The effect of the neural activity on topological properties of growing neural networks.
Gafarov, F M; Gafarova, V R
2016-09-01
The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.
Medical image analysis with artificial neural networks.
Jiang, J; Trundle, P; Ren, J
2010-12-01
Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.
Neural dynamics based on the recognition of neural fingerprints
Carrillo-Medina, José Luis; Latorre, Roberto
2015-01-01
Experimental evidence has revealed the existence of characteristic spiking features in different neural signals, e.g., individual neural signatures identifying the emitter or functional signatures characterizing specific tasks. These neural fingerprints may play a critical role in neural information processing, since they allow receptors to discriminate or contextualize incoming stimuli. This could be a powerful strategy for neural systems that greatly enhances the encoding and processing capacity of these networks. Nevertheless, the study of information processing based on the identification of specific neural fingerprints has attracted little attention. In this work, we study (i) the emerging collective dynamics of a network of neurons that communicate with each other by exchange of neural fingerprints and (ii) the influence of the network topology on the self-organizing properties within the network. Complex collective dynamics emerge in the network in the presence of stimuli. Predefined inputs, i.e., specific neural fingerprints, are detected and encoded into coexisting patterns of activity that propagate throughout the network with different spatial organization. The patterns evoked by a stimulus can survive after the stimulation is over, which provides memory mechanisms to the network. The results presented in this paper suggest that neural information processing based on neural fingerprints can be a plausible, flexible, and powerful strategy. PMID:25852531
Neural network based system for equipment surveillance
Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.
1998-01-01
A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.
Neural network based system for equipment surveillance
Vilim, R.B.; Gross, K.C.; Wegerich, S.W.
1998-04-28
A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.
Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.
Wan, Ying; Cao, Jinde; Wen, Guanghui
In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.
Neural network for processing both spatial and temporal data with time based back-propagation
NASA Technical Reports Server (NTRS)
Villarreal, James A. (Inventor); Shelton, Robert O. (Inventor)
1993-01-01
Neural networks are computing systems modeled after the paradigm of the biological brain. For years, researchers using various forms of neural networks have attempted to model the brain's information processing and decision-making capabilities. Neural network algorithms have impressively demonstrated the capability of modeling spatial information. On the other hand, the application of parallel distributed models to the processing of temporal data has been severely restricted. The invention introduces a novel technique which adds the dimension of time to the well known back-propagation neural network algorithm. In the space-time neural network disclosed herein, the synaptic weights between two artificial neurons (processing elements) are replaced with an adaptable-adjustable filter. Instead of a single synaptic weight, the invention provides a plurality of weights representing not only association, but also temporal dependencies. In this case, the synaptic weights are the coefficients to the adaptable digital filters. Novelty is believed to lie in the disclosure of a processing element and a network of the processing elements which are capable of processing temporal as well as spacial data.
Introduction to Neural Networks.
1992-03-01
parallel processing of information that can greatly reduce the time required to perform operations which are needed in pattern recognition. Neural network, Artificial neural network , Neural net, ANN.
Neural Network Computing and Natural Language Processing.
ERIC Educational Resources Information Center
Borchardt, Frank
1988-01-01
Considers the application of neural network concepts to traditional natural language processing and demonstrates that neural network computing architecture can: (1) learn from actual spoken language; (2) observe rules of pronunciation; and (3) reproduce sounds from the patterns derived by its own processes. (Author/CB)
Fault detection and diagnosis using neural network approaches
NASA Technical Reports Server (NTRS)
Kramer, Mark A.
1992-01-01
Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.
A novel neural-wavelet approach for process diagnostics and complex system modeling
NASA Astrophysics Data System (ADS)
Gao, Rong
Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.
Modified neural networks for rapid recovery of tokamak plasma parameters for real time control
NASA Astrophysics Data System (ADS)
Sengupta, A.; Ranjan, P.
2002-07-01
Two modified neural network techniques are used for the identification of the equilibrium plasma parameters of the Superconducting Steady State Tokamak I from external magnetic measurements. This is expected to ultimately assist in a real time plasma control. As different from the conventional network structure where a single network with the optimum number of processing elements calculates the outputs, a multinetwork system connected in parallel does the calculations here in one of the methods. This network is called the double neural network. The accuracy of the recovered parameters is clearly more than the conventional network. The other type of neural network used here is based on the statistical function parametrization combined with a neural network. The principal component transformation removes linear dependences from the measurements and a dimensional reduction process reduces the dimensionality of the input space. This reduced and transformed input set, rather than the entire set, is fed into the neural network input. This is known as the principal component transformation-based neural network. The accuracy of the recovered parameters in the latter type of modified network is found to be a further improvement over the accuracy of the double neural network. This result differs from that obtained in an earlier work where the double neural network showed better performance. The conventional network and the function parametrization methods have also been used for comparison. The conventional network has been used for an optimization of the set of magnetic diagnostics. The effective set of sensors, as assessed by this network, are compared with the principal component based network. Fault tolerance of the neural networks has been tested. The double neural network showed the maximum resistance to faults in the diagnostics, while the principal component based network performed poorly. Finally the processing times of the methods have been compared. The double network and the principal component network involve the minimum computation time, although the conventional network also performs well enough to be used in real time.
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, B.; Wood, R.T.
1997-04-22
A method is described for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical model. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system. 1 fig.
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, Brian; Wood, Richard T.
1997-01-01
A method for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system.
NASA Technical Reports Server (NTRS)
Thakoor, Anil
1990-01-01
Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.
Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model
NASA Astrophysics Data System (ADS)
Kuznetsov, A. V.; Makaryants, G. M.
2018-01-01
There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.
Reducing neural network training time with parallel processing
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Lamarsh, William J., II
1995-01-01
Obtaining optimal solutions for engineering design problems is often expensive because the process typically requires numerous iterations involving analysis and optimization programs. Previous research has shown that a near optimum solution can be obtained in less time by simulating a slow, expensive analysis with a fast, inexpensive neural network. A new approach has been developed to further reduce this time. This approach decomposes a large neural network into many smaller neural networks that can be trained in parallel. Guidelines are developed to avoid some of the pitfalls when training smaller neural networks in parallel. These guidelines allow the engineer: to determine the number of nodes on the hidden layer of the smaller neural networks; to choose the initial training weights; and to select a network configuration that will capture the interactions among the smaller neural networks. This paper presents results describing how these guidelines are developed.
How Neural Networks Learn from Experience.
ERIC Educational Resources Information Center
Hinton, Geoffrey E.
1992-01-01
Discusses computational studies of learning in artificial neural networks and findings that may provide insights into the learning abilities of the human brain. Describes efforts to test theories about brain information processing, using artificial neural networks. Vignettes include information concerning how a neural network represents…
Optical-Correlator Neural Network Based On Neocognitron
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Stoner, William W.
1994-01-01
Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.
Deinterlacing using modular neural network
NASA Astrophysics Data System (ADS)
Woo, Dong H.; Eom, Il K.; Kim, Yoo S.
2004-05-01
Deinterlacing is the conversion process from the interlaced scan to progressive one. While many previous algorithms that are based on weighted-sum cause blurring in edge region, deinterlacing using neural network can reduce the blurring through recovering of high frequency component by learning process, and is found robust to noise. In proposed algorithm, input image is divided into edge and smooth region, and then, to each region, one neural network is assigned. Through this process, each neural network learns only patterns that are similar, therefore it makes learning more effective and estimation more accurate. But even within each region, there are various patterns such as long edge and texture in edge region. To solve this problem, modular neural network is proposed. In proposed modular neural network, two modules are combined in output node. One is for low frequency feature of local area of input image, and the other is for high frequency feature. With this structure, each modular neural network can learn different patterns with compensating for drawback of counterpart. Therefore it can adapt to various patterns within each region effectively. In simulation, the proposed algorithm shows better performance compared with conventional deinterlacing methods and single neural network method.
[Measurement and performance analysis of functional neural network].
Li, Shan; Liu, Xinyu; Chen, Yan; Wan, Hong
2018-04-01
The measurement of network is one of the important researches in resolving neuronal population information processing mechanism using complex network theory. For the quantitative measurement problem of functional neural network, the relation between the measure indexes, i.e. the clustering coefficient, the global efficiency, the characteristic path length and the transitivity, and the network topology was analyzed. Then, the spike-based functional neural network was established and the simulation results showed that the measured network could represent the original neural connections among neurons. On the basis of the former work, the coding of functional neural network in nidopallium caudolaterale (NCL) about pigeon's motion behaviors was studied. We found that the NCL functional neural network effectively encoded the motion behaviors of the pigeon, and there were significant differences in four indexes among the left-turning, the forward and the right-turning. Overall, the establishment method of spike-based functional neural network is available and it is an effective tool to parse the brain information processing mechanism.
NASA Technical Reports Server (NTRS)
Gupta, Pramod; Loparo, Kenneth; Mackall, Dale; Schumann, Johann; Soares, Fola
2004-01-01
Recent research has shown that adaptive neural based control systems are very effective in restoring stability and control of an aircraft in the presence of damage or failures. The application of an adaptive neural network with a flight critical control system requires a thorough and proven process to ensure safe and proper flight operation. Unique testing tools have been developed as part of a process to perform verification and validation (V&V) of real time adaptive neural networks used in recent adaptive flight control system, to evaluate the performance of the on line trained neural networks. The tools will help in certification from FAA and will help in the successful deployment of neural network based adaptive controllers in safety-critical applications. The process to perform verification and validation is evaluated against a typical neural adaptive controller and the results are discussed.
Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui
2011-01-01
To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.
Neural Networks for Rapid Design and Analysis
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Maghami, Peiman G.
1998-01-01
Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.
Time Series Neural Network Model for Part-of-Speech Tagging Indonesian Language
NASA Astrophysics Data System (ADS)
Tanadi, Theo
2018-03-01
Part-of-speech tagging (POS tagging) is an important part in natural language processing. Many methods have been used to do this task, including neural network. This paper models a neural network that attempts to do POS tagging. A time series neural network is modelled to solve the problems that a basic neural network faces when attempting to do POS tagging. In order to enable the neural network to have text data input, the text data will get clustered first using Brown Clustering, resulting a binary dictionary that the neural network can use. To further the accuracy of the neural network, other features such as the POS tag, suffix, and affix of previous words would also be fed to the neural network.
Using fuzzy logic to integrate neural networks and knowledge-based systems
NASA Technical Reports Server (NTRS)
Yen, John
1991-01-01
Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.
Satellite image analysis using neural networks
NASA Technical Reports Server (NTRS)
Sheldon, Roger A.
1990-01-01
The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.
Dynamic Neural Networks Supporting Memory Retrieval
St. Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.
2011-01-01
How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) Medial Prefrontal Cortex (PFC) Network, associated with self-referential processes, 2) Medial Temporal Lobe (MTL) Network, associated with memory, 3) Frontoparietal Network, associated with strategic search, and 4) Cingulooperculum Network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior. PMID:21550407
Woodward, Alexander; Froese, Tom; Ikegami, Takashi
2015-02-01
The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains. Copyright © 2014 Elsevier Ltd. All rights reserved.
Application of the ANNA neural network chip to high-speed character recognition.
Sackinger, E; Boser, B E; Bromley, J; Lecun, Y; Jackel, L D
1992-01-01
A neural network with 136000 connections for recognition of handwritten digits has been implemented using a mixed analog/digital neural network chip. The neural network chip is capable of processing 1000 characters/s. The recognition system has essentially the same rate (5%) as a simulation of the network with 32-b floating-point precision.
NASA Astrophysics Data System (ADS)
QingJie, Wei; WenBin, Wang
2017-06-01
In this paper, the image retrieval using deep convolutional neural network combined with regularization and PRelu activation function is studied, and improves image retrieval accuracy. Deep convolutional neural network can not only simulate the process of human brain to receive and transmit information, but also contains a convolution operation, which is very suitable for processing images. Using deep convolutional neural network is better than direct extraction of image visual features for image retrieval. However, the structure of deep convolutional neural network is complex, and it is easy to over-fitting and reduces the accuracy of image retrieval. In this paper, we combine L1 regularization and PRelu activation function to construct a deep convolutional neural network to prevent over-fitting of the network and improve the accuracy of image retrieval
NASA Astrophysics Data System (ADS)
Sidelnikov, O. S.; Redyuk, A. A.; Sygletos, S.
2017-12-01
We consider neural network-based schemes of digital signal processing. It is shown that the use of a dynamic neural network-based scheme of signal processing ensures an increase in the optical signal transmission quality in comparison with that provided by other methods for nonlinear distortion compensation.
Complex Networks in Psychological Models
NASA Astrophysics Data System (ADS)
Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.
We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Patrick I.
2003-09-23
Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neuralmore » networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing information [2]. Each one of these cells acts as a simple processor. When individual cells interact with one another, the complex abilities of the brain are made possible. In neural networks, the input or data are processed by a propagation function that adds up the values of all the incoming data. The ending value is then compared with a threshold or specific value. The resulting value must exceed the activation function value in order to become output. The activation function is a mathematical function that a neuron uses to produce an output referring to its input value. [8] Figure 1 depicts this process. Neural networks usually have three components an input, a hidden, and an output. These layers create the end result of the neural network. A real world example is a child associating the word dog with a picture. The child says dog and simultaneously looks a picture of a dog. The input is the spoken word ''dog'', the hidden is the brain processing, and the output will be the category of the word dog based on the picture. This illustration describes how a neural network functions.« less
Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.
1997-01-01
The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.
Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.
1998-01-01
The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.
Plant Growth Models Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Study on algorithm of process neural network for soft sensing in sewage disposal system
NASA Astrophysics Data System (ADS)
Liu, Zaiwen; Xue, Hong; Wang, Xiaoyi; Yang, Bin; Lu, Siying
2006-11-01
A new method of soft sensing based on process neural network (PNN) for sewage disposal system is represented in the paper. PNN is an extension of traditional neural network, in which the inputs and outputs are time-variation. An aggregation operator is introduced to process neuron, and it makes the neuron network has the ability to deal with the information of space-time two dimensions at the same time, so the data processing enginery of biological neuron is imitated better than traditional neuron. Process neural network with the structure of three layers in which hidden layer is process neuron and input and output are common neurons for soft sensing is discussed. The intelligent soft sensing based on PNN may be used to fulfill measurement of the effluent BOD (Biochemical Oxygen Demand) from sewage disposal system, and a good training result of soft sensing was obtained by the method.
Nutrient Stress Detection in Corn Using Neural Networks and AVIRIS Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Estep, Lee
2001-01-01
AVIRIS image cube data has been processed for the detection of nutrient stress in corn by both known, ratio-type algorithms and by trained neural networks. The USDA Shelton, NE, ARS Variable Rate Nitrogen Application (VRAT) experimental farm was the site used in the study. Upon application of ANOVA and Dunnett multiple comparsion tests on the outcome of both the neural network processing and the ratio-type algorithm results, it was found that the neural network methodology provides a better overall capability to separate nutrient stressed crops from in-field controls.
Parameter diagnostics of phases and phase transition learning by neural networks
NASA Astrophysics Data System (ADS)
Suchsland, Philippe; Wessel, Stefan
2018-05-01
We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously found to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.
NASA Astrophysics Data System (ADS)
Sokolov, V. K.; Shubnikov, E. I.
1995-10-01
The three most important models of neural networks — a bidirectional associative memory, Hopfield networks, and adaptive resonance networks — are used as examples to show that a holographic correlator has its place in the neural computing paradigm.
Neural-Network-Development Program
NASA Technical Reports Server (NTRS)
Phillips, Todd A.
1993-01-01
NETS, software tool for development and evaluation of neural networks, provides simulation of neural-network algorithms plus computing environment for development of such algorithms. Uses back-propagation learning method for all of networks it creates. Enables user to customize patterns of connections between layers of network. Also provides features for saving, during learning process, values of weights, providing more-precise control over learning process. Written in ANSI standard C language. Machine-independent version (MSC-21588) includes only code for command-line-interface version of NETS 3.0.
Classification of Respiratory Sounds by Using An Artificial Neural Network
2001-10-28
CLASSIFICATION OF RESPIRATORY SOUNDS BY USING AN ARTIFICIAL NEURAL NETWORK M.C. Sezgin, Z. Dokur, T. Ölmez, M. Korürek Department of Electronics and...successfully classified by the GAL network. Keywords-Respiratory Sounds, Classification of Biomedical Signals, Artificial Neural Network . I. INTRODUCTION...process, feature extraction, and classification by the artificial neural network . At first, the RS signal obtained from a real-time measurement equipment is
Signature neural networks: definition and application to multidimensional sorting problems.
Latorre, Roberto; de Borja Rodriguez, Francisco; Varona, Pablo
2011-01-01
In this paper we present a self-organizing neural network paradigm that is able to discriminate information locally using a strategy for information coding and processing inspired in recent findings in living neural systems. The proposed neural network uses: 1) neural signatures to identify each unit in the network; 2) local discrimination of input information during the processing; and 3) a multicoding mechanism for information propagation regarding the who and the what of the information. The local discrimination implies a distinct processing as a function of the neural signature recognition and a local transient memory. In the context of artificial neural networks none of these mechanisms has been analyzed in detail, and our goal is to demonstrate that they can be used to efficiently solve some specific problems. To illustrate the proposed paradigm, we apply it to the problem of multidimensional sorting, which can take advantage of the local information discrimination. In particular, we compare the results of this new approach with traditional methods to solve jigsaw puzzles and we analyze the situations where the new paradigm improves the performance.
Hierarchical Process Control of Chemical Vapor Infiltration.
1995-05-31
convergence artificial neural network and used it to discover improved regions of the CVI processing parameter space; also, the Technology Assessment...identify in situ process sensors of considerable promise and as artificial neural network training pairs.
Chang, H.-C.; Kopaska-Merkel, D. C.; Chen, H.-C.; Rocky, Durrans S.
2000-01-01
Lithofacies identification supplies qualitative information about rocks. Lithofacies represent rock textures and are important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identification from core data are costly and different geologists may provide different interpretations. In this paper, we present a low-cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system to consistently and objectively identify lithofacies from well-log data. The input data are altered into different forms representing different perspectives of observation of lithofacies. Each form of input is processed by a different adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one neural network processes the raw continuous data, another processes categorial data, and the third processes fuzzy-set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of firing order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic, and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil field located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-backpropagation neural network, 57.3%. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.
Patterns recognition of electric brain activity using artificial neural networks
NASA Astrophysics Data System (ADS)
Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.
2017-04-01
An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.
NASA Technical Reports Server (NTRS)
Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael
1993-01-01
A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).
Neural network and its application to CT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikravesh, M.; Kovscek, A.R.; Patzek, T.W.
We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.
Neural networks for self-learning control systems
NASA Technical Reports Server (NTRS)
Nguyen, Derrick H.; Widrow, Bernard
1990-01-01
It is shown how a neural network can learn of its own accord to control a nonlinear dynamic system. An emulator, a multilayered neural network, learns to identify the system's dynamic characteristics. The controller, another multilayered neural network, next learns to control the emulator. The self-trained controller is then used to control the actual dynamic system. The learning process continues as the emulator and controller improve and track the physical process. An example is given to illustrate these ideas. The 'truck backer-upper,' a neural network controller that steers a trailer truck while the truck is backing up to a loading dock, is demonstrated. The controller is able to guide the truck to the dock from almost any initial position. The technique explored should be applicable to a wide variety of nonlinear control problems.
NASA Astrophysics Data System (ADS)
Vrettaros, John; Vouros, George; Drigas, Athanasios S.
This article studies the expediency of using neural networks technology and the development of back-propagation networks (BPN) models for modeling automated evaluation of the answers and progress of deaf students' that possess basic knowledge of the English language and computer skills, within a virtual e-learning environment. The performance of the developed neural models is evaluated with the correlation factor between the neural networks' response values and the real value data as well as the percentage measurement of the error between the neural networks' estimate values and the real value data during its training process and afterwards with unknown data that weren't used in the training process.
Bayro-Corrochano, Eduardo; Vazquez-Santacruz, Eduardo; Moya-Sanchez, Eduardo; Castillo-Munis, Efrain
2016-10-01
This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions.
Modular representation of layered neural networks.
Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio
2018-01-01
Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application of Two-Dimensional AWE Algorithm in Training Multi-Dimensional Neural Network Model
2003-07-01
hybrid scheme . the general neural network method (Table 3.1). The training process of the software- ACKNOWLEDGMENT "Neuralmodeler" is shown in Fig. 3.2...engineering. Artificial neural networks (ANNs) have emerged Training a neural network model is the key of as a powerful technique for modeling general neural...coefficients am, the derivatives method of moments (MoM). The variables in the of matrix I have to be generated . A closed form model are frequency
Ehret, Phillip J; Monroe, Brian M; Read, Stephen J
2015-05-01
We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory. © 2014 by the Society for Personality and Social Psychology, Inc.
Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming
2016-01-01
Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.
Tutorial: Neural networks and their potential application in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhrig, R.E.
A neural network is a data processing system consisting of a number of simple, highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks have emerged in the past few years as an area of unusual opportunity for research, development and application to a variety of real world problems. Indeed, neural networks exhibit characteristics and capabilities not provided by any other technology. Examples include reading Japanese Kanjimore » characters and human handwriting, reading a typewritten manuscript aloud, compensating for alignment errors in robots, interpreting very noise'' signals (e.g. electroencephalograms), modeling complex systems that cannot be modelled mathematically, and predicting whether proposed loans will be good or fail. This paper presents a brief tutorial on neural networks and describes research on the potential applications to nuclear power plants.« less
Method and apparatus for in-process sensing of manufacturing quality
Hartman, Daniel A [Santa Fe, NM; Dave, Vivek R [Los Alamos, NM; Cola, Mark J [Santa Fe, NM; Carpenter, Robert W [Los Alamos, NM
2005-02-22
A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining the quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.
Neural networks: Alternatives to conventional techniques for automatic docking
NASA Technical Reports Server (NTRS)
Vinz, Bradley L.
1994-01-01
Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.
Method and Apparatus for In-Process Sensing of Manufacturing Quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, D.A.; Dave, V.R.; Cola, M.J.
2005-02-22
A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining themore » quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.« less
Program Helps Simulate Neural Networks
NASA Technical Reports Server (NTRS)
Villarreal, James; Mcintire, Gary
1993-01-01
Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.
Nanophotonic particle simulation and inverse design using artificial neural networks.
Peurifoy, John; Shen, Yichen; Jing, Li; Yang, Yi; Cano-Renteria, Fidel; DeLacy, Brendan G; Joannopoulos, John D; Tegmark, Max; Soljačić, Marin
2018-06-01
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.
Image object recognition based on the Zernike moment and neural networks
NASA Astrophysics Data System (ADS)
Wan, Jianwei; Wang, Ling; Huang, Fukan; Zhou, Liangzhu
1998-03-01
This paper first give a comprehensive discussion about the concept of artificial neural network its research methods and the relations with information processing. On the basis of such a discussion, we expound the mathematical similarity of artificial neural network and information processing. Then, the paper presents a new method of image recognition based on invariant features and neural network by using image Zernike transform. The method not only has the invariant properties for rotation, shift and scale of image object, but also has good fault tolerance and robustness. Meanwhile, it is also compared with statistical classifier and invariant moments recognition method.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrada, J.J.; Osborne-Lee, I.W.; Grizzaffi, P.A.
Expert systems are known to be useful in capturing expertise and applying knowledge to chemical engineering problems such as diagnosis, process control, process simulation, and process advisory. However, expert system applications are traditionally limited to knowledge domains that are heuristic and involve only simple mathematics. Neural networks, on the other hand, represent an emerging technology capable of rapid recognition of patterned behavior without regard to mathematical complexity. Although useful in problem identification, neural networks are not very efficient in providing in-depth solutions and typically do not promote full understanding of the problem or the reasoning behind its solutions. Hence, applicationsmore » of neural networks have certain limitations. This paper explores the potential for expanding the scope of chemical engineering areas where neural networks might be utilized by incorporating expert systems and neural networks into the same application, a process called hybridization. In addition, hybrid applications are compared with those using more traditional approaches, the results of the different applications are analyzed, and the feasibility of converting the preliminary prototypes described herein into useful final products is evaluated. 12 refs., 8 figs.« less
Yang, S; Wang, D
2000-01-01
This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.
NASA Astrophysics Data System (ADS)
Qian, Xiaoshan
2018-01-01
The traditional model of evaporation process parameters have continuity and cumulative characteristics of the prediction error larger issues, based on the basis of the process proposed an adaptive particle swarm neural network forecasting method parameters established on the autoregressive moving average (ARMA) error correction procedure compensated prediction model to predict the results of the neural network to improve prediction accuracy. Taking a alumina plant evaporation process to analyze production data validation, and compared with the traditional model, the new model prediction accuracy greatly improved, can be used to predict the dynamic process of evaporation of sodium aluminate solution components.
McDonough, Ian M.; Nashiro, Kaoru
2014-01-01
An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing). While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less research has focused on the basic understanding of neural complexity in populations with young and healthy brain states. The present study used resting-state fMRI data from the Human Connectome Project (Van Essen et al., 2013) to test the extent that neural complexity in the BOLD signal, as measured by multiscale entropy (1) would differ from random noise, (2) would differ between four major resting-state networks previously associated with higher-order cognition, and (3) would be associated with the strength and extent of functional connectivity—a complementary method of estimating information processing. We found that complexity in the BOLD signal exhibited different patterns of complexity from white, pink, and red noise and that neural complexity was differentially expressed between resting-state networks, including the default mode, cingulo-opercular, left and right frontoparietal networks. Lastly, neural complexity across all networks was negatively associated with functional connectivity at fine scales, but was positively associated with functional connectivity at coarse scales. The present study is the first to characterize neural complexity in BOLD signals at a high temporal resolution and across different networks and might help clarify the inconsistencies between neural complexity and functional connectivity, thus informing the mechanisms underlying neural complexity. PMID:24959130
Adaptive Neurons For Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1990-01-01
Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.
Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control
Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.
1997-01-01
One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.
Wavelet-based higher-order neural networks for mine detection in thermal IR imagery
NASA Astrophysics Data System (ADS)
Baertlein, Brian A.; Liao, Wen-Jiao
2000-08-01
An image processing technique is described for the detection of miens in RI imagery. The proposed technique is based on a third-order neural network, which processes the output of a wavelet packet transform. The technique is inherently invariant to changes in signature position, rotation and scaling. The well-known memory limitations that arise with higher-order neural networks are addressed by (1) the data compression capabilities of wavelet packets, (2) protections of the image data into a space of similar triangles, and (3) quantization of that 'triangle space'. Using these techniques, image chips of size 28 by 28, which would require 0(109) neural net weights, are processed by a network having 0(102) weights. ROC curves are presented for mine detection in real and simulated imagery.
Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.
Xia, Youshen; Wang, Jun
2015-07-01
This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Decker, Arthur J. (Inventor)
2006-01-01
An artificial neural network is disclosed that processes holography generated characteristic pattern of vibrating structures along with finite-element models. The present invention provides for a folding operation for conditioning training sets for optimally training forward-neural networks to process characteristic fringe pattern. The folding pattern increases the sensitivity of the feed-forward network for detecting changes in the characteristic pattern The folding routine manipulates input pixels so as to be scaled according to the location in an intensity range rather than the position in the characteristic pattern.
NASA Astrophysics Data System (ADS)
Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan
2018-02-01
Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.
Fast temporal neural learning using teacher forcing
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad (Inventor); Bahren, Jacob (Inventor)
1992-01-01
A neural network is trained to output a time dependent target vector defined over a predetermined time interval in response to a time dependent input vector defined over the same time interval by applying corresponding elements of the error vector, or difference between the target vector and the actual neuron output vector, to the inputs of corresponding output neurons of the network as corrective feedback. This feedback decreases the error and quickens the learning process, so that a much smaller number of training cycles are required to complete the learning process. A conventional gradient descent algorithm is employed to update the neural network parameters at the end of the predetermined time interval. The foregoing process is repeated in repetitive cycles until the actual output vector corresponds to the target vector. In the preferred embodiment, as the overall error of the neural network output decreasing during successive training cycles, the portion of the error fed back to the output neurons is decreased accordingly, allowing the network to learn with greater freedom from teacher forcing as the network parameters converge to their optimum values. The invention may also be used to train a neural network with stationary training and target vectors.
Fast temporal neural learning using teacher forcing
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad (Inventor); Bahren, Jacob (Inventor)
1995-01-01
A neural network is trained to output a time dependent target vector defined over a predetermined time interval in response to a time dependent input vector defined over the same time interval by applying corresponding elements of the error vector, or difference between the target vector and the actual neuron output vector, to the inputs of corresponding output neurons of the network as corrective feedback. This feedback decreases the error and quickens the learning process, so that a much smaller number of training cycles are required to complete the learning process. A conventional gradient descent algorithm is employed to update the neural network parameters at the end of the predetermined time interval. The foregoing process is repeated in repetitive cycles until the actual output vector corresponds to the target vector. In the preferred embodiment, as the overall error of the neural network output decreasing during successive training cycles, the portion of the error fed back to the output neurons is decreased accordingly, allowing the network to learn with greater freedom from teacher forcing as the network parameters converge to their optimum values. The invention may also be used to train a neural network with stationary training and target vectors.
Verification and Validation of Neural Networks for Aerospace Systems
NASA Technical Reports Server (NTRS)
Mackall, Dale; Nelson, Stacy; Schumman, Johann; Clancy, Daniel (Technical Monitor)
2002-01-01
The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: 1) Overview of Adaptive Systems; and 2) V&V Processes/Methods.
Verification and Validation of Neural Networks for Aerospace Systems
NASA Technical Reports Server (NTRS)
Mackall, Dale; Nelson, Stacy; Schumann, Johann
2002-01-01
The Dryden Flight Research Center V&V working group and NASA Ames Research Center Automated Software Engineering (ASE) group collaborated to prepare this report. The purpose is to describe V&V processes and methods for certification of neural networks for aerospace applications, particularly adaptive flight control systems like Intelligent Flight Control Systems (IFCS) that use neural networks. This report is divided into the following two sections: Overview of Adaptive Systems and V&V Processes/Methods.
MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning
Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man
2015-01-01
Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation. PMID:26681933
MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.
Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man
2015-01-01
Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.
Applications of neural network methods to the processing of earth observation satellite data.
Loyola, Diego G
2006-03-01
The new generation of earth observation satellites carries advanced sensors that will gather very precise data for studying the Earth system and global climate. This paper shows that neural network methods can be successfully used for solving forward and inverse remote sensing problems, providing both accurate and fast solutions. Two examples of multi-neural network systems for the determination of cloud properties and for the retrieval of total columns of ozone using satellite data are presented. The developed algorithms based on multi-neural network are currently being used for the operational processing of European atmospheric satellite sensors and will play a key role in related satellite missions planed for the near future.
Nanophotonic particle simulation and inverse design using artificial neural networks
Peurifoy, John; Shen, Yichen; Jing, Li; Cano-Renteria, Fidel; DeLacy, Brendan G.; Joannopoulos, John D.; Tegmark, Max
2018-01-01
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical. PMID:29868640
The role of symmetry in neural networks and their Laplacian spectra.
de Lange, Siemon C; van den Heuvel, Martijn P; de Reus, Marcel A
2016-11-01
Human and animal nervous systems constitute complexly wired networks that form the infrastructure for neural processing and integration of information. The organization of these neural networks can be analyzed using the so-called Laplacian spectrum, providing a mathematical tool to produce systems-level network fingerprints. In this article, we examine a characteristic central peak in the spectrum of neural networks, including anatomical brain network maps of the mouse, cat and macaque, as well as anatomical and functional network maps of human brain connectivity. We link the occurrence of this central peak to the level of symmetry in neural networks, an intriguing aspect of network organization resulting from network elements that exhibit similar wiring patterns. Specifically, we propose a measure to capture the global level of symmetry of a network and show that, for both empirical networks and network models, the height of the main peak in the Laplacian spectrum is strongly related to node symmetry in the underlying network. Moreover, examination of spectra of duplication-based model networks shows that neural spectra are best approximated using a trade-off between duplication and diversification. Taken together, our results facilitate a better understanding of neural network spectra and the importance of symmetry in neural networks. Copyright © 2016 Elsevier Inc. All rights reserved.
Neural-Net Processing of Characteristic Patterns From Electronic Holograms of Vibrating Blades
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
1999-01-01
Finite-element-model-trained artificial neural networks can be used to process efficiently the characteristic patterns or mode shapes from electronic holograms of vibrating blades. The models used for routine design may not yet be sufficiently accurate for this application. This document discusses the creation of characteristic patterns; compares model generated and experimental characteristic patterns; and discusses the neural networks that transform the characteristic patterns into strain or damage information. The current potential to adapt electronic holography to spin rigs, wind tunnels and engines provides an incentive to have accurate finite element models lor training neural networks.
Empirical modeling for intelligent, real-time manufacture control
NASA Technical Reports Server (NTRS)
Xu, Xiaoshu
1994-01-01
Artificial neural systems (ANS), also known as neural networks, are an attempt to develop computer systems that emulate the neural reasoning behavior of biological neural systems (e.g. the human brain). As such, they are loosely based on biological neural networks. The ANS consists of a series of nodes (neurons) and weighted connections (axons) that, when presented with a specific input pattern, can associate specific output patterns. It is essentially a highly complex, nonlinear, mathematical relationship or transform. These constructs have two significant properties that have proven useful to the authors in signal processing and process modeling: noise tolerance and complex pattern recognition. Specifically, the authors have developed a new network learning algorithm that has resulted in the successful application of ANS's to high speed signal processing and to developing models of highly complex processes. Two of the applications, the Weld Bead Geometry Control System and the Welding Penetration Monitoring System, are discussed in the body of this paper.
Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo
2015-07-01
Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.
Introduction to Concepts in Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
Interactions between neural networks: a mechanism for tuning chaos and oscillations.
Wang, Lipo
2007-06-01
We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory behaviors in systems that require stability.
Static and transient performance prediction for CFB boilers using a Bayesian-Gaussian Neural Network
NASA Astrophysics Data System (ADS)
Ye, Haiwen; Ni, Weidou
1997-06-01
A Bayesian-Gaussian Neural Network (BGNN) is put forward in this paper to predict the static and transient performance of Circulating Fluidized Bed (CFB) boilers. The advantages of this network over Back-Propagation Neural Networks (BPNNs), easier determination of topology, simpler and time saving in training process as well as self-organizing ability, make this network more practical in on-line performance prediction for complicated processes. Simulation shows that this network is comparable to the BPNNs in predicting the performance of CFB boilers. Good and practical on-line performance predictions are essential for operation guide and model predictive control of CFB boilers, which are under research by the authors.
Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network
NASA Astrophysics Data System (ADS)
Sang, Nong; Zhang, Tianxu
1997-12-01
Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.
Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450
Falat, Lukas; Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.
Hadoop neural network for parallel and distributed feature selection.
Hodge, Victoria J; O'Keefe, Simon; Austin, Jim
2016-06-01
In this paper, we introduce a theoretical basis for a Hadoop-based neural network for parallel and distributed feature selection in Big Data sets. It is underpinned by an associative memory (binary) neural network which is highly amenable to parallel and distributed processing and fits with the Hadoop paradigm. There are many feature selectors described in the literature which all have various strengths and weaknesses. We present the implementation details of five feature selection algorithms constructed using our artificial neural network framework embedded in Hadoop YARN. Hadoop allows parallel and distributed processing. Each feature selector can be divided into subtasks and the subtasks can then be processed in parallel. Multiple feature selectors can also be processed simultaneously (in parallel) allowing multiple feature selectors to be compared. We identify commonalities among the five features selectors. All can be processed in the framework using a single representation and the overall processing can also be greatly reduced by only processing the common aspects of the feature selectors once and propagating these aspects across all five feature selectors as necessary. This allows the best feature selector and the actual features to select to be identified for large and high dimensional data sets through exploiting the efficiency and flexibility of embedding the binary associative-memory neural network in Hadoop. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Neural electrical activity and neural network growth.
Gafarov, F M
2018-05-01
The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Application of a neural network to simulate analysis in an optimization process
NASA Technical Reports Server (NTRS)
Rogers, James L.; Lamarsh, William J., II
1992-01-01
A new experimental software package called NETS/PROSSS aimed at reducing the computing time required to solve a complex design problem is described. The software combines a neural network for simulating the analysis program with an optimization program. The neural network is applied to approximate results of a finite element analysis program to quickly obtain a near-optimal solution. Results of the NETS/PROSSS optimization process can also be used as an initial design in a normal optimization process and make it possible to converge to an optimum solution with significantly fewer iterations.
Compact holographic optical neural network system for real-time pattern recognition
NASA Astrophysics Data System (ADS)
Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.
1996-08-01
One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.
Sign Language Recognition System using Neural Network for Digital Hardware Implementation
NASA Astrophysics Data System (ADS)
Vargas, Lorena P.; Barba, Leiner; Torres, C. O.; Mattos, L.
2011-01-01
This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.
