels) and forearm electromyograms (3 channels) from 2 patients with the diagnosis of writer's cramp and healthy control participants as a preliminary experiment. The patients were trained to control amplitude of their electroencephalographic signal using feedback from the brain-computer interface for 1 hour a day and then continued the training twice a month. After the 5-month training, a patient clearly showed reduction of dystonic movement during writing.

  13. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyeong; Viventi, Jonathan; Amsden, Jason J.; Xiao, Jianliang; Vigeland, Leif; Kim, Yun-Soung; Blanco, Justin A.; Panilaitis, Bruce; Frechette, Eric S.; Contreras, Diego; Kaplan, David L.; Omenetto, Fiorenzo G.; Huang, Yonggang; Hwang, Keh-Chih; Zakin, Mitchell R.; Litt, Brian; Rogers, John A.

    2010-06-01

    Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.

  14. Motor-commands decoding using peripheral nerve signals: a review

    NASA Astrophysics Data System (ADS)

    Hong, Keum-Shik; Aziz, Nida; Ghafoor, Usman

    2018-06-01

    During the last few decades, substantial scientific and technological efforts have been focused on the development of neuroprostheses. The major emphasis has been on techniques for connecting the human nervous system with a robotic prosthesis via natural-feeling interfaces. The peripheral nerves provide access to highly processed and segregated neural command signals from the brain that can in principle be used to determine user intent and control muscles. If these signals could be used, they might allow near-natural and intuitive control of prosthetic limbs with multiple degrees of freedom. This review summarizes the history of neuroprosthetic interfaces and their ability to record from and stimulate peripheral nerves. We also discuss the types of interfaces available and their applications, the kinds of peripheral nerve signals that are used, and the algorithms used to decode them. Finally, we explore the prospects for future development in this area.

  15. Intention Concepts and Brain-Machine Interfacing

    PubMed Central

    Thinnes-Elker, Franziska; Iljina, Olga; Apostolides, John Kyle; Kraemer, Felicitas; Schulze-Bonhage, Andreas; Aertsen, Ad; Ball, Tonio

    2012-01-01

    Intentions, including their temporal properties and semantic content, are receiving increased attention, and neuroscientific studies in humans vary with respect to the topography of intention-related neural responses. This may reflect the fact that the kind of intentions investigated in one study may not be exactly the same kind investigated in the other. Fine-grained intention taxonomies developed in the philosophy of mind may be useful to identify the neural correlates of well-defined types of intentions, as well as to disentangle them from other related mental states, such as mere urges to perform an action. Intention-related neural signals may be exploited by brain-machine interfaces (BMIs) that are currently being developed to restore speech and motor control in paralyzed patients. Such BMI devices record the brain activity of the agent, interpret (“decode”) the agent’s intended action, and send the corresponding execution command to an artificial effector system, e.g., a computer cursor or a robotic arm. In the present paper, we evaluate the potential of intention concepts from philosophy of mind to improve the performance and safety of BMIs based on higher-order, intention-related control signals. To this end, we address the distinction between future-, present-directed, and motor intentions, as well as the organization of intentions in time, specifically to what extent it is sequential or hierarchical. This has consequences as to whether these different types of intentions can be expected to occur simultaneously or not. We further illustrate how it may be useful or even necessary to distinguish types of intentions exposited in philosophy, including yes- vs. no-intentions and oblique vs. direct intentions, to accurately decode the agent’s intentions from neural signals in practical BMI applications. PMID:23162504

  16. A Neuron-Specific Antiviral Mechanism Prevents Lethal Flaviviral Infection of Mosquitoes

    PubMed Central

    Xiao, Xiaoping; Zhang, Rudian; Pang, Xiaojing; Liang, Guodong; Wang, Penghua; Cheng, Gong

    2015-01-01

    Mosquitoes are natural vectors for many etiologic agents of human viral diseases. Mosquito-borne flaviviruses can persistently infect the mosquito central nervous system without causing dramatic pathology or influencing the mosquito behavior and lifespan. The mechanism by which the mosquito nervous system resists flaviviral infection is still largely unknown. Here we report that an Aedes aegypti homologue of the neural factor Hikaru genki (AaHig) efficiently restricts flavivirus infection of the central nervous system. AaHig was predominantly expressed in the mosquito nervous system and localized to the plasma membrane of neural cells. Functional blockade of AaHig enhanced Dengue virus (DENV) and Japanese encephalitis virus (JEV), but not Sindbis virus (SINV), replication in mosquito heads and consequently caused neural apoptosis and a dramatic reduction in the mosquito lifespan. Consistently, delivery of recombinant AaHig to mosquitoes reduced viral infection. Furthermore, the membrane-localized AaHig directly interfaced with a highly conserved motif in the surface envelope proteins of DENV and JEV, and consequently interrupted endocytic viral entry into mosquito cells. Loss of either plasma membrane targeting or virion-binding ability rendered AaHig nonfunctional. Interestingly, Culex pipien pallens Hig also demonstrated a prominent anti-flavivirus activity, suggesting a functionally conserved function for Hig. Our results demonstrate that an evolutionarily conserved antiviral mechanism prevents lethal flaviviral infection of the central nervous system in mosquitoes, and thus may facilitate flaviviral transmission in nature. PMID:25915054

  17. Neural Coding for Effective Rehabilitation

    PubMed Central

    2014-01-01

    Successful neurological rehabilitation depends on accurate diagnosis, effective treatment, and quantitative evaluation. Neural coding, a technology for interpretation of functional and structural information of the nervous system, has contributed to the advancements in neuroimaging, brain-machine interface (BMI), and design of training devices for rehabilitation purposes. In this review, we summarized the latest breakthroughs in neuroimaging from microscale to macroscale levels with potential diagnostic applications for rehabilitation. We also reviewed the achievements in electrocorticography (ECoG) coding with both animal models and human beings for BMI design, electromyography (EMG) interpretation for interaction with external robotic systems, and robot-assisted quantitative evaluation on the progress of rehabilitation programs. Future rehabilitation would be more home-based, automatic, and self-served by patients. Further investigations and breakthroughs are mainly needed in aspects of improving the computational efficiency in neuroimaging and multichannel ECoG by selection of localized neuroinformatics, validation of the effectiveness in BMI guided rehabilitation programs, and simplification of the system operation in training devices. PMID:25258708

  18. Review of wireless and wearable electroencephalogram systems and brain-computer interfaces--a mini-review.

    PubMed

    Lin, Chin-Teng; Ko, Li-Wei; Chang, Meng-Hsiu; Duann, Jeng-Ren; Chen, Jing-Ying; Su, Tung-Ping; Jung, Tzyy-Ping

    2010-01-01

    Biomedical signal monitoring systems have rapidly advanced in recent years, propelled by significant advances in electronic and information technologies. Brain-computer interface (BCI) is one of the important research branches and has become a hot topic in the study of neural engineering, rehabilitation, and brain science. Traditionally, most BCI systems use bulky, wired laboratory-oriented sensing equipments to measure brain activity under well-controlled conditions within a confined space. Using bulky sensing equipments not only is uncomfortable and inconvenient for users, but also impedes their ability to perform routine tasks in daily operational environments. Furthermore, owing to large data volumes, signal processing of BCI systems is often performed off-line using high-end personal computers, hindering the applications of BCI in real-world environments. To be practical for routine use by unconstrained, freely-moving users, BCI systems must be noninvasive, nonintrusive, lightweight and capable of online signal processing. This work reviews recent online BCI systems, focusing especially on wearable, wireless and real-time systems. Copyright 2009 S. Karger AG, Basel.

  19. Organic electrode coatings for next-generation neural interfaces

    PubMed Central

    Aregueta-Robles, Ulises A.; Woolley, Andrew J.; Poole-Warren, Laura A.; Lovell, Nigel H.; Green, Rylie A.

    2014-01-01

    Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes. PMID:24904405

  20. Missileborne Artificial Vision System (MAVIS)

    NASA Technical Reports Server (NTRS)

    Andes, David K.; Witham, James C.; Miles, Michael D.

    1994-01-01

    Several years ago when INTEL and China Lake designed the ETANN chip, analog VLSI appeared to be the only way to do high density neural computing. In the last five years, however, digital parallel processing chips capable of performing neural computation functions have evolved to the point of rough equality with analog chips in system level computational density. The Naval Air Warfare Center, China Lake, has developed a real time, hardware and software system designed to implement and evaluate biologically inspired retinal and cortical models. The hardware is based on the Adaptive Solutions Inc. massively parallel CNAPS system COHO boards. Each COHO board is a standard size 6U VME card featuring 256 fixed point, RISC processors running at 20 MHz in a SIMD configuration. Each COHO board has a companion board built to support a real time VSB interface to an imaging seeker, a NTSC camera, and to other COHO boards. The system is designed to have multiple SIMD machines each performing different corticomorphic functions. The system level software has been developed which allows a high level description of corticomorphic structures to be translated into the native microcode of the CNAPS chips. Corticomorphic structures are those neural structures with a form similar to that of the retina, the lateral geniculate nucleus, or the visual cortex. This real time hardware system is designed to be shrunk into a volume compatible with air launched tactical missiles. Initial versions of the software and hardware have been completed and are in the early stages of integration with a missile seeker.

  1. Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces

    PubMed Central

    Song, Y.-K.; Borton, D. A.; Park, S.; Patterson, W. R.; Bull, C. W.; Laiwalla, F.; Mislow, J.; Simeral, J. D.; Donoghue, J. P.; Nurmikko, A. V.

    2010-01-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a microelectrode array cortical to an external computer for neural control applications. Our implantable microsystem enables presently 16-channel broadband neural recording in a non-human primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including via radio frequency by induction, or infrared light via a photovoltaic converter. As of today, the implant has been tested as a sub-chronic unit in non-human primates (~ 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  2. Long term in vitro stability of fully integrated wireless neural interfaces based on Utah slant electrode array

    NASA Astrophysics Data System (ADS)

    Sharma, Asha; Rieth, Loren; Tathireddy, Prashant; Harrison, Reid; Solzbacher, Florian

    2010-02-01

    We herein report in vitro functional stability and recording longevity of a fully integrated wireless neural interface (INI). The INI uses biocompatible Parylene-C as an encapsulation layer, and was immersed in phosphate buffered saline (PBS) for a period of over 150 days. The full functionality (wireless radio-frequency power, command, and signal transmission) and the ability of INI to record artificial action potentials even after 150 days of PBS soaking without any change in signal/noise amplitude constitutes a major milestone in long term stability, and evaluate the encapsulation reliability, functional stability, and potential usefulness for future chronic implants.

  3. Quantum neural network-based EEG filtering for a brain-computer interface.

    PubMed

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  4. Feature extraction using extrema sampling of discrete derivatives for spike sorting in implantable upper-limb neural prostheses.

    PubMed

    Zamani, Majid; Demosthenous, Andreas

    2014-07-01

    Next generation neural interfaces for upper-limb (and other) prostheses aim to develop implantable interfaces for one or more nerves, each interface having many neural signal channels that work reliably in the stump without harming the nerves. To achieve real-time multi-channel processing it is important to integrate spike sorting on-chip to overcome limitations in transmission bandwidth. This requires computationally efficient algorithms for feature extraction and clustering suitable for low-power hardware implementation. This paper describes a new feature extraction method for real-time spike sorting based on extrema analysis (namely positive peaks and negative peaks) of spike shapes and their discrete derivatives at different frequency bands. Employing simulation across different datasets, the accuracy and computational complexity of the proposed method are assessed and compared with other methods. The average classification accuracy of the proposed method in conjunction with online sorting (O-Sort) is 91.6%, outperforming all the other methods tested with the O-Sort clustering algorithm. The proposed method offers a better tradeoff between classification error and computational complexity, making it a particularly strong choice for on-chip spike sorting.

  5. Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.

    PubMed

    Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng

    2016-02-01

    This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.

  6. An introduction to neural networks surgery, a field of neuromodulation which is based on advances in neural networks science and digitised brain imaging.

    PubMed

    Sakas, D E; Panourias, I G; Simpson, B A

    2007-01-01

    Operative Neuromodulation is the field of altering electrically or chemically the signal transmission in the nervous system by implanted devices in order to excite, inhibit or tune the activities of neurons or neural networks and produce therapeutic effects. The present article reviews relevant literature on procedures or devices applied either in contact with the cerebral cortex or cranial nerves or in deep sites inside the brain in order to treat various refractory neurological conditions such as: a) chronic pain (facial, somatic, deafferentation, phantom limb), b) movement disorders (Parkinson's disease, dystonia, Tourette syndrome), c) epilepsy, d) psychiatric disease, e) hearing deficits, and f) visual loss. These data indicate that in operative neuromodulation, a new field emerges that is based on neural networks research and on advances in digitised stereometric brain imaging which allow precise localisation of cerebral neural networks and their relay stations; this field can be described as Neural networks surgery because it aims to act extrinsically or intrinsically on neural networks and to alter therapeutically the neural signal transmission with the use of implantable electrical or electronic devices. The authors also review neurotechnology literature relevant to neuroengineering, nanotechnologies, brain computer interfaces, hybrid cultured probes, neuromimetics, neuroinformatics, neurocomputation, and computational neuromodulation; the latter field is dedicated to the study of the biophysical and mathematical characteristics of electrochemical neuromodulation. The article also brings forward particularly interesting lines of research such as the carbon nanofibers electrode arrays for simultaneous electrochemical recording and stimulation, closed-loop systems for responsive neuromodulation, and the intracortical electrodes for restoring hearing or vision. The present review of cerebral neuromodulatory procedures highlights the transition from the conventional neurosurgery of resective or ablative techniques to a highly selective "surgery of networks". The dynamics of the convergence of the above biomedical and technological fields with biological restorative approaches have important implications for patients with severe neurological disorders.

  7. Digital implementation of a neural network for imaging

    NASA Astrophysics Data System (ADS)

    Wood, Richard; McGlashan, Alex; Yatulis, Jay; Mascher, Peter; Bruce, Ian

    2012-10-01

    This paper outlines the design and testing of a digital imaging system that utilizes an artificial neural network with unsupervised and supervised learning to convert streaming input (real time) image space into parameter space. The primary objective of this work is to investigate the effectiveness of using a neural network to significantly reduce the information density of streaming images so that objects can be readily identified by a limited set of primary parameters and act as an enhanced human machine interface (HMI). Many applications are envisioned including use in biomedical imaging, anomaly detection and as an assistive device for the visually impaired. A digital circuit was designed and tested using a Field Programmable Gate Array (FPGA) and an off the shelf digital camera. Our results indicate that the networks can be readily trained when subject to limited sets of objects such as the alphabet. We can also separate limited object sets with rotational and positional invariance. The results also show that limited visual fields form with only local connectivity.

  8. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface.

    PubMed

    Lajoie, Guillaume; Krouchev, Nedialko I; Kalaska, John F; Fairhall, Adrienne L; Fetz, Eberhard E

    2017-02-01

    Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.

  9. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface

    PubMed Central

    Lajoie, Guillaume; Kalaska, John F.; Fairhall, Adrienne L.; Fetz, Eberhard E.

    2017-01-01

    Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity. PMID:28151957

  10. Nanowire FET Based Neural Element for Robotic Tactile Sensing Skin

    PubMed Central

    Taube Navaraj, William; García Núñez, Carlos; Shakthivel, Dhayalan; Vinciguerra, Vincenzo; Labeau, Fabrice; Gregory, Duncan H.; Dahiya, Ravinder

    2017-01-01

    This paper presents novel Neural Nanowire Field Effect Transistors (υ-NWFETs) based hardware-implementable neural network (HNN) approach for tactile data processing in electronic skin (e-skin). The viability of Si nanowires (NWs) as the active material for υ-NWFETs in HNN is explored through modeling and demonstrated by fabricating the first device. Using υ-NWFETs to realize HNNs is an interesting approach as by printing NWs on large area flexible substrates it will be possible to develop a bendable tactile skin with distributed neural elements (for local data processing, as in biological skin) in the backplane. The modeling and simulation of υ-NWFET based devices show that the overlapping areas between individual gates and the floating gate determines the initial synaptic weights of the neural network - thus validating the working of υ-NWFETs as the building block for HNN. The simulation has been further extended to υ-NWFET based circuits and neuronal computation system and this has been validated by interfacing it with a transparent tactile skin prototype (comprising of 6 × 6 ITO based capacitive tactile sensors array) integrated on the palm of a 3D printed robotic hand. In this regard, a tactile data coding system is presented to detect touch gesture and the direction of touch. Following these simulation studies, a four-gated υ-NWFET is fabricated with Pt/Ti metal stack for gates, source and drain, Ni floating gate, and Al2O3 high-k dielectric layer. The current-voltage characteristics of fabricated υ-NWFET devices confirm the dependence of turn-off voltages on the (synaptic) weight of each gate. The presented υ-NWFET approach is promising for a neuro-robotic tactile sensory system with distributed computing as well as numerous futuristic applications such as prosthetics, and electroceuticals. PMID:28979183

  11. Java-Based Diabetes Type 2 Prediction Tool for Better Diagnosis

    PubMed Central

    Odedra, Devang; Mallick, Medhavi; Shukla, Prateek; Samanta, Subir; Vidyarthi, Ambarish S.

    2012-01-01

    Abstract Background The concept of classification of clinical data can be utilized in the development of an effective diagnosis system by taking the advantage of computational intelligence. Diabetes disease diagnosis via proper interpretation of the diabetes data is an important problem in neural networks. Unfortunately, although several classification studies have been carried out with significant performance, many of the current methods often fail to reach out to patients. Graphical user interface-enabled tools need to be developed through which medical practitioners can simply enter the health profiles of their patients and receive an instant diabetes prediction with an acceptable degree of confidence. Methods In this study, the neural network approach was used for a dataset of 768 persons from a Pima Indian population living near Phoenix, AZ. A neural network mixture of experts model was trained with these data using the expectation-minimization algorithm. Results The mixture of experts method was used to train the algorithm with 97% accuracy. A graphical user interface was developed that would work in conjunction with the trained network to provide the output in a presentable format. Conclusions This study provides a machine-implementable approach that can be used by physicians and patients to minimize the extent of error in diagnosis. The authors are hopeful that replication of results of this study in other populations may lead to improved diagnosis. Physicians can simply enter the health profile of patients and get the diagnosis for diabetes type 2. PMID:22059431

  12. Massively Parallel Signal Processing using the Graphics Processing Unit for Real-Time Brain-Computer Interface Feature Extraction.

