Sample records for neural network performs

  1. Introduction to Neural Networks.

    DTIC Science & Technology

    1992-03-01

    parallel processing of information that can greatly reduce the time required to perform operations which are needed in pattern recognition. Neural network, Artificial neural network , Neural net, ANN.

  2. The use of neural network technology to model swimming performance.

    PubMed

    Silva, António José; Costa, Aldo Manuel; Oliveira, Paulo Moura; Reis, Victor Machado; Saavedra, José; Perl, Jurgen; Rouboa, Abel; Marinho, Daniel Almeida

    2007-01-01

    to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons) and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females) of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility), swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics) and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron) with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances) is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports. Key pointsThe non-linear analysis resulting from the use of feed forward neural network allowed us the development of four performance models.The mean difference between the true and estimated results performed by each one of the four neural network models constructed was low.The neural network tool can be a good approach in the resolution of the performance modeling as an alternative to the standard statistical models that presume well-defined distributions and independence among all inputs.The use of neural networks for sports sciences application allowed us to create very realistic models for swimming performance prediction based on previous selected criterions that were related with the dependent variable (performance).

  3. Modified neural networks for rapid recovery of tokamak plasma parameters for real time control

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Ranjan, P.

    2002-07-01

    Two modified neural network techniques are used for the identification of the equilibrium plasma parameters of the Superconducting Steady State Tokamak I from external magnetic measurements. This is expected to ultimately assist in a real time plasma control. As different from the conventional network structure where a single network with the optimum number of processing elements calculates the outputs, a multinetwork system connected in parallel does the calculations here in one of the methods. This network is called the double neural network. The accuracy of the recovered parameters is clearly more than the conventional network. The other type of neural network used here is based on the statistical function parametrization combined with a neural network. The principal component transformation removes linear dependences from the measurements and a dimensional reduction process reduces the dimensionality of the input space. This reduced and transformed input set, rather than the entire set, is fed into the neural network input. This is known as the principal component transformation-based neural network. The accuracy of the recovered parameters in the latter type of modified network is found to be a further improvement over the accuracy of the double neural network. This result differs from that obtained in an earlier work where the double neural network showed better performance. The conventional network and the function parametrization methods have also been used for comparison. The conventional network has been used for an optimization of the set of magnetic diagnostics. The effective set of sensors, as assessed by this network, are compared with the principal component based network. Fault tolerance of the neural networks has been tested. The double neural network showed the maximum resistance to faults in the diagnostics, while the principal component based network performed poorly. Finally the processing times of the methods have been compared. The double network and the principal component network involve the minimum computation time, although the conventional network also performs well enough to be used in real time.

  4. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    PubMed Central

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423

  5. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks.

    PubMed

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  6. Neural network classification of clinical neurophysiological data for acute care monitoring

    NASA Technical Reports Server (NTRS)

    Sgro, Joseph

    1994-01-01

    The purpose of neurophysiological monitoring of the 'acute care' patient is to allow the accurate recognition of changing or deteriorating neurological function as close to the moment of occurrence as possible, thus permitting immediate intervention. Results confirm that: (1) neural networks are able to accurately identify electroencephalogram (EEG) patterns and evoked potential (EP) wave components, and measuring EP waveform latencies and amplitudes; (2) neural networks are able to accurately detect EP and EEG recordings that have been contaminated by noise; (3) the best performance was obtained consistently with the back propagation network for EP and the HONN for EEG's; (4) neural network performed consistently better than other methods evaluated; and (5) neural network EEG and EP analyses are readily performed on multichannel data.

  7. A novel recurrent neural network with finite-time convergence for linear programming.

    PubMed

    Liu, Qingshan; Cao, Jinde; Chen, Guanrong

    2010-11-01

    In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.

  8. Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.

    PubMed

    Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M

    2009-10-01

    Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.

  9. Devices and circuits for nanoelectronic implementation of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Turel, Ozgur

    Biological neural networks perform complicated information processing tasks at speeds better than conventional computers based on conventional algorithms. This has inspired researchers to look into the way these networks function, and propose artificial networks that mimic their behavior. Unfortunately, most artificial neural networks, either software or hardware, do not provide either the speed or the complexity of a human brain. Nanoelectronics, with high density and low power dissipation that it provides, may be used in developing more efficient artificial neural networks. This work consists of two major contributions in this direction. First is the proposal of the CMOL concept, hybrid CMOS-molecular hardware [1-8]. CMOL may circumvent most of the problems in posed by molecular devices, such as low yield, vet provide high active device density, ˜1012/cm 2. The second contribution is CrossNets, artificial neural networks that are based on CMOL. We showed that CrossNets, with their fault tolerance, exceptional speed (˜ 4 to 6 orders of magnitude faster than biological neural networks) can perform any task any artificial neural network can perform. Moreover, there is a hope that if their integration scale is increased to that of human cerebral cortex (˜ 1010 neurons and ˜ 1014 synapses), they may be capable of performing more advanced tasks.

  10. Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network

    PubMed Central

    Adak, M. Fatih; Yumusak, Nejat

    2016-01-01

    Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data. PMID:26927124

  11. Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network.

    PubMed

    Adak, M Fatih; Yumusak, Nejat

    2016-02-27

    Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data.

  12. Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.

    PubMed

    Xia, Youshen; Wang, Jun

    2015-07-01

    This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Verification and Validation Methodology of Real-Time Adaptive Neural Networks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Loparo, Kenneth; Mackall, Dale; Schumann, Johann; Soares, Fola

    2004-01-01

    Recent research has shown that adaptive neural based control systems are very effective in restoring stability and control of an aircraft in the presence of damage or failures. The application of an adaptive neural network with a flight critical control system requires a thorough and proven process to ensure safe and proper flight operation. Unique testing tools have been developed as part of a process to perform verification and validation (V&V) of real time adaptive neural networks used in recent adaptive flight control system, to evaluate the performance of the on line trained neural networks. The tools will help in certification from FAA and will help in the successful deployment of neural network based adaptive controllers in safety-critical applications. The process to perform verification and validation is evaluated against a typical neural adaptive controller and the results are discussed.

  14. Re-Evaluation of the AASHTO-Flexible Pavement Design Equation with Neural Network Modeling

    PubMed Central

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance. PMID:25397962

  15. Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling.

    PubMed

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance.

  16. Bio-inspired spiking neural network for nonlinear systems control.

    PubMed

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

    PubMed

    Li, Shuai; Li, Yangming; Wang, Zheng

    2013-03-01

    This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The Use of Neural Network Technology to Model Swimming Performance

    PubMed Central

    Silva, António José; Costa, Aldo Manuel; Oliveira, Paulo Moura; Reis, Victor Machado; Saavedra, José; Perl, Jurgen; Rouboa, Abel; Marinho, Daniel Almeida

    2007-01-01

    The aims of the present study were: to identify the factors which are able to explain the performance in the 200 meters individual medley and 400 meters front crawl events in young swimmers, to model the performance in those events using non-linear mathematic methods through artificial neural networks (multi-layer perceptrons) and to assess the neural network models precision to predict the performance. A sample of 138 young swimmers (65 males and 73 females) of national level was submitted to a test battery comprising four different domains: kinanthropometric evaluation, dry land functional evaluation (strength and flexibility), swimming functional evaluation (hydrodynamics, hydrostatic and bioenergetics characteristics) and swimming technique evaluation. To establish a profile of the young swimmer non-linear combinations between preponderant variables for each gender and swim performance in the 200 meters medley and 400 meters font crawl events were developed. For this purpose a feed forward neural network was used (Multilayer Perceptron) with three neurons in a single hidden layer. The prognosis precision of the model (error lower than 0.8% between true and estimated performances) is supported by recent evidence. Therefore, we consider that the neural network tool can be a good approach in the resolution of complex problems such as performance modeling and the talent identification in swimming and, possibly, in a wide variety of sports. Key pointsThe non-linear analysis resulting from the use of feed forward neural network allowed us the development of four performance models.The mean difference between the true and estimated results performed by each one of the four neural network models constructed was low.The neural network tool can be a good approach in the resolution of the performance modeling as an alternative to the standard statistical models that presume well-defined distributions and independence among all inputs.The use of neural networks for sports sciences application allowed us to create very realistic models for swimming performance prediction based on previous selected criterions that were related with the dependent variable (performance). PMID:24149233

  19. On Extended Dissipativity of Discrete-Time Neural Networks With Time Delay.

    PubMed

    Feng, Zhiguang; Zheng, Wei Xing

    2015-12-01

    In this brief, the problem of extended dissipativity analysis for discrete-time neural networks with time-varying delay is investigated. The definition of extended dissipativity of discrete-time neural networks is proposed, which unifies several performance measures, such as the H∞ performance, passivity, l2 - l∞ performance, and dissipativity. By introducing a triple-summable term in Lyapunov function, the reciprocally convex approach is utilized to bound the forward difference of the triple-summable term and then the extended dissipativity criterion for discrete-time neural networks with time-varying delay is established. The derived condition guarantees not only the extended dissipativity but also the stability of the neural networks. Two numerical examples are given to demonstrate the reduced conservatism and effectiveness of the obtained results.

  20. Using Neural Networks to Predict MBA Student Success

    ERIC Educational Resources Information Center

    Naik, Bijayananda; Ragothaman, Srinivasan

    2004-01-01

    Predicting MBA student performance for admission decisions is crucial for educational institutions. This paper evaluates the ability of three different models--neural networks, logit, and probit to predict MBA student performance in graduate programs. The neural network technique was used to classify applicants into successful and marginal student…

  1. Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches.

    PubMed

    Crichton, Gamal; Guo, Yufan; Pyysalo, Sampo; Korhonen, Anna

    2018-05-21

    Link prediction in biomedical graphs has several important applications including predicting Drug-Target Interactions (DTI), Protein-Protein Interaction (PPI) prediction and Literature-Based Discovery (LBD). It can be done using a classifier to output the probability of link formation between nodes. Recently several works have used neural networks to create node representations which allow rich inputs to neural classifiers. Preliminary works were done on this and report promising results. However they did not use realistic settings like time-slicing, evaluate performances with comprehensive metrics or explain when or why neural network methods outperform. We investigated how inputs from four node representation algorithms affect performance of a neural link predictor on random- and time-sliced biomedical graphs of real-world sizes (∼ 6 million edges) containing information relevant to DTI, PPI and LBD. We compared the performance of the neural link predictor to those of established baselines and report performance across five metrics. In random- and time-sliced experiments when the neural network methods were able to learn good node representations and there was a negligible amount of disconnected nodes, those approaches outperformed the baselines. In the smallest graph (∼ 15,000 edges) and in larger graphs with approximately 14% disconnected nodes, baselines such as Common Neighbours proved a justifiable choice for link prediction. At low recall levels (∼ 0.3) the approaches were mostly equal, but at higher recall levels across all nodes and average performance at individual nodes, neural network approaches were superior. Analysis showed that neural network methods performed well on links between nodes with no previous common neighbours; potentially the most interesting links. Additionally, while neural network methods benefit from large amounts of data, they require considerable amounts of computational resources to utilise them. Our results indicate that when there is enough data for the neural network methods to use and there are a negligible amount of disconnected nodes, those approaches outperform the baselines. At low recall levels the approaches are mostly equal but at higher recall levels and average performance at individual nodes, neural network approaches are superior. Performance at nodes without common neighbours which indicate more unexpected and perhaps more useful links account for this.

  2. Neural network-based model reference adaptive control system.

    PubMed

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  3. Classification of Company Performance using Weighted Probabilistic Neural Network

    NASA Astrophysics Data System (ADS)

    Yasin, Hasbi; Waridi Basyiruddin Arifin, Adi; Warsito, Budi

    2018-05-01

    Classification of company performance can be judged by looking at its financial status, whether good or bad state. Classification of company performance can be achieved by some approach, either parametric or non-parametric. Neural Network is one of non-parametric methods. One of Artificial Neural Network (ANN) models is Probabilistic Neural Network (PNN). PNN consists of four layers, i.e. input layer, pattern layer, addition layer, and output layer. The distance function used is the euclidean distance and each class share the same values as their weights. In this study used PNN that has been modified on the weighting process between the pattern layer and the addition layer by involving the calculation of the mahalanobis distance. This model is called the Weighted Probabilistic Neural Network (WPNN). The results show that the company's performance modeling with the WPNN model has a very high accuracy that reaches 100%.

  4. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  5. Static and transient performance prediction for CFB boilers using a Bayesian-Gaussian Neural Network

    NASA Astrophysics Data System (ADS)

    Ye, Haiwen; Ni, Weidou

    1997-06-01

    A Bayesian-Gaussian Neural Network (BGNN) is put forward in this paper to predict the static and transient performance of Circulating Fluidized Bed (CFB) boilers. The advantages of this network over Back-Propagation Neural Networks (BPNNs), easier determination of topology, simpler and time saving in training process as well as self-organizing ability, make this network more practical in on-line performance prediction for complicated processes. Simulation shows that this network is comparable to the BPNNs in predicting the performance of CFB boilers. Good and practical on-line performance predictions are essential for operation guide and model predictive control of CFB boilers, which are under research by the authors.

  6. Adaptive Optimization of Aircraft Engine Performance Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Long, Theresa W.

    1995-01-01

    Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.

  7. Artificial neural networks applied to forecasting time series.

    PubMed

    Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar

    2011-04-01

    This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.

  8. Neural networks: Alternatives to conventional techniques for automatic docking

    NASA Technical Reports Server (NTRS)

    Vinz, Bradley L.

    1994-01-01

    Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.

  9. Non-Intrusive Gaze Tracking Using Artificial Neural Networks

    DTIC Science & Technology

    1994-01-05

    We have developed an artificial neural network based gaze tracking, system which can be customized to individual users. A three layer feed forward...empirical analysis of the performance of a large number of artificial neural network architectures for this task. Suggestions for further explorations...for neurally based gaze trackers are presented, and are related to other similar artificial neural network applications such as autonomous road following.

  10. Neural networks for vertical microcode compaction

    NASA Astrophysics Data System (ADS)

    Chu, Pong P.

    1992-09-01

    Neural networks provide an alternative way to solve complex optimization problems. Instead of performing a program of instructions sequentially as in a traditional computer, neural network model explores many competing hypotheses simultaneously using its massively parallel net. The paper shows how to use the neural network approach to perform vertical micro-code compaction for a micro-programmed control unit. The compaction procedure includes two basic steps. The first step determines the compatibility classes and the second step selects a minimal subset to cover the control signals. Since the selection process is an NP- complete problem, to find an optimal solution is impractical. In this study, we employ a customized neural network to obtain the minimal subset. We first formalize this problem, and then define an `energy function' and map it to a two-layer fully connected neural network. The modified network has two types of neurons and can always obtain a valid solution.

  11. A neural network with modular hierarchical learning

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)

    1994-01-01

    This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.

  12. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting

    PubMed Central

    Ghazali, Rozaida; Herawan, Tutut

    2016-01-01

    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network. PMID:27959927

  13. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting.

    PubMed

    Waheeb, Waddah; Ghazali, Rozaida; Herawan, Tutut

    2016-01-01

    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network.

  14. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    NASA Astrophysics Data System (ADS)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  15. Performance of an artificial neural network for vertical root fracture detection: an ex vivo study.

    PubMed

    Kositbowornchai, Suwadee; Plermkamon, Supattra; Tangkosol, Tawan

    2013-04-01

    To develop an artificial neural network for vertical root fracture detection. A probabilistic neural network design was used to clarify whether a tooth root was sound or had a vertical root fracture. Two hundred images (50 sound and 150 vertical root fractures) derived from digital radiography--used to train and test the artificial neural network--were divided into three groups according to the number of training and test data sets: 80/120,105/95 and 130/70, respectively. Either training or tested data were evaluated using grey-scale data per line passing through the root. These data were normalized to reduce the grey-scale variance and fed as input data of the neural network. The variance of function in recognition data was calculated between 0 and 1 to select the best performance of neural network. The performance of the neural network was evaluated using a diagnostic test. After testing data under several variances of function, we found the highest sensitivity (98%), specificity (90.5%) and accuracy (95.7%) occurred in Group three, for which the variance of function in recognition data was between 0.025 and 0.005. The neural network designed in this study has sufficient sensitivity, specificity and accuracy to be a model for vertical root fracture detection. © 2012 John Wiley & Sons A/S.

  16. Improvement of the Hopfield Neural Network by MC-Adaptation Rule

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen; Zhao, Hong

    2006-06-01

    We show that the performance of the Hopfield neural networks, especially the quality of the recall and the capacity of the effective storing, can be greatly improved by making use of a recently presented neural network designing method without altering the whole structure of the network. In the improved neural network, a memory pattern is recalled exactly from initial states having a given degree of similarity with the memory pattern, and thus one can avoids to apply the overlap criterion as carried out in the Hopfield neural networks.

  17. Predicate calculus for an architecture of multiple neural networks

    NASA Astrophysics Data System (ADS)

    Consoli, Robert H.

    1990-08-01

    Future projects with neural networks will require multiple individual network components. Current efforts along these lines are ad hoc. This paper relates the neural network to a classical device and derives a multi-part architecture from that model. Further it provides a Predicate Calculus variant for describing the location and nature of the trainings and suggests Resolution Refutation as a method for determining the performance of the system as well as the location of needed trainings for specific proofs. 2. THE NEURAL NETWORK AND A CLASSICAL DEVICE Recently investigators have been making reports about architectures of multiple neural networksL234. These efforts are appearing at an early stage in neural network investigations they are characterized by architectures suggested directly by the problem space. Touretzky and Hinton suggest an architecture for processing logical statements1 the design of this architecture arises from the syntax of a restricted class of logical expressions and exhibits syntactic limitations. In similar fashion a multiple neural netword arises out of a control problem2 from the sequence learning problem3 and from the domain of machine learning. 4 But a general theory of multiple neural devices is missing. More general attempts to relate single or multiple neural networks to classical computing devices are not common although an attempt is made to relate single neural devices to a Turing machines and Sun et a!. develop a multiple neural architecture that performs pattern classification.

  18. A neural network model for credit risk evaluation.

    PubMed

    Khashman, Adnan

    2009-08-01

    Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.

  19. Control of magnetic bearing systems via the Chebyshev polynomial-based unified model (CPBUM) neural network.

    PubMed

    Jeng, J T; Lee, T T

    2000-01-01

    A Chebyshev polynomial-based unified model (CPBUM) neural network is introduced and applied to control a magnetic bearing systems. First, we show that the CPBUM neural network not only has the same capability of universal approximator, but also has faster learning speed than conventional feedforward/recurrent neural network. It turns out that the CPBUM neural network is more suitable in the design of controller than the conventional feedforward/recurrent neural network. Second, we propose the inverse system method, based on the CPBUM neural networks, to control a magnetic bearing system. The proposed controller has two structures; namely, off-line and on-line learning structures. We derive a new learning algorithm for each proposed structure. The experimental results show that the proposed neural network architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  20. Enhancement of electrical signaling in neural networks on graphene films.

    PubMed

    Tang, Mingliang; Song, Qin; Li, Ning; Jiang, Ziyun; Huang, Rong; Cheng, Guosheng

    2013-09-01

    One of the key challenges for neural tissue engineering is to exploit supporting materials with robust functionalities not only to govern cell-specific behaviors, but also to form functional neural network. The unique electrical and mechanical properties of graphene imply it as a promising candidate for neural interfaces, but little is known about the details of neural network formation on graphene as a scaffold material for tissue engineering. Therapeutic regenerative strategies aim to guide and enhance the intrinsic capacity of the neurons to reorganize by promoting plasticity mechanisms in a controllable manner. Here, we investigated the impact of graphene on the formation and performance in the assembly of neural networks in neural stem cell (NSC) culture. Using calcium imaging and electrophysiological recordings, we demonstrate the capabilities of graphene to support the growth of functional neural circuits, and improve neural performance and electrical signaling in the network. These results offer a better understanding of interactions between graphene and NSCs, also they clearly present the great potentials of graphene as neural interface in tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Artificial astrocytes improve neural network performance.

    PubMed

    Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-04-19

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.

  2. Artificial Astrocytes Improve Neural Network Performance

    PubMed Central

    Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso

    2011-01-01

    Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157

  3. Biological modelling of a computational spiking neural network with neuronal avalanches.

    PubMed

    Li, Xiumin; Chen, Qing; Xue, Fangzheng

    2017-06-28

    In recent years, an increasing number of studies have demonstrated that networks in the brain can self-organize into a critical state where dynamics exhibit a mixture of ordered and disordered patterns. This critical branching phenomenon is termed neuronal avalanches. It has been hypothesized that the homeostatic level balanced between stability and plasticity of this critical state may be the optimal state for performing diverse neural computational tasks. However, the critical region for high performance is narrow and sensitive for spiking neural networks (SNNs). In this paper, we investigated the role of the critical state in neural computations based on liquid-state machines, a biologically plausible computational neural network model for real-time computing. The computational performance of an SNN when operating at the critical state and, in particular, with spike-timing-dependent plasticity for updating synaptic weights is investigated. The network is found to show the best computational performance when it is subjected to critical dynamic states. Moreover, the active-neuron-dominant structure refined from synaptic learning can remarkably enhance the robustness of the critical state and further improve computational accuracy. These results may have important implications in the modelling of spiking neural networks with optimal computational performance.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'. © 2017 The Author(s).

  4. Biological modelling of a computational spiking neural network with neuronal avalanches

    NASA Astrophysics Data System (ADS)

    Li, Xiumin; Chen, Qing; Xue, Fangzheng

    2017-05-01

    In recent years, an increasing number of studies have demonstrated that networks in the brain can self-organize into a critical state where dynamics exhibit a mixture of ordered and disordered patterns. This critical branching phenomenon is termed neuronal avalanches. It has been hypothesized that the homeostatic level balanced between stability and plasticity of this critical state may be the optimal state for performing diverse neural computational tasks. However, the critical region for high performance is narrow and sensitive for spiking neural networks (SNNs). In this paper, we investigated the role of the critical state in neural computations based on liquid-state machines, a biologically plausible computational neural network model for real-time computing. The computational performance of an SNN when operating at the critical state and, in particular, with spike-timing-dependent plasticity for updating synaptic weights is investigated. The network is found to show the best computational performance when it is subjected to critical dynamic states. Moreover, the active-neuron-dominant structure refined from synaptic learning can remarkably enhance the robustness of the critical state and further improve computational accuracy. These results may have important implications in the modelling of spiking neural networks with optimal computational performance. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.

  5. Using an Extended Kalman Filter Learning Algorithm for Feed-Forward Neural Networks to Describe Tracer Correlations

    NASA Technical Reports Server (NTRS)

    Lary, David J.; Mussa, Yussuf

    2004-01-01

    In this study a new extended Kalman filter (EKF) learning algorithm for feed-forward neural networks (FFN) is used. With the EKF approach, the training of the FFN can be seen as state estimation for a non-linear stationary process. The EKF method gives excellent convergence performances provided that there is enough computer core memory and that the machine precision is high. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). The neural network was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9997. The neural network Fortran code used is available for download.

  6. Robust neural network with applications to credit portfolio data analysis.

    PubMed

    Feng, Yijia; Li, Runze; Sudjianto, Agus; Zhang, Yiyun

    2010-01-01

    In this article, we study nonparametric conditional quantile estimation via neural network structure. We proposed an estimation method that combines quantile regression and neural network (robust neural network, RNN). It provides good smoothing performance in the presence of outliers and can be used to construct prediction bands. A Majorization-Minimization (MM) algorithm was developed for optimization. Monte Carlo simulation study is conducted to assess the performance of RNN. Comparison with other nonparametric regression methods (e.g., local linear regression and regression splines) in real data application demonstrate the advantage of the newly proposed procedure.

  7. A neural net approach to space vehicle guidance

    NASA Technical Reports Server (NTRS)

    Caglayan, Alper K.; Allen, Scott M.

    1990-01-01

    The space vehicle guidance problem is formulated using a neural network approach, and the appropriate neural net architecture for modeling optimum guidance trajectories is investigated. In particular, an investigation is made of the incorporation of prior knowledge about the characteristics of the optimal guidance solution into the neural network architecture. The online classification performance of the developed network is demonstrated using a synthesized network trained with a database of optimum guidance trajectories. Such a neural-network-based guidance approach can readily adapt to environment uncertainties such as those encountered by an AOTV during atmospheric maneuvers.

  8. A neural networks application for the study of the influence of transport conditions on the working performance

    NASA Astrophysics Data System (ADS)

    Anghel, D.-C.; Ene, A.; Ştirbu, C.; Sicoe, G.

    2017-10-01

    This paper presents a study about the factors that influence the working performances of workers in the automotive industry. These factors regard mainly the transportations conditions, taking into account the fact that a large number of workers live in places that are far away of the enterprise. The quantitative data obtained from this study will be generalized by using a neural network, software simulated. The neural network is able to estimate the performance of workers even for the combinations of input factors that had been not recorded by the study. The experimental data obtained from the study will be divided in two classes. The first class that contains approximately 80% of data will be used by the Java software for the training of the neural network. The weights resulted from the training process will be saved in a text file. The other class that contains the rest of the 20% of experimental data will be used to validate the neural network. The training and the validation of the networks are performed in a Java software (TrainAndValidate java class). We designed another java class, Test.java that will be used with new input data, for new situations. The experimental data collected from the study. The software that simulated the neural network. The software that estimates the working performance, when new situations are met. This application is useful for human resources department of an enterprise. The output results are not quantitative. They are qualitative (from low performance to high performance, divided in five classes).

  9. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  10. Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson's disease prediction.

    PubMed

    Khan, Maryam Mahsal; Mendes, Alexandre; Chalup, Stephan K

    2018-01-01

    Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson's disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results.

  11. Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson’s disease prediction

    PubMed Central

    Mendes, Alexandre; Chalup, Stephan K.

    2018-01-01

    Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson’s disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results. PMID:29420578

  12. Modeling and control of magnetorheological fluid dampers using neural networks

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  13. Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.

    1999-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  14. Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation.

    PubMed

    Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon

    2017-07-03

    Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.

  15. A new bio-inspired stimulator to suppress hyper-synchronized neural firing in a cortical network.

    PubMed

    Amiri, Masoud; Amiri, Mahmood; Nazari, Soheila; Faez, Karim

    2016-12-07

    Hyper-synchronous neural oscillations are the character of several neurological diseases such as epilepsy. On the other hand, glial cells and particularly astrocytes can influence neural synchronization. Therefore, based on the recent researches, a new bio-inspired stimulator is proposed which basically is a dynamical model of the astrocyte biophysical model. The performance of the new stimulator is investigated on a large-scale, cortical network. Both excitatory and inhibitory synapses are also considered in the simulated spiking neural network. The simulation results show that the new stimulator has a good performance and is able to reduce recurrent abnormal excitability which in turn avoids the hyper-synchronous neural firing in the spiking neural network. In this way, the proposed stimulator has a demand controlled characteristic and is a good candidate for deep brain stimulation (DBS) technique to successfully suppress the neural hyper-synchronization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Classification of 2-dimensional array patterns: assembling many small neural networks is better than using a large one.

    PubMed

    Chen, Liang; Xue, Wei; Tokuda, Naoyuki

    2010-08-01

    In many pattern classification/recognition applications of artificial neural networks, an object to be classified is represented by a fixed sized 2-dimensional array of uniform type, which corresponds to the cells of a 2-dimensional grid of the same size. A general neural network structure, called an undistricted neural network, which takes all the elements in the array as inputs could be used for problems such as these. However, a districted neural network can be used to reduce the training complexity. A districted neural network usually consists of two levels of sub-neural networks. Each of the lower level neural networks, called a regional sub-neural network, takes the elements in a region of the array as its inputs and is expected to output a temporary class label, called an individual opinion, based on the partial information of the entire array. The higher level neural network, called an assembling sub-neural network, uses the outputs (opinions) of regional sub-neural networks as inputs, and by consensus derives the label decision for the object. Each of the sub-neural networks can be trained separately and thus the training is less expensive. The regional sub-neural networks can be trained and performed in parallel and independently, therefore a high speed can be achieved. We prove theoretically in this paper, using a simple model, that a districted neural network is actually more stable than an undistricted neural network in noisy environments. We conjecture that the result is valid for all neural networks. This theory is verified by experiments involving gender classification and human face recognition. We conclude that a districted neural network is highly recommended for neural network applications in recognition or classification of 2-dimensional array patterns in highly noisy environments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Artificial neural network modeling of dissolved oxygen in reservoir.

    PubMed

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.

  18. Reconfigurable Control with Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Williams-Hayes, Peggy; Kaneshige, John T.; Stachowiak, Susan J.

    2006-01-01

    Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.

  19. Learning and diagnosing faults using neural networks

    NASA Technical Reports Server (NTRS)

    Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis

    1990-01-01

    Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.

  20. Adaptive Control Using Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Williams-Hayes, Peggy; Karneshige, J. T.; Stachowiak, Susan J.

    2006-01-01

    Description of the performance of a simplified dynamic inversion controller with neural network augmentation follows. Simulation studies focus on the results with and without neural network adaptation through the use of an F-15 aircraft simulator that has been modified to include canards. Simulated control law performance with a surface failure, in addition to an aerodynamic failure, is presented. The aircraft, with adaptation, attempts to minimize the inertial cross-coupling effect of the failure (a control derivative anomaly associated with a jammed control surface). The dynamic inversion controller calculates necessary surface commands to achieve desired rates. The dynamic inversion controller uses approximate short period and roll axis dynamics. The yaw axis controller is a sideslip rate command system. Methods are described to reduce the cross-coupling effect and maintain adequate tracking errors for control surface failures. The aerodynamic failure destabilizes the pitching moment due to angle of attack. The results show that control of the aircraft with the neural networks is easier (more damped) than without the neural networks. Simulation results show neural network augmentation of the controller improves performance with aerodynamic and control surface failures in terms of tracking error and cross-coupling reduction.

  1. Hideen Markov Models and Neural Networks for Fault Detection in Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    None given. (From conclusion): Neural networks plus Hidden Markov Models(HMM)can provide excellene detection and false alarm rate performance in fault detection applications. Modified models allow for novelty detection. Also covers some key contributions of neural network model, and application status.

  2. Rapid Simulation of Blast Wave Propagation in Built Environments Using Coarse-Grain Based Intelligent Modeling Methods

    DTIC Science & Technology

    2011-04-01

    experiments was performed using an artificial neural network to try to capture the nonlinearities. The radial Gaussian artificial neural network system...Modeling Blast-Wave Propagation using Artificial Neural Network Methods‖, in International Journal of Advanced Engineering Informatics, Elsevier

  3. An adaptive Hinfinity controller design for bank-to-turn missiles using ridge Gaussian neural networks.

    PubMed

    Lin, Chuan-Kai; Wang, Sheng-De

    2004-11-01

    A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization.

  4. Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling.

    PubMed

    Yang, S; Wang, D

    2000-01-01

    This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.

  5. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.

    1998-01-01

    A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.

  6. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  7. Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Sang, Nong; Zhang, Tianxu

    1997-12-01

    Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.

  8. Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, Neena; Humble, Travis S.; McCaskey, Alex

    A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recallmore » accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas.« less

  9. Neural networks for calibration tomography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur

    1993-01-01

    Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.

  10. Classification capacity of a modular neural network implementing neurally inspired architecture and training rules.

    PubMed

    Poirazi, Panayiota; Neocleous, Costas; Pattichis, Costantinos S; Schizas, Christos N

    2004-05-01

    A three-layer neural network (NN) with novel adaptive architecture has been developed. The hidden layer of the network consists of slabs of single neuron models, where neurons within a slab--but not between slabs--have the same type of activation function. The network activation functions in all three layers have adaptable parameters. The network was trained using a biologically inspired, guided-annealing learning rule on a variety of medical data. Good training/testing classification performance was obtained on all data sets tested. The performance achieved was comparable to that of SVM classifiers. It was shown that the adaptive network architecture, inspired from the modular organization often encountered in the mammalian cerebral cortex, can benefit classification performance.

  11. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    PubMed

    Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  12. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment

    PubMed Central

    Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot’s performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. PMID:27806074

  13. Functional neural networks underlying response inhibition in adolescents and adults.

    PubMed

    Stevens, Michael C; Kiehl, Kent A; Pearlson, Godfrey D; Calhoun, Vince D

    2007-07-19

    This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by fronto-striatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development.

  14. Functional neural networks underlying response inhibition in adolescents and adults

    PubMed Central

    Stevens, Michael C.; Kiehl, Kent A.; Pearlson, Godfrey D.; Calhoun, Vince D.

    2008-01-01

    This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally-integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by frontostriatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development. PMID:17467816

  15. [Measurement and performance analysis of functional neural network].

    PubMed

    Li, Shan; Liu, Xinyu; Chen, Yan; Wan, Hong

    2018-04-01

    The measurement of network is one of the important researches in resolving neuronal population information processing mechanism using complex network theory. For the quantitative measurement problem of functional neural network, the relation between the measure indexes, i.e. the clustering coefficient, the global efficiency, the characteristic path length and the transitivity, and the network topology was analyzed. Then, the spike-based functional neural network was established and the simulation results showed that the measured network could represent the original neural connections among neurons. On the basis of the former work, the coding of functional neural network in nidopallium caudolaterale (NCL) about pigeon's motion behaviors was studied. We found that the NCL functional neural network effectively encoded the motion behaviors of the pigeon, and there were significant differences in four indexes among the left-turning, the forward and the right-turning. Overall, the establishment method of spike-based functional neural network is available and it is an effective tool to parse the brain information processing mechanism.

  16. Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback.

    PubMed

    Orhan, A Emin; Ma, Wei Ji

    2017-07-26

    Animals perform near-optimal probabilistic inference in a wide range of psychophysical tasks. Probabilistic inference requires trial-to-trial representation of the uncertainties associated with task variables and subsequent use of this representation. Previous work has implemented such computations using neural networks with hand-crafted and task-dependent operations. We show that generic neural networks trained with a simple error-based learning rule perform near-optimal probabilistic inference in nine common psychophysical tasks. In a probabilistic categorization task, error-based learning in a generic network simultaneously explains a monkey's learning curve and the evolution of qualitative aspects of its choice behavior. In all tasks, the number of neurons required for a given level of performance grows sublinearly with the input population size, a substantial improvement on previous implementations of probabilistic inference. The trained networks develop a novel sparsity-based probabilistic population code. Our results suggest that probabilistic inference emerges naturally in generic neural networks trained with error-based learning rules.Behavioural tasks often require probability distributions to be inferred about task specific variables. Here, the authors demonstrate that generic neural networks can be trained using a simple error-based learning rule to perform such probabilistic computations efficiently without any need for task specific operations.

  17. LVQ and backpropagation neural networks applied to NASA SSME data

    NASA Technical Reports Server (NTRS)

    Doniere, Timothy F.; Dhawan, Atam P.

    1993-01-01

    Feedfoward neural networks with backpropagation learning have been used as function approximators for modeling the space shuttle main engine (SSME) sensor signals. The modeling of these sensor signals is aimed at the development of a sensor fault detection system that can be used during ground test firings. The generalization capability of a neural network based function approximator depends on the training vectors which in this application may be derived from a number of SSME ground test-firings. This yields a large number of training vectors. Large training sets can cause the time required to train the network to be very large. Also, the network may not be able to generalize for large training sets. To reduce the size of the training sets, the SSME test-firing data is reduced using the learning vector quantization (LVQ) based technique. Different compression ratios were used to obtain compressed data in training the neural network model. The performance of the neural model trained using reduced sets of training patterns is presented and compared with the performance of the model trained using complete data. The LVQ can also be used as a function approximator. The performance of the LVQ as a function approximator using reduced training sets is presented and compared with the performance of the backpropagation network.

  18. Training product unit neural networks with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  19. Reconfigurable Control with Neural Network Augmentation for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    2007-01-01

    This paper describes the performance of a simplified dynamic inversion controller with neural network supplementation. This 6 DOF (Degree-of-Freedom) simulation study focuses on the results with and without adaptation of neural networks using a simulation of the NASA modified F-15 which has canards. One area of interest is the performance of a simulated surface failure while attempting to minimize the inertial cross coupling effect of a [B] matrix failure (a control derivative anomaly associated with a jammed or missing control surface). Another area of interest and presented is simulated aerodynamic failures ([A] matrix) such as a canard failure. The controller uses explicit models to produce desired angular rate commands. The dynamic inversion calculates the necessary surface commands to achieve the desired rates. The simplified dynamic inversion uses approximate short period and roll axis dynamics. Initial results indicated that the transient response for a [B] matrix failure using a Neural Network (NN) improved the control behavior when compared to not using a neural network for a given failure, However, further evaluation of the controller was comparable, with objections io the cross coupling effects (after changes were made to the controller). This paper describes the methods employed to reduce the cross coupling effect and maintain adequate tracking errors. The IA] matrix failure results show that control of the aircraft without adaptation is more difficult [leas damped) than with active neural networks, Simulation results show Neural Network augmentation of the controller improves performance in terms of backing error and cross coupling reduction and improved performance with aerodynamic-type failures.

  20. High-Dimensional Function Approximation With Neural Networks for Large Volumes of Data.

    PubMed

    Andras, Peter

    2018-02-01

    Approximation of high-dimensional functions is a challenge for neural networks due to the curse of dimensionality. Often the data for which the approximated function is defined resides on a low-dimensional manifold and in principle the approximation of the function over this manifold should improve the approximation performance. It has been show that projecting the data manifold into a lower dimensional space, followed by the neural network approximation of the function over this space, provides a more precise approximation of the function than the approximation of the function with neural networks in the original data space. However, if the data volume is very large, the projection into the low-dimensional space has to be based on a limited sample of the data. Here, we investigate the nature of the approximation error of neural networks trained over the projection space. We show that such neural networks should have better approximation performance than neural networks trained on high-dimensional data even if the projection is based on a relatively sparse sample of the data manifold. We also find that it is preferable to use a uniformly distributed sparse sample of the data for the purpose of the generation of the low-dimensional projection. We illustrate these results considering the practical neural network approximation of a set of functions defined on high-dimensional data including real world data as well.

  1. Benchmark for Peak Detection Algorithms in Fiber Bragg Grating Interrogation and a New Neural Network for its Performance Improvement

    PubMed Central

    Negri, Lucas; Nied, Ademir; Kalinowski, Hypolito; Paterno, Aleksander

    2011-01-01

    This paper presents a benchmark for peak detection algorithms employed in fiber Bragg grating spectrometric interrogation systems. The accuracy, precision, and computational performance of currently used algorithms and those of a new proposed artificial neural network algorithm are compared. Centroid and gaussian fitting algorithms are shown to have the highest precision but produce systematic errors that depend on the FBG refractive index modulation profile. The proposed neural network displays relatively good precision with reduced systematic errors and improved computational performance when compared to other networks. Additionally, suitable algorithms may be chosen with the general guidelines presented. PMID:22163806

  2. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks

    PubMed Central

    Maca, Petr; Pech, Pavel

    2016-01-01

    The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948–2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons. PMID:26880875

  3. Forecasting SPEI and SPI Drought Indices Using the Integrated Artificial Neural Networks.

    PubMed

    Maca, Petr; Pech, Pavel

    2016-01-01

    The presented paper compares forecast of drought indices based on two different models of artificial neural networks. The first model is based on feedforward multilayer perceptron, sANN, and the second one is the integrated neural network model, hANN. The analyzed drought indices are the standardized precipitation index (SPI) and the standardized precipitation evaporation index (SPEI) and were derived for the period of 1948-2002 on two US catchments. The meteorological and hydrological data were obtained from MOPEX experiment. The training of both neural network models was made by the adaptive version of differential evolution, JADE. The comparison of models was based on six model performance measures. The results of drought indices forecast, explained by the values of four model performance indices, show that the integrated neural network model was superior to the feedforward multilayer perceptron with one hidden layer of neurons.

  4. Detection of pseudosinusoidal epileptic seizure segments in the neonatal EEG by cascading a rule-based algorithm with a neural network.

    PubMed

    Karayiannis, Nicolaos B; Mukherjee, Amit; Glover, John R; Ktonas, Periklis Y; Frost, James D; Hrachovy, Richard A; Mizrahi, Eli M

    2006-04-01

    This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development.

  5. A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints.

    PubMed

    Liang, X B; Wang, J

    2000-01-01

    This paper presents a continuous-time recurrent neural-network model for nonlinear optimization with any continuously differentiable objective function and bound constraints. Quadratic optimization with bound constraints is a special problem which can be solved by the recurrent neural network. The proposed recurrent neural network has the following characteristics. 1) It is regular in the sense that any optimum of the objective function with bound constraints is also an equilibrium point of the neural network. If the objective function to be minimized is convex, then the recurrent neural network is complete in the sense that the set of optima of the function with bound constraints coincides with the set of equilibria of the neural network. 2) The recurrent neural network is primal and quasiconvergent in the sense that its trajectory cannot escape from the feasible region and will converge to the set of equilibria of the neural network for any initial point in the feasible bound region. 3) The recurrent neural network has an attractivity property in the sense that its trajectory will eventually converge to the feasible region for any initial states even at outside of the bounded feasible region. 4) For minimizing any strictly convex quadratic objective function subject to bound constraints, the recurrent neural network is globally exponentially stable for almost any positive network parameters. Simulation results are given to demonstrate the convergence and performance of the proposed recurrent neural network for nonlinear optimization with bound constraints.

  6. An Application to the Prediction of LOD Change Based on General Regression Neural Network

    NASA Astrophysics Data System (ADS)

    Zhang, X. H.; Wang, Q. J.; Zhu, J. J.; Zhang, H.