USDA-ARS?s Scientific Manuscript database
An artificial Radial Basis Function (RBF) neural network model was developed for the prediction of mass transfer of the phospholipids from canola meal in supercritical CO2 fluid. The RBF kind of artificial neural networks (ANN) with orthogonal least squares (OLS) learning algorithm were used for mod...
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude
2017-01-01
Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703
A neural network prototyping package within IRAF
NASA Technical Reports Server (NTRS)
Bazell, D.; Bankman, I.
1992-01-01
We outline our plans for incorporating a Neural Network Prototyping Package into the IRAF environment. The package we are developing will allow the user to choose between different types of networks and to specify the details of the particular architecture chosen. Neural networks consist of a highly interconnected set of simple processing units. The strengths of the connections between units are determined by weights which are adaptively set as the network 'learns'. In some cases, learning can be a separate phase of the user cycle of the network while in other cases the network learns continuously. Neural networks have been found to be very useful in pattern recognition and image processing applications. They can form very general 'decision boundaries' to differentiate between objects in pattern space and they can be used for associative recall of patterns based on partial cures and for adaptive filtering. We discuss the different architectures we plan to use and give examples of what they can do.
Interactions between neural networks: a mechanism for tuning chaos and oscillations
2007-01-01
We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory behaviors in systems that require stability. PMID:19003511
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2
NASA Technical Reports Server (NTRS)
Lea, Robert N. (Editor); Villarreal, James A. (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Efficient self-organizing multilayer neural network for nonlinear system modeling.
Han, Hong-Gui; Wang, Li-Dan; Qiao, Jun-Fei
2013-07-01
It has been shown extensively that the dynamic behaviors of a neural system are strongly influenced by the network architecture and learning process. To establish an artificial neural network (ANN) with self-organizing architecture and suitable learning algorithm for nonlinear system modeling, an automatic axon-neural network (AANN) is investigated in the following respects. First, the network architecture is constructed automatically to change both the number of hidden neurons and topologies of the neural network during the training process. The approach introduced in adaptive connecting-and-pruning algorithm (ACP) is a type of mixed mode operation, which is equivalent to pruning or adding the connecting of the neurons, as well as inserting some required neurons directly. Secondly, the weights are adjusted, using a feedforward computation (FC) to obtain the information for the gradient during learning computation. Unlike most of the previous studies, AANN is able to self-organize the architecture and weights, and to improve the network performances. Also, the proposed AANN has been tested on a number of benchmark problems, ranging from nonlinear function approximating to nonlinear systems modeling. The experimental results show that AANN can have better performances than that of some existing neural networks. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Neural networks for vertical microcode compaction
NASA Astrophysics Data System (ADS)
Chu, Pong P.
1992-09-01
Neural networks provide an alternative way to solve complex optimization problems. Instead of performing a program of instructions sequentially as in a traditional computer, neural network model explores many competing hypotheses simultaneously using its massively parallel net. The paper shows how to use the neural network approach to perform vertical micro-code compaction for a micro-programmed control unit. The compaction procedure includes two basic steps. The first step determines the compatibility classes and the second step selects a minimal subset to cover the control signals. Since the selection process is an NP- complete problem, to find an optimal solution is impractical. In this study, we employ a customized neural network to obtain the minimal subset. We first formalize this problem, and then define an `energy function' and map it to a two-layer fully connected neural network. The modified network has two types of neurons and can always obtain a valid solution.
Design of a MIMD neural network processor
NASA Astrophysics Data System (ADS)
Saeks, Richard E.; Priddy, Kevin L.; Pap, Robert M.; Stowell, S.
1994-03-01
The Accurate Automation Corporation (AAC) neural network processor (NNP) module is a fully programmable multiple instruction multiple data (MIMD) parallel processor optimized for the implementation of neural networks. The AAC NNP design fully exploits the intrinsic sparseness of neural network topologies. Moreover, by using a MIMD parallel processing architecture one can update multiple neurons in parallel with efficiency approaching 100 percent as the size of the network increases. Each AAC NNP module has 8 K neurons and 32 K interconnections and is capable of 140,000,000 connections per second with an eight processor array capable of over one billion connections per second.
A biologically inspired neural network for dynamic programming.
Francelin Romero, R A; Kacpryzk, J; Gomide, F
2001-12-01
An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems.
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Stoner, William W.
1993-01-01
An optical neural network based on the neocognitron paradigm is introduced. A novel aspect of the architecture design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by feeding back the ouput of the feature correlator interatively to the input spatial light modulator and by updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intraclass fault tolerance and interclass discrimination is achieved. A detailed system description is provided. Experimental demonstrations of a two-layer neural network for space-object discrimination is also presented.
Automatic target recognition using a feature-based optical neural network
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
1992-01-01
An optical neural network based upon the Neocognitron paradigm (K. Fukushima et al. 1983) is introduced. A novel aspect of the architectural design is shift-invariant multichannel Fourier optical correlation within each processing layer. Multilayer processing is achieved by iteratively feeding back the output of the feature correlator to the input spatial light modulator and updating the Fourier filters. By training the neural net with characteristic features extracted from the target images, successful pattern recognition with intra-class fault tolerance and inter-class discrimination is achieved. A detailed system description is provided. Experimental demonstration of a two-layer neural network for space objects discrimination is also presented.
Data systems and computer science: Neural networks base R/T program overview
NASA Technical Reports Server (NTRS)
Gulati, Sandeep
1991-01-01
The research base, in the U.S. and abroad, for the development of neural network technology is discussed. The technical objectives are to develop and demonstrate adaptive, neural information processing concepts. The leveraging of external funding is also discussed.
Neural network face recognition using wavelets
NASA Astrophysics Data System (ADS)
Karunaratne, Passant V.; Jouny, Ismail I.
1997-04-01
The recognition of human faces is a phenomenon that has been mastered by the human visual system and that has been researched extensively in the domain of computer neural networks and image processing. This research is involved in the study of neural networks and wavelet image processing techniques in the application of human face recognition. The objective of the system is to acquire a digitized still image of a human face, carry out pre-processing on the image as required, an then, given a prior database of images of possible individuals, be able to recognize the individual in the image. The pre-processing segment of the system includes several procedures, namely image compression, denoising, and feature extraction. The image processing is carried out using Daubechies wavelets. Once the images have been passed through the wavelet-based image processor they can be efficiently analyzed by means of a neural network. A back- propagation neural network is used for the recognition segment of the system. The main constraints of the system is with regard to the characteristics of the images being processed. The system should be able to carry out effective recognition of the human faces irrespective of the individual's facial-expression, presence of extraneous objects such as head-gear or spectacles, and face/head orientation. A potential application of this face recognition system would be as a secondary verification method in an automated teller machine.
Single-hidden-layer feed-forward quantum neural network based on Grover learning.
Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min
2013-09-01
In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2001-01-01
Artificial neural networks have been used for a number of years to process holography-generated characteristic patterns of vibrating structures. This technology depends critically on the selection and the conditioning of the training sets. A scaling operation called folding is discussed for conditioning training sets optimally for training feed-forward neural networks to process characteristic fringe patterns. Folding allows feed-forward nets to be trained easily to detect damage-induced vibration-displacement-distribution changes as small as 10 nm. A specific application to aerospace of neural-net processing of characteristic patterns is presented to motivate the conditioning and optimization effort.
Signal processing method and system for noise removal and signal extraction
Fu, Chi Yung; Petrich, Loren
2009-04-14
A signal processing method and system combining smooth level wavelet pre-processing together with artificial neural networks all in the wavelet domain for signal denoising and extraction. Upon receiving a signal corrupted with noise, an n-level decomposition of the signal is performed using a discrete wavelet transform to produce a smooth component and a rough component for each decomposition level. The n.sup.th level smooth component is then inputted into a corresponding neural network pre-trained to filter out noise in that component by pattern recognition in the wavelet domain. Additional rough components, beginning at the highest level, may also be retained and inputted into corresponding neural networks pre-trained to filter out noise in those components also by pattern recognition in the wavelet domain. In any case, an inverse discrete wavelet transform is performed on the combined output from all the neural networks to recover a clean signal back in the time domain.
A neural network ActiveX based integrated image processing environment.
Ciuca, I; Jitaru, E; Alaicescu, M; Moisil, I
2000-01-01
The paper outlines an integrated image processing environment that uses neural networks ActiveX technology for object recognition and classification. The image processing environment which is Windows based, encapsulates a Multiple-Document Interface (MDI) and is menu driven. Object (shape) parameter extraction is focused on features that are invariant in terms of translation, rotation and scale transformations. The neural network models that can be incorporated as ActiveX components into the environment allow both clustering and classification of objects from the analysed image. Mapping neural networks perform an input sensitivity analysis on the extracted feature measurements and thus facilitate the removal of irrelevant features and improvements in the degree of generalisation. The program has been used to evaluate the dimensions of the hydrocephalus in a study for calculating the Evans index and the angle of the frontal horns of the ventricular system modifications.
Neuromorphic photonic networks using silicon photonic weight banks.
Tait, Alexander N; de Lima, Thomas Ferreira; Zhou, Ellen; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R
2017-08-07
Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.
Application of two neural network paradigms to the study of voluntary employee turnover.
Somers, M J
1999-04-01
Two neural network paradigms--multilayer perceptron and learning vector quantization--were used to study voluntary employee turnover with a sample of 577 hospital employees. The objectives of the study were twofold. The 1st was to assess whether neural computing techniques offered greater predictive accuracy than did conventional turnover methodologies. The 2nd was to explore whether computer models of turnover based on neural network technologies offered new insights into turnover processes. When compared with logistic regression analysis, both neural network paradigms provided considerably more accurate predictions of turnover behavior, particularly with respect to the correct classification of leavers. In addition, these neural network paradigms captured nonlinear relationships that are relevant for theory development. Results are discussed in terms of their implications for future research.
Neural manufacturing: a novel concept for processing modeling, monitoring, and control
NASA Astrophysics Data System (ADS)
Fu, Chi Y.; Petrich, Loren; Law, Benjamin
1995-09-01
Semiconductor fabrication lines have become extremely costly, and achieving a good return from such a high capital investment requires efficient utilization of these expensive facilities. It is highly desirable to shorten processing development time, increase fabrication yield, enhance flexibility, improve quality, and minimize downtime. We propose that these ends can be achieved by applying recent advances in the areas of artificial neural networks, fuzzy logic, machine learning, and genetic algorithms. We use the term neural manufacturing to describe such applications. This paper describes our use of artificial neural networks to improve the monitoring and control of semiconductor process.
NASA Technical Reports Server (NTRS)
Hepner, George F.; Logan, Thomas; Ritter, Niles; Bryant, Nevin
1990-01-01
Recent research has shown an artificial neural network (ANN) to be capable of pattern recognition and the classification of image data. This paper examines the potential for the application of neural network computing to satellite image processing. A second objective is to provide a preliminary comparison and ANN classification. An artificial neural network can be trained to do land-cover classification of satellite imagery using selected sites representative of each class in a manner similar to conventional supervised classification. One of the major problems associated with recognition and classifications of pattern from remotely sensed data is the time and cost of developing a set of training sites. This reseach compares the use of an ANN back propagation classification procedure with a conventional supervised maximum likelihood classification procedure using a minimal training set. When using a minimal training set, the neural network is able to provide a land-cover classification superior to the classification derived from the conventional classification procedure. This research is the foundation for developing application parameters for further prototyping of software and hardware implementations for artificial neural networks in satellite image and geographic information processing.
Neural signal registration and analysis of axons grown in microchannels
NASA Astrophysics Data System (ADS)
Pigareva, Y.; Malishev, E.; Gladkov, A.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A.
2016-08-01
Registration of neuronal bioelectrical signals remains one of the main physical tools to study fundamental mechanisms of signal processing in the brain. Neurons generate spiking patterns which propagate through complex map of neural network connectivity. Extracellular recording of isolated axons grown in microchannels provides amplification of the signal for detailed study of spike propagation. In this study we used neuronal hippocampal cultures grown in microfluidic devices combined with microelectrode arrays to investigate a changes of electrical activity during neural network development. We found that after 5 days in vitro after culture plating the spiking activity appears first in microchannels and on the next 2-3 days appears on the electrodes of overall neural network. We conclude that such approach provides a convenient method to study neural signal processing and functional structure development on a single cell and network level of the neuronal culture.
Zelić, B; Bolf, N; Vasić-Racki, D
2006-06-01
Three different models: the unstructured mechanistic black-box model, the input-output neural network-based model and the externally recurrent neural network model were used to describe the pyruvate production process from glucose and acetate using the genetically modified Escherichia coli YYC202 ldhA::Kan strain. The experimental data were used from the recently described batch and fed-batch experiments [ Zelić B, Study of the process development for Escherichia coli-based pyruvate production. PhD Thesis, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia, July 2003. (In English); Zelić et al. Bioproc Biosyst Eng 26:249-258 (2004); Zelić et al. Eng Life Sci 3:299-305 (2003); Zelić et al Biotechnol Bioeng 85:638-646 (2004)]. The neural networks were built out of the experimental data obtained in the fed-batch pyruvate production experiments with the constant glucose feed rate. The model validation was performed using the experimental results obtained from the batch and fed-batch pyruvate production experiments with the constant acetate feed rate. Dynamics of the substrate and product concentration changes was estimated using two neural network-based models for biomass and pyruvate. It was shown that neural networks could be used for the modeling of complex microbial fermentation processes, even in conditions in which mechanistic unstructured models cannot be applied.
Artificial Neural Networks for Processing Graphs with Application to Image Understanding: A Survey
NASA Astrophysics Data System (ADS)
Bianchini, Monica; Scarselli, Franco
In graphical pattern recognition, each data is represented as an arrangement of elements, that encodes both the properties of each element and the relations among them. Hence, patterns are modelled as labelled graphs where, in general, labels can be attached to both nodes and edges. Artificial neural networks able to process graphs are a powerful tool for addressing a great variety of real-world problems, where the information is naturally organized in entities and relationships among entities and, in fact, they have been widely used in computer vision, f.i. in logo recognition, in similarity retrieval, and for object detection. In this chapter, we propose a survey of neural network models able to process structured information, with a particular focus on those architectures tailored to address image understanding applications. Starting from the original recursive model (RNNs), we subsequently present different ways to represent images - by trees, forests of trees, multiresolution trees, directed acyclic graphs with labelled edges, general graphs - and, correspondingly, neural network architectures appropriate to process such structures.
Elements of an algorithm for optimizing a parameter-structural neural network
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2016-06-01
The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.
A neural network strategy for end-point optimization of batch processes.
Krothapally, M; Palanki, S
1999-01-01
The traditional way of operating batch processes has been to utilize an open-loop "golden recipe". However, there can be substantial batch to batch variation in process conditions and this open-loop strategy can lead to non-optimal operation. In this paper, a new approach is presented for end-point optimization of batch processes by utilizing neural networks. This strategy involves the training of two neural networks; one to predict switching times and the other to predict the input profile in the singular region. This approach alleviates the computational problems associated with the classical Pontryagin's approach and the nonlinear programming approach. The efficacy of this scheme is illustrated via simulation of a fed-batch fermentation.
Multiple neural network approaches to clinical expert systems
NASA Astrophysics Data System (ADS)
Stubbs, Derek F.
1990-08-01
We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results
Nonequilibrium landscape theory of neural networks.
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-11-05
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.
Nonequilibrium landscape theory of neural networks
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-01-01
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape–flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments. PMID:24145451
Concurrent evolution of feature extractors and modular artificial neural networks
NASA Astrophysics Data System (ADS)
Hannak, Victor; Savakis, Andreas; Yang, Shanchieh Jay; Anderson, Peter
2009-05-01
This paper presents a new approach for the design of feature-extracting recognition networks that do not require expert knowledge in the application domain. Feature-Extracting Recognition Networks (FERNs) are composed of interconnected functional nodes (feurons), which serve as feature extractors, and are followed by a subnetwork of traditional neural nodes (neurons) that act as classifiers. A concurrent evolutionary process (CEP) is used to search the space of feature extractors and neural networks in order to obtain an optimal recognition network that simultaneously performs feature extraction and recognition. By constraining the hill-climbing search functionality of the CEP on specific parts of the solution space, i.e., individually limiting the evolution of feature extractors and neural networks, it was demonstrated that concurrent evolution is a necessary component of the system. Application of this approach to a handwritten digit recognition task illustrates that the proposed methodology is capable of producing recognition networks that perform in-line with other methods without the need for expert knowledge in image processing.
Adaptive Filtering Using Recurrent Neural Networks
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.
Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M
2009-10-01
Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.
A comparison of neural network architectures for the prediction of MRR in EDM
NASA Astrophysics Data System (ADS)
Jena, A. R.; Das, Raja
2017-11-01
The aim of the research work is to predict the material removal rate of a work-piece in electrical discharge machining (EDM). Here, an effort has been made to predict the material removal rate through back-propagation neural network (BPN) and radial basis function neural network (RBFN) for a work-piece of AISI D2 steel. The input parameters for the architecture are discharge-current (Ip), pulse-duration (Ton), and duty-cycle (τ) taken for consideration to obtained the output for material removal rate of the work-piece. In the architecture, it has been observed that radial basis function neural network is comparatively faster than back-propagation neural network but logically back-propagation neural network results more real value. Therefore BPN may consider as a better process in this architecture for consistent prediction to save time and money for conducting experiments.
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Huang, Song; Govind, Girish
1991-01-01
In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.
Dynamical synapses enhance neural information processing: gracefulness, accuracy, and mobility.
Fung, C C Alan; Wong, K Y Michael; Wang, He; Wu, Si
2012-05-01
Experimental data have revealed that neuronal connection efficacy exhibits two forms of short-term plasticity: short-term depression (STD) and short-term facilitation (STF). They have time constants residing between fast neural signaling and rapid learning and may serve as substrates for neural systems manipulating temporal information on relevant timescales. This study investigates the impact of STD and STF on the dynamics of continuous attractor neural networks and their potential roles in neural information processing. We find that STD endows the network with slow-decaying plateau behaviors: the network that is initially being stimulated to an active state decays to a silent state very slowly on the timescale of STD rather than on that of neuralsignaling. This provides a mechanism for neural systems to hold sensory memory easily and shut off persistent activities gracefully. With STF, we find that the network can hold a memory trace of external inputs in the facilitated neuronal interactions, which provides a way to stabilize the network response to noisy inputs, leading to improved accuracy in population decoding. Furthermore, we find that STD increases the mobility of the network states. The increased mobility enhances the tracking performance of the network in response to time-varying stimuli, leading to anticipative neural responses. In general, we find that STD and STP tend to have opposite effects on network dynamics and complementary computational advantages, suggesting that the brain may employ a strategy of weighting them differentially depending on the computational purpose.
A neural network model for credit risk evaluation.
Khashman, Adnan
2009-08-01
Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.
Convolutional neural networks for event-related potential detection: impact of the architecture.
Cecotti, H
2017-07-01
The detection of brain responses at the single-trial level in the electroencephalogram (EEG) such as event-related potentials (ERPs) is a difficult problem that requires different processing steps to extract relevant discriminant features. While most of the signal and classification techniques for the detection of brain responses are based on linear algebra, different pattern recognition techniques such as convolutional neural network (CNN), as a type of deep learning technique, have shown some interests as they are able to process the signal after limited pre-processing. In this study, we propose to investigate the performance of CNNs in relation of their architecture and in relation to how they are evaluated: a single system for each subject, or a system for all the subjects. More particularly, we want to address the change of performance that can be observed between specifying a neural network to a subject, or by considering a neural network for a group of subjects, taking advantage of a larger number of trials from different subjects. The results support the conclusion that a convolutional neural network trained on different subjects can lead to an AUC above 0.9 by using an appropriate architecture using spatial filtering and shift invariant layers.
Sittig, D. F.; Orr, J. A.
1991-01-01
Various methods have been proposed in an attempt to solve problems in artifact and/or alarm identification including expert systems, statistical signal processing techniques, and artificial neural networks (ANN). ANNs consist of a large number of simple processing units connected by weighted links. To develop truly robust ANNs, investigators are required to train their networks on huge training data sets, requiring enormous computing power. We implemented a parallel version of the backward error propagation neural network training algorithm in the widely portable parallel programming language C-Linda. A maximum speedup of 4.06 was obtained with six processors. This speedup represents a reduction in total run-time from approximately 6.4 hours to 1.5 hours. We conclude that use of the master-worker model of parallel computation is an excellent method for obtaining speedups in the backward error propagation neural network training algorithm. PMID:1807607
Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia
2014-01-01
For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy. PMID:25133210
Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B.
2012-01-01
The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem. PMID:22649480
Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B
2012-01-01
The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem.
Predicate calculus for an architecture of multiple neural networks
NASA Astrophysics Data System (ADS)
Consoli, Robert H.
1990-08-01
Future projects with neural networks will require multiple individual network components. Current efforts along these lines are ad hoc. This paper relates the neural network to a classical device and derives a multi-part architecture from that model. Further it provides a Predicate Calculus variant for describing the location and nature of the trainings and suggests Resolution Refutation as a method for determining the performance of the system as well as the location of needed trainings for specific proofs. 2. THE NEURAL NETWORK AND A CLASSICAL DEVICE Recently investigators have been making reports about architectures of multiple neural networksL234. These efforts are appearing at an early stage in neural network investigations they are characterized by architectures suggested directly by the problem space. Touretzky and Hinton suggest an architecture for processing logical statements1 the design of this architecture arises from the syntax of a restricted class of logical expressions and exhibits syntactic limitations. In similar fashion a multiple neural netword arises out of a control problem2 from the sequence learning problem3 and from the domain of machine learning. 4 But a general theory of multiple neural devices is missing. More general attempts to relate single or multiple neural networks to classical computing devices are not common although an attempt is made to relate single neural devices to a Turing machines and Sun et a!. develop a multiple neural architecture that performs pattern classification.
Architecture and biological applications of artificial neural networks: a tuberculosis perspective.
Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran
2015-01-01
Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.
Neural network based speech synthesizer: A preliminary report
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Mcintire, Gary
1987-01-01
A neural net based speech synthesis project is discussed. The novelty is that the reproduced speech was extracted from actual voice recordings. In essence, the neural network learns the timing, pitch fluctuations, connectivity between individual sounds, and speaking habits unique to that individual person. The parallel distributed processing network used for this project is the generalized backward propagation network which has been modified to also learn sequences of actions or states given in a particular plan.
Cascade process modeling with mechanism-based hierarchical neural networks.
Cong, Qiumei; Yu, Wen; Chai, Tianyou
2010-02-01
Cascade process, such as wastewater treatment plant, includes many nonlinear sub-systems and many variables. When the number of sub-systems is big, the input-output relation in the first block and the last block cannot represent the whole process. In this paper we use two techniques to overcome the above problem. Firstly we propose a new neural model: hierarchical neural networks to identify the cascade process; then we use serial structural mechanism model based on the physical equations to connect with neural model. A stable learning algorithm and theoretical analysis are given. Finally, this method is used to model a wastewater treatment plant. Real operational data of wastewater treatment plant is applied to illustrate the modeling approach.
Martin Cichy, Radoslaw; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude
2017-06-01
Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Discovery Learning in Autonomous Agents Using Genetic Algorithms
1993-12-01
Meyer and Wilson (47). 65. Roitblat , H. L., et al. "Biomimetic Sonar Processing: Prom Dolphin Echoloc-Ation to Artificial Neural Networks." In Meyer and...34 In Meyer and Wilson (47). 65. Roitblat , H. L., et al. "Biomimetic Sonar Processing: From Dolphin Echolocation to Artificial Neural Networks." In
Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin
2015-11-01
In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hui; Song, Yongduan; Xue, Fangzheng
In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than themore » SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.« less
Implementation of pulse-coupled neural networks in a CNAPS environment.
Kinser, J M; Lindblad, T
1999-01-01
Pulse coupled neural networks (PCNN's) are biologically inspired algorithms very well suited for image/signal preprocessing. While several analog implementations are proposed we suggest a digital implementation in an existing environment, the connected network of adapted processors system (CNAPS). The reason for this is two fold. First, CNAPS is a commercially available chip which has been used for several neural-network implementations. Second, the PCNN is, in almost all applications, a very efficient component of a system requiring subsequent and additional processing. This may include gating, Fourier transforms, neural classifiers, data mining, etc, with or without feedback to the PCNN.
The role of simulation in the design of a neural network chip
NASA Technical Reports Server (NTRS)
Desai, Utpal; Roppel, Thaddeus A.; Padgett, Mary L.
1993-01-01
An iterative, simulation-based design procedure for a neural network chip is introduced. For this design procedure, the goal is to produce a chip layout for a neural network in which the weights are determined by transistor gate width-to-length ratios. In a given iteration, the current layout is simulated using the circuit simulator SPICE, and layout adjustments are made based on conventional gradient-decent methods. After the iteration converges, the chip is fabricated. Monte Carlo analysis is used to predict the effect of statistical fabrication process variations on the overall performance of the neural network chip.
Bidirectional optimization of the melting spinning process.
Liang, Xiao; Ding, Yongsheng; Wang, Zidong; Hao, Kuangrong; Hone, Kate; Wang, Huaping
2014-02-01
A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.
Neural networks within multi-core optic fibers
Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael
2016-01-01
Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911
Neural networks within multi-core optic fibers.
Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael
2016-07-07
Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.
Dynamic interactions in neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbib, M.A.; Amari, S.
The study of neural networks is enjoying a great renaissance, both in computational neuroscience, the development of information processing models of living brains, and in neural computing, the use of neurally inspired concepts in the construction of intelligent machines. This volume presents models and data on the dynamic interactions occurring in the brain, and exhibits the dynamic interactions between research in computational neuroscience and in neural computing. The authors present current research, future trends and open problems.
NASA Astrophysics Data System (ADS)
Hazza, Muataz Hazza F. Al; Adesta, Erry Y. T.; Riza, Muhammad
2013-12-01
High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models.
NASA Technical Reports Server (NTRS)
Lary, David J.; Mussa, Yussuf
2004-01-01
In this study a new extended Kalman filter (EKF) learning algorithm for feed-forward neural networks (FFN) is used. With the EKF approach, the training of the FFN can be seen as state estimation for a non-linear stationary process. The EKF method gives excellent convergence performances provided that there is enough computer core memory and that the machine precision is high. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). The neural network was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9997. The neural network Fortran code used is available for download.
Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C.; Zhou, Changsong
2013-01-01
The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter , and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of , resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real networks. The discrepancy suggests that there are further relevant factors that are not yet captured here. PMID:23505352
Neural substrates of decision-making.
Broche-Pérez, Y; Herrera Jiménez, L F; Omar-Martínez, E
2016-06-01
Decision-making is the process of selecting a course of action from among 2 or more alternatives by considering the potential outcomes of selecting each option and estimating its consequences in the short, medium and long term. The prefrontal cortex (PFC) has traditionally been considered the key neural structure in decision-making process. However, new studies support the hypothesis that describes a complex neural network including both cortical and subcortical structures. The aim of this review is to summarise evidence on the anatomical structures underlying the decision-making process, considering new findings that support the existence of a complex neural network that gives rise to this complex neuropsychological process. Current evidence shows that the cortical structures involved in decision-making include the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), and dorsolateral prefrontal cortex (DLPFC). This process is assisted by subcortical structures including the amygdala, thalamus, and cerebellum. Findings to date show that both cortical and subcortical brain regions contribute to the decision-making process. The neural basis of decision-making is a complex neural network of cortico-cortical and cortico-subcortical connections which includes subareas of the PFC, limbic structures, and the cerebellum. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.
Application of machine learning methods for traffic signs recognition
NASA Astrophysics Data System (ADS)
Filatov, D. V.; Ignatev, K. V.; Deviatkin, A. V.; Serykh, E. V.
2018-02-01
This paper focuses on solving a relevant and pressing safety issue on intercity roads. Two approaches were considered for solving the problem of traffic signs recognition; the approaches involved neural networks to analyze images obtained from a camera in the real-time mode. The first approach is based on a sequential image processing. At the initial stage, with the help of color filters and morphological operations (dilatation and erosion), the area containing the traffic sign is located on the image, then the selected and scaled fragment of the image is analyzed using a feedforward neural network to determine the meaning of the found traffic sign. Learning of the neural network in this approach is carried out using a backpropagation method. The second approach involves convolution neural networks at both stages, i.e. when searching and selecting the area of the image containing the traffic sign, and when determining its meaning. Learning of the neural network in the second approach is carried out using the intersection over union function and a loss function. For neural networks to learn and the proposed algorithms to be tested, a series of videos from a dash cam were used that were shot under various weather and illumination conditions. As a result, the proposed approaches for traffic signs recognition were analyzed and compared by key indicators such as recognition rate percentage and the complexity of neural networks’ learning process.
From neural-based object recognition toward microelectronic eyes
NASA Technical Reports Server (NTRS)
Sheu, Bing J.; Bang, Sa Hyun
1994-01-01
Engineering neural network systems are best known for their abilities to adapt to the changing characteristics of the surrounding environment by adjusting system parameter values during the learning process. Rapid advances in analog current-mode design techniques have made possible the implementation of major neural network functions in custom VLSI chips. An electrically programmable analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of the synapse cells, neurons, and analog processor are presented. A synapse cell based on Gilbert multiplier structure can perform the linear multiplication for back-propagation networks. A double differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold region for low-power operation. The voltage gain of the sigmoid-function neurons is externally adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building blocks can be intelligently connected to form useful industrial applications. Efficient data communication is a key system-level design issue for large-scale networks. We also present analog neural processors based on perceptron architecture and Hopfield network for communication applications. Biologically inspired neural networks have played an important role towards the creation of powerful intelligent machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically inspired vision processing chips and cellular neural network chips are key design issues.
Neural Network Modeling for Gallium Arsenide IC Fabrication Process and Device Characteristics.
NASA Astrophysics Data System (ADS)
Creech, Gregory Lee, I.
This dissertation presents research focused on the utilization of neurocomputing technology to achieve enhanced yield and effective yield prediction in integrated circuit (IC) manufacturing. Artificial neural networks are employed to model complex relationships between material and device characteristics at critical stages of the semiconductor fabrication process. Whole wafer testing was performed on the starting substrate material and during wafer processing at four critical steps: Ohmic or Post-Contact, Post-Recess, Post-Gate and Final, i.e., at completion of fabrication. Measurements taken and subsequently used in modeling include, among others, doping concentrations, layer thicknesses, planar geometries, layer-to-layer alignments, resistivities, device voltages, and currents. The neural network architecture used in this research is the multilayer perceptron neural network (MLPNN). The MLPNN is trained in the supervised mode using the generalized delta learning rule. It has one hidden layer and uses continuous perceptrons. The research focuses on a number of different aspects. First is the development of inter-process stage models. Intermediate process stage models are created in a progressive fashion. Measurements of material and process/device characteristics taken at a specific processing stage and any previous stages are used as input to the model of the next processing stage characteristics. As the wafer moves through the fabrication process, measurements taken at all previous processing stages are used as input to each subsequent process stage model. Secondly, the development of neural network models for the estimation of IC parametric yield is demonstrated. Measurements of material and/or device characteristics taken at earlier fabrication stages are used to develop models of the final DC parameters. These characteristics are computed with the developed models and compared to acceptance windows to estimate the parametric yield. A sensitivity analysis is performed on the models developed during this yield estimation effort. This is accomplished by analyzing the total disturbance of network outputs due to perturbed inputs. When an input characteristic bears no, or little, statistical or deterministic relationship to the output characteristics, it can be removed as an input. Finally, neural network models are developed in the inverse direction. Characteristics measured after the final processing step are used as the input to model critical in-process characteristics. The modeled characteristics are used for whole wafer mapping and its statistical characterization. It is shown that this characterization can be accomplished with minimal in-process testing. The concepts and methodologies used in the development of the neural network models are presented. The modeling results are provided and compared to the actual measured values of each characteristic. An in-depth discussion of these results and ideas for future research are presented.
Multi-Frame Convolutional Neural Networks for Object Detection in Temporal Data
2017-03-01
maximum 200 words) Given the problem of detecting objects in video , existing neural-network solutions rely on a post-processing step to combine...information across frames and strengthen conclusions. This technique has been successful for videos with simple, dominant objects but it cannot detect objects...Computer Science iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT Given the problem of detecting objects in video , existing neural-network solutions rely
Music Signal Processing Using Vector Product Neural Networks
NASA Astrophysics Data System (ADS)
Fan, Z. C.; Chan, T. S.; Yang, Y. H.; Jang, J. S. R.
2017-05-01
We propose a novel neural network model for music signal processing using vector product neurons and dimensionality transformations. Here, the inputs are first mapped from real values into three-dimensional vectors then fed into a three-dimensional vector product neural network where the inputs, outputs, and weights are all three-dimensional values. Next, the final outputs are mapped back to the reals. Two methods for dimensionality transformation are proposed, one via context windows and the other via spectral coloring. Experimental results on the iKala dataset for blind singing voice separation confirm the efficacy of our model.
Least square neural network model of the crude oil blending process.
Rubio, José de Jesús
2016-06-01
In this paper, the recursive least square algorithm is designed for the big data learning of a feedforward neural network. The proposed method as the combination of the recursive least square and feedforward neural network obtains four advantages over the alone algorithms: it requires less number of regressors, it is fast, it has the learning ability, and it is more compact. Stability, convergence, boundedness of parameters, and local minimum avoidance of the proposed technique are guaranteed. The introduced strategy is applied for the modeling of the crude oil blending process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks
NASA Astrophysics Data System (ADS)
Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li
2016-06-01
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.
Neural networks and applications tutorial
NASA Astrophysics Data System (ADS)
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1
NASA Technical Reports Server (NTRS)
Lea, Robert N. (Editor); Villarreal, James (Editor)
1991-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.
Waldinger, Robert J; Kensinger, Elizabeth A; Schulz, Marc S
2011-09-01
This study examines whether differences in late-life well-being are linked to how older adults encode emotionally valenced information. Using fMRI with 39 older adults varying in life satisfaction, we examined how viewing positive and negative images would affect activation and connectivity of an emotion-processing network. Participants engaged most regions within this network more robustly for positive than for negative images, but within the PFC this effect was moderated by life satisfaction, with individuals higher in satisfaction showing lower levels of activity during the processing of positive images. Participants high in satisfaction showed stronger correlations among network regions-particularly between the amygdala and other emotion processing regions-when viewing positive, as compared with negative, images. Participants low in satisfaction showed no valence effect. Findings suggest that late-life satisfaction is linked with how emotion-processing regions are engaged and connected during processing of valenced information. This first demonstration of a link between neural recruitment and late-life well-being suggests that differences in neural network activation and connectivity may account for the preferential encoding of positive information seen in some older adults.
Waldinger, Robert J.; Kensinger, Elizabeth A.; Schulz, Marc S.
2013-01-01
This study examines whether differences in late-life well-being are linked to how older adults encode emotionally-valenced information. Using fMRI with 39 older adults varying in life satisfaction, we examined how viewing positive and negative images affected activation and connectivity of an emotion-processing network. Participants engaged most regions within this network more robustly for positive than for negative images, but within the PFC this effect was moderated by life satisfaction, with individuals higher in satisfaction showing lower levels of activity during the processing of positive images. Participants high in satisfaction showed stronger correlations among network regions – particularly between the amygdala and other emotion processing regions – when viewing positive as compared to negative images. Participants low in satisfaction showed no valence effect. Findings suggest that late-life satisfaction is linked with how emotion-processing regions are engaged and connected during processing of valenced information. This first demonstration of a link between neural recruitment and late-life well-being suggests that differences in neural network activation and connectivity may account for the preferential encoding of positive information seen in some older adults. PMID:21590504
Atanassova, Vassia; Sotirova, Evdokia; Doukovska, Lyubka; Bureva, Veselina; Mavrov, Deyan; Tomov, Jivko
2017-01-01
The approach of InterCriteria Analysis (ICA) was applied for the aim of reducing the set of variables on the input of a neural network, taking into account the fact that their large number increases the number of neurons in the network, thus making them unusable for hardware implementation. Here, for the first time, with the help of the ICA method, correlations between triples of the input parameters for training of the neural networks were obtained. In this case, we use the approach of ICA for data preprocessing, which may yield reduction of the total time for training the neural networks, hence, the time for the network's processing of data and images. PMID:28874908
Resting state neural networks for visual Chinese word processing in Chinese adults and children.
Li, Ling; Liu, Jiangang; Chen, Feiyan; Feng, Lu; Li, Hong; Tian, Jie; Lee, Kang
2013-07-01
This study examined the resting state neural networks for visual Chinese word processing in Chinese children and adults. Both the functional connectivity (FC) and amplitude of low frequency fluctuation (ALFF) approaches were used to analyze the fMRI data collected when Chinese participants were not engaged in any specific explicit tasks. We correlated time series extracted from the visual word form area (VWFA) with those in other regions in the brain. We also performed ALFF analysis in the resting state FC networks. The FC results revealed that, regarding the functionally connected brain regions, there exist similar intrinsically organized resting state networks for visual Chinese word processing in adults and children, suggesting that such networks may already be functional after 3-4 years of informal exposure to reading plus 3-4 years formal schooling. The ALFF results revealed that children appear to recruit more neural resources than adults in generally reading-irrelevant brain regions. Differences between child and adult ALFF results suggest that children's intrinsic word processing network during the resting state, though similar in functional connectivity, is still undergoing development. Further exposure to visual words and experience with reading are needed for children to develop a mature intrinsic network for word processing. The developmental course of the intrinsically organized word processing network may parallel that of the explicit word processing network. Copyright © 2013 Elsevier Ltd. All rights reserved.
Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks
Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir
2014-01-01
Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques. PMID:25157950
Predicting physical time series using dynamic ridge polynomial neural networks.
Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir
2014-01-01
Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques.
Stimulus Sensitivity of a Spiking Neural Network Model
NASA Astrophysics Data System (ADS)
Chevallier, Julien
2018-02-01
Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.
Threat Based Risk Assessment for Enterprise Networks
2016-02-15
served as the program chair of the Research in Attacks, Intrusions , and Defenses workshop; the Neural Information Processing Systems (NIPS) annual...Threat- Based Risk Assessment for Enterprise Networks Richard P. Lippmann and James F. Riordan Protecting enterprise networks requires...include aids for the hearing impaired, speech recognition, pattern classification, neural networks , and cybersecurity. He has taught three courses
Tonelli, Paul; Mouret, Jean-Baptiste
2013-01-01
A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099
Implementing Signature Neural Networks with Spiking Neurons
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence of inhibitory connections. These parameters also modulate the memory capabilities of the network. The dynamical modes observed in the different informational dimensions in a given moment are independent and they only depend on the parameters shaping the information processing in this dimension. In view of these results, we argue that plasticity mechanisms inside individual cells and multicoding strategies can provide additional computational properties to spiking neural networks, which could enhance their capacity and performance in a wide variety of real-world tasks. PMID:28066221
Implementing Signature Neural Networks with Spiking Neurons.
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence of inhibitory connections. These parameters also modulate the memory capabilities of the network. The dynamical modes observed in the different informational dimensions in a given moment are independent and they only depend on the parameters shaping the information processing in this dimension. In view of these results, we argue that plasticity mechanisms inside individual cells and multicoding strategies can provide additional computational properties to spiking neural networks, which could enhance their capacity and performance in a wide variety of real-world tasks.
NASA Astrophysics Data System (ADS)
Tselentis, G.-A.; Sokos, E.
2012-01-01
In this paper we suggest the use of diffusion-neural-networks, (neural networks with intrinsic fuzzy logic abilities) to assess the relationship between isoseismal area and earthquake magnitude for the region of Greece. It is of particular importance to study historical earthquakes for which we often have macroseismic information in the form of isoseisms but it is statistically incomplete to assess magnitudes from an isoseismal area or to train conventional artificial neural networks for magnitude estimation. Fuzzy relationships are developed and used to train a feed forward neural network with a back propagation algorithm to obtain the final relationships. Seismic intensity data from 24 earthquakes in Greece have been used. Special attention is being paid to the incompleteness and contradictory patterns in scanty historical earthquake records. The results show that the proposed processing model is very effective, better than applying classical artificial neural networks since the magnitude macroseismic intensity target function has a strong nonlinearity and in most cases the macroseismic datasets are very small.
Synchronization and long-time memory in neural networks with inhibitory hubs and synaptic plasticity
NASA Astrophysics Data System (ADS)
Bertolotti, Elena; Burioni, Raffaella; di Volo, Matteo; Vezzani, Alessandro
2017-01-01
We investigate the dynamical role of inhibitory and highly connected nodes (hub) in synchronization and input processing of leaky-integrate-and-fire neural networks with short term synaptic plasticity. We take advantage of a heterogeneous mean-field approximation to encode the role of network structure and we tune the fraction of inhibitory neurons fI and their connectivity level to investigate the cooperation between hub features and inhibition. We show that, depending on fI, highly connected inhibitory nodes strongly drive the synchronization properties of the overall network through dynamical transitions from synchronous to asynchronous regimes. Furthermore, a metastable regime with long memory of external inputs emerges for a specific fraction of hub inhibitory neurons, underlining the role of inhibition and connectivity also for input processing in neural networks.
Audio Spectrogram Representations for Processing with Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Wyse, L.
2017-05-01
One of the decisions that arise when designing a neural network for any application is how the data should be represented in order to be presented to, and possibly generated by, a neural network. For audio, the choice is less obvious than it seems to be for visual images, and a variety of representations have been used for different applications including the raw digitized sample stream, hand-crafted features, machine discovered features, MFCCs and variants that include deltas, and a variety of spectral representations. This paper reviews some of these representations and issues that arise, focusing particularly on spectrograms for generating audio using neural networks for style transfer.
Neural network post-processing of grayscale optical correlator
NASA Technical Reports Server (NTRS)
Lu, Thomas T; Hughlett, Casey L.; Zhoua, Hanying; Chao, Tien-Hsin; Hanan, Jay C.
2005-01-01
In this paper we present the use of a radial basis function neural network (RBFNN) as a post-processor to assist the optical correlator to identify the objects and to reject false alarms. Image plane features near the correlation peaks are extracted and fed to the neural network for analysis. The approach is capable of handling large number of object variations and filter sets. Preliminary experimental results are presented and the performance is analyzed.
Learning polynomial feedforward neural networks by genetic programming and backpropagation.
Nikolaev, N Y; Iba, H
2003-01-01
This paper presents an approach to learning polynomial feedforward neural networks (PFNNs). The approach suggests, first, finding the polynomial network structure by means of a population-based search technique relying on the genetic programming paradigm, and second, further adjustment of the best discovered network weights by an especially derived backpropagation algorithm for higher order networks with polynomial activation functions. These two stages of the PFNN learning process enable us to identify networks with good training as well as generalization performance. Empirical results show that this approach finds PFNN which outperform considerably some previous constructive polynomial network algorithms on processing benchmark time series.
The graph neural network model.
Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; Monfardini, Gabriele
2009-01-01
Many underlying relationships among data in several areas of science and engineering, e.g., computer vision, molecular chemistry, molecular biology, pattern recognition, and data mining, can be represented in terms of graphs. In this paper, we propose a new neural network model, called graph neural network (GNN) model, that extends existing neural network methods for processing the data represented in graph domains. This GNN model, which can directly process most of the practically useful types of graphs, e.g., acyclic, cyclic, directed, and undirected, implements a function tau(G,n) is an element of IR(m) that maps a graph G and one of its nodes n into an m-dimensional Euclidean space. A supervised learning algorithm is derived to estimate the parameters of the proposed GNN model. The computational cost of the proposed algorithm is also considered. Some experimental results are shown to validate the proposed learning algorithm, and to demonstrate its generalization capabilities.
The neural correlates of reciprocity are sensitive to prior experience of reciprocity.
Cáceda, Ricardo; Prendes-Alvarez, Stefania; Hsu, Jung-Jiin; Tripathi, Shanti P; Kilts, Clint D; James, G Andrew
2017-08-14
Reciprocity is central to human relationships and is strongly influenced by multiple factors including the nature of social exchanges and their attendant emotional reactions. Despite recent advances in the field, the neural processes involved in this modulation of reciprocal behavior by ongoing social interaction are poorly understood. We hypothesized that activity within a discrete set of neural networks including a putative moral cognitive neural network is associated with reciprocity behavior. Nineteen healthy adults underwent functional magnetic resonance imaging scanning while playing the trustee role in the Trust Game. Personality traits and moral development were assessed. Independent component analysis was used to identify task-related functional brain networks and assess their relationship to behavior. The saliency network (insula and anterior cingulate) was positively correlated with reciprocity behavior. A consistent array of brain regions supports the engagement of emotional, self-referential and planning processes during social reciprocity behavior. Published by Elsevier B.V.
The fidelity of Kepler eclipsing binary parameters inferred by the neural network
NASA Astrophysics Data System (ADS)
Holanda, N.; da Silva, J. R. P.
2018-04-01
This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 eclipsing binary detached obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cos ω and e sin ω, but orbital inclination is clearly underestimated in neural network tests.
The fidelity of Kepler eclipsing binary parameters inferred by the neural network
NASA Astrophysics Data System (ADS)
Holanda, N.; da Silva, J. R. P.
2018-07-01
This work aims to test the fidelity and efficiency of obtaining automatic orbital elements of eclipsing binary systems, from light curves using neural network models. We selected a random sample with 78 systems, from over 1400 detached eclipsing binaries obtained from the Kepler Eclipsing Binaries Catalog, processed using the neural network approach. The orbital parameters of the sample systems were measured applying the traditional method of light-curve adjustment with uncertainties calculated by the bootstrap method, employing the JKTEBOP code. These estimated parameters were compared with those obtained by the neural network approach for the same systems. The results reveal a good agreement between techniques for the sum of the fractional radii and moderate agreement for e cosω and e sinω, but orbital inclination is clearly underestimated in neural network tests.
Devices and circuits for nanoelectronic implementation of artificial neural networks
NASA Astrophysics Data System (ADS)
Turel, Ozgur
Biological neural networks perform complicated information processing tasks at speeds better than conventional computers based on conventional algorithms. This has inspired researchers to look into the way these networks function, and propose artificial networks that mimic their behavior. Unfortunately, most artificial neural networks, either software or hardware, do not provide either the speed or the complexity of a human brain. Nanoelectronics, with high density and low power dissipation that it provides, may be used in developing more efficient artificial neural networks. This work consists of two major contributions in this direction. First is the proposal of the CMOL concept, hybrid CMOS-molecular hardware [1-8]. CMOL may circumvent most of the problems in posed by molecular devices, such as low yield, vet provide high active device density, ˜1012/cm 2. The second contribution is CrossNets, artificial neural networks that are based on CMOL. We showed that CrossNets, with their fault tolerance, exceptional speed (˜ 4 to 6 orders of magnitude faster than biological neural networks) can perform any task any artificial neural network can perform. Moreover, there is a hope that if their integration scale is increased to that of human cerebral cortex (˜ 1010 neurons and ˜ 1014 synapses), they may be capable of performing more advanced tasks.
Signal Processing in Periodically Forced Gradient Frequency Neural Networks
Kim, Ji Chul; Large, Edward W.
2015-01-01
Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858
Caudell, Thomas P; Xiao, Yunhai; Healy, Michael J
2003-01-01
eLoom is an open source graph simulation software tool, developed at the University of New Mexico (UNM), that enables users to specify and simulate neural network models. Its specification language and libraries enables users to construct and simulate arbitrary, potentially hierarchical network structures on serial and parallel processing systems. In addition, eLoom is integrated with UNM's Flatland, an open source virtual environments development tool to provide real-time visualizations of the network structure and activity. Visualization is a useful method for understanding both learning and computation in artificial neural networks. Through 3D animated pictorially representations of the state and flow of information in the network, a better understanding of network functionality is achieved. ART-1, LAPART-II, MLP, and SOM neural networks are presented to illustrate eLoom and Flatland's capabilities.
Higher-order neural network software for distortion invariant object recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Spirkovska, Lilly
1991-01-01
The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.
Application of a neural network for reflectance spectrum classification
NASA Astrophysics Data System (ADS)
Yang, Gefei; Gartley, Michael
2017-05-01
Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.
Recurrent Artificial Neural Networks and Finite State Natural Language Processing.
ERIC Educational Resources Information Center
Moisl, Hermann
It is argued that pessimistic assessments of the adequacy of artificial neural networks (ANNs) for natural language processing (NLP) on the grounds that they have a finite state architecture are unjustified, and that their adequacy in this regard is an empirical issue. First, arguments that counter standard objections to finite state NLP on the…
Pencil-and-Paper Neural Networks: An Undergraduate Laboratory Exercise in Computational Neuroscience
Crisp, Kevin M.; Sutter, Ellen N.; Westerberg, Jacob A.
2015-01-01
Although it has been more than 70 years since McCulloch and Pitts published their seminal work on artificial neural networks, such models remain primarily in the domain of computer science departments in undergraduate education. This is unfortunate, as simple network models offer undergraduate students a much-needed bridge between cellular neurobiology and processes governing thought and behavior. Here, we present a very simple laboratory exercise in which students constructed, trained and tested artificial neural networks by hand on paper. They explored a variety of concepts, including pattern recognition, pattern completion, noise elimination and stimulus ambiguity. Learning gains were evident in changes in the use of language when writing about information processing in the brain. PMID:26557791
NASA Astrophysics Data System (ADS)
Levchenko, N. G.; Glushkov, S. V.; Sobolevskaya, E. Yu; Orlov, A. P.
2018-05-01
The method of modeling the transport and logistics process using fuzzy neural network technologies has been considered. The analysis of the implemented fuzzy neural network model of the information management system of transnational multimodal transportation of the process showed the expediency of applying this method to the management of transport and logistics processes in the Arctic and Subarctic conditions. The modular architecture of this model can be expanded by incorporating additional modules, since the working conditions in the Arctic and the subarctic themselves will present more and more realistic tasks. The architecture allows increasing the information management system, without affecting the system or the method itself. The model has a wide range of application possibilities, including: analysis of the situation and behavior of interacting elements; dynamic monitoring and diagnostics of management processes; simulation of real events and processes; prediction and prevention of critical situations.
Xu, W; LeBeau, J M
2018-05-01
We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the need for pretreating the data. With the aligned data, additional networks then measure the sample thickness and tilt. The performance of the network is explored as a function of a variety of variables including thickness, tilt, and dose. A methodology to explore the response of the neural network to various pattern features is also presented. Processing patterns at a rate of ∼ 0.1 s/pattern, the network is shown to be orders of magnitude faster than a brute force method while maintaining accuracy. The approach is thus suitable for automatically processing big, 4D STEM data. We also discuss the generality of the method to other materials/orientations as well as a hybrid approach that combines the features of the neural network with least squares fitting for even more robust analysis. The source code is available at https://github.com/subangstrom/DeepDiffraction. Copyright © 2018 Elsevier B.V. All rights reserved.
Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network
NASA Technical Reports Server (NTRS)
Yao, Weigang; Liou, Meng-Sing
2012-01-01
The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis
Reliability Modeling of Microelectromechanical Systems Using Neural Networks
NASA Technical Reports Server (NTRS)
Perera. J. Sebastian
2000-01-01
Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently receiving a great deal of attention because of the potential to significantly improve the ability to sense, analyze, and control a variety of processes, such as heating and ventilation systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space exploration. MEMS are very small and are a blend of electrical and mechanical components, with electrical and mechanical systems on one chip. This research establishes reliability estimation and prediction for MEMS devices at the conceptual design phase using neural networks. At the conceptual design phase, before devices are built and tested, traditional methods of quantifying reliability are inadequate because the device is not in existence and cannot be tested to establish the reliability distributions. A novel approach using neural networks is created to predict the overall reliability of a MEMS device based on its components and each component's attributes. The methodology begins with collecting attribute data (fabrication process, physical specifications, operating environment, property characteristics, packaging, etc.) and reliability data for many types of microengines. The data are partitioned into training data (the majority) and validation data (the remainder). A neural network is applied to the training data (both attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure), the system output. After the neural network is trained with sufficient data. the validation data are used to verify the neural networks provided accurate reliability estimates. Now, the reliability of a new proposed MEMS device can be estimated by using the appropriate trained neural networks developed in this work.
NASA Astrophysics Data System (ADS)
Mirsafianf, Atefeh S.; Isfahani, Shirin N.; Kasaei, Shohreh; Mobasheri, Hamid
Here we present an approach for processing neural cells images to analyze their growth process in culture environment. We have applied several image processing techniques for: 1- Environmental noise reduction, 2- Neural cells segmentation, 3- Neural cells classification based on their dendrites' growth conditions, and 4- neurons' features Extraction and measurement (e.g., like cell body area, number of dendrites, axon's length, and so on). Due to the large amount of noise in the images, we have used feed forward artificial neural networks to detect edges more precisely.
NASA Astrophysics Data System (ADS)
Takiyama, Ken
2017-12-01
How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.
Artificial neural networks for processing fluorescence spectroscopy data in skin cancer diagnostics
NASA Astrophysics Data System (ADS)
Lenhardt, L.; Zeković, I.; Dramićanin, T.; Dramićanin, M. D.
2013-11-01
Over the years various optical spectroscopic techniques have been widely used as diagnostic tools in the discrimination of many types of malignant diseases. Recently, synchronous fluorescent spectroscopy (SFS) coupled with chemometrics has been applied in cancer diagnostics. The SFS method involves simultaneous scanning of both emission and excitation wavelengths while keeping the interval of wavelengths (constant-wavelength mode) or frequencies (constant-energy mode) between them constant. This method is fast, relatively inexpensive, sensitive and non-invasive. Total synchronous fluorescence spectra of normal skin, nevus and melanoma samples were used as input for training of artificial neural networks. Two different types of artificial neural networks were trained, the self-organizing map and the feed-forward neural network. Histopathology results of investigated skin samples were used as the gold standard for network output. Based on the obtained classification success rate of neural networks, we concluded that both networks provided high sensitivity with classification errors between 2 and 4%.
Pulse-firing winner-take-all networks
NASA Technical Reports Server (NTRS)
Meador, Jack L.
1991-01-01
Winner-take-all (WTA) neural networks using pulse-firing processing elements are introduced. In the pulse-firing WTA (PWTA) networks described, input and activation signal shunting is controlled by one shared lateral inhibition signal. This organization yields an O(n) area complexity that is convenient for integrated circuit implementation. Appropriately specified network parameters allow for the accurate continuous evaluation of inputs using a signal representation compatible with established pulse-firing neural network implementations.
Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh R., V.; Seyedkashi, S. M. H.
2011-01-01
Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.
Bio-inspired spiking neural network for nonlinear systems control.
Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M
2018-08-01
Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sebastian, Alexandra; Rössler, Kora; Wibral, Michael; Mobascher, Arian; Lieb, Klaus; Jung, Patrick; Tüscher, Oliver
2017-10-04
In stimulus-selective stop-signal tasks, the salient stop signal needs attentional processing before genuine response inhibition is completed. Differential prefrontal involvement in attentional capture and response inhibition has been linked to the right inferior frontal junction (IFJ) and ventrolateral prefrontal cortex (VLPFC), respectively. Recently, it has been suggested that stimulus-selective stopping may be accomplished by the following different strategies: individuals may selectively inhibit their response only upon detecting a stop signal (independent discriminate then stop strategy) or unselectively whenever detecting a stop or attentional capture signal (stop then discriminate strategy). Alternatively, the discrimination process of the critical signal (stop vs attentional capture signal) may interact with the go process (dependent discriminate then stop strategy). Those different strategies might differentially involve attention- and stopping-related processes that might be implemented by divergent neural networks. This should lead to divergent activation patterns and, if disregarded, interfere with analyses in neuroimaging studies. To clarify this crucial issue, we studied 87 human participants of both sexes during a stimulus-selective stop-signal task and performed strategy-dependent functional magnetic resonance imaging analyses. We found that, regardless of the strategy applied, outright stopping displayed indistinguishable brain activation patterns. However, during attentional capture different strategies resulted in divergent neural activation patterns with variable activation of right IFJ and bilateral VLPFC. In conclusion, the neural network involved in outright stopping is ubiquitous and independent of strategy, while different strategies impact on attention-related processes and underlying neural network usage. Strategic differences should therefore be taken into account particularly when studying attention-related processes in stimulus-selective stopping. SIGNIFICANCE STATEMENT Dissociating inhibition from attention has been a major challenge for the cognitive neuroscience of executive functions. Selective stopping tasks have been instrumental in addressing this question. However, recent theoretical, cognitive and behavioral research suggests that different strategies are applied in successful execution of the task. The underlying strategy-dependent neural networks might differ substantially. Here, we show evidence that, regardless of the strategy used, the neural network involved in outright stopping is ubiquitous. However, significant differences can only be found in the attention-related processes underlying those different strategies. Thus, when studying attentional processing of salient stop signals, strategic differences should be considered. In contrast, the neural networks implementing outright stopping seem less or not at all affected by strategic differences. Copyright © 2017 the authors 0270-6474/17/379786-10$15.00/0.
Kappel, David; Legenstein, Robert; Habenschuss, Stefan; Hsieh, Michael; Maass, Wolfgang
2018-01-01
Synaptic connections between neurons in the brain are dynamic because of continuously ongoing spine dynamics, axonal sprouting, and other processes. In fact, it was recently shown that the spontaneous synapse-autonomous component of spine dynamics is at least as large as the component that depends on the history of pre- and postsynaptic neural activity. These data are inconsistent with common models for network plasticity and raise the following questions: how can neural circuits maintain a stable computational function in spite of these continuously ongoing processes, and what could be functional uses of these ongoing processes? Here, we present a rigorous theoretical framework for these seemingly stochastic spine dynamics and rewiring processes in the context of reward-based learning tasks. We show that spontaneous synapse-autonomous processes, in combination with reward signals such as dopamine, can explain the capability of networks of neurons in the brain to configure themselves for specific computational tasks, and to compensate automatically for later changes in the network or task. Furthermore, we show theoretically and through computer simulations that stable computational performance is compatible with continuously ongoing synapse-autonomous changes. After reaching good computational performance it causes primarily a slow drift of network architecture and dynamics in task-irrelevant dimensions, as observed for neural activity in motor cortex and other areas. On the more abstract level of reinforcement learning the resulting model gives rise to an understanding of reward-driven network plasticity as continuous sampling of network configurations.
Habenschuss, Stefan; Hsieh, Michael
2018-01-01
Synaptic connections between neurons in the brain are dynamic because of continuously ongoing spine dynamics, axonal sprouting, and other processes. In fact, it was recently shown that the spontaneous synapse-autonomous component of spine dynamics is at least as large as the component that depends on the history of pre- and postsynaptic neural activity. These data are inconsistent with common models for network plasticity and raise the following questions: how can neural circuits maintain a stable computational function in spite of these continuously ongoing processes, and what could be functional uses of these ongoing processes? Here, we present a rigorous theoretical framework for these seemingly stochastic spine dynamics and rewiring processes in the context of reward-based learning tasks. We show that spontaneous synapse-autonomous processes, in combination with reward signals such as dopamine, can explain the capability of networks of neurons in the brain to configure themselves for specific computational tasks, and to compensate automatically for later changes in the network or task. Furthermore, we show theoretically and through computer simulations that stable computational performance is compatible with continuously ongoing synapse-autonomous changes. After reaching good computational performance it causes primarily a slow drift of network architecture and dynamics in task-irrelevant dimensions, as observed for neural activity in motor cortex and other areas. On the more abstract level of reinforcement learning the resulting model gives rise to an understanding of reward-driven network plasticity as continuous sampling of network configurations. PMID:29696150
Using Neural Net Technology To Enhance the Efficiency of a Computer Adaptive Testing Application.
ERIC Educational Resources Information Center
Van Nelson, C.; Henriksen, Larry W.
The potential for computer adaptive testing (CAT) has been well documented. In order to improve the efficiency of this process, it may be possible to utilize a neural network, or more specifically, a back propagation neural network. The paper asserts that in order to accomplish this end, it must be shown that grouping examinees by ability as…
Classification of Company Performance using Weighted Probabilistic Neural Network
NASA Astrophysics Data System (ADS)
Yasin, Hasbi; Waridi Basyiruddin Arifin, Adi; Warsito, Budi
2018-05-01
Classification of company performance can be judged by looking at its financial status, whether good or bad state. Classification of company performance can be achieved by some approach, either parametric or non-parametric. Neural Network is one of non-parametric methods. One of Artificial Neural Network (ANN) models is Probabilistic Neural Network (PNN). PNN consists of four layers, i.e. input layer, pattern layer, addition layer, and output layer. The distance function used is the euclidean distance and each class share the same values as their weights. In this study used PNN that has been modified on the weighting process between the pattern layer and the addition layer by involving the calculation of the mahalanobis distance. This model is called the Weighted Probabilistic Neural Network (WPNN). The results show that the company's performance modeling with the WPNN model has a very high accuracy that reaches 100%.
Shlizerman, Eli; Riffell, Jeffrey A.; Kutz, J. Nathan
2014-01-01
The antennal lobe (AL), olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units), and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (1) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (2) characterize scent recognition, i.e., decision-making based on olfactory signals and (3) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns. PMID:25165442
Study on loading path optimization of internal high pressure forming process
NASA Astrophysics Data System (ADS)
Jiang, Shufeng; Zhu, Hengda; Gao, Fusheng
2017-09-01
In the process of internal high pressure forming, there is no formula to describe the process parameters and forming results. The article use numerical simulation to obtain several input parameters and corresponding output result, use the BP neural network to found their mapping relationship, and with weighted summing method make each evaluating parameters to set up a formula which can evaluate quality. Then put the training BP neural network into the particle swarm optimization, and take the evaluating formula of the quality as adapting formula of particle swarm optimization, finally do the optimization and research at the range of each parameters. The results show that the parameters obtained by the BP neural network algorithm and the particle swarm optimization algorithm can meet the practical requirements. The method can solve the optimization of the process parameters in the internal high pressure forming process.
A neural network device for on-line particle identification in cosmic ray experiments
NASA Astrophysics Data System (ADS)
Scrimaglio, R.; Finetti, N.; D'Altorio, L.; Rantucci, E.; Raso, M.; Segreto, E.; Tassoni, A.; Cardarilli, G. C.
2004-05-01
On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification.
NASA Astrophysics Data System (ADS)
Virkar, Yogesh S.; Shew, Woodrow L.; Restrepo, Juan G.; Ott, Edward
2016-10-01
Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered. Here we propose a particularly compelling and natural mechanism for preserving stability of learning neural systems. This mechanism is based on the global processes by which metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-timing-dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of neural network dynamics during learning.
Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.
2013-01-01
The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350
A neural network controller of a flotation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durao, F.; Cortez, L.
1995-12-31
The dynamic control of a froth flotation section is simulated through a neural network feedback controller, trained in order to stabilize the concentrate metal grade and recovery by applying random step changes to the feed metal grade. The results of the application example show that this controller seems to be sufficiently robust and a good alternative to handle a non-linear process.
ERIC Educational Resources Information Center
Kaya, Deniz
2017-01-01
The purpose of the study is to perform a less-dimensional thorough visualization process for the purpose of determining the images of the students on the concept of angle. The Ward clustering analysis combined with Self-Organizing Neural Network Map (SOM) has been used for the dimension process. The Conceptual Understanding Tool, which consisted…
A Comparison of Neural Networks and Fuzzy Logic Methods for Process Modeling
NASA Technical Reports Server (NTRS)
Cios, Krzysztof J.; Sala, Dorel M.; Berke, Laszlo
1996-01-01
The goal of this work was to analyze the potential of neural networks and fuzzy logic methods to develop approximate response surfaces as process modeling, that is for mapping of input into output. Structural response was chosen as an example. Each of the many methods surveyed are explained and the results are presented. Future research directions are also discussed.
Weick, Jason P.; Liu, Yan; Zhang, Su-Chun
2011-01-01
Whether hESC-derived neurons can fully integrate with and functionally regulate an existing neural network remains unknown. Here, we demonstrate that hESC-derived neurons receive unitary postsynaptic currents both in vitro and in vivo and adopt the rhythmic firing behavior of mouse cortical networks via synaptic integration. Optical stimulation of hESC-derived neurons expressing Channelrhodopsin-2 elicited both inhibitory and excitatory postsynaptic currents and triggered network bursting in mouse neurons. Furthermore, light stimulation of hESC-derived neurons transplanted to the hippocampus of adult mice triggered postsynaptic currents in host pyramidal neurons in acute slice preparations. Thus, hESC-derived neurons can participate in and modulate neural network activity through functional synaptic integration, suggesting they are capable of contributing to neural network information processing both in vitro and in vivo. PMID:22106298
1994-06-09
Ethics and the Soul 1-221 P. Werbos A Net Program for Natural Language Comprehension 1-863 J. Weiss Applications Oral ANN Design of Image Processing...Controlling Nonlinear Dynamic Systems Using Neuro-Fuzzy Networks 1-787 E. Teixera, G. Laforga, H. Azevedo Neural Fuzzy Logics as a Tool for Design Ecological ...Discrete Neural Network 11-466 Z. Cheng-fu Representation of Number A Theory of Mathematical Modeling 11-479 J. Cristofano An Ecological Approach to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.R.; Netrologic, Inc., San Diego, CA)
1988-01-01
Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.
NASA Astrophysics Data System (ADS)
Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei
2018-02-01
This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.
Neurale Netwerken en Radarsystemen (Neural Networks and Radar Systems)
1989-08-01
general issues in cognitive science", Parallel distributed processing, Vol 1: Foundations, Rumelhart et al. 1986 pp 110-146 THO rapport Pagina 151 36 D.E...34Neural networks (part 2)",Expert Focus, IEEE Expert, Spring 1988. 61 J.A. Anderson, " Cognitive and Psychological Computations with Neural Models", IEEE...Pagina 154 69 David H. Ackley, Geoffrey E. Hinton and Terrence J. Sejnowski, "A Learning Algorithm for Boltzmann machines", cognitive science 9, 147-169
Evolutionary neural networks for anomaly detection based on the behavior of a program.
Han, Sang-Jun; Cho, Sung-Bae
2006-06-01
The process of learning the behavior of a given program by using machine-learning techniques (based on system-call audit data) is effective to detect intrusions. Rule learning, neural networks, statistics, and hidden Markov models (HMMs) are some of the kinds of representative methods for intrusion detection. Among them, neural networks are known for good performance in learning system-call sequences. In order to apply this knowledge to real-world problems successfully, it is important to determine the structures and weights of these call sequences. However, finding the appropriate structures requires very long time periods because there are no suitable analytical solutions. In this paper, a novel intrusion-detection technique based on evolutionary neural networks (ENNs) is proposed. One advantage of using ENNs is that it takes less time to obtain superior neural networks than when using conventional approaches. This is because they discover the structures and weights of the neural networks simultaneously. Experimental results with the 1999 Defense Advanced Research Projects Agency (DARPA) Intrusion Detection Evaluation (IDEVAL) data confirm that ENNs are promising tools for intrusion detection.
NASA Technical Reports Server (NTRS)
Berke, Laszlo; Patnaik, Surya N.; Murthy, Pappu L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated by using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network with the code NETS. Optimum designs for new design conditions were predicted by using the trained network. Neural net prediction of optimum designs was found to be satisfactory for most of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
Optimum Design of Aerospace Structural Components Using Neural Networks
NASA Technical Reports Server (NTRS)
Berke, L.; Patnaik, S. N.; Murthy, P. L. N.
1993-01-01
The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.
Iris double recognition based on modified evolutionary neural network
NASA Astrophysics Data System (ADS)
Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai
2017-11-01
Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.
Adaptive neural network/expert system that learns fault diagnosis for different structures
NASA Astrophysics Data System (ADS)
Simon, Solomon H.
1992-08-01
Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.
Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis.
Patel, Aniruddh D
2011-01-01
Mounting evidence suggests that musical training benefits the neural encoding of speech. This paper offers a hypothesis specifying why such benefits occur. The "OPERA" hypothesis proposes that such benefits are driven by adaptive plasticity in speech-processing networks, and that this plasticity occurs when five conditions are met. These are: (1) Overlap: there is anatomical overlap in the brain networks that process an acoustic feature used in both music and speech (e.g., waveform periodicity, amplitude envelope), (2) Precision: music places higher demands on these shared networks than does speech, in terms of the precision of processing, (3) Emotion: the musical activities that engage this network elicit strong positive emotion, (4) Repetition: the musical activities that engage this network are frequently repeated, and (5) Attention: the musical activities that engage this network are associated with focused attention. According to the OPERA hypothesis, when these conditions are met neural plasticity drives the networks in question to function with higher precision than needed for ordinary speech communication. Yet since speech shares these networks with music, speech processing benefits. The OPERA hypothesis is used to account for the observed superior subcortical encoding of speech in musically trained individuals, and to suggest mechanisms by which musical training might improve linguistic reading abilities.
Standard cell-based implementation of a digital optoelectronic neural-network hardware.
Maier, K D; Beckstein, C; Blickhan, R; Erhard, W
2001-03-10
A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.
NASA Astrophysics Data System (ADS)
Putra, J. C. P.; Safrilah
2017-06-01
Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.
Hearing, feeling or seeing a beat recruits a supramodal network in the auditory dorsal stream.
Araneda, Rodrigo; Renier, Laurent; Ebner-Karestinos, Daniela; Dricot, Laurence; De Volder, Anne G
2017-06-01
Hearing a beat recruits a wide neural network that involves the auditory cortex and motor planning regions. Perceiving a beat can potentially be achieved via vision or even touch, but it is currently not clear whether a common neural network underlies beat processing. Here, we used functional magnetic resonance imaging (fMRI) to test to what extent the neural network involved in beat processing is supramodal, that is, is the same in the different sensory modalities. Brain activity changes in 27 healthy volunteers were monitored while they were attending to the same rhythmic sequences (with and without a beat) in audition, vision and the vibrotactile modality. We found a common neural network for beat detection in the three modalities that involved parts of the auditory dorsal pathway. Within this network, only the putamen and the supplementary motor area (SMA) showed specificity to the beat, while the brain activity in the putamen covariated with the beat detection speed. These results highlighted the implication of the auditory dorsal stream in beat detection, confirmed the important role played by the putamen in beat detection and indicated that the neural network for beat detection is mostly supramodal. This constitutes a new example of convergence of the same functional attributes into one centralized representation in the brain. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.
Ly, Cheng
2015-12-01
Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.
Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer
2015-01-01
This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.
Computing single step operators of logic programming in radial basis function neural networks
NASA Astrophysics Data System (ADS)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
2014-07-01
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.
Classification of ion mobility spectra by functional groups using neural networks
NASA Technical Reports Server (NTRS)
Bell, S.; Nazarov, E.; Wang, Y. F.; Eiceman, G. A.
1999-01-01
Neural networks were trained using whole ion mobility spectra from a standardized database of 3137 spectra for 204 chemicals at various concentrations. Performance of the network was measured by the success of classification into ten chemical classes. Eleven stages for evaluation of spectra and of spectral pre-processing were employed and minimums established for response thresholds and spectral purity. After optimization of the database, network, and pre-processing routines, the fraction of successful classifications by functional group was 0.91 throughout a range of concentrations. Network classification relied on a combination of features, including drift times, number of peaks, relative intensities, and other factors apparently including peak shape. The network was opportunistic, exploiting different features within different chemical classes. Application of neural networks in a two-tier design where chemicals were first identified by class and then individually eliminated all but one false positive out of 161 test spectra. These findings establish that ion mobility spectra, even with low resolution instrumentation, contain sufficient detail to permit the development of automated identification systems.
An architecture for designing fuzzy logic controllers using neural networks
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.
Signal processing and neural network toolbox and its application to failure diagnosis and prognosis
NASA Astrophysics Data System (ADS)
Tu, Fang; Wen, Fang; Willett, Peter K.; Pattipati, Krishna R.; Jordan, Eric H.
2001-07-01
Many systems are comprised of components equipped with self-testing capability; however, if the system is complex involving feedback and the self-testing itself may occasionally be faulty, tracing faults to a single or multiple causes is difficult. Moreover, many sensors are incapable of reliable decision-making on their own. In such cases, a signal processing front-end that can match inference needs will be very helpful. The work is concerned with providing an object-oriented simulation environment for signal processing and neural network-based fault diagnosis and prognosis. In the toolbox, we implemented a wide range of spectral and statistical manipulation methods such as filters, harmonic analyzers, transient detectors, and multi-resolution decomposition to extract features for failure events from data collected by data sensors. Then we evaluated multiple learning paradigms for general classification, diagnosis and prognosis. The network models evaluated include Restricted Coulomb Energy (RCE) Neural Network, Learning Vector Quantization (LVQ), Decision Trees (C4.5), Fuzzy Adaptive Resonance Theory (FuzzyArtmap), Linear Discriminant Rule (LDR), Quadratic Discriminant Rule (QDR), Radial Basis Functions (RBF), Multiple Layer Perceptrons (MLP) and Single Layer Perceptrons (SLP). Validation techniques, such as N-fold cross-validation and bootstrap techniques, are employed for evaluating the robustness of network models. The trained networks are evaluated for their performance using test data on the basis of percent error rates obtained via cross-validation, time efficiency, generalization ability to unseen faults. Finally, the usage of neural networks for the prediction of residual life of turbine blades with thermal barrier coatings is described and the results are shown. The neural network toolbox has also been applied to fault diagnosis in mixed-signal circuits.
Phase synchronization motion and neural coding in dynamic transmission of neural information.