    PubMed

    Wilson, J Adam; Williams, Justin C

    2009-01-01

    The clock speeds of modern computer processors have nearly plateaued in the past 5 years. Consequently, neural prosthetic systems that rely on processing large quantities of data in a short period of time face a bottleneck, in that it may not be possible to process all of the data recorded from an electrode array with high channel counts and bandwidth, such as electrocorticographic grids or other implantable systems. Therefore, in this study a method of using the processing capabilities of a graphics card [graphics processing unit (GPU)] was developed for real-time neural signal processing of a brain-computer interface (BCI). The NVIDIA CUDA system was used to offload processing to the GPU, which is capable of running many operations in parallel, potentially greatly increasing the speed of existing algorithms. The BCI system records many channels of data, which are processed and translated into a control signal, such as the movement of a computer cursor. This signal processing chain involves computing a matrix-matrix multiplication (i.e., a spatial filter), followed by calculating the power spectral density on every channel using an auto-regressive method, and finally classifying appropriate features for control. In this study, the first two computationally intensive steps were implemented on the GPU, and the speed was compared to both the current implementation and a central processing unit-based implementation that uses multi-threading. Significant performance gains were obtained with GPU processing: the current implementation processed 1000 channels of 250 ms in 933 ms, while the new GPU method took only 27 ms, an improvement of nearly 35 times.

  13. Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke.

    PubMed

    Do, An H; Wang, Po T; King, Christine E; Schombs, Andrew; Cramer, Steven C; Nenadic, Zoran

    2012-01-01

    Gait impairment due to foot drop is a common outcome of stroke, and current physiotherapy provides only limited restoration of gait function. Gait function can also be aided by orthoses, but these devices may be cumbersome and their benefits disappear upon removal. Hence, new neuro-rehabilitative therapies are being sought to generate permanent improvements in motor function beyond those of conventional physiotherapies through positive neural plasticity processes. Here, the authors describe an electroencephalogram (EEG) based brain-computer interface (BCI) controlled functional electrical stimulation (FES) system that enabled a stroke subject with foot drop to re-establish foot dorsiflexion. To this end, a prediction model was generated from EEG data collected as the subject alternated between periods of idling and attempted foot dorsiflexion. This prediction model was then used to classify online EEG data into either "idling" or "dorsiflexion" states, and this information was subsequently used to control an FES device to elicit effective foot dorsiflexion. The performance of the system was assessed in online sessions, where the subject was prompted by a computer to alternate between periods of idling and dorsiflexion. The subject demonstrated purposeful operation of the BCI-FES system, with an average cross-correlation between instructional cues and BCI-FES response of 0.60 over 3 sessions. In addition, analysis of the prediction model indicated that non-classical brain areas were activated in the process, suggesting post-stroke cortical re-organization. In the future, these systems may be explored as a potential therapeutic tool that can help promote positive plasticity and neural repair in chronic stroke patients.

  14. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model

    PubMed Central

    Ryu, Stephen I.

    2017-01-01

    Accurate motor control is mediated by internal models of how neural activity generates movement. We examined neural correlates of an adapting internal model of visuomotor gain in motor cortex while two macaques performed a reaching task in which the gain scaling between the hand and a presented cursor was varied. Previous studies of cortical changes during visuomotor adaptation focused on preparatory and perimovement epochs and analyzed trial-averaged neural data. Here, we recorded simultaneous neural population activity using multielectrode arrays and focused our analysis on neural differences in the period before the target appeared. We found that we could estimate the monkey's internal model of the gain using the neural population state during this pretarget epoch. This neural correlate depended on the gain experienced during recent trials and it predicted the speed of the subsequent reach. To explore the utility of this internal model estimate for brain–machine interfaces, we performed an offline analysis showing that it can be used to compensate for upcoming reach extent errors. Together, these results demonstrate that pretarget neural activity in motor cortex reflects the monkey's internal model of visuomotor gain on single trials and can potentially be used to improve neural prostheses. SIGNIFICANCE STATEMENT When generating movement commands, the brain is believed to use internal models of the relationship between neural activity and the body's movement. Visuomotor adaptation tasks have revealed neural correlates of these computations in multiple brain areas during movement preparation and execution. Here, we describe motor cortical changes in a visuomotor gain change task even before a specific movement is cued. We were able to estimate the gain internal model from these pretarget neural correlates and relate it to single-trial behavior. This is an important step toward understanding the sensorimotor system's algorithms for updating its internal models after specific movements and errors. Furthermore, the ability to estimate the internal model before movement could improve motor neural prostheses being developed for people with paralysis. PMID:28087767

  15. A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.

    PubMed

    Yip, Marcus; Jin, Rui; Nakajima, Hideko Heidi; Stankovic, Konstantina M; Chandrakasan, Anantha P

    2015-01-01

    A system-on-chip for an invisible, fully-implantable cochlear implant is presented. Implantable acoustic sensing is achieved by interfacing the SoC to a piezoelectric sensor that detects the sound-induced motion of the middle ear. Measurements from human cadaveric ears demonstrate that the sensor can detect sounds between 40 and 90 dB SPL over the speech bandwidth. A highly-reconfigurable digital sound processor enables system power scalability by reconfiguring the number of channels, and provides programmable features to enable a patient-specific fit. A mixed-signal arbitrary waveform neural stimulator enables energy-optimal stimulation pulses to be delivered to the auditory nerve. The energy-optimal waveform is validated with in-vivo measurements from four human subjects which show a 15% to 35% energy saving over the conventional rectangular waveform. Prototyped in a 0.18 μ m high-voltage CMOS technology, the SoC in 8-channel mode consumes 572 μ W of power including stimulation. The SoC integrates implantable acoustic sensing, sound processing, and neural stimulation on one chip to minimize the implant size, and proof-of-concept is demonstrated with measurements from a human cadaver ear.

  16. PyNEST: A Convenient Interface to the NEST Simulator.

    PubMed

    Eppler, Jochen Martin; Helias, Moritz; Muller, Eilif; Diesmann, Markus; Gewaltig, Marc-Oliver

    2008-01-01

    The neural simulation tool NEST (http://www.nest-initiative.org) is a simulator for heterogeneous networks of point neurons or neurons with a small number of compartments. It aims at simulations of large neural systems with more than 10(4) neurons and 10(7) to 10(9) synapses. NEST is implemented in C++ and can be used on a large range of architectures from single-core laptops over multi-core desktop computers to super-computers with thousands of processor cores. Python (http://www.python.org) is a modern programming language that has recently received considerable attention in Computational Neuroscience. Python is easy to learn and has many extension modules for scientific computing (e.g. http://www.scipy.org). In this contribution we describe PyNEST, the new user interface to NEST. PyNEST combines NEST's efficient simulation kernel with the simplicity and flexibility of Python. Compared to NEST's native simulation language SLI, PyNEST makes it easier to set up simulations, generate stimuli, and analyze simulation results. We describe how PyNEST connects NEST and Python and how it is implemented. With a number of examples, we illustrate how it is used.

  17. Microchannel neural interface manufacture by stacking silicone and metal foil laminae

    NASA Astrophysics Data System (ADS)

    Lancashire, Henry T.; Vanhoestenberghe, Anne; Pendegrass, Catherine J.; Ajam, Yazan Al; Magee, Elliot; Donaldson, Nick; Blunn, Gordon W.

    2016-06-01

    Objective. Microchannel neural interfaces (MNIs) overcome problems with recording from peripheral nerves by amplifying signals independent of node of Ranvier position. Selective recording and stimulation using an MNI requires good insulation between microchannels and a high electrode density. We propose that stacking microchannel laminae will improve selectivity over single layer MNI designs due to the increase in electrode number and an improvement in microchannel sealing. Approach. This paper describes a manufacturing method for creating MNIs which overcomes limitations on electrode connectivity and microchannel sealing. Laser cut silicone—metal foil laminae were stacked using plasma bonding to create an array of microchannels containing tripolar electrodes. Electrodes were DC etched and electrode impedance and cyclic voltammetry were tested. Main results. MNIs with 100 μm and 200 μm diameter microchannels were manufactured. High electrode density MNIs are achievable with electrodes present in every microchannel. Electrode impedances of 27.2 ± 19.8 kΩ at 1 kHz were achieved. Following two months of implantation in Lewis rat sciatic nerve, micro-fascicles were observed regenerating through the MNI microchannels. Significance. Selective MNIs with the peripheral nervous system may allow upper limb amputees to control prostheses intuitively.

  18. PyNEST: A Convenient Interface to the NEST Simulator

    PubMed Central

    Eppler, Jochen Martin; Helias, Moritz; Muller, Eilif; Diesmann, Markus; Gewaltig, Marc-Oliver

    2008-01-01

    The neural simulation tool NEST (http://www.nest-initiative.org) is a simulator for heterogeneous networks of point neurons or neurons with a small number of compartments. It aims at simulations of large neural systems with more than 104 neurons and 107 to 109 synapses. NEST is implemented in C++ and can be used on a large range of architectures from single-core laptops over multi-core desktop computers to super-computers with thousands of processor cores. Python (http://www.python.org) is a modern programming language that has recently received considerable attention in Computational Neuroscience. Python is easy to learn and has many extension modules for scientific computing (e.g. http://www.scipy.org). In this contribution we describe PyNEST, the new user interface to NEST. PyNEST combines NEST's efficient simulation kernel with the simplicity and flexibility of Python. Compared to NEST's native simulation language SLI, PyNEST makes it easier to set up simulations, generate stimuli, and analyze simulation results. We describe how PyNEST connects NEST and Python and how it is implemented. With a number of examples, we illustrate how it is used. PMID:19198667

  19. Neural system prediction and identification challenge.

    PubMed

    Vlachos, Ioannis; Zaytsev, Yury V; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind

    2013-01-01

    Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.

  20. Neural system prediction and identification challenge

    PubMed Central

    Vlachos, Ioannis; Zaytsev, Yury V.; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind

    2013-01-01

    Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered. PMID:24399966

  1. On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity.

    PubMed

    Xu, Zhiming; So, Rosa Q; Toe, Kyaw Kyar; Ang, Kai Keng; Guan, Cuntai

    2014-01-01

    This paper presents an asynchronously intracortical brain-computer interface (BCI) which allows the subject to continuously drive a mobile robot. This system has a great implication for disabled patients to move around. By carefully designing a multiclass support vector machine (SVM), the subject's self-paced instantaneous movement intents are continuously decoded to control the mobile robot. In particular, we studied the stability of the neural representation of the movement directions. Experimental results on the nonhuman primate showed that the overt movement directions were stably represented in ensemble of recorded units, and our SVM classifier could successfully decode such movements continuously along the desired movement path. However, the neural representation of the stop state for the self-paced control was not stably represented and could drift.

  2. Visual guidance in control of grasping.

    PubMed

    Janssen, Peter; Scherberger, Hansjörg

    2015-07-08

    Humans and other primates possess a unique capacity to grasp and manipulate objects skillfully, a facility pervasive in everyday life that has undoubtedly contributed to the success of our species. When we reach and grasp an object, various cortical areas in the parietal and frontal lobes work together effortlessly to analyze object shape and position, transform this visual information into useful motor commands, and implement these motor representations to preshape the hand before contact with the object is made. In recent years, a growing number of studies have investigated the neural circuits underlying object grasping in both the visual and motor systems of the macaque monkey. The accumulated knowledge not only helps researchers understand how object grasping is implemented in the primate brain but may also contribute to the development of novel neural interfaces and neuroprosthetics.

  3. A wireless multi-channel recording system for freely behaving mice and rats.

    PubMed

    Fan, David; Rich, Dylan; Holtzman, Tahl; Ruther, Patrick; Dalley, Jeffrey W; Lopez, Alberto; Rossi, Mark A; Barter, Joseph W; Salas-Meza, Daniel; Herwik, Stanislav; Holzhammer, Tobias; Morizio, James; Yin, Henry H

    2011-01-01

    To understand the neural basis of behavior, it is necessary to record brain activity in freely moving animals. Advances in implantable multi-electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions. The full potential of this approach is currently limited by reliance on cable tethers, with bundles of wires connecting the implanted electrodes to the data acquisition system while impeding the natural behavior of the animal. To overcome these limitations, here we introduce a multi-channel wireless headstage system designed for small animals such as rats and mice. A variety of single unit and local field potential signals were recorded from the dorsal striatum and substantia nigra in mice and the ventral striatum and prefrontal cortex simultaneously in rats. This wireless system could be interfaced with commercially available data acquisition systems, and the signals obtained were comparable in quality to those acquired using cable tethers. On account of its small size, light weight, and rechargeable battery, this wireless headstage system is suitable for studying the neural basis of natural behavior, eliminating the need for wires, commutators, and other limitations associated with traditional tethered recording systems.

  4. A Wireless Multi-Channel Recording System for Freely Behaving Mice and Rats

    PubMed Central

    Holtzman, Tahl; Ruther, Patrick; Dalley, Jeffrey W.; Lopez, Alberto; Rossi, Mark A.; Barter, Joseph W.; Salas-Meza, Daniel; Herwik, Stanislav; Holzhammer, Tobias; Morizio, James; Yin, Henry H.

    2011-01-01

    To understand the neural basis of behavior, it is necessary to record brain activity in freely moving animals. Advances in implantable multi-electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions. The full potential of this approach is currently limited by reliance on cable tethers, with bundles of wires connecting the implanted electrodes to the data acquisition system while impeding the natural behavior of the animal. To overcome these limitations, here we introduce a multi-channel wireless headstage system designed for small animals such as rats and mice. A variety of single unit and local field potential signals were recorded from the dorsal striatum and substantia nigra in mice and the ventral striatum and prefrontal cortex simultaneously in rats. This wireless system could be interfaced with commercially available data acquisition systems, and the signals obtained were comparable in quality to those acquired using cable tethers. On account of its small size, light weight, and rechargeable battery, this wireless headstage system is suitable for studying the neural basis of natural behavior, eliminating the need for wires, commutators, and other limitations associated with traditional tethered recording systems. PMID:21765934

  5. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Wang, Yiwen; Wang, Yueming; Wang, Fang; Hao, Yaoyao; Zhang, Shaomin; Zhang, Qiaosheng; Chen, Weidong; Zheng, Xiaoxiang

    2013-04-01

    Objective. The high-dimensional neural recordings bring computational challenges to movement decoding in motor brain machine interfaces (mBMI), especially for portable applications. However, not all recorded neural activities relate to the execution of a certain movement task. This paper proposes to use a local-learning-based method to perform neuron selection for the gesture prediction in a reaching and grasping task. Approach. Nonlinear neural activities are decomposed into a set of linear ones in a weighted feature space. A margin is defined to measure the distance between inter-class and intra-class neural patterns. The weights, reflecting the importance of neurons, are obtained by minimizing a margin-based exponential error function. To find the most dominant neurons in the task, 1-norm regularization is introduced to the objective function for sparse weights, where near-zero weights indicate irrelevant neurons. Main results. The signals of only 10 neurons out of 70 selected by the proposed method could achieve over 95% of the full recording's decoding accuracy of gesture predictions, no matter which different decoding methods are used (support vector machine and K-nearest neighbor). The temporal activities of the selected neurons show visually distinguishable patterns associated with various hand states. Compared with other algorithms, the proposed method can better eliminate the irrelevant neurons with near-zero weights and provides the important neuron subset with the best decoding performance in statistics. The weights of important neurons converge usually within 10-20 iterations. In addition, we study the temporal and spatial variation of neuron importance along a period of one and a half months in the same task. A high decoding performance can be maintained by updating the neuron subset. Significance. The proposed algorithm effectively ascertains the neuronal importance without assuming any coding model and provides a high performance with different decoding models. It shows better robustness of identifying the important neurons with noisy signals presented. The low demand of computational resources which, reflected by the fast convergence, indicates the feasibility of the method applied in portable BMI systems. The ascertainment of the important neurons helps to inspect neural patterns visually associated with the movement task. The elimination of irrelevant neurons greatly reduces the computational burden of mBMI systems and maintains the performance with better robustness.

  6. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.

    PubMed

    Shaeri, Mohammad Ali; Sodagar, Amir M

    2015-05-01

    This paper proposes an efficient data compression technique dedicated to implantable intra-cortical neural recording devices. The proposed technique benefits from processing neural signals in the Discrete Haar Wavelet Transform space, a new spike extraction approach, and a novel data framing scheme to telemeter the recorded neural information to the outside world. Based on the proposed technique, a 64-channel neural signal processor was designed and prototyped as a part of a wireless implantable extra-cellular neural recording microsystem. Designed in a 0.13- μ m standard CMOS process, the 64-channel neural signal processor reported in this paper occupies ∼ 0.206 mm(2) of silicon area, and consumes 94.18 μW when operating under a 1.2-V supply voltage at a master clock frequency of 1.28 MHz.

  7. Pattern learning with deep neural networks in EMG-based speech recognition.

    PubMed

    Wand, Michael; Schultz, Tanja

    2014-01-01

    We report on classification of phones and phonetic features from facial electromyographic (EMG) data, within the context of our EMG-based Silent Speech interface. In this paper we show that a Deep Neural Network can be used to perform this classification task, yielding a significant improvement over conventional Gaussian Mixture models. Our central contribution is the visualization of patterns which are learned by the neural network. With increasing network depth, these patterns represent more and more intricate electromyographic activity.

  8. Neural-Network-Development Program

    NASA Technical Reports Server (NTRS)

    Phillips, Todd A.

    1993-01-01

    NETS, software tool for development and evaluation of neural networks, provides simulation of neural-network algorithms plus computing environment for development of such algorithms. Uses back-propagation learning method for all of networks it creates. Enables user to customize patterns of connections between layers of network. Also provides features for saving, during learning process, values of weights, providing more-precise control over learning process. Written in ANSI standard C language. Machine-independent version (MSC-21588) includes only code for command-line-interface version of NETS 3.0.

