Sample records for neural network subserving

  1. Neurobiological correlates of social functioning in autism.

    PubMed

    Neuhaus, Emily; Beauchaine, Theodore P; Bernier, Raphael

    2010-08-01

    Although autism is defined by deficits in three areas of functioning (social, communicative, and behavioral), impairments in social interest and restricted behavioral repertoires are central to the disorder. As a result, a detailed understanding of the neurobiological systems subserving social behavior may have implications for prevention, early identification, and intervention for affected families. In this paper, we review a number of potential neurobiological mechanisms--across several levels of analysis--that subserve normative social functioning. These include neural networks, neurotransmitters, and hormone systems. After describing the typical functioning of each system, we review available empirical findings specific to autism. Among the most promising potential mechanisms of social behavioral deficits in autism are those involving neural networks including the amygdala, the mesocorticolimbic dopamine system, and the oxytocin system. Particularly compelling are explanatory models that integrate mechanisms across biological systems, such as those linking dopamine and oxytocin with brain regions critical to reward processing. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Functional mapping of the neural circuitry of rat maternal motivation: effects of site-specific transient neural inactivation

    PubMed Central

    Pereira, Mariana; Morrell, Joan I.

    2011-01-01

    The present review focuses on recent studies from our laboratory examining the neural circuitry subserving rat maternal motivation across postpartum. We employed a site-specific neural inactivation method by infusion of bupivacaine to map the maternal motivation circuitry using two complementary behavioral approaches: unconditioned maternal responsiveness and choice of pup- over cocaine-conditioned incentives in a concurrent pup/cocaine choice conditioned place preference task. Our findings revealed that during the early postpartum period, distinct brain structures, including the medial preoptic area, ventral tegmental area and medial prefrontal cortex infralimbic and anterior cingulate subregions, contribute a pup-specific bias to the motivational circuitry. As the postpartum period progresses and the pups grow older, our findings further revealed that maternal responsiveness becomes progressively less dependent on medial preoptic area and medial prefrontal cortex infralimbic activity, and more distributed in the maternal circuitry, such that additional network components, including the medial prefrontal cortex prelimbic subregion, are recruited with maternal experience, and contribute to the expression of late postpartum maternal behavior. Collectively, our findings provide strong evidence that the remarkable ability of postpartum females to successfully care for their developing infants is subserved by a distributed neural network that carries out efficient and dynamic processing of complex, constantly changing incoming environmental and pup-related stimuli, ultimately allowing the progression of appropriate expression and waning of maternal responsiveness across the postpartum period. PMID:21815954

  3. Training Attentional Control and Working Memory--Is Younger, Better?

    ERIC Educational Resources Information Center

    Wass, S. V.; Scerif, G.; Johnson, M. H.

    2012-01-01

    Authors have argued that various forms of interventions may be more effective in younger children. Is cognitive training also more effective, the earlier the training is applied? We review evidence suggesting that functional neural networks, including those subserving attentional control, may be more unspecialised and undifferentiated earlier in…

  4. Brain and language: evidence for neural multifunctionality.

    PubMed

    Cahana-Amitay, Dalia; Albert, Martin L

    2014-01-01

    This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term "neural multifunctionality" refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging.

  5. Modulation of neural circuits underlying temporal production by facial expressions of pain.

    PubMed

    Ballotta, Daniela; Lui, Fausta; Porro, Carlo Adolfo; Nichelli, Paolo Frigio; Benuzzi, Francesca

    2018-01-01

    According to the Scalar Expectancy Theory, humans are equipped with a biological internal clock, possibly modulated by attention and arousal. Both emotions and pain are arousing and can absorb attentional resources, thus causing distortions of temporal perception. The aims of the present single-event fMRI study were to investigate: a) whether observation of facial expressions of pain interferes with time production; and b) the neural network subserving this kind of temporal distortions. Thirty healthy volunteers took part in the study. Subjects were asked to perform a temporal production task and a concurrent gender discrimination task, while viewing faces of unknown people with either pain-related or neutral expressions. Behavioural data showed temporal underestimation (i.e., longer produced intervals) during implicit pain expression processing; this was accompanied by increased activity of right middle temporal gyrus, a region known to be active during the perception of emotional and painful faces. Psycho-Physiological Interaction analyses showed that: 1) the activity of middle temporal gyrus was positively related to that of areas previously reported to play a role in timing: left primary motor cortex, middle cingulate cortex, supplementary motor area, right anterior insula, inferior frontal gyrus, bilateral cerebellum and basal ganglia; 2) the functional connectivity of supplementary motor area with several frontal regions, anterior cingulate cortex and right angular gyrus was correlated to the produced interval during painful expression processing. Our data support the hypothesis that observing emotional expressions distorts subjective time perception through the interaction of the neural network subserving processing of facial expressions with the brain network involved in timing. Within this frame, middle temporal gyrus appears to be the key region of the interplay between the two neural systems.

  6. The fragmented self: imbalance between intrinsic and extrinsic self-networks in psychotic disorders.

    PubMed

    Ebisch, Sjoerd J H; Aleman, André

    2016-08-01

    Self-disturbances are among the core features of schizophrenia and related psychotic disorders. The basic structure of the self could depend on the balance between intrinsic and extrinsic self-processing. We discuss studies on self-related processing in psychotic disorders that provide converging evidence for disrupted communication between neural networks subserving the so-called intrinsic self and extrinsic self. This disruption might be mainly caused by impaired integrity of key brain hubs. The intrinsic self has been associated with cortical midline structures involved in self-referential processing, autobiographical memory, and emotional evaluation. Additionally, we highlight central aspects of the extrinsic self in its interaction with the environment using sensorimotor networks, including self-experience in sensation and actions. A deficient relationship between these self-aspects because of disrupted between-network interactions offers a framework to explain core clinical features of psychotic disorders. In particular, we show how relative isolation and reduced modularity of networks subserving intrinsic and extrinsic self-processing might trigger the emergence of hallucinations and delusions, and why patients with psychosis typically have difficulties with self-other relationships and do not recognise mental problems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Brain and Language: Evidence for Neural Multifunctionality

    PubMed Central

    Cahana-Amitay, Dalia; Albert, Martin L.