    2011-07-01

    Traditional prediction of the LOD (length of day) change was based on linear models, such as the least square model and the autoregressive technique, etc. Due to the complex non-linear features of the LOD variation, the performances of the linear model predictors are not fully satisfactory. This paper applies a non-linear neural network - general regression neural network (GRNN) model to forecast the LOD change, and the results are analyzed and compared with those obtained with the back propagation neural network and other models. The comparison shows that the performance of the GRNN model in the prediction of the LOD change is efficient and feasible.

  7. Ultrasonographic Diagnosis of Cirrhosis Based on Preprocessing Using Pyramid Recurrent Neural Network

    NASA Astrophysics Data System (ADS)

    Lu, Jianming; Liu, Jiang; Zhao, Xueqin; Yahagi, Takashi

    In this paper, a pyramid recurrent neural network is applied to characterize the hepatic parenchymal diseases in ultrasonic B-scan texture. The cirrhotic parenchymal diseases are classified into 4 types according to the size of hypoechoic nodular lesions. The B-mode patterns are wavelet transformed , and then the compressed data are feed into a pyramid neural network to diagnose the type of cirrhotic diseases. Compared with the 3-layer neural networks, the performance of the proposed pyramid recurrent neural network is improved by utilizing the lower layer effectively. The simulation result shows that the proposed system is suitable for diagnosis of cirrhosis diseases.

  8. Using Neural Networks for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William

    1998-01-01

    This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.

  9. Decoding small surface codes with feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen

    2018-01-01

    Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.

  10. Adaptive neural network/expert system that learns fault diagnosis for different structures

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  11. Genetic algorithm for neural networks optimization

    NASA Astrophysics Data System (ADS)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  12. Predicting protein complex geometries with a neural network.

    PubMed

    Chae, Myong-Ho; Krull, Florian; Lorenzen, Stephan; Knapp, Ernst-Walter

    2010-03-01

    A major challenge of the protein docking problem is to define scoring functions that can distinguish near-native protein complex geometries from a large number of non-native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom-pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near-native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge-based energy functions for scoring. We show that a distance-dependent atom pair potential performs much better than a simple atom-pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge-based scoring functions such as ZDOCK 3.0, ZRANK, ITScore-PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network-based scoring function achieves a reasonable performance in rigid-body unbound docking of proteins. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  13. Evolvable rough-block-based neural network and its biomedical application to hypoglycemia detection system.

    PubMed

    San, Phyo Phyo; Ling, Sai Ho; Nuryani; Nguyen, Hung

    2014-08-01

    This paper focuses on the hybridization technology using rough sets concepts and neural computing for decision and classification purposes. Based on the rough set properties, the lower region and boundary region are defined to partition the input signal to a consistent (predictable) part and an inconsistent (random) part. In this way, the neural network is designed to deal only with the boundary region, which mainly consists of an inconsistent part of applied input signal causing inaccurate modeling of the data set. Owing to different characteristics of neural network (NN) applications, the same structure of conventional NN might not give the optimal solution. Based on the knowledge of application in this paper, a block-based neural network (BBNN) is selected as a suitable classifier due to its ability to evolve internal structures and adaptability in dynamic environments. This architecture will systematically incorporate the characteristics of application to the structure of hybrid rough-block-based neural network (R-BBNN). A global training algorithm, hybrid particle swarm optimization with wavelet mutation is introduced for parameter optimization of proposed R-BBNN. The performance of the proposed R-BBNN algorithm was evaluated by an application to the field of medical diagnosis using real hypoglycemia episodes in patients with Type 1 diabetes mellitus. The performance of the proposed hybrid system has been compared with some of the existing neural networks. The comparison results indicated that the proposed method has improved classification performance and results in early convergence of the network.

  14. SYNAPTIC DEPRESSION IN DEEP NEURAL NETWORKS FOR SPEECH PROCESSING.

    PubMed

    Zhang, Wenhao; Li, Hanyu; Yang, Minda; Mesgarani, Nima

    2016-03-01

    A characteristic property of biological neurons is their ability to dynamically change the synaptic efficacy in response to variable input conditions. This mechanism, known as synaptic depression, significantly contributes to the formation of normalized representation of speech features. Synaptic depression also contributes to the robust performance of biological systems. In this paper, we describe how synaptic depression can be modeled and incorporated into deep neural network architectures to improve their generalization ability. We observed that when synaptic depression is added to the hidden layers of a neural network, it reduces the effect of changing background activity in the node activations. In addition, we show that when synaptic depression is included in a deep neural network trained for phoneme classification, the performance of the network improves under noisy conditions not included in the training phase. Our results suggest that more complete neuron models may further reduce the gap between the biological performance and artificial computing, resulting in networks that better generalize to novel signal conditions.

  15. A New Measure for Neural Compensation Is Positively Correlated With Working Memory and Gait Speed.

    PubMed

    Ji, Lanxin; Pearlson, Godfrey D; Hawkins, Keith A; Steffens, David C; Guo, Hua; Wang, Lihong

    2018-01-01

    Neuroimaging studies suggest that older adults may compensate for declines in brain function and cognition through reorganization of neural resources. A limitation of prior research is reliance on between-group comparisons of neural activation (e.g., younger vs. older), which cannot be used to assess compensatory ability quantitatively. It is also unclear about the relationship between compensatory ability with cognitive function or how other factors such as physical exercise modulates compensatory ability. Here, we proposed a data-driven method to semi-quantitatively measure neural compensation under a challenging cognitive task, and we then explored connections between neural compensation to cognitive engagement and cognitive reserve (CR). Functional and structural magnetic resonance imaging scans were acquired for 26 healthy older adults during a face-name memory task. Spatial independent component analysis (ICA) identified visual, attentional and left executive as core networks. Results show that the smaller the volumes of the gray matter (GM) structures within core networks, the more networks were needed to conduct the task ( r = -0.408, p = 0.035). Therefore, the number of task-activated networks controlling for the GM volume within core networks was defined as a measure of neural compensatory ability. We found that compensatory ability correlated with working memory performance ( r = 0.528, p = 0.035). Among subjects with good memory task performance, those with higher CR used fewer networks than subjects with lower CR. Among poor-performance subjects, those using more networks had higher CR. Our results indicated that using a high cognitive-demanding task to measure the number of activated neural networks could be a useful and sensitive measure of neural compensation in older adults.

  16. A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study.

    PubMed

    Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo

    2015-07-01

    Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.

  17. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  18. Financial time series prediction using spiking neural networks.

    PubMed

    Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam

    2014-01-01

    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.

  19. Evolving neural networks with genetic algorithms to study the string landscape

    NASA Astrophysics Data System (ADS)

    Ruehle, Fabian

    2017-08-01

    We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of (physically) appealing features, to find a concrete realization for a computation for which the precise algorithm is known in principle but very tedious to actually implement, and to predict or approximate the outcome of some involved mathematical computation which performs too inefficient to apply it, e.g. in model scans within the string landscape. We present simple examples that arise in string phenomenology for all three types of problems and discuss how they can be addressed by evolving neural networks from genetic algorithms.

  20. Fault detection and classification in electrical power transmission system using artificial neural network.

    PubMed

    Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer

    2015-01-01

    This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.

  1. Thermalnet: a Deep Convolutional Network for Synthetic Thermal Image Generation

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.; Gorbatsevich, V. S.; Mizginov, V. A.

    2017-05-01

    Deep convolutional neural networks have dramatically changed the landscape of the modern computer vision. Nowadays methods based on deep neural networks show the best performance among image recognition and object detection algorithms. While polishing of network architectures received a lot of scholar attention, from the practical point of view the preparation of a large image dataset for a successful training of a neural network became one of major challenges. This challenge is particularly profound for image recognition in wavelengths lying outside the visible spectrum. For example no infrared or radar image datasets large enough for successful training of a deep neural network are available to date in public domain. Recent advances of deep neural networks prove that they are also capable to do arbitrary image transformations such as super-resolution image generation, grayscale image colorisation and imitation of style of a given artist. Thus a natural question arise: how could be deep neural networks used for augmentation of existing large image datasets? This paper is focused on the development of the Thermalnet deep convolutional neural network for augmentation of existing large visible image datasets with synthetic thermal images. The Thermalnet network architecture is inspired by colorisation deep neural networks.

  2. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    PubMed

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.

  3. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.

    1998-01-01

    A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.

  4. Development of a computational model on the neural activity patterns of a visual working memory in a hierarchical feedforward Network

    NASA Astrophysics Data System (ADS)

    An, Soyoung; Choi, Woochul; Paik, Se-Bum

    2015-11-01

    Understanding the mechanism of information processing in the human brain remains a unique challenge because the nonlinear interactions between the neurons in the network are extremely complex and because controlling every relevant parameter during an experiment is difficult. Therefore, a simulation using simplified computational models may be an effective approach. In the present study, we developed a general model of neural networks that can simulate nonlinear activity patterns in the hierarchical structure of a neural network system. To test our model, we first examined whether our simulation could match the previously-observed nonlinear features of neural activity patterns. Next, we performed a psychophysics experiment for a simple visual working memory task to evaluate whether the model could predict the performance of human subjects. Our studies show that the model is capable of reproducing the relationship between memory load and performance and may contribute, in part, to our understanding of how the structure of neural circuits can determine the nonlinear neural activity patterns in the human brain.

  5. Prediction of Slot Shape and Slot Size for Improving the Performance of Microstrip Antennas Using Knowledge-Based Neural Networks.

    PubMed

    Khan, Taimoor; De, Asok

    2014-01-01

    In the last decade, artificial neural networks have become very popular techniques for computing different performance parameters of microstrip antennas. The proposed work illustrates a knowledge-based neural networks model for predicting the appropriate shape and accurate size of the slot introduced on the radiating patch for achieving desired level of resonance, gain, directivity, antenna efficiency, and radiation efficiency for dual-frequency operation. By incorporating prior knowledge in neural model, the number of required training patterns is drastically reduced. Further, the neural model incorporated with prior knowledge can be used for predicting response in extrapolation region beyond the training patterns region. For validation, a prototype is also fabricated and its performance parameters are measured. A very good agreement is attained between measured, simulated, and predicted results.

  6. Prediction of Slot Shape and Slot Size for Improving the Performance of Microstrip Antennas Using Knowledge-Based Neural Networks

    PubMed Central

    De, Asok

    2014-01-01

    In the last decade, artificial neural networks have become very popular techniques for computing different performance parameters of microstrip antennas. The proposed work illustrates a knowledge-based neural networks model for predicting the appropriate shape and accurate size of the slot introduced on the radiating patch for achieving desired level of resonance, gain, directivity, antenna efficiency, and radiation efficiency for dual-frequency operation. By incorporating prior knowledge in neural model, the number of required training patterns is drastically reduced. Further, the neural model incorporated with prior knowledge can be used for predicting response in extrapolation region beyond the training patterns region. For validation, a prototype is also fabricated and its performance parameters are measured. A very good agreement is attained between measured, simulated, and predicted results. PMID:27382616

  7. Applicability of Neural Networks to Etalon Fringe Filtering in Laser Spectrometers

    NASA Technical Reports Server (NTRS)

    Nicely, J. M.; Hanisco, T. F.; Riris, H.

    2018-01-01

    We present a neural network algorithm for spectroscopic retrievals of concentrations of trace gases. Using synthetic data we demonstrate that a neural network is well suited for filtering etalon fringes and provides superior performance to conventional least squares minimization techniques. This novel method can improve the accuracy of atmospheric retrievals and minimize biases.

  8. Applicability of neural networks to etalon fringe filtering in laser spectrometers

    NASA Astrophysics Data System (ADS)

    Nicely, J. M.; Hanisco, T. F.; Riris, H.

    2018-05-01

    We present a neural network algorithm for spectroscopic retrievals of concentrations of trace gases. Using synthetic data we demonstrate that a neural network is well suited for filtering etalon fringes and provides superior performance to conventional least squares minimization techniques. This novel method can improve the accuracy of atmospheric retrievals and minimize biases.

  9. Impact of leakage delay on bifurcation in high-order fractional BAM neural networks.

    PubMed

    Huang, Chengdai; Cao, Jinde

    2018-02-01

    The effects of leakage delay on the dynamics of neural networks with integer-order have lately been received considerable attention. It has been confirmed that fractional neural networks more appropriately uncover the dynamical properties of neural networks, but the results of fractional neural networks with leakage delay are relatively few. This paper primarily concentrates on the issue of bifurcation for high-order fractional bidirectional associative memory(BAM) neural networks involving leakage delay. The first attempt is made to tackle the stability and bifurcation of high-order fractional BAM neural networks with time delay in leakage terms in this paper. The conditions for the appearance of bifurcation for the proposed systems with leakage delay are firstly established by adopting time delay as a bifurcation parameter. Then, the bifurcation criteria of such system without leakage delay are successfully acquired. Comparative analysis wondrously detects that the stability performance of the proposed high-order fractional neural networks is critically weakened by leakage delay, they cannot be overlooked. Numerical examples are ultimately exhibited to attest the efficiency of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Coronary Artery Diagnosis Aided by Neural Network

    NASA Astrophysics Data System (ADS)

    Stefko, Kamil

    2007-01-01

    Coronary artery disease is due to atheromatous narrowing and subsequent occlusion of the coronary vessel. Application of optimised feed forward multi-layer back propagation neural network (MLBP) for detection of narrowing in coronary artery vessels is presented in this paper. The research was performed using 580 data records from traditional ECG exercise test confirmed by coronary arteriography results. Each record of training database included description of the state of a patient providing input data for the neural network. Level and slope of ST segment of a 12 lead ECG signal recorded at rest and after effort (48 floating point values) was the main component of input data for neural network was. Coronary arteriography results (verified the existence or absence of more than 50% stenosis of the particular coronary vessels) were used as a correct neural network training output pattern. More than 96% of cases were correctly recognised by especially optimised and a thoroughly verified neural network. Leave one out method was used for neural network verification so 580 data records could be used for training as well as for verification of neural network.

  11. The application of artificial neural networks and support vector regression for simultaneous spectrophotometric determination of commercial eye drop contents

    NASA Astrophysics Data System (ADS)

    Valizadeh, Maryam; Sohrabi, Mahmoud Reza

    2018-03-01

    In the present study, artificial neural networks (ANNs) and support vector regression (SVR) as intelligent methods coupled with UV spectroscopy for simultaneous quantitative determination of Dorzolamide (DOR) and Timolol (TIM) in eye drop. Several synthetic mixtures were analyzed for validating the proposed methods. At first, neural network time series, which one type of network from the artificial neural network was employed and its efficiency was evaluated. Afterwards, the radial basis network was applied as another neural network. Results showed that the performance of this method is suitable for predicting. Finally, support vector regression was proposed to construct the Zilomole prediction model. Also, root mean square error (RMSE) and mean recovery (%) were calculated for SVR method. Moreover, the proposed methods were compared to the high-performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them. Also, the effect of interferences was investigated in spike solutions.

  12. Structural reliability calculation method based on the dual neural network and direct integration method.

    PubMed

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  13. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1997-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  14. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  15. Advanced obstacle avoidance for a laser based wheelchair using optimised Bayesian neural networks.

    PubMed

    Trieu, Hoang T; Nguyen, Hung T; Willey, Keith

    2008-01-01

    In this paper we present an advanced method of obstacle avoidance for a laser based intelligent wheelchair using optimized Bayesian neural networks. Three neural networks are designed for three separate sub-tasks: passing through a door way, corridor and wall following and general obstacle avoidance. The accurate usable accessible space is determined by including the actual wheelchair dimensions in a real-time map used as inputs to each networks. Data acquisitions are performed separately to collect the patterns required for specified sub-tasks. Bayesian frame work is used to determine the optimal neural network structure in each case. Then these networks are trained under the supervision of Bayesian rule. Experiment results showed that compare to the VFH algorithm our neural networks navigated a smoother path following a near optimum trajectory.

  16. Neural network versus classical time series forecasting models

    NASA Astrophysics Data System (ADS)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  17. Efficient Digital Implementation of The Sigmoidal Function For Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Pratap, Rana; Subadra, M.

    2011-10-01

    An efficient piecewise linear approximation of a nonlinear function (PLAN) is proposed. This uses simulink environment design to perform a direct transformation from X to Y, where X is the input and Y is the approximated sigmoidal output. This PLAN is then used within the outputs of an artificial neural network to perform the nonlinear approximation. In This paper, is proposed a method to implement in FPGA (Field Programmable Gate Array) circuits different approximation of the sigmoid function.. The major benefit of the proposed method resides in the possibility to design neural networks by means of predefined block systems created in System Generator environment and the possibility to create a higher level design tools used to implement neural networks in logical circuits.

  18. Neural network controller development for a magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Fittro, Roger L.; Pang, Da-Chen; Anand, Davinder K.

    1994-01-01

    A neural network controller has been developed to accommodate disturbances and nonlinearities and improve the robustness of a magnetically suspended flywheel energy storage system. The controller is trained using the back propagation-through-time technique incorporated with a time-averaging scheme. The resulting nonlinear neural network controller improves system performance by adapting flywheel stiffness and damping based on operating speed. In addition, a hybrid multi-layered neural network controller is developed off-line which is capable of improving system performance even further. All of the research presented in this paper was implemented via a magnetic bearing computer simulation. However, careful attention was paid to developing a practical methodology which will make future application to the actual bearing system fairly straightforward.

  19. Neural Networks for Readability Analysis.

    ERIC Educational Resources Information Center

    McEneaney, John E.

    This paper describes and reports on the performance of six related artificial neural networks that have been developed for the purpose of readability analysis. Two networks employ counts of linguistic variables that simulate a traditional regression-based approach to readability. The remaining networks determine readability from "visual…

  20. Efficient self-organizing multilayer neural network for nonlinear system modeling.

    PubMed

    Han, Hong-Gui; Wang, Li-Dan; Qiao, Jun-Fei

    2013-07-01

    It has been shown extensively that the dynamic behaviors of a neural system are strongly influenced by the network architecture and learning process. To establish an artificial neural network (ANN) with self-organizing architecture and suitable learning algorithm for nonlinear system modeling, an automatic axon-neural network (AANN) is investigated in the following respects. First, the network architecture is constructed automatically to change both the number of hidden neurons and topologies of the neural network during the training process. The approach introduced in adaptive connecting-and-pruning algorithm (ACP) is a type of mixed mode operation, which is equivalent to pruning or adding the connecting of the neurons, as well as inserting some required neurons directly. Secondly, the weights are adjusted, using a feedforward computation (FC) to obtain the information for the gradient during learning computation. Unlike most of the previous studies, AANN is able to self-organize the architecture and weights, and to improve the network performances. Also, the proposed AANN has been tested on a number of benchmark problems, ranging from nonlinear function approximating to nonlinear systems modeling. The experimental results show that AANN can have better performances than that of some existing neural networks. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Blood glucose prediction using neural network

    NASA Astrophysics Data System (ADS)

    Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock

    2008-02-01

    We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.

  2. Neural network for solving convex quadratic bilevel programming problems.

    PubMed

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.

    PubMed

    Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz

    2018-02-04

    To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.

  4. HRLSim: a high performance spiking neural network simulator for GPGPU clusters.

    PubMed

    Minkovich, Kirill; Thibeault, Corey M; O'Brien, Michael John; Nogin, Aleksey; Cho, Youngkwan; Srinivasa, Narayan

    2014-02-01

    Modeling of large-scale spiking neural models is an important tool in the quest to understand brain function and subsequently create real-world applications. This paper describes a spiking neural network simulator environment called HRL Spiking Simulator (HRLSim). This simulator is suitable for implementation on a cluster of general purpose graphical processing units (GPGPUs). Novel aspects of HRLSim are described and an analysis of its performance is provided for various configurations of the cluster. With the advent of inexpensive GPGPU cards and compute power, HRLSim offers an affordable and scalable tool for design, real-time simulation, and analysis of large-scale spiking neural networks.

  5. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    PubMed

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Rule extraction from minimal neural networks for credit card screening.

    PubMed

    Setiono, Rudy; Baesens, Bart; Mues, Christophe

    2011-08-01

    While feedforward neural networks have been widely accepted as effective tools for solving classification problems, the issue of finding the best network architecture remains unresolved, particularly so in real-world problem settings. We address this issue in the context of credit card screening, where it is important to not only find a neural network with good predictive performance but also one that facilitates a clear explanation of how it produces its predictions. We show that minimal neural networks with as few as one hidden unit provide good predictive accuracy, while having the added advantage of making it easier to generate concise and comprehensible classification rules for the user. To further reduce model size, a novel approach is suggested in which network connections from the input units to this hidden unit are removed by a very straightaway pruning procedure. In terms of predictive accuracy, both the minimized neural networks and the rule sets generated from them are shown to compare favorably with other neural network based classifiers. The rules generated from the minimized neural networks are concise and thus easier to validate in a real-life setting.

  7. A comparison of back propagation and Generalized Regression Neural Networks performance in neutron spectrometry.

    PubMed

    Martínez-Blanco, Ma Del Rosario; Ornelas-Vargas, Gerardo; Solís-Sánchez, Luis Octavio; Castañeda-Miranada, Rodrigo; Vega-Carrillo, Héctor René; Celaya-Padilla, José M; Garza-Veloz, Idalia; Martínez-Fierro, Margarita; Ortiz-Rodríguez, José Manuel

    2016-11-01

    The process of unfolding the neutron energy spectrum has been subject of research for many years. Monte Carlo, iterative methods, the bayesian theory, the principle of maximum entropy are some of the methods used. The drawbacks associated with traditional unfolding procedures have motivated the research of complementary approaches. Back Propagation Neural Networks (BPNN), have been applied with success in neutron spectrometry and dosimetry domains, however, the structure and learning parameters are factors that highly impact in the networks performance. In ANN domain, Generalized Regression Neural Network (GRNN) is one of the simplest neural networks in term of network architecture and learning algorithm. The learning is instantaneous, requiring no time for training. Opposite to BPNN, a GRNN would be formed instantly with just a 1-pass training on the development data. In the network development phase, the only hurdle is to optimize the hyper-parameter, which is known as sigma, governing the smoothness of the network. The aim of this work was to compare the performance of BPNN and GRNN in the solution of the neutron spectrometry problem. From results obtained it can be observed that despite the very similar results, GRNN performs better than BPNN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Neural network modeling of a dolphin's sonar discrimination capabilities.

    PubMed

    Au, W W; Andersen, L N; Rasmussen, A R; Roitblat, H L; Nachtigall, P E

    1995-07-01

    The capability of an echolocating dolphin to discriminate differences in the wall thickness of cylinders was previously modeled by a counterpropagation neural network using only spectral information from the echoes. In this study, both time and frequency information were used to model the dolphin discrimination capabilities. Echoes from the same cylinders were digitized using a broadband simulated dolphin sonar signal with the transducer mounted on the dolphin's pen. The echoes were filtered by a bank of continuous constant-Q digital filters and the energy from each filter was computed in time increments of 1/bandwidth. Echo features of the standard and each comparison target were analyzed in pairs by a counterpropagation neural network, a backpropagation neural network, and a model using Euclidean distance measures. The backpropagation network performed better than both the counterpropagation network, and the Euclidean model, using either spectral-only features or combined temporal and spectral features. All models performed better using features containing both temporal and spectral information. The backpropagation network was able to perform better than the dolphins for noise-free echoes with Q values as low as 2 and 3. For a Q of 2, only temporal information was available. However, with noisy data, the network required a Q of 8 in order to perform as well as the dolphin.

  9. A loop-based neural architecture for structured behavior encoding and decoding.

    PubMed

    Gisiger, Thomas; Boukadoum, Mounir

    2018-02-01

    We present a new type of artificial neural network that generalizes on anatomical and dynamical aspects of the mammal brain. Its main novelty lies in its topological structure which is built as an array of interacting elementary motifs shaped like loops. These loops come in various types and can implement functions such as gating, inhibitory or executive control, or encoding of task elements to name a few. Each loop features two sets of neurons and a control region, linked together by non-recurrent projections. The two neural sets do the bulk of the loop's computations while the control unit specifies the timing and the conditions under which the computations implemented by the loop are to be performed. By functionally linking many such loops together, a neural network is obtained that may perform complex cognitive computations. To demonstrate the potential offered by such a system, we present two neural network simulations. The first illustrates the structure and dynamics of a single loop implementing a simple gating mechanism. The second simulation shows how connecting four loops in series can produce neural activity patterns that are sufficient to pass a simplified delayed-response task. We also show that this network reproduces electrophysiological measurements gathered in various regions of the brain of monkeys performing similar tasks. We also demonstrate connections between this type of neural network and recurrent or long short-term memory network models, and suggest ways to generalize them for future artificial intelligence research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    PubMed

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  11. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks

    PubMed Central

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-01-01

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks. PMID:27754380

  12. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    PubMed

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  13. Design of Neural Networks for Fast Convergence and Accuracy

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1998-01-01

    A novel procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed to provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component spacecraft design changes and measures of its performance. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The design algorithm attempts to avoid the local minima phenomenon that hampers the traditional network training. A numerical example is performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  14. Stochastic Spiking Neural Networks Enabled by Magnetic Tunnel Junctions: From Nontelegraphic to Telegraphic Switching Regimes

    NASA Astrophysics Data System (ADS)

    Liyanagedera, Chamika M.; Sengupta, Abhronil; Jaiswal, Akhilesh; Roy, Kaushik

    2017-12-01

    Stochastic spiking neural networks based on nanoelectronic spin devices can be a possible pathway to achieving "brainlike" compact and energy-efficient cognitive intelligence. The computational model attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural components to perform learning or inference. However, there has been limited analysis on the scaling effect of stochastic spin devices and its impact on the operation of such stochastic networks at the system level. This work attempts to explore the design space and analyze the performance of nanomagnet-based stochastic neuromorphic computing architectures for magnets with different barrier heights. We illustrate how the underlying network architecture must be modified to account for the random telegraphic switching behavior displayed by magnets with low barrier heights as they are scaled into the superparamagnetic regime. We perform a device-to-system-level analysis on a deep neural-network architecture for a digit-recognition problem on the MNIST data set.

  15. Statistical downscaling of precipitation using long short-term memory recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra

    2017-11-01

    Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.

  16. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  17. Financial Time Series Prediction Using Spiking Neural Networks

    PubMed Central

    Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam

    2014-01-01

    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two “traditional”, rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments. PMID:25170618

  18. Statistical Classification for Cognitive Diagnostic Assessment: An Artificial Neural Network Approach

    ERIC Educational Resources Information Center

    Cui, Ying; Gierl, Mark; Guo, Qi

    2016-01-01

    The purpose of the current investigation was to describe how the artificial neural networks (ANNs) can be used to interpret student performance on cognitive diagnostic assessments (CDAs) and evaluate the performances of ANNs using simulation results. CDAs are designed to measure student performance on problem-solving tasks and provide useful…

  19. Assessing the Liquidity of Firms: Robust Neural Network Regression as an Alternative to the Current Ratio

    NASA Astrophysics Data System (ADS)

    de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia

    Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.

  20. Neural network based automatic limit prediction and avoidance system and method

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)

    2001-01-01

    A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.

  1. Performance Evaluation of Public Non-Profit Hospitals Using a BP Artificial Neural Network: The Case of Hubei Province in China

    PubMed Central

    Li, Chunhui; Yu, Chuanhua

    2013-01-01

    To provide a reference for evaluating public non-profit hospitals in the new environment of medical reform, we established a performance evaluation system for public non-profit hospitals. The new “input-output” performance model for public non-profit hospitals is based on four primary indexes (input, process, output and effect) that include 11 sub-indexes and 41 items. The indicator weights were determined using the analytic hierarchy process (AHP) and entropy weight method. The BP neural network was applied to evaluate the performance of 14 level-3 public non-profit hospitals located in Hubei Province. The most stable BP neural network was produced by comparing different numbers of neurons in the hidden layer and using the “Leave-one-out” Cross Validation method. The performance evaluation system we established for public non-profit hospitals could reflect the basic goal of the new medical health system reform in China. Compared with PLSR, the result indicated that the BP neural network could be used effectively for evaluating the performance public non-profit hospitals. PMID:23955238

  2. Spiking Neural Network Decoder for Brain-Machine Interfaces.

    PubMed

    Dethier, Julie; Gilja, Vikash; Nuyujukian, Paul; Elassaad, Shauki A; Shenoy, Krishna V; Boahen, Kwabena

    2011-01-01

    We used a spiking neural network (SNN) to decode neural data recorded from a 96-electrode array in premotor/motor cortex while a rhesus monkey performed a point-to-point reaching arm movement task. We mapped a Kalman-filter neural prosthetic decode algorithm developed to predict the arm's velocity on to the SNN using the Neural Engineering Framework and simulated it using Nengo , a freely available software package. A 20,000-neuron network matched the standard decoder's prediction to within 0.03% (normalized by maximum arm velocity). A 1,600-neuron version of this network was within 0.27%, and run in real-time on a 3GHz PC. These results demonstrate that a SNN can implement a statistical signal processing algorithm widely used as the decoder in high-performance neural prostheses (Kalman filter), and achieve similar results with just a few thousand neurons. Hardware SNN implementations-neuromorphic chips-may offer power savings, essential for realizing fully-implantable cortically controlled prostheses.

  3. ANNarchy: a code generation approach to neural simulations on parallel hardware

    PubMed Central

    Vitay, Julien; Dinkelbach, Helge Ü.; Hamker, Fred H.

    2015-01-01

    Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions. PMID:26283957

  4. Prediction of Welded Joint Strength in Plasma Arc Welding: A Comparative Study Using Back-Propagation and Radial Basis Neural Networks

    NASA Astrophysics Data System (ADS)

    Srinivas, Kadivendi; Vundavilli, Pandu R.; Manzoor Hussain, M.; Saiteja, M.

    2016-09-01

    Welding input parameters such as current, gas flow rate and torch angle play a significant role in determination of qualitative mechanical properties of weld joint. Traditionally, it is necessary to determine the weld input parameters for every new welded product to obtain a quality weld joint which is time consuming. In the present work, the effect of plasma arc welding parameters on mild steel was studied using a neural network approach. To obtain a response equation that governs the input-output relationships, conventional regression analysis was also performed. The experimental data was constructed based on Taguchi design and the training data required for neural networks were randomly generated, by varying the input variables within their respective ranges. The responses were calculated for each combination of input variables by using the response equations obtained through the conventional regression analysis. The performances in Levenberg-Marquardt back propagation neural network and radial basis neural network (RBNN) were compared on various randomly generated test cases, which are different from the training cases. From the results, it is interesting to note that for the above said test cases RBNN analysis gave improved training results compared to that of feed forward back propagation neural network analysis. Also, RBNN analysis proved a pattern of increasing performance as the data points moved away from the initial input values.

  5. Prediction of stock market characteristics using neural networks

    NASA Astrophysics Data System (ADS)

    Pandya, Abhijit S.; Kondo, Tadashi; Shah, Trupti U.; Gandhi, Viraf R.

    1999-03-01

    International stocks trading, currency and derivative contracts play an increasingly important role for many investors. Neural network is playing a dominant role in predicting the trends in stock markets and in currency speculation. In most economic applications, the success rate using neural networks is limited to 70 - 80%. By means of the new approach of GMDH (Group Method of Data Handling) neural network predictions can be improved further by 10 - 15%. It was observed in our study, that using GMDH for short, noisy or inaccurate data sample resulted in the best-simplified model. In the GMDH model accuracy of prediction is higher and the structure is simpler than that of the usual full physical model. As an example, prediction of the activity on the stock exchange in New York was considered. On the basis of observations in the period of Jan '95 to July '98, several variables of the stock market (S&P 500, Small Cap, Dow Jones, etc.) were predicted. A model portfolio using various stocks (Amgen, Merck, Office Depot, etc.) was built and its performance was evaluated based on neural network forecasting of the closing prices. Comparison of results was made with various neural network models such as Multilayer Perceptrons with Back Propagation, and the GMDH neural network. Variations of GMDH were studied and analysis of their performance is reported in the paper.

  6. Concurrent evolution of feature extractors and modular artificial neural networks

    NASA Astrophysics Data System (ADS)

    Hannak, Victor; Savakis, Andreas; Yang, Shanchieh Jay; Anderson, Peter

    2009-05-01

    This paper presents a new approach for the design of feature-extracting recognition networks that do not require expert knowledge in the application domain. Feature-Extracting Recognition Networks (FERNs) are composed of interconnected functional nodes (feurons), which serve as feature extractors, and are followed by a subnetwork of traditional neural nodes (neurons) that act as classifiers. A concurrent evolutionary process (CEP) is used to search the space of feature extractors and neural networks in order to obtain an optimal recognition network that simultaneously performs feature extraction and recognition. By constraining the hill-climbing search functionality of the CEP on specific parts of the solution space, i.e., individually limiting the evolution of feature extractors and neural networks, it was demonstrated that concurrent evolution is a necessary component of the system. Application of this approach to a handwritten digit recognition task illustrates that the proposed methodology is capable of producing recognition networks that perform in-line with other methods without the need for expert knowledge in image processing.

  7. A neural-network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities.

    PubMed

    Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano

    2008-09-01

    This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.

  8. Character recognition from trajectory by recurrent spiking neural networks.

    PubMed

    Jiangrong Shen; Kang Lin; Yueming Wang; Gang Pan

    2017-07-01

    Spiking neural networks are biologically plausible and power-efficient on neuromorphic hardware, while recurrent neural networks have been proven to be efficient on time series data. However, how to use the recurrent property to improve the performance of spiking neural networks is still a problem. This paper proposes a recurrent spiking neural network for character recognition using trajectories. In the network, a new encoding method is designed, in which varying time ranges of input streams are used in different recurrent layers. This is able to improve the generalization ability of our model compared with general encoding methods. The experiments are conducted on four groups of the character data set from University of Edinburgh. The results show that our method can achieve a higher average recognition accuracy than existing methods.

  9. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  10. Predicting Slag Generation in Sub-Scale Test Motors Using a Neural Network

    NASA Technical Reports Server (NTRS)

    Wiesenberg, Brent

    1999-01-01

    Generation of slag (aluminum oxide) is an important issue for the Reusable Solid Rocket Motor (RSRM). Thiokol performed testing to quantify the relationship between raw material variations and slag generation in solid propellants by testing sub-scale motors cast with propellant containing various combinations of aluminum fuel and ammonium perchlorate (AP) oxidizer particle sizes. The test data were analyzed using statistical methods and an artificial neural network. This paper primarily addresses the neural network results with some comparisons to the statistical results. The neural network showed that the particle sizes of both the aluminum and unground AP have a measurable effect on slag generation. The neural network analysis showed that aluminum particle size is the dominant driver in slag generation, about 40% more influential than AP. The network predictions of the amount of slag produced during firing of sub-scale motors were 16% better than the predictions of a statistically derived empirical equation. Another neural network successfully characterized the slag generated during full-scale motor tests. The success is attributable to the ability of neural networks to characterize multiple complex factors including interactions that affect slag generation.

  11. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  12. Classifying the molecular functions of Rab GTPases in membrane trafficking using deep convolutional neural networks.

    PubMed

    Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen

    2018-06-13

    Deep learning has been increasingly used to solve a number of problems with state-of-the-art performance in a wide variety of fields. In biology, deep learning can be applied to reduce feature extraction time and achieve high levels of performance. In our present work, we apply deep learning via two-dimensional convolutional neural networks and position-specific scoring matrices to classify Rab protein molecules, which are main regulators in membrane trafficking for transferring proteins and other macromolecules throughout the cell. The functional loss of specific Rab molecular functions has been implicated in a variety of human diseases, e.g., choroideremia, intellectual disabilities, cancer. Therefore, creating a precise model for classifying Rabs is crucial in helping biologists understand the molecular functions of Rabs and design drug targets according to such specific human disease information. We constructed a robust deep neural network for classifying Rabs that achieved an accuracy of 99%, 99.5%, 96.3%, and 97.6% for each of four specific molecular functions. Our approach demonstrates superior performance to traditional artificial neural networks. Therefore, from our proposed study, we provide both an effective tool for classifying Rab proteins and a basis for further research that can improve the performance of biological modeling using deep neural networks. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Spatial features of synaptic adaptation affecting learning performance.

    PubMed

    Berger, Damian L; de Arcangelis, Lucilla; Herrmann, Hans J

    2017-09-08

    Recent studies have proposed that the diffusion of messenger molecules, such as monoamines, can mediate the plastic adaptation of synapses in supervised learning of neural networks. Based on these findings we developed a model for neural learning, where the signal for plastic adaptation is assumed to propagate through the extracellular space. We investigate the conditions allowing learning of Boolean rules in a neural network. Even fully excitatory networks show very good learning performances. Moreover, the investigation of the plastic adaptation features optimizing the performance suggests that learning is very sensitive to the extent of the plastic adaptation and the spatial range of synaptic connections.

  14. A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1994-01-01

    A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.

  15. Deinterlacing using modular neural network

    NASA Astrophysics Data System (ADS)

    Woo, Dong H.; Eom, Il K.; Kim, Yoo S.

    2004-05-01

    Deinterlacing is the conversion process from the interlaced scan to progressive one. While many previous algorithms that are based on weighted-sum cause blurring in edge region, deinterlacing using neural network can reduce the blurring through recovering of high frequency component by learning process, and is found robust to noise. In proposed algorithm, input image is divided into edge and smooth region, and then, to each region, one neural network is assigned. Through this process, each neural network learns only patterns that are similar, therefore it makes learning more effective and estimation more accurate. But even within each region, there are various patterns such as long edge and texture in edge region. To solve this problem, modular neural network is proposed. In proposed modular neural network, two modules are combined in output node. One is for low frequency feature of local area of input image, and the other is for high frequency feature. With this structure, each modular neural network can learn different patterns with compensating for drawback of counterpart. Therefore it can adapt to various patterns within each region effectively. In simulation, the proposed algorithm shows better performance compared with conventional deinterlacing methods and single neural network method.

  16. SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks.

    PubMed

    Zenke, Friedemann; Ganguli, Surya

    2018-06-01

    A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking circuits in silico. Here we revisit the problem of supervised learning in temporally coding multilayer spiking neural networks. First, by using a surrogate gradient approach, we derive SuperSpike, a nonlinear voltage-based three-factor learning rule capable of training multilayer networks of deterministic integrate-and-fire neurons to perform nonlinear computations on spatiotemporal spike patterns. Second, inspired by recent results on feedback alignment, we compare the performance of our learning rule under different credit assignment strategies for propagating output errors to hidden units. Specifically, we test uniform, symmetric, and random feedback, finding that simpler tasks can be solved with any type of feedback, while more complex tasks require symmetric feedback. In summary, our results open the door to obtaining a better scientific understanding of learning and computation in spiking neural networks by advancing our ability to train them to solve nonlinear problems involving transformations between different spatiotemporal spike time patterns.

  17. A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition

    PubMed Central

    Sánchez, Daniela; Melin, Patricia

    2017-01-01

    A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition. PMID:28894461

  18. A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition.

    PubMed

    Sánchez, Daniela; Melin, Patricia; Castillo, Oscar

    2017-01-01

    A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.

  19. RRAM-based hardware implementations of artificial neural networks: progress update and challenges ahead

    NASA Astrophysics Data System (ADS)

    Prezioso, M.; Merrikh-Bayat, F.; Chakrabarti, B.; Strukov, D.

    2016-02-01

    Artificial neural networks have been receiving increasing attention due to their superior performance in many information processing tasks. Typically, scaling up the size of the network results in better performance and richer functionality. However, large neural networks are challenging to implement in software and customized hardware are generally required for their practical implementations. In this work, we will discuss our group's recent efforts on the development of such custom hardware circuits, based on hybrid CMOS/memristor circuits, in particular of CMOL variety. We will start by reviewing the basics of memristive devices and of CMOL circuits. We will then discuss our recent progress towards demonstration of hybrid circuits, focusing on the experimental and theoretical results for artificial neural networks based on crossbarintegrated metal oxide memristors. We will conclude presentation with the discussion of the remaining challenges and the most pressing research needs.

  20. A neural network device for on-line particle identification in cosmic ray experiments

    NASA Astrophysics Data System (ADS)

    Scrimaglio, R.; Finetti, N.; D'Altorio, L.; Rantucci, E.; Raso, M.; Segreto, E.; Tassoni, A.; Cardarilli, G. C.

    2004-05-01

    On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification.

  1. A Direct Position-Determination Approach for Multiple Sources Based on Neural Network Computation.

    PubMed

    Chen, Xin; Wang, Ding; Yin, Jiexin; Wu, Ying

    2018-06-13

    The most widely used localization technology is the two-step method that localizes transmitters by measuring one or more specified positioning parameters. Direct position determination (DPD) is a promising technique that directly localizes transmitters from sensor outputs and can offer superior localization performance. However, existing DPD algorithms such as maximum likelihood (ML)-based and multiple signal classification (MUSIC)-based estimations are computationally expensive, making it difficult to satisfy real-time demands. To solve this problem, we propose the use of a modular neural network for multiple-source DPD. In this method, the area of interest is divided into multiple sub-areas. Multilayer perceptron (MLP) neural networks are employed to detect the presence of a source in a sub-area and filter sources in other sub-areas, and radial basis function (RBF) neural networks are utilized for position estimation. Simulation results show that a number of appropriately trained neural networks can be successfully used for DPD. The performance of the proposed MLP-MLP-RBF method is comparable to the performance of the conventional MUSIC-based DPD algorithm for various signal-to-noise ratios and signal power ratios. Furthermore, the MLP-MLP-RBF network is less computationally intensive than the classical DPD algorithm and is therefore an attractive choice for real-time applications.