  9. A Bidirectional Neural Interface IC with Chopper Stabilized BioADC Array and Charge Balanced Stimulator

    PubMed Central

    Greenwald, Elliot; So, Ernest; Wang, Qihong; Mollazadeh, Mohsen; Maier, Christoph; Etienne-Cummings, Ralph; Cauwenberghs, Gert; Thakor, Nitish

    2016-01-01

    We present a bidirectional neural interface with a 4-channel biopotential analog-to-digital converter (bioADC) and a 4-channel current-mode stimulator in 180nm CMOS. The bioADC directly transduces microvolt biopotentials into a digital representation without a voltage-amplification stage. Each bioADC channel comprises a continuous-time first-order ΔΣ modulator with a chopper-stabilized OTA input and current feedback, followed by a second-order comb-filter decimator with programmable oversampling ratio. Each stimulator channel contains two independent digital-to-analog converters for anodic and cathodic current generation. A shared calibration circuit matches the amplitude of the anodic and cathodic currents for charge balancing. Powered from a 1.5V supply, the analog and digital circuits in each recording channel draw on average 1.54 μA and 2.13 μA of supply current, respectively. The bioADCs achieve an SNR of 58 dB and a SFDR of >70 dB, for better than 9-b ENOB. Intracranial EEG recordings from an anesthetized rat are shown and compared to simultaneous recordings from a commercial reference system to validate performance in-vivo. Additionally, we demonstrate bidirectional operation by recording cardiac modulation induced through vagus nerve stimulation, and closed-loop control of cardiac rhythm. The micropower operation, direct digital readout, and integration of electrical stimulation circuits make this interface ideally suited for closed-loop neuromodulation applications. PMID:27845676

  10. Synthesis and characterization of sputtered titanium nitride as a nucleation layer for novel neural electrode coatings

    NASA Astrophysics Data System (ADS)

    Sait, R. A.; Cross, R. B. M.

    2017-12-01

    A growing demand for chronically implantable electrodes has led to a search for the most suitable neural electrode interface material. Nobel metals such as platinum (Pt) are inadequate for electrode/neuron interfaces at small scales due to their poor electrochemical properties, low charge injection and high charge density per unit area. Titanium nitride (TiN) has been implemented in neural electrodes application due to its outstanding properties. In this work, TiNx films were deposited by non-reactive radio frequency (RF) magnetron sputtering towards the development of a novel TiN nanowires (NWs) neural interface. Although, there is substantial work on this material, its growth using non-reactive RF magnetron sputtering has not been reported previously and optimised towards the growth of TiN NWs and their use in neural interface applications. The sputtering parameters of RF power and argon (Ar) flow rate were varied in order to investigate their effects on the structural, electrical and electrochemical properties of the TiN films. A dense film morphology was observed in the scanning electron microscopy (SEM) images of TiN thin films showing a columnar structure. The film preferential orientation was changed between (200) and (111) with Ar flow rate due to the variation of the kinetic energy (KE) of the sputtered atoms. The crystallites size obtained were in the range of 13-95 nm. Surface roughness was found to increase from 0.69 to 1.95 nm as Ar flow rate increased. TiNx films showed a good electrical resistivity of 228 μΩ cm. Stoichiometry was found to vary with sputtering conditions in which the nitrogen content was found to deplete from the film at low Ar flow rate. The electrochemical behaviour of TiN films were characterised and the highest capacitance value obtained was 0.416 mF/cm2. From the results, it can be suggested that TiN thin film can be easily optimised to act as a nucleation layer for the growth of nanowires.

  11. Selectivity and Longevity of Peripheral-Nerve and Machine Interfaces: A Review

    PubMed Central

    Ghafoor, Usman; Kim, Sohee; Hong, Keum-Shik

    2017-01-01

    For those individuals with upper-extremity amputation, a daily normal living activity is no longer possible or it requires additional effort and time. With the aim of restoring their sensory and motor functions, theoretical and technological investigations have been carried out in the field of neuroprosthetic systems. For transmission of sensory feedback, several interfacing modalities including indirect (non-invasive), direct-to-peripheral-nerve (invasive), and cortical stimulation have been applied. Peripheral nerve interfaces demonstrate an edge over the cortical interfaces due to the sensitivity in attaining cortical brain signals. The peripheral nerve interfaces are highly dependent on interface designs and are required to be biocompatible with the nerves to achieve prolonged stability and longevity. Another criterion is the selection of nerves that allows minimal invasiveness and damages as well as high selectivity for a large number of nerve fascicles. In this paper, we review the nerve-machine interface modalities noted above with more focus on peripheral nerve interfaces, which are responsible for provision of sensory feedback. The invasive interfaces for recording and stimulation of electro-neurographic signals include intra-fascicular, regenerative-type interfaces that provide multiple contact channels to a group of axons inside the nerve and the extra-neural-cuff-type interfaces that enable interaction with many axons around the periphery of the nerve. Section Current Prosthetic Technology summarizes the advancements made to date in the field of neuroprosthetics toward the achievement of a bidirectional nerve-machine interface with more focus on sensory feedback. In the Discussion section, the authors propose a hybrid interface technique for achieving better selectivity and long-term stability using the available nerve interfacing techniques. PMID:29163122

  12. Optical Control of Living Cells Electrical Activity by Conjugated Polymers.

    PubMed

    Martino, Nicola; Bossio, Caterina; Vaquero Morata, Susana; Lanzani, Guglielmo; Antognazza, Maria Rosa

    2016-01-28

    Hybrid interfaces between organic semiconductors and living tissues represent a new tool for in-vitro and in-vivo applications. In particular, conjugated polymers display several optimal properties as substrates for biological systems, such as good biocompatibility, excellent mechanical properties, cheap and easy processing technology, and possibility of deposition on light, thin and flexible substrates. These materials have been employed for cellular interfaces like neural probes, transistors for excitation and recording of neural activity, biosensors and actuators for drug release. Recent experiments have also demonstrated the possibility to use conjugated polymers for all-optical modulation of the electrical activity of cells. Several in-vitro study cases have been reported, including primary neuronal networks, astrocytes and secondary line cells. Moreover, signal photo-transduction mediated by organic polymers has been shown to restore light sensitivity in degenerated retinas, suggesting that these devices may be used for artificial retinal prosthesis in the future. All in all, light sensitive conjugated polymers represent a new approach for optical modulation of cellular activity. In this work, all the steps required to fabricate a bio-polymer interface for optical excitation of living cells are described. The function of the active interface is to transduce the light stimulus into a modulation of the cell membrane potential. As a study case, useful for in-vitro studies, a polythiophene thin film is used as the functional, light absorbing layer, and Human Embryonic Kidney (HEK-293) cells are employed as the biological component of the interface. Practical examples of successful control of the cell membrane potential upon stimulation with light pulses of different duration are provided. In particular, it is shown that both depolarizing and hyperpolarizing effects on the cell membrane can be achieved depending on the duration of the light stimulus. The reported protocol is of general validity and can be straightforwardly extended to other biological preparations.

  13. Mirror neural training induced by virtual reality in brain-computer interfaces may provide a promising approach for the autism therapy.

    PubMed

    Zhu, Huaping; Sun, Yaoru; Zeng, Jinhua; Sun, Hongyu

    2011-05-01

    Previous studies have suggested that the dysfunction of the human mirror neuron system (hMNS) plays an important role in the autism spectrum disorder (ASD). In this work, we propose a novel training program from our interdisciplinary research to improve mirror neuron functions of autistic individuals by using a BCI system with virtual reality technology. It is a promising approach for the autism to learn and develop social communications in a VR environment. A test method for this hypothesis is also provided. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Compact microelectrode array system: tool for in situ monitoring of drug effects on neurotransmitter release from neural cells.

    PubMed

    Chen, Yu; Guo, Chunxian; Lim, Layhar; Cheong, Serchoong; Zhang, Qingxin; Tang, Kumcheong; Reboud, Julien

    2008-02-15

    This paper presents a compact microelectrode array (MEA) system, to study potassium ion-induced dopamine release from PC12 neural cells, without relying on a micromanipulator and a microscope. The MEA chip was integrated with a custom-made "test jig", which provides a robust electrical interfacing tool between the microchip and the macroenvironment, together with a potentiostat and a microfluidic syringe pump. This integrated system significantly simplifies the operation procedures, enhances sensing performance, and reduces fabrication costs. The achieved detection limit for dopamine is 3.8 x 10-2 muM (signal/noise, S/N = 3) and the dopamine linear calibration range is up to 7.39 +/- 0.06 muM (mean +/- SE). The effects of the extracelluar matrix collagen coating of the microelectrodes on dopamine sensing behaviors, as well as the influences of K+ and l-3,4-digydroxyphenylalanine concentrations and incubation times on dopamine release, were extensively studied. The results show that our system is well suited for biologists to study chemical release from living cells as well as drug effects on secreting cells. The current system also shows a potential for further improvements toward a multichip array system for drug screening applications.

  15. Novel neural interface for implant electrodes: improving electroactivity of polypyrrole through MWNT incorporation.

    PubMed

    Green, R A; Williams, C M; Lovell, N H; Poole-Warren, L A

    2008-04-01

    Multi-walled carbon nanotubes (MWNTs) can be incorporated into conductive polymers to produce superior materials for neural interfaces with high interfacial areas, conductivity and electrochemical stability. This paper explores the addition of MWNTs to polypyrrole (PPy) through two methods, layering and codeposition. Conductivity of PPy doped with polystyrene sulfonate (PSS), a commonly used dopant, was improved by 50% when MWNTs were layered with PPy/PSS. The film electrochemical stability was improved from 38% activity to 66% activity after 400 cycles of oxidation and reduction. Growth inhibition assays indicated that MWNTs are not growth inhibitory. The electroactive polymer-MWNT composites produced demonstrate properties that suggest they are promising candidates for biomedical electrode coatings.

  16. Integration of active devices on smart polymers for neural interfaces

    NASA Astrophysics Data System (ADS)

    Avendano-Bolivar, Adrian Emmanuel

    The increasing ability to ever more precisely identify and measure neural interactions and other phenomena in the central and peripheral nervous systems is revolutionizing our understanding of the human body and brain. To facilitate further understanding, more sophisticated neural devices, perhaps using microelectronics processing, must be fabricated. Materials often used in these neural interfaces, while compatible with these fabrication processes, are not optimized for long-term use in the body and are often orders of magnitude stiffer than the tissue with which they interact. Using the smart polymer substrates described in this work, suitability for processing as well as chronic implantation is demonstrated. We explore how to integrate reliable circuitry onto these flexible, biocompatible substrates that can withstand the aggressive environment of the body. To increase the capabilities of these devices beyond individual channel sensing and stimulation, active electronics must also be included onto our systems. In order to add this functionality to these substrates and explore the limits of these devices, we developed a process to fabricate single organic thin film transistors with mobilities up to 0.4 cm2/Vs and threshold voltages close to 0V. A process for fabricating organic light emitting diodes on flexible substrates is also addressed. We have set a foundation and demonstrated initial feasibility for integrating multiple transistors onto thin-film flexible devices to create new applications, such as matrix addressable functionalized electrodes and organic light emitting diodes. A brief description on how to integrate waveguides for their use in optogenetics is addressed. We have built understanding about device constraints on mechanical, electrical and in vivo reliability and how various conditions affect the electronics' lifetime. We use a bi-layer gate dielectric using an inorganic material such as HfO 2 combined with organic Parylene-c. A study of reliability of widely used Parylene-c encapsulation for in vivo conditions for thin film transistors is presented. These various inquiries, taken in their entirety, facilitate understanding of fundamental problems for biocompatible, chronic electronic device implants in the body, leading to a new set of tools and devices that will help understand complex problems in neuroscience and materials research.

  17. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Rodriguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetrymore » with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.« less

  18. Evaluating the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Solís Sánches, L. O.; Miranda, R. Castañeda; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2013-07-01

    In this work the performance of two neutron spectrum unfolding codes based on iterative procedures and artificial neural networks is evaluated. The first one code based on traditional iterative procedures and called Neutron spectrometry and dosimetry from the Universidad Autonoma de Zacatecas (NSDUAZ) use the SPUNIT iterative algorithm and was designed to unfold neutron spectrum and calculate 15 dosimetric quantities and 7 IAEA survey meters. The main feature of this code is the automated selection of the initial guess spectrum trough a compendium of neutron spectrum compiled by the IAEA. The second one code known as Neutron spectrometry and dosimetry with artificial neural networks (NDSann) is a code designed using neural nets technology. The artificial intelligence approach of neural net does not solve mathematical equations. By using the knowledge stored at synaptic weights on a neural net properly trained, the code is capable to unfold neutron spectrum and to simultaneously calculate 15 dosimetric quantities, needing as entrance data, only the rate counts measured with a Bonner spheres system. Similarities of both NSDUAZ and NSDann codes are: they follow the same easy and intuitive user's philosophy and were designed in a graphical interface under the LabVIEW programming environment. Both codes unfold the neutron spectrum expressed in 60 energy bins, calculate 15 dosimetric quantities and generate a full report in HTML format. Differences of these codes are: NSDUAZ code was designed using classical iterative approaches and needs an initial guess spectrum in order to initiate the iterative procedure. In NSDUAZ, a programming routine was designed to calculate 7 IAEA instrument survey meters using the fluence-dose conversion coefficients. NSDann code use artificial neural networks for solving the ill-conditioned equation system of neutron spectrometry problem through synaptic weights of a properly trained neural network. Contrary to iterative procedures, in neural net approach it is possible to reduce the rate counts used to unfold the neutron spectrum. To evaluate these codes a computer tool called Neutron Spectrometry and dosimetry computer tool was designed. The results obtained with this package are showed. The codes here mentioned are freely available upon request to the authors.

  19. Advantages of soft subdural implants for the delivery of electrochemical neuromodulation therapies to the spinal cord

    NASA Astrophysics Data System (ADS)

    Capogrosso, Marco; Gandar, Jerome; Greiner, Nathan; Moraud, Eduardo Martin; Wenger, Nikolaus; Shkorbatova, Polina; Musienko, Pavel; Minev, Ivan; Lacour, Stephanie; Courtine, Grégoire

    2018-04-01

    Objective. We recently developed soft neural interfaces enabling the delivery of electrical and chemical stimulation to the spinal cord. These stimulations restored locomotion in animal models of paralysis. Soft interfaces can be placed either below or above the dura mater. Theoretically, the subdural location combines many advantages, including increased selectivity of electrical stimulation, lower stimulation thresholds, and targeted chemical stimulation through local drug delivery. However, these advantages have not been documented, nor have their functional impact been studied in silico or in a relevant animal model of neurological disorders using a multimodal neural interface. Approach. We characterized the recruitment properties of subdural interfaces using a realistic computational model of the rat spinal cord that included explicit representation of the spinal roots. We then validated and complemented computer simulations with electrophysiological experiments in rats. We additionally performed behavioral experiments in rats that received a lateral spinal cord hemisection and were implanted with a soft interface. Main results. In silico and in vivo experiments showed that the subdural location decreased stimulation thresholds compared to the epidural location while retaining high specificity. This feature reduces power consumption and risks of long-term damage in the tissues, thus increasing the clinical safety profile of this approach. The hemisection induced a transient paralysis of the leg ipsilateral to the injury. During this period, the delivery of electrical stimulation restricted to the injured side combined with local chemical modulation enabled coordinated locomotor movements of the paralyzed leg without affecting the non-impaired leg in all tested rats. Electrode properties remained stable over time, while anatomical examinations revealed excellent bio-integration properties. Significance. Soft neural interfaces inserted subdurally provide the opportunity to deliver electrical and chemical neuromodulation therapies using a single, bio-compatible and mechanically compliant device that effectively alleviates locomotor deficits after spinal cord injury.

  20. Performance sustaining intracortical neural prostheses

    NASA Astrophysics Data System (ADS)

    Nuyujukian, Paul; Kao, Jonathan C.; Fan, Joline M.; Stavisky, Sergey D.; Ryu, Stephen I.; Shenoy, Krishna V.

    2014-12-01

    Objective. Neural prostheses, or brain-machine interfaces, aim to restore efficient communication and movement ability to those suffering from paralysis. A major challenge these systems face is robust performance, particularly with aging signal sources. The aim in this study was to develop a neural prosthesis that could sustain high performance in spite of signal instability while still minimizing retraining time. Approach. We trained two rhesus macaques implanted with intracortical microelectrode arrays 1-4 years prior to this study to acquire targets with a neurally-controlled cursor. We measured their performance via achieved bitrate (bits per second, bps). This task was repeated over contiguous days to evaluate the sustained performance across time. Main results. We found that in the monkey with a younger (i.e., two year old) implant and better signal quality, a fixed decoder could sustain performance for a month at a rate of 4 bps, the highest achieved communication rate reported to date. This fixed decoder was evaluated across 22 months and experienced a performance decline at a rate of 0.24 bps yr-1. In the monkey with the older (i.e., 3.5 year old) implant and poorer signal quality, a fixed decoder could not sustain performance for more than a few days. Nevertheless, performance in this monkey was maintained for two weeks without requiring additional online retraining time by utilizing prior days’ experimental data. Upon analysis of the changes in channel tuning, we found that this stability appeared partially attributable to the cancelling-out of neural tuning fluctuations when projected to two-dimensional cursor movements. Significance. The findings in this study (1) document the highest-performing communication neural prosthesis in monkeys, (2) confirm and extend prior reports of the stability of fixed decoders, and (3) demonstrate a protocol for system stability under conditions where fixed decoders would otherwise fail. These improvements to decoder stability are important for minimizing training time and should make neural prostheses more practical to use.

  1. Cerebral Aneurysms Fact Sheet

    MedlinePlus

    ... Dementias Epilepsy Parkinson's Disease Spinal Cord Injury Traumatic Brain Injury Focus On Tools & Topics Bioengineering Neural Interfaces Biomarkers Health Disparities Stem Cell Trans-Agency Activities ...