    2014-01-01

    This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term “neural multifunctionality” refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging. PMID:25009368

  8. Gender differences in the functional neuroanatomy of emotional episodic autobiographical memory.

    PubMed

    Piefke, Martina; Weiss, Peter H; Markowitsch, Hans J; Fink, Gereon R

    2005-04-01

    Autobiographical memory is based on interactions between episodic memory contents, associated emotions, and a sense of self-continuity along the time axis of one's life. The functional neuroanatomy subserving autobiographical memory is known to include prefrontal, medial and lateral temporal, as well as retrosplenial brain areas; however, whether gender differences exist in neural correlates of autobiographical memory remains to be clarified. We reanalyzed data from a previous functional magnetic resonance imaging (fMRI) experiment to investigate gender-related differences in the neural bases of autobiographical memories with differential remoteness and emotional valence. On the behavioral level, there were no significant gender differences in memory performance or emotional intensity of memories. Activations common to males and females during autobiographical memory retrieval were observed in a bilateral network of brain areas comprising medial and lateral temporal regions, including hippocampal and parahippocampal structures, posterior cingulate, as well as prefrontal cortex. In males (relative to females), all types of autobiographical memories investigated were associated with differential activation of the left parahippocampal gyrus. By contrast, right dorsolateral prefrontal cortex was activated differentially by females. In addition, the right insula was activated differentially in females during remote and negative memory retrieval. The data show gender-related differential neural activations within the network subserving autobiographical memory in both genders. We suggest that the differential activations may reflect gender-specific cognitive strategies during access to autobiographical memories that do not necessarily affect the behavioral level of memory performance and emotionality. (c) 2005 Wiley-Liss, Inc.

  9. Semantic and episodic memory of music are subserved by distinct neural networks.

    PubMed

    Platel, Hervé; Baron, Jean-Claude; Desgranges, Béatrice; Bernard, Frédéric; Eustache, Francis

    2003-09-01

    Numerous functional imaging studies have shown that retrieval from semantic and episodic memory is subserved by distinct neural networks. However, these results were essentially obtained with verbal and visuospatial material. The aim of this work was to determine the neural substrates underlying the semantic and episodic components of music using familiar and nonfamiliar melodic tunes. To study musical semantic memory, we designed a task in which the instruction was to judge whether or not the musical extract was felt as "familiar." To study musical episodic memory, we constructed two delayed recognition tasks, one containing only familiar and the other only nonfamiliar items. For each recognition task, half of the extracts (targets) were presented in the prior semantic task. The episodic and semantic tasks were to be contrasted by a comparison to two perceptive control tasks and to one another. Cerebral blood flow was assessed by means of the oxygen-15-labeled water injection method, using high-resolution PET. Distinct patterns of activations were found. First, regarding the episodic memory condition, bilateral activations of the middle and superior frontal gyri and precuneus (more prominent on the right side) were observed. Second, the semantic memory condition disclosed extensive activations in the medial and orbital frontal cortex bilaterally, the left angular gyrus, and predominantly the left anterior part of the middle temporal gyri. The findings from this study are discussed in light of the available neuropsychological data obtained in brain-damaged subjects and functional neuroimaging studies.

  10. Sustaining Attention to Simple Tasks: A Meta-Analytic Review of the Neural Mechanisms of Vigilant Attention

    PubMed Central

    Langner, Robert; Eickhoff, Simon B.

    2012-01-01

    Maintaining attention for more than a few seconds is essential for mastering everyday life. Yet, our ability to stay focused on a particular task is limited, resulting in well-known performance decrements with increasing time on task. Intriguingly, such decrements are even more likely if the task is cognitively simple and repetitive. The attentional function that enables our prolonged engagement in intellectually unchallenging, uninteresting activities has been termed “vigilant attention.” Here we synthesized what we have learnt from functional neuroimaging about the mechanisms of this essential mental faculty. To this end, a quantitative meta-analysis of pertinent neuroimaging studies was performed, including supplementary analyses of moderating factors. Furthermore, we reviewed the available evidence on neural time-on-task effects, additionally considering information obtained from patients with focal brain damage. Integrating the results of both meta-analysis and review, a set of mainly right-lateralized brain regions was identified that may form the core network subserving vigilant attention in humans, including dorsomedial, mid- and ventrolateral prefrontal cortex, anterior insula, parietal areas (intraparietal sulcus, temporo-parietal junction), and subcortical structures (cerebellar vermis, thalamus, putamen, midbrain). We discuss the potential functional roles of different nodes of this network as well as implications of our findings for a theoretical account of vigilant attention. It is conjectured that sustaining attention is a multi-component, non-unitary mental faculty, involving a mixture of (i) sustained/recurrent processes subserving task-set/arousal maintenance and (ii) transient processes subserving the target-driven reorienting of attention. Finally, limitations of previous studies are considered and suggestions for future research are provided. PMID:23163491

  11. The neural circuit and synaptic dynamics underlying perceptual decision-making

    NASA Astrophysics Data System (ADS)

    Liu, Feng

    2015-03-01

    Decision-making with several choice options is central to cognition. To elucidate the neural mechanisms of multiple-choice motion discrimination, we built a continuous recurrent network model to represent a local circuit in the lateral intraparietal area (LIP). The network is composed of pyramidal cells and interneurons, which are directionally tuned. All neurons are reciprocally connected, and the synaptic connectivity strength is heterogeneous. Specifically, we assume two types of inhibitory connectivity to pyramidal cells: opposite-feature and similar-feature inhibition. The model accounted for both physiological and behavioral data from monkey experiments. The network is endowed with slow excitatory reverberation, which subserves the buildup and maintenance of persistent neural activity, and predominant feedback inhibition, which underlies the winner-take-all competition and attractor dynamics. The opposite-feature and opposite-feature inhibition have different effects on decision-making, and only their combination allows for a categorical choice among 12 alternatives. Together, our work highlights the importance of structured synaptic inhibition in multiple-choice decision-making processes.

  12. Effect of Prazosin and Naltrexone on Script Induced Alcohol Craving in Veterans with Alcohol Use Disorders with and without Co-occurring PTSD

    DTIC Science & Technology

    2017-01-01

    associated with continued problematic use and relapse is craving. Three different types of craving have been hypothesized, reward , relief, and obsessive...and each is postulated to be mediated by different neurological substrates. The neural networks postulated to subserve reward and relief craving...noradrenergic system with craving-related brain systems , blocking α1 receptors with the noradrenergic antagonist, prazosin, theoretically has the

  13. Phonological experience modulates voice discrimination: Evidence from functional brain networks analysis.

    PubMed

    Hu, Xueping; Wang, Xiangpeng; Gu, Yan; Luo, Pei; Yin, Shouhang; Wang, Lijun; Fu, Chao; Qiao, Lei; Du, Yi; Chen, Antao

    2017-10-01

    Numerous behavioral studies have found a modulation effect of phonological experience on voice discrimination. However, the neural substrates underpinning this phenomenon are poorly understood. Here we manipulated language familiarity to test the hypothesis that phonological experience affects voice discrimination via mediating the engagement of multiple perceptual and cognitive resources. The results showed that during voice discrimination, the activation of several prefrontal regions was modulated by language familiarity. More importantly, the same effect was observed concerning the functional connectivity from the fronto-parietal network to the voice-identity network (VIN), and from the default mode network to the VIN. Our findings indicate that phonological experience could bias the recruitment of cognitive control and information retrieval/comparison processes during voice discrimination. Therefore, the study unravels the neural substrates subserving the modulation effect of phonological experience on voice discrimination, and provides new insights into studying voice discrimination from the perspective of network interactions. Copyright © 2017. Published by Elsevier Inc.