  2. Improving Maritime Domain Awareness Using Neural Networks for Target of Interest Classification

    DTIC Science & Technology

    2015-03-01

    spreading SCG scaled conjugate gradient xv THIS PAGE INTENTIONALLY LEFT BLANK xvi EXECUTIVE SUMMARY The research detailed in this thesis is a...algorithms were explored for training the neural networks: resilient backpropagation (RP) and scaled conjugate gradient backpropagation ( SCG ). The...results of the neural network training performance are presented using mean squared error convergence plots. In all implementations, the SCG learning

  3. Computational Models of Neuron-Astrocyte Interactions Lead to Improved Efficacy in the Performance of Neural Networks

    PubMed Central

    Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B.

    2012-01-01

    The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem. PMID:22649480

  4. Computational models of neuron-astrocyte interactions lead to improved efficacy in the performance of neural networks.

    PubMed

    Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B

    2012-01-01

    The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem.

  5. Modelling fuel cell performance using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  6. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.

    PubMed

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  7. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than themore » SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.« less

  8. The role of simulation in the design of a neural network chip

    NASA Technical Reports Server (NTRS)

    Desai, Utpal; Roppel, Thaddeus A.; Padgett, Mary L.

    1993-01-01

    An iterative, simulation-based design procedure for a neural network chip is introduced. For this design procedure, the goal is to produce a chip layout for a neural network in which the weights are determined by transistor gate width-to-length ratios. In a given iteration, the current layout is simulated using the circuit simulator SPICE, and layout adjustments are made based on conventional gradient-decent methods. After the iteration converges, the chip is fabricated. Monte Carlo analysis is used to predict the effect of statistical fabrication process variations on the overall performance of the neural network chip.

  9. Application of Artificial Neural Networks to the Design of Turbomachinery Airfoils

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Madavan, Nateri

    1997-01-01

    Artificial neural networks are widely used in engineering applications, such as control, pattern recognition, plant modeling and condition monitoring to name just a few. In this seminar we will explore the possibility of applying neural networks to aerodynamic design, in particular, the design of turbomachinery airfoils. The principle idea behind this effort is to represent the design space using a neural network (within some parameter limits), and then to employ an optimization procedure to search this space for a solution that exhibits optimal performance characteristics. Results obtained for design problems in two spatial dimensions will be presented.

  10. Disorder generated by interacting neural networks: application to econophysics and cryptography

    NASA Astrophysics Data System (ADS)

    Kinzel, Wolfgang; Kanter, Ido

    2003-10-01

    When neural networks are trained on their own output signals they generate disordered time series. In particular, when two neural networks are trained on their mutual output they can synchronize; they relax to a time-dependent state with identical synaptic weights. Two applications of this phenomenon are discussed for (a) econophysics and (b) cryptography. (a) When agents competing in a closed market (minority game) are using neural networks to make their decisions, the total system relaxes to a state of good performance. (b) Two partners communicating over a public channel can find a common secret key.

  11. Seismic signal auto-detecing from different features by using Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Zhou, Y.; Yue, H.; Zhou, S.

    2017-12-01

    We try Convolutional Neural Network to detect some features of seismic data and compare their efficience. The features include whether a signal is seismic signal or noise and the arrival time of P and S phase and each feature correspond to a Convolutional Neural Network. We first use traditional STA/LTA to recongnize some events and then use templete matching to find more events as training set for the Neural Network. To make the training set more various, we add some noise to the seismic data and make some synthetic seismic data and noise. The 3-component raw signal and time-frequancy ananlyze are used as the input data for our neural network. Our Training is performed on GPUs to achieve efficient convergence. Our method improved the precision in comparison with STA/LTA and template matching. We will move to recurrent neural network to see if this kind network is better in detect P and S phase.

  12. Competitive Learning Neural Network Ensemble Weighted by Predicted Performance

    ERIC Educational Resources Information Center

    Ye, Qiang

    2010-01-01

    Ensemble approaches have been shown to enhance classification by combining the outputs from a set of voting classifiers. Diversity in error patterns among base classifiers promotes ensemble performance. Multi-task learning is an important characteristic for Neural Network classifiers. Introducing a secondary output unit that receives different…

  13. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  14. Performing particle image velocimetry using artificial neural networks: a proof-of-concept

    NASA Astrophysics Data System (ADS)

    Rabault, Jean; Kolaas, Jostein; Jensen, Atle

    2017-12-01

    Traditional programs based on feature engineering are underperforming on a steadily increasing number of tasks compared with artificial neural networks (ANNs), in particular for image analysis. Image analysis is widely used in fluid mechanics when performing particle image velocimetry (PIV) and particle tracking velocimetry (PTV), and therefore it is natural to test the ability of ANNs to perform such tasks. We report for the first time the use of convolutional neural networks (CNNs) and fully connected neural networks (FCNNs) for performing end-to-end PIV. Realistic synthetic images are used for training the networks and several synthetic test cases are used to assess the quality of each network’s predictions and compare them with state-of-the-art PIV software. In addition, we present tests on real-world data that prove ANNs can be used not only with synthetic images but also with more noisy, imperfect images obtained in a real experimental setup. While the ANNs we present have slightly higher root mean square error than state-of-the-art cross-correlation methods, they perform better near edges and allow for higher spatial resolution than such methods. In addition, it is likely that one could with further work develop ANNs which perform better that the proof-of-concept we offer.

  15. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    PubMed

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance (similarity) measures. Results with the larger consistency will be more reliable.

  16. From neural-based object recognition toward microelectronic eyes

    NASA Technical Reports Server (NTRS)

    Sheu, Bing J.; Bang, Sa Hyun

    1994-01-01

    Engineering neural network systems are best known for their abilities to adapt to the changing characteristics of the surrounding environment by adjusting system parameter values during the learning process. Rapid advances in analog current-mode design techniques have made possible the implementation of major neural network functions in custom VLSI chips. An electrically programmable analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of the synapse cells, neurons, and analog processor are presented. A synapse cell based on Gilbert multiplier structure can perform the linear multiplication for back-propagation networks. A double differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold region for low-power operation. The voltage gain of the sigmoid-function neurons is externally adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building blocks can be intelligently connected to form useful industrial applications. Efficient data communication is a key system-level design issue for large-scale networks. We also present analog neural processors based on perceptron architecture and Hopfield network for communication applications. Biologically inspired neural networks have played an important role towards the creation of powerful intelligent machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically inspired vision processing chips and cellular neural network chips are key design issues.

  17. Artificial neural network prediction of aircraft aeroelastic behavior

    NASA Astrophysics Data System (ADS)

    Pesonen, Urpo Juhani

    An Artificial Neural Network that predicts aeroelastic behavior of aircraft is presented. The neural net was designed to predict the shape of a flexible wing in static flight conditions using results from a structural analysis and an aerodynamic analysis performed with traditional computational tools. To generate reliable training and testing data for the network, an aeroelastic analysis code using these tools as components was designed and validated. To demonstrate the advantages and reliability of Artificial Neural Networks, a network was also designed and trained to predict airfoil maximum lift at low Reynolds numbers where wind tunnel data was used for the training. Finally, a neural net was designed and trained to predict the static aeroelastic behavior of a wing without the need to iterate between the structural and aerodynamic solvers.

  18. An Expedient Study on Back-Propagation (BPN) Neural Networks for Modeling Automated Evaluation of the Answers and Progress of Deaf Students' That Possess Basic Knowledge of the English Language and Computer Skills

    NASA Astrophysics Data System (ADS)

    Vrettaros, John; Vouros, George; Drigas, Athanasios S.

    This article studies the expediency of using neural networks technology and the development of back-propagation networks (BPN) models for modeling automated evaluation of the answers and progress of deaf students' that possess basic knowledge of the English language and computer skills, within a virtual e-learning environment. The performance of the developed neural models is evaluated with the correlation factor between the neural networks' response values and the real value data as well as the percentage measurement of the error between the neural networks' estimate values and the real value data during its training process and afterwards with unknown data that weren't used in the training process.

  19. Pattern learning with deep neural networks in EMG-based speech recognition.

    PubMed

    Wand, Michael; Schultz, Tanja

    2014-01-01

    We report on classification of phones and phonetic features from facial electromyographic (EMG) data, within the context of our EMG-based Silent Speech interface. In this paper we show that a Deep Neural Network can be used to perform this classification task, yielding a significant improvement over conventional Gaussian Mixture models. Our central contribution is the visualization of patterns which are learned by the neural network. With increasing network depth, these patterns represent more and more intricate electromyographic activity.

  20. Toward automatic time-series forecasting using neural networks.

    PubMed

    Yan, Weizhong

    2012-07-01

    Over the past few decades, application of artificial neural networks (ANN) to time-series forecasting (TSF) has been growing rapidly due to several unique features of ANN models. However, to date, a consistent ANN performance over different studies has not been achieved. Many factors contribute to the inconsistency in the performance of neural network models. One such factor is that ANN modeling involves determining a large number of design parameters, and the current design practice is essentially heuristic and ad hoc, this does not exploit the full potential of neural networks. Systematic ANN modeling processes and strategies for TSF are, therefore, greatly needed. Motivated by this need, this paper attempts to develop an automatic ANN modeling scheme. It is based on the generalized regression neural network (GRNN), a special type of neural network. By taking advantage of several GRNN properties (i.e., a single design parameter and fast learning) and by incorporating several design strategies (e.g., fusing multiple GRNNs), we have been able to make the proposed modeling scheme to be effective for modeling large-scale business time series. The initial model was entered into the NN3 time-series competition. It was awarded the best prediction on the reduced dataset among approximately 60 different models submitted by scholars worldwide.

  1. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  2. Simple techniques for improving deep neural network outcomes on commodity hardware

    NASA Astrophysics Data System (ADS)

    Colina, Nicholas Christopher A.; Perez, Carlos E.; Paraan, Francis N. C.

    2017-08-01

    We benchmark improvements in the performance of deep neural networks (DNN) on the MNIST data test upon imple-menting two simple modifications to the algorithm that have little overhead computational cost. First is GPU parallelization on a commodity graphics card, and second is initializing the DNN with random orthogonal weight matrices prior to optimization. Eigenspectra analysis of the weight matrices reveal that the initially orthogonal matrices remain nearly orthogonal after training. The probability distributions from which these orthogonal matrices are drawn are also shown to significantly affect the performance of these deep neural networks.

  3. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

    PubMed

    Li, Shuai; Li, Yangming

    2013-10-28

    The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

  4. Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set.

    PubMed

    Lenselink, Eelke B; Ten Dijke, Niels; Bongers, Brandon; Papadatos, George; van Vlijmen, Herman W T; Kowalczyk, Wojtek; IJzerman, Adriaan P; van Westen, Gerard J P

    2017-08-14

    The increase of publicly available bioactivity data in recent years has fueled and catalyzed research in chemogenomics, data mining, and modeling approaches. As a direct result, over the past few years a multitude of different methods have been reported and evaluated, such as target fishing, nearest neighbor similarity-based methods, and Quantitative Structure Activity Relationship (QSAR)-based protocols. However, such studies are typically conducted on different datasets, using different validation strategies, and different metrics. In this study, different methods were compared using one single standardized dataset obtained from ChEMBL, which is made available to the public, using standardized metrics (BEDROC and Matthews Correlation Coefficient). Specifically, the performance of Naïve Bayes, Random Forests, Support Vector Machines, Logistic Regression, and Deep Neural Networks was assessed using QSAR and proteochemometric (PCM) methods. All methods were validated using both a random split validation and a temporal validation, with the latter being a more realistic benchmark of expected prospective execution. Deep Neural Networks are the top performing classifiers, highlighting the added value of Deep Neural Networks over other more conventional methods. Moreover, the best method ('DNN_PCM') performed significantly better at almost one standard deviation higher than the mean performance. Furthermore, Multi-task and PCM implementations were shown to improve performance over single task Deep Neural Networks. Conversely, target prediction performed almost two standard deviations under the mean performance. Random Forests, Support Vector Machines, and Logistic Regression performed around mean performance. Finally, using an ensemble of DNNs, alongside additional tuning, enhanced the relative performance by another 27% (compared with unoptimized 'DNN_PCM'). Here, a standardized set to test and evaluate different machine learning algorithms in the context of multi-task learning is offered by providing the data and the protocols. Graphical Abstract .

  5. Hidden Markov models and neural networks for fault detection in dynamic systems

    NASA Technical Reports Server (NTRS)

    Smyth, Padhraic

    1994-01-01

    Neural networks plus hidden Markov models (HMM) can provide excellent detection and false alarm rate performance in fault detection applications, as shown in this viewgraph presentation. Modified models allow for novelty detection. Key contributions of neural network models are: (1) excellent nonparametric discrimination capability; (2) a good estimator of posterior state probabilities, even in high dimensions, and thus can be embedded within overall probabilistic model (HMM); and (3) simple to implement compared to other nonparametric models. Neural network/HMM monitoring model is currently being integrated with the new Deep Space Network (DSN) antenna controller software and will be on-line monitoring a new DSN 34-m antenna (DSS-24) by July, 1994.

  6. Comparison of RF spectrum prediction methods for dynamic spectrum access

    NASA Astrophysics Data System (ADS)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  7. Comparative study of four time series methods in forecasting typhoid fever incidence in China.

    PubMed

    Zhang, Xingyu; Liu, Yuanyuan; Yang, Min; Zhang, Tao; Young, Alistair A; Li, Xiaosong

    2013-01-01

    Accurate incidence forecasting of infectious disease is critical for early prevention and for better government strategic planning. In this paper, we present a comprehensive study of different forecasting methods based on the monthly incidence of typhoid fever. The seasonal autoregressive integrated moving average (SARIMA) model and three different models inspired by neural networks, namely, back propagation neural networks (BPNN), radial basis function neural networks (RBFNN), and Elman recurrent neural networks (ERNN) were compared. The differences as well as the advantages and disadvantages, among the SARIMA model and the neural networks were summarized and discussed. The data obtained for 2005 to 2009 and for 2010 from the Chinese Center for Disease Control and Prevention were used as modeling and forecasting samples, respectively. The performances were evaluated based on three metrics: mean absolute error (MAE), mean absolute percentage error (MAPE), and mean square error (MSE). The results showed that RBFNN obtained the smallest MAE, MAPE and MSE in both the modeling and forecasting processes. The performances of the four models ranked in descending order were: RBFNN, ERNN, BPNN and the SARIMA model.

  8. Performance Parameters Analysis of an XD3P Peugeot Engine Using Artificial Neural Networks (ANN) Concept in MATLAB

    NASA Astrophysics Data System (ADS)

    Rangaswamy, T.; Vidhyashankar, S.; Madhusudan, M.; Bharath Shekar, H. R.

    2015-04-01

    The current trends of engineering follow the basic rule of innovation in mechanical engineering aspects. For the engineers to be efficient, problem solving aspects need to be viewed in a multidimensional perspective. One such methodology implemented is the fusion of technologies from other disciplines in order to solve the problems. This paper mainly deals with the application of Neural Networks in order to analyze the performance parameters of an XD3P Peugeot engine (used in Ministry of Defence). The basic propaganda of the work is divided into two main working stages. In the former stage, experimentation of an IC engine is carried out in order to obtain the primary data. In the latter stage the primary database formed is used to design and implement a predictive neural network in order to analyze the output parameters variation with respect to each other. A mathematical governing equation for the neural network is obtained. The obtained polynomial equation describes the characteristic behavior of the built neural network system. Finally, a comparative study of the results is carried out.

  9. Comparative Study of Four Time Series Methods in Forecasting Typhoid Fever Incidence in China

    PubMed Central

    Zhang, Xingyu; Liu, Yuanyuan; Yang, Min; Zhang, Tao; Young, Alistair A.; Li, Xiaosong

    2013-01-01

    Accurate incidence forecasting of infectious disease is critical for early prevention and for better government strategic planning. In this paper, we present a comprehensive study of different forecasting methods based on the monthly incidence of typhoid fever. The seasonal autoregressive integrated moving average (SARIMA) model and three different models inspired by neural networks, namely, back propagation neural networks (BPNN), radial basis function neural networks (RBFNN), and Elman recurrent neural networks (ERNN) were compared. The differences as well as the advantages and disadvantages, among the SARIMA model and the neural networks were summarized and discussed. The data obtained for 2005 to 2009 and for 2010 from the Chinese Center for Disease Control and Prevention were used as modeling and forecasting samples, respectively. The performances were evaluated based on three metrics: mean absolute error (MAE), mean absolute percentage error (MAPE), and mean square error (MSE). The results showed that RBFNN obtained the smallest MAE, MAPE and MSE in both the modeling and forecasting processes. The performances of the four models ranked in descending order were: RBFNN, ERNN, BPNN and the SARIMA model. PMID:23650546

  10. Using Neural Networks to Improve the Performance of Radiative Transfer Modeling Used for Geometry Dependent LER Calculations

    NASA Astrophysics Data System (ADS)

    Fasnacht, Z.; Qin, W.; Haffner, D. P.; Loyola, D. G.; Joiner, J.; Krotkov, N. A.; Vasilkov, A. P.; Spurr, R. J. D.

    2017-12-01

    In order to estimate surface reflectance used in trace gas retrieval algorithms, radiative transfer models (RTM) such as the Vector Linearized Discrete Ordinate Radiative Transfer Model (VLIDORT) can be used to simulate the top of the atmosphere (TOA) radiances with advanced models of surface properties. With large volumes of satellite data, these model simulations can become computationally expensive. Look up table interpolation can improve the computational cost of the calculations, but the non-linear nature of the radiances requires a dense node structure if interpolation errors are to be minimized. In order to reduce our computational effort and improve the performance of look-up tables, neural networks can be trained to predict these radiances. We investigate the impact of using look-up table interpolation versus a neural network trained using the smart sampling technique, and show that neural networks can speed up calculations and reduce errors while using significantly less memory and RTM calls. In future work we will implement a neural network in operational processing to meet growing demands for reflectance modeling in support of high spatial resolution satellite missions.

  11. Recognition of Telugu characters using neural networks.

    PubMed

    Sukhaswami, M B; Seetharamulu, P; Pujari, A K

    1995-09-01

    The aim of the present work is to recognize printed and handwritten Telugu characters using artificial neural networks (ANNs). Earlier work on recognition of Telugu characters has been done using conventional pattern recognition techniques. We make an initial attempt here of using neural networks for recognition with the aim of improving upon earlier methods which do not perform effectively in the presence of noise and distortion in the characters. The Hopfield model of neural network working as an associative memory is chosen for recognition purposes initially. Due to limitation in the capacity of the Hopfield neural network, we propose a new scheme named here as the Multiple Neural Network Associative Memory (MNNAM). The limitation in storage capacity has been overcome by combining multiple neural networks which work in parallel. It is also demonstrated that the Hopfield network is suitable for recognizing noisy printed characters as well as handwritten characters written by different "hands" in a variety of styles. Detailed experiments have been carried out using several learning strategies and results are reported. It is shown here that satisfactory recognition is possible using the proposed strategy. A detailed preprocessing scheme of the Telugu characters from digitized documents is also described.

  12. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks

    NASA Astrophysics Data System (ADS)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-01

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  13. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  14. Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed; Ricketts, Daniel; Kotaru, Raj; Thomas, Robert; Noga, Donald F. (Technical Monitor); Kankam, Mark D. (Technical Monitor)

    2000-01-01

    In this report, a fully integrated prototype of a flight servo control system is successfully developed and implemented using brushless dc motors. The control system is developed by the fuzzy logic theory, and implemented with a multilayer neural network. First, a neural network-based architecture is introduced for fuzzy logic control. The characteristic rules and their membership functions of fuzzy systems are represented as the processing nodes in the neural network structure. The network structure and the parameter learning are performed simultaneously and online in the fuzzy-neural network system. The structure learning is based on the partition of input space. The parameter learning is based on the supervised gradient decent method, using a delta adaptation law. Using experimental setup, the performance of the proposed control system is evaluated under various operating conditions. Test results are presented and discussed in the report. The proposed learning control system has several advantages, namely, simple structure and learning capability, robustness and high tracking performance and few nodes at hidden layers. In comparison with the PI controller, the proposed fuzzy-neural network system can yield a better dynamic performance with shorter settling time, and without overshoot. Experimental results have shown that the proposed control system is adaptive and robust in responding to a wide range of operating conditions. In summary, the goal of this study is to design and implement-advanced servosystems to actuate control surfaces for flight vehicles, namely, aircraft and helicopters, missiles and interceptors, and mini- and micro-air vehicles.

  15. Modular representation of layered neural networks.

    PubMed

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  17. Neural-network classifiers for automatic real-world aerial image recognition

    NASA Astrophysics Data System (ADS)

    Greenberg, Shlomo; Guterman, Hugo

    1996-08-01

    We describe the application of the multilayer perceptron (MLP) network and a version of the adaptive resonance theory version 2-A (ART 2-A) network to the problem of automatic aerial image recognition (AAIR). The classification of aerial images, independent of their positions and orientations, is required for automatic tracking and target recognition. Invariance is achieved by the use of different invariant feature spaces in combination with supervised and unsupervised neural networks. The performance of neural-network-based classifiers in conjunction with several types of invariant AAIR global features, such as the Fourier-transform space, Zernike moments, central moments, and polar transforms, are examined. The advantages of this approach are discussed. The performance of the MLP network is compared with that of a classical correlator. The MLP neural-network correlator outperformed the binary phase-only filter (BPOF) correlator. It was found that the ART 2-A distinguished itself with its speed and its low number of required training vectors. However, only the MLP classifier was able to deal with a combination of shift and rotation geometric distortions.

  18. Neural-network classifiers for automatic real-world aerial image recognition.

    PubMed

    Greenberg, S; Guterman, H

    1996-08-10

    We describe the application of the multilayer perceptron (MLP) network and a version of the adaptive resonance theory version 2-A (ART 2-A) network to the problem of automatic aerial image recognition (AAIR). The classification of aerial images, independent of their positions and orientations, is required for automatic tracking and target recognition. Invariance is achieved by the use of different invariant feature spaces in combination with supervised and unsupervised neural networks. The performance of neural-network-based classifiers in conjunction with several types of invariant AAIR global features, such as the Fourier-transform space, Zernike moments, central moments, and polar transforms, are examined. The advantages of this approach are discussed. The performance of the MLP network is compared with that of a classical correlator. The MLP neural-network correlator outperformed the binary phase-only filter (BPOF) correlator. It was found that the ART 2-A distinguished itself with its speed and its low number of required training vectors. However, only the MLP classifier was able to deal with a combination of shift and rotation geometric distortions.

  19. Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models.

    PubMed

    de Jesus, Karla; Ayala, Helon V H; de Jesus, Kelly; Coelho, Leandro Dos S; Medeiros, Alexandre I A; Abraldes, José A; Vaz, Mário A P; Fernandes, Ricardo J; Vilas-Boas, João Paulo

    2018-03-01

    Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances.

  20. Design of Neural Networks for Fast Convergence and Accuracy: Dynamics and Control

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Sparks, Dean W., Jr.

    1997-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  1. Design of neural networks for fast convergence and accuracy: dynamics and control.

    PubMed

    Maghami, P G; Sparks, D R

    2000-01-01

    A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.

  2. Using Neural Networks to Describe Tracer Correlations

    NASA Technical Reports Server (NTRS)

    Lary, D. J.; Mueller, M. D.; Mussa, H. Y.

    2003-01-01

    Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation co- efficient of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4, (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.

  3. Method and apparatus for in-process sensing of manufacturing quality

    DOEpatents

    Hartman, Daniel A [Santa Fe, NM; Dave, Vivek R [Los Alamos, NM; Cola, Mark J [Santa Fe, NM; Carpenter, Robert W [Los Alamos, NM

    2005-02-22

    A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining the quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.

  4. Using Neural Networks in Decision Making for a Reconfigurable Electro Mechanical Actuator (EMA)

    NASA Technical Reports Server (NTRS)

    Latino, Carl D.

    2001-01-01

    The objectives of this project were to demonstrate applicability and advantages of a neural network approach for evaluating the performance of an electro-mechanical actuator (EMA). The EMA in question was intended for the X-37 Advanced Technology Vehicle. It will have redundant components for safety and reliability. The neural networks for this application are to monitor the operation of the redundant electronics that control the actuator in real time and decide on the operating configuration. The system we proposed consists of the actuator, sensors, control circuitry and dedicated (embedded) processors. The main purpose of the study was to develop suitable hardware and neural network capable of allowing real time reconfiguration decisions to be made. This approach was to be compared to other methods such as fuzzy logic and knowledge based systems considered for the same application. Over the course of the project a more general objective was the identification of the other neural network applications and the education of interested NASA personnel on the topic of Neural Networks.

  5. Method and Apparatus for In-Process Sensing of Manufacturing Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, D.A.; Dave, V.R.; Cola, M.J.

    2005-02-22

    A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining themore » quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.« less

  6. Method for Constructing Composite Response Surfaces by Combining Neural Networks with other Interpolation or Estimation Techniques

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)

    2003-01-01

    A method and system for design optimization that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The present invention employs a unique strategy called parameter-based partitioning of the given design space. In the design procedure, a sequence of composite response surfaces based on both neural networks and polynomial fits is used to traverse the design space to identify an optimal solution. The composite response surface has both the power of neural networks and the economy of low-order polynomials (in terms of the number of simulations needed and the network training requirements). The present invention handles design problems with many more parameters than would be possible using neural networks alone and permits a designer to rapidly perform a variety of trade-off studies before arriving at the final design.

  7. Comparison between extreme learning machine and wavelet neural networks in data classification

    NASA Astrophysics Data System (ADS)

    Yahia, Siwar; Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2017-03-01

    Extreme learning Machine is a well known learning algorithm in the field of machine learning. It's about a feed forward neural network with a single-hidden layer. It is an extremely fast learning algorithm with good generalization performance. In this paper, we aim to compare the Extreme learning Machine with wavelet neural networks, which is a very used algorithm. We have used six benchmark data sets to evaluate each technique. These datasets Including Wisconsin Breast Cancer, Glass Identification, Ionosphere, Pima Indians Diabetes, Wine Recognition and Iris Plant. Experimental results have shown that both extreme learning machine and wavelet neural networks have reached good results.

  8. Nonlinear adaptive inverse control via the unified model neural network

    NASA Astrophysics Data System (ADS)

    Jeng, Jin-Tsong; Lee, Tsu-Tian

    1999-03-01

    In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  9. Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning.

    PubMed

    Gramatikov, Boris I

    2017-04-27

    Reliable detection of central fixation and eye alignment is essential in the diagnosis of amblyopia ("lazy eye"), which can lead to blindness. Our lab has developed and reported earlier a pediatric vision screener that performs scanning of the retina around the fovea and analyzes changes in the polarization state of light as the scan progresses. Depending on the direction of gaze and the instrument design, the screener produces several signal frequencies that can be utilized in the detection of central fixation. The objective of this study was to compare artificial neural networks with classical statistical methods, with respect to their ability to detect central fixation reliably. A classical feedforward, pattern recognition, two-layer neural network architecture was used, consisting of one hidden layer and one output layer. The network has four inputs, representing normalized spectral powers at four signal frequencies generated during retinal birefringence scanning. The hidden layer contains four neurons. The output suggests presence or absence of central fixation. Backpropagation was used to train the network, using the gradient descent algorithm and the cross-entropy error as the performance function. The network was trained, validated and tested on a set of controlled calibration data obtained from 600 measurements from ten eyes in a previous study, and was additionally tested on a clinical set of 78 eyes, independently diagnosed by an ophthalmologist. In the first part of this study, a neural network was designed around the calibration set. With a proper architecture and training, the network provided performance that was comparable to classical statistical methods, allowing perfect separation between the central and paracentral fixation data, with both the sensitivity and the specificity of the instrument being 100%. In the second part of the study, the neural network was applied to the clinical data. It allowed reliable separation between normal subjects and affected subjects, its accuracy again matching that of the statistical methods. With a proper choice of a neural network architecture and a good, uncontaminated training data set, the artificial neural network can be an efficient classification tool for detecting central fixation based on retinal birefringence scanning.

  10. Spatial interpolation and radiological mapping of ambient gamma dose rate by using artificial neural networks and fuzzy logic methods.

    PubMed

    Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur

    2017-09-01

    The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Neural Network and Response Surface Methodology for Rocket Engine Component Optimization

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar; Papita, Nilay; Shyy, Wei; Tucker, P. Kevin; Griffin, Lisa W.; Haftka, Raphael; Fitz-Coy, Norman; McConnaughey, Helen (Technical Monitor)

    2000-01-01

    The goal of this work is to compare the performance of response surface methodology (RSM) and two types of neural networks (NN) to aid preliminary design of two rocket engine components. A data set of 45 training points and 20 test points obtained from a semi-empirical model based on three design variables is used for a shear coaxial injector element. Data for supersonic turbine design is based on six design variables, 76 training, data and 18 test data obtained from simplified aerodynamic analysis. Several RS and NN are first constructed using the training data. The test data are then employed to select the best RS or NN. Quadratic and cubic response surfaces. radial basis neural network (RBNN) and back-propagation neural network (BPNN) are compared. Two-layered RBNN are generated using two different training algorithms, namely solverbe and solverb. A two layered BPNN is generated with Tan-Sigmoid transfer function. Various issues related to the training of the neural networks are addressed including number of neurons, error goals, spread constants and the accuracy of different models in representing the design space. A search for the optimum design is carried out using a standard gradient-based optimization algorithm over the response surfaces represented by the polynomials and trained neural networks. Usually a cubic polynominal performs better than the quadratic polynomial but exceptions have been noticed. Among the NN choices, the RBNN designed using solverb yields more consistent performance for both engine components considered. The training of RBNN is easier as it requires linear regression. This coupled with the consistency in performance promise the possibility of it being used as an optimization strategy for engineering design problems.

  12. Neural Network-Based Sensor Validation for Turboshaft Engines

    NASA Technical Reports Server (NTRS)

    Moller, James C.; Litt, Jonathan S.; Guo, Ten-Huei

    1998-01-01

    Sensor failure detection, isolation, and accommodation using a neural network approach is described. An auto-associative neural network is configured to perform dimensionality reduction on the sensor measurement vector and provide estimated sensor values. The sensor validation scheme is applied in a simulation of the T700 turboshaft engine in closed loop operation. Performance is evaluated based on the ability to detect faults correctly and maintain stable and responsive engine operation. The set of sensor outputs used for engine control forms the network input vector. Analytical redundancy is verified by training networks of successively smaller bottleneck layer sizes. Training data generation and strategy are discussed. The engine maintained stable behavior in the presence of sensor hard failures. With proper selection of fault determination thresholds, stability was maintained in the presence of sensor soft failures.

  13. Neural-Network Control Of Prosthetic And Robotic Hands

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M.

    1991-01-01

    Electronic neural networks proposed for use in controlling robotic and prosthetic hands and exoskeletal or glovelike electromechanical devices aiding intact but nonfunctional hands. Specific to patient, who activates grasping motion by voice command, by mechanical switch, or by myoelectric impulse. Patient retains higher-level control, while lower-level control provided by neural network analogous to that of miniature brain. During training, patient teaches miniature brain to perform specialized, anthropomorphic movements unique to himself or herself.

  14. Neural network post-processing of grayscale optical correlator

    NASA Technical Reports Server (NTRS)

    Lu, Thomas T; Hughlett, Casey L.; Zhoua, Hanying; Chao, Tien-Hsin; Hanan, Jay C.

    2005-01-01

    In this paper we present the use of a radial basis function neural network (RBFNN) as a post-processor to assist the optical correlator to identify the objects and to reject false alarms. Image plane features near the correlation peaks are extracted and fed to the neural network for analysis. The approach is capable of handling large number of object variations and filter sets. Preliminary experimental results are presented and the performance is analyzed.

  15. Corpus callosum segmentation using deep neural networks with prior information from multi-atlas images

    NASA Astrophysics Data System (ADS)

    Park, Gilsoon; Hong, Jinwoo; Lee, Jong-Min

    2018-03-01

    In human brain, Corpus Callosum (CC) is the largest white matter structure, connecting between right and left hemispheres. Structural features such as shape and size of CC in midsagittal plane are of great significance for analyzing various neurological diseases, for example Alzheimer's disease, autism and epilepsy. For quantitative and qualitative studies of CC in brain MR images, robust segmentation of CC is important. In this paper, we present a novel method for CC segmentation. Our approach is based on deep neural networks and the prior information generated from multi-atlas images. Deep neural networks have recently shown good performance in various image processing field. Convolutional neural networks (CNN) have shown outstanding performance for classification and segmentation in medical image fields. We used convolutional neural networks for CC segmentation. Multi-atlas based segmentation model have been widely used in medical image segmentation because atlas has powerful information about the target structure we want to segment, consisting of MR images and corresponding manual segmentation of the target structure. We combined the prior information, such as location and intensity distribution of target structure (i.e. CC), made from multi-atlas images in CNN training process for more improving training. The CNN with prior information showed better segmentation performance than without.

  16. Feature Extraction of Event-Related Potentials Using Wavelets: An Application to Human Performance Monitoring

    NASA Technical Reports Server (NTRS)

    Trejo, Leonard J.; Shensa, Mark J.; Remington, Roger W. (Technical Monitor)

    1998-01-01

    This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many f ree parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation,-, algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance.

  17. Feature extraction of event-related potentials using wavelets: an application to human performance monitoring

    NASA Technical Reports Server (NTRS)

    Trejo, L. J.; Shensa, M. J.

    1999-01-01

    This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many free parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance. Copyright 1999 Academic Press.

  18. Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition.

    PubMed

    Spoerer, Courtney J; McClure, Patrick; Kriegeskorte, Nikolaus

    2017-01-01

    Feedforward neural networks provide the dominant model of how the brain performs visual object recognition. However, these networks lack the lateral and feedback connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway in the human and non-human primate brain. Here we investigate recurrent convolutional neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining these types of connections yields four architectures (B, BT, BL, and BLT), which we systematically test and compare. We hypothesized that recurrent dynamics might improve recognition performance in the challenging scenario of partial occlusion. We introduce two novel occluded object recognition tasks to test the efficacy of the models, digit clutter (where multiple target digits occlude one another) and digit debris (where target digits are occluded by digit fragments). We find that recurrent neural networks outperform feedforward control models (approximately matched in parametric complexity) at recognizing objects, both in the absence of occlusion and in all occlusion conditions. Recurrent networks were also found to be more robust to the inclusion of additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they are more neurobiologically realistic than their feedforward counterparts; (2) they are better in terms of their ability to recognize objects, especially under challenging conditions. This work shows that computer vision can benefit from using recurrent convolutional architectures and suggests that the ubiquitous recurrent connections in biological brains are essential for task performance.

  19. Neuro-classification of multi-type Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Zhuang, Xin; Engel, Bernard A.; Fernandez, R. N.; Johannsen, Chris J.

    1991-01-01

    Neural networks have been successful in image classification and have shown potential for classifying remotely sensed data. This paper presents classifications of multitype Landsat Thematic Mapper (TM) data using neural networks. The Landsat TM Image for March 23, 1987 with accompanying ground observation data for a study area In Miami County, Indiana, U.S.A. was utilized to assess recognition of crop residues. Principal components and spectral ratio transformations were performed on the TM data. In addition, a layer of the geographic information system (GIS) for the study site was incorporated to generate GIS-enhanced TM data. This paper discusses (1) the performance of neuro-classification on each type of data, (2) how neural networks recognized each type of data as a new image and (3) comparisons of the results for each type of data obtained using neural networks, maximum likelihood, and minimum distance classifiers.

  20. Signal processing method and system for noise removal and signal extraction

    DOEpatents

    Fu, Chi Yung; Petrich, Loren

    2009-04-14

    A signal processing method and system combining smooth level wavelet pre-processing together with artificial neural networks all in the wavelet domain for signal denoising and extraction. Upon receiving a signal corrupted with noise, an n-level decomposition of the signal is performed using a discrete wavelet transform to produce a smooth component and a rough component for each decomposition level. The n.sup.th level smooth component is then inputted into a corresponding neural network pre-trained to filter out noise in that component by pattern recognition in the wavelet domain. Additional rough components, beginning at the highest level, may also be retained and inputted into corresponding neural networks pre-trained to filter out noise in those components also by pattern recognition in the wavelet domain. In any case, an inverse discrete wavelet transform is performed on the combined output from all the neural networks to recover a clean signal back in the time domain.

  1. Using Evolved Fuzzy Neural Networks for Injury Detection from Isokinetic Curves

    NASA Astrophysics Data System (ADS)

    Couchet, Jorge; Font, José María; Manrique, Daniel

    In this paper we propose an evolutionary fuzzy neural networks system for extracting knowledge from a set of time series containing medical information. The series represent isokinetic curves obtained from a group of patients exercising the knee joint on an isokinetic dynamometer. The system has two parts: i) it analyses the time series input in order generate a simplified model of an isokinetic curve; ii) it applies a grammar-guided genetic program to obtain a knowledge base represented by a fuzzy neural network. Once the knowledge base has been generated, the system is able to perform knee injuries detection. The results suggest that evolved fuzzy neural networks perform better than non-evolutionary approaches and have a high accuracy rate during both the training and testing phases. Additionally, they are robust, as the system is able to self-adapt to changes in the problem without human intervention.

  2. A novel word spotting method based on recurrent neural networks.

    PubMed

    Frinken, Volkmar; Fischer, Andreas; Manmatha, R; Bunke, Horst

    2012-02-01

    Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary for a keyword to appear in the training set. The keyword spotting is done using a modification of the CTC Token Passing algorithm in conjunction with a recurrent neural network. We demonstrate that the proposed systems outperform not only a classical dynamic time warping-based approach but also a modern keyword spotting system, based on hidden Markov models. Furthermore, we analyze the performance of the underlying neural networks when using them in a recognition task followed by keyword spotting on the produced transcription. We point out the advantages of keyword spotting when compared to classic text line recognition.

  3. Holographic neural networks versus conventional neural networks: a comparative evaluation for the classification of landmine targets in ground-penetrating radar images

    NASA Astrophysics Data System (ADS)

    Mudigonda, Naga R.; Kacelenga, Ray; Edwards, Mark

    2004-09-01

    This paper evaluates the performance of a holographic neural network in comparison with a conventional feedforward backpropagation neural network for the classification of landmine targets in ground penetrating radar images. The data used in the study was acquired from four different test sites using the landmine detection system developed by General Dynamics Canada Ltd., in collaboration with the Defense Research and Development Canada, Suffield. A set of seven features extracted for each detected alarm is used as stimulus inputs for the networks. The recall responses of the networks are then evaluated against the ground truth to declare true or false detections. The area computed under the receiver operating characteristic curve is used for comparative purposes. With a large dataset comprising of data from multiple sites, both the holographic and conventional networks showed comparable trends in recall accuracies with area values of 0.88 and 0.87, respectively. By using independent validation datasets, the holographic network"s generalization performance was observed to be better (mean area = 0.86) as compared to the conventional network (mean area = 0.82). Despite the widely publicized theoretical advantages of the holographic technology, use of more than the required number of cortical memory elements resulted in an over-fitting phenomenon of the holographic network.

  4. Neural Network Model For Fast Learning And Retrieval

    NASA Astrophysics Data System (ADS)

    Arsenault, Henri H.; Macukow, Bohdan

    1989-05-01

    An approach to learning in a multilayer neural network is presented. The proposed network learns by creating interconnections between the input layer and the intermediate layer. In one of the new storage prescriptions proposed, interconnections are excitatory (positive) only and the weights depend on the stored patterns. In the intermediate layer each mother cell is responsible for one stored pattern. Mutually interconnected neurons in the intermediate layer perform a winner-take-all operation, taking into account correlations between stored vectors. The performance of networks using this interconnection prescription is compared with two previously proposed schemes, one using inhibitory connections at the output and one using all-or-nothing interconnections. The network can be used as a content-addressable memory or as a symbolic substitution system that yields an arbitrarily defined output for any input. The training of a model to perform Boolean logical operations is also described. Computer simulations using the network as an autoassociative content-addressable memory show the model to be efficient. Content-addressable associative memories and neural logic modules can be combined to perform logic operations on highly corrupted data.

  5. Speaker verification using committee neural networks.

    PubMed

    Reddy, Narender P; Buch, Ojas A

    2003-10-01

    Security is a major problem in web based access or remote access to data bases. In the present study, the technique of committee neural networks was developed for speech based speaker verification. Speech data from the designated speaker and several imposters were obtained. Several parameters were extracted in the time and frequency domains, and fed to neural networks. Several neural networks were trained and the five best performing networks were recruited into the committee. The committee decision was based on majority voting of the member networks. The committee opinion was evaluated with further testing data. The committee correctly identified the designated speaker in (50 out of 50) 100% of the cases and rejected imposters in (150 out of 150) 100% of the cases. The committee decision was not unanimous in majority of the cases tested.

  6. Application of neural networks to prediction of advanced composite structures mechanical response and behavior

    NASA Technical Reports Server (NTRS)

    Cios, K. J.; Vary, A.; Berke, L.; Kautz, H. E.