  2. Simulator for neural networks and action potentials.

    PubMed

    Baxter, Douglas A; Byrne, John H

    2007-01-01

    A key challenge for neuroinformatics is to devise methods for representing, accessing, and integrating vast amounts of diverse and complex data. A useful approach to represent and integrate complex data sets is to develop mathematical models [Arbib (The Handbook of Brain Theory and Neural Networks, pp. 741-745, 2003); Arbib and Grethe (Computing the Brain: A Guide to Neuroinformatics, 2001); Ascoli (Computational Neuroanatomy: Principles and Methods, 2002); Bower and Bolouri (Computational Modeling of Genetic and Biochemical Networks, 2001); Hines et al. (J. Comput. Neurosci. 17, 7-11, 2004); Shepherd et al. (Trends Neurosci. 21, 460-468, 1998); Sivakumaran et al. (Bioinformatics 19, 408-415, 2003); Smolen et al. (Neuron 26, 567-580, 2000); Vadigepalli et al. (OMICS 7, 235-252, 2003)]. Models of neural systems provide quantitative and modifiable frameworks for representing data and analyzing neural function. These models can be developed and solved using neurosimulators. One such neurosimulator is simulator for neural networks and action potentials (SNNAP) [Ziv (J. Neurophysiol. 71, 294-308, 1994)]. SNNAP is a versatile and user-friendly tool for developing and simulating models of neurons and neural networks. SNNAP simulates many features of neuronal function, including ionic currents and their modulation by intracellular ions and/or second messengers, and synaptic transmission and synaptic plasticity. SNNAP is written in Java and runs on most computers. Moreover, SNNAP provides a graphical user interface (GUI) and does not require programming skills. This chapter describes several capabilities of SNNAP and illustrates methods for simulating neurons and neural networks. SNNAP is available at http://snnap.uth.tmc.edu .

  3. Collaborative Brain-Computer Interface for Aiding Decision-Making

    PubMed Central

    Poli, Riccardo; Valeriani, Davide; Cinel, Caterina

    2014-01-01

    We look at the possibility of integrating the percepts from multiple non-communicating observers as a means of achieving better joint perception and better group decisions. Our approach involves the combination of a brain-computer interface with human behavioural responses. To test ideas in controlled conditions, we asked observers to perform a simple matching task involving the rapid sequential presentation of pairs of visual patterns and the subsequent decision as whether the two patterns in a pair were the same or different. We recorded the response times of observers as well as a neural feature which predicts incorrect decisions and, thus, indirectly indicates the confidence of the decisions made by the observers. We then built a composite neuro-behavioural feature which optimally combines the two measures. For group decisions, we uses a majority rule and three rules which weigh the decisions of each observer based on response times and our neural and neuro-behavioural features. Results indicate that the integration of behavioural responses and neural features can significantly improve accuracy when compared with the majority rule. An analysis of event-related potentials indicates that substantial differences are present in the proximity of the response for correct and incorrect trials, further corroborating the idea of using hybrids of brain-computer interfaces and traditional strategies for improving decision making. PMID:25072739

  4. Recent developments in wireless recording from the nervous system with ultrasonic neural dust (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Maharbiz, Michel M.

    2017-05-01

    The emerging field of bioelectronic medicine seeks methods for deciphering and modulating electrophysiological activity in the body to attain therapeutic effects at target organs. Current approaches to interfacing with peripheral nerves and muscles rely heavily on wires, creating problems for chronic use, while emerging wireless approaches lack the size scalability necessary to interrogate small-diameter nerves. Furthermore, conventional electrode-based technologies lack the capability to record from nerves with high spatial resolution or to record independently from many discrete sites within a nerve bundle. We recently demonstrated (Seo et al., arXiV, 2013; Seo et al., Neuron, 2016) "neural dust," a wireless and scalable ultrasonic backscatter system for powering and communicating with implanted bioelectronics. There, we showed that ultrasound is effective at delivering power to mm-scale devices in tissue; likewise, passive, battery-less communication using backscatter enabled high-fidelity transmission of electromyogram (EMG) and electroneurogram (ENG) signals from anesthetized rats. In this talk, I will review recent developments from my group and collaborators in this area.

  5. An investigation on effects of amputee's physiological parameters on maximum pressure developed at the prosthetic socket interface using artificial neural network.

    PubMed

    Nayak, Chitresh; Singh, Amit; Chaudhary, Himanshu; Unune, Deepak Rajendra

    2017-10-23

    Technological advances in prosthetics have attracted the curiosity of researchers in monitoring design and developments of the sockets to sustain maximum pressure without any soft tissue damage, skin breakdown, and painful sores. Numerous studies have been reported in the area of pressure measurement at the limb/socket interface, though, the relation between amputee's physiological parameters and the pressure developed at the limb/socket interface is still not studied. Therefore, the purpose of this work is to investigate the effects of patient-specific physiological parameters viz. height, weight, and stump length on the pressure development at the transtibial prosthetic limb/socket interface. Initially, the pressure values at the limb/socket interface were clinically measured during stance and walking conditions for different patients using strain gauges placed at critical locations of the stump. The measured maximum pressure data related to patient's physiological parameters was used to develop an artificial neural network (ANN) model. The effects of physiological parameters on the pressure development at the limb/socket interface were examined using the ANN model. The analyzed results indicated that the weight and stump length significantly affects the maximum pressure values. The outcomes of this work could be an important platform for the design and development of patient-specific prosthetic socket which can endure the maximum pressure conditions at stance and ambulation conditions.

  6. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    NASA Technical Reports Server (NTRS)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network development. The changes were to include evaluation tools that can be applied to neural networks at each phase of the software engineering life cycle. The result was a formal evaluation approach to increase the product quality of systems that use neural networks for their implementation.

  7. Adaptive Offset Correction for Intracortical Brain Computer Interfaces

    PubMed Central

    Homer, Mark L.; Perge, János A.; Black, Michael J.; Harrison, Matthew T.; Cash, Sydney S.; Hochberg, Leigh R.

    2014-01-01

    Intracortical brain computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user’s ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called MOCA, was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors (10.6 ±10.1%; p<0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs. PMID:24196868

  8. Adaptive offset correction for intracortical brain-computer interfaces.

    PubMed

    Homer, Mark L; Perge, Janos A; Black, Michael J; Harrison, Matthew T; Cash, Sydney S; Hochberg, Leigh R

    2014-03-01

    Intracortical brain-computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user's ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called multiple offset correction algorithm (MOCA), was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors ( 10.6 ± 10.1% ; p < 0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs.

  9. Strategies for improving neural signal detection using a neural-electronic interface.

    PubMed

    Szlavik, Robert B

    2003-03-01

    There have been various theoretical and experimental studies presented in the literature that focus on interfacing neurons with discrete electronic devices, such as transistors. From both a theoretical and experimental perspective, these studies have emphasized the variability in the characteristics of the detected action potential from the nerve cell. The demonstrated lack of reproducible fidelity of the nerve cell action potential at the device junction would make it impractical to implement these devices in any neural prosthetic application where reliable detection of the action potential was a prerequisite. In this study, the effects of several different physical parameters on the fidelity of the detected action potential at the device junction are investigated and discussed. The impact of variations in the extracellular resistivity, which directly affects the junction seal resistance, is studied along with the impact of variable nerve cell membrane capacitance and variations in the injected charge. These parameters are discussed in the context of their suitability to design manipulation for the purpose of improving the fidelity of the detected neural action potential. In addition to investigating the effects of variations in these parameters, the applicability of the linear equivalent circuit approach to calculating the junction potential is investigated.

  10. Bacterial Signaling to the Nervous System through Toxins and Metabolites.

    PubMed

    Yang, Nicole J; Chiu, Isaac M

    2017-03-10

    Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Dlx proteins position the neural plate border and determine adjacent cell fates.

    PubMed

    Woda, Juliana M; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk

    2003-01-01

    The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates.

  12. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  13. Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities.

    PubMed

    Schultz, Aimee E; Kuiken, Todd A

    2011-01-01

    Current treatment of upper limb amputation restores some degree of functional ability, but this ability falls far below the standard set by the natural arm. Although acceptance rates can be high when patients are highly motivated and receive proper training and care, current prostheses often fail to meet the daily needs of amputees and frequently are abandoned. Recent advancements in science and technology have led to promising methods of accessing neural information for communication or control. Researchers have explored invasive and noninvasive methods of connecting with muscles, nerves, or the brain to provide increased functionality for patients experiencing disease or injury, including amputation. These techniques offer hope of more natural and intuitive prosthesis control, and therefore increased quality of life for amputees. In this review, we discuss the current state of the art of neural interfaces, particularly those that may find application within the prosthetics field. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  14. Analyzing large-scale spiking neural data with HRLAnalysis™

    PubMed Central

    Thibeault, Corey M.; O'Brien, Michael J.; Srinivasa, Narayan

    2014-01-01

    The additional capabilities provided by high-performance neural simulation environments and modern computing hardware has allowed for the modeling of increasingly larger spiking neural networks. This is important for exploring more anatomically detailed networks but the corresponding accumulation in data can make analyzing the results of these simulations difficult. This is further compounded by the fact that many existing analysis packages were not developed with large spiking data sets in mind. Presented here is a software suite developed to not only process the increased amount of spike-train data in a reasonable amount of time, but also provide a user friendly Python interface. We describe the design considerations, implementation and features of the HRLAnalysis™ suite. In addition, performance benchmarks demonstrating the speedup of this design compared to a published Python implementation are also presented. The result is a high-performance analysis toolkit that is not only usable and readily extensible, but also straightforward to interface with existing Python modules. PMID:24634655

  15. Mechanical fatigue resistance of an implantable branched lead system for a distributed set of longitudinal intrafascicular electrodes

    NASA Astrophysics Data System (ADS)

    Pena, A. E.; Kuntaegowdanahalli, S. S.; Abbas, J. J.; Patrick, J.; Horch, K. W.; Jung, R.

    2017-12-01

    Objective. A neural interface system has been developed that consists of an implantable stimulator/recorder can with a 15-electrode lead that trifurcates into three bundles of five individual wire longitudinal intrafascicular electrodes. This work evaluated the mechanical fatigue resistance of the branched lead and distributed electrode system under conditions designed to mimic anticipated strain profiles that would be observed after implantation in the human upper arm. Approach. Custom test setups and procedures were developed to apply linear or angular strain at four critical stress riser points on the lead and electrode system. Each test was performed to evaluate fatigue under a high repetition/low amplitude paradigm designed to test the effects of arm movement on the leads during activities such as walking, or under a low repetition/high amplitude paradigm designed to test the effects of more strenuous upper arm activities. The tests were performed on representative samples of the implantable lead system for human use. The specimens were fabricated using procedures equivalent to those that will be used during production of human-use implants. Electrical and visual inspections of all test specimens were performed before and after the testing procedures to assess lead integrity. Main results. Measurements obtained before and after applying repetitive strain indicated that all test specimens retained electrical continuity and that electrical impedance remained well below pre-specified thresholds for detection of breakage. Visual inspection under a microscope at 10×  magnification did not reveal any signs of damage to the wires or silicone sheathing at the stress riser points. Significance. These results demonstrate that the branched lead of this implantable neural interface system has sufficient mechanical fatigue resistance to withstand strain profiles anticipated when the system is implanted in an arm. The novel test setups and paradigms may be useful in testing other lead systems.

  16. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.

    PubMed

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-11-10

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis. Theoretically, this strategy could also restore control over leg muscle activity for walking. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain-spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain-spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain-spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain-spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.

  17. A Brain–Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates

    PubMed Central

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D.; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-01-01

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1–3 have directly linked cortical activity to electrical stimulation of muscles, which have restored grasping abilities after hand paralysis1,4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6,7. Recently, we showed in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8–10. Here, we interfaced leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spinal interface that alleviated gait deficits after a spinal cord injury in nonhuman primates. Rhesus monkeys were implanted with an intracortical microelectrode array into the leg area of motor cortex; and a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spinal interface in intact monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spinal interface restored weight-bearing locomotion of the paralyzed leg on a treadmill and overground. The implantable components integrated in the brain–spinal interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury. PMID:27830790

  18. Improved Neural Signal Classification in a Rapid Serial Visual Presentation Task Using Active Learning.

    PubMed

    Marathe, Amar R; Lawhern, Vernon J; Wu, Dongrui; Slayback, David; Lance, Brent J

    2016-03-01

    The application space for brain-computer interface (BCI) technologies is rapidly expanding with improvements in technology. However, most real-time BCIs require extensive individualized calibration prior to use, and systems often have to be recalibrated to account for changes in the neural signals due to a variety of factors including changes in human state, the surrounding environment, and task conditions. Novel approaches to reduce calibration time or effort will dramatically improve the usability of BCI systems. Active Learning (AL) is an iterative semi-supervised learning technique for learning in situations in which data may be abundant, but labels for the data are difficult or expensive to obtain. In this paper, we apply AL to a simulated BCI system for target identification using data from a rapid serial visual presentation (RSVP) paradigm to minimize the amount of training samples needed to initially calibrate a neural classifier. Our results show AL can produce similar overall classification accuracy with significantly less labeled data (in some cases less than 20%) when compared to alternative calibration approaches. In fact, AL classification performance matches performance of 10-fold cross-validation (CV) in over 70% of subjects when training with less than 50% of the data. To our knowledge, this is the first work to demonstrate the use of AL for offline electroencephalography (EEG) calibration in a simulated BCI paradigm. While AL itself is not often amenable for use in real-time systems, this work opens the door to alternative AL-like systems that are more amenable for BCI applications and thus enables future efforts for developing highly adaptive BCI systems.

  19. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia*

    PubMed Central

    Kim, Sung-Phil; Simeral, John D; Hochberg, Leigh R; Donoghue, John P; Black, Michael J

    2010-01-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. PMID:19015583

  20. Neurosurgery and the dawning age of Brain-Machine Interfaces

    PubMed Central

    Rowland, Nathan C.; Breshears, Jonathan; Chang, Edward F.

    2013-01-01

    Brain–machine interfaces (BMIs) are on the horizon for clinical neurosurgery. Electrocorticography-based platforms are less invasive than implanted microelectrodes, however, the latter are unmatched in their ability to achieve fine motor control of a robotic prosthesis capable of natural human behaviors. These technologies will be crucial to restoring neural function to a large population of patients with severe neurologic impairment – including those with spinal cord injury, stroke, limb amputation, and disabling neuromuscular disorders such as amyotrophic lateral sclerosis. On the opposite end of the spectrum are neural enhancement technologies for specialized applications such as combat. An ongoing ethical dialogue is imminent as we prepare for BMI platforms to enter the neurosurgical realm of clinical management. PMID:23653884

  1. Mimicking subsecond neurotransmitter dynamics with femtosecond laser stimulated nanosystems.

    PubMed

    Nakano, Takashi; Chin, Catherine; Myint, David Mo Aung; Tan, Eng Wui; Hale, Peter John; Krishna M, Bala Murali; Reynolds, John N J; Wickens, Jeff; Dani, Keshav M

    2014-06-23

    Existing nanoscale chemical delivery systems target diseased cells over long, sustained periods of time, typically through one-time, destructive triggering. Future directions lie in the development of fast and robust techniques capable of reproducing the pulsatile chemical activity of living organisms, thereby allowing us to mimic biofunctionality. Here, we demonstrate that by applying programmed femtosecond laser pulses to robust, nanoscale liposome structures containing dopamine, we achieve sub-second, controlled release of dopamine--a key neurotransmitter of the central nervous system--thereby replicating its release profile in the brain. The fast delivery system provides a powerful new interface with neural circuits, and to the larger range of biological functions that operate on this short timescale.

  2. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model.

    PubMed

    Stavisky, Sergey D; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V

    2017-02-15

    Accurate motor control is mediated by internal models of how neural activity generates movement. We examined neural correlates of an adapting internal model of visuomotor gain in motor cortex while two macaques performed a reaching task in which the gain scaling between the hand and a presented cursor was varied. Previous studies of cortical changes during visuomotor adaptation focused on preparatory and perimovement epochs and analyzed trial-averaged neural data. Here, we recorded simultaneous neural population activity using multielectrode arrays and focused our analysis on neural differences in the period before the target appeared. We found that we could estimate the monkey's internal model of the gain using the neural population state during this pretarget epoch. This neural correlate depended on the gain experienced during recent trials and it predicted the speed of the subsequent reach. To explore the utility of this internal model estimate for brain-machine interfaces, we performed an offline analysis showing that it can be used to compensate for upcoming reach extent errors. Together, these results demonstrate that pretarget neural activity in motor cortex reflects the monkey's internal model of visuomotor gain on single trials and can potentially be used to improve neural prostheses. SIGNIFICANCE STATEMENT When generating movement commands, the brain is believed to use internal models of the relationship between neural activity and the body's movement. Visuomotor adaptation tasks have revealed neural correlates of these computations in multiple brain areas during movement preparation and execution. Here, we describe motor cortical changes in a visuomotor gain change task even before a specific movement is cued. We were able to estimate the gain internal model from these pretarget neural correlates and relate it to single-trial behavior. This is an important step toward understanding the sensorimotor system's algorithms for updating its internal models after specific movements and errors. Furthermore, the ability to estimate the internal model before movement could improve motor neural prostheses being developed for people with paralysis. Copyright © 2017 the authors 0270-6474/17/371721-12$15.00/0.