Wang, Rubin; Zhang, Zhikang; Qu, Jingyi; Cao, Jianting
2011-07-01
In order to explore the dynamic characteristics of neural coding in the transmission of neural information in the brain, a model of neural network consisting of three neuronal populations is proposed in this paper using the theory of stochastic phase dynamics. Based on the model established, the neural phase synchronization motion and neural coding under spontaneous activity and stimulation are examined, for the case of varying network structure. Our analysis shows that, under the condition of spontaneous activity, the characteristics of phase neural coding are unrelated to the number of neurons participated in neural firing within the neuronal populations. The result of numerical simulation supports the existence of sparse coding within the brain, and verifies the crucial importance of the magnitudes of the coupling coefficients in neural information processing as well as the completely different information processing capability of neural information transmission in both serial and parallel couplings. The result also testifies that under external stimulation, the bigger the number of neurons in a neuronal population, the more the stimulation influences the phase synchronization motion and neural coding evolution in other neuronal populations. We verify numerically the experimental result in neurobiology that the reduction of the coupling coefficient between neuronal populations implies the enhancement of lateral inhibition function in neural networks, with the enhancement equivalent to depressing neuronal excitability threshold. Thus, the neuronal populations tend to have a stronger reaction under the same stimulation, and more neurons get excited, leading to more neurons participating in neural coding and phase synchronization motion.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 2
NASA Technical Reports Server (NTRS)
Culbert, Christopher J. (Editor)
1993-01-01
Papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake, held 1-3 Jun. 1992 at the Lyndon B. Johnson Space Center in Houston, Texas are included. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
Analysis Resilient Algorithm on Artificial Neural Network Backpropagation
NASA Astrophysics Data System (ADS)
Saputra, Widodo; Tulus; Zarlis, Muhammad; Widia Sembiring, Rahmat; Hartama, Dedy
2017-12-01
Prediction required by decision makers to anticipate future planning. Artificial Neural Network (ANN) Backpropagation is one of method. This method however still has weakness, for long training time. This is a reason to improve a method to accelerate the training. One of Artificial Neural Network (ANN) Backpropagation method is a resilient method. Resilient method of changing weights and bias network with direct adaptation process of weighting based on local gradient information from every learning iteration. Predicting data result of Istanbul Stock Exchange training getting better. Mean Square Error (MSE) value is getting smaller and increasing accuracy.
Cummine, Jacqueline; Cribben, Ivor; Luu, Connie; Kim, Esther; Bahktiari, Reyhaneh; Georgiou, George; Boliek, Carol A
2016-05-01
The neural circuitry associated with language processing is complex and dynamic. Graphical models are useful for studying complex neural networks as this method provides information about unique connectivity between regions within the context of the entire network of interest. Here, the authors explored the neural networks during covert reading to determine the role of feedforward and feedback loops in covert speech production. Brain activity of skilled adult readers was assessed in real word and pseudoword reading tasks with functional MRI (fMRI). The authors provide evidence for activity coherence in the feedforward system (inferior frontal gyrus-supplementary motor area) during real word reading and in the feedback system (supramarginal gyrus-precentral gyrus) during pseudoword reading. Graphical models provided evidence of an extensive, highly connected, neural network when individuals read real words that relied on coordination of the feedforward system. In contrast, when individuals read pseudowords the authors found a limited/restricted network that relied on coordination of the feedback system. Together, these results underscore the importance of considering multiple pathways and articulatory loops during language tasks and provide evidence for a print-to-speech neural network. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Doubly stochastic Poisson processes in artificial neural learning.
Card, H C
1998-01-01
This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.
Schwaibold, M; Schöchlin, J; Bolz, A
2002-01-01
For classification tasks in biosignal processing, several strategies and algorithms can be used. Knowledge-based systems allow prior knowledge about the decision process to be integrated, both by the developer and by self-learning capabilities. For the classification stages in a sleep stage detection framework, three inference strategies were compared regarding their specific strengths: a classical signal processing approach, artificial neural networks and neuro-fuzzy systems. Methodological aspects were assessed to attain optimum performance and maximum transparency for the user. Due to their effective and robust learning behavior, artificial neural networks could be recommended for pattern recognition, while neuro-fuzzy systems performed best for the processing of contextual information.
Development of programmable artificial neural networks
NASA Technical Reports Server (NTRS)
Meade, Andrew J.
1993-01-01
Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.
Dynamic decomposition of spatiotemporal neural signals
2017-01-01
Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals. PMID:28558039
Comparison of RF spectrum prediction methods for dynamic spectrum access
NASA Astrophysics Data System (ADS)
Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.
2017-05-01
Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.
Self Improving Methods for Materials and Process Design
1998-08-31
using inductive coupling techniques. The first phase of the work focuses on developing an artificial neural network learning for function approximation...developing an artificial neural network learning algorithm for time-series prediction. The third phase of the work focuses on model selection. We have
Intelligent detectors modelled from the cat's eye
NASA Astrophysics Data System (ADS)
Lindblad, Th.; Becanovic, V.; Lindsey, C. S.; Szekely, G.
1997-02-01
Biologically inspired image/signal processing, in particular neural networks like the Pulse-Coupled Neural Network (PCNN), are revisited. Their use with high granularity high-energy physics detectors, as well as optical sensing devices, for filtering, de-noising, segmentation, object isolation and edge detection is discussed.
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic coefficients to an accuracy of 110% . In our problem, we would like to get an optimized neural network architecture and minimum data set. This has been accomplished within 500 training cycles of a neural network. After removing training pairs (outliers), the GA has produced much better results. The neural network constructed is a feed forward neural network with a back propagation learning mechanism. The main goal has been to free the network design process from constraints of human biases, and to discover better forms of neural network architectures. The automation of the network architecture search by genetic algorithms seems to have been the best way to achieve this goal.
Chinese Sentence Classification Based on Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Gu, Chengwei; Wu, Ming; Zhang, Chuang
2017-10-01
Sentence classification is one of the significant issues in Natural Language Processing (NLP). Feature extraction is often regarded as the key point for natural language processing. Traditional ways based on machine learning can not take high level features into consideration, such as Naive Bayesian Model. The neural network for sentence classification can make use of contextual information to achieve greater results in sentence classification tasks. In this paper, we focus on classifying Chinese sentences. And the most important is that we post a novel architecture of Convolutional Neural Network (CNN) to apply on Chinese sentence classification. In particular, most of the previous methods often use softmax classifier for prediction, we embed a linear support vector machine to substitute softmax in the deep neural network model, minimizing a margin-based loss to get a better result. And we use tanh as an activation function, instead of ReLU. The CNN model improve the result of Chinese sentence classification tasks. Experimental results on the Chinese news title database validate the effectiveness of our model.
Functional model of biological neural networks.
Lo, James Ting-Ho
2010-12-01
A functional model of biological neural networks, called temporal hierarchical probabilistic associative memory (THPAM), is proposed in this paper. THPAM comprises functional models of dendritic trees for encoding inputs to neurons, a first type of neuron for generating spike trains, a second type of neuron for generating graded signals to modulate neurons of the first type, supervised and unsupervised Hebbian learning mechanisms for easy learning and retrieving, an arrangement of dendritic trees for maximizing generalization, hardwiring for rotation-translation-scaling invariance, and feedback connections with different delay durations for neurons to make full use of present and past informations generated by neurons in the same and higher layers. These functional models and their processing operations have many functions of biological neural networks that have not been achieved by other models in the open literature and provide logically coherent answers to many long-standing neuroscientific questions. However, biological justifications of these functional models and their processing operations are required for THPAM to qualify as a macroscopic model (or low-order approximate) of biological neural networks.
A novel application of artificial neural network for wind speed estimation
NASA Astrophysics Data System (ADS)
Fang, Da; Wang, Jianzhou
2017-05-01
Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation.
Efficient implementation of neural network deinterlacing
NASA Astrophysics Data System (ADS)
Seo, Guiwon; Choi, Hyunsoo; Lee, Chulhee
2009-02-01
Interlaced scanning has been widely used in most broadcasting systems. However, there are some undesirable artifacts such as jagged patterns, flickering, and line twitters. Moreover, most recent TV monitors utilize flat panel display technologies such as LCD or PDP monitors and these monitors require progressive formats. Consequently, the conversion of interlaced video into progressive video is required in many applications and a number of deinterlacing methods have been proposed. Recently deinterlacing methods based on neural network have been proposed with good results. On the other hand, with high resolution video contents such as HDTV, the amount of video data to be processed is very large. As a result, the processing time and hardware complexity become an important issue. In this paper, we propose an efficient implementation of neural network deinterlacing using polynomial approximation of the sigmoid function. Experimental results show that these approximations provide equivalent performance with a considerable reduction of complexity. This implementation of neural network deinterlacing can be efficiently incorporated in HW implementation.
ERIC Educational Resources Information Center
Dominey, Peter Ford; Inui, Toshio; Hoen, Michel
2009-01-01
A central issue in cognitive neuroscience today concerns how distributed neural networks in the brain that are used in language learning and processing can be involved in non-linguistic cognitive sequence learning. This issue is informed by a wealth of functional neurophysiology studies of sentence comprehension, along with a number of recent…
Biologically-based signal processing system applied to noise removal for signal extraction
Fu, Chi Yung; Petrich, Loren I.
2004-07-13
The method and system described herein use a biologically-based signal processing system for noise removal for signal extraction. A wavelet transform may be used in conjunction with a neural network to imitate a biological system. The neural network may be trained using ideal data derived from physical principles or noiseless signals to determine to remove noise from the signal.
Singularities of Three-Layered Complex-Valued Neural Networks With Split Activation Function.
Kobayashi, Masaki
2018-05-01
There are three important concepts related to learning processes in neural networks: reducibility, nonminimality, and singularity. Although the definitions of these three concepts differ, they are equivalent in real-valued neural networks. This is also true of complex-valued neural networks (CVNNs) with hidden neurons not employing biases. The situation of CVNNs with hidden neurons employing biases, however, is very complicated. Exceptional reducibility was found, and it was shown that reducibility and nonminimality are not the same. Irreducibility consists of minimality and exceptional reducibility. The relationship between minimality and singularity has not yet been established. In this paper, we describe our surprising finding that minimality and singularity are independent. We also provide several examples based on exceptional reducibility.
Neural networks for data mining electronic text collections
NASA Astrophysics Data System (ADS)
Walker, Nicholas; Truman, Gregory
1997-04-01
The use of neural networks in information retrieval and text analysis has primarily suffered from the issues of adequate document representation, the ability to scale to very large collections, dynamism in the face of new information and the practical difficulties of basing the design on the use of supervised training sets. Perhaps the most important approach to begin solving these problems is the use of `intermediate entities' which reduce the dimensionality of document representations and the size of documents collections to manageable levels coupled with the use of unsupervised neural network paradigms. This paper describes the issues, a fully configured neural network-based text analysis system--dataHARVEST--aimed at data mining text collections which begins this process, along with the remaining difficulties and potential ways forward.
Early driver fatigue detection from electroencephalography signals using artificial neural networks.
King, L M; Nguyen, H T; Lal, S K L
2006-01-01
This paper describes a driver fatigue detection system using an artificial neural network (ANN). Using electroencephalogram (EEG) data sampled from 20 professional truck drivers and 35 non professional drivers, the time domain data are processed into alpha, beta, delta and theta bands and then presented to the neural network to detect the onset of driver fatigue. The neural network uses a training optimization technique called the magnified gradient function (MGF). This technique reduces the time required for training by modifying the standard back propagation (SBP) algorithm. The MGF is shown to classify professional driver fatigue with 81.49% accuracy (80.53% sensitivity, 82.44% specificity) and non-professional driver fatigue with 83.06% accuracy (84.04% sensitivity and 82.08% specificity).
Neural substrates of sublexical processing for spelling.
DeMarco, Andrew T; Wilson, Stephen M; Rising, Kindle; Rapcsak, Steven Z; Beeson, Pélagie M
2017-01-01
We used fMRI to examine the neural substrates of sublexical phoneme-grapheme conversion during spelling in a group of healthy young adults. Participants performed a writing-to-dictation task involving irregular words (e.g., choir), plausible nonwords (e.g., kroid), and a control task of drawing familiar geometric shapes (e.g., squares). Written production of both irregular words and nonwords engaged a left-hemisphere perisylvian network associated with reading/spelling and phonological processing skills. Effects of lexicality, manifested by increased activation during nonword relative to irregular word spelling, were noted in anterior perisylvian regions (posterior inferior frontal gyrus/operculum/precentral gyrus/insula), and in left ventral occipito-temporal cortex. In addition to enhanced neural responses within domain-specific components of the language network, the increased cognitive demands associated with spelling nonwords engaged domain-general frontoparietal cortical networks involved in selective attention and executive control. These results elucidate the neural substrates of sublexical processing during written language production and complement lesion-deficit correlation studies of phonological agraphia. Copyright © 2016 Elsevier Inc. All rights reserved.
Neural Substrates of Sublexical Processing for Spelling
Wilson, Stephen M.; Rising, Kindle; Rapcsak, Steven Z.; Beeson, Pélagie M.
2016-01-01
We used fMRI to examine the neural substrates of sublexical phoneme-grapheme conversion during spelling in a group of healthy young adults. Participants performed a writing-to-dictation task involving irregular words (e.g., choir), plausible nonwords (e.g., kroid), and a control task of drawing familiar geometric shapes (e.g., squares). Written production of both irregular words and nonwords engaged a left-hemisphere perisylvian network associated with reading/spelling and phonological processing skills. Effects of lexicality, manifested by increased activation during nonword relative to irregular word spelling, were noted in anterior perisylvian regions (posterior inferior frontal gyrus/operculum/precentral gyrus/insula), and in left ventral occipito-temporal cortex. In addition to enhanced neural responses within domain-specific components of the language network, the increased cognitive demands associated with spelling nonwords engaged domain-general frontoparietal cortical networks involved in selective attention and executive control. These results elucidate the neural substrates of sublexical processing during written language production and complement lesion-deficit correlation studies of phonological agraphia. PMID:27838547
HRLSim: a high performance spiking neural network simulator for GPGPU clusters.
Minkovich, Kirill; Thibeault, Corey M; O'Brien, Michael John; Nogin, Aleksey; Cho, Youngkwan; Srinivasa, Narayan
2014-02-01
Modeling of large-scale spiking neural models is an important tool in the quest to understand brain function and subsequently create real-world applications. This paper describes a spiking neural network simulator environment called HRL Spiking Simulator (HRLSim). This simulator is suitable for implementation on a cluster of general purpose graphical processing units (GPGPUs). Novel aspects of HRLSim are described and an analysis of its performance is provided for various configurations of the cluster. With the advent of inexpensive GPGPU cards and compute power, HRLSim offers an affordable and scalable tool for design, real-time simulation, and analysis of large-scale spiking neural networks.
Calculation of precise firing statistics in a neural network model
NASA Astrophysics Data System (ADS)
Cho, Myoung Won
2017-08-01
A precise prediction of neural firing dynamics is requisite to understand the function of and the learning process in a biological neural network which works depending on exact spike timings. Basically, the prediction of firing statistics is a delicate manybody problem because the firing probability of a neuron at a time is determined by the summation over all effects from past firing states. A neural network model with the Feynman path integral formulation is recently introduced. In this paper, we present several methods to calculate firing statistics in the model. We apply the methods to some cases and compare the theoretical predictions with simulation results.
Developing neuronal networks: Self-organized criticality predicts the future
NASA Astrophysics Data System (ADS)
Pu, Jiangbo; Gong, Hui; Li, Xiangning; Luo, Qingming
2013-01-01
Self-organized criticality emerged in neural activity is one of the key concepts to describe the formation and the function of developing neuronal networks. The relationship between critical dynamics and neural development is both theoretically and experimentally appealing. However, whereas it is well-known that cortical networks exhibit a rich repertoire of activity patterns at different stages during in vitro maturation, dynamical activity patterns through the entire neural development still remains unclear. Here we show that a series of metastable network states emerged in the developing and ``aging'' process of hippocampal networks cultured from dissociated rat neurons. The unidirectional sequence of state transitions could be only observed in networks showing power-law scaling of distributed neuronal avalanches. Our data suggest that self-organized criticality may guide spontaneous activity into a sequential succession of homeostatically-regulated transient patterns during development, which may help to predict the tendency of neural development at early ages in the future.
Foreign currency rate forecasting using neural networks
NASA Astrophysics Data System (ADS)
Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad
2000-03-01
Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.
Deforestation and Industrial Forest Patterns in Colombia: a Case Study
NASA Astrophysics Data System (ADS)
Huo, L. Z.; Boschetti, L.; Sparks, A. M.; Clerici, N.
2017-12-01
The recent peace agreement between the government and the Revolutionary Armed Forces of Colombia (FARC) offers new opportunities for peaceful and sustainable development, but at the same time requires a timely effort to protect biological resources, and ecosystem services (Clerici et al., 2016). In this context, we use the 2001-2017 Landsat data record to prototype a methodology to establish a baseline of deforestation, afforestation and industrial forest practices (i.e. establishment and harvest of forest plantations), and to monitor future changes. Two study areas, which have seen considerable deforestation in recent years, were selected: one in the South of the country, at the edge of the Amazon Forest (WRS path 008 row 059) and one in the center, in mixed forest (WRS path 008 row 055). The time series of all the available cloud free Landsat 5, Landsat 7 and Landsat 8 data was classified into a sequence of binary forest/non forest maps using a deep learning model, successfully used in the natural language processing field, trained to detect forest transitions. Recurrent Neural Networks (RNN) is a class of artificial neural network that extends the conventional neural network with loops in the connections (Graves et al., 2013). Unlike a feed-forward neural network, an RNN is able to process the sequential inputs by having a recurrent hidden state whose activation at each step depends on that of the previous steps. In this manner, the RNN provides a good framework to dynamically model time series data, and has been successfully applied to natural language processing in Google (Sutskever et al., 2014). The sequence of forest cover state maps was subsequently post-processed to differentiate between deforestation (e.g. transition from forest to non forest land use) and industrial forest harvest (i.e. timber harvest followed by regrowth), by integrating the detection of temporal patterns, and spatial patterns. References Clerici, N., et al., (2016). Colombia: Dealing in conservation. Science, 354(6309), 190-190. Sutskever I.,et al. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems, 3104-3112. Graves A., et al. (2013). Speech recognition with deep recurrent neural networks. In Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 6645-6649.
Predicting Item Difficulty in a Reading Comprehension Test with an Artificial Neural Network.
ERIC Educational Resources Information Center
Perkins, Kyle; And Others
This paper reports the results of using a three-layer backpropagation artificial neural network to predict item difficulty in a reading comprehension test. Two network structures were developed, one with and one without a sigmoid function in the output processing unit. The data set, which consisted of a table of coded test items and corresponding…
Computational properties of networks of synchronous groups of spiking neurons.
Dayhoff, Judith E
2007-09-01
We demonstrate a model in which synchronously firing ensembles of neurons are networked to produce computational results. Each ensemble is a group of biological integrate-and-fire spiking neurons, with probabilistic interconnections between groups. An analogy is drawn in which each individual processing unit of an artificial neural network corresponds to a neuronal group in a biological model. The activation value of a unit in the artificial neural network corresponds to the fraction of active neurons, synchronously firing, in a biological neuronal group. Weights of the artificial neural network correspond to the product of the interconnection density between groups, the group size of the presynaptic group, and the postsynaptic potential heights in the synchronous group model. All three of these parameters can modulate connection strengths between neuronal groups in the synchronous group models. We give an example of nonlinear classification (XOR) and a function approximation example in which the capability of the artificial neural network can be captured by a neural network model with biological integrate-and-fire neurons configured as a network of synchronously firing ensembles of such neurons. We point out that the general function approximation capability proven for feedforward artificial neural networks appears to be approximated by networks of neuronal groups that fire in synchrony, where the groups comprise integrate-and-fire neurons. We discuss the advantages of this type of model for biological systems, its possible learning mechanisms, and the associated timing relationships.
Advanced miniature processing handware for ATR applications
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Daud, Taher (Inventor); Thakoor, Anikumar (Inventor)
2003-01-01
A Hybrid Optoelectronic Neural Object Recognition System (HONORS), is disclosed, comprising two major building blocks: (1) an advanced grayscale optical correlator (OC) and (2) a massively parallel three-dimensional neural-processor. The optical correlator, with its inherent advantages in parallel processing and shift invariance, is used for target of interest (TOI) detection and segmentation. The three-dimensional neural-processor, with its robust neural learning capability, is used for target classification and identification. The hybrid optoelectronic neural object recognition system, with its powerful combination of optical processing and neural networks, enables real-time, large frame, automatic target recognition (ATR).
Recognition of Roasted Coffee Bean Levels using Image Processing and Neural Network
NASA Astrophysics Data System (ADS)
Nasution, T. H.; Andayani, U.
2017-03-01
The coffee beans roast levels have some characteristics. However, some people cannot recognize the coffee beans roast level. In this research, we propose to design a method to recognize the coffee beans roast level of images digital by processing the image and classifying with backpropagation neural network. The steps consist of how to collect the images data with image acquisition, pre-processing, feature extraction using Gray Level Co-occurrence Matrix (GLCM) method and finally normalization of data extraction using decimal scaling features. The values of decimal scaling features become an input of classifying in backpropagation neural network. We use the method of backpropagation to recognize the coffee beans roast levels. The results showed that the proposed method is able to identify the coffee roasts beans level with an accuracy of 97.5%.
NASA Astrophysics Data System (ADS)
Wu, Shulian; Peng, Yuanyuan; Hu, Liangjun; Zhang, Xiaoman; Li, Hui
2016-01-01
Second harmonic generation microscopy (SHGM) was used to monitor the process of chronological aging skin in vivo. The collagen structures of mice model with different ages were obtained using SHGM. Then, texture feature with contrast, correlation and entropy were extracted and analysed using the grey level co-occurrence matrix. At last, the neural network tool of Matlab was applied to train the texture of collagen in different statues during the aging process. And the simulation of mice collagen texture was carried out. The results indicated that the classification accuracy reach 85%. Results demonstrated that the proposed approach effectively detected the target object in the collagen texture image during the chronological aging process and the analysis tool based on neural network applied the skin of classification and feature extraction method is feasible.
NASA Astrophysics Data System (ADS)
Park, Gilsoon; Hong, Jinwoo; Lee, Jong-Min
2018-03-01
In human brain, Corpus Callosum (CC) is the largest white matter structure, connecting between right and left hemispheres. Structural features such as shape and size of CC in midsagittal plane are of great significance for analyzing various neurological diseases, for example Alzheimer's disease, autism and epilepsy. For quantitative and qualitative studies of CC in brain MR images, robust segmentation of CC is important. In this paper, we present a novel method for CC segmentation. Our approach is based on deep neural networks and the prior information generated from multi-atlas images. Deep neural networks have recently shown good performance in various image processing field. Convolutional neural networks (CNN) have shown outstanding performance for classification and segmentation in medical image fields. We used convolutional neural networks for CC segmentation. Multi-atlas based segmentation model have been widely used in medical image segmentation because atlas has powerful information about the target structure we want to segment, consisting of MR images and corresponding manual segmentation of the target structure. We combined the prior information, such as location and intensity distribution of target structure (i.e. CC), made from multi-atlas images in CNN training process for more improving training. The CNN with prior information showed better segmentation performance than without.
High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil
NASA Technical Reports Server (NTRS)
Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)
1998-01-01
The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.
A convolutional neural network-based screening tool for X-ray serial crystallography
Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K.
2018-01-01
A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. PMID:29714177
A convolutional neural network-based screening tool for X-ray serial crystallography.
Ke, Tsung Wei; Brewster, Aaron S; Yu, Stella X; Ushizima, Daniela; Yang, Chao; Sauter, Nicholas K
2018-05-01
A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization. open access.
A convolutional neural network-based screening tool for X-ray serial crystallography
Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.; ...
2018-04-24
A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.
A convolutional neural network-based screening tool for X-ray serial crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Tsung-Wei; Brewster, Aaron S.; Yu, Stella X.
A new tool is introduced for screening macromolecular X-ray crystallography diffraction images produced at an X-ray free-electron laser light source. Based on a data-driven deep learning approach, the proposed tool executes a convolutional neural network to detect Bragg spots. Automatic image processing algorithms described can enable the classification of large data sets, acquired under realistic conditions consisting of noisy data with experimental artifacts. Outcomes are compared for different data regimes, including samples from multiple instruments and differing amounts of training data for neural network optimization.
Neural network-based run-to-run controller using exposure and resist thickness adjustment
NASA Astrophysics Data System (ADS)
Geary, Shane; Barry, Ronan
2003-06-01
This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.
Smart Sensing and Recognition Based on Models of Neural Networks
1990-11-15
9P-o ,yY-’. AD-A230 701 University of Pensylvania Philadelphia, PA 19104-6390 SMART SENSING AND RECOGNITION BASED ON MODELS OF NEURAL NETWORKS ... networks , photonic 1 implementations, nonlinear dynamical signal processing 9 ABSTRACT (Continue on reverse if necessary and identify by block number...not develop in isolation but in synergism with sensory organs and their feature forming networks . This means that development of artificial pattern
Neural networks to classify speaker independent isolated words recorded in radio car environments
NASA Astrophysics Data System (ADS)
Alippi, C.; Simeoni, M.; Torri, V.
1993-02-01
Many applications, in particular the ones requiring nonlinear signal processing, have proved Artificial Neural Networks (ANN's) to be invaluable tools for model free estimation. The classifying abilities of ANN's are addressed by testing their performance in a speaker independent word recognition application. A real world case requiring implementation of compact integrated devices is taken into account: the classification of isolated words in radio car environment. A multispeaker database of isolated words was recorded in different environments. Data were first processed to determinate the boundaries of each word and then to extract speech features, the latter accomplished by using cepstral coefficient representation, log area ratios and filters bank techniques. Multilayered perceptron and adaptive vector quantization neural paradigms were tested to find a reasonable compromise between performances and network simplicity, fundamental requirement for the implementation of compact real time running neural devices.
The Emerging Role of Epigenetics in Stroke
Qureshi, Irfan A.; Mehler, Mark F.
2013-01-01
The transplantation of exogenous stem cells and the activation of endogenous neural stem and progenitor cells (NSPCs) are promising treatments for stroke. These cells can modulate intrinsic responses to ischemic injury and may even integrate directly into damaged neural networks. However, the neuroprotective and neural regenerative effects that can be mediated by these cells are limited and may even be deleterious. Epigenetic reprogramming represents a novel strategy for enhancing the intrinsic potential of the brain to protect and repair itself by modulating pathologic neural gene expression and promoting the recapitulation of seminal neural developmental processes. In fact, recent evidence suggests that emerging epigenetic mechanisms are critical for orchestrating nearly every aspect of neural development and homeostasis, including brain patterning, neural stem cell maintenance, neurogenesis and gliogenesis, neural subtype specification, and synaptic and neural network connectivity and plasticity. In this review, we survey the therapeutic potential of exogenous stem cells and endogenous NSPCs and highlight innovative technological approaches for designing, developing, and delivering epigenetic therapies for targeted reprogramming of endogenous pools of NSPCs, neural cells at risk, and dysfunctional neural networks to rescue and restore neurologic function in the ischemic brain. PMID:21403016
Functional approximation using artificial neural networks in structural mechanics
NASA Technical Reports Server (NTRS)
Alam, Javed; Berke, Laszlo
1993-01-01
The artificial neural networks (ANN) methodology is an outgrowth of research in artificial intelligence. In this study, the feed-forward network model that was proposed by Rumelhart, Hinton, and Williams was applied to the mapping of functions that are encountered in structural mechanics problems. Several different network configurations were chosen to train the available data for problems in materials characterization and structural analysis of plates and shells. By using the recall process, the accuracy of these trained networks was assessed.
NASA Technical Reports Server (NTRS)
Hecht-Nielsen, Robert
1990-01-01
The present work is intended to give technologists, research scientists, and mathematicians a graduate-level overview of the field of neurocomputing. After exploring the relationship of this field to general neuroscience, attention is given to neural network building blocks, the self-adaptation equations of learning laws, the data-transformation structures of associative networks, and the multilayer data-transformation structures of mapping networks. Also treated are the neurocomputing frontiers of spatiotemporal, stochastic, and hierarchical networks, 'neurosoftware', the creation of neural network-based computers, and neurocomputing applications in sensor processing, control, and data analysis.
Neural network for interpretation of multi-meaning Chinese words
NASA Astrophysics Data System (ADS)
He, Qianhua; Xu, Bingzheng
1994-03-01
We proposed a neural network that can interpret multi-meaning Chinese words correctly by using context information. The self-organized network, designed for translating Chinese to English, builds a context according to key words of the processed text and utilizes it to interpret multi-meaning words correctly. The network is generated automatically basing on a Chinese-English dictionary and a knowledge-base of weights, and can adapt to the change of contexts. Simulation experiments have proved that the network worked as expected.
NASA Astrophysics Data System (ADS)
Mondal, Subrata; Bandyopadhyay, Asish.; Pal, Pradip Kumar
2010-10-01
This paper presents the prediction and evaluation of laser clad profile formed by means of CO2 laser applying Taguchi method and the artificial neural network (ANN). Laser cladding is one of the surface modifying technologies in which the desired surface characteristics of any component can be achieved such as good corrosion resistance, wear resistance and hardness etc. Laser is used as a heat source to melt the anti-corrosive powder of Inconel-625 (Super Alloy) to give a coating on 20 MnCr5 substrate. The parametric study of this technique is also attempted here. The data obtained from experiments have been used to develop the linear regression equation and then to develop the neural network model. Moreover, the data obtained from regression equations have also been used as supporting data to train the neural network. The artificial neural network (ANN) is used to establish the relationship between the input/output parameters of the process. The established ANN model is then indirectly integrated with the optimization technique. It has been seen that the developed neural network model shows a good degree of approximation with experimental data. In order to obtain the combination of process parameters such as laser power, scan speed and powder feed rate for which the output parameters become optimum, the experimental data have been used to develop the response surfaces.
Maleki, Ehsan; Babashah, Hossein; Koohi, Somayyeh; Kavehvash, Zahra
2017-07-01
This paper presents an optical processing approach for exploring a large number of genome sequences. Specifically, we propose an optical correlator for global alignment and an extended moiré matching technique for local analysis of spatially coded DNA, whose output is fed to a novel three-dimensional artificial neural network for local DNA alignment. All-optical implementation of the proposed 3D artificial neural network is developed and its accuracy is verified in Zemax. Thanks to its parallel processing capability, the proposed structure performs local alignment of 4 million sequences of 150 base pairs in a few seconds, which is much faster than its electrical counterparts, such as the basic local alignment search tool.
Pulse-coupled neural network implementation in FPGA
NASA Astrophysics Data System (ADS)
Waldemark, Joakim T. A.; Lindblad, Thomas; Lindsey, Clark S.; Waldemark, Karina E.; Oberg, Johnny; Millberg, Mikael
1998-03-01
Pulse Coupled Neural Networks (PCNN) are biologically inspired neural networks, mainly based on studies of the visual cortex of small mammals. The PCNN is very well suited as a pre- processor for image processing, particularly in connection with object isolation, edge detection and segmentation. Several implementations of PCNN on von Neumann computers, as well as on special parallel processing hardware devices (e.g. SIMD), exist. However, these implementations are not as flexible as required for many applications. Here we present an implementation in Field Programmable Gate Arrays (FPGA) together with a performance analysis. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications. The latter may include advanced on-line image analysis with close to real-time performance.
Ahmad, Nasir; Higgins, Irina; Walker, Kerry M. M.; Stringer, Simon M.
2016-01-01
Attempting to explain the perceptual qualities of pitch has proven to be, and remains, a difficult problem. The wide range of sounds which elicit pitch and a lack of agreement across neurophysiological studies on how pitch is encoded by the brain have made this attempt more difficult. In describing the potential neural mechanisms by which pitch may be processed, a number of neural networks have been proposed and implemented. However, no unsupervised neural networks with biologically accurate cochlear inputs have yet been demonstrated. This paper proposes a simple system in which pitch representing neurons are produced in a biologically plausible setting. Purely unsupervised regimes of neural network learning are implemented and these prove to be sufficient in identifying the pitch of sounds with a variety of spectral profiles, including sounds with missing fundamental frequencies and iterated rippled noises. PMID:27047368
Development of a Neural Network-Based Renewable Energy Forecasting Framework for Process Industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Soobin; Ryu, Jun-Hyung; Hodge, Bri-Mathias
2016-06-25
This paper presents a neural network-based forecasting framework for photovoltaic power (PV) generation as a decision-supporting tool to employ renewable energies in the process industry. The applicability of the proposed framework is illustrated by comparing its performance against other methodologies such as linear and nonlinear time series modelling approaches. A case study of an actual PV power plant in South Korea is presented.
Neurocomputation by Reaction Diffusion
NASA Astrophysics Data System (ADS)
Liang, Ping
1995-08-01
This Letter demonstrates the possible role nonsynaptic diffusion neurotransmission may play in neurocomputation using an artificial neural network model. A reaction-diffusion neural network model with field-based information-processing mechanisms is proposed. The advantages of nonsynaptic field neurotransmission from a computational viewpoint demonstrated in this Letter include long-range inhibition using only local interaction, nonhardwired and changeable (target specific) long-range communication pathways, and multiple simultaneous spatiotemporal organization processes in the same medium.
Prefrontal Cortex Networks Shift from External to Internal Modes during Learning.
Brincat, Scott L; Miller, Earl K
2016-09-14
As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with "internal" memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)-regions critical for sensory associations-of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11-27 Hz) oscillatory power and synchrony associated with "top-down" or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired "top-down" knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. Copyright © 2016 the authors 0270-6474/16/369739-16$15.00/0.
Prefrontal Cortex Networks Shift from External to Internal Modes during Learning
Brincat, Scott L.
2016-01-01
As we learn about items in our environment, their neural representations become increasingly enriched with our acquired knowledge. But there is little understanding of how network dynamics and neural processing related to external information changes as it becomes laden with “internal” memories. We sampled spiking and local field potential activity simultaneously from multiple sites in the lateral prefrontal cortex (PFC) and the hippocampus (HPC)—regions critical for sensory associations—of monkeys performing an object paired-associate learning task. We found that in the PFC, evoked potentials to, and neural information about, external sensory stimulation decreased while induced beta-band (∼11–27 Hz) oscillatory power and synchrony associated with “top-down” or internal processing increased. By contrast, the HPC showed little evidence of learning-related changes in either spiking activity or network dynamics. The results suggest that during associative learning, PFC networks shift their resources from external to internal processing. SIGNIFICANCE STATEMENT As we learn about items in our environment, their representations in our brain become increasingly enriched with our acquired “top-down” knowledge. We found that in the prefrontal cortex, but not the hippocampus, processing of external sensory inputs decreased while internal network dynamics related to top-down processing increased. The results suggest that during learning, prefrontal cortex networks shift their resources from external (sensory) to internal (memory) processing. PMID:27629722
Choi, D J; Park, H
2001-11-01
For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.
Neural network application to comprehensive engine diagnostics
NASA Technical Reports Server (NTRS)
Marko, Kenneth A.
1994-01-01
We have previously reported on the use of neural networks for detection and identification of faults in complex microprocessor controlled powertrain systems. The data analyzed in those studies consisted of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The specific task of the classification system was to classify system operation as nominal or abnormal and to identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or actuators in the powertrain system as it was exercised over its full operating range. The use of data from a variety of sources, each contributing some potentially useful information to the classification task, is commonly referred to as sensor fusion and typifies the type of problems successfully addressed using neural networks. In this work we explore the application of neural networks to a different diagnostic problem, the diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.
NASA Astrophysics Data System (ADS)
Di Noia, Antonio; Hasekamp, Otto P.; Wu, Lianghai; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John E.
2017-11-01
In this paper, an algorithm for the retrieval of aerosol and land surface properties from airborne spectropolarimetric measurements - combining neural networks and an iterative scheme based on Phillips-Tikhonov regularization - is described. The algorithm - which is an extension of a scheme previously designed for ground-based retrievals - is applied to measurements from the Research Scanning Polarimeter (RSP) on board the NASA ER-2 aircraft. A neural network, trained on a large data set of synthetic measurements, is applied to perform aerosol retrievals from real RSP data, and the neural network retrievals are subsequently used as a first guess for the Phillips-Tikhonov retrieval. The resulting algorithm appears capable of accurately retrieving aerosol optical thickness, fine-mode effective radius and aerosol layer height from RSP data. Among the advantages of using a neural network as initial guess for an iterative algorithm are a decrease in processing time and an increase in the number of converging retrievals.
Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks
2018-01-01
Much of the information the brain processes and stores is temporal in nature—a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds—we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. PMID:29537963
A new class of methods for functional connectivity estimation
NASA Astrophysics Data System (ADS)
Lin, Wutu
Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.
Encoding sensory and motor patterns as time-invariant trajectories in recurrent neural networks.
Goudar, Vishwa; Buonomano, Dean V
2018-03-14
Much of the information the brain processes and stores is temporal in nature-a spoken word or a handwritten signature, for example, is defined by how it unfolds in time. However, it remains unclear how neural circuits encode complex time-varying patterns. We show that by tuning the weights of a recurrent neural network (RNN), it can recognize and then transcribe spoken digits. The model elucidates how neural dynamics in cortical networks may resolve three fundamental challenges: first, encode multiple time-varying sensory and motor patterns as stable neural trajectories; second, generalize across relevant spatial features; third, identify the same stimuli played at different speeds-we show that this temporal invariance emerges because the recurrent dynamics generate neural trajectories with appropriately modulated angular velocities. Together our results generate testable predictions as to how recurrent networks may use different mechanisms to generalize across the relevant spatial and temporal features of complex time-varying stimuli. © 2018, Goudar et al.