  14. Distinct frontal regions subserve evaluation of linguistic and emotional aspects of speech intonation.

    PubMed

    Wildgruber, D; Hertrich, I; Riecker, A; Erb, M; Anders, S; Grodd, W; Ackermann, H

    2004-12-01

    In addition to the propositional content of verbal utterances, significant linguistic and emotional information is conveyed by the tone of speech. To differentiate brain regions subserving processing of linguistic and affective aspects of intonation, discrimination of sentences differing in linguistic accentuation and emotional expressiveness was evaluated by functional magnetic resonance imaging. Both tasks yielded rightward lateralization of hemodynamic responses at the level of the dorsolateral frontal cortex as well as bilateral thalamic and temporal activation. Processing of linguistic and affective intonation, thus, seems to be supported by overlapping neural networks comprising partially right-sided brain regions. Comparison of hemodynamic activation during the two different tasks, however, revealed bilateral orbito-frontal responses restricted to the affective condition as opposed to activation of the left lateral inferior frontal gyrus confined to evaluation of linguistic intonation. These findings indicate that distinct frontal regions contribute to higher level processing of intonational information depending on its communicational function. In line with other components of language processing, discrimination of linguistic accentuation seems to be lateralized to the left inferior-lateral frontal region whereas bilateral orbito-frontal areas subserve evaluation of emotional expressiveness.

  15. Neural networks supporting switching, hypothesis testing, and rule application

    PubMed Central

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S.; Seger, Carol A.

    2015-01-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example “choose the blue letter.” Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. PMID:26197092

  16. Neural networks supporting switching, hypothesis testing, and rule application.

    PubMed

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S; Seger, Carol A

    2015-10-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example "choose the blue letter". Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Spatial Learning and Action Planning in a Prefrontal Cortical Network Model

    PubMed Central

    Martinet, Louis-Emmanuel; Sheynikhovich, Denis; Benchenane, Karim; Arleo, Angelo

    2011-01-01

    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates. PMID:21625569

  18. Synchronisation signatures in the listening brain: a perspective from non-invasive neuroelectrophysiology.

    PubMed

    Weisz, Nathan; Obleser, Jonas

    2014-01-01

    Human magneto- and electroencephalography (M/EEG) are capable of tracking brain activity at millisecond temporal resolution in an entirely non-invasive manner, a feature that offers unique opportunities to uncover the spatiotemporal dynamics of the hearing brain. In general, precise synchronisation of neural activity within as well as across distributed regions is likely to subserve any cognitive process, with auditory cognition being no exception. Brain oscillations, in a range of frequencies, are a putative hallmark of this synchronisation process. Embedded in a larger effort to relate human cognition to brain oscillations, a field of research is emerging on how synchronisation within, as well as between, brain regions may shape auditory cognition. Combined with much improved source localisation and connectivity techniques, it has become possible to study directly the neural activity of auditory cortex with unprecedented spatio-temporal fidelity and to uncover frequency-specific long-range connectivities across the human cerebral cortex. In the present review, we will summarise recent contributions mainly of our laboratories to this emerging domain. We present (1) a more general introduction on how to study local as well as interareal synchronisation in human M/EEG; (2) how these networks may subserve and influence illusory auditory perception (clinical and non-clinical) and (3) auditory selective attention; and (4) how oscillatory networks further reflect and impact on speech comprehension. This article is part of a Special Issue entitled Human Auditory Neuroimaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Effects of low frequency rTMS treatment on brain networks for inner speech in patients with schizophrenia and auditory verbal hallucinations.

    PubMed

    Bais, Leonie; Liemburg, Edith; Vercammen, Ans; Bruggeman, Richard; Knegtering, Henderikus; Aleman, André

    2017-08-01

    Efficacy of repetitive Transcranial Magnetic Stimulation (rTMS) targeting the temporo-parietal junction (TPJ) for the treatment of auditory verbal hallucinations (AVH) remains under debate. We assessed the influence of a 1Hz rTMS treatment on neural networks involved in a cognitive mechanism proposed to subserve AVH. Patients with schizophrenia (N=24) experiencing medication-resistant AVH completed a 10-day 1Hz rTMS treatment. Participants were randomized to active stimulation of the left or bilateral TPJ, or sham stimulation. The effects of rTMS on neural networks were investigated with an inner speech task during fMRI. Changes within and between neural networks were analyzed using Independent Component Analysis. rTMS of the left and bilateral TPJ areas resulted in a weaker network contribution of the left supramarginal gyrus to the bilateral fronto-temporal network. Left-sided rTMS resulted in stronger network contributions of the right superior temporal gyrus to the auditory-sensorimotor network, right inferior gyrus to the left fronto-parietal network, and left middle frontal gyrus to the default mode network. Bilateral rTMS was associated with a predominant inhibitory effect on network contribution. Sham stimulation showed different patterns of change compared to active rTMS. rTMS of the left temporo-parietal region decreased the contribution of the left supramarginal gyrus to the bilateral fronto-temporal network, which may reduce the likelihood of speech intrusions. On the other hand, left rTMS appeared to increase the contribution of functionally connected regions involved in perception, cognitive control and self-referential processing. These findings hint to potential neural mechanisms underlying rTMS for hallucinations but need corroboration in larger samples. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Neural bases of prospective memory: a meta-analysis and the "Attention to Delayed Intention" (AtoDI) model.

    PubMed

    Cona, Giorgia; Scarpazza, Cristina; Sartori, Giuseppe; Moscovitch, Morris; Bisiacchi, Patrizia Silvia

    2015-05-01

    Remembering to realize delayed intentions is a multi-phase process, labelled as prospective memory (PM), and involves a plurality of neural networks. The present study utilized the activation likelihood estimation method of meta-analysis to provide a complete overview of the brain regions that are consistently activated in each PM phase. We formulated the 'Attention to Delayed Intention' (AtoDI) model to explain the neural dissociation found between intention maintenance and retrieval phases. The dorsal frontoparietal network is involved mainly in the maintenance phase and seems to mediate the strategic monitoring processes, such as the allocation of top-down attention both towards external stimuli, to monitor for the occurrence of the PM cues, and to internal memory contents, to maintain the intention active in memory. The ventral frontoparietal network is recruited in the retrieval phase and might subserve the bottom-up attention captured externally by the PM cues and, internally, by the intention stored in memory. Together with other brain regions (i.e., insula and posterior cingulate cortex), the ventral frontoparietal network would support the spontaneous retrieval processes. The functional contribution of the anterior prefrontal cortex is discussed extensively for each PM phase. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ocular exposure to blue-enriched light has an asymmetric influence on neural activity and spatial attention.