  3. Neural dynamics in reconfigurable silicon.

    PubMed

    Basu, A; Ramakrishnan, S; Petre, C; Koziol, S; Brink, S; Hasler, P E

    2010-10-01

    A neuromorphic analog chip is presented that is capable of implementing massively parallel neural computations while retaining the programmability of digital systems. We show measurements from neurons with Hopf bifurcations and integrate and fire neurons, excitatory and inhibitory synapses, passive dendrite cables, coupled spiking neurons, and central pattern generators implemented on the chip. This chip provides a platform for not only simulating detailed neuron dynamics but also uses the same to interface with actual cells in applications such as a dynamic clamp. There are 28 computational analog blocks (CAB), each consisting of ion channels with tunable parameters, synapses, winner-take-all elements, current sources, transconductance amplifiers, and capacitors. There are four other CABs which have programmable bias generators. The programmability is achieved using floating gate transistors with on-chip programming control. The switch matrix for interconnecting the components in CABs also consists of floating-gate transistors. Emphasis is placed on replicating the detailed dynamics of computational neural models. Massive computational area efficiency is obtained by using the reconfigurable interconnect as synaptic weights, resulting in more than 50 000 possible 9-b accurate synapses in 9 mm(2).

  4. Motor cortical activity changes during neuroprosthetic-controlled object interaction.

    PubMed

    Downey, John E; Brane, Lucas; Gaunt, Robert A; Tyler-Kabara, Elizabeth C; Boninger, Michael L; Collinger, Jennifer L

    2017-12-05

    Brain-computer interface (BCI) controlled prosthetic arms are being developed to restore function to people with upper-limb paralysis. This work provides an opportunity to analyze human cortical activity during complex tasks. Previously we observed that BCI control became more difficult during interactions with objects, although we did not quantify the neural origins of this phenomena. Here, we investigated how motor cortical activity changed in the presence of an object independently of the kinematics that were being generated using intracortical recordings from two people with tetraplegia. After identifying a population-wide increase in neural firing rates that corresponded with the hand being near an object, we developed an online scaling feature in the BCI system that operated without knowledge of the task. Online scaling increased the ability of two subjects to control the robotic arm when reaching to grasp and transport objects. This work suggests that neural representations of the environment, in this case the presence of an object, are strongly and consistently represented in motor cortex but can be accounted for to improve BCI performance.

  5. The Language–Number Interface in the Brain: A Complex Parametric Study of Quantifiers and Quantities

    PubMed Central

    Heim, Stefan; Amunts, Katrin; Drai, Dan; Eickhoff, Simon B.; Hautvast, Sarah; Grodzinsky, Yosef

    2011-01-01

    The neural bases for numerosity and language are of perennial interest. In monkeys, neural separation of numerical Estimation and numerical Comparison has been demonstrated. As linguistic and numerical knowledge can only be compared in humans, we used a new fMRI paradigm in an attempt to dissociate Estimation from Comparison, and at the same time uncover the neural relation between numerosity and language. We used complex stimuli: images depicting a proportion between quantities of blue and yellow circles were coupled with sentences containing quantifiers that described them (e.g., “most/few of the circles are yellow”). Participants verified sentences against images. Both Estimation and Comparison recruited adjacent, partially overlapping bi-hemispheric fronto-parietal regions. Additional semantic analysis of positive vs. negative quantifiers involving the interpretation of quantity and numerosity specifically recruited left area 45. The anatomical proximity between numerosity regions and those involved in semantic analysis points to subtle links between the number system and language. Results fortify the homology of Estimation and Comparison between humans and monkeys. PMID:22470338

  6. Brain-machine interfaces: electrophysiological challenges and limitations.

    PubMed

    Lega, Bradley C; Serruya, Mijail D; Zaghloul, Kareem A

    2011-01-01

    Brain-machine interfaces (BMI) seek to directly communicate with the human nervous system in order to diagnose and treat intrinsic neurological disorders. While the first generation of these devices has realized significant clinical successes, they often rely on gross electrical stimulation using empirically derived parameters through open-loop mechanisms of action that are not yet fully understood. Their limitations reflect the inherent challenge in developing the next generation of these devices. This review identifies lessons learned from the first generation of BMI devices (chiefly deep brain stimulation), identifying key problems for which the solutions will aid the development of the next generation of technologies. Our analysis examines four hypotheses for the mechanism by which brain stimulation alters surrounding neurophysiologic activity. We then focus on motor prosthetics, describing various approaches to overcoming the problems of decoding neural signals. We next turn to visual prosthetics, an area for which the challenges of signal coding to match neural architecture has been partially overcome. Finally, we close with a review of cortical stimulation, examining basic principles that will be incorporated into the design of future devices. Throughout the review, we relate the issues of each specific topic to the common thread of BMI research: translating new knowledge of network neuroscience into improved devices for neuromodulation.

  7. Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform

    PubMed Central

    Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.

    2013-01-01

    Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047

  8. A Gaussian mixture model based adaptive classifier for fNIRS brain-computer interfaces and its testing via simulation

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe

    2017-08-01

    Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus  <54% in two-choice classification accuracy. Significance. We believe GMMAC will be useful for clinical fNIRS-based brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.

  9. Implantable radio frequency identification sensors: wireless power and communication.

    PubMed

    Hutchens, Chriswell; Rennaker, Robert L; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer

    2011-01-01

    There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700 mV, 30 to 40 uA load attained at -2 dBm.

  10. Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies

    NASA Astrophysics Data System (ADS)

    Normann, Richard A.; Fernandez, Eduardo

    2016-12-01

    This paper briefly describes some of the recent progress in the development of penetrating microelectrode arrays and highlights the use of two of these devices, Utah electrode arrays and Utah slanted electrode arrays, in two therapeutic interventions: recording volitional skeletal motor commands from the central nervous system, and recording motor commands and evoking somatosensory percepts in the peripheral nervous system (PNS). The paper also briefly explores other potential sites for microelectrode array interventions that could be profitably pursued and that could have important consequences in enhancing the quality of life of patients that has been compromised by disorders of the central and PNSs.

  11. Nanoelectronics Meets Biology: From Novel Nanoscale Devices for Live Cell Recording to 3D Innervated Tissues†

    PubMed Central

    Duan, Xiaojie; Lieber, Charles M.

    2013-01-01

    High spatio-temporal resolution interfacing between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. This focused review summarizes recent progresses in the development and application of novel nanoscale devices for intracellular electrical recordings of action potentials, and the effort of merging electronic and biological systems seamlessly in three dimension using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large scale, high spatial resolution, and three dimensional neural activity mapping will be highlighted. PMID:23946279

  12. Geophysical phenomena classification by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  13. Microelectrodes with Three-Dimensional Structures for Improved Neural Interfacing

    DTIC Science & Technology

    2001-10-25

    highly xible bio-interfaces [2]. Polyimides combine excellent ectrical and mechanical characteristics with biocompatibility ], and are well known in...excellent biocompatibility , polyimide -based electrodes promise for fabrication of long-term implants for the use in prostheses. The flexible structures...R. R. Richardson, J. A. Miller, and W. M. Reichert, " Polyimides as Biomaterials - Preliminary Biocompatibility Testing," Biomaterials, vol. 14, pp

  14. Selection and parameterization of cortical neurons for neuroprosthetic control.

    PubMed

    Wahnoun, Remy; He, Jiping; Helms Tillery, Stephen I

    2006-06-01

    When designing neuroprosthetic interfaces for motor function, it is crucial to have a system that can extract reliable information from available neural signals and produce an output suitable for real life applications. Systems designed to date have relied on establishing a relationship between neural discharge patterns in motor cortical areas and limb movement, an approach not suitable for patients who require such implants but who are unable to provide proper motor behavior to initially tune the system. We describe here a method that allows rapid tuning of a population vector-based system for neural control without arm movements. We trained highly motivated primates to observe a 3D center-out task as the computer played it very slowly. Based on only 10-12 s of neuronal activity observed in M1 and PMd, we generated an initial mapping between neural activity and device motion that the animal could successfully use for neuroprosthetic control. Subsequent tunings of the parameters led to improvements in control, but the initial selection of neurons and estimated preferred direction for those cells remained stable throughout the remainder of the day. Using this system, we have observed that the contribution of individual neurons to the overall control of the system is very heterogeneous. We thus derived a novel measure of unit quality and an indexing scheme that allowed us to rate each neuron's contribution to the overall control. In offline tests, we found that fewer than half of the units made positive contributions to the performance. We tested this experimentally by having the animals control the neuroprosthetic system using only the 20 best neurons. We found that performance in this case was better than when the entire set of available neurons was used. Based on these results, we believe that, with careful task design, it is feasible to parameterize control systems without any overt behaviors and that subsequent control system design will be enhanced with cautious unit selection. These improvements can lead to systems demanding lower bandwidth and computational power, and will pave the way for more feasible clinical systems.

  15. Development of a Neural Network Simulator for Studying the Constitutive Behavior of Structural Composite Materials

    DOE PAGES

    Na, Hyuntae; Lee, Seung-Yub; Üstündag, Ersan; ...

    2013-01-01

    This paper introduces a recent development and application of a noncommercial artificial neural network (ANN) simulator with graphical user interface (GUI) to assist in rapid data modeling and analysis in the engineering diffraction field. The real-time network training/simulation monitoring tool has been customized for the study of constitutive behavior of engineering materials, and it has improved data mining and forecasting capabilities of neural networks. This software has been used to train and simulate the finite element modeling (FEM) data for a fiber composite system, both forward and inverse. The forward neural network simulation precisely reduplicates FEM results several orders ofmore » magnitude faster than the slow original FEM. The inverse simulation is more challenging; yet, material parameters can be meaningfully determined with the aid of parameter sensitivity information. The simulator GUI also reveals that output node size for materials parameter and input normalization method for strain data are critical train conditions in inverse network. The successful use of ANN modeling and simulator GUI has been validated through engineering neutron diffraction experimental data by determining constitutive laws of the real fiber composite materials via a mathematically rigorous and physically meaningful parameter search process, once the networks are successfully trained from the FEM database.« less

  16. Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting.

    PubMed

    Werner, Thilo; Vianello, Elisa; Bichler, Olivier; Garbin, Daniele; Cattaert, Daniel; Yvert, Blaise; De Salvo, Barbara; Perniola, Luca

    2016-01-01

    In this paper, we present an alternative approach to perform spike sorting of complex brain signals based on spiking neural networks (SNN). The proposed architecture is suitable for hardware implementation by using resistive random access memory (RRAM) technology for the implementation of synapses whose low latency (<1μs) enables real-time spike sorting. This offers promising advantages to conventional spike sorting techniques for brain-computer interfaces (BCI) and neural prosthesis applications. Moreover, the ultra-low power consumption of the RRAM synapses of the spiking neural network (nW range) may enable the design of autonomous implantable devices for rehabilitation purposes. We demonstrate an original methodology to use Oxide based RRAM (OxRAM) as easy to program and low energy (<75 pJ) synapses. Synaptic weights are modulated through the application of an online learning strategy inspired by biological Spike Timing Dependent Plasticity. Real spiking data have been recorded both intra- and extracellularly from an in-vitro preparation of the Crayfish sensory-motor system and used for validation of the proposed OxRAM based SNN. This artificial SNN is able to identify, learn, recognize and distinguish between different spike shapes in the input signal with a recognition rate about 90% without any supervision.

  17. Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays.

    PubMed

    Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L

    2015-01-01

    A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  18. BMI cyberworkstation: enabling dynamic data-driven brain-machine interface research through cyberinfrastructure.

    PubMed

    Zhao, Ming; Rattanatamrong, Prapaporn; DiGiovanna, Jack; Mahmoudi, Babak; Figueiredo, Renato J; Sanchez, Justin C; Príncipe, José C; Fortes, José A B

    2008-01-01

    Dynamic data-driven brain-machine interfaces (DDDBMI) have great potential to advance the understanding of neural systems and improve the design of brain-inspired rehabilitative systems. This paper presents a novel cyberinfrastructure that couples in vivo neurophysiology experimentation with massive computational resources to provide seamless and efficient support of DDDBMI research. Closed-loop experiments can be conducted with in vivo data acquisition, reliable network transfer, parallel model computation, and real-time robot control. Behavioral experiments with live animals are supported with real-time guarantees. Offline studies can be performed with various configurations for extensive analysis and training. A Web-based portal is also provided to allow users to conveniently interact with the cyberinfrastructure, conducting both experimentation and analysis. New motor control models are developed based on this approach, which include recursive least square based (RLS) and reinforcement learning based (RLBMI) algorithms. The results from an online RLBMI experiment shows that the cyberinfrastructure can successfully support DDDBMI experiments and meet the desired real-time requirements.

  19. Dlx proteins position the neural plate border and determine adjacent cell fates

    PubMed Central

    Woda, Juliana M.; Pastagia, Julie; Mercola, Mark; Artinger, Kristin Bruk

    2014-01-01

    Summary The lateral border of the neural plate is a major source of signals that induce primary neurons, neural crest cells and cranial placodes as well as provide patterning cues to mesodermal structures such as somites and heart. Whereas secreted BMP, FGF and Wnt proteins influence the differentiation of neural and non-neural ectoderm, we show here that members of the Dlx family of transcription factors position the border between neural and non-neural ectoderm and are required for the specification of adjacent cell fates. Inhibition of endogenous Dlx activity in Xenopus embryos with an EnR-Dlx homeodomain fusion protein expands the neural plate into non-neural ectoderm tissue whereas ectopic activation of Dlx target genes inhibits neural plate differentiation. Importantly, the stereotypic pattern of border cell fates in the adjacent ectoderm is re-established only under conditions where the expanded neural plate abuts Dlx-positive non-neural ectoderm. Experiments in which presumptive neural plate was grafted to ventral ectoderm reiterate induction of neural crest and placodal lineages and also demonstrate that Dlx activity is required in non-neural ectoderm for the production of signals needed for induction of these cells. We propose that Dlx proteins regulate intercellular signaling across the interface between neural and non-neural ectoderm that is critical for inducing and patterning adjacent cell fates. PMID:12466200

  20. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.

    PubMed

    Zhang, Jing; Liu, Xiaojun; Xu, Wenjing; Luo, Wenhan; Li, Ming; Chu, Fangbing; Xu, Lu; Cao, Anyuan; Guan, Jisong; Tang, Shiming; Duan, Xiaojie

    2018-05-09

    Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain regions from which the concurrent electrical recording is taken, thus providing complementary cellular information in addition to the high-temporal-resolution electrical recording. Notably, the studies on rats show that the CNT electrodes remain operational during and after brain contusion that involves the rapid deformation of both the electrode array and brain tissue. This enables real-time, continuous electrophysiological monitoring of cortical activity under traumatic brain injury. These results highlight the potential application of the stretchable transparent CNT electrode arrays in combining electrical and optical modalities to study neural circuits, especially under mechanically active conditions, which could potentially provide important new insights into the local circuit dynamics of the spinal cord and PNS as well as the mechanism underlying traumatic injuries of the nervous system.

  1. Neurally and ocularly informed graph-based models for searching 3D environments.

    PubMed

    Jangraw, David C; Wang, Jun; Lance, Brent J; Chang, Shih-Fu; Sajda, Paul

    2014-08-01

    As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions-our implicit 'labeling' of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the 'similar' objects it identifies. We show that by exploiting the subjects' implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.

  2. Neurally and ocularly informed graph-based models for searching 3D environments

    NASA Astrophysics Data System (ADS)

    Jangraw, David C.; Wang, Jun; Lance, Brent J.; Chang, Shih-Fu; Sajda, Paul

    2014-08-01

    Objective. As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions—our implicit ‘labeling’ of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. Approach. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the ‘similar’ objects it identifies. Main results. We show that by exploiting the subjects’ implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers’ inference of subjects’ implicit labeling. Significance. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user’s interests.

  3. A versatile all-channel stimulator for electrode arrays, with real-time control

    PubMed Central

    Wagenaar, Daniel A; Potter, Steve M

    2008-01-01

    Over the last few decades, technology to record through ever increasing numbers of electrodes has become available to electrophysiologists. For the study of distributed neural processing, however, the ability to stimulate through equal numbers of electrodes, and thus to attain bidirectional communication, is of paramount importance. Here, we present a stimulation system for multi-electrode arrays which interfaces with existing commercial recording hardware, and allows stimulation through any electrode in the array, with rapid switching between channels. The system is controlled through real-time Linux, making it extremely flexible: stimulation sequences can be constructed on-the-fly, and arbitrary stimulus waveforms can be used if desired. A key feature of this design is that it can be readily and inexpensively reproduced in other labs, since it interfaces to standard PC parallel ports and uses only off-the-shelf components. Moreover, adaptation for use with in vivo multi-electrode probes would be straightforward. In combination with our freely available data-acquisition software, MeaBench, this system can provide feedback stimulation in response to recorded action potentials within 15 ms. PMID:15876621

  4. Photochemically modified diamond-like carbon surfaces for neural interfaces.

    PubMed

    Hopper, A P; Dugan, J M; Gill, A A; Regan, E M; Haycock, J W; Kelly, S; May, P W; Claeyssens, F

    2016-01-01

    Diamond-like carbon (DLC) was modified using a UV functionalization method to introduce surface-bound amine and aldehyde groups. The functionalization process rendered the DLC more hydrophilic and significantly increased the viability of neurons seeded to the surface. The amine functionalized DLC promoted adhesion of neurons and fostered neurite outgrowth to a degree indistinguishable from positive control substrates (glass coated with poly-L-lysine). The aldehyde-functionalized surfaces performed comparably to the amine functionalized surfaces and both additionally supported the adhesion and growth of primary rat Schwann cells. DLC has many properties that are desirable in biomaterials. With the UV functionalization method demonstrated here it may be possible to harness these properties for the development of implantable devices to interface with the nervous system. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Developing a tissue-engineered neural-electrical relay using encapsulated neuronal constructs on conducting polymer fibers.