    1992-01-01

    Two types of neural networks were used to evaluate acousto-ultrasonic (AU) data for material characterization and mechanical reponse prediction. The neural networks included a simple feedforward network (backpropagation) and a radial basis functions network. Comparisons of results in terms of accuracy and training time are given. Acousto-ultrasonic (AU) measurements were performed on a series of tensile specimens composed of eight laminated layers of continuous, SiC fiber reinforced Ti-15-3 matrix. The frequency spectrum was dominated by frequencies of longitudinal wave resonance through the thickness of the specimen at the sending transducer. The magnitude of the frequency spectrum of the AU signal was used for calculating a stress-wave factor based on integrating the spectral distribution function and used for comparison with neural networks results.

  7. Application of neural networks with orthogonal activation functions in control of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.

    2016-04-01

    In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.

  8. A neural-visualization IDS for honeynet data.

    PubMed

    Herrero, Álvaro; Zurutuza, Urko; Corchado, Emilio

    2012-04-01

    Neural intelligent systems can provide a visualization of the network traffic for security staff, in order to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of network events are immensely useful for security personnel that monitor network behavior. The system is based on the use of different neural projection and unsupervised methods for the visual inspection of honeypot data, and may be seen as a complementary network security tool that sheds light on internal data structures through visual inspection of the traffic itself. Furthermore, it is intended to facilitate verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS), through the visualization of attack patterns. Empirical verification and comparison of the proposed projection methods are performed in a real domain, where two different case studies are defined and analyzed.

  9. Application of a neural network for reflectance spectrum classification

    NASA Astrophysics Data System (ADS)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  10. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  11. High Performance Implementation of 3D Convolutional Neural Networks on a GPU.

    PubMed

    Lan, Qiang; Wang, Zelong; Wen, Mei; Zhang, Chunyuan; Wang, Yijie

    2017-01-01

    Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version.

  12. High Performance Implementation of 3D Convolutional Neural Networks on a GPU

    PubMed Central

    Wang, Zelong; Wen, Mei; Zhang, Chunyuan; Wang, Yijie

    2017-01-01

    Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version. PMID:29250109

  13. Higher-order neural network software for distortion invariant object recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly

    1991-01-01

    The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.

  14. A novel neural-wavelet approach for process diagnostics and complex system modeling

    NASA Astrophysics Data System (ADS)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  15. Two Unipolar Terminal-Attractor-Based Associative Memories

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Wu, Chwan-Hwa

    1995-01-01

    Two unipolar mathematical models of electronic neural network functioning as terminal-attractor-based associative memory (TABAM) developed. Models comprise sets of equations describing interactions between time-varying inputs and outputs of neural-network memory, regarded as dynamical system. Simplifies design and operation of optoelectronic processor to implement TABAM performing associative recall of images. TABAM concept described in "Optoelectronic Terminal-Attractor-Based Associative Memory" (NPO-18790). Experimental optoelectronic apparatus that performed associative recall of binary images described in "Optoelectronic Inner-Product Neural Associative Memory" (NPO-18491).

  16. Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations

    PubMed Central

    Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus

    2017-01-01

    Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509

  17. Artificial Neural Network approach to develop unique Classification and Raga identification tools for Pattern Recognition in Carnatic Music

    NASA Astrophysics Data System (ADS)

    Srimani, P. K.; Parimala, Y. G.

    2011-12-01

    A unique approach has been developed to study patterns in ragas of Carnatic Classical music based on artificial neural networks. Ragas in Carnatic music which have found their roots in the Vedic period, have grown on a Scientific foundation over thousands of years. However owing to its vastness and complexities it has always been a challenge for scientists and musicologists to give an all encompassing perspective both qualitatively and quantitatively. Cognition, comprehension and perception of ragas in Indian classical music have always been the subject of intensive research, highly intriguing and many facets of these are hitherto not unravelled. This paper is an attempt to view the melakartha ragas with a cognitive perspective using artificial neural network based approach which has given raise to very interesting results. The 72 ragas of the melakartha system were defined through the combination of frequencies occurring in each of them. The data sets were trained using several neural networks. 100% accurate pattern recognition and classification was obtained using linear regression, TLRN, MLP and RBF networks. Performance of the different network topologies, by varying various network parameters, were compared. Linear regression was found to be the best performing network.

  18. Application of neural networks to autonomous rendezvous and docking of space vehicles

    NASA Technical Reports Server (NTRS)

    Dabney, Richard W.

    1992-01-01

    NASA-Marshall has investigated the feasibility of numerous autonomous rendezvous and docking (ARD) candidate techniques. Neural networks have been studied as a viable basis for such systems' implementation, due to their intrinsic representation of such nonlinear functions as those for which analytical solutions are either difficult or nonexistent. Neural networks are also able to recognize and adapt to changes in their dynamic environment, thereby enhancing redundancy and fault tolerance. Outstanding performance has been obtained from ARD azimuth, elevation, and roll networks of this type.

  19. Computational modeling of neural plasticity for self-organization of neural networks.

    PubMed

    Chrol-Cannon, Joseph; Jin, Yaochu

    2014-11-01

    Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Livermore Big Artificial Neural Network Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essen, Brian Van; Jacobs, Sam; Kim, Hyojin

    2016-07-01

    LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.

  1. Prediction of friction factor of pure water flowing inside vertical smooth and microfin tubes by using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.

    2017-02-01

    An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.

  2. Evaluation of Deep Learning Models for Predicting CO2 Flux

    NASA Astrophysics Data System (ADS)

    Halem, M.; Nguyen, P.; Frankel, D.

    2017-12-01

    Artificial neural networks have been employed to calculate surface flux measurements from station data because they are able to fit highly nonlinear relations between input and output variables without knowing the detail relationships between the variables. However, the accuracy in performing neural net estimates of CO2 flux from observations of CO2 and other atmospheric variables is influenced by the architecture of the neural model, the availability, and complexity of interactions between physical variables such as wind, temperature, and indirect variables like latent heat, and sensible heat, etc. We evaluate two deep learning models, feed forward and recurrent neural network models to learn how they each respond to the physical measurements, time dependency of the measurements of CO2 concentration, humidity, pressure, temperature, wind speed etc. for predicting the CO2 flux. In this paper, we focus on a) building neural network models for estimating CO2 flux based on DOE data from tower Atmospheric Radiation Measurement data; b) evaluating the impact of choosing the surface variables and model hyper-parameters on the accuracy and predictions of surface flux; c) assessing the applicability of the neural network models on estimate CO2 flux by using OCO-2 satellite data; d) studying the efficiency of using GPU-acceleration for neural network performance using IBM Power AI deep learning software and packages on IBM Minsky system.

  3. Training the Recurrent neural network by the Fuzzy Min-Max algorithm for fault prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemouri, Ryad; Racoceanu, Daniel; Zerhouni, Noureddine

    2009-03-05

    In this paper, we present a training technique of a Recurrent Radial Basis Function neural network for fault prediction. We use the Fuzzy Min-Max technique to initialize the k-center of the RRBF neural network. The k-means algorithm is then applied to calculate the centers that minimize the mean square error of the prediction task. The performances of the k-means algorithm are then boosted by the Fuzzy Min-Max technique.

  4. Development of the disable software reporting system on the basis of the neural network

    NASA Astrophysics Data System (ADS)

    Gavrylenko, S.; Babenko, O.; Ignatova, E.

    2018-04-01

    The PE structure of malicious and secure software is analyzed, features are highlighted, binary sign vectors are obtained and used as inputs for training the neural network. A software model for detecting malware based on the ART-1 neural network was developed, optimal similarity coefficients were found, and testing was performed. The obtained research results showed the possibility of using the developed system of identifying malicious software in computer systems protection systems

  5. An efficient annealing in Boltzmann machine in Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Kin, Teoh Yeong; Hasan, Suzanawati Abu; Bulot, Norhisam; Ismail, Mohammad Hafiz

    2012-09-01

    This paper proposes and implements Boltzmann machine in Hopfield neural network doing logic programming based on the energy minimization system. The temperature scheduling in Boltzmann machine enhancing the performance of doing logic programming in Hopfield neural network. The finest temperature is determined by observing the ratio of global solution and final hamming distance using computer simulations. The study shows that Boltzmann Machine model is more stable and competent in term of representing and solving difficult combinatory problems.

  6. Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study.

    PubMed

    Antanasijević, Davor; Pocajt, Viktor; Povrenović, Dragan; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2013-12-01

    The aims of this study are to create an artificial neural network (ANN) model using non-specific water quality parameters and to examine the accuracy of three different ANN architectures: General Regression Neural Network (GRNN), Backpropagation Neural Network (BPNN) and Recurrent Neural Network (RNN), for prediction of dissolved oxygen (DO) concentration in the Danube River. The neural network model has been developed using measured data collected from the Bezdan monitoring station on the Danube River. The input variables used for the ANN model are water flow, temperature, pH and electrical conductivity. The model was trained and validated using available data from 2004 to 2008 and tested using the data from 2009. The order of performance for the created architectures based on their comparison with the test data is RNN > GRNN > BPNN. The ANN results are compared with multiple linear regression (MLR) model using multiple statistical indicators. The comparison of the RNN model with the MLR model indicates that the RNN model performs much better, since all predictions of the RNN model for the test data were within the error of less than ± 10 %. In case of the MLR, only 55 % of predictions were within the error of less than ± 10 %. The developed RNN model can be used as a tool for the prediction of DO in river waters.

  7. Neural network submodel as an abstraction tool: relating network performance to combat outcome

    NASA Astrophysics Data System (ADS)

    Jablunovsky, Greg; Dorman, Clark; Yaworsky, Paul S.

    2000-06-01

    Simulation of Command and Control (C2) networks has historically emphasized individual system performance with little architectural context or credible linkage to `bottom- line' measures of combat outcomes. Renewed interest in modeling C2 effects and relationships stems from emerging network intensive operational concepts. This demands improved methods to span the analytical hierarchy between C2 system performance models and theater-level models. Neural network technology offers a modeling approach that can abstract the essential behavior of higher resolution C2 models within a campaign simulation. The proposed methodology uses off-line learning of the relationships between network state and campaign-impacting performance of a complex C2 architecture and then approximation of that performance as a time-varying parameter in an aggregated simulation. Ultimately, this abstraction tool offers an increased fidelity of C2 system simulation that captures dynamic network dependencies within a campaign context.

  8. Two-Stage Approach to Image Classification by Deep Neural Networks

    NASA Astrophysics Data System (ADS)

    Ososkov, Gennady; Goncharov, Pavel

    2018-02-01

    The paper demonstrates the advantages of the deep learning networks over the ordinary neural networks on their comparative applications to image classifying. An autoassociative neural network is used as a standalone autoencoder for prior extraction of the most informative features of the input data for neural networks to be compared further as classifiers. The main efforts to deal with deep learning networks are spent for a quite painstaking work of optimizing the structures of those networks and their components, as activation functions, weights, as well as the procedures of minimizing their loss function to improve their performances and speed up their learning time. It is also shown that the deep autoencoders develop the remarkable ability for denoising images after being specially trained. Convolutional Neural Networks are also used to solve a quite actual problem of protein genetics on the example of the durum wheat classification. Results of our comparative study demonstrate the undoubted advantage of the deep networks, as well as the denoising power of the autoencoders. In our work we use both GPU and cloud services to speed up the calculations.

  9. Parameter diagnostics of phases and phase transition learning by neural networks

    NASA Astrophysics Data System (ADS)

    Suchsland, Philippe; Wessel, Stefan

    2018-05-01

    We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously found to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.

  10. Preliminary results of investigations into the use of artificial neural networks for discriminating gas chromatograph mass spectra of remote samples

    NASA Technical Reports Server (NTRS)

    Geller, Harold A.; Norris, Eugene; Warnock, Archibald, III

    1991-01-01

    Neural networks trained using mass spectra data from the National Institute of Standards and Technology (NIST) are studied. The investigations also included sample data from the gas chromatograph mass spectrometer (GCMS) instrument aboard the Viking Lander, obtained from the National Space Science Data Center. The work performed to data and the preliminary results from the training and testing of neural networks are described. These preliminary results are presented for the purpose of determining the viability of applying artificial neural networks in discriminating mass spectra samples from remote instrumentation such as the Mars Rover Sample Return Mission and the Cassini Probe.

  11. Intelligent multi-spectral IR image segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Thomas; Luong, Andrew; Heim, Stephen; Patel, Maharshi; Chen, Kang; Chao, Tien-Hsin; Chow, Edward; Torres, Gilbert

    2017-05-01

    This article presents a neural network based multi-spectral image segmentation method. A neural network is trained on the selected features of both the objects and background in the longwave (LW) Infrared (IR) images. Multiple iterations of training are performed until the accuracy of the segmentation reaches satisfactory level. The segmentation boundary of the LW image is used to segment the midwave (MW) and shortwave (SW) IR images. A second neural network detects the local discontinuities and refines the accuracy of the local boundaries. This article compares the neural network based segmentation method to the Wavelet-threshold and Grab-Cut methods. Test results have shown increased accuracy and robustness of this segmentation scheme for multi-spectral IR images.

  12. Impulsive synchronization of stochastic reaction-diffusion neural networks with mixed time delays.

    PubMed

    Sheng, Yin; Zeng, Zhigang

    2018-07-01

    This paper discusses impulsive synchronization of stochastic reaction-diffusion neural networks with Dirichlet boundary conditions and hybrid time delays. By virtue of inequality techniques, theories of stochastic analysis, linear matrix inequalities, and the contradiction method, sufficient criteria are proposed to ensure exponential synchronization of the addressed stochastic reaction-diffusion neural networks with mixed time delays via a designed impulsive controller. Compared with some recent studies, the neural network models herein are more general, some restrictions are relaxed, and the obtained conditions enhance and generalize some published ones. Finally, two numerical simulations are performed to substantiate the validity and merits of the developed theoretical analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Method and system for pattern analysis using a coarse-coded neural network

    NASA Technical Reports Server (NTRS)

    Spirkovska, Liljana (Inventor); Reid, Max B. (Inventor)

    1994-01-01

    A method and system for performing pattern analysis with a neural network coarse-coding a pattern to be analyzed so as to form a plurality of sub-patterns collectively defined by data. Each of the sub-patterns comprises sets of pattern data. The neural network includes a plurality fields, each field being associated with one of the sub-patterns so as to receive the sub-pattern data therefrom. Training and testing by the neural network then proceeds in the usual way, with one modification: the transfer function thresholds the value obtained from summing the weighted products of each field over all sub-patterns associated with each pattern being analyzed by the system.

  14. An intelligent control system for failure detection and controller reconfiguration

    NASA Technical Reports Server (NTRS)

    Biswas, Saroj K.

    1994-01-01

    We present an architecture of an intelligent restructurable control system to automatically detect failure of system components, assess its impact on system performance and safety, and reconfigure the controller for performance recovery. Fault detection is based on neural network associative memories and pattern classifiers, and is implemented using a multilayer feedforward network. Details of the fault detection network along with simulation results on health monitoring of a dc motor have been presented. Conceptual developments for fault assessment using an expert system and controller reconfiguration using a neural network are outlined.

  15. Neural network for image compression

    NASA Astrophysics Data System (ADS)

    Panchanathan, Sethuraman; Yeap, Tet H.; Pilache, B.

    1992-09-01

    In this paper, we propose a new scheme for image compression using neural networks. Image data compression deals with minimization of the amount of data required to represent an image while maintaining an acceptable quality. Several image compression techniques have been developed in recent years. We note that the coding performance of these techniques may be improved by employing adaptivity. Over the last few years neural network has emerged as an effective tool for solving a wide range of problems involving adaptivity and learning. A multilayer feed-forward neural network trained using the backward error propagation algorithm is used in many applications. However, this model is not suitable for image compression because of its poor coding performance. Recently, a self-organizing feature map (SOFM) algorithm has been proposed which yields a good coding performance. However, this algorithm requires a long training time because the network starts with random initial weights. In this paper we have used the backward error propagation algorithm (BEP) to quickly obtain the initial weights which are then used to speedup the training time required by the SOFM algorithm. The proposed approach (BEP-SOFM) combines the advantages of the two techniques and, hence, achieves a good coding performance in a shorter training time. Our simulation results demonstrate the potential gains using the proposed technique.

  16. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning

    PubMed Central

    Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation. PMID:26681933

  17. Identification of Phragmites australis and Spartina alterniflora in the Yangtze Estuary between Bayes and BP neural network using hyper-spectral data

    NASA Astrophysics Data System (ADS)

    Liu, Pudong; Zhou, Jiayuan; Shi, Runhe; Zhang, Chao; Liu, Chaoshun; Sun, Zhibin; Gao, Wei

    2016-09-01

    The aim of this work was to identify the coastal wetland plants between Bayes and BP neural network using hyperspectral data in order to optimize the classification method. For this purpose, we chose two dominant plants (invasive S. alterniflora and native P. australis) in the Yangtze Estuary, the leaf spectral reflectance of P. australis and S. alterniflora were measured by ASD field spectral machine. We tested the Bayes method and BP neural network for the identification of these two species. Results showed that three different bands (i.e., 555 nm 711 nm and 920 nm) could be identified as the sensitive bands for the input parameters for the two methods. Bayes method and BP neural network prediction model both performed well (Bayes prediction for 88.57% accuracy, BP neural network model prediction for about 80% accuracy), but Bayes theorem method could give higher accuracy and stability.

  18. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

    PubMed

    Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  19. A neural network for recognizing movement patterns during repetitive self-paced movements of the fingers in opposition to the thumb.

    PubMed

    Van Vaerenbergh, J; Vranken, R; Briers, L; Briers, H

    2001-11-01

    A data glove is a typical input device to control a virtual environment. At the same time it measures movements of wrist and fingers. The purposes of this investigation were to assess the ability of BrainMaker, a neural network, to recognize movement patterns during an opposition task that consisted of repetitive self-paced movements of the fingers in opposition to the thumb. The neural network contained 56 inputs, 3 hidden layers of 20 neurons, and one output. The 5th glove '95 (5DT), a commercial glove especially designed for virtual reality games, was used for finger motion capture. The training of the neural network was successful for recognizing the thumb, the index finger and the ring finger movements during the repetitive self-paced movements and neural network performed well during testing.

  20. Path optimisation of a mobile robot using an artificial neural network controller

    NASA Astrophysics Data System (ADS)

    Singh, M. K.; Parhi, D. R.

    2011-01-01

    This article proposed a novel approach for design of an intelligent controller for an autonomous mobile robot using a multilayer feed forward neural network, which enables the robot to navigate in a real world dynamic environment. The inputs to the proposed neural controller consist of left, right and front obstacle distance with respect to its position and target angle. The output of the neural network is steering angle. A four layer neural network has been designed to solve the path and time optimisation problem of mobile robots, which deals with the cognitive tasks such as learning, adaptation, generalisation and optimisation. A back propagation algorithm is used to train the network. This article also analyses the kinematic design of mobile robots for dynamic movements. The simulation results are compared with experimental results, which are satisfactory and show very good agreement. The training of the neural nets and the control performance analysis has been done in a real experimental setup.

  1. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.

    PubMed

    Cheung, Kit; Schultz, Simon R; Luk, Wayne

    2015-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation.

  2. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors

    PubMed Central

    Cheung, Kit; Schultz, Simon R.; Luk, Wayne

    2016-01-01

    NeuroFlow is a scalable spiking neural network simulation platform for off-the-shelf high performance computing systems using customizable hardware processors such as Field-Programmable Gate Arrays (FPGAs). Unlike multi-core processors and application-specific integrated circuits, the processor architecture of NeuroFlow can be redesigned and reconfigured to suit a particular simulation to deliver optimized performance, such as the degree of parallelism to employ. The compilation process supports using PyNN, a simulator-independent neural network description language, to configure the processor. NeuroFlow supports a number of commonly used current or conductance based neuronal models such as integrate-and-fire and Izhikevich models, and the spike-timing-dependent plasticity (STDP) rule for learning. A 6-FPGA system can simulate a network of up to ~600,000 neurons and can achieve a real-time performance of 400,000 neurons. Using one FPGA, NeuroFlow delivers a speedup of up to 33.6 times the speed of an 8-core processor, or 2.83 times the speed of GPU-based platforms. With high flexibility and throughput, NeuroFlow provides a viable environment for large-scale neural network simulation. PMID:26834542

  3. Forecasting influenza-like illness dynamics for military populations using neural networks and social media

    PubMed Central

    Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D.

    2017-01-01

    This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in “real-time”) and forecasting (predicting the future) ILI dynamics in the 2011 – 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns. (g) Model performance improves with more tweets available per geo-location e.g., the error gets lower and the Pearson score gets higher for locations with more tweets. PMID:29244814

  4. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.

    PubMed

    Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine; Corley, Courtney D

    2017-01-01

    This work is the first to take advantage of recurrent neural networks to predict influenza-like illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data and the state-of-the-art machine learning models, we build and evaluate the predictive power of neural network architectures based on Long Short Term Memory (LSTMs) units capable of nowcasting (predicting in "real-time") and forecasting (predicting the future) ILI dynamics in the 2011 - 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, embeddings, word ngrams, stylistic patterns, and communication behavior using hashtags and mentions. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks using a diverse set of evaluation metrics. Finally, we combine ILI and social media signals to build a joint neural network model for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance, specifically for military rather than general populations in 26 U.S. and six international locations., and analyze how model performance depends on the amount of social media data available per location. Our approach demonstrates several advantages: (a) Neural network architectures that rely on LSTM units trained on social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than stylistic and topic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns. (g) Model performance improves with more tweets available per geo-location e.g., the error gets lower and the Pearson score gets higher for locations with more tweets.

  5. Modelling and Predicting Backstroke Start Performance Using Non-Linear and Linear Models

    PubMed Central

    de Jesus, Karla; Ayala, Helon V. H.; de Jesus, Kelly; Coelho, Leandro dos S.; Medeiros, Alexandre I.A.; Abraldes, José A.; Vaz, Mário A.P.; Fernandes, Ricardo J.; Vilas-Boas, João Paulo

    2018-01-01

    Abstract Our aim was to compare non-linear and linear mathematical model responses for backstroke start performance prediction. Ten swimmers randomly completed eight 15 m backstroke starts with feet over the wedge, four with hands on the highest horizontal and four on the vertical handgrip. Swimmers were videotaped using a dual media camera set-up, with the starts being performed over an instrumented block with four force plates. Artificial neural networks were applied to predict 5 m start time using kinematic and kinetic variables and to determine the accuracy of the mean absolute percentage error. Artificial neural networks predicted start time more robustly than the linear model with respect to changing training to the validation dataset for the vertical handgrip (3.95 ± 1.67 vs. 5.92 ± 3.27%). Artificial neural networks obtained a smaller mean absolute percentage error than the linear model in the horizontal (0.43 ± 0.19 vs. 0.98 ± 0.19%) and vertical handgrip (0.45 ± 0.19 vs. 1.38 ± 0.30%) using all input data. The best artificial neural network validation revealed a smaller mean absolute error than the linear model for the horizontal (0.007 vs. 0.04 s) and vertical handgrip (0.01 vs. 0.03 s). Artificial neural networks should be used for backstroke 5 m start time prediction due to the quite small differences among the elite level performances. PMID:29599857

  6. An Automatic Diagnosis Method of Facial Acne Vulgaris Based on Convolutional Neural Network.

    PubMed

    Shen, Xiaolei; Zhang, Jiachi; Yan, Chenjun; Zhou, Hong

    2018-04-11

    In this paper, we present a new automatic diagnosis method for facial acne vulgaris which is based on convolutional neural networks (CNNs). To overcome the shortcomings of previous methods which were the inability to classify enough types of acne vulgaris. The core of our method is to extract features of images based on CNNs and achieve classification by classifier. A binary-classifier of skin-and-non-skin is used to detect skin area and a seven-classifier is used to achieve the classification task of facial acne vulgaris and healthy skin. In the experiments, we compare the effectiveness of our CNN and the VGG16 neural network which is pre-trained on the ImageNet data set. We use a ROC curve to evaluate the performance of binary-classifier and use a normalized confusion matrix to evaluate the performance of seven-classifier. The results of our experiments show that the pre-trained VGG16 neural network is effective in extracting features from facial acne vulgaris images. And the features are very useful for the follow-up classifiers. Finally, we try applying the classifiers both based on the pre-trained VGG16 neural network to assist doctors in facial acne vulgaris diagnosis.

  7. Convolutional neural networks for event-related potential detection: impact of the architecture.

    PubMed

    Cecotti, H

    2017-07-01

    The detection of brain responses at the single-trial level in the electroencephalogram (EEG) such as event-related potentials (ERPs) is a difficult problem that requires different processing steps to extract relevant discriminant features. While most of the signal and classification techniques for the detection of brain responses are based on linear algebra, different pattern recognition techniques such as convolutional neural network (CNN), as a type of deep learning technique, have shown some interests as they are able to process the signal after limited pre-processing. In this study, we propose to investigate the performance of CNNs in relation of their architecture and in relation to how they are evaluated: a single system for each subject, or a system for all the subjects. More particularly, we want to address the change of performance that can be observed between specifying a neural network to a subject, or by considering a neural network for a group of subjects, taking advantage of a larger number of trials from different subjects. The results support the conclusion that a convolutional neural network trained on different subjects can lead to an AUC above 0.9 by using an appropriate architecture using spatial filtering and shift invariant layers.

  8. Learning in stochastic neural networks for constraint satisfaction problems

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Adorf, Hans-Martin

    1989-01-01

    Researchers describe a newly-developed artificial neural network algorithm for solving constraint satisfaction problems (CSPs) which includes a learning component that can significantly improve the performance of the network from run to run. The network, referred to as the Guarded Discrete Stochastic (GDS) network, is based on the discrete Hopfield network but differs from it primarily in that auxiliary networks (guards) are asymmetrically coupled to the main network to enforce certain types of constraints. Although the presence of asymmetric connections implies that the network may not converge, it was found that, for certain classes of problems, the network often quickly converges to find satisfactory solutions when they exist. The network can run efficiently on serial machines and can find solutions to very large problems (e.g., N-queens for N as large as 1024). One advantage of the network architecture is that network connection strengths need not be instantiated when the network is established: they are needed only when a participating neural element transitions from off to on. They have exploited this feature to devise a learning algorithm, based on consistency techniques for discrete CSPs, that updates the network biases and connection strengths and thus improves the network performance.

  9. Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Innocenti, M.; Napolitano, M.

    2003-01-01

    Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.

  10. VLSI synthesis of digital application specific neural networks

    NASA Technical Reports Server (NTRS)

    Beagles, Grant; Winters, Kel

    1991-01-01

    Neural networks tend to fall into two general categories: (1) software simulations, or (2) custom hardware that must be trained. The scope of this project is the merger of these two classifications into a system whereby a software model of a network is trained to perform a specific task and the results used to synthesize a standard cell realization of the network using automated tools.

  11. A neural network controller for automated composite manufacturing

    NASA Technical Reports Server (NTRS)

    Lichtenwalner, Peter F.

    1994-01-01

    At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.

  12. CNN: a speaker recognition system using a cascaded neural network.

    PubMed

    Zaki, M; Ghalwash, A; Elkouny, A A

    1996-05-01

    The main emphasis of this paper is to present an approach for combining supervised and unsupervised neural network models to the issue of speaker recognition. To enhance the overall operation and performance of recognition, the proposed strategy integrates the two techniques, forming one global model called the cascaded model. We first present a simple conventional technique based on the distance measured between a test vector and a reference vector for different speakers in the population. This particular distance metric has the property of weighting down the components in those directions along which the intraspeaker variance is large. The reason for presenting this method is to clarify the discrepancy in performance between the conventional and neural network approach. We then introduce the idea of using unsupervised learning technique, presented by the winner-take-all model, as a means of recognition. Due to several tests that have been conducted and in order to enhance the performance of this model, dealing with noisy patterns, we have preceded it with a supervised learning model--the pattern association model--which acts as a filtration stage. This work includes both the design and implementation of both conventional and neural network approaches to recognize the speakers templates--which are introduced to the system via a voice master card and preprocessed before extracting the features used in the recognition. The conclusion indicates that the system performance in case of neural network is better than that of the conventional one, achieving a smooth degradation in respect of noisy patterns, and higher performance in respect of noise-free patterns.

  13. New recursive-least-squares algorithms for nonlinear active control of sound and vibration using neural networks.

    PubMed

    Bouchard, M

    2001-01-01

    In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.

  14. Parameter estimation in spiking neural networks: a reverse-engineering approach.

    PubMed

    Rostro-Gonzalez, H; Cessac, B; Vieville, T

    2012-04-01

    This paper presents a reverse engineering approach for parameter estimation in spiking neural networks (SNNs). We consider the deterministic evolution of a time-discretized network with spiking neurons, where synaptic transmission has delays, modeled as a neural network of the generalized integrate and fire type. Our approach aims at by-passing the fact that the parameter estimation in SNN results in a non-deterministic polynomial-time hard problem when delays are to be considered. Here, this assumption has been reformulated as a linear programming (LP) problem in order to perform the solution in a polynomial time. Besides, the LP problem formulation makes the fact that the reverse engineering of a neural network can be performed from the observation of the spike times explicit. Furthermore, we point out how the LP adjustment mechanism is local to each neuron and has the same structure as a 'Hebbian' rule. Finally, we present a generalization of this approach to the design of input-output (I/O) transformations as a practical method to 'program' a spiking network, i.e. find a set of parameters allowing us to exactly reproduce the network output, given an input. Numerical verifications and illustrations are provided.

  15. Neural and Neural Gray-Box Modeling for Entry Temperature Prediction in a Hot Strip Mill

    NASA Astrophysics Data System (ADS)

    Barrios, José Angel; Torres-Alvarado, Miguel; Cavazos, Alberto; Leduc, Luis

    2011-10-01

    In hot strip mills, initial controller set points have to be calculated before the steel bar enters the mill. Calculations rely on the good knowledge of rolling variables. Measurements are available only after the bar has entered the mill, and therefore they have to be estimated. Estimation of process variables, particularly that of temperature, is of crucial importance for the bar front section to fulfill quality requirements, and the same must be performed in the shortest possible time to preserve heat. Currently, temperature estimation is performed by physical modeling; however, it is highly affected by measurement uncertainties, variations in the incoming bar conditions, and final product changes. In order to overcome these problems, artificial intelligence techniques such as artificial neural networks and fuzzy logic have been proposed. In this article, neural network-based systems, including neural-based Gray-Box models, are applied to estimate scale breaker entry temperature, given its importance, and their performance is compared to that of the physical model used in plant. Several neural systems and several neural-based Gray-Box models are designed and tested with real data. Taking advantage of the flexibility of neural networks for input incorporation, several factors which are believed to have influence on the process are also tested. The systems proposed in this study were proven to have better performance indexes and hence better prediction capabilities than the physical models currently used in plant.

  16. Identification and control of plasma vertical position using neural network in Damavand tokamak.

    PubMed

    Rasouli, H; Rasouli, C; Koohi, A

    2013-02-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  17. Signature neural networks: definition and application to multidimensional sorting problems.

    PubMed

    Latorre, Roberto; de Borja Rodriguez, Francisco; Varona, Pablo

    2011-01-01

    In this paper we present a self-organizing neural network paradigm that is able to discriminate information locally using a strategy for information coding and processing inspired in recent findings in living neural systems. The proposed neural network uses: 1) neural signatures to identify each unit in the network; 2) local discrimination of input information during the processing; and 3) a multicoding mechanism for information propagation regarding the who and the what of the information. The local discrimination implies a distinct processing as a function of the neural signature recognition and a local transient memory. In the context of artificial neural networks none of these mechanisms has been analyzed in detail, and our goal is to demonstrate that they can be used to efficiently solve some specific problems. To illustrate the proposed paradigm, we apply it to the problem of multidimensional sorting, which can take advantage of the local information discrimination. In particular, we compare the results of this new approach with traditional methods to solve jigsaw puzzles and we analyze the situations where the new paradigm improves the performance.

  18. Evolutionary neural networks for anomaly detection based on the behavior of a program.

    PubMed

    Han, Sang-Jun; Cho, Sung-Bae

    2006-06-01

    The process of learning the behavior of a given program by using machine-learning techniques (based on system-call audit data) is effective to detect intrusions. Rule learning, neural networks, statistics, and hidden Markov models (HMMs) are some of the kinds of representative methods for intrusion detection. Among them, neural networks are known for good performance in learning system-call sequences. In order to apply this knowledge to real-world problems successfully, it is important to determine the structures and weights of these call sequences. However, finding the appropriate structures requires very long time periods because there are no suitable analytical solutions. In this paper, a novel intrusion-detection technique based on evolutionary neural networks (ENNs) is proposed. One advantage of using ENNs is that it takes less time to obtain superior neural networks than when using conventional approaches. This is because they discover the structures and weights of the neural networks simultaneously. Experimental results with the 1999 Defense Advanced Research Projects Agency (DARPA) Intrusion Detection Evaluation (IDEVAL) data confirm that ENNs are promising tools for intrusion detection.

  19. Detection of Oil Chestnuts Infected by Blue Mold Using Near-Infrared Hyperspectral Imaging Combined with Artificial Neural Networks.

    PubMed

    Feng, Lei; Zhu, Susu; Lin, Fucheng; Su, Zhenzhu; Yuan, Kangpei; Zhao, Yiying; He, Yong; Zhang, Chu

    2018-06-15

    Mildew damage is a major reason for chestnut poor quality and yield loss. In this study, a near-infrared hyperspectral imaging system in the 874⁻1734 nm spectral range was applied to detect the mildew damage to chestnuts caused by blue mold. Principal component analysis (PCA) scored images were firstly employed to qualitatively and intuitively distinguish moldy chestnuts from healthy chestnuts. Spectral data were extracted from the hyperspectral images. A successive projections algorithm (SPA) was used to select 12 optimal wavelengths. Artificial neural networks, including back propagation neural network (BPNN), evolutionary neural network (ENN), extreme learning machine (ELM), general regression neural network (GRNN) and radial basis neural network (RBNN) were used to build models using the full spectra and optimal wavelengths to distinguish moldy chestnuts. BPNN and ENN models using full spectra and optimal wavelengths obtained satisfactory performances, with classification accuracies all surpassing 99%. The results indicate the potential for the rapid and non-destructive detection of moldy chestnuts by hyperspectral imaging, which would help to develop online detection system for healthy and blue mold infected chestnuts.

  20. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.

    PubMed

    Winkler, David A; Le, Tu C

    2017-01-01

    Neural networks have generated valuable Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) models for a wide variety of small molecules and materials properties. They have grown in sophistication and many of their initial problems have been overcome by modern mathematical techniques. QSAR studies have almost always used so-called "shallow" neural networks in which there is a single hidden layer between the input and output layers. Recently, a new and potentially paradigm-shifting type of neural network based on Deep Learning has appeared. Deep learning methods have generated impressive improvements in image and voice recognition, and are now being applied to QSAR and QSAR modelling. This paper describes the differences in approach between deep and shallow neural networks, compares their abilities to predict the properties of test sets for 15 large drug data sets (the kaggle set), discusses the results in terms of the Universal Approximation theorem for neural networks, and describes how DNN may ameliorate or remove troublesome "activity cliffs" in QSAR data sets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Neural network modeling of drying of rice in BAU-STR dryer

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ashraful; Saha, Chayan Kumer; Alam, Md. Monjurul; Ashraf, Md. Ali; Bala, Bilash Kanti; Harvey, Jagger

    2018-05-01

    The experimental performance and artificial neural network modeling of rice drying in BAU-STR dryer is presented in this paper. The dryer consists of a biomass stove as a heat source, a perforated inner bin and a perforated outer bin with annular space for grains, and a blower (1 hp) to supply heated air. The dryer capacity was 500 kg of freshly harvested rice. Twenty experimental runs were conducted to investigate the experimental performance of the dryer for drying of rice. An independent multilayer neural network approach was used to predict the performance of the BAU-STR dryer for drying of rice. Ten sets of experimental data were used for training using back propagation algorithm and another ten sets of data were used for testing the artificial neural network model. The prediction of the performance of the dryer was found to be excellent after it was adequately trained. The statistical analysis showed that the errors (MSE and RMSE) were within and acceptable range of ±5% with a coefficient of determination (R2) of 99%. The model can be used to predict the potential of the dryer for different locations, and can also be used in a predictive optimal control algorithm.

  2. Drug drug interaction extraction from the literature using a recursive neural network

    PubMed Central

    Lim, Sangrak; Lee, Kyubum

    2018-01-01

    Detecting drug-drug interactions (DDI) is important because information on DDIs can help prevent adverse effects from drug combinations. Since there are many new DDI-related papers published in the biomedical domain, manually extracting DDI information from the literature is a laborious task. However, text mining can be used to find DDIs in the biomedical literature. Among the recently developed neural networks, we use a Recursive Neural Network to improve the performance of DDI extraction. Our recursive neural network model uses a position feature, a subtree containment feature, and an ensemble method to improve the performance of DDI extraction. Compared with the state-of-the-art models, the DDI detection and type classifiers of our model performed 4.4% and 2.8% better, respectively, on the DDIExtraction Challenge’13 test data. We also validated our model on the PK DDI corpus that consists of two types of DDIs data: in vivo DDI and in vitro DDI. Compared with the existing model, our detection classifier performed 2.3% and 6.7% better on in vivo and in vitro data respectively. The results of our validation demonstrate that our model can automatically extract DDIs better than existing models. PMID:29373599

  3. Standard cell-based implementation of a digital optoelectronic neural-network hardware.

    PubMed

    Maier, K D; Beckstein, C; Blickhan, R; Erhard, W

    2001-03-10

    A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.

  4. Applications of self-organizing neural networks in virtual screening and diversity selection.

    PubMed

    Selzer, Paul; Ertl, Peter

    2006-01-01

    Artificial neural networks provide a powerful technique for the analysis and modeling of nonlinear relationships between molecular structures and pharmacological activity. Many network types, including Kohonen and counterpropagation, also provide an intuitive method for the visual assessment of correspondence between the input and output data. This work shows how a combination of neural networks and radial distribution function molecular descriptors can be applied in various areas of industrial pharmaceutical research. These applications include the prediction of biological activity, the selection of screening candidates (cherry picking), and the extraction of representative subsets from large compound collections such as combinatorial libraries. The methods described have also been implemented as an easy-to-use Web tool, allowing chemists to perform interactive neural network experiments on the Novartis intranet.

  5. Application of Neural Networks for classification of Patau, Edwards, Down, Turner and Klinefelter Syndrome based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics.

    PubMed

    Catic, Aida; Gurbeta, Lejla; Kurtovic-Kozaric, Amina; Mehmedbasic, Senad; Badnjevic, Almir

    2018-02-13

    The usage of Artificial Neural Networks (ANNs) for genome-enabled classifications and establishing genome-phenotype correlations have been investigated more extensively over the past few years. The reason for this is that ANNs are good approximates of complex functions, so classification can be performed without the need for explicitly defined input-output model. This engineering tool can be applied for optimization of existing methods for disease/syndrome classification. Cytogenetic and molecular analyses are the most frequent tests used in prenatal diagnostic for the early detection of Turner, Klinefelter, Patau, Edwards and Down syndrome. These procedures can be lengthy, repetitive; and often employ invasive techniques so a robust automated method for classifying and reporting prenatal diagnostics would greatly help the clinicians with their routine work. The database consisted of data collected from 2500 pregnant woman that came to the Institute of Gynecology, Infertility and Perinatology "Mehmedbasic" for routine antenatal care between January 2000 and December 2016. During first trimester all women were subject to screening test where values of maternal serum pregnancy-associated plasma protein A (PAPP-A) and free beta human chorionic gonadotropin (β-hCG) were measured. Also, fetal nuchal translucency thickness and the presence or absence of the nasal bone was observed using ultrasound. The architectures of linear feedforward and feedback neural networks were investigated for various training data distributions and number of neurons in hidden layer. Feedback neural network architecture out performed feedforward neural network architecture in predictive ability for all five aneuploidy prenatal syndrome classes. Feedforward neural network with 15 neurons in hidden layer achieved classification sensitivity of 92.00%. Classification sensitivity of feedback (Elman's) neural network was 99.00%. Average accuracy of feedforward neural network was 89.6% and for feedback was 98.8%. The results presented in this paper prove that an expert diagnostic system based on neural networks can be efficiently used for classification of five aneuploidy syndromes, covered with this study, based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics. Developed Expert System proved to be simple, robust, and powerful in properly classifying prenatal aneuploidy syndromes.

  6. Forecasting PM10 in metropolitan areas: Efficacy of neural networks.

    PubMed

    Fernando, H J S; Mammarella, M C; Grandoni, G; Fedele, P; Di Marco, R; Dimitrova, R; Hyde, P

    2012-04-01

    Deterministic photochemical air quality models are commonly used for regulatory management and planning of urban airsheds. These models are complex, computer intensive, and hence are prohibitively expensive for routine air quality predictions. Stochastic methods are becoming increasingly popular as an alternative, which relegate decision making to artificial intelligence based on Neural Networks that are made of artificial neurons or 'nodes' capable of 'learning through training' via historic data. A Neural Network was used to predict particulate matter concentration at a regulatory monitoring site in Phoenix, Arizona; its development, efficacy as a predictive tool and performance vis-à-vis a commonly used regulatory photochemical model are described in this paper. It is concluded that Neural Networks are much easier, quicker and economical to implement without compromising the accuracy of predictions. Neural Networks can be used to develop rapid air quality warning systems based on a network of automated monitoring stations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Computing single step operators of logic programming in radial basis function neural networks

    NASA Astrophysics Data System (ADS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  8. Prediction of dissolved oxygen in the Mediterranean Sea along Gaza, Palestine - an artificial neural network approach.