    PubMed

    Newman, Daniel P; Lockley, Steven W; Loughnane, Gerard M; Martins, Ana Carina P; Abe, Rafael; Zoratti, Marco T R; Kelly, Simon P; O'Neill, Megan H; Rajaratnam, Shantha M W; O'Connell, Redmond G; Bellgrove, Mark A

    2016-06-13

    Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention.

  2. Ocular exposure to blue-enriched light has an asymmetric influence on neural activity and spatial attention

    PubMed Central

    Newman, Daniel P.; Lockley, Steven W.; Loughnane, Gerard M.; Martins, Ana Carina P.; Abe, Rafael; Zoratti, Marco T. R.; Kelly, Simon P.; O’Neill, Megan H.; Rajaratnam, Shantha M. W.; O’Connell, Redmond G.; Bellgrove, Mark A.

    2016-01-01

    Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention. PMID:27291291

  3. Implicit and explicit social mentalizing: dual processes driven by a shared neural network

    PubMed Central

    Van Overwalle, Frank; Vandekerckhove, Marie

    2013-01-01

    Recent social neuroscientific evidence indicates that implicit and explicit inferences on the mind of another person (i.e., intentions, attributions or traits), are subserved by a shared mentalizing network. Under both implicit and explicit instructions, ERP studies reveal that early inferences occur at about the same time, and fMRI studies demonstrate an overlap in core mentalizing areas, including the temporo-parietal junction (TPJ) and the medial prefrontal cortex (mPFC). These results suggest a rapid shared implicit intuition followed by a slower explicit verification processes (as revealed by additional brain activation during explicit vs. implicit inferences). These data provide support for a default-adjustment dual-process framework of social mentalizing. PMID:24062663

  4. Perception of Upright: Multisensory Convergence and the Role of Temporo-Parietal Cortex

    PubMed Central

    Kheradmand, Amir; Winnick, Ariel

    2017-01-01

    We inherently maintain a stable perception of the world despite frequent changes in the head, eye, and body positions. Such “orientation constancy” is a prerequisite for coherent spatial perception and sensorimotor planning. As a multimodal sensory reference, perception of upright represents neural processes that subserve orientation constancy through integration of sensory information encoding the eye, head, and body positions. Although perception of upright is distinct from perception of body orientation, they share similar neural substrates within the cerebral cortical networks involved in perception of spatial orientation. These cortical networks, mainly within the temporo-parietal junction, are crucial for multisensory processing and integration that generate sensory reference frames for coherent perception of self-position and extrapersonal space transformations. In this review, we focus on these neural mechanisms and discuss (i) neurobehavioral aspects of orientation constancy, (ii) sensory models that address the neurophysiology underlying perception of upright, and (iii) the current evidence for the role of cerebral cortex in perception of upright and orientation constancy, including findings from the neurological disorders that affect cortical function. PMID:29118736

  5. Phonological memory in sign language relies on the visuomotor neural system outside the left hemisphere language network.

    PubMed

    Kanazawa, Yuji; Nakamura, Kimihiro; Ishii, Toru; Aso, Toshihiko; Yamazaki, Hiroshi; Omori, Koichi

    2017-01-01

    Sign language is an essential medium for everyday social interaction for deaf people and plays a critical role in verbal learning. In particular, language development in those people should heavily rely on the verbal short-term memory (STM) via sign language. Most previous studies compared neural activations during signed language processing in deaf signers and those during spoken language processing in hearing speakers. For sign language users, it thus remains unclear how visuospatial inputs are converted into the verbal STM operating in the left-hemisphere language network. Using functional magnetic resonance imaging, the present study investigated neural activation while bilinguals of spoken and signed language were engaged in a sequence memory span task. On each trial, participants viewed a nonsense syllable sequence presented either as written letters or as fingerspelling (4-7 syllables in length) and then held the syllable sequence for 12 s. Behavioral analysis revealed that participants relied on phonological memory while holding verbal information regardless of the type of input modality. At the neural level, this maintenance stage broadly activated the left-hemisphere language network, including the inferior frontal gyrus, supplementary motor area, superior temporal gyrus and inferior parietal lobule, for both letter and fingerspelling conditions. Interestingly, while most participants reported that they relied on phonological memory during maintenance, direct comparisons between letters and fingers revealed strikingly different patterns of neural activation during the same period. Namely, the effortful maintenance of fingerspelling inputs relative to letter inputs activated the left superior parietal lobule and dorsal premotor area, i.e., brain regions known to play a role in visuomotor analysis of hand/arm movements. These findings suggest that the dorsal visuomotor neural system subserves verbal learning via sign language by relaying gestural inputs to the classical left-hemisphere language network.

  6. Cognitive processes and neural basis of language switching: proposal of a new model.

    PubMed

    Moritz-Gasser, Sylvie; Duffau, Hugues

    2009-12-09

    Although studies on bilingualism are abundant, cognitive processes and neural foundations of language switching received less attention. The aim of our study is to provide new insights to this still open question: do dedicated region(s) for language switching exist or is this function underlain by a distributed circuit of interconnected brain areas, part of a more general cognitive system? On the basis of recent behavioral, neuroimaging, and brain stimulation studies, we propose an original 'hodological' model of language switching. This process might be subserved by a large-scale cortico-subcortical network, with an executive system (prefrontal cortex, anterior cingulum, caudate nucleus) controlling a more dedicated language subcircuit, which involves postero-temporal areas, supramarginal and angular gyri, Broca's area, and the superior longitudinal fasciculus.

  7. Neural representations of kinematic laws of motion: evidence for action-perception coupling.

    PubMed

    Dayan, Eran; Casile, Antonino; Levit-Binnun, Nava; Giese, Martin A; Hendler, Talma; Flash, Tamar

    2007-12-18

    Behavioral and modeling studies have established that curved and drawing human hand movements obey the 2/3 power law, which dictates a strong coupling between movement curvature and velocity. Human motion perception seems to reflect this constraint. The functional MRI study reported here demonstrates that the brain's response to this law of motion is much stronger and more widespread than to other types of motion. Compliance with this law is reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. Hence, these results strongly support the notion of similar neural coding for motion perception and production. These findings suggest that cortical motion representations are optimally tuned to the kinematic and geometrical invariants characterizing biological actions.