    PubMed

    Cullen, D Kacy; R Patel, Ankur; Doorish, John F; Smith, Douglas H; Pfister, Bryan J

    2008-12-01

    Neural-electrical interface platforms are being developed to extracellularly monitor neuronal population activity. Polyaniline-based electrically conducting polymer fibers are attractive substrates for sustained functional interfaces with neurons due to their flexibility, tailored geometry and controlled electro-conductive properties. In this study, we addressed the neurobiological considerations of utilizing small diameter (<400 microm) fibers consisting of a blend of electrically conductive polyaniline and polypropylene (PA-PP) as the backbone of encapsulated tissue-engineered neural-electrical relays. We devised new approaches to promote survival, adhesion and neurite outgrowth of primary dorsal root ganglion neurons on PA-PP fibers. We attained a greater than ten-fold increase in the density of viable neurons on fiber surfaces to approximately 700 neurons mm(-2) by manipulating surrounding surface charges to bias settling neuronal suspensions toward fibers coated with cell-adhesive ligands. This stark increase in neuronal density resulted in robust neuritic extension and network formation directly along the fibers. Additionally, we encapsulated these neuronal networks on PA-PP fibers using agarose to form a protective barrier while potentially facilitating network stability. Following encapsulation, the neuronal networks maintained integrity, high viability (>85%) and intimate adhesion to PA-PP fibers. These efforts accomplished key prerequisites for the establishment of functional electrical interfaces with neuronal populations using small diameter PA-PP fibers-specifically, improved neurocompatibility, high-density neuronal adhesion and neuritic network development directly on fiber surfaces.

  6. SoftLab: A Soft-Computing Software for Experimental Research with Commercialization Aspects

    NASA Technical Reports Server (NTRS)

    Akbarzadeh-T, M.-R.; Shaikh, T. S.; Ren, J.; Hubbell, Rob; Kumbla, K. K.; Jamshidi, M

    1998-01-01

    SoftLab is a software environment for research and development in intelligent modeling/control using soft-computing paradigms such as fuzzy logic, neural networks, genetic algorithms, and genetic programs. SoftLab addresses the inadequacies of the existing soft-computing software by supporting comprehensive multidisciplinary functionalities from management tools to engineering systems. Furthermore, the built-in features help the user process/analyze information more efficiently by a friendly yet powerful interface, and will allow the user to specify user-specific processing modules, hence adding to the standard configuration of the software environment.

  7. Lifetime assessment of atomic-layer-deposited Al2O3-Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization.

    PubMed

    Minnikanti, Saugandhika; Diao, Guoqing; Pancrazio, Joseph J; Xie, Xianzong; Rieth, Loren; Solzbacher, Florian; Peixoto, Nathalia

    2014-02-01

    The lifetime and stability of insulation are critical features for the reliable operation of an implantable neural interface device. A critical factor for an implanted insulation's performance is its barrier properties that limit access of biological fluids to the underlying device or metal electrode. Parylene C is a material that has been used in FDA-approved implantable devices. Considered a biocompatible polymer with barrier properties, it has been used as a substrate, insulation or an encapsulation for neural implant technology. Recently, it has been suggested that a bilayer coating of Parylene C on top of atomic-layer-deposited Al2O3 would provide enhanced barrier properties. Here we report a comprehensive study to examine the mean time to failure of Parylene C and Al2O3-Parylene C coated devices using accelerated lifetime testing. Samples were tested at 60°C for up to 3 months while performing electrochemical measurements to characterize the integrity of the insulation. The mean time to failure for Al2O3-Parylene C was 4.6 times longer than Parylene C coated samples. In addition, based on modeling of the data using electrical circuit equivalents, we show here that there are two main modes of failure. Our results suggest that failure of the insulating layer is due to pore formation or blistering as well as thinning of the coating over time. The enhanced barrier properties of the bilayer Al2O3-Parylene C over Parylene C makes it a promising candidate as an encapsulating neural interface. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Neuromechanism Study of Insect–Machine Interface: Flight Control by Neural Electrical Stimulation

    PubMed Central

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A.; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect–machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee–machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control. PMID:25409523

  9. Neuromechanism study of insect-machine interface: flight control by neural electrical stimulation.

    PubMed

    Zhao, Huixia; Zheng, Nenggan; Ribi, Willi A; Zheng, Huoqing; Xue, Lei; Gong, Fan; Zheng, Xiaoxiang; Hu, Fuliang

    2014-01-01

    The insect-machine interface (IMI) is a novel approach developed for man-made air vehicles, which directly controls insect flight by either neuromuscular or neural stimulation. In our previous study of IMI, we induced flight initiation and cessation reproducibly in restrained honeybees (Apis mellifera L.) via electrical stimulation of the bilateral optic lobes. To explore the neuromechanism underlying IMI, we applied electrical stimulation to seven subregions of the honeybee brain with the aid of a new method for localizing brain regions. Results showed that the success rate for initiating honeybee flight decreased in the order: α-lobe (or β-lobe), ellipsoid body, lobula, medulla and antennal lobe. Based on a comparison with other neurobiological studies in honeybees, we propose that there is a cluster of descending neurons in the honeybee brain that transmits neural excitation from stimulated brain areas to the thoracic ganglia, leading to flight behavior. This neural circuit may involve the higher-order integration center, the primary visual processing center and the suboesophageal ganglion, which is also associated with a possible learning and memory pathway. By pharmacologically manipulating the electrically stimulated honeybee brain, we have shown that octopamine, rather than dopamine, serotonin and acetylcholine, plays a part in the circuit underlying electrically elicited honeybee flight. Our study presents a new brain stimulation protocol for the honeybee-machine interface and has solved one of the questions with regard to understanding which functional divisions of the insect brain participate in flight control. It will support further studies to uncover the involved neurons inside specific brain areas and to test the hypothesized involvement of a visual learning and memory pathway in IMI flight control.

  10. A neutron spectrum unfolding computer code based on artificial neural networks

    NASA Astrophysics Data System (ADS)

    Ortiz-Rodríguez, J. M.; Reyes Alfaro, A.; Reyes Haro, A.; Cervantes Viramontes, J. M.; Vega-Carrillo, H. R.

    2014-02-01

    The Bonner Spheres Spectrometer consists of a thermal neutron sensor placed at the center of a number of moderating polyethylene spheres of different diameters. From the measured readings, information can be derived about the spectrum of the neutron field where measurements were made. Disadvantages of the Bonner system are the weight associated with each sphere and the need to sequentially irradiate the spheres, requiring long exposure periods. Provided a well-established response matrix and adequate irradiation conditions, the most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. The drawbacks associated with traditional unfolding procedures have motivated the need of complementary approaches. Novel methods based on Artificial Intelligence, mainly Artificial Neural Networks, have been widely investigated. In this work, a neutron spectrum unfolding code based on neural nets technology is presented. This code is called Neutron Spectrometry and Dosimetry with Artificial Neural networks unfolding code that was designed in a graphical interface. The core of the code is an embedded neural network architecture previously optimized using the robust design of artificial neural networks methodology. The main features of the code are: easy to use, friendly and intuitive to the user. This code was designed for a Bonner Sphere System based on a 6LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. The main feature of the code is that as entrance data, for unfolding the neutron spectrum, only seven rate counts measured with seven Bonner spheres are required; simultaneously the code calculates 15 dosimetric quantities as well as the total flux for radiation protection purposes. This code generates a full report with all information of the unfolding in the HTML format. NSDann unfolding code is freely available, upon request to the authors.

  11. The Promise of Neurotechnology in Clinical Translational Science.

    PubMed

    White, Susan W; Richey, John A; Gracanin, Denis; Bell, Martha Ann; LaConte, Stephen; Coffman, Marika; Trubanova, Andrea; Kim, Inyoung

    2015-09-01

    Neurotechnology is broadly defined as a set of devices used to understand neural processes and applications that can potentially facilitate the brain's ability to repair itself. In the past decade, an increasingly explicit understanding of basic biological mechanisms of brain-related illnesses has produced applications that allow a direct yet noninvasive method to index and manipulate the functioning of the human nervous system. Clinical scientists are poised to apply this technology to assess, treat, and better understand complex socioemotional processes that underlie many forms of psychopathology. In this review, we describe the potential benefits and hurdles, both technical and methodological, of neurotechnology in the context of clinical dysfunction. We also offer a framework for developing and evaluating neurotechnologies that is intended to expedite progress at the nexus of clinical science and neural interface designs by providing a comprehensive vocabulary to describe the necessary features of neurotechnology in the clinic.

  12. The Promise of Neurotechnology in Clinical Translational Science

    PubMed Central

    White, Susan W.; Richey, John A.; Gracanin, Denis; Bell, Martha Ann; LaConte, Stephen; Coffman, Marika; Trubanova, Andrea; Kim, Inyoung

    2014-01-01

    Neurotechnology is broadly defined as a set of devices used to understand neural processes and applications that can potentially facilitate the brain’s ability to repair itself. In the past decade, an increasingly explicit understanding of basic biological mechanisms of brain-related illnesses has produced applications that allow a direct yet noninvasive method to index and manipulate the functioning of the human nervous system. Clinical scientists are poised to apply this technology to assess, treat, and better understand complex socioemotional processes that underlie many forms of psychopathology. In this review, we describe the potential benefits and hurdles, both technical and methodological, of neurotechnology in the context of clinical dysfunction. We also offer a framework for developing and evaluating neurotechnologies that is intended to expedite progress at the nexus of clinical science and neural interface designs by providing a comprehensive vocabulary to describe the necessary features of neurotechnology in the clinic. PMID:26504676

  13. Nicotinic Receptor-Mediated Effects on Appetite and Food Intake

    PubMed Central

    Jo, Young-Hwan; Talmage, David A.; Role, Lorna W.

    2008-01-01

    It is well known, although not well understood, that smoking and eating just do not go together. Smoking is associated with decreased food intake and lower body weight. Nicotine, administered either by smoking or by smokeless routes, is considered the major appetite-suppressing component of tobacco. Perhaps the most renowned example of nicotine's influence on appetite and feeding behavior is the significant weight gain associated with smoking cessation. This article presents an overview of the literature at, or near, the interface of nicotinic receptors and appetite regulation. We first consider some of the possible sites of nicotine's action along the complex network of neural and non-neural regulators of feeding. We then present the hypothesis that the lateral hypothalamus is a particularly important locus of the anorectic effects of nicotine. Finally, we discuss the potential role of endogenous cholinergic systems in motivational feeding, focusing on cholinergic pathways in the lateral hypothalamus. PMID:12436425

  14. Nicotinic receptor-mediated effects on appetite and food intake.

    PubMed

    Jo, Young-Hwan; Talmage, David A; Role, Lorna W

    2002-12-01

    It is well known, although not well understood, that smoking and eating just do not go together. Smoking is associated with decreased food intake and lower body weight. Nicotine, administered either by smoking or by smokeless routes, is considered the major appetite-suppressing component of tobacco. Perhaps the most renowned example of nicotine's influence on appetite and feeding behavior is the significant weight gain associated with smoking cessation. This article presents an overview of the literature at, or near, the interface of nicotinic receptors and appetite regulation. We first consider some of the possible sites of nicotine's action along the complex network of neural and non-neural regulators of feeding. We then present the hypothesis that the lateral hypothalamus is a particularly important locus of the anorectic effects of nicotine. Finally, we discuss the potential role of endogenous cholinergic systems in motivational feeding, focusing on cholinergic pathways in the lateral hypothalamus. Copyright 2002 Wiley Periodicals, Inc.

  15. Abnormal Neural Connectivity in Schizophrenia and fMRI-Brain-Computer Interface as a Potential Therapeutic Approach

    PubMed Central

    Ruiz, Sergio; Birbaumer, Niels; Sitaram, Ranganatha

    2012-01-01

    Considering that single locations of structural and functional abnormalities are insufficient to explain the diverse psychopathology of schizophrenia, new models have postulated that the impairments associated with the disease arise from a failure to integrate the activity of local and distributed neural circuits: the “abnormal neural connectivity hypothesis.” In the last years, new evidence coming from neuroimaging have supported and expanded this theory. However, despite the increasing evidence that schizophrenia is a disorder of neural connectivity, so far there are no treatments that have shown to produce a significant change in brain connectivity, or that have been specifically designed to alleviate this problem. Brain-Computer Interfaces based on real-time functional Magnetic Resonance Imaging (fMRI-BCI) are novel techniques that have allowed subjects to achieve self-regulation of circumscribed brain regions. In recent studies, experiments with this technology have resulted in new findings suggesting that this methodology could be used to train subjects to enhance brain connectivity, and therefore could potentially be used as a therapeutic tool in mental disorders including schizophrenia. The present article summarizes the findings coming from hemodynamics-based neuroimaging that support the abnormal connectivity hypothesis in schizophrenia, and discusses a new approach that could address this problem. PMID:23525496

  16. An Analysis of EMG Electrode Configuration for Targeted Muscle Reinnervation Based Neural Machine Interface

    PubMed Central

    Huang, He; Zhou, Ping; Li, Guanglin; Kuiken, Todd A.

    2015-01-01

    Targeted muscle reinnervation (TMR) is a novel neural machine interface for improved myoelectric prosthesis control. Previous high-density (HD) surface electromyography (EMG) studies have indicated that tremendous neural control information can be extracted from the reinnervated muscles by EMG pattern recognition (PR). However, using a large number of EMG electrodes hinders clinical application of the TMR technique. This study investigated a reduced number of electrodes and the placement required to extract sufficient neural control information for accurate identification of user movement intents. An electrode selection algorithm was applied to the HD EMG recordings from each of 4 TMR amputee subjects. The results show that when using only 12 selected bipolar electrodes the average accuracy over subjects for classifying 16 movement intents was 93.0(±3.3)%, just 1.2% lower than when using the entire HD electrode complement. The locations of selected electrodes were consistent with the anatomical reinnervation sites. Additionally, a practical protocol for clinical electrode placement was developed, which does not rely on complex HD EMG experiment and analysis while maintaining a classification accuracy of 88.7±4.5%. These outcomes provide important guidelines for practical electrode placement that can promote future clinical application of TMR and EMG PR in the control of multifunctional prostheses. PMID:18303804

  17. Simulating and Synthesizing Substructures Using Neural Network and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.; VanLandingham, Hugh F.

    1997-01-01

    The feasibility of simulating and synthesizing substructures by computational neural network models is illustrated by investigating a statically indeterminate beam, using both a 1-D and a 2-D plane stress modelling. The beam can be decomposed into two cantilevers with free-end loads. By training neural networks to simulate the cantilever responses to different loads, the original beam problem can be solved as a match-up between two subsystems under compatible interface conditions. The genetic algorithms are successfully used to solve the match-up problem. Simulated results are found in good agreement with the analytical or FEM solutions.

  18. Multimodality instrument for tissue characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2004-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration. The use of this system will make surgical procedures safer, more accurate, and more efficient. Other applications of this system include the detection, prognosis and treatment of breast cancer, prostate cancer, spinal diseases, and use in general exploratory surgery.

  19. Beyond the visual word form area: the orthography-semantics interface in spelling and reading.

    PubMed

    Purcell, Jeremy J; Shea, Jennifer; Rapp, Brenda

    2014-01-01

    Lexical orthographic information provides the basis for recovering the meanings of words in reading and for generating correct word spellings in writing. Research has provided evidence that an area of the left ventral temporal cortex, a subregion of what is often referred to as the visual word form area (VWFA), plays a significant role specifically in lexical orthographic processing. The current investigation goes beyond this previous work by examining the neurotopography of the interface of lexical orthography with semantics. We apply a novel lesion mapping approach with three individuals with acquired dysgraphia and dyslexia who suffered lesions to left ventral temporal cortex. To map cognitive processes to their neural substrates, this lesion mapping approach applies similar logical constraints to those used in cognitive neuropsychological research. Using this approach, this investigation: (a) identifies a region anterior to the VWFA that is important in the interface of orthographic information with semantics for reading and spelling; (b) determines that, within this orthography-semantics interface region (OSIR), access to orthography from semantics (spelling) is topographically distinct from access to semantics from orthography (reading); (c) provides evidence that, within this region, there is modality-specific access to and from lexical semantics for both spoken and written modalities, in both word production and comprehension. Overall, this study contributes to our understanding of the neural architecture at the lexical orthography-semantic-phonological interface within left ventral temporal cortex.

  20. Beyond the VWFA: The orthography-semantics interface in spelling and reading

    PubMed Central

    Purcell, Jeremy J.; Shea, Jennifer; Rapp, Brenda

    2014-01-01

    Lexical orthographic information provides the basis for recovering the meanings of words in reading and for generating correct word spellings in writing. Research has provided evidence that an area of the left ventral temporal cortex, a sub-region of what is often referred to as the Visual Word Form Area (VWFA), plays a significant role specifically in lexical orthographic processing. The current investigation goes beyond this previous work by examining the neurotopography of the interface of lexical orthography with semantics. We apply a novel lesion mapping approach with three individuals with acquired dysgraphia and dyslexia who suffered lesions to left ventral temporal cortex. To map cognitive processes to their neural substrates, this lesion mapping approach applies similar logical constraints as used in cognitive neuropsychological research. Using this approach, this investigation: (1) Identifies a region anterior to the VWFA that is important in the interface of orthographic information with semantics for reading and spelling; (2) Determines that, within this Orthography-Semantics Interface Region (OSIR), access to orthography from semantics (spelling) is topographically distinct from access to semantics from orthography (reading); (3) Provides evidence that, within this region, there is modality-specific access to and from lexical semantics for both spoken and written modalities, in both word production and comprehension. Overall, this study contributes to our understanding of the neural architecture at the lexical orthography-semantic-phonological interface within left ventral temporal cortex. PMID:24833190

  1. Neural Correlates of Phrase Quadrature Perception in Harmonic Rhythm: An EEG Study Using a Brain-Computer Interface.

    PubMed

    Fernández-Soto, Alicia; Martínez-Rodrigo, Arturo; Moncho-Bogani, José; Latorre, José Miguel; Fernández-Caballero, Antonio

    2018-06-01

    For the sake of establishing the neural correlates of phrase quadrature perception in harmonic rhythm, a musical experiment has been designed to induce music-evoked stimuli related to one important aspect of harmonic rhythm, namely the phrase quadrature. Brain activity is translated to action through electroencephalography (EEG) by using a brain-computer interface. The power spectral value of each EEG channel is estimated to obtain how power variance distributes as a function of frequency. The results of processing the acquired signals are in line with previous studies that use different musical parameters to induce emotions. Indeed, our experiment shows statistical differences in theta and alpha bands between the fulfillment and break of phrase quadrature, an important cue of harmonic rhythm, in two classical sonatas.