    PubMed

    Zaqoot, Hossam Adel; Ansari, Abdul Khalique; Unar, Mukhtiar Ali; Khan, Shaukat Hyat

    2009-01-01

    Artificial Neural Networks (ANNs) are flexible tools which are being used increasingly to predict and forecast water resources variables. The human activities in areas surrounding enclosed and semi-enclosed seas such as the Mediterranean Sea always produce in the long term a strong environmental impact in the form of coastal and marine degradation. The presence of dissolved oxygen is essential for the survival of most organisms in the water bodies. This paper is concerned with the use of ANNs - Multilayer Perceptron (MLP) and Radial Basis Function neural networks for predicting the next fortnight's dissolved oxygen concentrations in the Mediterranean Sea water along Gaza. MLP and Radial Basis Function (RBF) neural networks are trained and developed with reference to five important oceanographic variables including water temperature, wind velocity, turbidity, pH and conductivity. These variables are considered as inputs of the network. The data sets used in this study consist of four years and collected from nine locations along Gaza coast. The network performance has been tested with different data sets and the results show satisfactory performance. Prediction results prove that neural network approach has good adaptability and extensive applicability for modelling the dissolved oxygen in the Mediterranean Sea along Gaza. We hope that the established model will help in assisting the local authorities in developing plans and policies to reduce the pollution along Gaza coastal waters to acceptable levels.

  9. A solution to neural field equations by a recurrent neural network method

    NASA Astrophysics Data System (ADS)

    Alharbi, Abir

    2012-09-01

    Neural field equations (NFE) are used to model the activity of neurons in the brain, it is introduced from a single neuron 'integrate-and-fire model' starting point. The neural continuum is spatially discretized for numerical studies, and the governing equations are modeled as a system of ordinary differential equations. In this article the recurrent neural network approach is used to solve this system of ODEs. This consists of a technique developed by combining the standard numerical method of finite-differences with the Hopfield neural network. The architecture of the net, energy function, updating equations, and algorithms are developed for the NFE model. A Hopfield Neural Network is then designed to minimize the energy function modeling the NFE. Results obtained from the Hopfield-finite-differences net show excellent performance in terms of accuracy and speed. The parallelism nature of the Hopfield approaches may make them easier to implement on fast parallel computers and give them the speed advantage over the traditional methods.

  10. Variable Neural Adaptive Robust Control: A Switched System Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.

    2015-05-01

    Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewisemore » quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.« less

  11. Classification of multispectral image data by the Binary Diamond neural network and by nonparametric, pixel-by-pixel methods

    NASA Technical Reports Server (NTRS)

    Salu, Yehuda; Tilton, James

    1993-01-01

    The classification of multispectral image data obtained from satellites has become an important tool for generating ground cover maps. This study deals with the application of nonparametric pixel-by-pixel classification methods in the classification of pixels, based on their multispectral data. A new neural network, the Binary Diamond, is introduced, and its performance is compared with a nearest neighbor algorithm and a back-propagation network. The Binary Diamond is a multilayer, feed-forward neural network, which learns from examples in unsupervised, 'one-shot' mode. It recruits its neurons according to the actual training set, as it learns. The comparisons of the algorithms were done by using a realistic data base, consisting of approximately 90,000 Landsat 4 Thematic Mapper pixels. The Binary Diamond and the nearest neighbor performances were close, with some advantages to the Binary Diamond. The performance of the back-propagation network lagged behind. An efficient nearest neighbor algorithm, the binned nearest neighbor, is described. Ways for improving the performances, such as merging categories, and analyzing nonboundary pixels, are addressed and evaluated.

  12. Reducing weight precision of convolutional neural networks towards large-scale on-chip image recognition

    NASA Astrophysics Data System (ADS)

    Ji, Zhengping; Ovsiannikov, Ilia; Wang, Yibing; Shi, Lilong; Zhang, Qiang

    2015-05-01

    In this paper, we develop a server-client quantization scheme to reduce bit resolution of deep learning architecture, i.e., Convolutional Neural Networks, for image recognition tasks. Low bit resolution is an important factor in bringing the deep learning neural network into hardware implementation, which directly determines the cost and power consumption. We aim to reduce the bit resolution of the network without sacrificing its performance. To this end, we design a new quantization algorithm called supervised iterative quantization to reduce the bit resolution of learned network weights. In the training stage, the supervised iterative quantization is conducted via two steps on server - apply k-means based adaptive quantization on learned network weights and retrain the network based on quantized weights. These two steps are alternated until the convergence criterion is met. In this testing stage, the network configuration and low-bit weights are loaded to the client hardware device to recognize coming input in real time, where optimized but expensive quantization becomes infeasible. Considering this, we adopt a uniform quantization for the inputs and internal network responses (called feature maps) to maintain low on-chip expenses. The Convolutional Neural Network with reduced weight and input/response precision is demonstrated in recognizing two types of images: one is hand-written digit images and the other is real-life images in office scenarios. Both results show that the new network is able to achieve the performance of the neural network with full bit resolution, even though in the new network the bit resolution of both weight and input are significantly reduced, e.g., from 64 bits to 4-5 bits.

  13. Hexacopter trajectory control using a neural network

    NASA Astrophysics Data System (ADS)

    Artale, V.; Collotta, M.; Pau, G.; Ricciardello, A.

    2013-10-01

    The modern flight control systems are complex due to their non-linear nature. In fact, modern aerospace vehicles are expected to have non-conventional flight envelopes and, then, they must guarantee a high level of robustness and adaptability in order to operate in uncertain environments. Neural Networks (NN), with real-time learning capability, for flight control can be used in applications with manned or unmanned aerial vehicles. Indeed, using proven lower level control algorithms with adaptive elements that exhibit long term learning could help in achieving better adaptation performance while performing aggressive maneuvers. In this paper we show a mathematical modeling and a Neural Network for a hexacopter dynamics in order to develop proper methods for stabilization and trajectory control.

  14. Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.

    PubMed

    Aftab, Muhammad Saleheen; Shafiq, Muhammad

    2015-11-01

    This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Sign Language Recognition System using Neural Network for Digital Hardware Implementation

    NASA Astrophysics Data System (ADS)

    Vargas, Lorena P.; Barba, Leiner; Torres, C. O.; Mattos, L.

    2011-01-01

    This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.

  16. Retrieval of cloud properties from POLDER-3 data using the neural network approach

    NASA Astrophysics Data System (ADS)

    Di Noia, A.; Hasekamp, O. P.

    2017-12-01

    Satellite multi-angle spectroplarimetry is a useful technique for observing the microphysical properties of clouds and aerosols. Most of the algorithms for the retrieval of cloud and aerosol properties from satellite measurements require multiple calls to radiative transfer models, which make the retrieval computationally expensive. A traditional alternative to these schemes is represented by lookup-tables (LUTs), where the retrieval is performed by choosing, within a predefined database of combinations of clouds or aerosol properties, the combination that best fits the measurements. LUT retrievals are quicker than full-physics, iterative retrievals, but their accuracy is limited by the number of entries stored in the LUT. Another retrieval method capable of producing very quick retrievals without a big sacrifice in accuracy is the neural network method. Neural network methods are routinely applied to several types of satellite measurements, but their application to multi-angle spectropolarimetric data is still in its early stage, because of the difficulty of accounting for the angular variability of the measurements in the training process. We have recently developed a neural network scheme for the retrieval of cloud properties from POLDER-3 data. The neural network retrieval is trained using synthetic measurements performed for realistic combinations of cloud properties and measurement angles, and is able to process an entire orbit in about 20 seconds. Comparisons of the retrieved cloud properties with Moderate Resolution Imaging Spectroradiometer (MODIS) gridded products during one year show encouraging retrieval performance for cloud optical thickness and effective radius. A discussion of the setup of the neural network and of the validation results will be the main topic of our presentation.

  17. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    PubMed Central

    Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450

  18. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    PubMed

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  19. A novel method for 3D measurement of RFID multi-tag network based on matching vision and wavelet

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiao; Yu, Xiaolei; Zhao, Zhimin; Wang, Donghua; Zhang, Wenjie; Liu, Zhenlu; Lu, Dongsheng; Dong, Dingbang

    2018-07-01

    In the field of radio frequency identification (RFID), the three-dimensional (3D) distribution of RFID multi-tag networks has a significant impact on their reading performance. At the same time, in order to realize the anti-collision of RFID multi-tag networks in practical engineering applications, the 3D distribution of RFID multi-tag networks must be measured. In this paper, a novel method for the 3D measurement of RFID multi-tag networks is proposed. A dual-CCD system (vertical and horizontal cameras) is used to obtain images of RFID multi-tag networks from different angles. Then, the wavelet threshold denoising method is used to remove noise in the obtained images. The template matching method is used to determine the two-dimensional coordinates and vertical coordinate of each tag. The 3D coordinates of each tag are obtained subsequently. Finally, a model of the nonlinear relation between the 3D coordinate distribution of the RFID multi-tag network and the corresponding reading distance is established using the wavelet neural network. The experiment results show that the average prediction relative error is 0.71% and the time cost is 2.17 s. The values of the average prediction relative error and time cost are smaller than those of the particle swarm optimization neural network and genetic algorithm–back propagation neural network. The time cost of the wavelet neural network is about 1% of that of the other two methods. The method proposed in this paper has a smaller relative error. The proposed method can improve the real-time performance of RFID multi-tag networks and the overall dynamic performance of multi-tag networks.

  20. Automated detection of videotaped neonatal seizures of epileptic origin.

    PubMed

    Karayiannis, Nicolaos B; Xiong, Yaohua; Tao, Guozhi; Frost, James D; Wise, Merrill S; Hrachovy, Richard A; Mizrahi, Eli M

    2006-06-01

    This study aimed at the development of a seizure-detection system by training neural networks with quantitative motion information extracted from short video segments of neonatal seizures of the myoclonic and focal clonic types and random infant movements. The motion of the infants' body parts was quantified by temporal motion-strength signals extracted from video segments by motion-segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by clustering the motion parameters obtained by fitting an affine model to the pixel velocities. The motion of the infants' body parts also was quantified by temporal motion-trajectory signals extracted from video recordings by robust motion trackers based on block-motion models. These motion trackers were developed to adjust autonomously to illumination and contrast changes that may occur during the video-frame sequence. Video segments were represented by quantitative features obtained by analyzing motion-strength and motion-trajectory signals in both the time and frequency domains. Seizure recognition was performed by conventional feed-forward neural networks, quantum neural networks, and cosine radial basis function neural networks, which were trained to detect neonatal seizures of the myoclonic and focal clonic types and to distinguish them from random infant movements. The computational tools and procedures developed for automated seizure detection were evaluated on a set of 240 video segments of 54 patients exhibiting myoclonic seizures (80 segments), focal clonic seizures (80 segments), and random infant movements (80 segments). Regardless of the decision scheme used for interpreting the responses of the trained neural networks, all the neural network models exhibited sensitivity and specificity>90%. For one of the decision schemes proposed for interpreting the responses of the trained neural networks, the majority of the trained neural-network models exhibited sensitivity>90% and specificity>95%. In particular, cosine radial basis function neural networks achieved the performance targets of this phase of the project (i.e., sensitivity>95% and specificity>95%). The best among the motion segmentation and tracking methods developed in this study produced quantitative features that constitute a reliable basis for detecting neonatal seizures. The performance targets of this phase of the project were achieved by combining the quantitative features obtained by analyzing motion-strength signals with those produced by analyzing motion-trajectory signals. The computational procedures and tools developed in this study to perform off-line analysis of short video segments will be used in the next phase of this project, which involves the integration of these procedures and tools into a system that can process and analyze long video recordings of infants monitored for seizures in real time.

  1. Spiking neural network simulation: memory-optimal synaptic event scheduling.

    PubMed

    Stewart, Robert D; Gurney, Kevin N

    2011-06-01

    Spiking neural network simulations incorporating variable transmission delays require synaptic events to be scheduled prior to delivery. Conventional methods have memory requirements that scale with the total number of synapses in a network. We introduce novel scheduling algorithms for both discrete and continuous event delivery, where the memory requirement scales instead with the number of neurons. Superior algorithmic performance is demonstrated using large-scale, benchmarking network simulations.

  2. An analysis of image storage systems for scalable training of deep neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seung-Hwan; Young, Steven R; Patton, Robert M

    This study presents a principled empirical evaluation of image storage systems for training deep neural networks. We employ the Caffe deep learning framework to train neural network models for three different data sets, MNIST, CIFAR-10, and ImageNet. While training the models, we evaluate five different options to retrieve training image data: (1) PNG-formatted image files on local file system; (2) pushing pixel arrays from image files into a single HDF5 file on local file system; (3) in-memory arrays to hold the pixel arrays in Python and C++; (4) loading the training data into LevelDB, a log-structured merge tree based key-valuemore » storage; and (5) loading the training data into LMDB, a B+tree based key-value storage. The experimental results quantitatively highlight the disadvantage of using normal image files on local file systems to train deep neural networks and demonstrate reliable performance with key-value storage based storage systems. When training a model on the ImageNet dataset, the image file option was more than 17 times slower than the key-value storage option. Along with measurements on training time, this study provides in-depth analysis on the cause of performance advantages/disadvantages of each back-end to train deep neural networks. We envision the provided measurements and analysis will shed light on the optimal way to architect systems for training neural networks in a scalable manner.« less

  3. Detecting atrial fibrillation by deep convolutional neural networks.

    PubMed

    Xia, Yong; Wulan, Naren; Wang, Kuanquan; Zhang, Henggui

    2018-02-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia. The incidence of AF increases with age, causing high risks of stroke and increased morbidity and mortality. Efficient and accurate diagnosis of AF based on the ECG is valuable in clinical settings and remains challenging. In this paper, we proposed a novel method with high reliability and accuracy for AF detection via deep learning. The short-term Fourier transform (STFT) and stationary wavelet transform (SWT) were used to analyze ECG segments to obtain two-dimensional (2-D) matrix input suitable for deep convolutional neural networks. Then, two different deep convolutional neural network models corresponding to STFT output and SWT output were developed. Our new method did not require detection of P or R peaks, nor feature designs for classification, in contrast to existing algorithms. Finally, the performances of the two models were evaluated and compared with those of existing algorithms. Our proposed method demonstrated favorable performances on ECG segments as short as 5 s. The deep convolutional neural network using input generated by STFT, presented a sensitivity of 98.34%, specificity of 98.24% and accuracy of 98.29%. For the deep convolutional neural network using input generated by SWT, a sensitivity of 98.79%, specificity of 97.87% and accuracy of 98.63% was achieved. The proposed method using deep convolutional neural networks shows high sensitivity, specificity and accuracy, and, therefore, is a valuable tool for AF detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Establishing an index arbitrage model by applying neural networks method--a case study of Nikkei 225 index.

    PubMed

    Chen, A P; Chianglin, C Y; Chung, H P

    2001-10-01

    This paper applies the neural network method to establish an index arbitrage model and compares the arbitrage performances to that from traditional cost of carry arbitrage model. From the empirical results of the Nikkei 225 stock index market, following conclusions can be stated: (1) The basis will get enlarged for a time period, more profitability may be obtained from the trend. (2) If the neural network is applied within the index arbitrage model, twofold of return would be obtained than traditional arbitrage model can do. (3) If the T_basis has volatile trend, the neural network arbitrage model will ignore the peak. Although arbitrageur would lose the chance to get profit, they may reduce the market impact risk.

  5. Airplane detection in remote sensing images using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Ouyang, Chao; Chen, Zhong; Zhang, Feng; Zhang, Yifei

    2018-03-01

    Airplane detection in remote sensing images remains a challenging problem and has also been taking a great interest to researchers. In this paper we propose an effective method to detect airplanes in remote sensing images using convolutional neural networks. Deep learning methods show greater advantages than the traditional methods with the rise of deep neural networks in target detection, and we give an explanation why this happens. To improve the performance on detection of airplane, we combine a region proposal algorithm with convolutional neural networks. And in the training phase, we divide the background into multi classes rather than one class, which can reduce false alarms. Our experimental results show that the proposed method is effective and robust in detecting airplane.

  6. A Novel Handwritten Letter Recognizer Using Enhanced Evolutionary Neural Network

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Fariborz; Mirzashaeri, Mohsen; Shahamatnia, Ehsan; Faridnia, Saed

    This paper introduces a novel design for handwritten letter recognition by employing a hybrid back-propagation neural network with an enhanced evolutionary algorithm. Feeding the neural network consists of a new approach which is invariant to translation, rotation, and scaling of input letters. Evolutionary algorithm is used for the global search of the search space and the back-propagation algorithm is used for the local search. The results have been computed by implementing this approach for recognizing 26 English capital letters in the handwritings of different people. The computational results show that the neural network reaches very satisfying results with relatively scarce input data and a promising performance improvement in convergence of the hybrid evolutionary back-propagation algorithms is exhibited.

  7. Neural control of magnetic suspension systems

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven

    1993-01-01

    The purpose of this research program is to design, build and test (in cooperation with NASA personnel from the NASA Langley Research Center) neural controllers for two different small air-gap magnetic suspension systems. The general objective of the program is to study neural network architectures for the purpose of control in an experimental setting and to demonstrate the feasibility of the concept. The specific objectives of the research program are: (1) to demonstrate through simulation and experimentation the feasibility of using neural controllers to stabilize a nonlinear magnetic suspension system; (2) to investigate through simulation and experimentation the performance of neural controllers designs under various types of parametric and nonparametric uncertainty; (3) to investigate through simulation and experimentation various types of neural architectures for real-time control with respect to performance and complexity; and (4) to benchmark in an experimental setting the performance of neural controllers against other types of existing linear and nonlinear compensator designs. To date, the first one-dimensional, small air-gap magnetic suspension system has been built, tested and delivered to the NASA Langley Research Center. The device is currently being stabilized with a digital linear phase-lead controller. The neural controller hardware is under construction. Two different neural network paradigms are under consideration, one based on hidden layer feedforward networks trained via back propagation and one based on using Gaussian radial basis functions trained by analytical methods related to stability conditions. Some advanced nonlinear control algorithms using feedback linearization and sliding mode control are in simulation studies.

  8. Neural network based satellite tracking for deep space applications

    NASA Technical Reports Server (NTRS)

    Amoozegar, F.; Ruggier, C.

    2003-01-01

    The objective of this paper is to provide a survey of neural network trends as applied to the tracking of spacecrafts in deep space at Ka-band under various weather conditions and examine the trade-off between tracing accuracy and communication link performance.

  9. Modified-hybrid optical neural network filter for multiple object recognition within cluttered scenes

    NASA Astrophysics Data System (ADS)

    Kypraios, Ioannis; Young, Rupert C. D.; Chatwin, Chris R.

    2009-08-01

    Motivated by the non-linear interpolation and generalization abilities of the hybrid optical neural network filter between the reference and non-reference images of the true-class object we designed the modifiedhybrid optical neural network filter. We applied an optical mask to the hybrid optical neural network's filter input. The mask was built with the constant weight connections of a randomly chosen image included in the training set. The resulted design of the modified-hybrid optical neural network filter is optimized for performing best in cluttered scenes of the true-class object. Due to the shift invariance properties inherited by its correlator unit the filter can accommodate multiple objects of the same class to be detected within an input cluttered image. Additionally, the architecture of the neural network unit of the general hybrid optical neural network filter allows the recognition of multiple objects of different classes within the input cluttered image by modifying the output layer of the unit. We test the modified-hybrid optical neural network filter for multiple objects of the same and of different classes' recognition within cluttered input images and video sequences of cluttered scenes. The filter is shown to exhibit with a single pass over the input data simultaneously out-of-plane rotation, shift invariance and good clutter tolerance. It is able to successfully detect and classify correctly the true-class objects within background clutter for which there has been no previous training.

  10. Improved Neural Networks with Random Weights for Short-Term Load Forecasting

    PubMed Central

    Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo

    2015-01-01

    An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting. PMID:26629825

  11. Improved Neural Networks with Random Weights for Short-Term Load Forecasting.

    PubMed

    Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo

    2015-01-01

    An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting.

  12. Predicting wettability behavior of fluorosilica coated metal surface using optimum neural network

    NASA Astrophysics Data System (ADS)

    Taghipour-Gorjikolaie, Mehran; Valipour Motlagh, Naser

    2018-02-01

    The interaction between variables, which are effective on the surface wettability, is very complex to predict the contact angles and sliding angles of liquid drops. In this paper, in order to solve this complexity, artificial neural network was used to develop reliable models for predicting the angles of liquid drops. Experimental data are divided into training data and testing data. By using training data and feed forward structure for the neural network and using particle swarm optimization for training the neural network based models, the optimum models were developed. The obtained results showed that regression index for the proposed models for the contact angles and sliding angles are 0.9874 and 0.9920, respectively. As it can be seen, these values are close to unit and it means the reliable performance of the models. Also, it can be inferred from the results that the proposed model have more reliable performance than multi-layer perceptron and radial basis function based models.

  13. Computing by robust transience: How the fronto-parietal network performs sequential category-based decisions

    PubMed Central

    Chaisangmongkon, Warasinee; Swaminathan, Sruthi K.; Freedman, David J.; Wang, Xiao-Jing

    2017-01-01

    Summary Decision making involves dynamic interplay between internal judgements and external perception, which has been investigated in delayed match-to-category (DMC) experiments. Our analysis of neural recordings shows that, during DMC tasks, LIP and PFC neurons demonstrate mixed, time-varying, and heterogeneous selectivity, but previous theoretical work has not established the link between these neural characteristics and population-level computations. We trained a recurrent network model to perform DMC tasks and found that the model can remarkably reproduce key features of neuronal selectivity at the single-neuron and population levels. Analysis of the trained networks elucidates that robust transient trajectories of the neural population are the key driver of sequential categorical decisions. The directions of trajectories are governed by network self-organized connectivity, defining a ‘neural landscape’, consisting of a task-tailored arrangement of slow states and dynamical tunnels. With this model, we can identify functionally-relevant circuit motifs and generalize the framework to solve other categorization tasks. PMID:28334612

  14. Antenna analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern shaping. The interesting thing about D-C synthesis is that the side lobes have the same amplitude. Five-element arrays were used. Again, 41 pattern samples were used for the input. Nine actual D-C patterns ranging from -10 dB to -30 dB side lobe levels were used to train the network. A comparison between simulated and actual D-C techniques for a pattern with -22 dB side lobe level is shown. The goal for this research was to evaluate the performance of neural network computing with antennas. Future applications will employ the backpropagation training algorithm to drastically reduce the computational complexity involved in performing EM compensation for surface errors in large space reflector antennas.

  15. Antenna analysis using neural networks

    NASA Astrophysics Data System (ADS)

    Smith, William T.

    1992-09-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary).

  16. Performance evaluation of coherent Ising machines against classical neural networks

    NASA Astrophysics Data System (ADS)

    Haribara, Yoshitaka; Ishikawa, Hitoshi; Utsunomiya, Shoko; Aihara, Kazuyuki; Yamamoto, Yoshihisa

    2017-12-01

    The coherent Ising machine is expected to find a near-optimal solution in various combinatorial optimization problems, which has been experimentally confirmed with optical parametric oscillators and a field programmable gate array circuit. The similar mathematical models were proposed three decades ago by Hopfield et al in the context of classical neural networks. In this article, we compare the computational performance of both models.

  17. Coherent Ising machines—optical neural networks operating at the quantum limit

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshihisa; Aihara, Kazuyuki; Leleu, Timothee; Kawarabayashi, Ken-ichi; Kako, Satoshi; Fejer, Martin; Inoue, Kyo; Takesue, Hiroki

    2017-12-01

    In this article, we will introduce the basic concept and the quantum feature of a novel computing system, coherent Ising machines, and describe their theoretical and experimental performance. We start with the discussion how to construct such physical devices as the quantum analog of classical neuron and synapse, and end with the performance comparison against various classical neural networks implemented in CPU and supercomputers.

  18. Nonlinear neural control with power systems applications

    NASA Astrophysics Data System (ADS)

    Chen, Dingguo

    1998-12-01

    Extensive studies have been undertaken on the transient stability of large interconnected power systems with flexible ac transmission systems (FACTS) devices installed. Varieties of control methodologies have been proposed to stabilize the postfault system which would otherwise eventually lose stability without a proper control. Generally speaking, regular transient stability is well understood, but the mechanism of load-driven voltage instability or voltage collapse has not been well understood. The interaction of generator dynamics and load dynamics makes synthesis of stabilizing controllers even more challenging. There is currently increasing interest in the research of neural networks as identifiers and controllers for dealing with dynamic time-varying nonlinear systems. This study focuses on the development of novel artificial neural network architectures for identification and control with application to dynamic electric power systems so that the stability of the interconnected power systems, following large disturbances, and/or with the inclusion of uncertain loads, can be largely enhanced, and stable operations are guaranteed. The latitudinal neural network architecture is proposed for the purpose of system identification. It may be used for identification of nonlinear static/dynamic loads, which can be further used for static/dynamic voltage stability analysis. The properties associated with this architecture are investigated. A neural network methodology is proposed for dealing with load modeling and voltage stability analysis. Based on the neural network models of loads, voltage stability analysis evolves, and modal analysis is performed. Simulation results are also provided. The transient stability problem is studied with consideration of load effects. The hierarchical neural control scheme is developed. Trajectory-following policy is used so that the hierarchical neural controller performs as almost well for non-nominal cases as they do for the nominal cases. The adaptive hierarchical neural control scheme is also proposed to deal with the time-varying nature of loads. Further, adaptive neural control, which is based on the on-line updating of the weights and biases of the neural networks, is studied. Simulations provided on the faulted power systems with unknown loads suggest that the proposed adaptive hierarchical neural control schemes should be useful for practical power applications.

  19. A network application for modeling a centrifugal compressor performance map

    NASA Astrophysics Data System (ADS)

    Nikiforov, A.; Popova, D.; Soldatova, K.

    2017-08-01

    The approximation of aerodynamic performance of a centrifugal compressor stage and vaneless diffuser by neural networks is presented. Advantages, difficulties and specific features of the method are described. An example of a neural network and its structure is shown. The performances in terms of efficiency, pressure ratio and work coefficient of 39 model stages within the range of flow coefficient from 0.01 to 0.08 were modeled with mean squared error 1.5 %. In addition, the loss and friction coefficients of vaneless diffusers of relative widths 0.014-0.10 are modeled with mean squared error 2.45 %.

  20. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor.

    PubMed

    Pandey, Daya Shankar; Das, Saptarshi; Pan, Indranil; Leahy, James J; Kwapinski, Witold

    2016-12-01

    In this paper, multi-layer feed forward neural networks are used to predict the lower heating value of gas (LHV), lower heating value of gasification products including tars and entrained char (LHV p ) and syngas yield during gasification of municipal solid waste (MSW) during gasification in a fluidized bed reactor. These artificial neural networks (ANNs) with different architectures are trained using the Levenberg-Marquardt (LM) back-propagation algorithm and a cross validation is also performed to ensure that the results generalise to other unseen datasets. A rigorous study is carried out on optimally choosing the number of hidden layers, number of neurons in the hidden layer and activation function in a network using multiple Monte Carlo runs. Nine input and three output parameters are used to train and test various neural network architectures in both multiple output and single output prediction paradigms using the available experimental datasets. The model selection procedure is carried out to ascertain the best network architecture in terms of predictive accuracy. The simulation results show that the ANN based methodology is a viable alternative which can be used to predict the performance of a fluidized bed gasifier. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Neural Networks for Modeling and Control of Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  2. Neural Networks for Modeling and Control of Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  3. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  4. Deep learning for computational chemistry.

    PubMed

    Goh, Garrett B; Hodas, Nathan O; Vishnu, Abhinav

    2017-06-15

    The rise and fall of artificial neural networks is well documented in the scientific literature of both computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on multilayer neural networks. Within the last few years, we have seen the transformative impact of deep learning in many domains, particularly in speech recognition and computer vision, to the extent that the majority of expert practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. In this review, we provide an introductory overview into the theory of deep neural networks and their unique properties that distinguish them from traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including quantitative structure activity relationship, virtual screening, protein structure prediction, quantum chemistry, materials design, and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non-neural networks state-of-the-art models across disparate research topics, and deep neural network-based models often exceeded the "glass ceiling" expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a valuable tool for computational chemistry. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Deep learning for computational chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Garrett B.; Hodas, Nathan O.; Vishnu, Abhinav

    The rise and fall of artificial neural networks is well documented in the scientific literature of both the fields of computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on “deep” neural networks. Within the last few years, we have seen the transformative impact of deep learning the computer science domain, notably in speech recognition and computer vision, to the extent that the majority of practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. Inmore » this review, we provide an introductory overview into the theory of deep neural networks and their unique properties as compared to traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including QSAR, virtual screening, protein structure modeling, QM calculations, materials synthesis and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non neural networks state-of-the-art models across disparate research topics, and deep neural network based models often exceeded the “glass ceiling” expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a useful tool and may grow into a pivotal role for various challenges in the computational chemistry field.« less

  6. Classification of bifurcations regions in IVOCT images using support vector machine and artificial neural network models

    NASA Astrophysics Data System (ADS)

    Porto, C. D. N.; Costa Filho, C. F. F.; Macedo, M. M. G.; Gutierrez, M. A.; Costa, M. G. F.

    2017-03-01

    Studies in intravascular optical coherence tomography (IV-OCT) have demonstrated the importance of coronary bifurcation regions in intravascular medical imaging analysis, as plaques are more likely to accumulate in this region leading to coronary disease. A typical IV-OCT pullback acquires hundreds of frames, thus developing an automated tool to classify the OCT frames as bifurcation or non-bifurcation can be an important step to speed up OCT pullbacks analysis and assist automated methods for atherosclerotic plaque quantification. In this work, we evaluate the performance of two state-of-the-art classifiers, SVM and Neural Networks in the bifurcation classification task. The study included IV-OCT frames from 9 patients. In order to improve classification performance, we trained and tested the SVM with different parameters by means of a grid search and different stop criteria were applied to the Neural Network classifier: mean square error, early stop and regularization. Different sets of features were tested, using feature selection techniques: PCA, LDA and scalar feature selection with correlation. Training and test were performed in sets with a maximum of 1460 OCT frames. We quantified our results in terms of false positive rate, true positive rate, accuracy, specificity, precision, false alarm, f-measure and area under ROC curve. Neural networks obtained the best classification accuracy, 98.83%, overcoming the results found in literature. Our methods appear to offer a robust and reliable automated classification of OCT frames that might assist physicians indicating potential frames to analyze. Methods for improving neural networks generalization have increased the classification performance.

  7. Modelling and prediction for chaotic fir laser attractor using rational function neural network.

    PubMed

    Cho, S

    2001-02-01

    Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.

  8. The application of neural networks to the SSME startup transient

    NASA Technical Reports Server (NTRS)

    Meyer, Claudia M.; Maul, William A.

    1991-01-01

    Feedforward neural networks were used to model three parameters during the Space Shuttle Main Engine startup transient. The three parameters were the main combustion chamber pressure, a controlled parameter, the high pressure oxidizer turbine discharge temperature, a redlined parameter, and the high pressure fuel pump discharge pressure, a failure-indicating performance parameter. Network inputs consisted of time windows of data from engine measurements that correlated highly to the modeled parameter. A standard backpropagation algorithm was used to train the feedforward networks on two nominal firings. Each trained network was validated with four additional nominal firings. For all three parameters, the neural networks were able to accurately predict the data in the validation sets as well as the training set.

  9. Fire detection from hyperspectral data using neural network approach

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Amici, Stefania

    2015-10-01

    This study describes an application of artificial neural networks for the recognition of flaming areas using hyper- spectral remote sensed data. Satellite remote sensing is considered an effective and safe way to monitor active fires for environmental and people safeguarding. Neural networks are an effective and consolidated technique for the classification of satellite images. Moreover, once well trained, they prove to be very fast in the application stage for a rapid response. At flaming temperature, thanks to its low excitation energy (about 4.34 eV), potassium (K) ionize with a unique doublet emission features. This emission features can be detected remotely providing a detection map of active fire which allows in principle to separate flaming from smouldering areas of vegetation even in presence of smoke. For this study a normalised Advanced K Band Difference (AKBD) has been applied to airborne hyper spectral sensor covering a range of 400-970 nm with resolution 2.9 nm. A back propagation neural network was used for the recognition of active fires affecting the hyperspectral image. The network was trained using all channels of sensor as inputs, and the corresponding AKBD indexes as target output. In order to evaluate its generalization capabilities, the neural network was validated on two independent data sets of hyperspectral images, not used during neural network training phase. The validation results for the independent data-sets had an overall accuracy round 100% for both image and a few commission errors (0.1%), therefore demonstrating the feasibility of estimating the presence of active fires using a neural network approach. Although the validation of the neural network classifier had a few commission errors, the producer accuracies were lower due to the presence of omission errors. Image analysis revealed that those false negatives lie in "smoky" portion fire fronts, and due to the low intensity of the signal. The proposed method can be considered effective both in terms of classification accuracy and generalization capability. In particular our approach proved to be robust in the rejection of false positives, often corresponding to noisy or smoke pixels, whose presence in hyperspectral images can often undermine the performance of traditional classification algorithms. In order to improve neural network performance, future activities will include also the exploiting of hyperspectral images in the shortwave infrared region of the electromagnetic spectrum, covering wavelengths from 1400 to 2500 nm, which include significant emitted radiance from fire.

  10. Fuzzy-neural control of an aircraft tracking camera platform

    NASA Technical Reports Server (NTRS)

    Mcgrath, Dennis

    1994-01-01

    A fuzzy-neural control system simulation was developed for the control of a camera platform used to observe aircraft on final approach to an aircraft carrier. The fuzzy-neural approach to control combines the structure of a fuzzy knowledge base with a supervised neural network's ability to adapt and improve. The performance characteristics of this hybrid system were compared to those of a fuzzy system and a neural network system developed independently to determine if the fusion of these two technologies offers any advantage over the use of one or the other. The results of this study indicate that the fuzzy-neural approach to control offers some advantages over either fuzzy or neural control alone.

  11. Conjugate-Gradient Neural Networks in Classification of Multisource and Very-High-Dimensional Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Benediktsson, J. A.; Swain, P. H.; Ersoy, O. K.

    1993-01-01

    Application of neural networks to classification of remote sensing data is discussed. Conventional two-layer backpropagation is found to give good results in classification of remote sensing data but is not efficient in training. A more efficient variant, based on conjugate-gradient optimization, is used for classification of multisource remote sensing and geographic data and very-high-dimensional data. The conjugate-gradient neural networks give excellent performance in classification of multisource data, but do not compare as well with statistical methods in classification of very-high-dimentional data.

  12. An Application Development Platform for Neuromorphic Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, Mark; Chan, Jason; Daffron, Christopher

    2016-01-01

    Dynamic Adaptive Neural Network Arrays (DANNAs) are neuromorphic computing systems developed as a hardware based approach to the implementation of neural networks. They feature highly adaptive and programmable structural elements, which model arti cial neural networks with spiking behavior. We design them to solve problems using evolutionary optimization. In this paper, we highlight the current hardware and software implementations of DANNA, including their features, functionalities and performance. We then describe the development of an Application Development Platform (ADP) to support efficient application implementation and testing of DANNA based solutions. We conclude with future directions.

  13. Learning characteristics of a space-time neural network as a tether skiprope observer

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1993-01-01

    The Software Technology Laboratory at the Johnson Space Center is testing a Space Time Neural Network (STNN) for observing tether oscillations present during retrieval of a tethered satellite. Proper identification of tether oscillations, known as 'skiprope' motion, is vital to safe retrieval of the tethered satellite. Our studies indicate that STNN has certain learning characteristics that must be understood properly to utilize this type of neural network for the tethered satellite problem. We present our findings on the learning characteristics including a learning rate versus momentum performance table.

  14. Learning characteristics of a space-time neural network as a tether skiprope observer

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Villarreal, James A.; Jani, Yashvant; Copeland, Charles

    1992-01-01

    The Software Technology Laboratory at JSC is testing a Space Time Neural Network (STNN) for observing tether oscillations present during retrieval of a tethered satellite. Proper identification of tether oscillations, known as 'skiprope' motion, is vital to safe retrieval of the tethered satellite. Our studies indicate that STNN has certain learning characteristics that must be understood properly to utilize this type of neural network for the tethered satellite problem. We present our findings on the learning characteristics including a learning rate versus momentum performance table.

  15. Neural network-based run-to-run controller using exposure and resist thickness adjustment

    NASA Astrophysics Data System (ADS)

    Geary, Shane; Barry, Ronan

    2003-06-01

    This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.

  16. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation.

    PubMed

    Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Razi, Adeel; Geerligs, Linda; Ham, Timothy E; Rowe, James B

    2016-03-16

    The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a large population-based cohort (n = 602, 18-88 years), separating neural connectivity from vascular components of fMRI signals. Cognitive ability was influenced by the strength of connection within and between functional brain networks, and this positive relationship increased with age. In older adults, there was more rapid decay of intrinsic neuronal activity in multiple regions of the brain networks, which related to cognitive performance. Our data demonstrate increased reliance on network flexibility to maintain cognitive function, in the presence of more rapid decay of neural activity. These insights will facilitate the development of new strategies to maintain cognitive ability. Copyright © 2016 Tsvetanov et al.

  17. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation

    PubMed Central

    Henson, Richard N.A.; Tyler, Lorraine K.; Razi, Adeel; Geerligs, Linda; Ham, Timothy E.; Rowe, James B.

    2016-01-01

    The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. SIGNIFICANCE STATEMENT Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a large population-based cohort (n = 602, 18–88 years), separating neural connectivity from vascular components of fMRI signals. Cognitive ability was influenced by the strength of connection within and between functional brain networks, and this positive relationship increased with age. In older adults, there was more rapid decay of intrinsic neuronal activity in multiple regions of the brain networks, which related to cognitive performance. Our data demonstrate increased reliance on network flexibility to maintain cognitive function, in the presence of more rapid decay of neural activity. These insights will facilitate the development of new strategies to maintain cognitive ability. PMID:26985024

  18. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks

    PubMed Central

    Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André

    2015-01-01

    We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 226 (64M) synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted or delayed pre-synaptic spike to the post-synaptic neuron in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 236 (64G) synaptic adaptors on a current high-end FPGA platform. PMID:26041985

  19. High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.

  20. Quantitative Analysis of Ca, Mg, and K in the Roots of Angelica pubescens f. biserrata by Laser-Induced Breakdown Spectroscopy Combined with Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Wang, J.; Shi, M.; Zheng, P.; Xue, Sh.; Peng, R.

    2018-03-01

    Laser-induced breakdown spectroscopy has been applied for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens Maxim. f. biserrata Shan et Yuan used in traditional Chinese medicine. Ca II 317.993 nm, Mg I 517.268 nm, and K I 769.896 nm spectral lines have been chosen to set up calibration models for the analysis using the external standard and artificial neural network methods. The linear correlation coefficients of the predicted concentrations versus the standard concentrations of six samples determined by the artificial neural network method are 0.9896, 0.9945, and 0.9911 for Ca, Mg, and K, respectively, which are better than for the external standard method. The artificial neural network method also gives better performance comparing with the external standard method for the average and maximum relative errors, average relative standard deviations, and most maximum relative standard deviations of the predicted concentrations of Ca, Mg, and K in the six samples. Finally, it is proved that the artificial neural network method gives better performance compared to the external standard method for the quantitative analysis of Ca, Mg, and K in the roots of Angelica pubescens.

  1. Neural network evaluation of tokamak current profiles for real time control

    NASA Astrophysics Data System (ADS)

    Wróblewski, Dariusz

    1997-02-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q0, minimum value of q, qmin, and the location of qmin. Very good performance of the trained neural network both for simulated test data and for experimental datais demonstrated.

  2. Neural network evaluation of tokamak current profiles for real time control (abstract)

    NASA Astrophysics Data System (ADS)

    Wróblewski, Dariusz

    1997-01-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q0, minimum value of q, qmin, and the location of qmin. Very good performance of the trained neural network both for simulated test data and for experimental data is demonstrated.

  3. Modeling the thermotaxis behavior of C.elegans based on the artificial neural network.

    PubMed

    Li, Mingxu; Deng, Xin; Wang, Jin; Chen, Qiaosong; Tang, Yun

    2016-07-03

    ASBTRACT This research aims at modeling the thermotaxis behavior of C.elegans which is a kind of nematode with full clarified neuronal connections. Firstly, this work establishes the motion model which can perform the undulatory locomotion with turning behavior. Secondly, the thermotaxis behavior is modeled by nonlinear functions and the nonlinear functions are learned by artificial neural network. Once the artificial neural networks have been well trained, they can perform the desired thermotaxis behavior. Last, several testing simulations are carried out to verify the effectiveness of the model for thermotaxis behavior. This work also analyzes the different performances of the model under different environments. The testing results reveal the essence of the thermotaxis of C.elegans to some extent, and theoretically support the research on the navigation of the crawling robots.

  4. Neural networks to classify speaker independent isolated words recorded in radio car environments

    NASA Astrophysics Data System (ADS)

    Alippi, C.; Simeoni, M.; Torri, V.