  8. Understanding the neural basis of cognitive bias modification as a clinical treatment for depression.

    PubMed

    Eguchi, Akihiro; Walters, Daniel; Peerenboom, Nele; Dury, Hannah; Fox, Elaine; Stringer, Simon

    2017-03-01

    [Correction Notice: An Erratum for this article was reported in Vol 85(3) of Journal of Consulting and Clinical Psychology (see record 2017-07144-002). In the article, there was an error in the Discussion section's first paragraph for Implications and Future Work. The in-text reference citation for Penton-Voak et al. (2013) was incorrectly listed as "Blumenfeld, Preminger, Sagi, and Tsodyks (2006)". All versions of this article have been corrected.] Objective: Cognitive bias modification (CBM) eliminates cognitive biases toward negative information and is efficacious in reducing depression recurrence, but the mechanisms behind the bias elimination are not fully understood. The present study investigated, through computer simulation of neural network models, the neural dynamics underlying the use of CBM in eliminating the negative biases in the way that depressed patients evaluate facial expressions. We investigated 2 new CBM methodologies using biologically plausible synaptic learning mechanisms-continuous transformation learning and trace learning-which guide learning by exploiting either the spatial or temporal continuity between visual stimuli presented during training. We first describe simulations with a simplified 1-layer neural network, and then we describe simulations in a biologically detailed multilayer neural network model of the ventral visual pathway. After training with either the continuous transformation learning rule or the trace learning rule, the 1-layer neural network eliminated biases in interpreting neutral stimuli as sad. The multilayer neural network trained with realistic face stimuli was also shown to be able to use continuous transformation learning or trace learning to reduce biases in the interpretation of neutral stimuli. The simulation results suggest 2 biologically plausible synaptic learning mechanisms, continuous transformation learning and trace learning, that may subserve CBM. The results are highly informative for the development of experimental protocols to produce optimal CBM training methodologies with human participants. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis.

    PubMed

    Leavitt, Victoria M; Wylie, Glenn R; Girgis, Peter A; DeLuca, John; Chiaravalloti, Nancy D

    2014-09-01

    Identifying effective behavioral treatments to improve memory in persons with learning and memory impairment is a primary goal for neurorehabilitation researchers. Memory deficits are the most common cognitive symptom in multiple sclerosis (MS), and hold negative professional and personal consequences for people who are often in the prime of their lives when diagnosed. A 10-session behavioral treatment, the modified Story Memory Technique (mSMT), was studied in a randomized, placebo-controlled clinical trial. Behavioral improvements and increased fMRI activation were shown after treatment. Here, connectivity within the neural networks underlying memory function was examined with resting-state functional connectivity (RSFC) in a subset of participants from the clinical trial. We hypothesized that the treatment would result in increased integrity of connections within two primary memory networks of the brain, the hippocampal memory network, and the default network (DN). Seeds were placed in left and right hippocampus, and the posterior cingulate cortex. Increased connectivity was found between left hippocampus and cortical regions specifically involved in memory for visual imagery, as well as among critical hubs of the DN. These results represent the first evidence for efficacy of a behavioral intervention to impact the integrity of neural networks subserving memory functions in persons with MS.

  10. The role of the P3 and CNV components in voluntary and automatic temporal orienting: A high spatial-resolution ERP study.

    PubMed

    Mento, Giovanni

    2017-12-01

    A main distinction has been proposed between voluntary and automatic mechanisms underlying temporal orienting (TO) of selective attention. Voluntary TO implies the endogenous directing of attention induced by symbolic cues. Conversely, automatic TO is exogenously instantiated by the physical properties of stimuli. A well-known example of automatic TO is sequential effects (SEs), which refer to the adjustments in participants' behavioral performance as a function of the trial-by-trial sequential distribution of the foreperiod between two stimuli. In this study a group of healthy adults underwent a cued reaction time task purposely designed to assess both voluntary and automatic TO. During the task, both post-cue and post-target event-related potentials (ERPs) were recorded by means of a high spatial resolution EEG system. In the results of the post-cue analysis, the P3a and P3b were identified as two distinct ERP markers showing distinguishable spatiotemporal features and reflecting automatic and voluntary a priori expectancy generation, respectively. The brain source reconstruction further revealed that distinct cortical circuits supported these two temporally dissociable components. Namely, the voluntary P3b was supported by a left sensorimotor network, while the automatic P3a was generated by a more distributed frontoparietal circuit. Additionally, post-cue contingent negative variation (CNV) and post-target P3 modulations were observed as common markers of voluntary and automatic expectancy implementation and response selection, although partially dissociable neural networks subserved these two mechanisms. Overall, these results provide new electrophysiological evidence suggesting that distinct neural substrates can be recruited depending on the voluntary or automatic cognitive nature of the cognitive mechanisms subserving TO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Pictures of pain: their contribution to the neuroscience of empathy.

    PubMed

    Schott, G D

    2015-03-01

    The study of empathy, a translation of the term 'Einfühlung', originated in 19th century Germany in the sphere of aesthetics, and was followed by studies in psychology and then neuroscience. During the past decade the links between empathy and art have started to be investigated, but now from the neuroscientific perspective, and two different approaches have emerged. Recently, the primacy of the mirror neuron system and its association with automaticity and imitative, simulated movement has been envisaged. But earlier, a number of eminent art historians had pointed to the importance of cognitive responses to art; these responses might plausibly be subserved by alternative neural networks. Focusing here mainly on pictures depicting pain and evoking empathy, both approaches are considered by summarizing the evidence that either supports the involvement of the mirror neuron system, or alternatively suggests other neural networks are likely to be implicated. The use of such pictures in experimental studies exploring the underlying neural processes, however, raises a number of concerns, and suggests caution is exercised in drawing conclusions concerning the networks that might be engaged. These various networks are discussed next, taking into account the affective and sensory components of the pain experience, before concluding that both mirror neuron and alternative neural networks are likelyto be enlisted in the empathetic response to images of pain. A somewhat similar duality of spontaneous and cognitive processes may perhaps also be paralleled in the creation of such images. While noting that some have repudiated the neuroscientific approach to the subject, pictures are nevertheless shown here to represent an unusual but invaluable tool in the study of pain and empathy. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Pictures of pain: their contribution to the neuroscience of empathy

    PubMed Central

    2015-01-01

    The study of empathy, a translation of the term ‘Einfühlung’, originated in 19th century Germany in the sphere of aesthetics, and was followed by studies in psychology and then neuroscience. During the past decade the links between empathy and art have started to be investigated, but now from the neuroscientific perspective, and two different approaches have emerged. Recently, the primacy of the mirror neuron system and its association with automaticity and imitative, simulated movement has been envisaged. But earlier, a number of eminent art historians had pointed to the importance of cognitive responses to art; these responses might plausibly be subserved by alternative neural networks. Focusing here mainly on pictures depicting pain and evoking empathy, both approaches are considered by summarizing the evidence that either supports the involvement of the mirror neuron system, or alternatively suggests other neural networks are likely to be implicated. The use of such pictures in experimental studies exploring the underlying neural processes, however, raises a number of concerns, and suggests caution is exercised in drawing conclusions concerning the networks that might be engaged. These various networks are discussed next, taking into account the affective and sensory components of the pain experience, before concluding that both mirror neuron and alternative neural networks are likelyto be enlisted in the empathetic response to images of pain. A somewhat similar duality of spontaneous and cognitive processes may perhaps also be paralleled in the creation of such images. While noting that some have repudiated the neuroscientific approach to the subject, pictures are nevertheless shown here to represent an unusual but invaluable tool in the study of pain and empathy. PMID:25614024

  13. Clinical, functional, and neurophysiologic assessment of dysplastic cortical networks: Implications for cortical functioning and surgical management.