  2. Friction forces position the neural anlage

    PubMed Central

    Smutny, Michael; Ákos, Zsuzsa; Grigolon, Silvia; Shamipour, Shayan; Ruprecht, Verena; Čapek, Daniel; Behrndt, Martin; Papusheva, Ekaterina; Tada, Masazumi; Hof, Björn; Vicsek, Tamás; Salbreux, Guillaume; Heisenberg, Carl-Philipp

    2017-01-01

    During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo. PMID:28346437

  3. Friction forces position the neural anlage.

    PubMed

    Smutny, Michael; Ákos, Zsuzsa; Grigolon, Silvia; Shamipour, Shayan; Ruprecht, Verena; Čapek, Daniel; Behrndt, Martin; Papusheva, Ekaterina; Tada, Masazumi; Hof, Björn; Vicsek, Tamás; Salbreux, Guillaume; Heisenberg, Carl-Philipp

    2017-04-01

    During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.

  4. DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation

    PubMed Central

    Sherfey, Jason S.; Soplata, Austin E.; Ardid, Salva; Roberts, Erik A.; Stanley, David A.; Pittman-Polletta, Benjamin R.; Kopell, Nancy J.

    2018-01-01

    DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community. PMID:29599715

  5. DynaSim: A MATLAB Toolbox for Neural Modeling and Simulation.

    PubMed

    Sherfey, Jason S; Soplata, Austin E; Ardid, Salva; Roberts, Erik A; Stanley, David A; Pittman-Polletta, Benjamin R; Kopell, Nancy J

    2018-01-01

    DynaSim is an open-source MATLAB/GNU Octave toolbox for rapid prototyping of neural models and batch simulation management. It is designed to speed up and simplify the process of generating, sharing, and exploring network models of neurons with one or more compartments. Models can be specified by equations directly (similar to XPP or the Brian simulator) or by lists of predefined or custom model components. The higher-level specification supports arbitrarily complex population models and networks of interconnected populations. DynaSim also includes a large set of features that simplify exploring model dynamics over parameter spaces, running simulations in parallel using both multicore processors and high-performance computer clusters, and analyzing and plotting large numbers of simulated data sets in parallel. It also includes a graphical user interface (DynaSim GUI) that supports full functionality without requiring user programming. The software has been implemented in MATLAB to enable advanced neural modeling using MATLAB, given its popularity and a growing interest in modeling neural systems. The design of DynaSim incorporates a novel schema for model specification to facilitate future interoperability with other specifications (e.g., NeuroML, SBML), simulators (e.g., NEURON, Brian, NEST), and web-based applications (e.g., Geppetto) outside MATLAB. DynaSim is freely available at http://dynasimtoolbox.org. This tool promises to reduce barriers for investigating dynamics in large neural models, facilitate collaborative modeling, and complement other tools being developed in the neuroinformatics community.

  6. Key considerations in designing a speech brain-computer interface.

    PubMed

    Bocquelet, Florent; Hueber, Thomas; Girin, Laurent; Chabardès, Stéphan; Yvert, Blaise

    2016-11-01

    Restoring communication in case of aphasia is a key challenge for neurotechnologies. To this end, brain-computer strategies can be envisioned to allow artificial speech synthesis from the continuous decoding of neural signals underlying speech imagination. Such speech brain-computer interfaces do not exist yet and their design should consider three key choices that need to be made: the choice of appropriate brain regions to record neural activity from, the choice of an appropriate recording technique, and the choice of a neural decoding scheme in association with an appropriate speech synthesis method. These key considerations are discussed here in light of (1) the current understanding of the functional neuroanatomy of cortical areas underlying overt and covert speech production, (2) the available literature making use of a variety of brain recording techniques to better characterize and address the challenge of decoding cortical speech signals, and (3) the different speech synthesis approaches that can be considered depending on the level of speech representation (phonetic, acoustic or articulatory) envisioned to be decoded at the core of a speech BCI paradigm. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. A 4 μW/Ch analog front-end module with moderate inversion and power-scalable sampling operation for 3-D neural microsystems.

    PubMed

    Al-Ashmouny, Khaled M; Chang, Sun-Il; Yoon, Euisik

    2012-10-01

    We report an analog front-end prototype designed in 0.25 μm CMOS process for hybrid integration into 3-D neural recording microsystems. For scaling towards massive parallel neural recording, the prototype has investigated some critical circuit challenges in power, area, interface, and modularity. We achieved extremely low power consumption of 4 μW/channel, optimized energy efficiency using moderate inversion in low-noise amplifiers (K of 5.98 × 10⁸ or NEF of 2.9), and minimized asynchronous interface (only 2 per 16 channels) for command and data capturing. We also implemented adaptable operations including programmable-gain amplification, power-scalable sampling (up to 50 kS/s/channel), wide configuration range (9-bit) for programmable gain and bandwidth, and 5-bit site selection capability (selecting 16 out of 128 sites). The implemented front-end module has achieved a reduction in noise-energy-area product by a factor of 5-25 times as compared to the state-of-the-art analog front-end approaches reported to date.

  8. Unsupervised Decoding of Long-Term, Naturalistic Human Neural Recordings with Automated Video and Audio Annotations

    PubMed Central

    Wang, Nancy X. R.; Olson, Jared D.; Ojemann, Jeffrey G.; Rao, Rajesh P. N.; Brunton, Bingni W.

    2016-01-01

    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Implementing Brain Computer Interfaces (BCIs) outside carefully controlled experiments in laboratory settings requires adaptive and scalable strategies with minimal supervision. Here we describe an unsupervised approach to decoding neural states from naturalistic human brain recordings. We analyzed continuous, long-term electrocorticography (ECoG) data recorded over many days from the brain of subjects in a hospital room, with simultaneous audio and video recordings. We discovered coherent clusters in high-dimensional ECoG recordings using hierarchical clustering and automatically annotated them using speech and movement labels extracted from audio and video. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Interpretable behaviors were decoded from ECoG data, including moving, speaking and resting; the results were assessed by comparison with manual annotation. Discovered clusters were projected back onto the brain revealing features consistent with known functional areas, opening the door to automated functional brain mapping in natural settings. PMID:27148018

  9. Mind the fish: zebrafish as a model in cognitive social neuroscience

    PubMed Central

    Oliveira, Rui F.

    2013-01-01

    Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective) is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1) identification of the functional building blocks of social skills; (2) identification of the cognitive mechanisms underlying the previously identified social skills; and (3) mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed. PMID:23964204

  10. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Phil; Simeral, John D.; Hochberg, Leigh R.; Donoghue, John P.; Black, Michael J.

    2008-12-01

    Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor's velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding. Disclosure. JPD is the Chief Scientific Officer and a director of Cyberkinetics Neurotechnology Systems (CYKN); he holds stock and receives compensation. JDS has been a consultant for CYKN. LRH receives clinical trial support from CYKN.

  11. Integrating neuroinformatics tools in TheVirtualBrain.

    PubMed

    Woodman, M Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor

    2014-01-01

    TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting.

  12. Integrating neuroinformatics tools in TheVirtualBrain

    PubMed Central

    Woodman, M. Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A.; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor

    2014-01-01

    TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting. PMID:24795617

  13. Mind the fish: zebrafish as a model in cognitive social neuroscience.

    PubMed

    Oliveira, Rui F

    2013-01-01

    Understanding how the brain implements social behavior on one hand, and how social processes feedback on the brain to promote fine-tuning of behavioral output according to changes in the social environment is a major challenge in contemporary neuroscience. A critical step to take this challenge successfully is finding the appropriate level of analysis when relating social to biological phenomena. Given the enormous complexity of both the neural networks of the brain and social systems, the use of a cognitive level of analysis (in an information processing perspective) is proposed here as an explanatory interface between brain and behavior. A conceptual framework for a cognitive approach to comparative social neuroscience is proposed, consisting of the following steps to be taken across different species with varying social systems: (1) identification of the functional building blocks of social skills; (2) identification of the cognitive mechanisms underlying the previously identified social skills; and (3) mapping these information processing mechanisms onto the brain. Teleost fish are presented here as a group of choice to develop this approach, given the diversity of social systems present in closely related species that allows for planned phylogenetic comparisons, and the availability of neurogenetic tools that allows the visualization and manipulation of selected neural circuits in model species such as the zebrafish. Finally, the state-of-the art of zebrafish social cognition and of the tools available to map social cognitive abilities to neural circuits in zebrafish are reviewed.

  14. Development of wireless, chipless neural stimulator by using one-port surface acoustic wave delay line and diode-capacitor interface

    NASA Astrophysics Data System (ADS)

    Kim, Jisung; Kim, Saehan; Lee, Keekeun

    2017-06-01

    For the first time, a wireless and chipless neuron stimulator was developed by utilizing a surface acoustic wave (SAW) delay line, a diode-capacitor interface, a sharp metal tip, and antennas for the stimulation of neurons in the brain. The SAW delay line supersedes presently existing complex wireless transmission systems composed of a few thousands of transistors, enabling the fabrication of wireless and chipless transceiver systems. The diode-capacitor interface was used to convert AC signals to DC signals and induce stimulus pulses at a sharp metal probe. A 400 MHz RF energy was wirelessly radiated from antennas and then stimulation pulses were observed at a sharp gold probe. A ˜5 m reading distance was obtained using a 1 mW power from a network analyzer. The cycles of electromagnetic (EM) radiation from an antenna were controlled by shielding the antenna with an EM absorber. Stimulation pulses with different amplitudes and durations were successfully observed at the probe. The obtained pulses were ˜0.08 mV in amplitude and 3-10 Hz in frequency. Coupling-of-mode (COM) and SPICE modeling simulations were also used to determine the optimal structural parameters for SAW delay line and the values of passive elements. On the basis of the extracted parameters, the entire system was experimentally implemented and characterized.

  15. Selective neural activation in a histologically derived model of peripheral nerve

    NASA Astrophysics Data System (ADS)

    Butson, Christopher R.; Miller, Ian O.; Normann, Richard A.; Clark, Gregory A.

    2011-06-01

    Functional electrical stimulation (FES) is a general term for therapeutic methods that use electrical stimulation to aid or replace lost ability. For FES systems that communicate with the nervous system, one critical component is the electrode interface through which the machine-body information transfer must occur. In this paper, we examine the influence of inhomogeneous tissue conductivities and positions of nodes of Ranvier on activation of myelinated axons for neuromuscular control as a function of electrode configuration. To evaluate these effects, we developed a high-resolution bioelectric model of a fascicle from a stained cross-section of cat sciatic nerve. The model was constructed by digitizing a fixed specimen of peripheral nerve, extruding the image along the axis of the nerve, and assigning each anatomical component to one of several different tissue types. Electrodes were represented by current sources in monopolar, transverse bipolar, and longitudinal bipolar configurations; neural activation was determined using coupled field-neuron simulations with myelinated axon cable models. We found that the use of an isotropic tissue medium overestimated neural activation thresholds compared with the use of physiologically based, inhomogeneous tissue medium, even after controlling for mean impedance levels. Additionally, the positions of the cathodic sources relative to the nodes of Ranvier had substantial effects on activation, and these effects were modulated by the electrode configuration. Our results indicate that physiologically based tissue properties cause considerable variability in the neural response, and the inclusion of these properties is an important component in accurately predicting activation. The results are used to suggest new electrode designs to enable selective stimulation of small diameter fibers.

  16. Epigenetic Principles and Mechanisms Underlying Nervous System Functions in Health and Disease

    PubMed Central

    Mehler, Mark F.

    2009-01-01

    Epigenetics and epigenomic medicine encompass a new science of brain and behavior that are already providing unique insights into the mechanisms underlying brain development, evolution, neuronal and network plasticity and homeostasis, senescence, the etiology of diverse neurological diseases and neural regenerative processes. Epigenetic mechanisms include DNA methylation, histone modifications, nucleosome repositioning, higher-order chromatin remodeling, non-coding RNAs, and RNA and DNA editing. RNA is centrally involved in directing these processes, implying that the transcriptional state of the cell is the primary determinant of epigenetic memory. This transcriptional state can be modified by internal and external cues affecting gene expression and post-transcriptional processing, but also by RNA and DNA editing through activity-dependent intracellular transport and modulation of RNAs and RNA regulatory supercomplexes, and through trans-neuronal and systemic trafficking of functional RNA subclasses. These integrated processes promote dynamic reorganization of nuclear architecture and the genomic landscape to modulate functional gene and neural networks with complex temporal and spatial trajectories. Epigenetics represents the long sought after molecular interface mediating gene-environmental interactions during critical periods throughout the lifecycle. The discipline of environmental epigenomics has begun to identify combinatorial profiles of environmental stressors modulating the latency, initiation and progression of specific neurological disorders, and more selective disease biomarkers and graded molecular responses to emerging therapeutic interventions. Pharmacoepigenomic therapies will promote accelerated recovery of impaired and seemingly irrevocably lost cognitive, behavioral, sensorimotor functions through epigenetic reprogramming of endogenous regional neural stem cell fate decisions, targeted tissue remodeling and restoration of neural network integrity, plasticity and connectivity. PMID:18940229

  17. A Closed-loop Brain Computer Interface to a Virtual Reality Avatar: Gait Adaptation to Visual Kinematic Perturbations

    PubMed Central

    Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.

    2016-01-01

    The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system. PMID:27713915

  18. A machine learning system to improve heart failure patient assistance.

    PubMed

    Guidi, Gabriele; Pettenati, Maria Chiara; Melillo, Paolo; Iadanza, Ernesto

    2014-11-01

    In this paper, we present a clinical decision support system (CDSS) for the analysis of heart failure (HF) patients, providing various outputs such as an HF severity evaluation, HF-type prediction, as well as a management interface that compares the different patients' follow-ups. The whole system is composed of a part of intelligent core and of an HF special-purpose management tool also providing the function to act as interface for the artificial intelligence training and use. To implement the smart intelligent functions, we adopted a machine learning approach. In this paper, we compare the performance of a neural network (NN), a support vector machine, a system with fuzzy rules genetically produced, and a classification and regression tree and its direct evolution, which is the random forest, in analyzing our database. Best performances in both HF severity evaluation and HF-type prediction functions are obtained by using the random forest algorithm. The management tool allows the cardiologist to populate a "supervised database" suitable for machine learning during his or her regular outpatient consultations. The idea comes from the fact that in literature there are a few databases of this type, and they are not scalable to our case.

  19. Compact Microscope Imaging System With Intelligent Controls Improved

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.

  20. Intelligent neuroprocessors for in-situ launch vehicle propulsion systems health management

    NASA Technical Reports Server (NTRS)

    Gulati, S.; Tawel, R.; Thakoor, A. P.

    1993-01-01

    Efficacy of existing on-board propulsion systems health management systems (HMS) are severely impacted by computational limitations (e.g., low sampling rates); paradigmatic limitations (e.g., low-fidelity logic/parameter redlining only, false alarms due to noisy/corrupted sensor signatures, preprogrammed diagnostics only); and telemetry bandwidth limitations on space/ground interactions. Ultra-compact/light, adaptive neural networks with massively parallel, asynchronous, fast reconfigurable and fault-tolerant information processing properties have already demonstrated significant potential for inflight diagnostic analyses and resource allocation with reduced ground dependence. In particular, they can automatically exploit correlation effects across multiple sensor streams (plume analyzer, flow meters, vibration detectors, etc.) so as to detect anomaly signatures that cannot be determined from the exploitation of single sensor. Furthermore, neural networks have already demonstrated the potential for impacting real-time fault recovery in vehicle subsystems by adaptively regulating combustion mixture/power subsystems and optimizing resource utilization under degraded conditions. A class of high-performance neuroprocessors, developed at JPL, that have demonstrated potential for next-generation HMS for a family of space transportation vehicles envisioned for the next few decades, including HLLV, NLS, and space shuttle is presented. Of fundamental interest are intelligent neuroprocessors for real-time plume analysis, optimizing combustion mixture-ratio, and feedback to hydraulic, pneumatic control systems. This class includes concurrently asynchronous reprogrammable, nonvolatile, analog neural processors with high speed, high bandwidth electronic/optical I/O interfaced, with special emphasis on NASA's unique requirements in terms of performance, reliability, ultra-high density ultra-compactness, ultra-light weight devices, radiation hardened devices, power stringency, and long life terms.

  1. Decoding of finger trajectory from ECoG using deep learning.

    PubMed

    Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek

    2018-06-01

    Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.

  2. Decoding of finger trajectory from ECoG using deep learning

    NASA Astrophysics Data System (ADS)

    Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek

    2018-06-01

    Objective. Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. Approach. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. Main results. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. Significance. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.

  3. In vivo performance of a microelectrode neural probe with integrated drug delivery

    PubMed Central

    Rohatgi, Pratik; Langhals, Nicholas B.; Kipke, Daryl R.; Patil, Parag G.

    2014-01-01

    Object The availability of sophisticated neural probes is a key prerequisite in the development of future brain machine interfaces (BMI). In this study, we developed and validated a neural probe design capable of simultaneous drug delivery and electrophysiology recordings in vivo. Focal drug delivery has promise to dramatically extend the recording lives of neural probes, a limiting factor to clinical adoption of BMI technology. Methods To form the multifunctional neural probe, we affixed a 16-channel microfabricated silicon electrode array to a fused silica catheter. Three experiments were conducted to characterize the performance of the device. Experiment 1 examines cellular damage from probe insertion and the drug distribution in tissue. Experiment 2 measures the effects of saline infusions delivered through the probe on concurrent electrophysiology. Experiment 3 demonstrates that a physiologically relevant amount of drug can be delivered in a controlled fashion. For these experiments, Hoechst and propidium iodide were used to assess insertion trauma and the tissue distribution of the infusate. Artificial cerebral spinal fluid and tetrodotoxin were injected to determine the efficacy of drug delivery. Results The newly developed multifunctional neural probes were successfully inserted into rat cortex and were able to deliver fluids and drugs that resulted in the expected electrophysiological and histological responses. The damage from insertion of the device into brain tissue was substantially less than the volume of drug dispersion in tissue. Electrophysiological activity, including both individual spikes as well as local field potentials, was successfully recorded with this device during real-time drug delivery. No significant changes were seen in response to delivery of artificial cerebral spinal fluid as a control experiment, whereas delivery of tetrodotoxin produced the expected result of suppressing all spiking activity in the vicinity of the catheter outlet. Conclusions Multifunctional neural probes such as the ones developed and validated within this study have great potential to help further understand the design space and criteria for the next generation of neural probe technology. By incorporating integrated drug delivery functionality into the probes, new treatment options for neurological disorders and regenerative neural interfaces utilizing localized and feedback controlled delivery of drugs can be realized in the near future. PMID:19569896

  4. Augmenting intracortical brain-machine interface with neurally driven error detectors

    NASA Astrophysics Data System (ADS)

    Even-Chen, Nir; Stavisky, Sergey D.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.