Spiking Neural Network Decoder for Brain-Machine Interfaces.
Dethier, Julie; Gilja, Vikash; Nuyujukian, Paul; Elassaad, Shauki A; Shenoy, Krishna V; Boahen, Kwabena
2011-01-01
We used a spiking neural network (SNN) to decode neural data recorded from a 96-electrode array in premotor/motor cortex while a rhesus monkey performed a point-to-point reaching arm movement task. We mapped a Kalman-filter neural prosthetic decode algorithm developed to predict the arm's velocity on to the SNN using the Neural Engineering Framework and simulated it using Nengo , a freely available software package. A 20,000-neuron network matched the standard decoder's prediction to within 0.03% (normalized by maximum arm velocity). A 1,600-neuron version of this network was within 0.27%, and run in real-time on a 3GHz PC. These results demonstrate that a SNN can implement a statistical signal processing algorithm widely used as the decoder in high-performance neural prostheses (Kalman filter), and achieve similar results with just a few thousand neurons. Hardware SNN implementations-neuromorphic chips-may offer power savings, essential for realizing fully-implantable cortically controlled prostheses.
ANNarchy: a code generation approach to neural simulations on parallel hardware
Vitay, Julien; Dinkelbach, Helge Ü.; Hamker, Fred H.
2015-01-01
Many modern neural simulators focus on the simulation of networks of spiking neurons on parallel hardware. Another important framework in computational neuroscience, rate-coded neural networks, is mostly difficult or impossible to implement using these simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to easily define and simulate rate-coded and spiking networks, as well as combinations of both. The interface in Python has been designed to be close to the PyNN interface, while the definition of neuron and synapse models can be specified using an equation-oriented mathematical description similar to the Brian neural simulator. This information is used to generate C++ code that will efficiently perform the simulation on the chosen parallel hardware (multi-core system or graphical processing unit). Several numerical methods are available to transform ordinary differential equations into an efficient C++code. We compare the parallel performance of the simulator to existing solutions. PMID:26283957
Goal-seeking neural net for recall and recognition
NASA Astrophysics Data System (ADS)
Omidvar, Omid M.
1990-07-01
Neural networks have been used to mimic cognitive processes which take place in animal brains. The learning capability inherent in neural networks makes them suitable candidates for adaptive tasks such as recall and recognition. The synaptic reinforcements create a proper condition for adaptation, which results in memorization, formation of perception, and higher order information processing activities. In this research a model of a goal seeking neural network is studied and the operation of the network with regard to recall and recognition is analyzed. In these analyses recall is defined as retrieval of stored information where little or no matching is involved. On the other hand recognition is recall with matching; therefore it involves memorizing a piece of information with complete presentation. This research takes the generalized view of reinforcement in which all the signals are potential reinforcers. The neuronal response is considered to be the source of the reinforcement. This local approach to adaptation leads to the goal seeking nature of the neurons as network components. In the proposed model all the synaptic strengths are reinforced in parallel while the reinforcement among the layers is done in a distributed fashion and pipeline mode from the last layer inward. A model of complex neuron with varying threshold is developed to account for inhibitory and excitatory behavior of real neuron. A goal seeking model of a neural network is presented. This network is utilized to perform recall and recognition tasks. The performance of the model with regard to the assigned tasks is presented.
Objective assessment of MPEG-2 video quality
NASA Astrophysics Data System (ADS)
Gastaldo, Paolo; Zunino, Rodolfo; Rovetta, Stefano
2002-07-01
The increasing use of video compression standards in broadcasting television systems has required, in recent years, the development of video quality measurements that take into account artifacts specifically caused by digital compression techniques. In this paper we present a methodology for the objective quality assessment of MPEG video streams by using circular back-propagation feedforward neural networks. Mapping neural networks can render nonlinear relationships between objective features and subjective judgments, thus avoiding any simplifying assumption on the complexity of the model. The neural network processes an instantaneous set of input values, and yields an associated estimate of perceived quality. Therefore, the neural-network approach turns objective quality assessment into adaptive modeling of subjective perception. The objective features used for the estimate are chosen according to the assessed relevance to perceived quality and are continuously extracted in real time from compressed video streams. The overall system mimics perception but does not require any analytical model of the underlying physical phenomenon. The capability to process compressed video streams represents an important advantage over existing approaches, like avoiding the stream-decoding process greatly enhances real-time performance. Experimental results confirm that the system provides satisfactory, continuous-time approximations for actual scoring curves concerning real test videos.
Introducing Artificial Neural Networks through a Spreadsheet Model
ERIC Educational Resources Information Center
Rienzo, Thomas F.; Athappilly, Kuriakose K.
2012-01-01
Business students taking data mining classes are often introduced to artificial neural networks (ANN) through point and click navigation exercises in application software. Even if correct outcomes are obtained, students frequently do not obtain a thorough understanding of ANN processes. This spreadsheet model was created to illuminate the roles of…
Artificial Neural Networks in Policy Research: A Current Assessment.
ERIC Educational Resources Information Center
Woelfel, Joseph
1993-01-01
Suggests that artificial neural networks (ANNs) exhibit properties that promise usefulness for policy researchers. Notes that ANNs have found extensive use in areas once reserved for multivariate statistical programs such as regression and multiple classification analysis and are developing an extensive community of advocates for processing text…
1999-05-05
processing and artificial neural network (ANN) technology. The detector will classify incipient faults based on real-tine vibration data taken from the...provided the vibration data necessary to develop and test the feasibility of en artificial neural network for fault classification. This research
León-Domínguez, Umberto; Vela-Bueno, Antonio; Froufé-Torres, Manuel; León-Carrión, Jose
2013-06-01
The thalamo-cortical system has been defined as a neural network associated with consciousness. While there seems to be wide agreement that the thalamo-cortical system directly intervenes in vigilance and arousal, a divergence of opinion persists regarding its intervention in the control of other cognitive processes necessary for consciousness. In the present manuscript, we provide a review of recent scientific findings on the thalamo-cortical system and its role in the control and regulation of the flow of neural information necessary for conscious cognitive processes. We suggest that the axis formed by the medial prefrontal cortex and different thalamic nuclei (reticular nucleus, intralaminar nucleus, and midline nucleus), represents a core component for consciousness. This axis regulates different cerebral structures which allow basic cognitive processes like attention, arousal and memory to emerge. In order to produce a synchronized coherent response, neural communication between cerebral structures must have exact timing (chronometry). Thus, a chronometric functional sub-network within the thalamo-cortical system keeps us in an optimal and continuous functional state, allowing high-order cognitive processes, essential to awareness and qualia, to take place. Copyright © 2013 Elsevier Ltd. All rights reserved.
Proceedings of the Third International Workshop on Neural Networks and Fuzzy Logic, volume 1
NASA Technical Reports Server (NTRS)
Culbert, Christopher J. (Editor)
1993-01-01
Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by the National Aeronautics and Space Administration and cosponsored by the University of Houston, Clear Lake. The workshop was held June 1-3, 1992 at the Lyndon B. Johnson Space Center in Houston, Texas. During the three days approximately 50 papers were presented. Technical topics addressed included adaptive systems; learning algorithms; network architectures; vision; robotics; neurobiological connections; speech recognition and synthesis; fuzzy set theory and application, control, and dynamics processing; space applications; fuzzy logic and neural network computers; approximate reasoning; and multiobject decision making.
Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.
Slażyński, Leszek; Bohte, Sander
2012-01-01
The arrival of graphics processing (GPU) cards suitable for massively parallel computing promises affordable large-scale neural network simulation previously only available at supercomputing facilities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of magnitude, the challenge is to develop fine-grained parallel algorithms to fully exploit the particulars of GPUs. Computation in a neural network is inherently parallel and thus a natural match for GPU architectures: given inputs, the internal state for each neuron can be updated in parallel. We show that for filter-based spiking neurons, like the Spike Response Model, the additive nature of membrane potential dynamics enables additional update parallelism. This also reduces the accumulation of numerical errors when using single precision computation, the native precision of GPUs. We further show that optimizing simulation algorithms and data structures to the GPU's architecture has a large pay-off: for example, matching iterative neural updating to the memory architecture of the GPU speeds up this simulation step by a factor of three to five. With such optimizations, we can simulate in better-than-realtime plausible spiking neural networks of up to 50 000 neurons, processing over 35 million spiking events per second.
Consciousness, cognition and brain networks: New perspectives.
Aldana, E M; Valverde, J L; Fábregas, N
2016-10-01
A detailed analysis of the literature on consciousness and cognition mechanisms based on the neural networks theory is presented. The immune and inflammatory response to the anesthetic-surgical procedure induces modulation of neuronal plasticity by influencing higher cognitive functions. Anesthetic drugs can cause unconsciousness, producing a functional disruption of cortical and thalamic cortical integration complex. The external and internal perceptions are processed through an intricate network of neural connections, involving the higher nervous activity centers, especially the cerebral cortex. This requires an integrated model, formed by neural networks and their interactions with highly specialized regions, through large-scale networks, which are distributed throughout the brain collecting information flow of these perceptions. Functional and effective connectivity between large-scale networks, are essential for consciousness, unconsciousness and cognition. It is what is called the "human connectome" or map neural networks. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Neural Network Machine Learning and Dimension Reduction for Data Visualization
NASA Technical Reports Server (NTRS)
Liles, Charles A.
2014-01-01
Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.
2011-07-01
supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property
Neural network-based system for pattern recognition through a fiber optic bundle
NASA Astrophysics Data System (ADS)
Gamo-Aranda, Javier; Rodriguez-Horche, Paloma; Merchan-Palacios, Miguel; Rosales-Herrera, Pablo; Rodriguez, M.
2001-04-01
A neural network based system to identify images transmitted through a Coherent Fiber-optic Bundle (CFB) is presented. Patterns are generated in a computer, displayed on a Spatial Light Modulator, imaged onto the input face of the CFB, and recovered optically by a CCD sensor array for further processing. Input and output optical subsystems were designed and used to that end. The recognition step of the transmitted patterns is made by a powerful, widely-used, neural network simulator running on the control PC. A complete PC-based interface was developed to control the different tasks involved in the system. An optical analysis of the system capabilities was carried out prior to performing the recognition step. Several neural network topologies were tested, and the corresponding numerical results are also presented and discussed.
Multiprocessor Neural Network in Healthcare.
Godó, Zoltán Attila; Kiss, Gábor; Kocsis, Dénes
2015-01-01
A possible way of creating a multiprocessor artificial neural network is by the use of microcontrollers. The RISC processors' high performance and the large number of I/O ports mean they are greatly suitable for creating such a system. During our research, we wanted to see if it is possible to efficiently create interaction between the artifical neural network and the natural nervous system. To achieve as much analogy to the living nervous system as possible, we created a frequency-modulated analog connection between the units. Our system is connected to the living nervous system through 128 microelectrodes. Two-way communication is provided through A/D transformation, which is even capable of testing psychopharmacons. The microcontroller-based analog artificial neural network can play a great role in medical singal processing, such as ECG, EEG etc.
Inversion of quasi-3D DC resistivity imaging data using artificial neural networks
NASA Astrophysics Data System (ADS)
Neyamadpour, Ahmad; Wan Abdullah, W. A. T.; Taib, Samsudin
2010-02-01
The objective of this paper is to investigate the applicability of artificial neural networks in inverting quasi-3D DC resistivity imaging data. An electrical resistivity imaging survey was carried out along seven parallel lines using a dipole-dipole array to confirm the validation of the results of an inversion using an artificial neural network technique. The model used to produce synthetic data to train the artificial neural network was a homogeneous medium of 100Ωm resistivity with an embedded anomalous body of 1000Ωm resistivity. The network was trained using 21 datasets (comprising 12159 data points) and tested on another 11 synthetic datasets (comprising 6369 data points) and on real field data. Another 24 test datasets (comprising 13896 data points) consisting of different resistivities for the background and the anomalous bodies were used in order to test the interpolation and extrapolation of network properties. Different learning paradigms were tried in the training process of the neural network, with the resilient propagation paradigm being the most efficient. The number of nodes, hidden layers, and efficient values for learning rate and momentum coefficient have been studied. Although a significant correlation between results of the neural network and the conventional robust inversion technique was found, the ANN results show more details of the subsurface structure, and the RMS misfits for the results of the neural network are less than seen with conventional methods. The interpreted results show that the trained network was able to invert quasi-3D electrical resistivity imaging data obtained by dipole-dipole configuration both rapidly and accurately.
Recurrent Neural Network for Computing the Drazin Inverse.
Stanimirović, Predrag S; Zivković, Ivan S; Wei, Yimin
2015-11-01
This paper presents a recurrent neural network (RNN) for computing the Drazin inverse of a real matrix in real time. This recurrent neural network (RNN) is composed of n independent parts (subnetworks), where n is the order of the input matrix. These subnetworks can operate concurrently, so parallel and distributed processing can be achieved. In this way, the computational advantages over the existing sequential algorithms can be attained in real-time applications. The RNN defined in this paper is convenient for an implementation in an electronic circuit. The number of neurons in the neural network is the same as the number of elements in the output matrix, which represents the Drazin inverse. The difference between the proposed RNN and the existing ones for the Drazin inverse computation lies in their network architecture and dynamics. The conditions that ensure the stability of the defined RNN as well as its convergence toward the Drazin inverse are considered. In addition, illustrative examples and examples of application to the practical engineering problems are discussed to show the efficacy of the proposed neural network.
(abstract) A High Throughput 3-D Inner Product Processor
NASA Technical Reports Server (NTRS)
Daud, Tuan
1996-01-01
A particularily challenging image processing application is the real time scene acquisition and object discrimination. It requires spatio-temporal recognition of point and resolved objects at high speeds with parallel processing algorithms. Neural network paradigms provide fine grain parallism and, when implemented in hardware, offer orders of magnitude speed up. However, neural networks implemented on a VLSI chip are planer architectures capable of efficient processing of linear vector signals rather than 2-D images. Therefore, for processing of images, a 3-D stack of neural-net ICs receiving planar inputs and consuming minimal power are required. Details of the circuits with chip architectures will be described with need to develop ultralow-power electronics. Further, use of the architecture in a system for high-speed processing will be illustrated.
The neural signature of emotional memories in serial crimes.
Chassy, Philippe
2017-10-01
Neural plasticity is the process whereby semantic information and emotional responses are stored in neural networks. It is hypothesized that the neural networks built over time to encode the sexual fantasies that motivate serial killers to act should display a unique, detectable activation pattern. The pathological neural watermark hypothesis posits that such networks comprise activation of brain sites that reflect four cognitive components: autobiographical memory, sexual arousal, aggression, and control over aggression. The neural sites performing these cognitive functions have been successfully identified by previous research. The key findings are reviewed to hypothesise the typical pattern of activity that serial killers should display. Through the integration of biological findings into one framework, the neural approach proposed in this paper is in stark contrast with the many theories accounting for serial killers that offer non-medical taxonomies. The pathological neural watermark hypothesis offers a new framework to understand and detect deviant individuals. The technical and legal issues are briefly discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Russell, Samuel S.; Lansing, Matthew D.
1997-01-01
This effort used a new and novel method of acquiring strains called Sub-pixel Digital Video Image Correlation (SDVIC) on impact damaged Kevlar/epoxy filament wound pressure vessels during a proof test. To predict the burst pressure, the hoop strain field distribution around the impact location from three vessels was used to train a neural network. The network was then tested on additional pressure vessels. Several variations on the network were tried. The best results were obtained using a single hidden layer. SDVIC is a fill-field non-contact computer vision technique which provides in-plane deformation and strain data over a load differential. This method was used to determine hoop and axial displacements, hoop and axial linear strains, the in-plane shear strains and rotations in the regions surrounding impact sites in filament wound pressure vessels (FWPV) during proof loading by internal pressurization. The relationship between these deformation measurement values and the remaining life of the pressure vessels, however, requires a complex theoretical model or numerical simulation. Both of these techniques are time consuming and complicated. Previous results using neural network methods had been successful in predicting the burst pressure for graphite/epoxy pressure vessels based upon acoustic emission (AE) measurements in similar tests. The neural network associates the character of the AE amplitude distribution, which depends upon the extent of impact damage, with the burst pressure. Similarly, higher amounts of impact damage are theorized to cause a higher amount of strain concentration in the damage effected zone at a given pressure and result in lower burst pressures. This relationship suggests that a neural network might be able to find an empirical relationship between the SDVIC strain field data and the burst pressure, analogous to the AE method, with greater speed and simplicity than theoretical or finite element modeling. The process of testing SDVIC neural network analysis and some encouraging preliminary results are presented in this paper. Details are given concerning the processing of SDVIC output data such that it may be used as back propagation neural network (BPNN) input data. The software written to perform this processing and the BPNN algorithm are also discussed. It will be shown that, with limited training, test results indicate an average error in burst pressure prediction of approximately six percent,
Temporal neural networks and transient analysis of complex engineering systems
NASA Astrophysics Data System (ADS)
Uluyol, Onder
A theory is introduced for a multi-layered Local Output Gamma Feedback (LOGF) neural network within the paradigm of Locally-Recurrent Globally-Feedforward neural networks. It is developed for the identification, prediction, and control tasks of spatio-temporal systems and allows for the presentation of different time scales through incorporation of a gamma memory. It is initially applied to the tasks of sunspot and Mackey-Glass series prediction as benchmarks, then it is extended to the task of power level control of a nuclear reactor at different fuel cycle conditions. The developed LOGF neuron model can also be viewed as a Transformed Input and State (TIS) Gamma memory for neural network architectures for temporal processing. The novel LOGF neuron model extends the static neuron model by incorporating into it a short-term memory structure in the form of a digital gamma filter. A feedforward neural network made up of LOGF neurons can thus be used to model dynamic systems. A learning algorithm based upon the Backpropagation-Through-Time (BTT) approach is derived. It is applicable for training a general L-layer LOGF neural network. The spatial and temporal weights and parameters of the network are iteratively optimized for a given problem using the derived learning algorithm.
Hybrid information privacy system: integration of chaotic neural network and RSA coding
NASA Astrophysics Data System (ADS)
Hsu, Ming-Kai; Willey, Jeff; Lee, Ting N.; Szu, Harold H.
2005-03-01
Electronic mails are adopted worldwide; most are easily hacked by hackers. In this paper, we purposed a free, fast and convenient hybrid privacy system to protect email communication. The privacy system is implemented by combining private security RSA algorithm with specific chaos neural network encryption process. The receiver can decrypt received email as long as it can reproduce the specified chaos neural network series, so called spatial-temporal keys. The chaotic typing and initial seed value of chaos neural network series, encrypted by the RSA algorithm, can reproduce spatial-temporal keys. The encrypted chaotic typing and initial seed value are hidden in watermark mixed nonlinearly with message media, wrapped with convolution error correction codes for wireless 3rd generation cellular phones. The message media can be an arbitrary image. The pattern noise has to be considered during transmission and it could affect/change the spatial-temporal keys. Since any change/modification on chaotic typing or initial seed value of chaos neural network series is not acceptable, the RSA codec system must be robust and fault-tolerant via wireless channel. The robust and fault-tolerant properties of chaos neural networks (CNN) were proved by a field theory of Associative Memory by Szu in 1997. The 1-D chaos generating nodes from the logistic map having arbitrarily negative slope a = p/q generating the N-shaped sigmoid was given first by Szu in 1992. In this paper, we simulated the robust and fault-tolerance properties of CNN under additive noise and pattern noise. We also implement a private version of RSA coding and chaos encryption process on messages.
NASA Technical Reports Server (NTRS)
Hsu, Ken-Yuh (Editor); Liu, Hua-Kuang (Editor)
1992-01-01
The present conference discusses optical neural networks, photorefractive nonlinear optics, optical pattern recognition, digital and analog processors, and holography and its applications. Attention is given to bifurcating optical information processing, neural structures in digital halftoning, an exemplar-based optical neural net classifier for color pattern recognition, volume storage in photorefractive disks, and microlaser-based compact optical neuroprocessors. Also treated are the optical implementation of a feature-enhanced optical interpattern-associative neural network model and its optical implementation, an optical pattern binary dual-rail logic gate module, a theoretical analysis for holographic associative memories, joint transform correlators, image addition and subtraction via the Talbot effect, and optical wavelet-matched filters. (No individual items are abstracted in this volume)
NASA Astrophysics Data System (ADS)
Hsu, Ken-Yuh; Liu, Hua-Kuang
The present conference discusses optical neural networks, photorefractive nonlinear optics, optical pattern recognition, digital and analog processors, and holography and its applications. Attention is given to bifurcating optical information processing, neural structures in digital halftoning, an exemplar-based optical neural net classifier for color pattern recognition, volume storage in photorefractive disks, and microlaser-based compact optical neuroprocessors. Also treated are the optical implementation of a feature-enhanced optical interpattern-associative neural network model and its optical implementation, an optical pattern binary dual-rail logic gate module, a theoretical analysis for holographic associative memories, joint transform correlators, image addition and subtraction via the Talbot effect, and optical wavelet-matched filters. (No individual items are abstracted in this volume)
NASA Astrophysics Data System (ADS)
Wang, Jin
Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, can be described by attractor dynamics. We developed a theoretical framework for global dynamics by quantifying the landscape associated with the steady state probability distributions and steady state curl flux, measuring the degree of non-equilibrium through detailed balance breaking. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. Both landscape and flux determine the kinetic paths and speed of decision making. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. The theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results show an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key elements in neural networks.
Adaptive Optimization of Aircraft Engine Performance Using Neural Networks
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Long, Theresa W.
1995-01-01
Preliminary results are presented on the development of an adaptive neural network based control algorithm to enhance aircraft engine performance. This work builds upon a previous National Aeronautics and Space Administration (NASA) effort known as Performance Seeking Control (PSC). PSC is an adaptive control algorithm which contains a model of the aircraft's propulsion system which is updated on-line to match the operation of the aircraft's actual propulsion system. Information from the on-line model is used to adapt the control system during flight to allow optimal operation of the aircraft's propulsion system (inlet, engine, and nozzle) to improve aircraft engine performance without compromising reliability or operability. Performance Seeking Control has been shown to yield reductions in fuel flow, increases in thrust, and reductions in engine fan turbine inlet temperature. The neural network based adaptive control, like PSC, will contain a model of the propulsion system which will be used to calculate optimal control commands on-line. Hopes are that it will be able to provide some additional benefits above and beyond those of PSC. The PSC algorithm is computationally intensive, it is valid only at near steady-state flight conditions, and it has no way to adapt or learn on-line. These issues are being addressed in the development of the optimal neural controller. Specialized neural network processing hardware is being developed to run the software, the algorithm will be valid at steady-state and transient conditions, and will take advantage of the on-line learning capability of neural networks. Future plans include testing the neural network software and hardware prototype against an aircraft engine simulation. In this paper, the proposed neural network software and hardware is described and preliminary neural network training results are presented.
Infant Joint Attention, Neural Networks and Social Cognition
Mundy, Peter; Jarrold, William
2010-01-01
Neural network models of attention can provide a unifying approach to the study of human cognitive and emotional development (Posner & Rothbart, 2007). This paper we argue that a neural networks approach to the infant development of joint attention can inform our understanding of the nature of human social learning, symbolic thought process and social cognition. At its most basic, joint attention involves the capacity to coordinate one’s own visual attention with that of another person. We propose that joint attention development involves increments in the capacity to engage in simultaneous or parallel processing of information about one’s own attention and the attention of other people. Infant practice with joint attention is both a consequence and organizer of the development of a distributed and integrated brain network involving frontal and parietal cortical systems. This executive distributed network first serves to regulate the capacity of infants to respond to and direct the overt behavior of other people in order to share experience with others through the social coordination of visual attention. In this paper we describe this parallel and distributed neural network model of joint attention development and discuss two hypotheses that stem from this model. One is that activation of this distributed network during coordinated attention enhances to depth of information processing and encoding beginning in the first year of life. We also propose that with development joint attention becomes internalized as the capacity to socially coordinate mental attention to internal representations. As this occurs the executive joint attention network makes vital contributions to the development of human symbolic thinking and social cognition. PMID:20884172
Introduction to a system for implementing neural net connections on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1988-01-01
Neural networks have attracted much interest recently, and using parallel architectures to simulate neural networks is a natural and necessary application. The SIMD model of parallel computation is chosen, because systems of this type can be built with large numbers of processing elements. However, such systems are not naturally suited to generalized communication. A method is proposed that allows an implementation of neural network connections on massively parallel SIMD architectures. The key to this system is an algorithm permitting the formation of arbitrary connections between the neurons. A feature is the ability to add new connections quickly. It also has error recovery ability and is robust over a variety of network topologies. Simulations of the general connection system, and its implementation on the Connection Machine, indicate that the time and space requirements are proportional to the product of the average number of connections per neuron and the diameter of the interconnection network.
Introduction to a system for implementing neural net connections on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1988-01-01
Neural networks have attracted much interest recently, and using parallel architectures to simulate neural networks is a natural and necessary application. The SIMD model of parallel computation is chosen, because systems of this type can be built with large numbers of processing elements. However, such systems are not naturally suited to generalized elements. A method is proposed that allows an implementation of neural network connections on massively parallel SIMD architectures. The key to this system is an algorithm permitting the formation of arbitrary connections between the neurons. A feature is the ability to add new connections quickly. It also has error recovery ability and is robust over a variety of network topologies. Simulations of the general connection system, and its implementation on the Connection Machine, indicate that the time and space requirements are proportional to the product of the average number of connections per neuron and the diameter of the interconnection network.
NASA Astrophysics Data System (ADS)
Prezioso, M.; Merrikh-Bayat, F.; Chakrabarti, B.; Strukov, D.
2016-02-01
Artificial neural networks have been receiving increasing attention due to their superior performance in many information processing tasks. Typically, scaling up the size of the network results in better performance and richer functionality. However, large neural networks are challenging to implement in software and customized hardware are generally required for their practical implementations. In this work, we will discuss our group's recent efforts on the development of such custom hardware circuits, based on hybrid CMOS/memristor circuits, in particular of CMOL variety. We will start by reviewing the basics of memristive devices and of CMOL circuits. We will then discuss our recent progress towards demonstration of hybrid circuits, focusing on the experimental and theoretical results for artificial neural networks based on crossbarintegrated metal oxide memristors. We will conclude presentation with the discussion of the remaining challenges and the most pressing research needs.
Deep learning with coherent nanophotonic circuits
NASA Astrophysics Data System (ADS)
Shen, Yichen; Harris, Nicholas C.; Skirlo, Scott; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Sun, Xin; Zhao, Shijie; Larochelle, Hugo; Englund, Dirk; Soljačić, Marin
2017-07-01
Artificial neural networks are computational network models inspired by signal processing in the brain. These models have dramatically improved performance for many machine-learning tasks, including speech and image recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable Mach-Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.
Enhancement of Spike Synchrony in Hindmarsh-Rose Neural Networks by Randomly Rewiring Connections
NASA Astrophysics Data System (ADS)
Yang, Renhuan; Song, Aiguo; Yuan, Wujie
Spike synchrony of the neural system is thought to have very dichotomous roles. On the one hand, it is ubiquitously present in the healthy brain and is thought to underlie feature binding during information processing. On the other hand, large scale synchronization is an underlying mechanism of epileptic seizures. In this paper, we investigate the spike synchrony of Hindmarsh-Rose (HR) neural networks. Our focus is the influence of the network connections on the spike synchrony of the neural networks. The simulations show that desynchronization in the nearest-neighbor coupled network evolves into accurate synchronization with connection-rewiring probability p increasing. We uncover a phenomenon of enhancement of spike synchrony by randomly rewiring connections. With connection strength c and average connection number m increasing spike synchrony is enhanced but it is not the whole story. Furthermore, the possible mechanism behind such synchronization is also addressed.
Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei
2016-01-01
We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.
Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei
2016-01-01
We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot’s performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. PMID:27806074
Neural dynamic programming and its application to control systems
NASA Astrophysics Data System (ADS)
Seong, Chang-Yun
There are few general practical feedback control methods for nonlinear MIMO (multi-input-multi-output) systems, although such methods exist for their linear counterparts. Neural Dynamic Programming (NDP) is proposed as a practical design method of optimal feedback controllers for nonlinear MIMO systems. NDP is an offspring of both neural networks and optimal control theory. In optimal control theory, the optimal solution to any nonlinear MIMO control problem may be obtained from the Hamilton-Jacobi-Bellman equation (HJB) or the Euler-Lagrange equations (EL). The two sets of equations provide the same solution in different forms: EL leads to a sequence of optimal control vectors, called Feedforward Optimal Control (FOC); HJB yields a nonlinear optimal feedback controller, called Dynamic Programming (DP). DP produces an optimal solution that can reject disturbances and uncertainties as a result of feedback. Unfortunately, computation and storage requirements associated with DP solutions can be problematic, especially for high-order nonlinear systems. This dissertation presents an approximate technique for solving the DP problem based on neural network techniques that provides many of the performance benefits (e.g., optimality and feedback) of DP and benefits from the numerical properties of neural networks. We formulate neural networks to approximate optimal feedback solutions whose existence DP justifies. We show the conditions under which NDP closely approximates the optimal solution. Finally, we introduce the learning operator characterizing the learning process of the neural network in searching the optimal solution. The analysis of the learning operator provides not only a fundamental understanding of the learning process in neural networks but also useful guidelines for selecting the number of weights of the neural network. As a result, NDP finds---with a reasonable amount of computation and storage---the optimal feedback solutions to nonlinear MIMO control problems that would be very difficult to solve with DP. NDP was demonstrated on several applications such as the lateral autopilot logic for a Boeing 747, the minimum fuel control of a double-integrator plant with bounded control, the backward steering of a two-trailer truck, and the set-point control of a two-link robot arm.
Deep architecture neural network-based real-time image processing for image-guided radiotherapy.
Mori, Shinichiro
2017-08-01
To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising. Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training. More than 6 convolutional layers with convolutional kernels >5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality. Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Brain and language: evidence for neural multifunctionality.
Cahana-Amitay, Dalia; Albert, Martin L
2014-01-01
This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term "neural multifunctionality" refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging.
Comparative Analysis on Nonlinear Models for Ron Gasoline Blending Using Neural Networks
NASA Astrophysics Data System (ADS)
Aguilera, R. Carreño; Yu, Wen; Rodríguez, J. C. Tovar; Mosqueda, M. Elena Acevedo; Ortiz, M. Patiño; Juarez, J. J. Medel; Bautista, D. Pacheco
The blending process always being a nonlinear process is difficult to modeling, since it may change significantly depending on the components and the process variables of each refinery. Different components can be blended depending on the existing stock, and the chemical characteristics of each component are changing dynamically, they all are blended until getting the expected specification in different properties required by the customer. One of the most relevant properties is the Octane, which is difficult to control in line (without the component storage). Since each refinery process is quite different, a generic gasoline blending model is not useful when a blending in line wants to be done in a specific process. A mathematical gasoline blending model is presented in this paper for a given process described in state space as a basic gasoline blending process description. The objective is to adjust the parameters allowing the blending gasoline model to describe a signal in its trajectory, representing in neural networks extreme learning machine method and also for nonlinear autoregressive-moving average (NARMA) in neural networks method, such that a comparative work be developed.
A neural network controller for automated composite manufacturing
NASA Technical Reports Server (NTRS)
Lichtenwalner, Peter F.
1994-01-01
At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.
ID card number detection algorithm based on convolutional neural network
NASA Astrophysics Data System (ADS)
Zhu, Jian; Ma, Hanjie; Feng, Jie; Dai, Leiyan
2018-04-01
In this paper, a new detection algorithm based on Convolutional Neural Network is presented in order to realize the fast and convenient ID information extraction in multiple scenarios. The algorithm uses the mobile device equipped with Android operating system to locate and extract the ID number; Use the special color distribution of the ID card, select the appropriate channel component; Use the image threshold segmentation, noise processing and morphological processing to take the binary processing for image; At the same time, the image rotation and projection method are used for horizontal correction when image was tilting; Finally, the single character is extracted by the projection method, and recognized by using Convolutional Neural Network. Through test shows that, A single ID number image from the extraction to the identification time is about 80ms, the accuracy rate is about 99%, It can be applied to the actual production and living environment.
Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong
2013-04-01
In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.
Prediction of coagulation and flocculation processes using ANN models and fuzzy regression.
Zangooei, Hossein; Delnavaz, Mohammad; Asadollahfardi, Gholamreza
2016-09-01
Coagulation and flocculation are two main processes used to integrate colloidal particles into larger particles and are two main stages of primary water treatment. Coagulation and flocculation processes are only needed when colloidal particles are a significant part of the total suspended solid fraction. Our objective was to predict turbidity of water after the coagulation and flocculation process while other parameters such as types and concentrations of coagulants, pH, and influent turbidity of raw water were known. We used a multilayer perceptron (MLP), a radial basis function (RBF) of artificial neural networks (ANNs) and various kinds of fuzzy regression analysis to predict turbidity after the coagulation and flocculation processes. The coagulant used in the pilot plant, which was located in water treatment plant, was poly aluminum chloride. We used existing data, including the type and concentrations of coagulant, pH and influent turbidity, of the raw water because these types of data were available from the pilot plant for simulation and data was collected by the Tehran water authority. The results indicated that ANNs had more ability in simulating the coagulation and flocculation process and predicting turbidity removal with different experimental data than did the fuzzy regression analysis, and may have the ability to reduce the number of jar tests, which are time-consuming and expensive. The MLP neural network proved to be the best network compared to the RBF neural network and fuzzy regression analysis in this study. The MLP neural network can predict the effluent turbidity of the coagulation and the flocculation process with a coefficient of determination (R 2 ) of 0.96 and root mean square error of 0.0106.
Processing of chromatic information in a deep convolutional neural network.
Flachot, Alban; Gegenfurtner, Karl R
2018-04-01
Deep convolutional neural networks are a class of machine-learning algorithms capable of solving non-trivial tasks, such as object recognition, with human-like performance. Little is known about the exact computations that deep neural networks learn, and to what extent these computations are similar to the ones performed by the primate brain. Here, we investigate how color information is processed in the different layers of the AlexNet deep neural network, originally trained on object classification of over 1.2M images of objects in their natural contexts. We found that the color-responsive units in the first layer of AlexNet learned linear features and were broadly tuned to two directions in color space, analogously to what is known of color responsive cells in the primate thalamus. Moreover, these directions are decorrelated and lead to statistically efficient representations, similar to the cardinal directions of the second-stage color mechanisms in primates. We also found, in analogy to the early stages of the primate visual system, that chromatic and achromatic information were segregated in the early layers of the network. Units in the higher layers of AlexNet exhibit on average a lower responsivity for color than units at earlier stages.
Resource constrained design of artificial neural networks using comparator neural network
NASA Technical Reports Server (NTRS)
Wah, Benjamin W.; Karnik, Tanay S.
1992-01-01
We present a systematic design method executed under resource constraints for automating the design of artificial neural networks using the back error propagation algorithm. Our system aims at finding the best possible configuration for solving the given application with proper tradeoff between the training time and the network complexity. The design of such a system is hampered by three related problems. First, there are infinitely many possible network configurations, each may take an exceedingly long time to train; hence, it is impossible to enumerate and train all of them to completion within fixed time, space, and resource constraints. Second, expert knowledge on predicting good network configurations is heuristic in nature and is application dependent, rendering it difficult to characterize fully in the design process. A learning procedure that refines this knowledge based on examples on training neural networks for various applications is, therefore, essential. Third, the objective of the network to be designed is ill-defined, as it is based on a subjective tradeoff between the training time and the network cost. A design process that proposes alternate configurations under different cost-performance tradeoff is important. We have developed a Design System which schedules the available time, divided into quanta, for testing alternative network configurations. Its goal is to select/generate and test alternative network configurations in each quantum, and find the best network when time is expended. Since time is limited, a dynamic schedule that determines the network configuration to be tested in each quantum is developed. The schedule is based on relative comparison of predicted training times of alternative network configurations using comparator network paradigm. The comparator network has been trained to compare training times for a large variety of traces of TSSE-versus-time collected during back-propagation learning of various applications.
Numerical solution of differential equations by artificial neural networks
NASA Technical Reports Server (NTRS)
Meade, Andrew J., Jr.
1995-01-01
Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks (ANN's) are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed by the author to mate the adaptability of the ANN with the speed and precision of the digital computer. This method has been successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.
Thermodynamic efficiency of learning a rule in neural networks
NASA Astrophysics Data System (ADS)
Goldt, Sebastian; Seifert, Udo
2017-11-01
Biological systems have to build models from their sensory input data that allow them to efficiently process previously unseen inputs. Here, we study a neural network learning a binary classification rule for these inputs from examples provided by a teacher. We analyse the ability of the network to apply the rule to new inputs, that is to generalise from past experience. Using stochastic thermodynamics, we show that the thermodynamic costs of the learning process provide an upper bound on the amount of information that the network is able to learn from its teacher for both batch and online learning. This allows us to introduce a thermodynamic efficiency of learning. We analytically compute the dynamics and the efficiency of a noisy neural network performing online learning in the thermodynamic limit. In particular, we analyse three popular learning algorithms, namely Hebbian, Perceptron and AdaTron learning. Our work extends the methods of stochastic thermodynamics to a new type of learning problem and might form a suitable basis for investigating the thermodynamics of decision-making.