    PubMed

    Duchowny, Michael

    2009-10-01

    Cortical malformations are highly epileptogenic lesions associated with complex, unanticipated, and often aberrant electrophysiologic and functional relationships. These relationships are inextricably linked to widespread cortical networks subserving eloquent functions, particularly language and motor ability. Cytomegalic neurons but not balloon cells in Palmini type 2 dysplastic cortex are intrinsically hyperexcitable and contribute to local epileptogenesis and functional responsiveness. However, there is much evidence that focal cortical dysplasia is rarely a localized or even regional process, and is a functionally, electrophysiologically, and ultimately clinically integrated neural network disorder. Not surprisingly, malformed cortex is implicated in cognitive dysfunction, particularly disturbances of linguistic processing. An understanding of these relationships is critical for successful epilepsy surgery. Gains in surgical prognosis rely on multiple diagnostic modalities to delineate complex anatomic, electrophysiologic, and functional relationships in magnetic resonance imaging (MRI)-negative patients with rates of seizure-freedom roughly comparable to lesional patients.

  14. Neural Basis of Interpersonal Traits in Neurodegenerative Diseases

    PubMed Central

    Sollberger, Marc; Stanley, Christine M.; Wilson, Stephen M.; Gyurak, Anett; Beckman, Victoria; Growdon, Matthew; Jang, Jung; Weiner, Michael W.; Miller, Bruce L.; Rankin, Katherine P.

    2009-01-01

    Several functional and structural imaging studies have investigated the neural basis of personality in healthy adults, but human lesions studies are scarce. Personality changes are a common symptom in patients with neurodegenerative diseases like frontotemporal dementia (FTD) and semantic dementia (SD), allowing a unique window into the neural basis of personality. In this study, we used the Interpersonal Adjective Scales to investigate the structural basis of eight interpersonal traits (dominance, arrogance, coldness, introversion, submissiveness, ingenuousness, warmth, and extraversion) in 257 subjects: 214 patients with neurodegenerative diseases such as FTD, SD, progressive non-fluent aphasia, Alzheimer’s disease, amnestic mild cognitive impairment, corticobasal degeneration, and progressive supranuclear palsy and 43 healthy elderly people. Measures of interpersonal traits were correlated with regional atrophy pattern using voxel-based morphometry (VBM) analysis of structural MR images. Interpersonal traits mapped onto distinct brain regions depending on the degree to which they involved agency and affiliation. Interpersonal traits high in agency related to left dorsolateral prefrontal and left lateral frontopolar regions, whereas interpersonal traits high in affiliation related to right ventromedial prefrontal and right anteromedial temporal regions. Consistent with the existing literature on neural networks underlying social cognition, these results indicate that brain regions related to externally-focused, executive control-related processes underlie agentic interpersonal traits such as dominance, whereas brain regions related to internally-focused, emotion- and reward-related processes underlie affiliative interpersonal traits such as warmth. In addition, these findings indicate that interpersonal traits are subserved by complex neural networks rather than discrete anatomic areas. PMID:19540253

  15. Testing the dual-pathway model for auditory processing in human cortex.

    PubMed

    Zündorf, Ida C; Lewald, Jörg; Karnath, Hans-Otto

    2016-01-01

    Analogous to the visual system, auditory information has been proposed to be processed in two largely segregated streams: an anteroventral ("what") pathway mainly subserving sound identification and a posterodorsal ("where") stream mainly subserving sound localization. Despite the popularity of this assumption, the degree of separation of spatial and non-spatial auditory information processing in cortex is still under discussion. In the present study, a statistical approach was implemented to investigate potential behavioral dissociations for spatial and non-spatial auditory processing in stroke patients, and voxel-wise lesion analyses were used to uncover their neural correlates. The results generally provided support for anatomically and functionally segregated auditory networks. However, some degree of anatomo-functional overlap between "what" and "where" aspects of processing was found in the superior pars opercularis of right inferior frontal gyrus (Brodmann area 44), suggesting the potential existence of a shared target area of both auditory streams in this region. Moreover, beyond the typically defined posterodorsal stream (i.e., posterior superior temporal gyrus, inferior parietal lobule, and superior frontal sulcus), occipital lesions were found to be associated with sound localization deficits. These results, indicating anatomically and functionally complex cortical networks for spatial and non-spatial auditory processing, are roughly consistent with the dual-pathway model of auditory processing in its original form, but argue for the need to refine and extend this widely accepted hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A common functional neural network for overt production of speech and gesture.

    PubMed

    Marstaller, L; Burianová, H

    2015-01-22

    The perception of co-speech gestures, i.e., hand movements that co-occur with speech, has been investigated by several studies. The results show that the perception of co-speech gestures engages a core set of frontal, temporal, and parietal areas. However, no study has yet investigated the neural processes underlying the production of co-speech gestures. Specifically, it remains an open question whether Broca's area is central to the coordination of speech and gestures as has been suggested previously. The objective of this study was to use functional magnetic resonance imaging to (i) investigate the regional activations underlying overt production of speech, gestures, and co-speech gestures, and (ii) examine functional connectivity with Broca's area. We hypothesized that co-speech gesture production would activate frontal, temporal, and parietal regions that are similar to areas previously found during co-speech gesture perception and that both speech and gesture as well as co-speech gesture production would engage a neural network connected to Broca's area. Whole-brain analysis confirmed our hypothesis and showed that co-speech gesturing did engage brain areas that form part of networks known to subserve language and gesture. Functional connectivity analysis further revealed a functional network connected to Broca's area that is common to speech, gesture, and co-speech gesture production. This network consists of brain areas that play essential roles in motor control, suggesting that the coordination of speech and gesture is mediated by a shared motor control network. Our findings thus lend support to the idea that speech can influence co-speech gesture production on a motoric level. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Parental Socioeconomic Status and the Neural Basis of Arithmetic: Differential Relations to Verbal and Visuo-Spatial Representations

    ERIC Educational Resources Information Center

    Demir, Özlem Ece; Prado, Jérôme; Booth, James R.

    2015-01-01

    We examined the relation of parental socioeconomic status (SES) to the neural bases of subtraction in school-age children (9- to 12-year-olds). We independently localized brain regions subserving verbal versus visuo-spatial representations to determine whether the parental SES-related differences in children's reliance on these neural…

  18. What Types of Visual Recognition Tasks Are Mediated by the Neural Subsystem that Subserves Face Recognition?

    ERIC Educational Resources Information Center

    Brooks, Brian E.; Cooper, Eric E.