    2017-12-01

    Objective. Making mistakes is inevitable, but identifying them allows us to correct or adapt our behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors that need to be explicitly corrected by the user, thereby consuming time and thus hindering performance. We hypothesized that neural correlates of the user perceiving the mistake could be used by the BMI to automatically correct errors. However, it was unknown whether intracortical outcome error signals were present in the premotor and primary motor cortices, brain regions successfully used for intracortical BMIs. Approach. We report here for the first time a putative outcome error signal in spiking activity within these cortices when rhesus macaques performed an intracortical BMI computer cursor task. Main results. We decoded BMI trial outcomes shortly after and even before a trial ended with 96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-its-kind intracortical BMI error ‘detect-and-act’ system that attempts to automatically ‘undo’ or ‘prevent’ mistakes. The detect-and-act system works independently and in parallel to a kinematic BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including a state-of-the-art decoder (ReFIT-KF). Significance. Detecting errors in real-time from the same brain regions that are commonly used to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to people with paralysis.

  5. EDITORIAL: Special section on gaze-independent brain-computer interfaces Special section on gaze-independent brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Treder, Matthias S.

    2012-08-01

    Restoring the ability to communicate and interact with the environment in patients with severe motor disabilities is a vision that has been the main catalyst of early brain-computer interface (BCI) research. The past decade has brought a diversification of the field. BCIs have been examined as a tool for motor rehabilitation and their benefit in non-medical applications such as mental-state monitoring for improved human-computer interaction and gaming has been confirmed. At the same time, the weaknesses of some approaches have been pointed out. One of these weaknesses is gaze-dependence, that is, the requirement that the user of a BCI system voluntarily directs his or her eye gaze towards a visual target in order to efficiently operate a BCI. This not only contradicts the main doctrine of BCI research, namely that BCIs should be independent of muscle activity, but it can also limit its real-world applicability both in clinical and non-medical settings. It is only in a scenario devoid of any motor activity that a BCI solution is without alternative. Gaze-dependencies have surfaced at two different points in the BCI loop. Firstly, a BCI that relies on visual stimulation may require users to fixate on the target location. Secondly, feedback is often presented visually, which implies that the user may have to move his or her eyes in order to perceive the feedback. This special section was borne out of a BCI workshop on gaze-independent BCIs held at the 2011 Society for Applied Neurosciences (SAN) Conference and has then been extended with additional contributions from other research groups. It compiles experimental and methodological work that aims toward gaze-independent communication and mental-state monitoring. Riccio et al review the current state-of-the-art in research on gaze-independent BCIs [1]. Van der Waal et al present a tactile speller that builds on the stimulation of the fingers of the right and left hand [2]. H¨ohne et al analyze the ergonomic aspects of stimuli and systematic class confusions in auditory BCIs [3]. Andersson et al use fMRI for online-decoding of covert shifts of visual attention [4]. Thurlings et al show that multi-sensory integration of tactile and visual information can enhance the amplitude of ERP components [5]. Schaeff et al investigate the use of motion VEPs in gaze-independent visual BCIs [6]. Wilson et al substitute visual feedback by mapping the screen's cursor onto a tactor grid that stimulates the tongue [7]. Brouwer et al explore the use of ERP features and spectral features for estimating mental workload in an n-back task [8]. Falzon et al extend the Common Spatial Patterns (CSP) method to the complex plane, taking into account both amplitude and phase relationships [9]. Eliseyev et al present a method for the sparse sub-selection of electrodes for classification [10]. Tonin et al demonstrate that the classification of covert attention shifts is improved by considering sub-bands of the alpha band [11]. Aloise et al investigate effects of classification scheme and decimation on the performance of a gaze-independent BCI [12]. References [1] Riccio A et al 2012 J. Neural Eng. 9 045001 [2] van der Waal M et al 2012 J. Neural Eng. 9 045002 [3] Höhne J et al 2012 J. Neural Eng. 9 045003 [4] Andersson P et al 2012 J. Neural Eng. 9 045004 [5] Thurlings M E et al 2012 J. Neural Eng. 9 045005 [6] Schaeff S et al 2012 J. Neural Eng. 9 045006 [7] Wilson J A et al 2012 J. Neural Eng. 9 045007 [8] Brouwer A-M et al 2012 J. Neural Eng. 9 045008 [9] Falzon O et al 2012 J. Neural Eng. 9 045009 [10] Eliseyev A et al 2012 J. Neural Eng. 9 045010 [11] Tonin L et al 2012 J. Neural Eng. 9 045011 [12] Aloise F et al 2012 J. Neural Eng. 9 045012

  6. An FPGA Platform for Real-Time Simulation of Spiking Neuronal Networks

    PubMed Central

    Pani, Danilo; Meloni, Paolo; Tuveri, Giuseppe; Palumbo, Francesca; Massobrio, Paolo; Raffo, Luigi

    2017-01-01

    In the last years, the idea to dynamically interface biological neurons with artificial ones has become more and more urgent. The reason is essentially due to the design of innovative neuroprostheses where biological cell assemblies of the brain can be substituted by artificial ones. For closed-loop experiments with biological neuronal networks interfaced with in silico modeled networks, several technological challenges need to be faced, from the low-level interfacing between the living tissue and the computational model to the implementation of the latter in a suitable form for real-time processing. Field programmable gate arrays (FPGAs) can improve flexibility when simple neuronal models are required, obtaining good accuracy, real-time performance, and the possibility to create a hybrid system without any custom hardware, just programming the hardware to achieve the required functionality. In this paper, this possibility is explored presenting a modular and efficient FPGA design of an in silico spiking neural network exploiting the Izhikevich model. The proposed system, prototypically implemented on a Xilinx Virtex 6 device, is able to simulate a fully connected network counting up to 1,440 neurons, in real-time, at a sampling rate of 10 kHz, which is reasonable for small to medium scale extra-cellular closed-loop experiments. PMID:28293163

  7. Molecular Electronic Devices Based On Electrooptical Behavior Of Heme-Like Molecules

    NASA Astrophysics Data System (ADS)

    Simic-Glavaski, B.

    1986-02-01

    This paper discusses application of the electrically modulated and unusually strong Raman emitted light produced by an adsorbed monolayer of phthalocyanine molecules on silver electrode or silver bromide substrates and on neural membranes. The analysis of electronic energy levels in semiconducting silver bromide and the adsorbed phthalocyanine molecules suggests a lasing mechanism as a possible origin of the high enhancement factor in surface enhanced Raman scattering. Electrically modulated Raman scattering may be used as a carrier of information which is drawn fran the fast intramolecular electron transfer aN,the multiplicity of quantum wells in phthalocyanine molecules. Fast switching times on the order of 10-13 seconds have been measured at room temperature. Multilevel and multioutput optical signals have also been obtained fran such an electrically modulated adsorbed monolayer of phthalocyanine molecules which can be precisely addressed and interrogated. This may be of practical use to develop Nlecular electronic devices with high density memory and fast parallel processing systems with a typical 1020 gate Hz/cm2 capacity at room temperature for use in optical computers. The paper also discusses the electrooptical modulation of Raman signals obtained from adsorbed bio-compatible phthalocyanine molecules on nerve membranes. This optical probe of neural systems can be used in studies of complex information processing in neural nets and provides a possible method for interfacing natural and man-made information processing devices.

  8. A high-speed BCI based on code modulation VEP

    NASA Astrophysics Data System (ADS)

    Bin, Guangyu; Gao, Xiaorong; Wang, Yijun; Li, Yun; Hong, Bo; Gao, Shangkai

    2011-04-01

    Recently, electroencephalogram-based brain-computer interfaces (BCIs) have attracted much attention in the fields of neural engineering and rehabilitation due to their noninvasiveness. However, the low communication speed of current BCI systems greatly limits their practical application. In this paper, we present a high-speed BCI based on code modulation of visual evoked potentials (c-VEP). Thirty-two target stimuli were modulated by a time-shifted binary pseudorandom sequence. A multichannel identification method based on canonical correlation analysis (CCA) was used for target identification. The online system achieved an average information transfer rate (ITR) of 108 ± 12 bits min-1 on five subjects with a maximum ITR of 123 bits min-1 for a single subject.

  9. Simulation of trading strategies in the electricity market

    NASA Astrophysics Data System (ADS)

    Charkiewicz, Kamil; Nowak, Robert

    2011-10-01

    The main objective of the energy market existence is reduction of the total cost of production, transport and distribution of energy, and so the prices paid by terminal consumers. Energy market contains few markets that are varying on operational rules, the important segments: the Futures Contract Market and Next Day Market are analyzed in presented approach. The computer system was developed to simulate the Polish Energy Market. This system use the multi-agent approach, where each agent is the separate shared library with defined interface. The software was used to compare strategies for players in energy market, where the strategies uses auto-regression, k-nearest neighbours, neural network and mixed algorithm, to predict the next price.

  10. Nanoelectronics meets biology: from new nanoscale devices for live-cell recording to 3D innervated tissues.

    PubMed

    Duan, Xiaojie; Lieber, Charles M

    2013-10-01

    High spatiotemporal resolution interfaces between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. Herein, we summarize recent progress in the development and application of novel nanoscale devices for intracellular electrical recording of action potentials and the effort of merging electronic and biological systems seamlessly in three dimensions by using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large-scale, high spatial resolution, and three-dimensional neural activity mapping are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A neuro-inspired model-based closed-loop neuroprosthesis for the substitution of a cerebellar learning function in anesthetized rats

    NASA Astrophysics Data System (ADS)

    Hogri, Roni; Bamford, Simeon A.; Taub, Aryeh H.; Magal, Ari; Giudice, Paolo Del; Mintz, Matti

    2015-02-01

    Neuroprostheses could potentially recover functions lost due to neural damage. Typical neuroprostheses connect an intact brain with the external environment, thus replacing damaged sensory or motor pathways. Recently, closed-loop neuroprostheses, bidirectionally interfaced with the brain, have begun to emerge, offering an opportunity to substitute malfunctioning brain structures. In this proof-of-concept study, we demonstrate a neuro-inspired model-based approach to neuroprostheses. A VLSI chip was designed to implement essential cerebellar synaptic plasticity rules, and was interfaced with cerebellar input and output nuclei in real time, thus reproducing cerebellum-dependent learning in anesthetized rats. Such a model-based approach does not require prior system identification, allowing for de novo experience-based learning in the brain-chip hybrid, with potential clinical advantages and limitations when compared to existing parametric ``black box'' models.

  12. Spiking Neural Network Decoder for Brain-Machine Interfaces.

    PubMed

    Dethier, Julie; Gilja, Vikash; Nuyujukian, Paul; Elassaad, Shauki A; Shenoy, Krishna V; Boahen, Kwabena

    2011-01-01

    We used a spiking neural network (SNN) to decode neural data recorded from a 96-electrode array in premotor/motor cortex while a rhesus monkey performed a point-to-point reaching arm movement task. We mapped a Kalman-filter neural prosthetic decode algorithm developed to predict the arm's velocity on to the SNN using the Neural Engineering Framework and simulated it using Nengo , a freely available software package. A 20,000-neuron network matched the standard decoder's prediction to within 0.03% (normalized by maximum arm velocity). A 1,600-neuron version of this network was within 0.27%, and run in real-time on a 3GHz PC. These results demonstrate that a SNN can implement a statistical signal processing algorithm widely used as the decoder in high-performance neural prostheses (Kalman filter), and achieve similar results with just a few thousand neurons. Hardware SNN implementations-neuromorphic chips-may offer power savings, essential for realizing fully-implantable cortically controlled prostheses.

  13. Kernel Temporal Differences for Neural Decoding

    PubMed Central

    Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2015-01-01

    We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504

  14. Design and fabrication of a flexible substrate microelectrode array for brain machine interfaces.

    PubMed

    Patrick, Erin; Ordonez, Matthew; Alba, Nicolas; Sanchez, Justin C; Nishida, Toshikazu

    2006-01-01

    We report a neural microelectrode array design that leverages the recording properties of conventional microwire electrode arrays with the additional features of precise control of the electrode geometries. Using microfabrication techniques, a neural probe array is fabricated that possesses a flexible polyimide-based cable. The performance of the design was tested with electrochemical impedance spectroscopy and in vivo studies. The gold-plated electrode site has an impedance value of 0.9 M Omega at 1 kHz. Acute neural recording provided high neuronal yields, peak-to-peak amplitudes (as high as 100 microV), and signal-to-noise ratios (27 dB).

  15. Early Metamorphic Insertion Technology for Insect Flight Behavior Monitoring

    PubMed Central

    Bozkurt, Alper

    2014-01-01

    Early Metamorphosis Insertion Technology (EMIT) is a novel methodology for integrating microfabricated neuromuscular recording and actuation platforms on insects during their metamorphic development. Here, the implants are fused within the structure and function of the neuromuscular system as a result of metamorphic tissue remaking. The implants emerge with the insect where the development of tissue around the electronics during pupal development results in a bioelectrically and biomechanically enhanced tissue interface. This relatively more reliable and stable interface would be beneficial for many researchers exploring the neural basis of the insect locomotion with alleviated traumatic effects caused during adult stage insertions. In this article, we implant our electrodes into the indirect flight muscles of Manduca sexta. Located in the dorsal-thorax, these main flight powering dorsoventral and dorsolongitudinal muscles actuate the wings and supply the mechanical power for up and down strokes. Relative contraction of these two muscle groups has been under investigation to explore how the yaw maneuver is neurophysiologically coordinated. To characterize the flight dynamics, insects are often tethered with wires and their flight is recorded with digital cameras. We also developed a novel way to tether Manduca sexta on a magnetically levitating frame where the insect is connected to a commercially available wireless neural amplifier. This set up can be used to limit the degree of freedom to yawing “only” while transmitting the related electromyography signals from dorsoventral and dorsolongitudinal muscle groups. PMID:25079130

  16. Acute changes associated with electrode insertion measured with optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Lozzi, Andrea; Boretsky, Adam; Agrawal, Anant; Welle, Cristin G.

    2016-03-01

    Despite advances in functional neural imaging, penetrating microelectrodes provide the most direct interface for the extraction of neural signals from the nervous system and are a critical component of many high degree-of-freedom braincomputer interface devices. Electrode insertion is a traumatic event that elicits a complex neuroinflammatory response. In this investigation we applied optical coherence microscopy (OCM), particularly optical coherence angiography (OCA), to characterize the immediate tissue response during microelectrode insertion. Microelectrodes of varying dimension and footprint (one-, two-, and four-shank) were inserted into mouse motor cortex beneath a window after craniotomy surgery. The microelectrodes were inserted in 3-4 steps at 15-20°, with approximately 250 μm linear insertion distance for each step. Before insertion and between each step, OCM datasets were collected, including for quantitative capillary velocimetry. A cohort of control animals without microelectrode insertion was also imaged over a similar time period (2-3 hours). Mechanical tissue deformation was observed in all the experimental animals. The quantitative angiography results varied across animals, and were not correlated with device dimensions. In some cases, localized flow drop-out was observed in a small region surrounding the electrode, while in other instances a global disruption in flow occurred, perhaps as a result of large vessel compression caused by mechanical pressure. OCM is a tool that can be used in various neurophotonics applications, including quantification of the neuroinflammatory response to penetrating electrode insertion.

  17. Multimodality Instrument for Tissue Characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2000-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.

  18. NEVESIM: event-driven neural simulation framework with a Python interface.

    PubMed

    Pecevski, Dejan; Kappel, David; Jonke, Zeno

    2014-01-01

    NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies.

  19. NEVESIM: event-driven neural simulation framework with a Python interface

    PubMed Central

    Pecevski, Dejan; Kappel, David; Jonke, Zeno

    2014-01-01

    NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies. PMID:25177291

  20. An integrated modelling framework for neural circuits with multiple neuromodulators.

    PubMed

    Joshi, Alok; Youssofzadeh, Vahab; Vemana, Vinith; McGinnity, T M; Prasad, Girijesh; Wong-Lin, KongFatt

    2017-01-01

    Neuromodulators are endogenous neurochemicals that regulate biophysical and biochemical processes, which control brain function and behaviour, and are often the targets of neuropharmacological drugs. Neuromodulator effects are generally complex partly owing to the involvement of broad innervation, co-release of neuromodulators, complex intra- and extrasynaptic mechanism, existence of multiple receptor subtypes and high interconnectivity within the brain. In this work, we propose an efficient yet sufficiently realistic computational neural modelling framework to study some of these complex behaviours. Specifically, we propose a novel dynamical neural circuit model that integrates the effective neuromodulator-induced currents based on various experimental data (e.g. electrophysiology, neuropharmacology and voltammetry). The model can incorporate multiple interacting brain regions, including neuromodulator sources, simulate efficiently and easily extendable to large-scale brain models, e.g. for neuroimaging purposes. As an example, we model a network of mutually interacting neural populations in the lateral hypothalamus, dorsal raphe nucleus and locus coeruleus, which are major sources of neuromodulator orexin/hypocretin, serotonin and norepinephrine/noradrenaline, respectively, and which play significant roles in regulating many physiological functions. We demonstrate that such a model can provide predictions of systemic drug effects of the popular antidepressants (e.g. reuptake inhibitors), neuromodulator antagonists or their combinations. Finally, we developed user-friendly graphical user interface software for model simulation and visualization for both fundamental sciences and pharmacological studies. © 2017 The Authors.

Top