Fuchs, Erich; Gruber, Christian; Reitmaier, Tobias; Sick, Bernhard
2009-09-01
Neural networks are often used to process temporal information, i.e., any kind of information related to time series. In many cases, time series contain short-term and long-term trends or behavior. This paper presents a new approach to capture temporal information with various reference periods simultaneously. A least squares approximation of the time series with orthogonal polynomials will be used to describe short-term trends contained in a signal (average, increase, curvature, etc.). Long-term behavior will be modeled with the tapped delay lines of a time-delay neural network (TDNN). This network takes the coefficients of the orthogonal expansion of the approximating polynomial as inputs such considering short-term and long-term information efficiently. The advantages of the method will be demonstrated by means of artificial data and two real-world application examples, the prediction of the user number in a computer network and online tool wear classification in turning.
Learning target masks in infrared linescan imagery
NASA Astrophysics Data System (ADS)
Fechner, Thomas; Rockinger, Oliver; Vogler, Axel; Knappe, Peter
1997-04-01
In this paper we propose a neural network based method for the automatic detection of ground targets in airborne infrared linescan imagery. Instead of using a dedicated feature extraction stage followed by a classification procedure, we propose the following three step scheme: In the first step of the recognition process, the input image is decomposed into its pyramid representation, thus obtaining a multiresolution signal representation. At the lowest three levels of the Laplacian pyramid a neural network filter of moderate size is trained to indicate the target location. The last step consists of a fusion process of the several neural network filters to obtain the final result. To perform this fusion we use a belief network to combine the various filter outputs in a statistical meaningful way. In addition, the belief network allows the integration of further knowledge about the image domain. By applying this multiresolution recognition scheme, we obtain a nearly scale- and rotational invariant target recognition with a significantly decreased false alarm rate compared with a single resolution target recognition scheme.
Bernal, Javier; Torres-Jimenez, Jose
2015-01-01
SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller's scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller's algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller's algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller's algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data.
Li, Chunhui; Yu, Chuanhua
2013-01-01
To provide a reference for evaluating public non-profit hospitals in the new environment of medical reform, we established a performance evaluation system for public non-profit hospitals. The new “input-output” performance model for public non-profit hospitals is based on four primary indexes (input, process, output and effect) that include 11 sub-indexes and 41 items. The indicator weights were determined using the analytic hierarchy process (AHP) and entropy weight method. The BP neural network was applied to evaluate the performance of 14 level-3 public non-profit hospitals located in Hubei Province. The most stable BP neural network was produced by comparing different numbers of neurons in the hidden layer and using the “Leave-one-out” Cross Validation method. The performance evaluation system we established for public non-profit hospitals could reflect the basic goal of the new medical health system reform in China. Compared with PLSR, the result indicated that the BP neural network could be used effectively for evaluating the performance public non-profit hospitals. PMID:23955238
Study on pattern recognition of Raman spectrum based on fuzzy neural network
NASA Astrophysics Data System (ADS)
Zheng, Xiangxiang; Lv, Xiaoyi; Mo, Jiaqing
2017-10-01
Hydatid disease is a serious parasitic disease in many regions worldwide, especially in Xinjiang, China. Raman spectrum of the serum of patients with echinococcosis was selected as the research object in this paper. The Raman spectrum of blood samples from healthy people and patients with echinococcosis are measured, of which the spectrum characteristics are analyzed. The fuzzy neural network not only has the ability of fuzzy logic to deal with uncertain information, but also has the ability to store knowledge of neural network, so it is combined with the Raman spectrum on the disease diagnosis problem based on Raman spectrum. Firstly, principal component analysis (PCA) is used to extract the principal components of the Raman spectrum, reducing the network input and accelerating the prediction speed and accuracy of Network based on remaining the original data. Then, the information of the extracted principal component is used as the input of the neural network, the hidden layer of the network is the generation of rules and the inference process, and the output layer of the network is fuzzy classification output. Finally, a part of samples are randomly selected for the use of training network, then the trained network is used for predicting the rest of the samples, and the predicted results are compared with general BP neural network to illustrate the feasibility and advantages of fuzzy neural network. Success in this endeavor would be helpful for the research work of spectroscopic diagnosis of disease and it can be applied in practice in many other spectral analysis technique fields.
A neutron spectrum unfolding code based on generalized regression artificial neural networks.
Del Rosario Martinez-Blanco, Ma; Ornelas-Vargas, Gerardo; Castañeda-Miranda, Celina Lizeth; Solís-Sánchez, Luis Octavio; Castañeda-Miranada, Rodrigo; Vega-Carrillo, Héctor René; Celaya-Padilla, Jose M; Garza-Veloz, Idalia; Martínez-Fierro, Margarita; Ortiz-Rodríguez, José Manuel
2016-11-01
The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, i.e. the optimum selection of the network topology and the long training time. Compared to BPNN, it's usually much faster to train a generalized regression neural network (GRNN). That's mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum, provided that the optimal values of spread has been determined and that the dataset adequately represents the problem space. In addition, GRNN are often more accurate than BPNN in the prediction. These characteristics make GRNNs to be of great interest in the neutron spectrometry domain. This work presents a computational tool based on GRNN capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages using a k-fold cross validation of 3 folds, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Igarashi, Jun; Shouno, Osamu; Fukai, Tomoki; Tsujino, Hiroshi
2011-11-01
Real-time simulation of a biologically realistic spiking neural network is necessary for evaluation of its capacity to interact with real environments. However, the real-time simulation of such a neural network is difficult due to its high computational costs that arise from two factors: (1) vast network size and (2) the complicated dynamics of biologically realistic neurons. In order to address these problems, mainly the latter, we chose to use general purpose computing on graphics processing units (GPGPUs) for simulation of such a neural network, taking advantage of the powerful computational capability of a graphics processing unit (GPU). As a target for real-time simulation, we used a model of the basal ganglia that has been developed according to electrophysiological and anatomical knowledge. The model consists of heterogeneous populations of 370 spiking model neurons, including computationally heavy conductance-based models, connected by 11,002 synapses. Simulation of the model has not yet been performed in real-time using a general computing server. By parallelization of the model on the NVIDIA Geforce GTX 280 GPU in data-parallel and task-parallel fashion, faster-than-real-time simulation was robustly realized with only one-third of the GPU's total computational resources. Furthermore, we used the GPU's full computational resources to perform faster-than-real-time simulation of three instances of the basal ganglia model; these instances consisted of 1100 neurons and 33,006 synapses and were synchronized at each calculation step. Finally, we developed software for simultaneous visualization of faster-than-real-time simulation output. These results suggest the potential power of GPGPU techniques in real-time simulation of realistic neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.
Automatic Classification of volcano-seismic events based on Deep Neural Networks.
NASA Astrophysics Data System (ADS)
Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.
2017-12-01
Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.
NASA Astrophysics Data System (ADS)
Butov, Vladimir; Timchenko, Sergey; Ushakov, Ivan; Golovkov, Nikita; Poberezhnikov, Andrey
2018-03-01
Single gas centrifuge (GC) is generally used for the separation of binary mixtures of isotopes. Processes taking place within the centrifuge are complex and non-linear. Their characteristics can change over time with long-term operation due to wear of the main structural elements of the GC construction. The paper is devoted to the determination of basic operation parameters of the centrifuge with the help of neural networks. We have developed a method for determining the parameters of the industrial GC operation by processing statistical data. In this work, we have constructed a neural network that is capable of determining the main hydraulic and separation characteristics of the gas centrifuge, depending on the geometric dimensions of the gas centrifuge, load value, and rotor speed.
Pan, Hongye; Zhang, Qing; Cui, Keke; Chen, Guoquan; Liu, Xuesong; Wang, Longhu
2017-05-01
The extraction of linarin from Flos chrysanthemi indici by ethanol was investigated. Two modeling techniques, response surface methodology and artificial neural network, were adopted to optimize the process parameters, such as, ethanol concentration, extraction period, extraction frequency, and solvent to material ratio. We showed that both methods provided good predictions, but artificial neural network provided a better and more accurate result. The optimum process parameters include, ethanol concentration of 74%, extraction period of 2 h, extraction three times, solvent to material ratio of 12 mL/g. The experiment yield of linarin was 90.5% that deviated less than 1.6% from that obtained by predicted result. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yuan, Wu-Jie; Zhou, Jian-Fang; Zhou, Changsong
2016-04-01
Microsaccades are very small eye movements during fixation. Experimentally, they have been found to play an important role in visual information processing. However, neural responses induced by microsaccades are not yet well understood and are rarely studied theoretically. Here we propose a network model with a cascading adaptation including both retinal adaptation and short-term depression (STD) at thalamocortical synapses. In the neural network model, we compare the microsaccade-induced neural responses in the presence of STD and those without STD. It is found that the cascading with STD can give rise to faster and sharper responses to microsaccades. Moreover, STD can enhance response effectiveness and sensitivity to microsaccadic spatiotemporal changes, suggesting improved detection of small eye movements (or moving visual objects). We also explore the mechanism of the response properties in the model. Our studies strongly indicate that STD plays an important role in neural responses to microsaccades. Our model considers simultaneously retinal adaptation and STD at thalamocortical synapses in the study of microsaccade-induced neural activity, and may be useful for further investigation of the functional roles of microsaccades in visual information processing.
Bayati, Mehdi; Valizadeh, Alireza; Abbassian, Abdolhossein; Cheng, Sen
2015-01-01
Many experimental and theoretical studies have suggested that the reliable propagation of synchronous neural activity is crucial for neural information processing. The propagation of synchronous firing activity in so-called synfire chains has been studied extensively in feed-forward networks of spiking neurons. However, it remains unclear how such neural activity could emerge in recurrent neuronal networks through synaptic plasticity. In this study, we investigate whether local excitation, i.e., neurons that fire at a higher frequency than the other, spontaneously active neurons in the network, can shape a network to allow for synchronous activity propagation. We use two-dimensional, locally connected and heterogeneous neuronal networks with spike-timing dependent plasticity (STDP). We find that, in our model, local excitation drives profound network changes within seconds. In the emergent network, neural activity propagates synchronously through the network. This activity originates from the site of the local excitation and propagates through the network. The synchronous activity propagation persists, even when the local excitation is removed, since it derives from the synaptic weight matrix. Importantly, once this connectivity is established it remains stable even in the presence of spontaneous activity. Our results suggest that synfire-chain-like activity can emerge in a relatively simple way in realistic neural networks by locally exciting the desired origin of the neuronal sequence. PMID:26089794
Dynamic stability analysis of fractional order leaky integrator echo state neural networks
NASA Astrophysics Data System (ADS)
Pahnehkolaei, Seyed Mehdi Abedi; Alfi, Alireza; Tenreiro Machado, J. A.
2017-06-01
The Leaky integrator echo state neural network (Leaky-ESN) is an improved model of the recurrent neural network (RNN) and adopts an interconnected recurrent grid of processing neurons. This paper presents a new proof for the convergence of a Lyapunov candidate function to zero when time tends to infinity by means of the Caputo fractional derivative with order lying in the range (0, 1). The stability of Fractional-Order Leaky-ESN (FO Leaky-ESN) is then analyzed, and the existence, uniqueness and stability of the equilibrium point are provided. A numerical example demonstrates the feasibility of the proposed method.
The biometric-based module of smart grid system
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Ermoshkina, A.
2015-10-01
Within Smart Grid concept the flexible biometric-based module base on Principal Component Analysis (PCA) and selective Neural Network is developed. The formation of the selective Neural Network the biometric-based module uses the method which includes three main stages: preliminary processing of the image, face localization and face recognition. Experiments on the Yale face database show that (i) selective Neural Network exhibits promising classification capability for face detection, recognition problems; and (ii) the proposed biometric-based module achieves near real-time face detection, recognition speed and the competitive performance, as compared to some existing subspaces-based methods.
Oscillator Neural Network Retrieving Sparsely Coded Phase Patterns
NASA Astrophysics Data System (ADS)
Aoyagi, Toshio; Nomura, Masaki
1999-08-01
Little is known theoretically about the associative memory capabilities of neural networks in which information is encoded not only in the mean firing rate but also in the timing of firings. Particularly, in the case of sparsely coded patterns, it is biologically important to consider the timings of firings and to study how such consideration influences storage capacities and quality of recalled patterns. For this purpose, we propose a simple extended model of oscillator neural networks to allow for expression of a nonfiring state. Analyzing both equilibrium states and dynamical properties in recalling processes, we find that the system possesses good associative memory.
Classifying multispectral data by neural networks
NASA Technical Reports Server (NTRS)
Telfer, Brian A.; Szu, Harold H.; Kiang, Richard K.
1993-01-01
Several energy functions for synthesizing neural networks are tested on 2-D synthetic data and on Landsat-4 Thematic Mapper data. These new energy functions, designed specifically for minimizing misclassification error, in some cases yield significant improvements in classification accuracy over the standard least mean squares energy function. In addition to operating on networks with one output unit per class, a new energy function is tested for binary encoded outputs, which result in smaller network sizes. The Thematic Mapper data (four bands were used) is classified on a single pixel basis, to provide a starting benchmark against which further improvements will be measured. Improvements are underway to make use of both subpixel and superpixel (i.e. contextual or neighborhood) information in tile processing. For single pixel classification, the best neural network result is 78.7 percent, compared with 71.7 percent for a classical nearest neighbor classifier. The 78.7 percent result also improves on several earlier neural network results on this data.
Unified-theory-of-reinforcement neural networks do not simulate the blocking effect.
Calvin, Nicholas T; J McDowell, J
2015-11-01
For the last 20 years the unified theory of reinforcement (Donahoe et al., 1993) has been used to develop computer simulations to evaluate its plausibility as an account for behavior. The unified theory of reinforcement states that operant and respondent learning occurs via the same neural mechanisms. As part of a larger project to evaluate the operant behavior predicted by the theory, this project was the first replication of neural network models based on the unified theory of reinforcement. In the process of replicating these neural network models it became apparent that a previously published finding, namely, that the networks simulate the blocking phenomenon (Donahoe et al., 1993), was a misinterpretation of the data. We show that the apparent blocking produced by these networks is an artifact of the inability of these networks to generate the same conditioned response to multiple stimuli. The piecemeal approach to evaluate the unified theory of reinforcement via simulation is critiqued and alternatives are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
SYNAPTIC DEPRESSION IN DEEP NEURAL NETWORKS FOR SPEECH PROCESSING.
Zhang, Wenhao; Li, Hanyu; Yang, Minda; Mesgarani, Nima
2016-03-01
A characteristic property of biological neurons is their ability to dynamically change the synaptic efficacy in response to variable input conditions. This mechanism, known as synaptic depression, significantly contributes to the formation of normalized representation of speech features. Synaptic depression also contributes to the robust performance of biological systems. In this paper, we describe how synaptic depression can be modeled and incorporated into deep neural network architectures to improve their generalization ability. We observed that when synaptic depression is added to the hidden layers of a neural network, it reduces the effect of changing background activity in the node activations. In addition, we show that when synaptic depression is included in a deep neural network trained for phoneme classification, the performance of the network improves under noisy conditions not included in the training phase. Our results suggest that more complete neuron models may further reduce the gap between the biological performance and artificial computing, resulting in networks that better generalize to novel signal conditions.
Zenooz, Alireza Moosavi; Ashtiani, Farzin Zokaee; Ranjbar, Reza; Nikbakht, Fatemeh; Bolouri, Oberon
2017-07-03
Biodiesel production from microalgae feedstock should be performed after growth and harvesting of the cells, and the most feasible method for harvesting and dewatering of microalgae is flocculation. Flocculation modeling can be used for evaluation and prediction of its performance under different affective parameters. However, the modeling of flocculation in microalgae is not simple and has not performed yet, under all experimental conditions, mostly due to different behaviors of microalgae cells during the process under different flocculation conditions. In the current study, the modeling of microalgae flocculation is studied with different neural network architectures. Microalgae species, Chlorella sp., was flocculated with ferric chloride under different conditions and then the experimental data modeled using artificial neural network. Neural network architectures of multilayer perceptron (MLP) and radial basis function architectures, failed to predict the targets successfully, though, modeling was effective with ensemble architecture of MLP networks. Comparison between the performances of the ensemble and each individual network explains the ability of the ensemble architecture in microalgae flocculation modeling.
Peleato, Nicolas M; Legge, Raymond L; Andrews, Robert C
2018-06-01
The use of fluorescence data coupled with neural networks for improved predictability of drinking water disinfection by-products (DBPs) was investigated. Novel application of autoencoders to process high-dimensional fluorescence data was related to common dimensionality reduction techniques of parallel factors analysis (PARAFAC) and principal component analysis (PCA). The proposed method was assessed based on component interpretability as well as for prediction of organic matter reactivity to formation of DBPs. Optimal prediction accuracies on a validation dataset were observed with an autoencoder-neural network approach or by utilizing the full spectrum without pre-processing. Latent representation by an autoencoder appeared to mitigate overfitting when compared to other methods. Although DBP prediction error was minimized by other pre-processing techniques, PARAFAC yielded interpretable components which resemble fluorescence expected from individual organic fluorophores. Through analysis of the network weights, fluorescence regions associated with DBP formation can be identified, representing a potential method to distinguish reactivity between fluorophore groupings. However, distinct results due to the applied dimensionality reduction approaches were observed, dictating a need for considering the role of data pre-processing in the interpretability of the results. In comparison to common organic measures currently used for DBP formation prediction, fluorescence was shown to improve prediction accuracies, with improvements to DBP prediction best realized when appropriate pre-processing and regression techniques were applied. The results of this study show promise for the potential application of neural networks to best utilize fluorescence EEM data for prediction of organic matter reactivity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hu, Bin; Yue, Shigang; Zhang, Zhuhong
All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.
NASA Astrophysics Data System (ADS)
Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude
2010-02-01
Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.
Hardware Neural Network for a Visual Inspection System
NASA Astrophysics Data System (ADS)
Chun, Seungwoo; Hayakawa, Yoshihiro; Nakajima, Koji
The visual inspection of defects in products is heavily dependent on human experience and instinct. In this situation, it is difficult to reduce the production costs and to shorten the inspection time and hence the total process time. Consequently people involved in this area desire an automatic inspection system. In this paper, we propose a hardware neural network, which is expected to provide high-speed operation for automatic inspection of products. Since neural networks can learn, this is a suitable method for self-adjustment of criteria for classification. To achieve high-speed operation, we use parallel and pipelining techniques. Furthermore, we use a piecewise linear function instead of a conventional activation function in order to save hardware resources. Consequently, our proposed hardware neural network achieved 6GCPS and 2GCUPS, which in our test sample proved to be sufficiently fast.
Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imam, Neena; Humble, Travis S.; McCaskey, Alex
A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recallmore » accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas.« less
Design of order statistics filters using feedforward neural networks
NASA Astrophysics Data System (ADS)
Maslennikova, Yu. S.; Bochkarev, V. V.
2016-08-01
In recent years significant progress have been made in the development of nonlinear data processing techniques. Such techniques are widely used in digital data filtering and image enhancement. Many of the most effective nonlinear filters based on order statistics. The widely used median filter is the best known order statistic filter. Generalized form of these filters could be presented based on Lloyd's statistics. Filters based on order statistics have excellent robustness properties in the presence of impulsive noise. In this paper, we present special approach for synthesis of order statistics filters using artificial neural networks. Optimal Lloyd's statistics are used for selecting of initial weights for the neural network. Adaptive properties of neural networks provide opportunities to optimize order statistics filters for data with asymmetric distribution function. Different examples demonstrate the properties and performance of presented approach.
Statistical process control using optimized neural networks: a case study.
Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid
2014-09-01
The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Optical resonators and neural networks
NASA Astrophysics Data System (ADS)
Anderson, Dana Z.
1986-08-01
It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.
Neural network modeling of the kinetics of SO2 removal by fly ash-based sorbent.
Raymond-Ooi, E H; Lee, K T; Mohamed, A R; Chu, K H
2006-01-01
The mechanistic modeling of the sulfation reaction between fly ash-based sorbent and SO2 is a challenging task due to a variety reasons including the complexity of the reaction itself and the inability to measure some of the key parameters of the reaction. In this work, the possibility of modeling the sulfation reaction kinetics using a purely data-driven neural network was investigated. Experiments on SO2 removal by a sorbent prepared from coal fly ash/CaO/CaSO4 were conducted using a fixed bed reactor to generate a database to train and validate the neural network model. Extensive SO2 removal data points were obtained by varying three process variables, namely, SO2 inlet concentration (500-2000 mg/L), reaction temperature (60-80 degreesC), and relative humidity (50-70%), as a function of reaction time (0-60 min). Modeling results show that the neural network can provide excellent fits to the SO2 removal data after considerable training and can be successfully used to predict the extent of SO2 removal as a function of time even when the process variables are outside the training domain. From a modeling standpoint, the suitably trained and validated neural network with excellent interpolation and extrapolation properties could have immediate practical benefits in the absence of a theoretical model.
NASA Astrophysics Data System (ADS)
Yilmaz, Işık
2009-06-01
The purpose of this study is to compare the landslide susceptibility mapping methods of frequency ratio (FR), logistic regression and artificial neural networks (ANN) applied in the Kat County (Tokat—Turkey). Digital elevation model (DEM) was first constructed using GIS software. Landslide-related factors such as geology, faults, drainage system, topographical elevation, slope angle, slope aspect, topographic wetness index (TWI) and stream power index (SPI) were used in the landslide susceptibility analyses. Landslide susceptibility maps were produced from the frequency ratio, logistic regression and neural networks models, and they were then compared by means of their validations. The higher accuracies of the susceptibility maps for all three models were obtained from the comparison of the landslide susceptibility maps with the known landslide locations. However, respective area under curve (AUC) values of 0.826, 0.842 and 0.852 for frequency ratio, logistic regression and artificial neural networks showed that the map obtained from ANN model is more accurate than the other models, accuracies of all models can be evaluated relatively similar. The results obtained in this study also showed that the frequency ratio model can be used as a simple tool in assessment of landslide susceptibility when a sufficient number of data were obtained. Input process, calculations and output process are very simple and can be readily understood in the frequency ratio model, however logistic regression and neural networks require the conversion of data to ASCII or other formats. Moreover, it is also very hard to process the large amount of data in the statistical package.
The Complexity of Dynamics in Small Neural Circuits
Panzeri, Stefano
2016-01-01
Mean-field approximations are a powerful tool for studying large neural networks. However, they do not describe well the behavior of networks composed of a small number of neurons. In this case, major differences between the mean-field approximation and the real behavior of the network can arise. Yet, many interesting problems in neuroscience involve the study of mesoscopic networks composed of a few tens of neurons. Nonetheless, mathematical methods that correctly describe networks of small size are still rare, and this prevents us to make progress in understanding neural dynamics at these intermediate scales. Here we develop a novel systematic analysis of the dynamics of arbitrarily small networks composed of homogeneous populations of excitatory and inhibitory firing-rate neurons. We study the local bifurcations of their neural activity with an approach that is largely analytically tractable, and we numerically determine the global bifurcations. We find that for strong inhibition these networks give rise to very complex dynamics, caused by the formation of multiple branching solutions of the neural dynamics equations that emerge through spontaneous symmetry-breaking. This qualitative change of the neural dynamics is a finite-size effect of the network, that reveals qualitative and previously unexplored differences between mesoscopic cortical circuits and their mean-field approximation. The most important consequence of spontaneous symmetry-breaking is the ability of mesoscopic networks to regulate their degree of functional heterogeneity, which is thought to help reducing the detrimental effect of noise correlations on cortical information processing. PMID:27494737
Biological neural networks as model systems for designing future parallel processing computers
NASA Technical Reports Server (NTRS)
Ross, Muriel D.
1991-01-01
One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.
Improving the Unsteady Aerodynamic Performance of Transonic Turbines using Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri K.; Huber, Frank W.
1999-01-01
A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The procedure yielded a modified design that improves the aerodynamic performance through small changes to the reference design geometry. These results demonstrate the capabilities of the neural net-based design procedure, and also show the advantages of including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.
A fuzzy neural network for intelligent data processing
NASA Astrophysics Data System (ADS)
Xie, Wei; Chu, Feng; Wang, Lipo; Lim, Eng Thiam
2005-03-01
In this paper, we describe an incrementally generated fuzzy neural network (FNN) for intelligent data processing. This FNN combines the features of initial fuzzy model self-generation, fast input selection, partition validation, parameter optimization and rule-base simplification. A small FNN is created from scratch -- there is no need to specify the initial network architecture, initial membership functions, or initial weights. Fuzzy IF-THEN rules are constantly combined and pruned to minimize the size of the network while maintaining accuracy; irrelevant inputs are detected and deleted, and membership functions and network weights are trained with a gradient descent algorithm, i.e., error backpropagation. Experimental studies on synthesized data sets demonstrate that the proposed Fuzzy Neural Network is able to achieve accuracy comparable to or higher than both a feedforward crisp neural network, i.e., NeuroRule, and a decision tree, i.e., C4.5, with more compact rule bases for most of the data sets used in our experiments. The FNN has achieved outstanding results for cancer classification based on microarray data. The excellent classification result for Small Round Blue Cell Tumors (SRBCTs) data set is shown. Compared with other published methods, we have used a much fewer number of genes for perfect classification, which will help researchers directly focus their attention on some specific genes and may lead to discovery of deep reasons of the development of cancers and discovery of drugs.
Toward automatic time-series forecasting using neural networks.
Yan, Weizhong
2012-07-01
Over the past few decades, application of artificial neural networks (ANN) to time-series forecasting (TSF) has been growing rapidly due to several unique features of ANN models. However, to date, a consistent ANN performance over different studies has not been achieved. Many factors contribute to the inconsistency in the performance of neural network models. One such factor is that ANN modeling involves determining a large number of design parameters, and the current design practice is essentially heuristic and ad hoc, this does not exploit the full potential of neural networks. Systematic ANN modeling processes and strategies for TSF are, therefore, greatly needed. Motivated by this need, this paper attempts to develop an automatic ANN modeling scheme. It is based on the generalized regression neural network (GRNN), a special type of neural network. By taking advantage of several GRNN properties (i.e., a single design parameter and fast learning) and by incorporating several design strategies (e.g., fusing multiple GRNNs), we have been able to make the proposed modeling scheme to be effective for modeling large-scale business time series. The initial model was entered into the NN3 time-series competition. It was awarded the best prediction on the reduced dataset among approximately 60 different models submitted by scholars worldwide.
Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.
1998-01-01
Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.
Prediction of proprotein convertase cleavage sites.
Duckert, Peter; Brunak, Søren; Blom, Nikolaj
2004-01-01
Many secretory proteins and peptides are synthesized as inactive precursors that in addition to signal peptide cleavage undergo post-translational processing to become biologically active polypeptides. Precursors are usually cleaved at sites composed of single or paired basic amino acid residues by members of the subtilisin/kexin-like proprotein convertase (PC) family. In mammals, seven members have been identified, with furin being the one first discovered and best characterized. Recently, the involvement of furin in diseases ranging from Alzheimer's disease and cancer to anthrax and Ebola fever has created additional focus on proprotein processing. We have developed a method for prediction of cleavage sites for PCs based on artificial neural networks. Two different types of neural networks have been constructed: a furin-specific network based on experimental results derived from the literature, and a general PC-specific network trained on data from the Swiss-Prot protein database. The method predicts cleavage sites in independent sequences with a sensitivity of 95% for the furin neural network and 62% for the general PC network. The ProP method is made publicly available at http://www.cbs.dtu.dk/services/ProP.
Local residue coupling strategies by neural network for InSAR phase unwrapping
NASA Astrophysics Data System (ADS)
Refice, Alberto; Satalino, Giuseppe; Chiaradia, Maria T.
1997-12-01
Phase unwrapping is one of the toughest problems in interferometric SAR processing. The main difficulties arise from the presence of point-like error sources, called residues, which occur mainly in close couples due to phase noise. We present an assessment of a local approach to the resolution of these problems by means of a neural network. Using a multi-layer perceptron, trained with the back- propagation scheme on a series of simulated phase images, fashion the best pairing strategies for close residue couples. Results show that god efficiencies and accuracies can have been obtained, provided a sufficient number of training examples are supplied. Results show that good efficiencies and accuracies can be obtained, provided a sufficient number of training examples are supplied. The technique is tested also on real SAR ERS-1/2 tandem interferometric images of the Matera test site, showing a good reduction of the residue density. The better results obtained by use of the neural network as far as local criteria are adopted appear justified given the probabilistic nature of the noise process on SAR interferometric phase fields and allows to outline a specifically tailored implementation of the neural network approach as a very fast pre-processing step intended to decrease the residue density and give sufficiently clean images to be processed further by more conventional techniques.
Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.
Li, Shuai; Li, Yangming
2013-10-28
The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Construction of a pulse-coupled dipole network capable of fear-like and relief-like responses
NASA Astrophysics Data System (ADS)
Lungsi Sharma, B.
2016-07-01
The challenge for neuroscience as an interdisciplinary programme is the integration of ideas among the disciplines to achieve a common goal. This paper deals with the problem of deriving a pulse-coupled neural network that is capable of demonstrating behavioural responses (fear-like and relief-like). Current pulse-coupled neural networks are designed mostly for engineering applications, particularly image processing. The discovered neural network was constructed using the method of minimal anatomies approach. The behavioural response of a level-coded activity-based model was used as a reference. Although the spiking-based model and the activity-based model are of different scales, the use of model-reference principle means that the characteristics that is referenced is its functional properties. It is demonstrated that this strategy of dissection and systematic construction is effective in the functional design of pulse-coupled neural network system with nonlinear signalling. The differential equations for the elastic weights in the reference model are replicated in the pulse-coupled network geometrically. The network reflects a possible solution to the problem of punishment and avoidance. The network developed in this work is a new network topology for pulse-coupled neural networks. Therefore, the model-reference principle is a powerful tool in connecting neuroscience disciplines. The continuity of concepts and phenomena is further maintained by systematic construction using methods like the method of minimal anatomies.
Artificial Astrocytes Improve Neural Network Performance
Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks
de Santos-Sierra, Daniel; Sanchez-Jimenez, Abel; Garcia-Vellisca, Mariano A.; Navas, Adrian; Villacorta-Atienza, Jose A.
2015-01-01
Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though, the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the slave neuron is able to anticipate in time the behavior of the master one. In this paper, we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI), one of the main features of the neural response associated with the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh–Rose neurons. PMID:26648863
Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks.
de Santos-Sierra, Daniel; Sanchez-Jimenez, Abel; Garcia-Vellisca, Mariano A; Navas, Adrian; Villacorta-Atienza, Jose A
2015-01-01
Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though, the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the slave neuron is able to anticipate in time the behavior of the master one. In this paper, we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI), one of the main features of the neural response associated with the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.
Application of a neural network as a potential aid in predicting NTF pump failure
NASA Technical Reports Server (NTRS)
Rogers, James L.; Hill, Jeffrey S.; Lamarsh, William J., II; Bradley, David E.
1993-01-01
The National Transonic Facility has three centrifugal multi-stage pumps to supply liquid nitrogen to the wind tunnel. Pump reliability is critical to facility operation and test capability. A highly desirable goal is to be able to detect a pump rotating component problem as early as possible during normal operation and avoid serious damage to other pump components. If a problem is detected before serious damage occurs, the repair cost and downtime could be reduced significantly. A neural network-based tool was developed for monitoring pump performance and aiding in predicting pump failure. Once trained, neural networks can rapidly process many combinations of input values other than those used for training to approximate previously unknown output values. This neural network was applied to establish relationships among the critical frequencies and aid in predicting failures. Training pairs were developed from frequency scans from typical tunnel operations. After training, various combinations of critical pump frequencies were propagated through the neural network. The approximated output was used to create a contour plot depicting the relationships of the input frequencies to the output pump frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuesong; Liang, Faming; Yu, Beibei
2011-11-09
Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework to incorporate the uncertainties associated with input, model structure, and parameter into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform the BNNs that only consider uncertainties associatedmore » with parameter and model structure. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters show that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of different uncertainty sources and including output error into the MCMC framework are expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting.« less
Comparative study of four time series methods in forecasting typhoid fever incidence in China.
Zhang, Xingyu; Liu, Yuanyuan; Yang, Min; Zhang, Tao; Young, Alistair A; Li, Xiaosong
2013-01-01
Accurate incidence forecasting of infectious disease is critical for early prevention and for better government strategic planning. In this paper, we present a comprehensive study of different forecasting methods based on the monthly incidence of typhoid fever. The seasonal autoregressive integrated moving average (SARIMA) model and three different models inspired by neural networks, namely, back propagation neural networks (BPNN), radial basis function neural networks (RBFNN), and Elman recurrent neural networks (ERNN) were compared. The differences as well as the advantages and disadvantages, among the SARIMA model and the neural networks were summarized and discussed. The data obtained for 2005 to 2009 and for 2010 from the Chinese Center for Disease Control and Prevention were used as modeling and forecasting samples, respectively. The performances were evaluated based on three metrics: mean absolute error (MAE), mean absolute percentage error (MAPE), and mean square error (MSE). The results showed that RBFNN obtained the smallest MAE, MAPE and MSE in both the modeling and forecasting processes. The performances of the four models ranked in descending order were: RBFNN, ERNN, BPNN and the SARIMA model.
Comparative Study of Four Time Series Methods in Forecasting Typhoid Fever Incidence in China
Zhang, Xingyu; Liu, Yuanyuan; Yang, Min; Zhang, Tao; Young, Alistair A.; Li, Xiaosong
2013-01-01
Accurate incidence forecasting of infectious disease is critical for early prevention and for better government strategic planning. In this paper, we present a comprehensive study of different forecasting methods based on the monthly incidence of typhoid fever. The seasonal autoregressive integrated moving average (SARIMA) model and three different models inspired by neural networks, namely, back propagation neural networks (BPNN), radial basis function neural networks (RBFNN), and Elman recurrent neural networks (ERNN) were compared. The differences as well as the advantages and disadvantages, among the SARIMA model and the neural networks were summarized and discussed. The data obtained for 2005 to 2009 and for 2010 from the Chinese Center for Disease Control and Prevention were used as modeling and forecasting samples, respectively. The performances were evaluated based on three metrics: mean absolute error (MAE), mean absolute percentage error (MAPE), and mean square error (MSE). The results showed that RBFNN obtained the smallest MAE, MAPE and MSE in both the modeling and forecasting processes. The performances of the four models ranked in descending order were: RBFNN, ERNN, BPNN and the SARIMA model. PMID:23650546
NASA Astrophysics Data System (ADS)
Fasnacht, Z.; Qin, W.; Haffner, D. P.; Loyola, D. G.; Joiner, J.; Krotkov, N. A.; Vasilkov, A. P.; Spurr, R. J. D.
2017-12-01
In order to estimate surface reflectance used in trace gas retrieval algorithms, radiative transfer models (RTM) such as the Vector Linearized Discrete Ordinate Radiative Transfer Model (VLIDORT) can be used to simulate the top of the atmosphere (TOA) radiances with advanced models of surface properties. With large volumes of satellite data, these model simulations can become computationally expensive. Look up table interpolation can improve the computational cost of the calculations, but the non-linear nature of the radiances requires a dense node structure if interpolation errors are to be minimized. In order to reduce our computational effort and improve the performance of look-up tables, neural networks can be trained to predict these radiances. We investigate the impact of using look-up table interpolation versus a neural network trained using the smart sampling technique, and show that neural networks can speed up calculations and reduce errors while using significantly less memory and RTM calls. In future work we will implement a neural network in operational processing to meet growing demands for reflectance modeling in support of high spatial resolution satellite missions.
NASA Astrophysics Data System (ADS)
An, Soyoung; Choi, Woochul; Paik, Se-Bum
2015-11-01
Understanding the mechanism of information processing in the human brain remains a unique challenge because the nonlinear interactions between the neurons in the network are extremely complex and because controlling every relevant parameter during an experiment is difficult. Therefore, a simulation using simplified computational models may be an effective approach. In the present study, we developed a general model of neural networks that can simulate nonlinear activity patterns in the hierarchical structure of a neural network system. To test our model, we first examined whether our simulation could match the previously-observed nonlinear features of neural activity patterns. Next, we performed a psychophysics experiment for a simple visual working memory task to evaluate whether the model could predict the performance of human subjects. Our studies show that the model is capable of reproducing the relationship between memory load and performance and may contribute, in part, to our understanding of how the structure of neural circuits can determine the nonlinear neural activity patterns in the human brain.
Linking structure and activity in nonlinear spiking networks
Josić, Krešimir; Shea-Brown, Eric
2017-01-01
Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks’ spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities—including those of different cell types—combine with connectivity to shape population activity and function. PMID:28644840
Retrieval of cloud properties from POLDER-3 data using the neural network approach
NASA Astrophysics Data System (ADS)
Di Noia, A.; Hasekamp, O. P.