    1993-02-01

    Many applications, in particular the ones requiring nonlinear signal processing, have proved Artificial Neural Networks (ANN's) to be invaluable tools for model free estimation. The classifying abilities of ANN's are addressed by testing their performance in a speaker independent word recognition application. A real world case requiring implementation of compact integrated devices is taken into account: the classification of isolated words in radio car environment. A multispeaker database of isolated words was recorded in different environments. Data were first processed to determinate the boundaries of each word and then to extract speech features, the latter accomplished by using cepstral coefficient representation, log area ratios and filters bank techniques. Multilayered perceptron and adaptive vector quantization neural paradigms were tested to find a reasonable compromise between performances and network simplicity, fundamental requirement for the implementation of compact real time running neural devices.

  5. Inverse kinematics problem in robotics using neural networks

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Lawrence, Charles

    1992-01-01

    In this paper, Multilayer Feedforward Networks are applied to the robot inverse kinematic problem. The networks are trained with endeffector position and joint angles. After training, performance is measured by having the network generate joint angles for arbitrary endeffector trajectories. A 3-degree-of-freedom (DOF) spatial manipulator is used for the study. It is found that neural networks provide a simple and effective way to both model the manipulator inverse kinematics and circumvent the problems associated with algorithmic solution methods.

  6. Neural-network-designed pulse sequences for robust control of singlet-triplet qubits

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Chen; Yung, Man-Hong; Wang, Xin

    2018-04-01

    Composite pulses are essential for universal manipulation of singlet-triplet spin qubits. In the absence of noise, they are required to perform arbitrary single-qubit operations due to the special control constraint of a singlet-triplet qubit, while in a noisy environment, more complicated sequences have been developed to dynamically correct the error. Tailoring these sequences typically requires numerically solving a set of nonlinear equations. Here we demonstrate that these pulse sequences can be generated by a well-trained, double-layer neural network. For sequences designed for the noise-free case, the trained neural network is capable of producing almost exactly the same pulses known in the literature. For more complicated noise-correcting sequences, the neural network produces pulses with slightly different line shapes, but the robustness against noises remains comparable. These results indicate that the neural network can be a judicious and powerful alternative to existing techniques in developing pulse sequences for universal fault-tolerant quantum computation.

  7. Combined neural network/Phillips-Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter

    NASA Astrophysics Data System (ADS)

    Di Noia, Antonio; Hasekamp, Otto P.; Wu, Lianghai; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John E.

    2017-11-01

    In this paper, an algorithm for the retrieval of aerosol and land surface properties from airborne spectropolarimetric measurements - combining neural networks and an iterative scheme based on Phillips-Tikhonov regularization - is described. The algorithm - which is an extension of a scheme previously designed for ground-based retrievals - is applied to measurements from the Research Scanning Polarimeter (RSP) on board the NASA ER-2 aircraft. A neural network, trained on a large data set of synthetic measurements, is applied to perform aerosol retrievals from real RSP data, and the neural network retrievals are subsequently used as a first guess for the Phillips-Tikhonov retrieval. The resulting algorithm appears capable of accurately retrieving aerosol optical thickness, fine-mode effective radius and aerosol layer height from RSP data. Among the advantages of using a neural network as initial guess for an iterative algorithm are a decrease in processing time and an increase in the number of converging retrievals.

  8. Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air

    NASA Astrophysics Data System (ADS)

    Castellano-Méndez, M.; Aira, M. J.; Iglesias, I.; Jato, V.; González-Manteiga, W.

    2005-05-01

    An increasing percentage of the European population suffers from allergies to pollen. The study of the evolution of air pollen concentration supplies prior knowledge of the levels of pollen in the air, which can be useful for the prevention and treatment of allergic symptoms, and the management of medical resources. The symptoms of Betula pollinosis can be associated with certain levels of pollen in the air. The aim of this study was to predict the risk of the concentration of pollen exceeding a given level, using previous pollen and meteorological information, by applying neural network techniques. Neural networks are a widespread statistical tool useful for the study of problems associated with complex or poorly understood phenomena. The binary response variable associated with each level requires a careful selection of the neural network and the error function associated with the learning algorithm used during the training phase. The performance of the neural network with the validation set showed that the risk of the pollen level exceeding a certain threshold can be successfully forecasted using artificial neural networks. This prediction tool may be implemented to create an automatic system that forecasts the risk of suffering allergic symptoms.

  9. Dynamic security contingency screening and ranking using neural networks.

    PubMed

    Mansour, Y; Vaahedi, E; El-Sharkawi, M A

    1997-01-01

    This paper summarizes BC Hydro's experience in applying neural networks to dynamic security contingency screening and ranking. The idea is to use the information on the prevailing operating condition and directly provide contingency screening and ranking using a trained neural network. To train the two neural networks for the large scale systems of BC Hydro and Hydro Quebec, in total 1691 detailed transient stability simulation were conducted, 1158 for BC Hydro system and 533 for the Hydro Quebec system. The simulation program was equipped with the energy margin calculation module (second kick) to measure the energy margin in each run. The first set of results showed poor performance for the neural networks in assessing the dynamic security. However a number of corrective measures improved the results significantly. These corrective measures included: 1) the effectiveness of output; 2) the number of outputs; 3) the type of features (static versus dynamic); 4) the number of features; 5) system partitioning; and 6) the ratio of training samples to features. The final results obtained using the large scale systems of BC Hydro and Hydro Quebec demonstrates a good potential for neural network in dynamic security assessment contingency screening and ranking.

  10. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    PubMed

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  11. Application of Hierarchical Dissociated Neural Network in Closed-Loop Hybrid System Integrating Biological and Mechanical Intelligence

    PubMed Central

    Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579

  12. Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks.

    PubMed

    Hsieh, Chung-Ho; Lu, Ruey-Hwa; Lee, Nai-Hsin; Chiu, Wen-Ta; Hsu, Min-Huei; Li, Yu-Chuan Jack

    2011-01-01

    Diagnosing acute appendicitis clinically is still difficult. We developed random forests, support vector machines, and artificial neural network models to diagnose acute appendicitis. Between January 2006 and December 2008, patients who had a consultation session with surgeons for suspected acute appendicitis were enrolled. Seventy-five percent of the data set was used to construct models including random forest, support vector machines, artificial neural networks, and logistic regression. Twenty-five percent of the data set was withheld to evaluate model performance. The area under the receiver operating characteristic curve (AUC) was used to evaluate performance, which was compared with that of the Alvarado score. Data from a total of 180 patients were collected, 135 used for training and 45 for testing. The mean age of patients was 39.4 years (range, 16-85). Final diagnosis revealed 115 patients with and 65 without appendicitis. The AUC of random forest, support vector machines, artificial neural networks, logistic regression, and Alvarado was 0.98, 0.96, 0.91, 0.87, and 0.77, respectively. The sensitivity, specificity, positive, and negative predictive values of random forest were 94%, 100%, 100%, and 87%, respectively. Random forest performed better than artificial neural networks, logistic regression, and Alvarado. We demonstrated that random forest can predict acute appendicitis with good accuracy and, deployed appropriately, can be an effective tool in clinical decision making. Copyright © 2011 Mosby, Inc. All rights reserved.

  13. Pulse-coupled neural network implementation in FPGA

    NASA Astrophysics Data System (ADS)

    Waldemark, Joakim T. A.; Lindblad, Thomas; Lindsey, Clark S.; Waldemark, Karina E.; Oberg, Johnny; Millberg, Mikael

    1998-03-01

    Pulse Coupled Neural Networks (PCNN) are biologically inspired neural networks, mainly based on studies of the visual cortex of small mammals. The PCNN is very well suited as a pre- processor for image processing, particularly in connection with object isolation, edge detection and segmentation. Several implementations of PCNN on von Neumann computers, as well as on special parallel processing hardware devices (e.g. SIMD), exist. However, these implementations are not as flexible as required for many applications. Here we present an implementation in Field Programmable Gate Arrays (FPGA) together with a performance analysis. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications. The latter may include advanced on-line image analysis with close to real-time performance.

  14. A spiking neural integrator model of the adaptive control of action by the medial prefrontal cortex.

    PubMed

    Bekolay, Trevor; Laubach, Mark; Eliasmith, Chris

    2014-01-29

    Subjects performing simple reaction-time tasks can improve reaction times by learning the expected timing of action-imperative stimuli and preparing movements in advance. Success or failure on the previous trial is often an important factor for determining whether a subject will attempt to time the stimulus or wait for it to occur before initiating action. The medial prefrontal cortex (mPFC) has been implicated in enabling the top-down control of action depending on the outcome of the previous trial. Analysis of spike activity from the rat mPFC suggests that neural integration is a key mechanism for adaptive control in precisely timed tasks. We show through simulation that a spiking neural network consisting of coupled neural integrators captures the neural dynamics of the experimentally recorded mPFC. Errors lead to deviations in the normal dynamics of the system, a process that could enable learning from past mistakes. We expand on this coupled integrator network to construct a spiking neural network that performs a reaction-time task by following either a cue-response or timing strategy, and show that it performs the task with similar reaction times as experimental subjects while maintaining the same spiking dynamics as the experimentally recorded mPFC.

  15. Goal-seeking neural net for recall and recognition

    NASA Astrophysics Data System (ADS)

    Omidvar, Omid M.

    1990-07-01

    Neural networks have been used to mimic cognitive processes which take place in animal brains. The learning capability inherent in neural networks makes them suitable candidates for adaptive tasks such as recall and recognition. The synaptic reinforcements create a proper condition for adaptation, which results in memorization, formation of perception, and higher order information processing activities. In this research a model of a goal seeking neural network is studied and the operation of the network with regard to recall and recognition is analyzed. In these analyses recall is defined as retrieval of stored information where little or no matching is involved. On the other hand recognition is recall with matching; therefore it involves memorizing a piece of information with complete presentation. This research takes the generalized view of reinforcement in which all the signals are potential reinforcers. The neuronal response is considered to be the source of the reinforcement. This local approach to adaptation leads to the goal seeking nature of the neurons as network components. In the proposed model all the synaptic strengths are reinforced in parallel while the reinforcement among the layers is done in a distributed fashion and pipeline mode from the last layer inward. A model of complex neuron with varying threshold is developed to account for inhibitory and excitatory behavior of real neuron. A goal seeking model of a neural network is presented. This network is utilized to perform recall and recognition tasks. The performance of the model with regard to the assigned tasks is presented.

  16. Computer interpretation of thallium SPECT studies based on neural network analysis

    NASA Astrophysics Data System (ADS)

    Wang, David C.; Karvelis, K. C.

    1991-06-01

    A class of artificial intelligence (Al) programs known as neural networks are well suited to pattern recognition. A neural network is trained rather than programmed to recognize patterns. This differs from "expert system" Al programs in that it is not following an extensive set of rules determined by the programmer, but rather bases its decision on a gestalt interpretation of the image. The "bullseye" images from cardiac stress thallium tests performed on 50 male patients, as well as several simulated images were used to train the network. The network was able to accurately classify all patients in the training set. The network was then tested against 50 unknown patients and was able to correctly categorize 77% of the areas of ischemia and 92% of the areas of infarction. While not yet matching the ability of a trained physician, the neural network shows great promise in this area and has potential application in other areas of medical imaging.

  17. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks

    PubMed Central

    Miconi, Thomas

    2017-01-01

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior. DOI: http://dx.doi.org/10.7554/eLife.20899.001 PMID:28230528

  18. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.

    PubMed

    Miconi, Thomas

    2017-02-23

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.

  19. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    PubMed

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-10-01

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  20. Optimization with artificial neural network systems - A mapping principle and a comparison to gradient based methods

    NASA Technical Reports Server (NTRS)

    Leong, Harrison Monfook

    1988-01-01

    General formulae for mapping optimization problems into systems of ordinary differential equations associated with artificial neural networks are presented. A comparison is made to optimization using gradient-search methods. The performance measure is the settling time from an initial state to a target state. A simple analytical example illustrates a situation where dynamical systems representing artificial neural network methods would settle faster than those representing gradient-search. Settling time was investigated for a more complicated optimization problem using computer simulations. The problem was a simplified version of a problem in medical imaging: determining loci of cerebral activity from electromagnetic measurements at the scalp. The simulations showed that gradient based systems typically settled 50 to 100 times faster than systems based on current neural network optimization methods.

  1. Neural network-based system for pattern recognition through a fiber optic bundle

    NASA Astrophysics Data System (ADS)

    Gamo-Aranda, Javier; Rodriguez-Horche, Paloma; Merchan-Palacios, Miguel; Rosales-Herrera, Pablo; Rodriguez, M.

    2001-04-01

    A neural network based system to identify images transmitted through a Coherent Fiber-optic Bundle (CFB) is presented. Patterns are generated in a computer, displayed on a Spatial Light Modulator, imaged onto the input face of the CFB, and recovered optically by a CCD sensor array for further processing. Input and output optical subsystems were designed and used to that end. The recognition step of the transmitted patterns is made by a powerful, widely-used, neural network simulator running on the control PC. A complete PC-based interface was developed to control the different tasks involved in the system. An optical analysis of the system capabilities was carried out prior to performing the recognition step. Several neural network topologies were tested, and the corresponding numerical results are also presented and discussed.

  2. Multiprocessor Neural Network in Healthcare.

    PubMed

    Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes

    2015-01-01

    A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.

  3. Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Lindholm, Geir; Ratnaweera, Harsha

    2018-01-01

    Combined sewer overflow causes severe water pollution, urban flooding and reduced treatment plant efficiency. Understanding the behavior of CSO structures is vital for urban flooding prevention and overflow control. Neural networks have been extensively applied in water resource related fields. In this study, we collect data from an Internet of Things monitoring CSO structure and build different neural network models for simulating and predicting the water level of the CSO structure. Through a comparison of four different neural networks, namely multilayer perceptron (MLP), wavelet neural network (WNN), long short-term memory (LSTM) and gated recurrent unit (GRU), the LSTM and GRU present superior capabilities for multi-step-ahead time series prediction. Furthermore, GRU achieves prediction performances similar to LSTM with a quicker learning curve.

  4. Development of a neural network technique for KSTAR Thomson scattering diagnostics.

    PubMed

    Lee, Seung Hun; Lee, J H; Yamada, I; Park, Jae Sun

    2016-11-01

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ 2 method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ 2 method. The best results were obtained for 10 3 training cycles and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ 2 method and performs the calculation twenty times faster.

  5. Artificial Neural Networks Equivalent to Fuzzy Algebra T-Norm Conjunction Operators

    NASA Astrophysics Data System (ADS)

    Iliadis, L. S.; Spartalis, S. I.

    2007-12-01

    This paper describes the construction of three Artificial Neural Networks with fuzzy input and output, imitating the performance of fuzzy algebra conjunction operators. More specifically, it is applied over the results of a previous research effort that used T-Norms in order to produce a characteristic torrential risk index that unified the partial risk indices for the area of Xanthi. Each one of the three networks substitutes a T-Norm and consequently they can be used as equivalent operators. This means that ANN performing Fuzzy Algebra operations can be designed and developed.

  6. Genetic learning in rule-based and neural systems

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  7. Reliability analysis of C-130 turboprop engine components using artificial neural network

    NASA Astrophysics Data System (ADS)

    Qattan, Nizar A.

    In this study, we predict the failure rate of Lockheed C-130 Engine Turbine. More than thirty years of local operational field data were used for failure rate prediction and validation. The Weibull regression model and the Artificial Neural Network model including (feed-forward back-propagation, radial basis neural network, and multilayer perceptron neural network model); will be utilized to perform this study. For this purpose, the thesis will be divided into five major parts. First part deals with Weibull regression model to predict the turbine general failure rate, and the rate of failures that require overhaul maintenance. The second part will cover the Artificial Neural Network (ANN) model utilizing the feed-forward back-propagation algorithm as a learning rule. The MATLAB package will be used in order to build and design a code to simulate the given data, the inputs to the neural network are the independent variables, the output is the general failure rate of the turbine, and the failures which required overhaul maintenance. In the third part we predict the general failure rate of the turbine and the failures which require overhaul maintenance, using radial basis neural network model on MATLAB tool box. In the fourth part we compare the predictions of the feed-forward back-propagation model, with that of Weibull regression model, and radial basis neural network model. The results show that the failure rate predicted by the feed-forward back-propagation artificial neural network model is closer in agreement with radial basis neural network model compared with the actual field-data, than the failure rate predicted by the Weibull model. By the end of the study, we forecast the general failure rate of the Lockheed C-130 Engine Turbine, the failures which required overhaul maintenance and six categorical failures using multilayer perceptron neural network (MLP) model on DTREG commercial software. The results also give an insight into the reliability of the engine turbine under actual operating conditions, which can be used by aircraft operators for assessing system and component failures and customizing the maintenance programs recommended by the manufacturer.

  8. A function approximation approach to anomaly detection in propulsion system test data

    NASA Technical Reports Server (NTRS)

    Whitehead, Bruce A.; Hoyt, W. A.

    1993-01-01

    Ground test data from propulsion systems such as the Space Shuttle Main Engine (SSME) can be automatically screened for anomalies by a neural network. The neural network screens data after being trained with nominal data only. Given the values of 14 measurements reflecting external influences on the SSME at a given time, the neural network predicts the expected nominal value of a desired engine parameter at that time. We compared the ability of three different function-approximation techniques to perform this nominal value prediction: a novel neural network architecture based on Gaussian bar basis functions, a conventional back propagation neural network, and linear regression. These three techniques were tested with real data from six SSME ground tests containing two anomalies. The basis function network trained more rapidly than back propagation. It yielded nominal predictions with, a tight enough confidence interval to distinguish anomalous deviations from the nominal fluctuations in an engine parameter. Since the function-approximation approach requires nominal training data only, it is capable of detecting unknown classes of anomalies for which training data is not available.

  9. The neural signature of emotional memories in serial crimes.

    PubMed

    Chassy, Philippe

    2017-10-01

    Neural plasticity is the process whereby semantic information and emotional responses are stored in neural networks. It is hypothesized that the neural networks built over time to encode the sexual fantasies that motivate serial killers to act should display a unique, detectable activation pattern. The pathological neural watermark hypothesis posits that such networks comprise activation of brain sites that reflect four cognitive components: autobiographical memory, sexual arousal, aggression, and control over aggression. The neural sites performing these cognitive functions have been successfully identified by previous research. The key findings are reviewed to hypothesise the typical pattern of activity that serial killers should display. Through the integration of biological findings into one framework, the neural approach proposed in this paper is in stark contrast with the many theories accounting for serial killers that offer non-medical taxonomies. The pathological neural watermark hypothesis offers a new framework to understand and detect deviant individuals. The technical and legal issues are briefly discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Reference Ability Neural Network Study: Life-time stability of reference-ability neural networks derived from task maps of young adults.

    PubMed

    Habeck, C; Gazes, Y; Razlighi, Q; Steffener, J; Brickman, A; Barulli, D; Salthouse, T; Stern, Y

    2016-01-15

    Analyses of large test batteries administered to individuals ranging from young to old have consistently yielded a set of latent variables representing reference abilities (RAs) that capture the majority of the variance in age-related cognitive change: Episodic Memory, Fluid Reasoning, Perceptual Processing Speed, and Vocabulary. In a previous paper (Stern et al., 2014), we introduced the Reference Ability Neural Network Study, which administers 12 cognitive neuroimaging tasks (3 for each RA) to healthy adults age 20-80 in order to derive unique neural networks underlying these 4 RAs and investigate how these networks may be affected by aging. We used a multivariate approach, linear indicator regression, to derive a unique covariance pattern or Reference Ability Neural Network (RANN) for each of the 4 RAs. The RANNs were derived from the neural task data of 64 younger adults of age 30 and below. We then prospectively applied the RANNs to fMRI data from the remaining sample of 227 adults of age 31 and above in order to classify each subject-task map into one of the 4 possible reference domains. Overall classification accuracy across subjects in the sample age 31 and above was 0.80±0.18. Classification accuracy by RA domain was also good, but variable; memory: 0.72±0.32; reasoning: 0.75±0.35; speed: 0.79±0.31; vocabulary: 0.94±0.16. Classification accuracy was not associated with cross-sectional age, suggesting that these networks, and their specificity to the respective reference domain, might remain intact throughout the age range. Higher mean brain volume was correlated with increased overall classification accuracy; better overall performance on the tasks in the scanner was also associated with classification accuracy. For the RANN network scores, we observed for each RANN that a higher score was associated with a higher corresponding classification accuracy for that reference ability. Despite the absence of behavioral performance information in the derivation of these networks, we also observed some brain-behavioral correlations, notably for the fluid-reasoning network whose network score correlated with performance on the memory and fluid-reasoning tasks. While age did not influence the expression of this RANN, the slope of the association between network score and fluid-reasoning performance was negatively associated with higher ages. These results provide support for the hypothesis that a set of specific, age-invariant neural networks underlies these four RAs, and that these networks maintain their cognitive specificity and level of intensity across age. Activation common to all 12 tasks was identified as another activation pattern resulting from a mean-contrast Partial-Least-Squares technique. This common pattern did show associations with age and some subject demographics for some of the reference domains, lending support to the overall conclusion that aspects of neural processing that are specific to any cognitive reference ability stay constant across age, while aspects that are common to all reference abilities differ across age. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A neural network for the prediction of performance parameters of transformer cores

    NASA Astrophysics Data System (ADS)

    Nussbaum, C.; Booth, T.; Ilo, A.; Pfützner, H.

    1996-07-01

    The paper shows that Artificial Neural Networks (ANNs) may offer new possibilities for the prediction of transformer core performance parameters, i.e. no-load power losses and excitation. Basically this technique enables simulations with respect to different construction parameters most notably the characteristics of corner designs, i.e. the overlap length, the air gap length, and the number of steps. However, without additional physical knowledge incorporated into the ANN extrapolation beyond the training data limits restricts the predictive performance.

  12. Neural Network Technique for Continous Transition from Ocean to Coastal Retrackers

    NASA Astrophysics Data System (ADS)

    Hazrina Idris, Nurul; Deng, Xiaoli; Hawani Idris, Nurul

    2017-04-01

    This paper presents the development of neural network for continuous transition of altimeter sea surface heights when switching from ocean to coastal waveform retrackers. In attempting to produce precise coastal sea level anomaly (SLA) via retracking waveforms, issue arose when employing multiple retracking algorithms (i.e. MLE-4, sub-waveform and threshold). The existence of relative offset between those retrackers creates 'jump' in the retracked SLA profiles. In this study, the offset between retrackers is minimized using multi-layer feed forward neural network technique. The technique reduces the offset values by modelling the complicated functions of those retracked SLAs. The technique is tested over the region of the Great Barrier Reef (GBR), Australia. The validation with Townsville and Bundaberg tide gauges shows that the threshold retracker achieves temporal correlations (r) of 0.84 and 0.75, respectively, and root mean square (RMS) error is 16 cm for both stations, indicating that the retracker produces more accurate SLAs than those of two retrackers. Meanwhile, values of r (RMS error) for MLE-4 is only 0.79 (18 cm) and 0.71 (16 cm), respectively, and for sub-waveform is 0.82 (16 cm) and 0.67 (16 cm), respectively. Therefore, with the neural network, retracked SLAs from MLE-4 and sub-waveform are aligned to those of the threshold retracker. The performance of neural network is compared with the normal procedure of offset removal, which is based on the mean of SLA differences (mean method). The performance is assessed by computing the standard deviation of difference (STD) between the SLAs above a referenced ellipsoid and the geoidal height, and the improvement of percentage (IMP). The results indicate that the neural network provides improvement in SLA precision in all 12 cases, while the mean method provides improvement in 10 out of 12 cases and deterioration is seen in two cases. In terms of STD and IMP, neural network reduces the offset better than those of the mean method. The IMPs with neural network reaches up to 67% for Jason-1 and 73% for Jason-2, meanwhile with mean method the IMPs only reaches up to 28% and 46%, respectively. In conclusion, the neural network technique is efficient to reduce the offset among retrackers by handling the linear and nonlinear relationship between retrackers, thus providing seamless transition from the open ocean to the coast, and vice versa. Studies in currently on-going are to consider other geophysical parameters, such as significant wave height that might be related to the variation of the offset, in the neural network.

  13. The neural network classification of false killer whale (Pseudorca crassidens) vocalizations.

    PubMed

    Murray, S O; Mercado, E; Roitblat, H L

    1998-12-01

    This study reports the use of unsupervised, self-organizing neural network to categorize the repertoire of false killer whale vocalizations. Self-organizing networks are capable of detecting patterns in their input and partitioning those patterns into categories without requiring that the number or types of categories be predefined. The inputs for the neural networks were two-dimensional characterization of false killer whale vocalization, where each vocalization was characterized by a sequence of short-time measurements of duty cycle and peak frequency. The first neural network used competitive learning, where units in a competitive layer distributed themselves to recognize frequently presented input vectors. This network resulted in classes representing typical patterns in the vocalizations. The second network was a Kohonen feature map which organized the outputs topologically, providing a graphical organization of pattern relationships. The networks performed well as measured by (1) the average correlation between the input vectors and the weight vectors for each category, and (2) the ability of the networks to classify novel vocalizations. The techniques used in this study could easily be applied to other species and facilitate the development of objective, comprehensive repertoire models.

  14. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture

    PubMed Central

    Knight, James C.; Furber, Steve B.

    2016-01-01

    While the adult human brain has approximately 8.8 × 1010 neurons, this number is dwarfed by its 1 × 1015 synapses. From the point of view of neuromorphic engineering and neural simulation in general this makes the simulation of these synapses a particularly complex problem. SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Current solutions for simulating spiking neural networks on SpiNNaker are heavily inspired by work on distributed high-performance computing. However, while SpiNNaker shares many characteristics with such distributed systems, its component nodes have much more limited resources and, as the system lacks global synchronization, the computation performed on each node must complete within a fixed time step. We first analyze the performance of the current SpiNNaker neural simulation software and identify several problems that occur when it is used to simulate networks of the type often used to model the cortex which contain large numbers of sparsely connected synapses. We then present a new, more flexible approach for mapping the simulation of such networks to SpiNNaker which solves many of these problems. Finally we analyze the performance of our new approach using both benchmarks, designed to represent cortical connectivity, and larger, functional cortical models. In a benchmark network where neurons receive input from 8000 STDP synapses, our new approach allows 4× more neurons to be simulated on each SpiNNaker core than has been previously possible. We also demonstrate that the largest plastic neural network previously simulated on neuromorphic hardware can be run in real time using our new approach: double the speed that was previously achieved. Additionally this network contains two types of plastic synapse which previously had to be trained separately but, using our new approach, can be trained simultaneously. PMID:27683540

  15. Detection of whale calls in noise: performance comparison between a beluga whale, human listeners, and a neural network.

    PubMed

    Erbe, C

    2000-07-01

    This article examines the masking by anthropogenic noise of beluga whale calls. Results from human masking experiments and a software backpropagation neural network are compared to the performance of a trained beluga whale. The goal was to find an accurate, reliable, and fast model to replace lengthy and expensive animal experiments. A beluga call was masked by three types of noise, an icebreaker's bubbler system and propeller noise, and ambient arctic ice-cracking noise. Both the human experiment and the neural network successfully modeled the beluga data in the sense that they classified the noises in the same order from strongest to weakest masking as the whale and with similar call-detection thresholds. The neural network slightly outperformed the humans. Both models were then used to predict the masking of a fourth type of noise, Gaussian white noise. Their prediction ability was judged by returning to the aquarium to measure masked-hearing thresholds of a beluga in white noise. Both models and the whale identified bubbler noise as the strongest masker, followed by ramming, then white noise. Natural ice-cracking noise masked the least. However, the humans and the neural network slightly overpredicted the amount of masking for white noise. This is neglecting individual variation in belugas, because only one animal could be trained. Comparing the human model to the neural network model, the latter has the advantage of objectivity, reproducibility of results, and efficiency, particularly if the interference of a large number of signals and noise is to be examined.

  16. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.

  17. Dynamical synapses enhance neural information processing: gracefulness, accuracy, and mobility.

    PubMed

    Fung, C C Alan; Wong, K Y Michael; Wang, He; Wu, Si

    2012-05-01

    Experimental data have revealed that neuronal connection efficacy exhibits two forms of short-term plasticity: short-term depression (STD) and short-term facilitation (STF). They have time constants residing between fast neural signaling and rapid learning and may serve as substrates for neural systems manipulating temporal information on relevant timescales. This study investigates the impact of STD and STF on the dynamics of continuous attractor neural networks and their potential roles in neural information processing. We find that STD endows the network with slow-decaying plateau behaviors: the network that is initially being stimulated to an active state decays to a silent state very slowly on the timescale of STD rather than on that of neuralsignaling. This provides a mechanism for neural systems to hold sensory memory easily and shut off persistent activities gracefully. With STF, we find that the network can hold a memory trace of external inputs in the facilitated neuronal interactions, which provides a way to stabilize the network response to noisy inputs, leading to improved accuracy in population decoding. Furthermore, we find that STD increases the mobility of the network states. The increased mobility enhances the tracking performance of the network in response to time-varying stimuli, leading to anticipative neural responses. In general, we find that STD and STP tend to have opposite effects on network dynamics and complementary computational advantages, suggesting that the brain may employ a strategy of weighting them differentially depending on the computational purpose.

  18. Deep learning with coherent nanophotonic circuits

    NASA Astrophysics Data System (ADS)

    Shen, Yichen; Harris, Nicholas C.; Skirlo, Scott; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Sun, Xin; Zhao, Shijie; Larochelle, Hugo; Englund, Dirk; Soljačić, Marin

    2017-07-01

    Artificial neural networks are computational network models inspired by signal processing in the brain. These models have dramatically improved performance for many machine-learning tasks, including speech and image recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable Mach-Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.

  19. A neural network for the identification of measured helicopter noise

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Fuller, C. R.; O'Brien, W. F.

    1991-01-01

    The results of a preliminary study of the components of a novel acoustic helicopter identification system are described. The identification system uses the relationship between the amplitudes of the first eight harmonics in the main rotor noise spectrum to distinguish between helicopter types. Two classification algorithms are tested; a statistically optimal Bayes classifier, and a neural network adaptive classifier. The performance of these classifiers is tested using measured noise of three helicopters. The statistical classifier can correctly identify the helicopter an average of 67 percent of the time, while the neural network is correct an average of 65 percent of the time. These results indicate the need for additional study of the envelope of harmonic amplitudes as a component of a helicopter identification system. Issues concerning the implementation of the neural network classifier, such as training time and structure of the network, are discussed.

  20. Vein matching using artificial neural network in vein authentication systems

    NASA Astrophysics Data System (ADS)

    Noori Hoshyar, Azadeh; Sulaiman, Riza

    2011-10-01

    Personal identification technology as security systems is developing rapidly. Traditional authentication modes like key; password; card are not safe enough because they could be stolen or easily forgotten. Biometric as developed technology has been applied to a wide range of systems. According to different researchers, vein biometric is a good candidate among other biometric traits such as fingerprint, hand geometry, voice, DNA and etc for authentication systems. Vein authentication systems can be designed by different methodologies. All the methodologies consist of matching stage which is too important for final verification of the system. Neural Network is an effective methodology for matching and recognizing individuals in authentication systems. Therefore, this paper explains and implements the Neural Network methodology for finger vein authentication system. Neural Network is trained in Matlab to match the vein features of authentication system. The Network simulation shows the quality of matching as 95% which is a good performance for authentication system matching.

  1. A neural networks-based hybrid routing protocol for wireless mesh networks.

    PubMed

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic-i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance.

  2. A Neural Networks-Based Hybrid Routing Protocol for Wireless Mesh Networks

    PubMed Central

    Kojić, Nenad; Reljin, Irini; Reljin, Branimir

    2012-01-01

    The networking infrastructure of wireless mesh networks (WMNs) is decentralized and relatively simple, but they can display reliable functioning performance while having good redundancy. WMNs provide Internet access for fixed and mobile wireless devices. Both in urban and rural areas they provide users with high-bandwidth networks over a specific coverage area. The main problems affecting these networks are changes in network topology and link quality. In order to provide regular functioning, the routing protocol has the main influence in WMN implementations. In this paper we suggest a new routing protocol for WMN, based on good results of a proactive and reactive routing protocol, and for that reason it can be classified as a hybrid routing protocol. The proposed solution should avoid flooding and creating the new routing metric. We suggest the use of artificial logic—i.e., neural networks (NNs). This protocol is based on mobile agent technologies controlled by a Hopfield neural network. In addition to this, our new routing metric is based on multicriteria optimization in order to minimize delay and blocking probability (rejected packets or their retransmission). The routing protocol observes real network parameters and real network environments. As a result of artificial logic intelligence, the proposed routing protocol should maximize usage of network resources and optimize network performance. PMID:22969360

  3. Exponential Synchronization of Networked Chaotic Delayed Neural Network by a Hybrid Event Trigger Scheme.

    PubMed

    Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun; Zhongyang Fei; Chaoxu Guan; Huijun Gao; Fei, Zhongyang; Guan, Chaoxu; Gao, Huijun

    2018-06-01

    This paper is concerned with the exponential synchronization for master-slave chaotic delayed neural network with event trigger control scheme. The model is established on a network control framework, where both external disturbance and network-induced delay are taken into consideration. The desired aim is to synchronize the master and slave systems with limited communication capacity and network bandwidth. In order to save the network resource, we adopt a hybrid event trigger approach, which not only reduces the data package sending out, but also gets rid of the Zeno phenomenon. By using an appropriate Lyapunov functional, a sufficient criterion for the stability is proposed for the error system with extended ( , , )-dissipativity performance index. Moreover, hybrid event trigger scheme and controller are codesigned for network-based delayed neural network to guarantee the exponential synchronization between the master and slave systems. The effectiveness and potential of the proposed results are demonstrated through a numerical example.

  4. The quadriceps muscle of knee joint modelling Using Hybrid Particle Swarm Optimization-Neural Network (PSO-NN)

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Saadi Bin Ahmad; Marponga Tolos, Siti; Hee, Pah Chin; Ghani, Nor Azura Md; Ramli, Norazan Mohamed; Nasir, Noorhamizah Binti Mohamed; Ksm Kader, Babul Salam Bin; Saiful Huq, Mohammad

    2017-03-01

    Neural framework has for quite a while been known for its ability to handle a complex nonlinear system without a logical model and can learn refined nonlinear associations gives. Theoretically, the most surely understood computation to set up the framework is the backpropagation (BP) count which relies on upon the minimization of the mean square error (MSE). However, this algorithm is not totally efficient in the presence of outliers which usually exist in dynamic data. This paper exhibits the modelling of quadriceps muscle model by utilizing counterfeit smart procedures named consolidated backpropagation neural network nonlinear autoregressive (BPNN-NAR) and backpropagation neural network nonlinear autoregressive moving average (BPNN-NARMA) models in view of utilitarian electrical incitement (FES). We adapted particle swarm optimization (PSO) approach to enhance the performance of backpropagation algorithm. In this research, a progression of tests utilizing FES was led. The information that is gotten is utilized to build up the quadriceps muscle model. 934 preparing information, 200 testing and 200 approval information set are utilized as a part of the improvement of muscle model. It was found that both BPNN-NAR and BPNN-NARMA performed well in modelling this type of data. As a conclusion, the neural network time series models performed reasonably efficient for non-linear modelling such as active properties of the quadriceps muscle with one input, namely output namely muscle force.

  5. Implementing neural nets with programmable logic

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1988-01-01

    Networks of Boolean programmable logic modules are presented as one purely digital class of artificial neural nets. The approach contrasts with the continuous analog framework usually suggested. Programmable logic networks are capable of handling many neural-net applications. They avoid some of the limitations of threshold logic networks and present distinct opportunities. The network nodes are called dynamically programmable logic modules. They can be implemented with digitally controlled demultiplexers. Each node performs a Boolean function of its inputs which can be dynamically assigned. The overall network is therefore a combinational circuit and its outputs are Boolean global functions of the network's input variables. The approach offers definite advantages for VLSI implementation, namely, a regular architecture with limited connectivity, simplicity of the control machinery, natural modularity, and the support of a mature technology.

  6. A neural network approach for image reconstruction in electron magnetic resonance tomography.

    PubMed

    Durairaj, D Christopher; Krishna, Murali C; Murugesan, Ramachandran

    2007-10-01

    An object-oriented, artificial neural network (ANN) based, application system for reconstruction of two-dimensional spatial images in electron magnetic resonance (EMR) tomography is presented. The standard back propagation algorithm is utilized to train a three-layer sigmoidal feed-forward, supervised, ANN to perform the image reconstruction. The network learns the relationship between the 'ideal' images that are reconstructed using filtered back projection (FBP) technique and the corresponding projection data (sinograms). The input layer of the network is provided with a training set that contains projection data from various phantoms as well as in vivo objects, acquired from an EMR imager. Twenty five different network configurations are investigated to test the ability of the generalization of the network. The trained ANN then reconstructs two-dimensional temporal spatial images that present the distribution of free radicals in biological systems. Image reconstruction by the trained neural network shows better time complexity than the conventional iterative reconstruction algorithms such as multiplicative algebraic reconstruction technique (MART). The network is further explored for image reconstruction from 'noisy' EMR data and the results show better performance than the FBP method. The network is also tested for its ability to reconstruct from limited-angle EMR data set.

  7. Neural network for control of rearrangeable Clos networks.

    PubMed

    Park, Y K; Cherkassky, V

    1994-09-01

    Rapid evolution in the field of communication networks requires high speed switching technologies. This involves a high degree of parallelism in switching control and routing performed at the hardware level. The multistage crossbar networks have always been attractive to switch designers. In this paper a neural network approach to controlling a three-stage Clos network in real time is proposed. This controller provides optimal routing of communication traffic requests on a call-by-call basis by rearranging existing connections, with a minimum length of rearrangement sequence so that a new blocked call request can be accommodated. The proposed neural network controller uses Paull's rearrangement algorithm, along with the special (least used) switch selection rule in order to minimize the length of rearrangement sequences. The functional behavior of our model is verified by simulations and it is shown that the convergence time required for finding an optimal solution is constant, regardless of the switching network size. The performance is evaluated for random traffic with various traffic loads. Simulation results show that applying the least used switch selection rule increases the efficiency in switch rearrangements, reducing the network convergence time. The implementation aspects are also discussed to show the feasibility of the proposed approach.

  8. A new neural net approach to robot 3D perception and visuo-motor coordination

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan

    1992-01-01

    A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.

  9. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    PubMed

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  10. Neural network-based preprocessing to estimate the parameters of the X-ray emission of a single-temperature thermal plasma

    NASA Astrophysics Data System (ADS)

    Ichinohe, Y.; Yamada, S.; Miyazaki, N.; Saito, S.

    2018-04-01

    We present data preprocessing based on an artificial neural network to estimate the parameters of the X-ray emission spectra of a single-temperature thermal plasma. The method finds appropriate parameters close to the global optimum. The neural network is designed to learn the parameters of the thermal plasma (temperature, abundance, normalization and redshift) of the input spectra. After training using 9000 simulated X-ray spectra, the network has grown to predict all the unknown parameters with uncertainties of about a few per cent. The performance dependence on the network structure has been studied. We applied the neural network to an actual high-resolution spectrum obtained with Hitomi. The predicted plasma parameters agree with the known best-fitting parameters of the Perseus cluster within uncertainties of ≲10 per cent. The result shows that neural networks trained by simulated data might possibly be used to extract a feature built in the data. This would reduce human-intensive preprocessing costs before detailed spectral analysis, and would help us make the best use of the large quantities of spectral data that will be available in the coming decades.

  11. Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks.

    PubMed

    Saad, E W; Prokhorov, D V; Wunsch, D C

    1998-01-01

    Three networks are compared for low false alarm stock trend predictions. Short-term trends, particularly attractive for neural network analysis, can be used profitably in scenarios such as option trading, but only with significant risk. Therefore, we focus on limiting false alarms, which improves the risk/reward ratio by preventing losses. To predict stock trends, we exploit time delay, recurrent, and probabilistic neural networks (TDNN, RNN, and PNN, respectively), utilizing conjugate gradient and multistream extended Kalman filter training for TDNN and RNN. We also discuss different predictability analysis techniques and perform an analysis of predictability based on a history of daily closing price. Our results indicate that all the networks are feasible, the primary preference being one of convenience.

  12. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization

    PubMed Central

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods. PMID:28222194

  13. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization.

    PubMed

    Huang, Daizheng; Wu, Zhihui

    2017-01-01

    Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.

  14. Processing of chromatic information in a deep convolutional neural network.

    PubMed

    Flachot, Alban; Gegenfurtner, Karl R

    2018-04-01

    Deep convolutional neural networks are a class of machine-learning algorithms capable of solving non-trivial tasks, such as object recognition, with human-like performance. Little is known about the exact computations that deep neural networks learn, and to what extent these computations are similar to the ones performed by the primate brain. Here, we investigate how color information is processed in the different layers of the AlexNet deep neural network, originally trained on object classification of over 1.2M images of objects in their natural contexts. We found that the color-responsive units in the first layer of AlexNet learned linear features and were broadly tuned to two directions in color space, analogously to what is known of color responsive cells in the primate thalamus. Moreover, these directions are decorrelated and lead to statistically efficient representations, similar to the cardinal directions of the second-stage color mechanisms in primates. We also found, in analogy to the early stages of the primate visual system, that chromatic and achromatic information were segregated in the early layers of the network. Units in the higher layers of AlexNet exhibit on average a lower responsivity for color than units at earlier stages.

  15. Investigation of automated task learning, decomposition and scheduling

    NASA Technical Reports Server (NTRS)

    Livingston, David L.; Serpen, Gursel; Masti, Chandrashekar L.