    2006-01-01

    Three divided visual field experiments tested current hypotheses about the types of visual shape representation tasks that recruit the cognitive and neural mechanisms underlying face recognition. Experiment 1 found a right hemisphere advantage for subordinate but not basic-level face recognition. Experiment 2 found a right hemisphere advantage for…

  19. Conjunctive coding in an evolved spiking model of retrosplenial cortex.

    PubMed

    Rounds, Emily L; Alexander, Andrew S; Nitz, Douglas A; Krichmar, Jeffrey L

    2018-06-04

    Retrosplenial cortex (RSC) is an association cortex supporting spatial navigation and memory. However, critical issues remain concerning the forms by which its ensemble spiking patterns register spatial relationships that are difficult for experimental techniques to fully address. We therefore applied an evolutionary algorithmic optimization technique to create spiking neural network models that matched electrophysiologically observed spiking dynamics in rat RSC neuronal ensembles. Virtual experiments conducted on the evolved networks revealed a mixed selectivity coding capability that was not built into the optimization method, but instead emerged as a consequence of replicating biological firing patterns. The experiments reveal several important outcomes of mixed selectivity that may subserve flexible navigation and spatial representation: (a) robustness to loss of specific inputs, (b) immediate and stable encoding of novel routes and route locations, (c) automatic resolution of input variable conflicts, and (d) dynamic coding that allows rapid adaptation to changing task demands without retraining. These findings suggest that biological retrosplenial cortex can generate unique, first-trial, conjunctive encodings of spatial positions and actions that can be used by downstream brain regions for navigation and path integration. Moreover, these results are consistent with the proposed role for the RSC in the transformation of representations between reference frames and navigation strategy deployment. Finally, the specific modeling framework used for evolving synthetic retrosplenial networks represents an important advance for computational modeling by which synthetic neural networks can encapsulate, describe, and predict the behavior of neural circuits at multiple levels of function. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Hypnosis and imaging of the living human brain.

    PubMed

    Landry, Mathieu; Raz, Amir

    2015-01-01

    Over more than two decades, studies using imaging techniques of the living human brain have begun to explore the neural correlates of hypnosis. The collective findings provide a gripping, albeit preliminary, account of the underlying neurobiological mechanisms involved in hypnotic phenomena. While substantial advances lend support to different hypotheses pertaining to hypnotic modulation of attention, control, and monitoring processes, the complex interactions among the many mediating variables largely hinder our ability to isolate robust commonalities across studies. The present account presents a critical integrative synthesis of neuroimaging studies targeting hypnosis as a function of suggestion. Specifically, hypnotic induction without task-specific suggestion is examined, as well as suggestions concerning sensation and perception, memory, and ideomotor response. The importance of carefully designed experiments is highlighted to better tease apart the neural correlates that subserve hypnotic phenomena. Moreover, converging findings intimate that hypnotic suggestions seem to induce specific neural patterns. These observations propose that suggestions may have the ability to target focal brain networks. Drawing on evidence spanning several technological modalities, neuroimaging studies of hypnosis pave the road to a more scientific understanding of a dramatic, yet largely evasive, domain of human behavior.

  1. Examination of neural systems sub-serving facebook "addiction".

    PubMed

    Turel, Ofir; He, Qinghua; Xue, Gui; Xiao, Lin; Bechara, Antoine

    2014-12-01

    Because addictive behaviors typically result from violated homeostasis of the impulsive (amygdala-striatal) and inhibitory (prefrontal cortex) brain systems, this study examined whether these systems sub-serve a specific case of technology-related addiction, namely Facebook "addiction." Using a go/no-go paradigm in functional MRI settings, the study examined how these brain systems in 20 Facebook users (M age = 20.3 yr., SD = 1.3, range = 18-23) who completed a Facebook addiction questionnaire, responded to Facebook and less potent (traffic sign) stimuli. The findings indicated that at least at the examined levels of addiction-like symptoms, technology-related "addictions" share some neural features with substance and gambling addictions, but more importantly they also differ from such addictions in their brain etiology and possibly pathogenesis, as related to abnormal functioning of the inhibitory-control brain system.

  2. Neural substrates underlying fear-evoked freezing: the periaqueductal grey–cerebellar link

    PubMed Central

    Koutsikou, Stella; Crook, Jonathan J; Earl, Emma V; Leith, J Lianne; Watson, Thomas C; Lumb, Bridget M; Apps, Richard

    2014-01-01

    The central neural pathways involved in fear-evoked behaviour are highly conserved across mammalian species, and there is a consensus that understanding them is a fundamental step towards developing effective treatments for emotional disorders in man. The ventrolateral periaqueductal grey (vlPAG) has a well-established role in fear-evoked freezing behaviour. The neural pathways underlying autonomic and sensory consequences of vlPAG activation in fearful situations are well understood, but much less is known about the pathways that link vlPAG activity to distinct fear-evoked motor patterns essential for survival. In adult rats, we have identified a pathway linking the vlPAG to cerebellar cortex, which terminates as climbing fibres in lateral vermal lobule VIII (pyramis). Lesion of pyramis input–output pathways disrupted innate and fear-conditioned freezing behaviour. The disruption in freezing behaviour was strongly correlated to the reduction in the vlPAG-induced facilitation of α-motoneurone excitability observed after lesions of the pyramis. The increased excitability of α-motoneurones during vlPAG activation may therefore drive the increase in muscle tone that underlies expression of freezing behaviour. By identifying the cerebellar pyramis as a critical component of the neural network subserving emotionally related freezing behaviour, the present study identifies novel neural pathways that link the PAG to fear-evoked motor responses. PMID:24639484

  3. Neural Correlates of Math Gains Vary Depending on Parental Socioeconomic Status (SES)

    PubMed Central

    Demir-Lira, Özlem Ece; Prado, Jérôme; Booth, James R.

    2016-01-01

    We used functional magnetic resonance imaging (fMRI) to examine the neural predictors of math development, and asked whether these predictors vary as a function of parental socioeconomic status (SES) in children ranging in age from 8 to 13 years. We independently localized brain regions subserving verbal versus spatial processing in order to characterize relations between activation in these regions during an arithmetic task and long-term change in math skill (up to 3 years). Neural predictors of math gains encompassed brain regions subserving both verbal and spatial processing, but the relation between relative reliance on these regions and math skill growth varied depending on parental SES. Activity in an area of the left inferior frontal gyrus (IFG) identified by the verbal localizer was related to greater growth in math skill at the higher end of the SES continuum, but lesser improvements at the lower end. Activity in an area of the right superior parietal cortex identified by the spatial localizer was related to greater growth in math skill at the lower end of the SES continuum, but lesser improvements at the higher end. Results highlight early neural mechanisms as possible neuromarkers of long-term arithmetic learning and suggest that neural predictors of math gains vary with parental SES. PMID:27378987

  4. Ionic mechanisms subserving mechanosensory transduction and neural integration in statocyst hair cells of Hermissenda

    NASA Technical Reports Server (NTRS)

    Farley, Joseph

    1988-01-01

    The neural processing of gravitational-produced sensory stimulation of statocyst hair cells in the nudibranch mollusk Hermissenda was studied. The goal in these studies was to understand how: gravireceptor neurons sense or transduce gravitational forces, gravitational stimulation is integrated so as to produce a graded receptor potential, and ultimately the generation of an action potential, and various neural adaptation phenomena which hair cells exhibit arise. The approach to these problems was primarily electrophysical.