2017-12-01
Satellite multi-angle spectroplarimetry is a useful technique for observing the microphysical properties of clouds and aerosols. Most of the algorithms for the retrieval of cloud and aerosol properties from satellite measurements require multiple calls to radiative transfer models, which make the retrieval computationally expensive. A traditional alternative to these schemes is represented by lookup-tables (LUTs), where the retrieval is performed by choosing, within a predefined database of combinations of clouds or aerosol properties, the combination that best fits the measurements. LUT retrievals are quicker than full-physics, iterative retrievals, but their accuracy is limited by the number of entries stored in the LUT. Another retrieval method capable of producing very quick retrievals without a big sacrifice in accuracy is the neural network method. Neural network methods are routinely applied to several types of satellite measurements, but their application to multi-angle spectropolarimetric data is still in its early stage, because of the difficulty of accounting for the angular variability of the measurements in the training process. We have recently developed a neural network scheme for the retrieval of cloud properties from POLDER-3 data. The neural network retrieval is trained using synthetic measurements performed for realistic combinations of cloud properties and measurement angles, and is able to process an entire orbit in about 20 seconds. Comparisons of the retrieved cloud properties with Moderate Resolution Imaging Spectroradiometer (MODIS) gridded products during one year show encouraging retrieval performance for cloud optical thickness and effective radius. A discussion of the setup of the neural network and of the validation results will be the main topic of our presentation.
"Geo-statistics methods and neural networks in geophysical applications: A case study"
NASA Astrophysics Data System (ADS)
Rodriguez Sandoval, R.; Urrutia Fucugauchi, J.; Ramirez Cruz, L. C.
2008-12-01
The study is focus in the Ebano-Panuco basin of northeastern Mexico, which is being explored for hydrocarbon reservoirs. These reservoirs are in limestones and there is interest in determining porosity and permeability in the carbonate sequences. The porosity maps presented in this study are estimated from application of multiattribute and neural networks techniques, which combine geophysics logs and 3-D seismic data by means of statistical relationships. The multiattribute analysis is a process to predict a volume of any underground petrophysical measurement from well-log and seismic data. The data consist of a series of target logs from wells which tie a 3-D seismic volume. The target logs are neutron porosity logs. From the 3-D seismic volume a series of sample attributes is calculated. The objective of this study is to derive a set of attributes and the target log values. The selected set is determined by a process of forward stepwise regression. The analysis can be linear or nonlinear. In the linear mode the method consists of a series of weights derived by least-square minimization. In the nonlinear mode, a neural network is trained using the select attributes as inputs. In this case we used a probabilistic neural network PNN. The method is applied to a real data set from PEMEX. For better reservoir characterization the porosity distribution was estimated using both techniques. The case shown a continues improvement in the prediction of the porosity from the multiattribute to the neural network analysis. The improvement is in the training and the validation, which are important indicators of the reliability of the results. The neural network showed an improvement in resolution over the multiattribute analysis. The final maps provide more realistic results of the porosity distribution.
Abstracts for the symposium on the Application of neural networks to the earth sciences
Singer, Donald A.
2002-01-01
Artificial neural networks are a group of mathematical methods that attempt to mimic some of the processes in the human mind. Although the foundations for these ideas were laid as early as 1943 (McCulloch and Pitts, 1943), it wasn't until 1986 (Rumelhart and McClelland, 1986; Masters, 1995) that applications to practical problems became possible. It is the acknowledged superiority of the human mind at recognizing patterns that the artificial neural networks are trying to imitate with their interconnected neurons. Interconnections used in the methods that have been developed allow robust learning. Capabilities of neural networks fall into three kinds of applications: (1) function fitting or prediction, (2) noise reduction or pattern recognition, and (3) classification or placing into types. Because of these capabilities and the powerful abilities of artificial neural networks, there have been increasing applications of these methods in the earth sciences. The abstracts in this document represent excellent samples of the range of applications. Talks associated with the abstracts were presented at the Symposium on the Application of Neural Networks to the Earth Sciences: Seventh International Symposium on Mineral Exploration (ISME–02), held August 20–21, 2002, at NASA Moffett Field, Mountain View, California. This symposium was sponsored by the Mining and Materials Processing Institute of Japan (MMIJ), the U.S. Geological Survey, the Circum-Pacific Council, and NASA. The ISME symposia have been held every two years in order to bring together scientists actively working on diverse quantitative methods applied to the earth sciences. Although the title, International Symposium on Mineral Exploration, suggests exclusive focus on mineral exploration, interests and presentations have always been wide-ranging—abstracts presented here are no exception.
Neuromorphic Learning From Noisy Data
NASA Technical Reports Server (NTRS)
Merrill, Walter C.; Troudet, Terry
1993-01-01
Two reports present numerical study of performance of feedforward neural network trained by back-propagation algorithm in learning continuous-valued mappings from data corrupted by noise. Two types of noise considered: plant noise which affects dynamics of controlled process and data-processing noise, which occurs during analog processing and digital sampling of signals. Study performed with view toward use of neural networks as neurocontrollers to substitute for, or enhance, performances of human experts in controlling mechanical devices in presence of sensor and actuator noise and to enhance performances of more-conventional digital feedback electronic process controllers in noisy environments.
Hartman, Jessica H.; Cothren, Steven D.; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A.; Miller, Grover P.
2013-01-01
Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (kcat, Km, and kcat/Km), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (kcat and Km) were more consistent with experimental values than those for catalytic efficiency (kcat/Km). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. PMID:23673224
Conic section function neural network circuitry for offline signature recognition.
Erkmen, Burcu; Kahraman, Nihan; Vural, Revna A; Yildirim, Tulay
2010-04-01
In this brief, conic section function neural network (CSFNN) circuitry was designed for offline signature recognition. CSFNN is a unified framework for multilayer perceptron (MLP) and radial basis function (RBF) networks to make simultaneous use of advantages of both. The CSFNN circuitry architecture was developed using a mixed mode circuit implementation. The designed circuit system is problem independent. Hence, the general purpose neural network circuit system could be applied to various pattern recognition problems with different network sizes on condition with the maximum network size of 16-16-8. In this brief, CSFNN circuitry system has been applied to two different signature recognition problems. CSFNN circuitry was trained with chip-in-the-loop learning technique in order to compensate typical analog process variations. CSFNN hardware achieved highly comparable computational performances with CSFNN software for nonlinear signature recognition problems.
Infant joint attention, neural networks and social cognition.
Mundy, Peter; Jarrold, William
2010-01-01
Neural network models of attention can provide a unifying approach to the study of human cognitive and emotional development (Posner & Rothbart, 2007). In this paper we argue that a neural network approach to the infant development of joint attention can inform our understanding of the nature of human social learning, symbolic thought process and social cognition. At its most basic, joint attention involves the capacity to coordinate one's own visual attention with that of another person. We propose that joint attention development involves increments in the capacity to engage in simultaneous or parallel processing of information about one's own attention and the attention of other people. Infant practice with joint attention is both a consequence and an organizer of the development of a distributed and integrated brain network involving frontal and parietal cortical systems. This executive distributed network first serves to regulate the capacity of infants to respond to and direct the overt behavior of other people in order to share experience with others through the social coordination of visual attention. In this paper we describe this parallel and distributed neural network model of joint attention development and discuss two hypotheses that stem from this model. One is that activation of this distributed network during coordinated attention enhances the depth of information processing and encoding beginning in the first year of life. We also propose that with development, joint attention becomes internalized as the capacity to socially coordinate mental attention to internal representations. As this occurs the executive joint attention network makes vital contributions to the development of human symbolic thinking and social cognition. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Metz, Dale Evan; And Others
1992-01-01
A preliminary scheme for estimating the speech intelligibility of hearing-impaired speakers from acoustic parameters, using a computerized artificial neural network to process mathematically the acoustic input variables, is outlined. Tests with 60 hearing-impaired speakers found the scheme to be highly accurate in identifying speakers separated by…
Artificial neural network modeling of DDGS flowability with varying process and storage parameters
USDA-ARS?s Scientific Manuscript database
Neural Network (NN) modeling techniques were used to predict flowability behavior in distillers dried grains with solubles (DDGS) prepared with varying CDS (10, 15, and 20%, wb), drying temperature (100, 200, and 300°C), cooling temperature (-12, 0, and 35°C) and cooling time (0 and 1 month) levels....
Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing
Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas
2016-01-01
While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization. PMID:27250879
Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing
NASA Astrophysics Data System (ADS)
Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas
2016-06-01
While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.
Deep recurrent neural network reveals a hierarchy of process memory during dynamic natural vision.
Shi, Junxing; Wen, Haiguang; Zhang, Yizhen; Han, Kuan; Liu, Zhongming
2018-05-01
The human visual cortex extracts both spatial and temporal visual features to support perception and guide behavior. Deep convolutional neural networks (CNNs) provide a computational framework to model cortical representation and organization for spatial visual processing, but unable to explain how the brain processes temporal information. To overcome this limitation, we extended a CNN by adding recurrent connections to different layers of the CNN to allow spatial representations to be remembered and accumulated over time. The extended model, or the recurrent neural network (RNN), embodied a hierarchical and distributed model of process memory as an integral part of visual processing. Unlike the CNN, the RNN learned spatiotemporal features from videos to enable action recognition. The RNN better predicted cortical responses to natural movie stimuli than the CNN, at all visual areas, especially those along the dorsal stream. As a fully observable model of visual processing, the RNN also revealed a cortical hierarchy of temporal receptive window, dynamics of process memory, and spatiotemporal representations. These results support the hypothesis of process memory, and demonstrate the potential of using the RNN for in-depth computational understanding of dynamic natural vision. © 2018 Wiley Periodicals, Inc.
Adaptive Neural Networks for Automatic Negotiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakas, D. P.; Vlachos, D. S.; Simos, T. E.
The use of fuzzy logic and fuzzy neural networks has been found effective for the modelling of the uncertain relations between the parameters of a negotiation procedure. The problem with these configurations is that they are static, that is, any new knowledge from theory or experiment lead to the construction of entirely new models. To overcome this difficulty, we apply in this work, an adaptive neural topology to model the negotiation process. Finally a simple simulation is carried in order to test the new method.
PSF estimation for defocus blurred image based on quantum back-propagation neural network
NASA Astrophysics Data System (ADS)
Gao, Kun; Zhang, Yan; Shao, Xiao-guang; Liu, Ying-hui; Ni, Guoqiang
2010-11-01
Images obtained by an aberration-free system are defocused blur due to motion in depth and/or zooming. The precondition of restoring the degraded image is to estimate point spread function (PSF) of the imaging system as precisely as possible. But it is difficult to identify the analytic model of PSF precisely due to the complexity of the degradation process. Inspired by the similarity between the quantum process and imaging process in the probability and statistics fields, one reformed multilayer quantum neural network (QNN) is proposed to estimate PSF of the defocus blurred image. Different from the conventional artificial neural network (ANN), an improved quantum neuron model is used in the hidden layer instead, which introduces a 2-bit controlled NOT quantum gate to control output and adopts 2 texture and edge features as the input vectors. The supervised back-propagation learning rule is adopted to train network based on training sets from the historical images. Test results show that this method owns excellent features of high precision and strong generalization ability.
Functional connectivity mapping of regions associated with self- and other-processing.
Murray, Ryan J; Debbané, Martin; Fox, Peter T; Bzdok, Danilo; Eickhoff, Simon B
2015-04-01
Neuroscience literature increasingly suggests a conceptual self composed of interacting neural regions, rather than independent local activations, yet such claims have yet to be investigated. We, thus, combined task-dependent meta-analytic connectivity modeling (MACM) with task-independent resting-state (RS) connectivity analysis to delineate the neural network of the self, across both states. Given psychological evidence implicating the self's interdependence on social information, we also delineated the neural network underlying conceptual other-processing. To elucidate the relation between the self-/other-networks and their function, we mined the MACM metadata to generate a cognitive-behavioral profile for an empirically identified region specific to conceptual self, the pregenual anterior cingulate (pACC), and conceptual other, posterior cingulate/precuneus (PCC/PC). Mining of 7,200 published, task-dependent, neuroimaging studies, using healthy human subjects, yielded 193 studies activating the self-related seed and were conjoined with RS connectivity analysis to delineate a differentiated self-network composed of the pACC (seed) and anterior insula, relative to other functional connectivity. Additionally, 106 studies activating the other-related seed were conjoined with RS connectivity analysis to delineate a differentiated other-network of PCC/PC (seed) and angular gyrus/temporoparietal junction, relative to self-functional connectivity. The self-network seed related to emotional conflict resolution and motivational processing, whereas the other-network seed related to socially oriented processing and contextual information integration. Notably, our findings revealed shared RS connectivity between ensuing self-/other-networks within the ventromedial prefrontal cortex and medial orbitofrontal cortex, suggesting self-updating via integration of self-relevant social information. We, therefore, present initial neurobiological evidence corroborating the increasing claims of an intricate self-network, the architecture of which may promote social value processing. © 2014 Wiley Periodicals, Inc.
A Markovian event-based framework for stochastic spiking neural networks.
Touboul, Jonathan D; Faugeras, Olivier D
2011-11-01
In spiking neural networks, the information is conveyed by the spike times, that depend on the intrinsic dynamics of each neuron, the input they receive and on the connections between neurons. In this article we study the Markovian nature of the sequence of spike times in stochastic neural networks, and in particular the ability to deduce from a spike train the next spike time, and therefore produce a description of the network activity only based on the spike times regardless of the membrane potential process. To study this question in a rigorous manner, we introduce and study an event-based description of networks of noisy integrate-and-fire neurons, i.e. that is based on the computation of the spike times. We show that the firing times of the neurons in the networks constitute a Markov chain, whose transition probability is related to the probability distribution of the interspike interval of the neurons in the network. In the cases where the Markovian model can be developed, the transition probability is explicitly derived in such classical cases of neural networks as the linear integrate-and-fire neuron models with excitatory and inhibitory interactions, for different types of synapses, possibly featuring noisy synaptic integration, transmission delays and absolute and relative refractory period. This covers most of the cases that have been investigated in the event-based description of spiking deterministic neural networks.
NASA Astrophysics Data System (ADS)
Lu, Weizhao; Huang, Chunhui; Hou, Kun; Shi, Liting; Zhao, Huihui; Li, Zhengmei; Qiu, Jianfeng
2018-05-01
In continuous-variable quantum key distribution (CV-QKD), weak signal carrying information transmits from Alice to Bob; during this process it is easily influenced by unknown noise which reduces signal-to-noise ratio, and strongly impacts reliability and stability of the communication. Recurrent quantum neural network (RQNN) is an artificial neural network model which can perform stochastic filtering without any prior knowledge of the signal and noise. In this paper, a modified RQNN algorithm with expectation maximization algorithm is proposed to process the signal in CV-QKD, which follows the basic rule of quantum mechanics. After RQNN, noise power decreases about 15 dBm, coherent signal recognition rate of RQNN is 96%, quantum bit error rate (QBER) drops to 4%, which is 6.9% lower than original QBER, and channel capacity is notably enlarged.
A neural network model of foraging decisions made under predation risk.
Coleman, Scott L; Brown, Vincent R; Levine, Daniel S; Mellgren, Roger L
2005-12-01
This article develops the cognitive-emotional forager (CEF) model, a novel application of a neural network to dynamical processes in foraging behavior. The CEF is based on a neural network known as the gated dipole, introduced by Grossberg, which is capable of representing short-term affective reactions in a manner similar to Solomon and Corbit's (1974) opponent process theory. The model incorporates a trade-off between approach toward food and avoidance of predation under varying levels of motivation induced by hunger. The results of simulations in a simple patch selection paradigm, using a lifetime fitness criterion for comparison, indicate that the CEF model is capable of nearly optimal foraging and outperforms a run-of-luck rule-of-thumb model. Models such as the one presented here can illuminate the underlying cognitive and motivational components of animal decision making.
Adaptive model predictive process control using neural networks
Buescher, K.L.; Baum, C.C.; Jones, R.D.
1997-08-19
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data. 46 figs.
Adaptive model predictive process control using neural networks
Buescher, Kevin L.; Baum, Christopher C.; Jones, Roger D.
1997-01-01
A control system for controlling the output of at least one plant process output parameter is implemented by adaptive model predictive control using a neural network. An improved method and apparatus provides for sampling plant output and control input at a first sampling rate to provide control inputs at the fast rate. The MPC system is, however, provided with a network state vector that is constructed at a second, slower rate so that the input control values used by the MPC system are averaged over a gapped time period. Another improvement is a provision for on-line training that may include difference training, curvature training, and basis center adjustment to maintain the weights and basis centers of the neural in an updated state that can follow changes in the plant operation apart from initial off-line training data.
Neural networks with fuzzy Petri nets for modeling a machining process
NASA Astrophysics Data System (ADS)
Hanna, Moheb M.
1998-03-01
The paper presents an intelligent architecture based a feedforward neural network with fuzzy Petri nets for modeling product quality in a CNC machining center. It discusses how the proposed architecture can be used for modeling, monitoring and control a product quality specification such as surface roughness. The surface roughness represents the output quality specification manufactured by a CNC machining center as a result of a milling process. The neural network approach employed the selected input parameters which defined by the machine operator via the CNC code. The fuzzy Petri nets approach utilized the exact input milling parameters, such as spindle speed, feed rate, tool diameter and coolant (off/on), which can be obtained via the machine or sensors system. An aim of the proposed architecture is to model the demanded quality of surface roughness as high, medium or low.
Visuospatial Processing in Children with Neurofibromatosis Type 1
ERIC Educational Resources Information Center
Clements-Stephens, Amy M.; Rimrodt, Sheryl L.; Gaur, Pooja; Cutting, Laurie E.
2008-01-01
Neuroimaging studies investigating the neural network of visuospatial processing have revealed a right hemisphere network of activation including inferior parietal lobe, dorsolateral prefrontal cortex, and extrastriate regions. Impaired visuospatial processing, indicated by the Judgment of Line Orientation (JLO), is commonly seen in individuals…
NASA Astrophysics Data System (ADS)
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks
Wang, Changjian; Liu, Xiaohui; Jin, Shiyao
2018-01-01
Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment. PMID:29955227
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor)
1990-01-01
Various papers on intelligent control and adaptive systems are presented. Individual topics addressed include: control architecture for a Mars walking vehicle, representation for error detection and recovery in robot task plans, real-time operating system for robots, execution monitoring of a mobile robot system, statistical mechanics models for motion and force planning, global kinematics for manipulator planning and control, exploration of unknown mechanical assemblies through manipulation, low-level representations for robot vision, harmonic functions for robot path construction, simulation of dual behavior of an autonomous system. Also discussed are: control framework for hand-arm coordination, neural network approach to multivehicle navigation, electronic neural networks for global optimization, neural network for L1 norm linear regression, planning for assembly with robot hands, neural networks in dynamical systems, control design with iterative learning, improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm.
A novel word spotting method based on recurrent neural networks.
Frinken, Volkmar; Fischer, Andreas; Manmatha, R; Bunke, Horst
2012-02-01
Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary for a keyword to appear in the training set. The keyword spotting is done using a modification of the CTC Token Passing algorithm in conjunction with a recurrent neural network. We demonstrate that the proposed systems outperform not only a classical dynamic time warping-based approach but also a modern keyword spotting system, based on hidden Markov models. Furthermore, we analyze the performance of the underlying neural networks when using them in a recognition task followed by keyword spotting on the produced transcription. We point out the advantages of keyword spotting when compared to classic text line recognition.
Character recognition using a neural network model with fuzzy representation
NASA Technical Reports Server (NTRS)
Tavakoli, Nassrin; Seniw, David
1992-01-01
The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.
Process for forming synapses in neural networks and resistor therefor
Fu, C.Y.
1996-07-23
Customizable neural network in which one or more resistors form each synapse is disclosed. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength. 5 figs.
Process for forming synapses in neural networks and resistor therefor
Fu, Chi Y.
1996-01-01
Customizable neural network in which one or more resistors form each synapse. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength.
Suzuki, Ikurou; Sugio, Yoshihiro; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Yasuda, Kenji
2004-07-01
Control over spatial distribution of individual neurons and the pattern of neural network provides an important tool for studying information processing pathways during neural network formation. Moreover, the knowledge of the direction of synaptic connections between cells in each neural network can provide detailed information on the relationship between the forward and feedback signaling. We have developed a method for topographical control of the direction of synaptic connections within a living neuronal network using a new type of individual-cell-based on-chip cell-cultivation system with an agarose microchamber array (AMCA). The advantages of this system include the possibility to control positions and number of cultured cells as well as flexible control of the direction of elongation of axons through stepwise melting of narrow grooves. Such micrometer-order microchannels are obtained by photo-thermal etching of agarose where a portion of the gel is melted with a 1064-nm infrared laser beam. Using this system, we created neural network from individual Rat hippocampal cells. We were able to control elongation of individual axons during cultivation (from cells contained within the AMCA) by non-destructive stepwise photo-thermal etching. We have demonstrated the potential of our on-chip AMCA cell cultivation system for the controlled development of individual cell-based neural networks.
Automatic identification of species with neural networks.
Hernández-Serna, Andrés; Jiménez-Segura, Luz Fernanda
2014-01-01
A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification.
NASA Astrophysics Data System (ADS)
Efron, Uzi
Recent advances in the technology and applications of spatial light modulators (SLMs) are discussed in review essays by leading experts. Topics addressed include materials for SLMs, SLM devices and device technology, applications to optical data processing, and applications to artificial neural networks. Particular attention is given to nonlinear optical polymers, liquid crystals, magnetooptic SLMs, multiple-quantum-well SLMs, deformable-mirror SLMs, three-dimensional optical memories, applications of photorefractive devices to optical computing, photonic neurocomputers and learning machines, holographic associative memories, SLMs as parallel memories for optoelectronic neural networks, and coherent-optics implementations of neural-network models.
A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture
NASA Technical Reports Server (NTRS)
Troudet, T.; Merrill, W.
1994-01-01
A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.
NASA Technical Reports Server (NTRS)
Efron, Uzi (Editor)
1990-01-01
Recent advances in the technology and applications of spatial light modulators (SLMs) are discussed in review essays by leading experts. Topics addressed include materials for SLMs, SLM devices and device technology, applications to optical data processing, and applications to artificial neural networks. Particular attention is given to nonlinear optical polymers, liquid crystals, magnetooptic SLMs, multiple-quantum-well SLMs, deformable-mirror SLMs, three-dimensional optical memories, applications of photorefractive devices to optical computing, photonic neurocomputers and learning machines, holographic associative memories, SLMs as parallel memories for optoelectronic neural networks, and coherent-optics implementations of neural-network models.
Homeostatic Scaling of Excitability in Recurrent Neural Networks
Remme, Michiel W. H.; Wadman, Wytse J.
2012-01-01
Neurons adjust their intrinsic excitability when experiencing a persistent change in synaptic drive. This process can prevent neural activity from moving into either a quiescent state or a saturated state in the face of ongoing plasticity, and is thought to promote stability of the network in which neurons reside. However, most neurons are embedded in recurrent networks, which require a delicate balance between excitation and inhibition to maintain network stability. This balance could be disrupted when neurons independently adjust their intrinsic excitability. Here, we study the functioning of activity-dependent homeostatic scaling of intrinsic excitability (HSE) in a recurrent neural network. Using both simulations of a recurrent network consisting of excitatory and inhibitory neurons that implement HSE, and a mean-field description of adapting excitatory and inhibitory populations, we show that the stability of such adapting networks critically depends on the relationship between the adaptation time scales of both neuron populations. In a stable adapting network, HSE can keep all neurons functioning within their dynamic range, while the network is undergoing several (patho)physiologically relevant types of plasticity, such as persistent changes in external drive, changes in connection strengths, or the loss of inhibitory cells from the network. However, HSE cannot prevent the unstable network dynamics that result when, due to such plasticity, recurrent excitation in the network becomes too strong compared to feedback inhibition. This suggests that keeping a neural network in a stable and functional state requires the coordination of distinct homeostatic mechanisms that operate not only by adjusting neural excitability, but also by controlling network connectivity. PMID:22570604
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed amore » new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.« less
NASA Technical Reports Server (NTRS)
Villarreal, James A.
1991-01-01
A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.
The role of the episodic buffer in working memory for language processing.
Rudner, Mary; Rönnberg, Jerker
2008-03-01
A body of work has accumulated to show that the cognitive process of binding information from different mnemonic and sensory sources as well as in different linguistic modalities can be fractionated from general executive functions in working memory both functionally and neurally. This process has been defined in terms of the episodic buffer (Baddeley in Trends Cogn Sci 4(11):417-423, 2000). This paper considers behavioural, neuropsychological and neuroimaging data that elucidate the role of the episodic buffer in language processing. We argue that the episodic buffer seems to be truly multimodal in function and that while formation of unitary multidimensional representations in the episodic buffer seems to engage posterior neural networks, maintenance of such representations is supported by frontal networks. Although, the episodic buffer is not necessarily supported by executive processes and seems to be supported by different neural networks, it may operate in tandem with the central executive during effortful language processing. There is also evidence to suggest engagement of the phonological loop during buffer processing. The hippocampus seems to play a role in formation but not maintenance of representations in the episodic buffer of working memory.
Brain and Language: Evidence for Neural Multifunctionality
Cahana-Amitay, Dalia; Albert, Martin L.
2014-01-01
This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term “neural multifunctionality” refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging. PMID:25009368
Natural language acquisition in large scale neural semantic networks
NASA Astrophysics Data System (ADS)
Ealey, Douglas
This thesis puts forward the view that a purely signal- based approach to natural language processing is both plausible and desirable. By questioning the veracity of symbolic representations of meaning, it argues for a unified, non-symbolic model of knowledge representation that is both biologically plausible and, potentially, highly efficient. Processes to generate a grounded, neural form of this model-dubbed the semantic filter-are discussed. The combined effects of local neural organisation, coincident with perceptual maturation, are used to hypothesise its nature. This theoretical model is then validated in light of a number of fundamental neurological constraints and milestones. The mechanisms of semantic and episodic development that the model predicts are then used to explain linguistic properties, such as propositions and verbs, syntax and scripting. To mimic the growth of locally densely connected structures upon an unbounded neural substrate, a system is developed that can grow arbitrarily large, data- dependant structures composed of individual self- organising neural networks. The maturational nature of the data used results in a structure in which the perception of concepts is refined by the networks, but demarcated by subsequent structure. As a consequence, the overall structure shows significant memory and computational benefits, as predicted by the cognitive and neural models. Furthermore, the localised nature of the neural architecture also avoids the increasing error sensitivity and redundancy of traditional systems as the training domain grows. The semantic and episodic filters have been demonstrated to perform as well, or better, than more specialist networks, whilst using significantly larger vocabularies, more complex sentence forms and more natural corpora.
Smith, David V.; Sip, Kamila E.; Delgado, Mauricio R.
2016-01-01
Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames compared to gain frames—was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. PMID:25858445
Smith, David V; Sip, Kamila E; Delgado, Mauricio R
2015-07-01
Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial-prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility-indexed as the increase in gambling behavior in loss frames compared to gain frames-was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes. © 2015 Wiley Periodicals, Inc.
Ripp, Isabelle; Zur Nieden, Anna-Nora; Blankenagel, Sonja; Franzmeier, Nicolai; Lundström, Johan N; Freiherr, Jessica
2018-05-07
In this study, we aimed to understand how whole-brain neural networks compute sensory information integration based on the olfactory and visual system. Task-related functional magnetic resonance imaging (fMRI) data was obtained during unimodal and bimodal sensory stimulation. Based on the identification of multisensory integration processing (MIP) specific hub-like network nodes analyzed with network-based statistics using region-of-interest based connectivity matrices, we conclude the following brain areas to be important for processing the presented bimodal sensory information: right precuneus connected contralaterally to the supramarginal gyrus for memory-related imagery and phonology retrieval, and the left middle occipital gyrus connected ipsilaterally to the inferior frontal gyrus via the inferior fronto-occipital fasciculus including functional aspects of working memory. Applied graph theory for quantification of the resulting complex network topologies indicates a significantly increased global efficiency and clustering coefficient in networks including aspects of MIP reflecting a simultaneous better integration and segregation. Graph theoretical analysis of positive and negative network correlations allowing for inferences about excitatory and inhibitory network architectures revealed-not significant, but very consistent-that MIP-specific neural networks are dominated by inhibitory relationships between brain regions involved in stimulus processing. © 2018 Wiley Periodicals, Inc.
Robust hepatic vessel segmentation using multi deep convolution network
NASA Astrophysics Data System (ADS)
Kitrungrotsakul, Titinunt; Han, Xian-Hua; Iwamoto, Yutaro; Foruzan, Amir Hossein; Lin, Lanfen; Chen, Yen-Wei
2017-03-01
Extraction of blood vessels of the organ is a challenging task in the area of medical image processing. It is really difficult to get accurate vessel segmentation results even with manually labeling by human being. The difficulty of vessels segmentation is the complicated structure of blood vessels and its large variations that make them hard to recognize. In this paper, we present deep artificial neural network architecture to automatically segment the hepatic vessels from computed tomography (CT) image. We proposed novel deep neural network (DNN) architecture for vessel segmentation from a medical CT volume, which consists of three deep convolution neural networks to extract features from difference planes of CT data. The three networks have share features at the first convolution layer but will separately learn their own features in the second layer. All three networks will join again at the top layer. To validate effectiveness and efficiency of our proposed method, we conduct experiments on 12 CT volumes which training data are randomly generate from 5 CT volumes and 7 using for test. Our network can yield an average dice coefficient 0.830, while 3D deep convolution neural network can yield around 0.7 and multi-scale can yield only 0.6.
Optical alignment procedure utilizing neural networks combined with Shack-Hartmann wavefront sensor
NASA Astrophysics Data System (ADS)
Adil, Fatime Zehra; Konukseven, Erhan İlhan; Balkan, Tuna; Adil, Ömer Faruk
2017-05-01
In the design of pilot helmets with night vision capability, to not limit or block the sight of the pilot, a transparent visor is used. The reflected image from the coated part of the visor must coincide with the physical human sight image seen through the nonreflecting regions of the visor. This makes the alignment of the visor halves critical. In essence, this is an alignment problem of two optical parts that are assembled together during the manufacturing process. Shack-Hartmann wavefront sensor is commonly used for the determination of the misalignments through wavefront measurements, which are quantified in terms of the Zernike polynomials. Although the Zernike polynomials provide very useful feedback about the misalignments, the corrective actions are basically ad hoc. This stems from the fact that there exists no easy inverse relation between the misalignment measurements and the physical causes of the misalignments. This study aims to construct this inverse relation by making use of the expressive power of the neural networks in such complex relations. For this purpose, a neural network is designed and trained in MATLAB® regarding which types of misalignments result in which wavefront measurements, quantitatively given by Zernike polynomials. This way, manual and iterative alignment processes relying on trial and error will be replaced by the trained guesses of a neural network, so the alignment process is reduced to applying the counter actions based on the misalignment causes. Such a training requires data containing misalignment and measurement sets in fine detail, which is hard to obtain manually on a physical setup. For that reason, the optical setup is completely modeled in Zemax® software, and Zernike polynomials are generated for misalignments applied in small steps. The performance of the neural network is experimented and found promising in the actual physical setup.
Computational modeling of neural plasticity for self-organization of neural networks.
Chrol-Cannon, Joseph; Jin, Yaochu
2014-11-01
Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Bernal, Javier; Torres-Jimenez, Jose
2015-01-01
SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller’s scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller’s algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller’s algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller’s algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data. PMID:26958442
Using deep learning in image hyper spectral segmentation, classification, and detection
NASA Astrophysics Data System (ADS)
Zhao, Xiuying; Su, Zhenyu
2018-02-01
Recent years have shown that deep learning neural networks are a valuable tool in the field of computer vision. Deep learning method can be used in applications like remote sensing such as Land cover Classification, Detection of Vehicle in Satellite Images, Hyper spectral Image classification. This paper addresses the use of the deep learning artificial neural network in Satellite image segmentation. Image segmentation plays an important role in image processing. The hue of the remote sensing image often has a large hue difference, which will result in the poor display of the images in the VR environment. Image segmentation is a pre processing technique applied to the original images and splits the image into many parts which have different hue to unify the color. Several computational models based on supervised, unsupervised, parametric, probabilistic region based image segmentation techniques have been proposed. Recently, one of the machine learning technique known as, deep learning with convolution neural network has been widely used for development of efficient and automatic image segmentation models. In this paper, we focus on study of deep neural convolution network and its variants for automatic image segmentation rather than traditional image segmentation strategies.
Cancer diagnostics using neural network sorting of processed images
NASA Astrophysics Data System (ADS)
Wyman, Charles L.; Schreeder, Marshall; Grundy, Walt; Kinser, Jason M.
1996-03-01
A combination of image processing with neural network sorting was conducted to demonstrate feasibility of automated cervical smear screening. Nuclei were isolated to generate a series of data points relating to the density and size of individual nuclei. This was followed by segmentation to isolate entire cells for subsequent generation of data points to bound the size of the cytoplasm. Data points were taken on as many as ten cells per image frame and included correlation against a series of filters providing size and density readings on nuclei. Additional point data was taken on nuclei images to refine size information and on whole cells to bound the size of the cytoplasm, twenty data points per assessed cell were generated. These data point sets, designated as neural tensors, comprise the inputs for training and use of a unique neural network to sort the images and identify those indicating evidence of disease. The neural network, named the Fast Analog Associative Memory, accumulates data and establishes lookup tables for comparison against images to be assessed. Six networks were trained to differentiate normal cells from those evidencing various levels abnormality that may lead to cancer. A blind test was conducted on 77 images to evaluate system performance. The image set included 31 positives (diseased) and 46 negatives (normal). Our system correctly identified all 31 positives and 41 of the negatives with 5 false positives. We believe this technology can lead to more efficient automated screening of cervical smears.
Relationships between music training, speech processing, and word learning: a network perspective.
Elmer, Stefan; Jäncke, Lutz
2018-03-15
Numerous studies have documented the behavioral advantages conferred on professional musicians and children undergoing music training in processing speech sounds varying in the spectral and temporal dimensions. These beneficial effects have previously often been associated with local functional and structural changes in the auditory cortex (AC). However, this perspective is oversimplified, in that it does not take into account the intrinsic organization of the human brain, namely, neural networks and oscillatory dynamics. Therefore, we propose a new framework for extending these previous findings to a network perspective by integrating multimodal imaging, electrophysiology, and neural oscillations. In particular, we provide concrete examples of how functional and structural connectivity can be used to model simple neural circuits exerting a modulatory influence on AC activity. In addition, we describe how such a network approach can be used for better comprehending the beneficial effects of music training on more complex speech functions, such as word learning. © 2018 New York Academy of Sciences.
Dreaming and the default network: A review, synthesis, and counterintuitive research proposal.
Domhoff, G William; Fox, Kieran C R
2015-05-01
This article argues that the default network, augmented by secondary visual and sensorimotor cortices, is the likely neural correlate of dreaming. This hypothesis is based on a synthesis of work on dream content, the findings on the contents and neural correlates of mind-wandering, and the results from EEG and neuroimaging studies of REM sleep. Relying on studies in the 1970s that serendipitously discovered episodes of dreaming during waking mind-wandering, this article presents the seemingly counterintuitive hypothesis that the neural correlates for dreaming could be further specified in the process of carrying out EEG/fMRI studies of mind-wandering and default network activity. This hypothesis could be tested by asking participants for experiential reports during moments of differentially high levels of default network activation, as indicated by mixed EEG/fMRI criteria. Evidence from earlier EEG/fMRI studies of mind-wandering and from laboratory studies of dreaming during the sleep-onset process is used to support the argument. Copyright © 2015 Elsevier Inc. All rights reserved.
Neural Substrates of Processing Anger in Language: Contributions of Prosody and Semantics.
Castelluccio, Brian C; Myers, Emily B; Schuh, Jillian M; Eigsti, Inge-Marie
2016-12-01
Emotions are conveyed primarily through two channels in language: semantics and prosody. While many studies confirm the role of a left hemisphere network in processing semantic emotion, there has been debate over the role of the right hemisphere in processing prosodic emotion. Some evidence suggests a preferential role for the right hemisphere, and other evidence supports a bilateral model. The relative contributions of semantics and prosody to the overall processing of affect in language are largely unexplored. The present work used functional magnetic resonance imaging to elucidate the neural bases of processing anger conveyed by prosody or semantic content. Results showed a robust, distributed, bilateral network for processing angry prosody and a more modest left hemisphere network for processing angry semantics when compared to emotionally neutral stimuli. Findings suggest the nervous system may be more responsive to prosodic cues in speech than to the semantic content of speech.