    1990-01-01

    The details and results of research conducted in the application of neural networks to task planning and decomposition are presented. Task planning and decomposition are operations that humans perform in a reasonably efficient manner. Without the use of good heuristics and usually much human interaction, automatic planners and decomposers generally do not perform well due to the intractable nature of the problems under consideration. The human-like performance of neural networks has shown promise for generating acceptable solutions to intractable problems such as planning and decomposition. This was the primary reasoning behind attempting the study. The basis for the work is the use of state machines to model tasks. State machine models provide a useful means for examining the structure of tasks since many formal techniques have been developed for their analysis and synthesis. It is the approach to integrate the strong algebraic foundations of state machines with the heretofore trial-and-error approach to neural network synthesis.

  16. Bringing Interpretability and Visualization with Artificial Neural Networks

    ERIC Educational Resources Information Center

    Gritsenko, Andrey

    2017-01-01

    Extreme Learning Machine (ELM) is a training algorithm for Single-Layer Feed-forward Neural Network (SLFN). The difference in theory of ELM from other training algorithms is in the existence of explicitly-given solution due to the immutability of initialed weights. In practice, ELMs achieve performance similar to that of other state-of-the-art…

  17. A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects.

    PubMed

    Cacha, L A; Parida, S; Dehuri, S; Cho, S-B; Poznanski, R R

    2016-12-01

    The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.

  18. An LMI approach to design H(infinity) controllers for discrete-time nonlinear systems based on unified models.

    PubMed

    Liu, Meiqin; Zhang, Senlin

    2008-10-01

    A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L(2) gain (i.e. robust H(infinity) performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control design constraints are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms (e.g. interior-point algorithms) to determine the control law. Most discrete-time recurrent neural network (RNNs) and discrete-time nonlinear systems modelled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be robust H(infinity) performance analyzed or robust H(infinity) controller synthesized in a unified SNNM's framework. Finally, some examples are presented to illustrate the wide application of the SNNMs to the nonlinear systems, and the proposed approach is compared with related methods reported in the literature.

  19. Multispectral embedding-based deep neural network for three-dimensional human pose recovery

    NASA Astrophysics Data System (ADS)

    Yu, Jialin; Sun, Jifeng

    2018-01-01

    Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.

  20. Semantic Segmentation of Convolutional Neural Network for Supervised Classification of Multispectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Xue, L.; Liu, C.; Wu, Y.; Li, H.

    2018-04-01

    Semantic segmentation is a fundamental research in remote sensing image processing. Because of the complex maritime environment, the classification of roads, vegetation, buildings and water from remote Sensing Imagery is a challenging task. Although the neural network has achieved excellent performance in semantic segmentation in the last years, there are a few of works using CNN for ground object segmentation and the results could be further improved. This paper used convolution neural network named U-Net, its structure has a contracting path and an expansive path to get high resolution output. In the network , We added BN layers, which is more conducive to the reverse pass. Moreover, after upsampling convolution , we add dropout layers to prevent overfitting. They are promoted to get more precise segmentation results. To verify this network architecture, we used a Kaggle dataset. Experimental results show that U-Net achieved good performance compared with other architectures, especially in high-resolution remote sensing imagery.

  1. The biometric-based module of smart grid system

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Ermoshkina, A.

    2015-10-01

    Within Smart Grid concept the flexible biometric-based module base on Principal Component Analysis (PCA) and selective Neural Network is developed. The formation of the selective Neural Network the biometric-based module uses the method which includes three main stages: preliminary processing of the image, face localization and face recognition. Experiments on the Yale face database show that (i) selective Neural Network exhibits promising classification capability for face detection, recognition problems; and (ii) the proposed biometric-based module achieves near real-time face detection, recognition speed and the competitive performance, as compared to some existing subspaces-based methods.

  2. Particle identification with neural networks using a rotational invariant moment representation

    NASA Astrophysics Data System (ADS)

    Sinkus, R.; Voss, T.

    1997-02-01

    A feed-forward neural network is used to identify electromagnetic particles based upon their showering properties within a segmented calorimeter. The novel feature is the expansion of the energy distribution in terms of moments of the so-called Zernike functions which are invariant under rotation. The multidimensional input distribution for the neural network is transformed via a principle component analysis and rescaled by its respective variances to ensure input values of the order of one. This results is a better performance in identifying and separating electromagnetic from hadronic particles, especially at low energies.

  3. Enhanced online convolutional neural networks for object tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Dengzhuo; Gao, Yun; Zhou, Hao; Li, Tianwen

    2018-04-01

    In recent several years, object tracking based on convolution neural network has gained more and more attention. The initialization and update of convolution filters can directly affect the precision of object tracking effective. In this paper, a novel object tracking via an enhanced online convolution neural network without offline training is proposed, which initializes the convolution filters by a k-means++ algorithm and updates the filters by an error back-propagation. The comparative experiments of 7 trackers on 15 challenging sequences showed that our tracker can perform better than other trackers in terms of AUC and precision.

  4. Heuristic pattern correction scheme using adaptively trained generalized regression neural networks.

    PubMed

    Hoya, T; Chambers, J A

    2001-01-01

    In many pattern classification problems, an intelligent neural system is required which can learn the newly encountered but misclassified patterns incrementally, while keeping a good classification performance over the past patterns stored in the network. In the paper, an heuristic pattern correction scheme is proposed using adaptively trained generalized regression neural networks (GRNNs). The scheme is based upon both network growing and dual-stage shrinking mechanisms. In the network growing phase, a subset of the misclassified patterns in each incoming data set is iteratively added into the network until all the patterns in the incoming data set are classified correctly. Then, the redundancy in the growing phase is removed in the dual-stage network shrinking. Both long- and short-term memory models are considered in the network shrinking, which are motivated from biological study of the brain. The learning capability of the proposed scheme is investigated through extensive simulation studies.

  5. Dense Matching Comparison Between Census and a Convolutional Neural Network Algorithm for Plant Reconstruction

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Tian, J.; d'Angelo, P.; Reinartz, P.

    2018-05-01

    3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.

  6. Application of neural networks and sensitivity analysis to improved prediction of trauma survival.

    PubMed

    Hunter, A; Kennedy, L; Henry, J; Ferguson, I

    2000-05-01

    The performance of trauma departments is widely audited by applying predictive models that assess probability of survival, and examining the rate of unexpected survivals and deaths. Although the TRISS methodology, a logistic regression modelling technique, is still the de facto standard, it is known that neural network models perform better. A key issue when applying neural network models is the selection of input variables. This paper proposes a novel form of sensitivity analysis, which is simpler to apply than existing techniques, and can be used for both numeric and nominal input variables. The technique is applied to the audit survival problem, and used to analyse the TRISS variables. The conclusions discuss the implications for the design of further improved scoring schemes and predictive models.

  7. Investigating the management performance of disinfection analysis of water distribution networks using data mining approaches.

    PubMed

    Zounemat-Kermani, Mohammad; Ramezani-Charmahineh, Abdollah; Adamowski, Jan; Kisi, Ozgur

    2018-06-13

    Chlorination, the basic treatment utilized for drinking water sources, is widely used for water disinfection and pathogen elimination in water distribution networks. Thereafter, the proper prediction of chlorine consumption is of great importance in water distribution network performance. In this respect, data mining techniques-which have the ability to discover the relationship between dependent variable(s) and independent variables-can be considered as alternative approaches in comparison to conventional methods (e.g., numerical methods). This study examines the applicability of three key methods, based on the data mining approach, for predicting chlorine levels in four water distribution networks. ANNs (artificial neural networks, including the multi-layer perceptron neural network, MLPNN, and radial basis function neural network, RBFNN), SVM (support vector machine), and CART (classification and regression tree) methods were used to estimate the concentration of residual chlorine in distribution networks for three villages in Kerman Province, Iran. Produced water (flow), chlorine consumption, and residual chlorine were collected daily for 3 years. An assessment of the studied models using several statistical criteria (NSC, RMSE, R 2 , and SEP) indicated that, in general, MLPNN has the greatest capability for predicting chlorine levels followed by CART, SVM, and RBF-ANN. Weaker performance of the data-driven methods in the water distribution networks, in some cases, could be attributed to improper chlorination management rather than the methods' capability.

  8. Fault tolerance of artificial neural networks with applications in critical systems

    NASA Technical Reports Server (NTRS)

    Protzel, Peter W.; Palumbo, Daniel L.; Arras, Michael K.

    1992-01-01

    This paper investigates the fault tolerance characteristics of time continuous recurrent artificial neural networks (ANN) that can be used to solve optimization problems. The principle of operations and performance of these networks are first illustrated by using well-known model problems like the traveling salesman problem and the assignment problem. The ANNs are then subjected to 13 simultaneous 'stuck at 1' or 'stuck at 0' faults for network sizes of up to 900 'neurons'. The effects of these faults is demonstrated and the cause for the observed fault tolerance is discussed. An application is presented in which a network performs a critical task for a real-time distributed processing system by generating new task allocations during the reconfiguration of the system. The performance degradation of the ANN under the presence of faults is investigated by large-scale simulations, and the potential benefits of delegating a critical task to a fault tolerant network are discussed.

  9. Development of a neural network technique for KSTAR Thomson scattering diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Seung Hun, E-mail: leesh81@nfri.re.kr; Lee, J. H.; Yamada, I.

    Neural networks provide powerful approaches of dealing with nonlinear data and have been successfully applied to fusion plasma diagnostics and control systems. Controlling tokamak plasmas in real time is essential to measure the plasma parameters in situ. However, the χ{sup 2} method traditionally used in Thomson scattering diagnostics hampers real-time measurement due to the complexity of the calculations involved. In this study, we applied a neural network approach to Thomson scattering diagnostics in order to calculate the electron temperature, comparing the results to those obtained with the χ{sup 2} method. The best results were obtained for 10{sup 3} training cyclesmore » and eight nodes in the hidden layer. Our neural network approach shows good agreement with the χ{sup 2} method and performs the calculation twenty times faster.« less

  10. High solar activity predictions through an artificial neural network

    NASA Astrophysics Data System (ADS)

    Orozco-Del-Castillo, M. G.; Ortiz-Alemán, J. C.; Couder-Castañeda, C.; Hernández-Gómez, J. J.; Solís-Santomé, A.

    The effects of high-energy particles coming from the Sun on human health as well as in the integrity of outer space electronics make the prediction of periods of high solar activity (HSA) a task of significant importance. Since periodicities in solar indexes have been identified, long-term predictions can be achieved. In this paper, we present a method based on an artificial neural network to find a pattern in some harmonics which represent such periodicities. We used data from 1973 to 2010 to train the neural network, and different historical data for its validation. We also used the neural network along with a statistical analysis of its performance with known data to predict periods of HSA with different confidence intervals according to the three-sigma rule associated with solar cycles 24-26, which we found to occur before 2040.

  11. Design of order statistics filters using feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Maslennikova, Yu. S.; Bochkarev, V. V.

    2016-08-01

    In recent years significant progress have been made in the development of nonlinear data processing techniques. Such techniques are widely used in digital data filtering and image enhancement. Many of the most effective nonlinear filters based on order statistics. The widely used median filter is the best known order statistic filter. Generalized form of these filters could be presented based on Lloyd's statistics. Filters based on order statistics have excellent robustness properties in the presence of impulsive noise. In this paper, we present special approach for synthesis of order statistics filters using artificial neural networks. Optimal Lloyd's statistics are used for selecting of initial weights for the neural network. Adaptive properties of neural networks provide opportunities to optimize order statistics filters for data with asymmetric distribution function. Different examples demonstrate the properties and performance of presented approach.

  12. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    NASA Astrophysics Data System (ADS)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  13. Integrated Neural Flight and Propulsion Control System

    NASA Technical Reports Server (NTRS)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  14. Wavelets and Elman Neural Networks for monitoring environmental variables

    NASA Astrophysics Data System (ADS)

    Ciarlini, Patrizia; Maniscalco, Umberto

    2008-11-01

    An application in cultural heritage is introduced. Wavelet decomposition and Neural Networks like virtual sensors are jointly used to simulate physical and chemical measurements in specific locations of a monument. Virtual sensors, suitably trained and tested, can substitute real sensors in monitoring the monument surface quality, while the real ones should be installed for a long time and at high costs. The application of the wavelet decomposition to the environmental data series allows getting the treatment of underlying temporal structure at low frequencies. Consequently a separate training of suitable Elman Neural Networks for high/low components can be performed, thus improving the networks convergence in learning time and measurement accuracy in working time.

  15. [Application of artificial neural networks on the prediction of surface ozone concentrations].

    PubMed

    Shen, Lu-Lu; Wang, Yu-Xuan; Duan, Lei

    2011-08-01

    Ozone is an important secondary air pollutant in the lower atmosphere. In order to predict the hourly maximum ozone one day in advance based on the meteorological variables for the Wanqingsha site in Guangzhou, Guangdong province, a neural network model (Multi-Layer Perceptron) and a multiple linear regression model were used and compared. Model inputs are meteorological parameters (wind speed, wind direction, air temperature, relative humidity, barometric pressure and solar radiation) of the next day and hourly maximum ozone concentration of the previous day. The OBS (optimal brain surgeon) was adopted to prune the neutral work, to reduce its complexity and to improve its generalization ability. We find that the pruned neural network has the capacity to predict the peak ozone, with an agreement index of 92.3%, the root mean square error of 0.0428 mg/m3, the R-square of 0.737 and the success index of threshold exceedance 77.0% (the threshold O3 mixing ratio of 0.20 mg/m3). When the neural classifier was added to the neural network model, the success index of threshold exceedance increased to 83.6%. Through comparison of the performance indices between the multiple linear regression model and the neural network model, we conclud that that neural network is a better choice to predict peak ozone from meteorological forecast, which may be applied to practical prediction of ozone concentration.

  16. ChemNet: A Transferable and Generalizable Deep Neural Network for Small-Molecule Property Prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goh, Garrett B.; Siegel, Charles M.; Vishnu, Abhinav

    With access to large datasets, deep neural networks through representation learning have been able to identify patterns from raw data, achieving human-level accuracy in image and speech recognition tasks. However, in chemistry, availability of large standardized and labelled datasets is scarce, and with a multitude of chemical properties of interest, chemical data is inherently small and fragmented. In this work, we explore transfer learning techniques in conjunction with the existing Chemception CNN model, to create a transferable and generalizable deep neural network for small-molecule property prediction. Our latest model, ChemNet learns in a semi-supervised manner from inexpensive labels computed frommore » the ChEMBL database. When fine-tuned to the Tox21, HIV and FreeSolv dataset, which are 3 separate chemical tasks that ChemNet was not originally trained on, we demonstrate that ChemNet exceeds the performance of existing Chemception models, contemporary MLP models that trains on molecular fingerprints, and it matches the performance of the ConvGraph algorithm, the current state-of-the-art. Furthermore, as ChemNet has been pre-trained on a large diverse chemical database, it can be used as a universal “plug-and-play” deep neural network, which accelerates the deployment of deep neural networks for the prediction of novel small-molecule chemical properties.« less

  17. Engine With Regression and Neural Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2001-01-01

    At the NASA Glenn Research Center, the NASA engine performance program (NEPP, ref. 1) and the design optimization testbed COMETBOARDS (ref. 2) with regression and neural network analysis-approximators have been coupled to obtain a preliminary engine design methodology. The solution to a high-bypass-ratio subsonic waverotor-topped turbofan engine, which is shown in the preceding figure, was obtained by the simulation depicted in the following figure. This engine is made of 16 components mounted on two shafts with 21 flow stations. The engine is designed for a flight envelope with 47 operating points. The design optimization utilized both neural network and regression approximations, along with the cascade strategy (ref. 3). The cascade used three algorithms in sequence: the method of feasible directions, the sequence of unconstrained minimizations technique, and sequential quadratic programming. The normalized optimum thrusts obtained by the three methods are shown in the following figure: the cascade algorithm with regression approximation is represented by a triangle, a circle is shown for the neural network solution, and a solid line indicates original NEPP results. The solutions obtained from both approximate methods lie within one standard deviation of the benchmark solution for each operating point. The simulation improved the maximum thrust by 5 percent. The performance of the linear regression and neural network methods as alternate engine analyzers was found to be satisfactory for the analysis and operation optimization of air-breathing propulsion engines (ref. 4).

  18. A Neural Relevance Model for Feature Extraction from Hyperspectral Images, and Its Application in the Wavelet Domain

    DTIC Science & Technology

    2006-08-01

    Nikolas Avouris. Evaluation of classifiers for an uneven class distribution problem. Applied Artificial Intellegence , pages 1-24, 2006. Draft manuscript...data by a hybrid artificial neural network so we may evaluate the classification capabilities of the baseline GRLVQ and our improved GRLVQI. Chapter 4...performance of GRLVQ(I), we compare the results against a baseline classification of the 23-class problem with a hybrid artificial neural network (ANN

  19. A novel and generalized approach in the inversion of geoelectrical resistivity data using Artificial Neural Networks (ANN)

    NASA Astrophysics Data System (ADS)

    Raj, A. Stanley; Srinivas, Y.; Oliver, D. Hudson; Muthuraj, D.

    2014-03-01

    The non-linear apparent resistivity problem in the subsurface study of the earth takes into account the model parameters in terms of resistivity and thickness of individual subsurface layers using the trained synthetic data by means of Artificial Neural Networks (ANN). Here we used a single layer feed-forward neural network with fast back propagation learning algorithm. So on proper training of back propagation networks it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data with reference to the synthetic data trained in the appropriate network. During training, the weights and biases of the network are iteratively adjusted to make network performance function level more efficient. On adequate training, errors are minimized and the best result is obtained using the artificial neural networks. The network is trained with more number of VES data and this trained network is demonstrated by the field data. The accuracy of inversion depends upon the number of data trained. In this novel and specially designed algorithm, the interpretation of the vertical electrical sounding has been done successfully with the more accurate layer model.

  20. A model for integrating elementary neural functions into delayed-response behavior.

    PubMed

    Gisiger, Thomas; Kerszberg, Michel

    2006-04-01

    It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning), and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task), or recalling from this image another one that has been associated with it during training (delayed-pair association task). The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.

  1. Deep convolutional neural network based antenna selection in multiple-input multiple-output system

    NASA Astrophysics Data System (ADS)

    Cai, Jiaxin; Li, Yan; Hu, Ying

    2018-03-01

    Antenna selection of wireless communication system has attracted increasing attention due to the challenge of keeping a balance between communication performance and computational complexity in large-scale Multiple-Input MultipleOutput antenna systems. Recently, deep learning based methods have achieved promising performance for large-scale data processing and analysis in many application fields. This paper is the first attempt to introduce the deep learning technique into the field of Multiple-Input Multiple-Output antenna selection in wireless communications. First, the label of attenuation coefficients channel matrix is generated by minimizing the key performance indicator of training antenna systems. Then, a deep convolutional neural network that explicitly exploits the massive latent cues of attenuation coefficients is learned on the training antenna systems. Finally, we use the adopted deep convolutional neural network to classify the channel matrix labels of test antennas and select the optimal antenna subset. Simulation experimental results demonstrate that our method can achieve better performance than the state-of-the-art baselines for data-driven based wireless antenna selection.

  2. Time Series Forecasting of Daily Reference Evapotranspiration by Neural Network Ensemble Learning for Irrigation System

    NASA Astrophysics Data System (ADS)

    Manikumari, N.; Murugappan, A.; Vinodhini, G.

    2017-07-01

    Time series forecasting has gained remarkable interest of researchers in the last few decades. Neural networks based time series forecasting have been employed in various application areas. Reference Evapotranspiration (ETO) is one of the most important components of the hydrologic cycle and its precise assessment is vital in water balance and crop yield estimation, water resources system design and management. This work aimed at achieving accurate time series forecast of ETO using a combination of neural network approaches. This work was carried out using data collected in the command area of VEERANAM Tank during the period 2004 - 2014 in India. In this work, the Neural Network (NN) models were combined by ensemble learning in order to improve the accuracy for forecasting Daily ETO (for the year 2015). Bagged Neural Network (Bagged-NN) and Boosted Neural Network (Boosted-NN) ensemble learning were employed. It has been proved that Bagged-NN and Boosted-NN ensemble models are better than individual NN models in terms of accuracy. Among the ensemble models, Boosted-NN reduces the forecasting errors compared to Bagged-NN and individual NNs. Regression co-efficient, Mean Absolute Deviation, Mean Absolute Percentage error and Root Mean Square Error also ascertain that Boosted-NN lead to improved ETO forecasting performance.

  3. An adaptable neural-network model for recursive nonlinear traffic prediction and modeling of MPEG video sources.

    PubMed

    Doulamis, A D; Doulamis, N D; Kollias, S D

    2003-01-01

    Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP)-based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural-network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural-network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real-life MPEG coded video sources of long duration and compared with other linear/nonlinear techniques used for both cases. The results indicate that the proposed adaptable neural-network architecture presents better performance than other examined techniques.

  4. Predictive Behavior of a Computational Foot/Ankle Model through Artificial Neural Networks.

    PubMed

    Chande, Ruchi D; Hargraves, Rosalyn Hobson; Ortiz-Robinson, Norma; Wayne, Jennifer S

    2017-01-01

    Computational models are useful tools to study the biomechanics of human joints. Their predictive performance is heavily dependent on bony anatomy and soft tissue properties. Imaging data provides anatomical requirements while approximate tissue properties are implemented from literature data, when available. We sought to improve the predictive capability of a computational foot/ankle model by optimizing its ligament stiffness inputs using feedforward and radial basis function neural networks. While the former demonstrated better performance than the latter per mean square error, both networks provided reasonable stiffness predictions for implementation into the computational model.

  5. Application of a neural network as a potential aid in predicting NTF pump failure

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Hill, Jeffrey S.; Lamarsh, William J., II; Bradley, David E.

    1993-01-01

    The National Transonic Facility has three centrifugal multi-stage pumps to supply liquid nitrogen to the wind tunnel. Pump reliability is critical to facility operation and test capability. A highly desirable goal is to be able to detect a pump rotating component problem as early as possible during normal operation and avoid serious damage to other pump components. If a problem is detected before serious damage occurs, the repair cost and downtime could be reduced significantly. A neural network-based tool was developed for monitoring pump performance and aiding in predicting pump failure. Once trained, neural networks can rapidly process many combinations of input values other than those used for training to approximate previously unknown output values. This neural network was applied to establish relationships among the critical frequencies and aid in predicting failures. Training pairs were developed from frequency scans from typical tunnel operations. After training, various combinations of critical pump frequencies were propagated through the neural network. The approximated output was used to create a contour plot depicting the relationships of the input frequencies to the output pump frequency.

  6. Neural networks application to divergence-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1992-01-01

    The purpose of this report is to summarize the state of knowledge and outline the planned work in divergence-based/neural networks approach to the problem of passive ranging derived from optical flow. Work in this and closely related areas is reviewed in order to provide the necessary background for further developments. New ideas about devising a monocular passive-ranging system are then introduced. It is shown that image-plan divergence is independent of image-plan location with respect to the focus of expansion and of camera maneuvers because it directly measures the object's expansion which, in turn, is related to the time-to-collision. Thus, a divergence-based method has the potential of providing a reliable range complementing other monocular passive-ranging methods which encounter difficulties in image areas close to the focus of expansion. Image-plan divergence can be thought of as some spatial/temporal pattern. A neural network realization was chosen for this task because neural networks have generally performed well in various other pattern recognition applications. The main goal of this work is to teach a neural network to derive the divergence from the imagery.

  7. Prediction of forced expiratory volume in pulmonary function test using radial basis neural networks and k-means clustering.

    PubMed

    Manoharan, Sujatha C; Ramakrishnan, Swaminathan

    2009-10-01

    In this work, prediction of forced expiratory volume in pulmonary function test, carried out using spirometry and neural networks is presented. The pulmonary function data were recorded from volunteers using commercial available flow volume spirometer in standard acquisition protocol. The Radial Basis Function neural networks were used to predict forced expiratory volume in 1 s (FEV1) from the recorded flow volume curves. The optimal centres of the hidden layer of radial basis function were determined by k-means clustering algorithm. The performance of the neural network model was evaluated by computing their prediction error statistics of average value, standard deviation, root mean square and their correlation with the true data for normal, restrictive and obstructive cases. Results show that the adopted neural networks are capable of predicting FEV1 in both normal and abnormal cases. Prediction accuracy was more in obstructive abnormality when compared to restrictive cases. It appears that this method of assessment is useful in diagnosing the pulmonary abnormalities with incomplete data and data with poor recording.

  8. Container-code recognition system based on computer vision and deep neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao

    2018-04-01

    Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.

  9. Vector Symbolic Spiking Neural Network Model of Hippocampal Subarea CA1 Novelty Detection Functionality.

    PubMed

    Agerskov, Claus

    2016-04-01

    A neural network model is presented of novelty detection in the CA1 subdomain of the hippocampal formation from the perspective of information flow. This computational model is restricted on several levels by both anatomical information about hippocampal circuitry and behavioral data from studies done in rats. Several studies report that the CA1 area broadcasts a generalized novelty signal in response to changes in the environment. Using the neural engineering framework developed by Eliasmith et al., a spiking neural network architecture is created that is able to compare high-dimensional vectors, symbolizing semantic information, according to the semantic pointer hypothesis. This model then computes the similarity between the vectors, as both direct inputs and a recalled memory from a long-term memory network by performing the dot-product operation in a novelty neural network architecture. The developed CA1 model agrees with available neuroanatomical data, as well as the presented behavioral data, and so it is a biologically realistic model of novelty detection in the hippocampus, which can provide a feasible explanation for experimentally observed dynamics.

  10. Engineering neural systems for high-level problem solving.

    PubMed

    Sylvester, Jared; Reggia, James

    2016-07-01

    There is a long-standing, sometimes contentious debate in AI concerning the relative merits of a symbolic, top-down approach vs. a neural, bottom-up approach to engineering intelligent machine behaviors. While neurocomputational methods excel at lower-level cognitive tasks (incremental learning for pattern classification, low-level sensorimotor control, fault tolerance and processing of noisy data, etc.), they are largely non-competitive with top-down symbolic methods for tasks involving high-level cognitive problem solving (goal-directed reasoning, metacognition, planning, etc.). Here we take a step towards addressing this limitation by developing a purely neural framework named galis. Our goal in this work is to integrate top-down (non-symbolic) control of a neural network system with more traditional bottom-up neural computations. galis is based on attractor networks that can be "programmed" with temporal sequences of hand-crafted instructions that control problem solving by gating the activity retention of, communication between, and learning done by other neural networks. We demonstrate the effectiveness of this approach by showing that it can be applied successfully to solve sequential card matching problems, using both human performance and a top-down symbolic algorithm as experimental controls. Solving this kind of problem makes use of top-down attention control and the binding together of visual features in ways that are easy for symbolic AI systems but not for neural networks to achieve. Our model can not only be instructed on how to solve card matching problems successfully, but its performance also qualitatively (and sometimes quantitatively) matches the performance of both human subjects that we had perform the same task and the top-down symbolic algorithm that we used as an experimental control. We conclude that the core principles underlying the galis framework provide a promising approach to engineering purely neurocomputational systems for problem-solving tasks that in people require higher-level cognitive functions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Using Fuzzy Logic for Performance Evaluation in Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap S.

    1992-01-01

    Current reinforcement learning algorithms require long training periods which generally limit their applicability to small size problems. A new architecture is described which uses fuzzy rules to initialize its two neural networks: a neural network for performance evaluation and another for action selection. This architecture is applied to control of dynamic systems and it is demonstrated that it is possible to start with an approximate prior knowledge and learn to refine it through experiments using reinforcement learning.

  12. Tracking Plasticity: Effects of Long-Term Rehearsal in Expert Dancers Encoding Music to Movement

    PubMed Central

    Bar, Rachel J.; DeSouza, Joseph F. X.

    2016-01-01

    Our knowledge of neural plasticity suggests that neural networks show adaptation to environmental and intrinsic change. In particular, studies investigating the neuroplastic changes associated with learning and practicing motor tasks have shown that practicing such tasks results in an increase in neural activation in several specific brain regions. However, studies comparing experts and non-experts suggest that experts employ less neuronal activation than non-experts when performing a familiar motor task. Here, we aimed to determine the long-term changes in neural networks associated with learning a new dance in professional ballet dancers over 34 weeks. Subjects visualized dance movements to music while undergoing fMRI scanning at four time points over 34-weeks. Results demonstrated that initial learning and performance at seven weeks led to increases in activation in cortical regions during visualization compared to the first week. However, at 34 weeks, the cortical networks showed reduced activation compared to week seven. Specifically, motor learning and performance over the 34 weeks showed the typical inverted-U-shaped function of learning. Further, our result demonstrate that learning of a motor sequence of dance movements to music in the real world can be visualized by expert dancers using fMRI and capture highly significant modeled fits of the brain network variance of BOLD signals from early learning to expert level performance. PMID:26824475

  13. Compact holographic optical neural network system for real-time pattern recognition

    NASA Astrophysics Data System (ADS)

    Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.

    1996-08-01

    One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.

  14. Improved methods in neural network-based adaptive output feedback control, with applications to flight control

    NASA Astrophysics Data System (ADS)

    Kim, Nakwan

    Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.

  15. Conic section function neural network circuitry for offline signature recognition.

    PubMed

    Erkmen, Burcu; Kahraman, Nihan; Vural, Revna A; Yildirim, Tulay

    2010-04-01

    In this brief, conic section function neural network (CSFNN) circuitry was designed for offline signature recognition. CSFNN is a unified framework for multilayer perceptron (MLP) and radial basis function (RBF) networks to make simultaneous use of advantages of both. The CSFNN circuitry architecture was developed using a mixed mode circuit implementation. The designed circuit system is problem independent. Hence, the general purpose neural network circuit system could be applied to various pattern recognition problems with different network sizes on condition with the maximum network size of 16-16-8. In this brief, CSFNN circuitry system has been applied to two different signature recognition problems. CSFNN circuitry was trained with chip-in-the-loop learning technique in order to compensate typical analog process variations. CSFNN hardware achieved highly comparable computational performances with CSFNN software for nonlinear signature recognition problems.

  16. Clinical Named Entity Recognition Using Deep Learning Models.

    PubMed

    Wu, Yonghui; Jiang, Min; Xu, Jun; Zhi, Degui; Xu, Hua

    2017-01-01

    Clinical Named Entity Recognition (NER) is a critical natural language processing (NLP) task to extract important concepts (named entities) from clinical narratives. Researchers have extensively investigated machine learning models for clinical NER. Recently, there have been increasing efforts to apply deep learning models to improve the performance of current clinical NER systems. This study examined two popular deep learning architectures, the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN), to extract concepts from clinical texts. We compared the two deep neural network architectures with three baseline Conditional Random Fields (CRFs) models and two state-of-the-art clinical NER systems using the i2b2 2010 clinical concept extraction corpus. The evaluation results showed that the RNN model trained with the word embeddings achieved a new state-of-the- art performance (a strict F1 score of 85.94%) for the defined clinical NER task, outperforming the best-reported system that used both manually defined and unsupervised learning features. This study demonstrates the advantage of using deep neural network architectures for clinical concept extraction, including distributed feature representation, automatic feature learning, and long-term dependencies capture. This is one of the first studies to compare the two widely used deep learning models and demonstrate the superior performance of the RNN model for clinical NER.

  17. Relaxed fault-tolerant hardware implementation of neural networks in the presence of multiple transient errors.

    PubMed

    Mahdiani, Hamid Reza; Fakhraie, Sied Mehdi; Lucas, Caro

    2012-08-01

    Reliability should be identified as the most important challenge in future nano-scale very large scale integration (VLSI) implementation technologies for the development of complex integrated systems. Normally, fault tolerance (FT) in a conventional system is achieved by increasing its redundancy, which also implies higher implementation costs and lower performance that sometimes makes it even infeasible. In contrast to custom approaches, a new class of applications is categorized in this paper, which is inherently capable of absorbing some degrees of vulnerability and providing FT based on their natural properties. Neural networks are good indicators of imprecision-tolerant applications. We have also proposed a new class of FT techniques called relaxed fault-tolerant (RFT) techniques which are developed for VLSI implementation of imprecision-tolerant applications. The main advantage of RFT techniques with respect to traditional FT solutions is that they exploit inherent FT of different applications to reduce their implementation costs while improving their performance. To show the applicability as well as the efficiency of the RFT method, the experimental results for implementation of a face-recognition computationally intensive neural network and its corresponding RFT realization are presented in this paper. The results demonstrate promising higher performance of artificial neural network VLSI solutions for complex applications in faulty nano-scale implementation environments.

  18. High-performance reconfigurable hardware architecture for restricted Boltzmann machines.

    PubMed

    Ly, Daniel Le; Chow, Paul

    2010-11-01

    Despite the popularity and success of neural networks in research, the number of resulting commercial or industrial applications has been limited. A primary cause for this lack of adoption is that neural networks are usually implemented as software running on general-purpose processors. Hence, a hardware implementation that can exploit the inherent parallelism in neural networks is desired. This paper investigates how the restricted Boltzmann machine (RBM), which is a popular type of neural network, can be mapped to a high-performance hardware architecture on field-programmable gate array (FPGA) platforms. The proposed modular framework is designed to reduce the time complexity of the computations through heavily customized hardware engines. A method to partition large RBMs into smaller congruent components is also presented, allowing the distribution of one RBM across multiple FPGA resources. The framework is tested on a platform of four Xilinx Virtex II-Pro XC2VP70 FPGAs running at 100 MHz through a variety of different configurations. The maximum performance was obtained by instantiating an RBM of 256 × 256 nodes distributed across four FPGAs, which resulted in a computational speed of 3.13 billion connection-updates-per-second and a speedup of 145-fold over an optimized C program running on a 2.8-GHz Intel processor.

  19. Decoupling control of vehicle chassis system based on neural network inverse system

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  20. Clinical Named Entity Recognition Using Deep Learning Models

    PubMed Central

    Wu, Yonghui; Jiang, Min; Xu, Jun; Zhi, Degui; Xu, Hua

    2017-01-01

    Clinical Named Entity Recognition (NER) is a critical natural language processing (NLP) task to extract important concepts (named entities) from clinical narratives. Researchers have extensively investigated machine learning models for clinical NER. Recently, there have been increasing efforts to apply deep learning models to improve the performance of current clinical NER systems. This study examined two popular deep learning architectures, the Convolutional Neural Network (CNN) and the Recurrent Neural Network (RNN), to extract concepts from clinical texts. We compared the two deep neural network architectures with three baseline Conditional Random Fields (CRFs) models and two state-of-the-art clinical NER systems using the i2b2 2010 clinical concept extraction corpus. The evaluation results showed that the RNN model trained with the word embeddings achieved a new state-of-the- art performance (a strict F1 score of 85.94%) for the defined clinical NER task, outperforming the best-reported system that used both manually defined and unsupervised learning features. This study demonstrates the advantage of using deep neural network architectures for clinical concept extraction, including distributed feature representation, automatic feature learning, and long-term dependencies capture. This is one of the first studies to compare the two widely used deep learning models and demonstrate the superior performance of the RNN model for clinical NER. PMID:29854252

  1. Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.

    PubMed

    Xu, Kesheng; Maidana, Jean Paul; Castro, Samy; Orio, Patricio

    2018-05-30

    Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that - when isolated - can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.

  2. A solution for two-dimensional mazes with use of chaotic dynamics in a recurrent neural network model.

    PubMed

    Suemitsu, Yoshikazu; Nara, Shigetoshi

    2004-09-01

    Chaotic dynamics introduced into a neural network model is applied to solving two-dimensional mazes, which are ill-posed problems. A moving object moves from the position at t to t + 1 by simply defined motion function calculated from firing patterns of the neural network model at each time step t. We have embedded several prototype attractors that correspond to the simple motion of the object orienting toward several directions in two-dimensional space in our neural network model. Introducing chaotic dynamics into the network gives outputs sampled from intermediate state points between embedded attractors in a state space, and these dynamics enable the object to move in various directions. System parameter switching between a chaotic and an attractor regime in the state space of the neural network enables the object to move to a set target in a two-dimensional maze. Results of computer simulations show that the success rate for this method over 300 trials is higher than that of random walk. To investigate why the proposed method gives better performance, we calculate and discuss statistical data with respect to dynamical structure.

  3. Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs).

    PubMed

    Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold

    2014-12-01

    In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. DCS-Neural-Network Program for Aircraft Control and Testing

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    2006-01-01

    A computer program implements a dynamic-cell-structure (DCS) artificial neural network that can perform such tasks as learning selected aerodynamic characteristics of an airplane from wind-tunnel test data and computing real-time stability and control derivatives of the airplane for use in feedback linearized control. A DCS neural network is one of several types of neural networks that can incorporate additional nodes in order to rapidly learn increasingly complex relationships between inputs and outputs. In the DCS neural network implemented by the present program, the insertion of nodes is based on accumulated error. A competitive Hebbian learning rule (a supervised-learning rule in which connection weights are adjusted to minimize differences between actual and desired outputs for training examples) is used. A Kohonen-style learning rule (derived from a relatively simple training algorithm, implements a Delaunay triangulation layout of neurons) is used to adjust node positions during training. Neighborhood topology determines which nodes are used to estimate new values. The network learns, starting with two nodes, and adds new nodes sequentially in locations chosen to maximize reductions in global error. At any given time during learning, the error becomes homogeneously distributed over all nodes.

  5. Bridging the Gap between Physiology and Behavior: Evidence from the sSoTS Model of Human Visual Attention

    ERIC Educational Resources Information Center

    Mavritsaki, Eirini; Heinke, Dietmar; Allen, Harriet; Deco, Gustavo; Humphreys, Glyn W.

    2011-01-01

    We present the case for a role of biologically plausible neural network modeling in bridging the gap between physiology and behavior. We argue that spiking-level networks can allow "vertical" translation between physiological properties of neural systems and emergent "whole-system" performance--enabling psychological results to be simulated from…

  6. Flexible body control using neural networks

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  7. Neuromorphic Learning From Noisy Data

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Troudet, Terry

    1993-01-01

    Two reports present numerical study of performance of feedforward neural network trained by back-propagation algorithm in learning continuous-valued mappings from data corrupted by noise. Two types of noise considered: plant noise which affects dynamics of controlled process and data-processing noise, which occurs during analog processing and digital sampling of signals. Study performed with view toward use of neural networks as neurocontrollers to substitute for, or enhance, performances of human experts in controlling mechanical devices in presence of sensor and actuator noise and to enhance performances of more-conventional digital feedback electronic process controllers in noisy environments.

  8. Neural self-tuning adaptive control of non-minimum phase system

    NASA Technical Reports Server (NTRS)

    Ho, Long T.; Bialasiewicz, Jan T.; Ho, Hai T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity, if not unstable, closed-loop behavior. Therefore, a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  9. Small-time Scale Network Traffic Prediction Based on Complex-valued Neural Network

    NASA Astrophysics Data System (ADS)

    Yang, Bin

    2017-07-01

    Accurate models play an important role in capturing the significant characteristics of the network traffic, analyzing the network dynamic, and improving the forecasting accuracy for system dynamics. In this study, complex-valued neural network (CVNN) model is proposed to further improve the accuracy of small-time scale network traffic forecasting. Artificial bee colony (ABC) algorithm is proposed to optimize the complex-valued and real-valued parameters of CVNN model. Small-scale traffic measurements data namely the TCP traffic data is used to test the performance of CVNN model. Experimental results reveal that CVNN model forecasts the small-time scale network traffic measurement data very accurately

  10. Learning polynomial feedforward neural networks by genetic programming and backpropagation.

    PubMed

    Nikolaev, N Y; Iba, H

    2003-01-01

    This paper presents an approach to learning polynomial feedforward neural networks (PFNNs). The approach suggests, first, finding the polynomial network structure by means of a population-based search technique relying on the genetic programming paradigm, and second, further adjustment of the best discovered network weights by an especially derived backpropagation algorithm for higher order networks with polynomial activation functions. These two stages of the PFNN learning process enable us to identify networks with good training as well as generalization performance. Empirical results show that this approach finds PFNN which outperform considerably some previous constructive polynomial network algorithms on processing benchmark time series.

  11. A Task-Optimized Neural Network Replicates Human Auditory Behavior, Predicts Brain Responses, and Reveals a Cortical Processing Hierarchy.

    PubMed

    Kell, Alexander J E; Yamins, Daniel L K; Shook, Erica N; Norman-Haignere, Sam V; McDermott, Josh H

    2018-05-02

    A core goal of auditory neuroscience is to build quantitative models that predict cortical responses to natural sounds. Reasoning that a complete model of auditory cortex must solve ecologically relevant tasks, we optimized hierarchical neural networks for speech and music recognition. The best-performing network contained separate music and speech pathways following early shared processing, potentially replicating human cortical organization. The network performed both tasks as well as humans and exhibited human-like errors despite not being optimized to do so, suggesting common constraints on network and human performance. The network predicted fMRI voxel responses substantially better than traditional spectrotemporal filter models throughout auditory cortex. It also provided a quantitative signature of cortical representational hierarchy-primary and non-primary responses were best predicted by intermediate and late network layers, respectively. The results suggest that task optimization provides a powerful set of tools for modeling sensory systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Neural networks for learning and prediction with applications to remote sensing and speech perception

    NASA Astrophysics Data System (ADS)

    Gjaja, Marin N.