USC orthogonal multiprocessor for image processing with neural networks
NASA Astrophysics Data System (ADS)
Hwang, Kai; Panda, Dhabaleswar K.; Haddadi, Navid
1990-07-01
This paper presents the architectural features and imaging applications of the Orthogonal MultiProcessor (OMP) system, which is under construction at the University of Southern California with research funding from NSF and assistance from several industrial partners. The prototype OMP is being built with 16 Intel i860 RISC microprocessors and 256 parallel memory modules using custom-designed spanning buses, which are 2-D interleaved and orthogonally accessed without conflicts. The 16-processor OMP prototype is targeted to achieve 430 MIPS and 600 Mflops, which have been verified by simulation experiments based on the design parameters used. The prototype OMP machine will be initially applied for image processing, computer vision, and neural network simulation applications. We summarize important vision and imaging algorithms that can be restructured with neural network models. These algorithms can efficiently run on the OMP hardware with linear speedup. The ultimate goal is to develop a high-performance Visual Computer (Viscom) for integrated low- and high-level image processing and vision tasks.
Intelligent manipulation technique for multi-branch robotic systems
NASA Technical Reports Server (NTRS)
Chen, Alexander Y. K.; Chen, Eugene Y. S.
1990-01-01
New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.
A Self-Organizing Incremental Neural Network based on local distribution learning.
Xing, Youlu; Shi, Xiaofeng; Shen, Furao; Zhou, Ke; Zhao, Jinxi
2016-12-01
In this paper, we propose an unsupervised incremental learning neural network based on local distribution learning, which is called Local Distribution Self-Organizing Incremental Neural Network (LD-SOINN). The LD-SOINN combines the advantages of incremental learning and matrix learning. It can automatically discover suitable nodes to fit the learning data in an incremental way without a priori knowledge such as the structure of the network. The nodes of the network store rich local information regarding the learning data. The adaptive vigilance parameter guarantees that LD-SOINN is able to add new nodes for new knowledge automatically and the number of nodes will not grow unlimitedly. While the learning process continues, nodes that are close to each other and have similar principal components are merged to obtain a concise local representation, which we call a relaxation data representation. A denoising process based on density is designed to reduce the influence of noise. Experiments show that the LD-SOINN performs well on both artificial and real-word data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cui, Yiqian; Shi, Junyou; Wang, Zili
2015-11-01
Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Hooker, Jeffery A.
1992-03-01
The development of efficient high speed techniques to recognize, locate, and quantify damage is vitally important for successful automated inspection systems such as ones used for the inspection of undersea pipelines. Two critical problems must be solved to achieve these goals: the reduction of nonuseful information present in the video image and automatic recognition and quantification of extent and location of damage. Artificial neural network processed moire profilometry appears to be a promising technique to accomplish this. Real time video moire techniques have been developed which clearly distinguish damaged and undamaged areas on structures, thus reducing the amount of extraneous information input into an inspection system. Artificial neural networks have demonstrated advantages for image processing, since they can learn the desired response to a given input and are inherently fast when implemented in hardware due to their parallel computing architecture. Video moire images of pipes with dents of different depths were used to train a neural network, with the desired output being the location and severity of the damage. The system was then successfully tested with a second series of moire images. The techniques employed and the results obtained are discussed.
Statistical methods and neural network approaches for classification of data from multiple sources
NASA Technical Reports Server (NTRS)
Benediktsson, Jon Atli; Swain, Philip H.
1990-01-01
Statistical methods for classification of data from multiple data sources are investigated and compared to neural network models. A problem with using conventional multivariate statistical approaches for classification of data of multiple types is in general that a multivariate distribution cannot be assumed for the classes in the data sources. Another common problem with statistical classification methods is that the data sources are not equally reliable. This means that the data sources need to be weighted according to their reliability but most statistical classification methods do not have a mechanism for this. This research focuses on statistical methods which can overcome these problems: a method of statistical multisource analysis and consensus theory. Reliability measures for weighting the data sources in these methods are suggested and investigated. Secondly, this research focuses on neural network models. The neural networks are distribution free since no prior knowledge of the statistical distribution of the data is needed. This is an obvious advantage over most statistical classification methods. The neural networks also automatically take care of the problem involving how much weight each data source should have. On the other hand, their training process is iterative and can take a very long time. Methods to speed up the training procedure are introduced and investigated. Experimental results of classification using both neural network models and statistical methods are given, and the approaches are compared based on these results.
Hybrid computing using a neural network with dynamic external memory.
Graves, Alex; Wayne, Greg; Reynolds, Malcolm; Harley, Tim; Danihelka, Ivo; Grabska-Barwińska, Agnieszka; Colmenarejo, Sergio Gómez; Grefenstette, Edward; Ramalho, Tiago; Agapiou, John; Badia, Adrià Puigdomènech; Hermann, Karl Moritz; Zwols, Yori; Ostrovski, Georg; Cain, Adam; King, Helen; Summerfield, Christopher; Blunsom, Phil; Kavukcuoglu, Koray; Hassabis, Demis
2016-10-27
Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.
Buzaev, Igor Vyacheslavovich; Plechev, Vladimir Vyacheslavovich; Nikolaeva, Irina Evgenievna; Galimova, Rezida Maratovna
2016-09-01
The continuous uninterrupted feedback system is the essential part of any well-organized system. We propose aLYNX concept that is a possibility to use an artificial intelligence algorithm or a neural network model in decision-making system so as to avoid possible mistakes and to remind the doctors to review tactics once more in selected cases. aLYNX system includes: registry with significant factors, decisions and results; machine learning process based on this registry data; the use of the machine learning results as the adviser. We show a possibility to build a computer adviser with a neural network model for making a choice between coronary aortic bypass surgery (CABG) and percutaneous coronary intervention (PCI) in order to achieve a higher 5-year survival rate in patients with angina based on the experience of 5107 patients. The neural network was trained by 4679 patients who achieved 5-year survival. Among them, 2390 patients underwent PCI and 2289 CABG. After training, the correlation coefficient ( r ) of the network was 0.74 for training, 0.67 for validation, 0.71 for test and 0.73 for total. Simulation of the neural network function has been performed after training in the two groups of patients with known 5-year outcome. The disagreement rate was significantly higher in the dead patient group than that in the survivor group between neural network model and heart team [16.8% (787/4679) vs. 20.3% (87/428), P = 0.065)]. The study shows the possibility to build a computer adviser with a neural network model for making a choice between CABG and PCI in order to achieve a higher 5-year survival rate in patients with angina.
A Neural Network Aero Design System for Advanced Turbo-Engines
NASA Technical Reports Server (NTRS)
Sanz, Jose M.
1999-01-01
An inverse design method calculates the blade shape that produces a prescribed input pressure distribution. By controlling this input pressure distribution the aerodynamic design objectives can easily be met. Because of the intrinsic relationship between pressure distribution and airfoil physical properties, a Neural Network can be trained to choose the optimal pressure distribution that would meet a set of physical requirements. Neural network systems have been attempted in the context of direct design methods. From properties ascribed to a set of blades the neural network is trained to infer the properties of an 'interpolated' blade shape. The problem is that, especially in transonic regimes where we deal with intrinsically non linear and ill posed problems, small perturbations of the blade shape can produce very large variations of the flow parameters. It is very unlikely that, under these circumstances, a neural network will be able to find the proper solution. The unique situation in the present method is that the neural network can be trained to extract the required input pressure distribution from a database of pressure distributions while the inverse method will still compute the exact blade shape that corresponds to this 'interpolated' input pressure distribution. In other words, the interpolation process is transferred to a smoother problem, namely, finding what pressure distribution would produce the required flow conditions and, once this is done, the inverse method will compute the exact solution for this problem. The use of neural network is, in this context, highly related to the use of proper optimization techniques. The optimization is used essentially as an automation procedure to force the input pressure distributions to achieve the required aero and structural design parameters. A multilayered feed forward network with back-propagation is used to train the system for pattern association and classification.
Nakano, Takashi; Otsuka, Makoto; Yoshimoto, Junichiro; Doya, Kenji
2015-01-01
A theoretical framework of reinforcement learning plays an important role in understanding action selection in animals. Spiking neural networks provide a theoretically grounded means to test computational hypotheses on neurally plausible algorithms of reinforcement learning through numerical simulation. However, most of these models cannot handle observations which are noisy, or occurred in the past, even though these are inevitable and constraining features of learning in real environments. This class of problem is formally known as partially observable reinforcement learning (PORL) problems. It provides a generalization of reinforcement learning to partially observable domains. In addition, observations in the real world tend to be rich and high-dimensional. In this work, we use a spiking neural network model to approximate the free energy of a restricted Boltzmann machine and apply it to the solution of PORL problems with high-dimensional observations. Our spiking network model solves maze tasks with perceptually ambiguous high-dimensional observations without knowledge of the true environment. An extended model with working memory also solves history-dependent tasks. The way spiking neural networks handle PORL problems may provide a glimpse into the underlying laws of neural information processing which can only be discovered through such a top-down approach.
Nakano, Takashi; Otsuka, Makoto; Yoshimoto, Junichiro; Doya, Kenji
2015-01-01
A theoretical framework of reinforcement learning plays an important role in understanding action selection in animals. Spiking neural networks provide a theoretically grounded means to test computational hypotheses on neurally plausible algorithms of reinforcement learning through numerical simulation. However, most of these models cannot handle observations which are noisy, or occurred in the past, even though these are inevitable and constraining features of learning in real environments. This class of problem is formally known as partially observable reinforcement learning (PORL) problems. It provides a generalization of reinforcement learning to partially observable domains. In addition, observations in the real world tend to be rich and high-dimensional. In this work, we use a spiking neural network model to approximate the free energy of a restricted Boltzmann machine and apply it to the solution of PORL problems with high-dimensional observations. Our spiking network model solves maze tasks with perceptually ambiguous high-dimensional observations without knowledge of the true environment. An extended model with working memory also solves history-dependent tasks. The way spiking neural networks handle PORL problems may provide a glimpse into the underlying laws of neural information processing which can only be discovered through such a top-down approach. PMID:25734662
Neural and Neural Gray-Box Modeling for Entry Temperature Prediction in a Hot Strip Mill
NASA Astrophysics Data System (ADS)
Barrios, José Angel; Torres-Alvarado, Miguel; Cavazos, Alberto; Leduc, Luis
2011-10-01
In hot strip mills, initial controller set points have to be calculated before the steel bar enters the mill. Calculations rely on the good knowledge of rolling variables. Measurements are available only after the bar has entered the mill, and therefore they have to be estimated. Estimation of process variables, particularly that of temperature, is of crucial importance for the bar front section to fulfill quality requirements, and the same must be performed in the shortest possible time to preserve heat. Currently, temperature estimation is performed by physical modeling; however, it is highly affected by measurement uncertainties, variations in the incoming bar conditions, and final product changes. In order to overcome these problems, artificial intelligence techniques such as artificial neural networks and fuzzy logic have been proposed. In this article, neural network-based systems, including neural-based Gray-Box models, are applied to estimate scale breaker entry temperature, given its importance, and their performance is compared to that of the physical model used in plant. Several neural systems and several neural-based Gray-Box models are designed and tested with real data. Taking advantage of the flexibility of neural networks for input incorporation, several factors which are believed to have influence on the process are also tested. The systems proposed in this study were proven to have better performance indexes and hence better prediction capabilities than the physical models currently used in plant.
Hu, Weiming; Fan, Yabo; Xing, Junliang; Sun, Liang; Cai, Zhaoquan; Maybank, Stephen
2018-09-01
We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural network and load-balanced locality-sensitive hashing (LSH) indexing. We propose a deep constrained siamese hash coding neural network combined with deep feature learning. Our neural network is able to extract effective features for near duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image detection. Extensive experiments on three benchmark data sets demonstrate the effectiveness of our deep siamese hash encoding network and load-balanced LSH.
Plagianakos, V P; Magoulas, G D; Vrahatis, M N
2006-03-01
Distributed computing is a process through which a set of computers connected by a network is used collectively to solve a single problem. In this paper, we propose a distributed computing methodology for training neural networks for the detection of lesions in colonoscopy. Our approach is based on partitioning the training set across multiple processors using a parallel virtual machine. In this way, interconnected computers of varied architectures can be used for the distributed evaluation of the error function and gradient values, and, thus, training neural networks utilizing various learning methods. The proposed methodology has large granularity and low synchronization, and has been implemented and tested. Our results indicate that the parallel virtual machine implementation of the training algorithms developed leads to considerable speedup, especially when large network architectures and training sets are used.
An Investigation of the Application of Artificial Neural Networks to Adaptive Optics Imaging Systems
1991-12-01
neural network and the feedforward neural network studied is the single layer perceptron artificial neural network . The recurrent artificial neural network input...features are the wavefront sensor slope outputs and neighboring actuator feedback commands. The feedforward artificial neural network input
Neuronal avalanches of a self-organized neural network with active-neuron-dominant structure.
Li, Xiumin; Small, Michael
2012-06-01
Neuronal avalanche is a spontaneous neuronal activity which obeys a power-law distribution of population event sizes with an exponent of -3/2. It has been observed in the superficial layers of cortex both in vivo and in vitro. In this paper, we analyze the information transmission of a novel self-organized neural network with active-neuron-dominant structure. Neuronal avalanches can be observed in this network with appropriate input intensity. We find that the process of network learning via spike-timing dependent plasticity dramatically increases the complexity of network structure, which is finally self-organized to be active-neuron-dominant connectivity. Both the entropy of activity patterns and the complexity of their resulting post-synaptic inputs are maximized when the network dynamics are propagated as neuronal avalanches. This emergent topology is beneficial for information transmission with high efficiency and also could be responsible for the large information capacity of this network compared with alternative archetypal networks with different neural connectivity.
Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.
Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora
2018-07-01
Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Nicolosi, L.; Abt, F.; Blug, A.; Heider, A.; Tetzlaff, R.; Höfler, H.
2012-01-01
Real-time monitoring of laser beam welding (LBW) has increasingly gained importance in several manufacturing processes ranging from automobile production to precision mechanics. In the latter, a novel algorithm for the real-time detection of spatters was implemented in a camera based on cellular neural networks. The latter can be connected to the optics of commercially available laser machines leading to real-time monitoring of LBW processes at rates up to 15 kHz. Such high monitoring rates allow the integration of other image evaluation tasks such as the detection of the full penetration hole for real-time control of process parameters.
Chen, Liang; Xue, Wei; Tokuda, Naoyuki
2010-08-01
In many pattern classification/recognition applications of artificial neural networks, an object to be classified is represented by a fixed sized 2-dimensional array of uniform type, which corresponds to the cells of a 2-dimensional grid of the same size. A general neural network structure, called an undistricted neural network, which takes all the elements in the array as inputs could be used for problems such as these. However, a districted neural network can be used to reduce the training complexity. A districted neural network usually consists of two levels of sub-neural networks. Each of the lower level neural networks, called a regional sub-neural network, takes the elements in a region of the array as its inputs and is expected to output a temporary class label, called an individual opinion, based on the partial information of the entire array. The higher level neural network, called an assembling sub-neural network, uses the outputs (opinions) of regional sub-neural networks as inputs, and by consensus derives the label decision for the object. Each of the sub-neural networks can be trained separately and thus the training is less expensive. The regional sub-neural networks can be trained and performed in parallel and independently, therefore a high speed can be achieved. We prove theoretically in this paper, using a simple model, that a districted neural network is actually more stable than an undistricted neural network in noisy environments. We conjecture that the result is valid for all neural networks. This theory is verified by experiments involving gender classification and human face recognition. We conclude that a districted neural network is highly recommended for neural network applications in recognition or classification of 2-dimensional array patterns in highly noisy environments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2004-01-01
A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation table in the presence of various sources of laboratory noise is shown. The output of the neural network is called the degradable classification index. The curve was generated by a simultaneous comparison of means, and it shows a peak-to-peak sensitivity of about 100 nm. The following graph uses model generated data from a compressor blade to show that much higher sensitivities are possible when the environment can be controlled better. The peak-to-peak sensitivity here is about 20 nm. The training procedure was modified for the second graph, and the data were subjected to an intensity-dependent transformation called folding. All the measurements for this approach to calibration were optical. The peak-to-peak amplitudes of the vibration modes were measured using heterodyne interferometry, and the modes themselves were recorded using television (electronic) holography.
Image texture segmentation using a neural network
NASA Astrophysics Data System (ADS)
Sayeh, Mohammed R.; Athinarayanan, Ragu; Dhali, Pushpuak
1992-09-01
In this paper we use a neural network called the Lyapunov associative memory (LYAM) system to segment image texture into different categories or clusters. The LYAM system is constructed by a set of ordinary differential equations which are simulated on a digital computer. The clustering can be achieved by using a single tuning parameter in the simplest model. Pattern classes are represented by the stable equilibrium states of the system. Design of the system is based on synthesizing two local energy functions, namely, the learning and recall energy functions. Before the implementation of the segmentation process, a Gauss-Markov random field (GMRF) model is applied to the raw image. This application suitably reduces the image data and prepares the texture information for the neural network process. We give a simple image example illustrating the capability of the technique. The GMRF-generated features are also used for a clustering, based on the Euclidean distance.
Plitt, Mark; Savjani, Ricky R; Eagleman, David M
2015-04-01
To investigate whether the legal concept of "corporate personhood" mirrors an inherent similarity in the neural processing of the actions of corporations and people, we measured brain responses to vignettes about corporations and people while participants underwent functional magnetic resonance imaging. We found that anti-social actions of corporations elicited more intense negative emotions and that pro-social actions of people elicited more intense positive emotions. However, the networks underlying the moral decisions about corporations and people are strikingly similar, including regions of the canonical theory of mind network. In analyzing the activity in these networks, we found differences in the emotional processing of these two types of vignettes: neutral actions of corporations showed neural correlates that more closely resembled negative actions than positive actions. Collectively, these findings indicate that our brains understand and analyze the actions of corporations and people very similarly, with a small emotional bias against corporations.
Wang, Jie-sheng; Li, Shu-xia; Gao, Jie
2014-01-01
For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.
NASA Astrophysics Data System (ADS)
Pusuluri, Sai Teja
Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features. These results show how the static landscape features can be controlled by adjusting the correlations between patterns. Finally, I explore the dynamical features of landscapes generated using neural network models such as the stability of minima and the transition rates between minima. The results from this project show that the stability depends on the correlations between patterns. It is also found that the transition rates between minima strongly depend on the type of bias applied and the correlation between patterns. The results from this part of the dissertation can be useful in engineering an energy landscape without even having the complete information about the associated minima of the landscape.
1995-11-01
network - based AFS concepts. Neural networks can addition of vanes in each engine exhaust for thrust provide...parameter estimation programs 19-11 8.6 Neural Network Based Methods unknown parameters of the postulated state space model Artificial neural network ...Forward Neural Network the network that the applicability of the recurrent neural and ii) Recurrent Neural Network [117-119]. network to
The functional neuroanatomy of autobiographical memory: A meta-analysis
Svoboda, Eva; McKinnon, Margaret C.; Levine, Brian
2007-01-01
Autobiographical memory (AM) entails a complex set of operations, including episodic memory, self-reflection, emotion, visual imagery, attention, executive functions, and semantic processes. The heterogeneous nature of AM poses significant challenges in capturing its behavioral and neuroanatomical correlates. Investigators have recently turned their attention to the functional neuroanatomy of AM. We used the effect-location method of meta-analysis to analyze data from 24 functional imaging studies of AM. The results indicated a core neural network of left-lateralized regions, including the medial and ventrolateral prefrontal, medial and lateral temporal and retrosplenial/posterior cingulate cortices, the temporoparietal junction and the cerebellum. Secondary and tertiary regions, less frequently reported in imaging studies of AM, are also identified. We examined the neural correlates of putative component processes in AM, including, executive functions, self-reflection, episodic remembering and visuospatial processing. We also separately analyzed the effect of select variables on the AM network across individual studies, including memory age, qualitative factors (personal significance, level of detail and vividness), semantic and emotional content, and the effect of reference conditions. We found that memory age effects on medial temporal lobe structures may be modulated by qualitative aspects of memory. Studies using rest as a control task masked process-specific components of the AM neural network. Our findings support a neural distinction between episodic and semantic memory in AM. Finally, emotional events produced a shift in lateralization of the AM network with activation observed in emotion-centered regions and deactivation (or lack of activation) observed in regions associated with cognitive processes. PMID:16806314
NASA Astrophysics Data System (ADS)
Fatimah, S.; Wiharto, W.
2017-02-01
Acid Orange 7 (AO7) is one of the synthetic dye in the dyeing process in the textile industry. The use of this dye can produce wastewater which will be endangered if not treated well. Ozonation method is one technique to solve this problem. Ozonation is a waste processing techniques using ozone as an oxidizing agent. Variables used in this research is the ozone concentration, the initial concentration of AO7, temperature, and pH. Based on the experimental result that the optimum value decolourization percentage is 80% when the ozone concentration is 560 mg/L, the initial concentration AO7 is 14 mg/L, the temperature is 390 °C, and pH is 7,6. Decolourization efficiency of experimental results and predictions successfully modelled by the neural network architecture. The data used to construct a neural network architecture quasi newton one step secant as many as 31 data. A comparison between the predicted results of the designed ANN models and experiment was conducted. From the modeling results obtained MAPE value of 0.7763%. From the results of this artificial neural network architecture obtained the optimum value decolourization percentage in 80,64% when the concentration of ozone is 550 mg/L, the initial concentration AO7 is 11 mg/L, the temperature is 41 °C, and the pH is 7.9.
[A wavelet neural network algorithm of EEG signals data compression and spikes recognition].
Zhang, Y; Liu, A; Yu, K
1999-06-01
A novel method of EEG signals compression representation and epileptiform spikes recognition based on wavelet neural network and its algorithm is presented. The wavelet network not only can compress data effectively but also can recover original signal. In addition, the characters of the spikes and the spike-slow rhythm are auto-detected from the time-frequency isoline of EEG signal. This method is well worth using in the field of the electrophysiological signal processing and time-frequency analyzing.
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Shelton, Robert O.
1991-01-01
Introduced here is a novel technique which adds the dimension of time to the well known back propagation neural network algorithm. Cited here are several reasons why the inclusion of automated spatial and temporal associations are crucial to effective systems modeling. An overview of other works which also model spatiotemporal dynamics is furnished. A detailed description is given of the processes necessary to implement the space-time network algorithm. Several demonstrations that illustrate the capabilities and performance of this new architecture are given.
NASA Astrophysics Data System (ADS)
Bazhin, V. Yu; Danilov, I. V.; Petrov, P. A.
2018-05-01
During the casting of light alloys and ligatures based on aluminum and magnesium, problems of the qualitative distribution of the metal and its crystallization in the mold arise. To monitor the defects of molds on the casting conveyor, a camera with a resolution of 780 x 580 pixels and a shooting rate of 75 frames per second was selected. Images of molds from casting machines were used as input data for neural network algorithm. On the preparation of a digital database and its analytical evaluation stage, the architecture of the convolutional neural network was chosen for the algorithm. The information flow from the local controller is transferred to the OPC server and then to the SCADA system of foundry. After the training, accuracy of neural network defect recognition was about 95.1% on a validation split. After the training, weight coefficients of the neural network were used on testing split and algorithm had identical accuracy with validation images. The proposed technical solutions make it possible to increase the efficiency of the automated process control system in the foundry by expanding the digital database.
Testolin, Alberto; Zorzi, Marco
2016-01-01
Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage. PMID:27468262
NASA Astrophysics Data System (ADS)
Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh
2016-09-01
Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.
Multi-Temporal Land Cover Classification with Long Short-Term Memory Neural Networks
NASA Astrophysics Data System (ADS)
Rußwurm, M.; Körner, M.
2017-05-01
Land cover classification (LCC) is a central and wide field of research in earth observation and has already put forth a variety of classification techniques. Many approaches are based on classification techniques considering observation at certain points in time. However, some land cover classes, such as crops, change their spectral characteristics due to environmental influences and can thus not be monitored effectively with classical mono-temporal approaches. Nevertheless, these temporal observations should be utilized to benefit the classification process. After extensive research has been conducted on modeling temporal dynamics by spectro-temporal profiles using vegetation indices, we propose a deep learning approach to utilize these temporal characteristics for classification tasks. In this work, we show how long short-term memory (LSTM) neural networks can be employed for crop identification purposes with SENTINEL 2A observations from large study areas and label information provided by local authorities. We compare these temporal neural network models, i.e., LSTM and recurrent neural network (RNN), with a classical non-temporal convolutional neural network (CNN) model and an additional support vector machine (SVM) baseline. With our rather straightforward LSTM variant, we exceeded state-of-the-art classification performance, thus opening promising potential for further research.
Testolin, Alberto; Zorzi, Marco
2016-01-01
Connectionist models can be characterized within the more general framework of probabilistic graphical models, which allow to efficiently describe complex statistical distributions involving a large number of interacting variables. This integration allows building more realistic computational models of cognitive functions, which more faithfully reflect the underlying neural mechanisms at the same time providing a useful bridge to higher-level descriptions in terms of Bayesian computations. Here we discuss a powerful class of graphical models that can be implemented as stochastic, generative neural networks. These models overcome many limitations associated with classic connectionist models, for example by exploiting unsupervised learning in hierarchical architectures (deep networks) and by taking into account top-down, predictive processing supported by feedback loops. We review some recent cognitive models based on generative networks, and we point out promising research directions to investigate neuropsychological disorders within this approach. Though further efforts are required in order to fill the gap between structured Bayesian models and more realistic, biophysical models of neuronal dynamics, we argue that generative neural networks have the potential to bridge these levels of analysis, thereby improving our understanding of the neural bases of cognition and of pathologies caused by brain damage.
Wang, Xin; Wang, Ying; Sun, Hongbin
2016-01-01
In social media, trust and distrust among users are important factors in helping users make decisions, dissect information, and receive recommendations. However, the sparsity and imbalance of social relations bring great difficulties and challenges in predicting trust and distrust. Meanwhile, there are numerous inducing factors to determine trust and distrust relations. The relationship among inducing factors may be dependency, independence, and conflicting. Dempster-Shafer theory and neural network are effective and efficient strategies to deal with these difficulties and challenges. In this paper, we study trust and distrust prediction based on the combination of Dempster-Shafer theory and neural network. We firstly analyze the inducing factors about trust and distrust, namely, homophily, status theory, and emotion tendency. Then, we quantify inducing factors of trust and distrust, take these features as evidences, and construct evidence prototype as input nodes of multilayer neural network. Finally, we propose a framework of predicting trust and distrust which uses multilayer neural network to model the implementing process of Dempster-Shafer theory in different hidden layers, aiming to overcome the disadvantage of Dempster-Shafer theory without optimization method. Experimental results on a real-world dataset demonstrate the effectiveness of the proposed framework. PMID:27034651
Ebner, Marc; Hameroff, Stuart
2011-01-01
Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on “autopilot”). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the “conscious pilot”) suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious “auto-pilot” cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways “gap junctions” in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain. PMID:22046178
Ebner, Marc; Hameroff, Stuart
2011-01-01
Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on "autopilot"). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the "conscious pilot") suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious "auto-pilot" cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways "gap junctions" in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain.
Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Performance
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Rai, Man Mohan; Huber, Frank W.
1998-01-01
A recently developed neural net-based aerodynamic design procedure is used in the redesign of a transonic turbine stage to improve its unsteady aerodynamic performance. The redesign procedure used incorporates the advantages of both traditional response surface methodology (RSM) and neural networks by employing a strategy called parameter-based partitioning of the design space. Starting from the reference design, a sequence of response surfaces based on both neural networks and polynomial fits are constructed to traverse the design space in search of an optimal solution that exhibits improved unsteady performance. The procedure combines the power of neural networks and the economy of low-order polynomials (in terms of number of simulations required and network training requirements). A time-accurate, two-dimensional, Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the optimization procedure. The optimization procedure yields a modified design that improves the aerodynamic performance through small changes to the reference design geometry. The computed results demonstrate the capabilities of the neural net-based design procedure, and also show the tremendous advantages that can be gained by including high-fidelity unsteady simulations that capture the relevant flow physics in the design optimization process.
NASA Technical Reports Server (NTRS)
Glass, Charles E.; Boyd, Richard V.; Sternberg, Ben K.
1991-01-01
The overall aim is to provide base technology for an automated vision system for on-board interpretation of geophysical data. During the first year's work, it was demonstrated that geophysical data can be treated as patterns and interpreted using single neural networks. Current research is developing an integrated vision system comprising neural networks, algorithmic preprocessing, and expert knowledge. This system is to be tested incrementally using synthetic geophysical patterns, laboratory generated geophysical patterns, and field geophysical patterns.
Georgescu, Alexandra L; Kuzmanovic, Bojana; Santos, Natacha S; Tepest, Ralf; Bente, Gary; Tittgemeyer, Marc; Vogeley, Kai
2014-04-01
Despite the fact that nonverbal dyadic social interactions are abundant in the environment, the neural mechanisms underlying their processing are not yet fully understood. Research in the field of social neuroscience has suggested that two neural networks appear to be involved in social understanding: (1) the action observation network (AON) and (2) the social neural network (SNN). The aim of this study was to determine the differential contributions of the AON and the SNN to the processing of nonverbal behavior as observed in dyadic social interactions. To this end, we used short computer animation sequences displaying dyadic social interactions between two virtual characters and systematically manipulated two key features of movement activity, which are known to influence the perception of meaning in nonverbal stimuli: (1) movement fluency and (2) contingency of movement patterns. A group of 21 male participants rated the "naturalness" of the observed scenes on a four-point scale while undergoing fMRI. Behavioral results showed that both fluency and contingency significantly influenced the "naturalness" experience of the presented animations. Neurally, the AON was preferentially engaged when processing contingent movement patterns, but did not discriminate between different degrees of movement fluency. In contrast, regions of the SNN were engaged more strongly when observing dyads with disturbed movement fluency. In conclusion, while the AON is involved in the general processing of contingent social actions, irrespective of their kinematic properties, the SNN is preferentially recruited when atypical kinematic properties prompt inferences about the agents' intentions. Copyright © 2013 Wiley Periodicals, Inc.
[GSH fermentation process modeling using entropy-criterion based RBF neural network model].
Tan, Zuoping; Wang, Shitong; Deng, Zhaohong; Du, Guocheng
2008-05-01
The prediction accuracy and generalization of GSH fermentation process modeling are often deteriorated by noise existing in the corresponding experimental data. In order to avoid this problem, we present a novel RBF neural network modeling approach based on entropy criterion. It considers the whole distribution structure of the training data set in the parameter learning process compared with the traditional MSE-criterion based parameter learning, and thus effectively avoids the weak generalization and over-learning. Then the proposed approach is applied to the GSH fermentation process modeling. Our results demonstrate that this proposed method has better prediction accuracy, generalization and robustness such that it offers a potential application merit for the GSH fermentation process modeling.
Neural networks for aircraft control
NASA Technical Reports Server (NTRS)
Linse, Dennis
1990-01-01
Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.
Pilots Rate Augmented Generalized Predictive Control for Reconfiguration
NASA Technical Reports Server (NTRS)
Soloway, Don; Haley, Pam
2004-01-01
The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.
Detection of Road Surface States from Tire Noise Using Neural Network Analysis
NASA Astrophysics Data System (ADS)
Kongrattanaprasert, Wuttiwat; Nomura, Hideyuki; Kamakura, Tomoo; Ueda, Koji
This report proposes a new processing method for automatically detecting the states of road surfaces from tire noises of passing vehicles. In addition to multiple indicators of the signal features in the frequency domain, we propose a few feature indicators in the time domain to successfully classify the road states into four categories: snowy, slushy, wet, and dry states. The method is based on artificial neural networks. The proposed classification is carried out in multiple neural networks using learning vector quantization. The outcomes of the networks are then integrated by the voting decision-making scheme. Experimental results obtained from recorded signals for ten days in the snowy season demonstrated that an accuracy of approximately 90% can be attained for predicting road surface states using only tire noise data.
Overview of artificial neural networks.
Zou, Jinming; Han, Yi; So, Sung-Sau
2008-01-01
The artificial neural network (ANN), or simply neural network, is a machine learning method evolved from the idea of simulating the human brain. The data explosion in modem drug discovery research requires sophisticated analysis methods to uncover the hidden causal relationships between single or multiple responses and a large set of properties. The ANN is one of many versatile tools to meet the demand in drug discovery modeling. Compared to a traditional regression approach, the ANN is capable of modeling complex nonlinear relationships. The ANN also has excellent fault tolerance and is fast and highly scalable with parallel processing. This chapter introduces the background of ANN development and outlines the basic concepts crucially important for understanding more sophisticated ANN. Several commonly used learning methods and network setups are discussed briefly at the end of the chapter.
Short-term PV/T module temperature prediction based on PCA-RBF neural network
NASA Astrophysics Data System (ADS)
Li, Jiyong; Zhao, Zhendong; Li, Yisheng; Xiao, Jing; Tang, Yunfeng
2018-02-01
Aiming at the non-linearity and large inertia of temperature control in PV/T system, short-term temperature prediction of PV/T module is proposed, to make the PV/T system controller run forward according to the short-term forecasting situation to optimize control effect. Based on the analysis of the correlation between PV/T module temperature and meteorological factors, and the temperature of adjacent time series, the principal component analysis (PCA) method is used to pre-process the original input sample data. Combined with the RBF neural network theory, the simulation results show that the PCA method makes the prediction accuracy of the network model higher and the generalization performance stronger than that of the RBF neural network without the main component extraction.
Transversal homoclinic orbits in a transiently chaotic neural network.
Chen, Shyan-Shiou; Shih, Chih-Wen
2002-09-01
We study the existence of snap-back repellers, hence the existence of transversal homoclinic orbits in a discrete-time neural network. Chaotic behaviors for the network system in the sense of Li and Yorke or Marotto can then be concluded. The result is established by analyzing the structures of the system and allocating suitable parameters in constructing the fixed points and their pre-images for the system. The investigation provides a theoretical confirmation on the scenario of transient chaos for the system. All the parameter conditions for the theory can be examined numerically. The numerical ranges for the parameters which yield chaotic dynamics and convergent dynamics provide significant information in the annealing process in solving combinatorial optimization problems using this transiently chaotic neural network. (c) 2002 American Institute of Physics.
Neural network modeling of emotion
NASA Astrophysics Data System (ADS)
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
Cognitive Processing Hardware Elements
2005-01-31
characters. Results will be presented below. 1 4. Recognition of human faces. There are many other possible applications such as facial recognition and...For the experiments in facial recognition , we have used a 3-layer autoassociative neural network having the following specifications: "* The input...using the facial recognition system described in the section above as an example. This system uses an autoassociative neural network containing over 10
Study on feed forward neural network convex optimization for LiFePO4 battery parameters
NASA Astrophysics Data System (ADS)
Liu, Xuepeng; Zhao, Dongmei
2017-08-01
Based on the modern facility agriculture automatic walking equipment LiFePO4 Battery, the parameter identification of LiFePO4 Battery is analyzed. An improved method for the process model of li battery is proposed, and the on-line estimation algorithm is presented. The parameters of the battery are identified using feed forward network neural convex optimization algorithm.
Neural network architectures to analyze OPAD data
NASA Technical Reports Server (NTRS)
Whitaker, Kevin W.
1992-01-01
A prototype Optical Plume Anomaly Detection (OPAD) system is now installed on the space shuttle main engine (SSME) Technology Test Bed (TTB) at MSFC. The OPAD system requirements dictate the need for fast, efficient data processing techniques. To address this need of the OPAD system, a study was conducted into how artificial neural networks could be used to assist in the analysis of plume spectral data.
Disordered models of acquired dyslexia
NASA Astrophysics Data System (ADS)
Virasoro, M. A.
We show that certain specific correlations in the probability of errors observed in dyslexic patients that are normally explained by introducing additional complexity in the model for the reading process are typical of any Neural Network system that has learned to deal with a quasiregular environment. On the other hand we show that in Neural Networks the more regular behavior does not become naturally the default behavior.
The Development of a Research Environment for Neural Networks: Instantiating Neocognitions
1990-12-21
interactive activation to adaptive reso- nance. Cognitive Science, 11:23-63. Reprinted in (Grossberg, 1988). Grossberg, S., editor (1988). Neural...higher order correlation network. Physica 22D, pages 276-306. Rosenblatt, F. (1962). Principles of Neurodynamics : Perceptrons and the Theory of Brain...and the PDP Research Group (1986b). Parallel Dis- tributed Processing: Ezplorations in the Microstructures of Cognition , volume 1: Foun- dations
An Expert System for Processing Uncorrelated Satellite Tracks
1992-12-17
earthworms with much intellect e\\en though they routinely carry out this same function. One definition given artificial intelligence is "the study of mental...Networks: Benchmarking Studies ," Proceedings from the IEEE International Conference on Neural Networkv. pp. 64-65, 1988. 229 Lyddane, R., "Small...reverse if necessary and rdenqtl_ by block number, Field Group Subgroup Artificial Intelligence, Expert Systems, Neural Networks. Orbital Mechanics
NASA Technical Reports Server (NTRS)
Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.
1998-01-01
The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model-generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.
NASA Technical Reports Server (NTRS)
Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.
1998-01-01
The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model- generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.