    1997-11-01

    Neural networks for supervised and unsupervised learning are developed and applied to problems in remote sensing, continuous map learning, and speech perception. Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART networks synthesize fuzzy logic and neural networks, and supervised ARTMAP networks incorporate ART modules for prediction and classification. New ART and ARTMAP methods resulting from analyses of data structure, parameter specification, and category selection are developed. Architectural modifications providing flexibility for a variety of applications are also introduced and explored. A new methodology for automatic mapping from Landsat Thematic Mapper (TM) and terrain data, based on fuzzy ARTMAP, is developed. System capabilities are tested on a challenging remote sensing problem, prediction of vegetation classes in the Cleveland National Forest from spectral and terrain features. After training at the pixel level, performance is tested at the stand level, using sites not seen during training. Results are compared to those of maximum likelihood classifiers, back propagation neural networks, and K-nearest neighbor algorithms. Best performance is obtained using a hybrid system based on a convex combination of fuzzy ARTMAP and maximum likelihood predictions. This work forms the foundation for additional studies exploring fuzzy ARTMAP's capability to estimate class mixture composition for non-homogeneous sites. Exploratory simulations apply ARTMAP to the problem of learning continuous multidimensional mappings. A novel system architecture retains basic ARTMAP properties of incremental and fast learning in an on-line setting while adding components to solve this class of problems. The perceptual magnet effect is a language-specific phenomenon arising early in infant speech development that is characterized by a warping of speech sound perception. An unsupervised neural network model is proposed that embodies two principal hypotheses supported by experimental data--that sensory experience guides language-specific development of an auditory neural map and that a population vector can predict psychological phenomena based on map cell activities. Model simulations show how a nonuniform distribution of map cell firing preferences can develop from language-specific input and give rise to the magnet effect.

  13. Seismic activity prediction using computational intelligence techniques in northern Pakistan

    NASA Astrophysics Data System (ADS)

    Asim, Khawaja M.; Awais, Muhammad; Martínez-Álvarez, F.; Iqbal, Talat

    2017-10-01

    Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar's statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.

  14. A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks

    PubMed Central

    Wang, Changjian; Liu, Xiaohui; Jin, Shiyao

    2018-01-01

    Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment. PMID:29955227

  15. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    PubMed

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Standard representation and unified stability analysis for dynamic artificial neural network models.

    PubMed

    Kim, Kwang-Ki K; Patrón, Ernesto Ríos; Braatz, Richard D

    2018-02-01

    An overview is provided of dynamic artificial neural network models (DANNs) for nonlinear dynamical system identification and control problems, and convex stability conditions are proposed that are less conservative than past results. The three most popular classes of dynamic artificial neural network models are described, with their mathematical representations and architectures followed by transformations based on their block diagrams that are convenient for stability and performance analyses. Classes of nonlinear dynamical systems that are universally approximated by such models are characterized, which include rigorous upper bounds on the approximation errors. A unified framework and linear matrix inequality-based stability conditions are described for different classes of dynamic artificial neural network models that take additional information into account such as local slope restrictions and whether the nonlinearities within the DANNs are odd. A theoretical example shows reduced conservatism obtained by the conditions. Copyright © 2017. Published by Elsevier Ltd.

  17. H∞ state estimation of stochastic memristor-based neural networks with time-varying delays.

    PubMed

    Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir

    2018-03-01

    This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Numerical Analysis of Modeling Based on Improved Elman Neural Network

    PubMed Central

    Jie, Shao

    2014-01-01

    A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA) with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL) model, Chebyshev neural network (CNN) model, and basic Elman neural network (BENN) model, the proposed model has better performance. PMID:25054172

  19. A neural network ActiveX based integrated image processing environment.

    PubMed

    Ciuca, I; Jitaru, E; Alaicescu, M; Moisil, I

    2000-01-01

    The paper outlines an integrated image processing environment that uses neural networks ActiveX technology for object recognition and classification. The image processing environment which is Windows based, encapsulates a Multiple-Document Interface (MDI) and is menu driven. Object (shape) parameter extraction is focused on features that are invariant in terms of translation, rotation and scale transformations. The neural network models that can be incorporated as ActiveX components into the environment allow both clustering and classification of objects from the analysed image. Mapping neural networks perform an input sensitivity analysis on the extracted feature measurements and thus facilitate the removal of irrelevant features and improvements in the degree of generalisation. The program has been used to evaluate the dimensions of the hydrocephalus in a study for calculating the Evans index and the angle of the frontal horns of the ventricular system modifications.

  20. RM-SORN: a reward-modulated self-organizing recurrent neural network.

    PubMed

    Aswolinskiy, Witali; Pipa, Gordon

    2015-01-01

    Neural plasticity plays an important role in learning and memory. Reward-modulation of plasticity offers an explanation for the ability of the brain to adapt its neural activity to achieve a rewarded goal. Here, we define a neural network model that learns through the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent Plasticity (STDP). IP enables the network to explore possible output sequences and STDP, modulated by reward, reinforces the creation of the rewarded output sequences. The model is tested on tasks for prediction, recall, non-linear computation, pattern recognition, and sequence generation. It achieves performance comparable to networks trained with supervised learning, while using simple, biologically motivated plasticity rules, and rewarding strategies. The results confirm the importance of investigating the interaction of several plasticity rules in the context of reward-modulated learning and whether reward-modulated self-organization can explain the amazing capabilities of the brain.

  1. Neuromorphic photonic networks using silicon photonic weight banks.

    PubMed

    Tait, Alexander N; de Lima, Thomas Ferreira; Zhou, Ellen; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R

    2017-08-07

    Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

  2. Reliability assessment of serviceability performance of braced retaining walls using a neural network approach

    NASA Astrophysics Data System (ADS)

    Goh, A. T. C.; Kulhawy, F. H.

    2005-05-01

    In urban environments, one major concern with deep excavations in soft clay is the potentially large ground deformations in and around the excavation. Excessive movements can damage adjacent buildings and utilities. There are many uncertainties associated with the calculation of the ultimate or serviceability performance of a braced excavation system. These include the variabilities of the loadings, geotechnical soil properties, and engineering and geometrical properties of the wall. A risk-based approach to serviceability performance failure is necessary to incorporate systematically the uncertainties associated with the various design parameters. This paper demonstrates the use of an integrated neural network-reliability method to assess the risk of serviceability failure through the calculation of the reliability index. By first performing a series of parametric studies using the finite element method and then approximating the non-linear limit state surface (the boundary separating the safe and failure domains) through a neural network model, the reliability index can be determined with the aid of a spreadsheet. Two illustrative examples are presented to show how the serviceability performance for braced excavation problems can be assessed using the reliability index.

  3. Human activity recognition based on feature selection in smart home using back-propagation algorithm.

    PubMed

    Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei

    2014-09-01

    In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Cough event classification by pretrained deep neural network.

    PubMed

    Liu, Jia-Ming; You, Mingyu; Wang, Zheng; Li, Guo-Zheng; Xu, Xianghuai; Qiu, Zhongmin

    2015-01-01

    Cough is an essential symptom in respiratory diseases. In the measurement of cough severity, an accurate and objective cough monitor is expected by respiratory disease society. This paper aims to introduce a better performed algorithm, pretrained deep neural network (DNN), to the cough classification problem, which is a key step in the cough monitor. The deep neural network models are built from two steps, pretrain and fine-tuning, followed by a Hidden Markov Model (HMM) decoder to capture tamporal information of the audio signals. By unsupervised pretraining a deep belief network, a good initialization for a deep neural network is learned. Then the fine-tuning step is a back propogation tuning the neural network so that it can predict the observation probability associated with each HMM states, where the HMM states are originally achieved by force-alignment with a Gaussian Mixture Model Hidden Markov Model (GMM-HMM) on the training samples. Three cough HMMs and one noncough HMM are employed to model coughs and noncoughs respectively. The final decision is made based on viterbi decoding algorihtm that generates the most likely HMM sequence for each sample. A sample is labeled as cough if a cough HMM is found in the sequence. The experiments were conducted on a dataset that was collected from 22 patients with respiratory diseases. Patient dependent (PD) and patient independent (PI) experimental settings were used to evaluate the models. Five criteria, sensitivity, specificity, F1, macro average and micro average are shown to depict different aspects of the models. From overall evaluation criteria, the DNN based methods are superior to traditional GMM-HMM based method on F1 and micro average with maximal 14% and 11% error reduction in PD and 7% and 10% in PI, meanwhile keep similar performances on macro average. They also surpass GMM-HMM model on specificity with maximal 14% error reduction on both PD and PI. In this paper, we tried pretrained deep neural network in cough classification problem. Our results showed that comparing with the conventional GMM-HMM framework, the HMM-DNN could get better overall performance on cough classification task.

  5. Automatic identification of species with neural networks.

    PubMed

    Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda

    2014-01-01

    A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.

  6. Multilingual vocal emotion recognition and classification using back propagation neural network

    NASA Astrophysics Data System (ADS)

    Kayal, Apoorva J.; Nirmal, Jagannath

    2016-03-01

    This work implements classification of different emotions in different languages using Artificial Neural Networks (ANN). Mel Frequency Cepstral Coefficients (MFCC) and Short Term Energy (STE) have been considered for creation of feature set. An emotional speech corpus consisting of 30 acted utterances per emotion has been developed. The emotions portrayed in this work are Anger, Joy and Neutral in each of English, Marathi and Hindi languages. Different configurations of Artificial Neural Networks have been employed for classification purposes. The performance of the classifiers has been evaluated by False Negative Rate (FNR), False Positive Rate (FPR), True Positive Rate (TPR) and True Negative Rate (TNR).

  7. Automated extraction of metadata from remotely sensed satellite imagery

    NASA Technical Reports Server (NTRS)

    Cromp, Robert F.

    1991-01-01

    The paper discusses research in the Intelligent Data Management project at the NASA/Goddard Space Flight Center, with emphasis on recent improvements in low-level feature detection algorithms for performing real-time characterization of images. Images, including MSS and TM data, are characterized using neural networks and the interpretation of the neural network output by an expert system for subsequent archiving in an object-oriented data base. The data show the applicability of this approach to different arrangements of low-level remote sensing channels. The technique works well when the neural network is trained on data similar to the data used for testing.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed amore » new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.« less

  9. Comparisons of neural networks to standard techniques for image classification and correlation

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1994-01-01

    Neural network techniques for multispectral image classification and spatial pattern detection are compared to the standard techniques of maximum-likelihood classification and spatial correlation. The neural network produced a more accurate classification than maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the maximum-likelihood classification are illustrated using decision region and class probability density plots. As expected, the main drawback to the neural network method is the long time required for the training stage. The network was trained using several different hidden layer sizes to optimize both the classification accuracy and training speed, and it was found that one node per class was optimal. The performance improved when 3x3 local windows of image data were entered into the net. This modification introduces texture into the classification without explicit calculation of a texture measure. Larger windows were successfully used for the detection of spatial features in Landsat and Magellan synthetic aperture radar imagery.

  10. A regularization approach to continuous learning with an application to financial derivatives pricing.

    PubMed

    Ormoneit, D

    1999-12-01

    We consider the training of neural networks in cases where the nonlinear relationship of interest gradually changes over time. One possibility to deal with this problem is by regularization where a variation penalty is added to the usual mean squared error criterion. To learn the regularized network weights we suggest the Iterative Extended Kalman Filter (IEKF) as a learning rule, which may be derived from a Bayesian perspective on the regularization problem. A primary application of our algorithm is in financial derivatives pricing, where neural networks may be used to model the dependency of the derivatives' price on one or several underlying assets. After giving a brief introduction to the problem of derivatives pricing we present experiments with German stock index options data showing that a regularized neural network trained with the IEKF outperforms several benchmark models and alternative learning procedures. In particular, the performance may be greatly improved using a newly designed neural network architecture that accounts for no-arbitrage pricing restrictions.

  11. Learning vector quantization neural networks improve accuracy of transcranial color-coded duplex sonography in detection of middle cerebral artery spasm--preliminary report.

    PubMed

    Swiercz, Miroslaw; Kochanowicz, Jan; Weigele, John; Hurst, Robert; Liebeskind, David S; Mariak, Zenon; Melhem, Elias R; Krejza, Jaroslaw

    2008-01-01

    To determine the performance of an artificial neural network in transcranial color-coded duplex sonography (TCCS) diagnosis of middle cerebral artery (MCA) spasm. TCCS was prospectively acquired within 2 h prior to routine cerebral angiography in 100 consecutive patients (54M:46F, median age 50 years). Angiographic MCA vasospasm was classified as mild (<25% of vessel caliber reduction), moderate (25-50%), or severe (>50%). A Learning Vector Quantization neural network classified MCA spasm based on TCCS peak-systolic, mean, and end-diastolic velocity data. During a four-class discrimination task, accurate classification by the network ranged from 64.9% to 72.3%, depending on the number of neurons in the Kohonen layer. Accurate classification of vasospasm ranged from 79.6% to 87.6%, with an accuracy of 84.7% to 92.1% for the detection of moderate-to-severe vasospasm. An artificial neural network may increase the accuracy of TCCS in diagnosis of MCA spasm.

  12. Forecasting influenza-like illness dynamics for military populations using neural networks and social media

    DOE PAGES

    Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine; ...

    2017-12-15

    This work is the first to take advantage of recurrent neural networks to predict influenza-like-illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data [1, 2] and the state-of-the-art machine learning models [3, 4], we build and evaluate the predictive power of Long Short Term Memory (LSTMs) architectures capable of nowcasting (predicting in \\real-time") and forecasting (predicting the future) ILI dynamics in the 2011 { 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, stylistic and syntactic patterns,more » emotions and opinions, and communication behavior. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks. Finally, we combine ILI and social media signals to build joint neural network models for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance [1], specifically for military rather than general populations [3] in 26 U.S. and six international locations. Our approach demonstrates several advantages: (a) Neural network models learned from social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than syntactic and stylistic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns.« less

  13. Forecasting influenza-like illness dynamics for military populations using neural networks and social media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkova, Svitlana; Ayton, Ellyn; Porterfield, Katherine

    This work is the first to take advantage of recurrent neural networks to predict influenza-like-illness (ILI) dynamics from various linguistic signals extracted from social media data. Unlike other approaches that rely on timeseries analysis of historical ILI data [1, 2] and the state-of-the-art machine learning models [3, 4], we build and evaluate the predictive power of Long Short Term Memory (LSTMs) architectures capable of nowcasting (predicting in \\real-time") and forecasting (predicting the future) ILI dynamics in the 2011 { 2014 influenza seasons. To build our models we integrate information people post in social media e.g., topics, stylistic and syntactic patterns,more » emotions and opinions, and communication behavior. We then quantitatively evaluate the predictive power of different social media signals and contrast the performance of the-state-of-the-art regression models with neural networks. Finally, we combine ILI and social media signals to build joint neural network models for ILI dynamics prediction. Unlike the majority of the existing work, we specifically focus on developing models for local rather than national ILI surveillance [1], specifically for military rather than general populations [3] in 26 U.S. and six international locations. Our approach demonstrates several advantages: (a) Neural network models learned from social media data yield the best performance compared to previously used regression models. (b) Previously under-explored language and communication behavior features are more predictive of ILI dynamics than syntactic and stylistic signals expressed in social media. (c) Neural network models learned exclusively from social media signals yield comparable or better performance to the models learned from ILI historical data, thus, signals from social media can be potentially used to accurately forecast ILI dynamics for the regions where ILI historical data is not available. (d) Neural network models learned from combined ILI and social media signals significantly outperform models that rely solely on ILI historical data, which adds to a great potential of alternative public sources for ILI dynamics prediction. (e) Location-specific models outperform previously used location-independent models e.g., U.S. only. (f) Prediction results significantly vary across geolocations depending on the amount of social media data available and ILI activity patterns.« less

  14. Dissipative rendering and neural network control system design

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.

    1995-01-01

    Model-based control system designs are limited by the accuracy of the models of the plant, plant uncertainty, and exogenous signals. Although better models can be obtained with system identification, the models and control designs still have limitations. One approach to reduce the dependency on particular models is to design a set of compensators that will guarantee robust stability to a set of plants. Optimization over the compensator parameters can then be used to get the desired performance. Conservativeness of this approach can be reduced by integrating fundamental properties of the plant models. This is the approach of dissipative control design. Dissipative control designs are based on several variations of the Passivity Theorem, which have been proven for nonlinear/linear and continuous-time/discrete-time systems. These theorems depend not on a specific model of a plant, but on its general dissipative properties. Dissipative control design has found wide applicability in flexible space structures and robotic systems that can be configured to be dissipative. Currently, there is ongoing research to improve the performance of dissipative control designs. For aircraft systems that are not dissipative active control may be used to make them dissipative and then a dissipative control design technique can be used. It is also possible that rendering a system dissipative and dissipative control design may be combined into one step. Furthermore, the transformation of a non-dissipative system to dissipative can be done robustly. One sequential design procedure for finite dimensional linear time-invariant systems has been developed. For nonlinear plants that cannot be controlled adequately with a single linear controller, model-based techniques have additional problems. Nonlinear system identification is still a research topic. Lacking analytical models for model-based design, artificial neural network algorithms have recently received considerable attention. Using their universal approximation property, neural networks have been introduced into nonlinear control designs in several ways. Unfortunately, little work has appeared that analyzes neural network control systems and establishes margins for stability and performance. One approach for this analysis is to set up neural network control systems in the framework presented above. For example, one neural network could be used to render a system to be dissipative, a second strictly dissipative neural network controller could be used to guarantee robust stability.

  15. A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns.

    PubMed

    Xu, W; LeBeau, J M

    2018-05-01

    We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the need for pretreating the data. With the aligned data, additional networks then measure the sample thickness and tilt. The performance of the network is explored as a function of a variety of variables including thickness, tilt, and dose. A methodology to explore the response of the neural network to various pattern features is also presented. Processing patterns at a rate of  ∼ 0.1 s/pattern, the network is shown to be orders of magnitude faster than a brute force method while maintaining accuracy. The approach is thus suitable for automatically processing big, 4D STEM data. We also discuss the generality of the method to other materials/orientations as well as a hybrid approach that combines the features of the neural network with least squares fitting for even more robust analysis. The source code is available at https://github.com/subangstrom/DeepDiffraction. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Predicting musically induced emotions from physiological inputs: linear and neural network models.

    PubMed

    Russo, Frank A; Vempala, Naresh N; Sandstrom, Gillian M

    2013-01-01

    Listening to music often leads to physiological responses. Do these physiological responses contain sufficient information to infer emotion induced in the listener? The current study explores this question by attempting to predict judgments of "felt" emotion from physiological responses alone using linear and neural network models. We measured five channels of peripheral physiology from 20 participants-heart rate (HR), respiration, galvanic skin response, and activity in corrugator supercilii and zygomaticus major facial muscles. Using valence and arousal (VA) dimensions, participants rated their felt emotion after listening to each of 12 classical music excerpts. After extracting features from the five channels, we examined their correlation with VA ratings, and then performed multiple linear regression to see if a linear relationship between the physiological responses could account for the ratings. Although linear models predicted a significant amount of variance in arousal ratings, they were unable to do so with valence ratings. We then used a neural network to provide a non-linear account of the ratings. The network was trained on the mean ratings of eight of the 12 excerpts and tested on the remainder. Performance of the neural network confirms that physiological responses alone can be used to predict musically induced emotion. The non-linear model derived from the neural network was more accurate than linear models derived from multiple linear regression, particularly along the valence dimension. A secondary analysis allowed us to quantify the relative contributions of inputs to the non-linear model. The study represents a novel approach to understanding the complex relationship between physiological responses and musically induced emotion.

  17. Predicting subcontractor performance using web-based Evolutionary Fuzzy Neural Networks.

    PubMed

    Ko, Chien-Ho

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism.

  18. Predicting Subcontractor Performance Using Web-Based Evolutionary Fuzzy Neural Networks

    PubMed Central

    2013-01-01

    Subcontractor performance directly affects project success. The use of inappropriate subcontractors may result in individual work delays, cost overruns, and quality defects throughout the project. This study develops web-based Evolutionary Fuzzy Neural Networks (EFNNs) to predict subcontractor performance. EFNNs are a fusion of Genetic Algorithms (GAs), Fuzzy Logic (FL), and Neural Networks (NNs). FL is primarily used to mimic high level of decision-making processes and deal with uncertainty in the construction industry. NNs are used to identify the association between previous performance and future status when predicting subcontractor performance. GAs are optimizing parameters required in FL and NNs. EFNNs encode FL and NNs using floating numbers to shorten the length of a string. A multi-cut-point crossover operator is used to explore the parameter and retain solution legality. Finally, the applicability of the proposed EFNNs is validated using real subcontractors. The EFNNs are evolved using 22 historical patterns and tested using 12 unseen cases. Application results show that the proposed EFNNs surpass FL and NNs in predicting subcontractor performance. The proposed approach improves prediction accuracy and reduces the effort required to predict subcontractor performance, providing field operators with web-based remote access to a reliable, scientific prediction mechanism. PMID:23864830

  19. Boundedness and convergence of online gradient method with penalty for feedforward neural networks.

    PubMed

    Zhang, Huisheng; Wu, Wei; Liu, Fei; Yao, Mingchen

    2009-06-01

    In this brief, we consider an online gradient method with penalty for training feedforward neural networks. Specifically, the penalty is a term proportional to the norm of the weights. Its roles in the method are to control the magnitude of the weights and to improve the generalization performance of the network. By proving that the weights are automatically bounded in the network training with penalty, we simplify the conditions that are required for convergence of online gradient method in literature. A numerical example is given to support the theoretical analysis.

  20. An Investigation of the Application of Artificial Neural Networks to Adaptive Optics Imaging Systems

    DTIC Science & Technology

    1991-12-01

    neural network and the feedforward neural network studied is the single layer perceptron artificial neural network . The recurrent artificial neural network input...features are the wavefront sensor slope outputs and neighboring actuator feedback commands. The feedforward artificial neural network input

  1. Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the ‘Extreme Learning Machine’ Algorithm

    PubMed Central

    McDonnell, Mark D.; Tissera, Migel D.; Vladusich, Tony; van Schaik, André; Tapson, Jonathan

    2015-01-01

    Recent advances in training deep (multi-layer) architectures have inspired a renaissance in neural network use. For example, deep convolutional networks are becoming the default option for difficult tasks on large datasets, such as image and speech recognition. However, here we show that error rates below 1% on the MNIST handwritten digit benchmark can be replicated with shallow non-convolutional neural networks. This is achieved by training such networks using the ‘Extreme Learning Machine’ (ELM) approach, which also enables a very rapid training time (∼ 10 minutes). Adding distortions, as is common practise for MNIST, reduces error rates even further. Our methods are also shown to be capable of achieving less than 5.5% error rates on the NORB image database. To achieve these results, we introduce several enhancements to the standard ELM algorithm, which individually and in combination can significantly improve performance. The main innovation is to ensure each hidden-unit operates only on a randomly sized and positioned patch of each image. This form of random ‘receptive field’ sampling of the input ensures the input weight matrix is sparse, with about 90% of weights equal to zero. Furthermore, combining our methods with a small number of iterations of a single-batch backpropagation method can significantly reduce the number of hidden-units required to achieve a particular performance. Our close to state-of-the-art results for MNIST and NORB suggest that the ease of use and accuracy of the ELM algorithm for designing a single-hidden-layer neural network classifier should cause it to be given greater consideration either as a standalone method for simpler problems, or as the final classification stage in deep neural networks applied to more difficult problems. PMID:26262687

  2. Investigating the performance of neural network backpropagation algorithms for TEC estimations using South African GPS data

    NASA Astrophysics Data System (ADS)

    Habarulema, J. B.; McKinnell, L.-A.

    2012-05-01

    In this work, results obtained by investigating the application of different neural network backpropagation training algorithms are presented. This was done to assess the performance accuracy of each training algorithm in total electron content (TEC) estimations using identical datasets in models development and verification processes. Investigated training algorithms are standard backpropagation (SBP), backpropagation with weight delay (BPWD), backpropagation with momentum (BPM) term, backpropagation with chunkwise weight update (BPC) and backpropagation for batch (BPB) training. These five algorithms are inbuilt functions within the Stuttgart Neural Network Simulator (SNNS) and the main objective was to find out the training algorithm that generates the minimum error between the TEC derived from Global Positioning System (GPS) observations and the modelled TEC data. Another investigated algorithm is the MatLab based Levenberg-Marquardt backpropagation (L-MBP), which achieves convergence after the least number of iterations during training. In this paper, neural network (NN) models were developed using hourly TEC data (for 8 years: 2000-2007) derived from GPS observations over a receiver station located at Sutherland (SUTH) (32.38° S, 20.81° E), South Africa. Verification of the NN models for all algorithms considered was performed on both "seen" and "unseen" data. Hourly TEC values over SUTH for 2003 formed the "seen" dataset. The "unseen" dataset consisted of hourly TEC data for 2002 and 2008 over Cape Town (CPTN) (33.95° S, 18.47° E) and SUTH, respectively. The models' verification showed that all algorithms investigated provide comparable results statistically, but differ significantly in terms of time required to achieve convergence during input-output data training/learning. This paper therefore provides a guide to neural network users for choosing appropriate algorithms based on the availability of computation capabilities used for research.

  3. Beyond Fine Tuning: Adding capacity to leverage few labels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodas, Nathan O.; Shaffer, Kyle J.; Yankov, Artem

    2017-12-09

    In this paper we present a technique to train neural network models on small amounts of data. Current methods for training neural networks on small amounts of rich data typically rely on strategies such as fine-tuning a pre-trained neural networks or the use of domain-specific hand-engineered features. Here we take the approach of treating network layers, or entire networks, as modules and combine pre-trained modules with untrained modules, to learn the shift in distributions between data sets. The central impact of using a modular approach comes from adding new representations to a network, as opposed to replacing representations via fine-tuning.more » Using this technique, we are able surpass results using standard fine-tuning transfer learning approaches, and we are also able to significantly increase performance over such approaches when using smaller amounts of data.« less

  4. Applying cybernetic technology to diagnose human pulmonary sounds.

    PubMed

    Chen, Mei-Yung; Chou, Cheng-Han

    2014-06-01

    Chest auscultation is a crucial and efficient method for diagnosing lung disease; however, it is a subjective process that relies on physician experience and the ability to differentiate between various sound patterns. Because the physiological signals composed of heart sounds and pulmonary sounds (PSs) are greater than 120 Hz and the human ear is not sensitive to low frequencies, successfully making diagnostic classifications is difficult. To solve this problem, we constructed various PS recognition systems for classifying six PS classes: vesicular breath sounds, bronchial breath sounds, tracheal breath sounds, crackles, wheezes, and stridor sounds. First, we used a piezoelectric microphone and data acquisition card to acquire PS signals and perform signal preprocessing. A wavelet transform was used for feature extraction, and the PS signals were decomposed into frequency subbands. Using a statistical method, we extracted 17 features that were used as the input vectors of a neural network. We proposed a 2-stage classifier combined with a back-propagation (BP) neural network and learning vector quantization (LVQ) neural network, which improves classification accuracy by using a haploid neural network. The receiver operating characteristic (ROC) curve verifies the high performance level of the neural network. To expand traditional auscultation methods, we constructed various PS diagnostic systems that can correctly classify the six common PSs. The proposed device overcomes the lack of human sensitivity to low-frequency sounds and various PS waves, characteristic values, and a spectral analysis charts are provided to elucidate the design of the human-machine interface.

  5. Applying Neural Networks in Optical Communication Systems: Possible Pitfalls

    NASA Astrophysics Data System (ADS)

    Eriksson, Tobias A.; Bulow, Henning; Leven, Andreas

    2017-12-01

    We investigate the risk of overestimating the performance gain when applying neural network based receivers in systems with pseudo random bit sequences or with limited memory depths, resulting in repeated short patterns. We show that with such sequences, a large artificial gain can be obtained which comes from pattern prediction rather than predicting or compensating the studied channel/phenomena.

  6. Self-Organizing Neural Network Map for the Purpose of Visualizing the Concept Images of Students on Angles

    ERIC Educational Resources Information Center

    Kaya, Deniz

    2017-01-01

    The purpose of the study is to perform a less-dimensional thorough visualization process for the purpose of determining the images of the students on the concept of angle. The Ward clustering analysis combined with Self-Organizing Neural Network Map (SOM) has been used for the dimension process. The Conceptual Understanding Tool, which consisted…

  7. Automatic Keyword Identification by Artificial Neural Networks Compared to Manual Identification by Users of Filtering Systems.

    ERIC Educational Resources Information Center

    Boger, Zvi; Kuflik, Tsvi; Shoval, Peretz; Shapira, Bracha

    2001-01-01

    Discussion of information filtering (IF) and information retrieval focuses on the use of an artificial neural network (ANN) as an alternative method for both IF and term selection and compares its effectiveness to that of traditional methods. Results show that the ANN relevance prediction out-performs the prediction of an IF system. (Author/LRW)

  8. 7-year of surface ozone in a coastal city of central Italy: Observations and models

    NASA Astrophysics Data System (ADS)

    Biancofiore, Fabio; Verdecchia, Marco; Di Carlo, Piero; Tomassetti, Barbara; Aruffo, Eleonora; Busilacchio, Marcella; Bianco, Sebastiano; Di Tommaso, Sinibaldo; Colangeli, Carlo

    2014-05-01

    Hourly concentrations of ozone (O3) and nitrogen dioxide (NO2) have been measured for seven years, from 1998 to 2005, in a seaside town in the central Italy. Seasonal trends of O3 and NO2 recorded in the considered years are studied. Furthermore, we have focused our attention on data collected during the 2005, analyzing them using two different methods: a regression model and a neural network model. Both models are used to simulate the hourly ozone concentration, using several sets of input. In order to evaluate the performance of the model four statistical criteria are used: correlation coefficient (R), fractional bias (FB), normalized mean squared error (NMSE) e factor of two (FA2). All the criteria show that the neural network has better results compared to the regression model in all the simulations. In addiction we have tested some improvements of the neural network model, results of these tests are discussed. Finally, we have used the neural network to forecast the ozone hourly concentrations a day ahead and 1, 3, 6, 12 hour ahead. Performances of the model in predicting ozone levels are discussed.

  9. Neuro-fuzzy controller to navigate an unmanned vehicle.

    PubMed

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  10. An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization.

    PubMed

    García-Pedrajas, Nicolás; Ortiz-Boyer, Domingo; Hervás-Martínez, César

    2006-05-01

    In this work we present a new approach to crossover operator in the genetic evolution of neural networks. The most widely used evolutionary computation paradigm for neural network evolution is evolutionary programming. This paradigm is usually preferred due to the problems caused by the application of crossover to neural network evolution. However, crossover is the most innovative operator within the field of evolutionary computation. One of the most notorious problems with the application of crossover to neural networks is known as the permutation problem. This problem occurs due to the fact that the same network can be represented in a genetic coding by many different codifications. Our approach modifies the standard crossover operator taking into account the special features of the individuals to be mated. We present a new model for mating individuals that considers the structure of the hidden layer and redefines the crossover operator. As each hidden node represents a non-linear projection of the input variables, we approach the crossover as a problem on combinatorial optimization. We can formulate the problem as the extraction of a subset of near-optimal projections to create the hidden layer of the new network. This new approach is compared to a classical crossover in 25 real-world problems with an excellent performance. Moreover, the networks obtained are much smaller than those obtained with classical crossover operator.

  11. Artificial intelligence: Neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes.

    PubMed

    Buzaev, Igor Vyacheslavovich; Plechev, Vladimir Vyacheslavovich; Nikolaeva, Irina Evgenievna; Galimova, Rezida Maratovna

    2016-09-01

    The continuous uninterrupted feedback system is the essential part of any well-organized system. We propose aLYNX concept that is a possibility to use an artificial intelligence algorithm or a neural network model in decision-making system so as to avoid possible mistakes and to remind the doctors to review tactics once more in selected cases. aLYNX system includes: registry with significant factors, decisions and results; machine learning process based on this registry data; the use of the machine learning results as the adviser. We show a possibility to build a computer adviser with a neural network model for making a choice between coronary aortic bypass surgery (CABG) and percutaneous coronary intervention (PCI) in order to achieve a higher 5-year survival rate in patients with angina based on the experience of 5107 patients. The neural network was trained by 4679 patients who achieved 5-year survival. Among them, 2390 patients underwent PCI and 2289 CABG. After training, the correlation coefficient ( r ) of the network was 0.74 for training, 0.67 for validation, 0.71 for test and 0.73 for total. Simulation of the neural network function has been performed after training in the two groups of patients with known 5-year outcome. The disagreement rate was significantly higher in the dead patient group than that in the survivor group between neural network model and heart team [16.8% (787/4679) vs. 20.3% (87/428), P  = 0.065)]. The study shows the possibility to build a computer adviser with a neural network model for making a choice between CABG and PCI in order to achieve a higher 5-year survival rate in patients with angina.

  12. The DSFPN, a new neural network for optical character recognition.

    PubMed

    Morns, L P; Dlay, S S

    1999-01-01

    A new type of neural network for recognition tasks is presented in this paper. The network, called the dynamic supervised forward-propagation network (DSFPN), is based on the forward only version of the counterpropagation network (CPN). The DSFPN, trains using a supervised algorithm and can grow dynamically during training, allowing subclasses in the training data to be learnt in an unsupervised manner. It is shown to train in times comparable to the CPN while giving better classification accuracies than the popular backpropagation network. Both Fourier descriptors and wavelet descriptors are used for image preprocessing and the wavelets are proven to give a far better performance.

  13. Modeling of the pyruvate production with Escherichia coli: comparison of mechanistic and neural networks-based models.

    PubMed

    Zelić, B; Bolf, N; Vasić-Racki, D

    2006-06-01

    Three different models: the unstructured mechanistic black-box model, the input-output neural network-based model and the externally recurrent neural network model were used to describe the pyruvate production process from glucose and acetate using the genetically modified Escherichia coli YYC202 ldhA::Kan strain. The experimental data were used from the recently described batch and fed-batch experiments [ Zelić B, Study of the process development for Escherichia coli-based pyruvate production. PhD Thesis, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia, July 2003. (In English); Zelić et al. Bioproc Biosyst Eng 26:249-258 (2004); Zelić et al. Eng Life Sci 3:299-305 (2003); Zelić et al Biotechnol Bioeng 85:638-646 (2004)]. The neural networks were built out of the experimental data obtained in the fed-batch pyruvate production experiments with the constant glucose feed rate. The model validation was performed using the experimental results obtained from the batch and fed-batch pyruvate production experiments with the constant acetate feed rate. Dynamics of the substrate and product concentration changes was estimated using two neural network-based models for biomass and pyruvate. It was shown that neural networks could be used for the modeling of complex microbial fermentation processes, even in conditions in which mechanistic unstructured models cannot be applied.

  14. Modeling and Prediction of Monthly Total Ozone Concentrations by Use of an Artificial Neural Network Based on Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit; Chattopadhyay, Goutami

    2012-10-01

    In the work discussed in this paper we considered total ozone time series over Kolkata (22°34'10.92″N, 88°22'10.92″E), an urban area in eastern India. Using cloud cover, average temperature, and rainfall as the predictors, we developed an artificial neural network, in the form of a multilayer perceptron with sigmoid non-linearity, for prediction of monthly total ozone concentrations from values of the predictors in previous months. We also estimated total ozone from values of the predictors in the same month. Before development of the neural network model we removed multicollinearity by means of principal component analysis. On the basis of the variables extracted by principal component analysis, we developed three artificial neural network models. By rigorous statistical assessment it was found that cloud cover and rainfall can act as good predictors for monthly total ozone when they are considered as the set of input variables for the neural network model constructed in the form of a multilayer perceptron. In general, the artificial neural network has good potential for predicting and estimating monthly total ozone on the basis of the meteorological predictors. It was further observed that during pre-monsoon and winter seasons, the proposed models perform better than during and after the monsoon.

  15. Artificial Neural Networks: A Novel Approach to Analysing the Nutritional Ecology of a Blowfly Species, Chrysomya megacephala

    PubMed Central

    Bianconi, André; Zuben, Cláudio J. Von; Serapião, Adriane B. de S.; Govone, José S.

    2010-01-01

    Bionomic features of blowflies may be clarified and detailed by the deployment of appropriate modelling techniques such as artificial neural networks, which are mathematical tools widely applied to the resolution of complex biological problems. The principal aim of this work was to use three well-known neural networks, namely Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Adaptive Neural Network-Based Fuzzy Inference System (ANFIS), to ascertain whether these tools would be able to outperform a classical statistical method (multiple linear regression) in the prediction of the number of resultant adults (survivors) of experimental populations of Chrysomya megacephala (F.) (Diptera: Calliphoridae), based on initial larval density (number of larvae), amount of available food, and duration of immature stages. The coefficient of determination (R2) derived from the RBF was the lowest in the testing subset in relation to the other neural networks, even though its R2 in the training subset exhibited virtually a maximum value. The ANFIS model permitted the achievement of the best testing performance. Hence this model was deemed to be more effective in relation to MLP and RBF for predicting the number of survivors. All three networks outperformed the multiple linear regression, indicating that neural models could be taken as feasible techniques for predicting bionomic variables concerning the nutritional dynamics of blowflies. PMID:20569135

  16. Function approximation using combined unsupervised and supervised learning.

    PubMed

    Andras, Peter

    2014-03-01

    Function approximation is one of the core tasks that are solved using neural networks in the context of many engineering problems. However, good approximation results need good sampling of the data space, which usually requires exponentially increasing volume of data as the dimensionality of the data increases. At the same time, often the high-dimensional data is arranged around a much lower dimensional manifold. Here we propose the breaking of the function approximation task for high-dimensional data into two steps: (1) the mapping of the high-dimensional data onto a lower dimensional space corresponding to the manifold on which the data resides and (2) the approximation of the function using the mapped lower dimensional data. We use over-complete self-organizing maps (SOMs) for the mapping through unsupervised learning, and single hidden layer neural networks for the function approximation through supervised learning. We also extend the two-step procedure by considering support vector machines and Bayesian SOMs for the determination of the best parameters for the nonlinear neurons in the hidden layer of the neural networks used for the function approximation. We compare the approximation performance of the proposed neural networks using a set of functions and show that indeed the neural networks using combined unsupervised and supervised learning outperform in most cases the neural networks that learn the function approximation using the original high-dimensional data.

  17. Automated sleep stage detection with a classical and a neural learning algorithm--methodological aspects.

    PubMed

    Schwaibold, M; Schöchlin, J; Bolz, A

    2002-01-01

    For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.

  18. A software sensor model based on hybrid fuzzy neural network for rapid estimation water quality in Guangzhou section of Pearl River, China.

    PubMed

    Zhou, Chunshan; Zhang, Chao; Tian, Di; Wang, Ke; Huang, Mingzhi; Liu, Yanbiao

    2018-01-02

    In order to manage water resources, a software sensor model was designed to estimate water quality using a hybrid fuzzy neural network (FNN) in Guangzhou section of Pearl River, China. The software sensor system was composed of data storage module, fuzzy decision-making module, neural network module and fuzzy reasoning generator module. Fuzzy subtractive clustering was employed to capture the character of model, and optimize network architecture for enhancing network performance. The results indicate that, on basis of available on-line measured variables, the software sensor model can accurately predict water quality according to the relationship between chemical oxygen demand (COD) and dissolved oxygen (DO), pH and NH 4 + -N. Owing to its ability in recognizing time series patterns and non-linear characteristics, the software sensor-based FNN is obviously superior to the traditional neural network model, and its R (correlation coefficient), MAPE (mean absolute percentage error) and RMSE (root mean square error) are 0.8931, 10.9051 and 0.4634, respectively.

  19. Neural network approach to proximity effect corrections in electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Frye, Robert C.; Cummings, Kevin D.; Rietman, Edward A.

    1990-05-01

    The proximity effect, caused by electron beam backscattering during resist exposure, is an important concern in writing submicron features. It can be compensated by appropriate local changes in the incident beam dose, but computation of the optimal correction usually requires a prohibitively long time. We present an example of such a computation on a small test pattern, which we performed by an iterative method. We then used this solution as a training set for an adaptive neural network. After training, the network computed the same correction as the iterative method, but in a much shorter time. Correcting the image with a software based neural network resulted in a decrease in the computation time by a factor of 30, and a hardware based network enhanced the computation speed by more than a factor of 1000. Both methods had an acceptably small error of 0.5% compared to the results of the iterative computation. Additionally, we verified that the neural network correctly generalized the solution of the problem to include patterns not contained in its training set.

  20. A hybrid modeling approach for option pricing

    NASA Astrophysics Data System (ADS)

    Hajizadeh, Ehsan; Seifi, Abbas

    2011-11-01

    The complexity of option pricing has led many researchers to develop sophisticated models for such purposes. The commonly used Black-Scholes model suffers from a number of limitations. One of these limitations is the assumption that the underlying probability distribution is lognormal and this is so controversial. We propose a couple of hybrid models to reduce these limitations and enhance the ability of option pricing. The key input to option pricing model is volatility. In this paper, we use three popular GARCH type model for estimating volatility. Then, we develop two non-parametric models based on neural networks and neuro-fuzzy networks to price call options for S&P 500 index. We compare the results with those of Black-Scholes model and show that both neural network and neuro-fuzzy network models outperform Black-Scholes model. Furthermore, comparing the neural network and neuro-fuzzy approaches, we observe that for at-the-money options, neural network model performs better and for both in-the-money and an out-of-the money option, neuro-fuzzy model provides better results.

Top