  5. Uncertainty and Cognitive Control

    PubMed Central

    Mushtaq, Faisal; Bland, Amy R.; Schaefer, Alexandre

    2011-01-01

    A growing trend of neuroimaging, behavioral, and computational research has investigated the topic of outcome uncertainty in decision-making. Although evidence to date indicates that humans are very effective in learning to adapt to uncertain situations, the nature of the specific cognitive processes involved in the adaptation to uncertainty are still a matter of debate. In this article, we reviewed evidence suggesting that cognitive control processes are at the heart of uncertainty in decision-making contexts. Available evidence suggests that: (1) There is a strong conceptual overlap between the constructs of uncertainty and cognitive control; (2) There is a remarkable overlap between the neural networks associated with uncertainty and the brain networks subserving cognitive control; (3) The perception and estimation of uncertainty might play a key role in monitoring processes and the evaluation of the “need for control”; (4) Potential interactions between uncertainty and cognitive control might play a significant role in several affective disorders. PMID:22007181

  6. The receptive field is dead. Long live the receptive field?

    PubMed Central

    Fairhall, Adrienne

    2014-01-01

    Advances in experimental techniques, including behavioral paradigms using rich stimuli under closed loop conditions and the interfacing of neural systems with external inputs and outputs, reveal complex dynamics in the neural code and require a revisiting of standard concepts of representation. High-throughput recording and imaging methods along with the ability to observe and control neuronal subpopulations allow increasingly detailed access to the neural circuitry that subserves these representations and the computations they support. How do we harness theory to build biologically grounded models of complex neural function? PMID:24618227

  7. Age-related reorganization of functional networks for successful conflict resolution: a combined functional and structural MRI study.

    PubMed

    Schulte, Tilman; Müller-Oehring, Eva M; Chanraud, Sandra; Rosenbloom, Margaret J; Pfefferbaum, Adolf; Sullivan, Edith V

    2011-11-01

    Aging has readily observable effects on the ability to resolve conflict between competing stimulus attributes that are likely related to selective structural and functional brain changes. To identify age-related differences in neural circuits subserving conflict processing, we combined structural and functional MRI and a Stroop Match-to-Sample task involving perceptual cueing and repetition to modulate resources in healthy young and older adults. In our Stroop Match-to-Sample task, older adults handled conflict by activating a frontoparietal attention system more than young adults and engaged a visuomotor network more than young adults when processing repetitive conflict and when processing conflict following valid perceptual cueing. By contrast, young adults activated frontal regions more than older adults when processing conflict with perceptual cueing. These differential activation patterns were not correlated with regional gray matter volume despite smaller volumes in older than young adults. Given comparable performance in speed and accuracy of responding between both groups, these data suggest that successful aging is associated with functional reorganization of neural systems to accommodate functionally increasing task demands on perceptual and attentional operations. Copyright © 2009 Elsevier Inc. All rights reserved.

  8. Music training and inhibitory control: a multidimensional model.

    PubMed

    Moreno, Sylvain; Farzan, Faranak

    2015-03-01

    Training programs aimed to improve cognitive skills have either yielded mixed results or remain to be validated. The limited benefits of such regimens are largely attributable to weak understanding of (1) how (and which) interventions provide the most cognitive improvements; and (2) how brain networks and neural mechanisms that underlie specific cognitive abilities can be modified selectively. Studies indicate that music training leads to robust and long-lasting benefits to behavior. Importantly, behavioral advantages conferred by music extend beyond perceptual abilities to even nonauditory functions, such as inhibitory control (IC) and its neural correlates. Alternative forms of arts engagement or brain training do not appear to yield such enhancements, which suggests that music uniquely taps into brain networks subserving a variety of auditory as well as domain-general mechanisms such as IC. To account for such widespread benefits of music training, we propose a framework of transfer effects characterized by three dimensions: level of processing, nature of the transfer, and involvement of executive functions. We suggest that transfer of skills is mediated through modulation of general cognitive processes, in particular IC. We believe that this model offers a viable framework to test the extent and limitations of music-related changes. © 2014 New York Academy of Sciences.

  9. White matter and cognition: making the connection

    PubMed Central

    Fields, R. Douglas

    2016-01-01

    Whereas the cerebral cortex has long been regarded by neuroscientists as the major locus of cognitive function, the white matter of the brain is increasingly recognized as equally critical for cognition. White matter comprises half of the brain, has expanded more than gray matter in evolution, and forms an indispensable component of distributed neural networks that subserve neurobehavioral operations. White matter tracts mediate the essential connectivity by which human behavior is organized, working in concert with gray matter to enable the extraordinary repertoire of human cognitive capacities. In this review, we present evidence from behavioral neurology that white matter lesions regularly disturb cognition, consider the role of white matter in the physiology of distributed neural networks, develop the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, including Alzheimer's disease and the newly described entity chronic traumatic encephalopathy, and discuss emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders. Investigation of the role of white matter in cognition has yielded many valuable insights and promises to expand understanding of normal brain structure and function, improve the treatment of many neurobehavioral disorders, and disclose new opportunities for research on many challenging problems facing medicine and society. PMID:27512019

  10. Functional neuroanatomy of grief: an FMRI study.

    PubMed

    Gündel, Harald; O'Connor, Mary-Frances; Littrell, Lindsey; Fort, Carolyn; Lane, Richard D

    2003-11-01

    In this study the authors examined the functional neuroanatomy of grief, which to their knowledge has not been studied previously in functional neuroimaging research. Grief was elicited in eight bereaved women through photographs of the deceased versus a stranger, combined with words specific to the death event versus neutral words. Use of both pictures and words resulted in a 2x2 factorial design. Three brain regions were independently activated by the picture and word factors: posterior cingulate cortex, medial/superior frontal gyrus, and cerebellum. The two factors also activated distinct regions: for the picture factor, they were the cuneus, superior lingual gyrus, insula, dorsal anterior cingulate cortex, inferior temporal gyrus, and fusiform gyrus; and for the word factor, they were the precuneus, precentral gyrus, midbrain, and vermis. The interaction of the two factors showed significant activation in the cerebellar vermis. Grief is mediated by a distributed neural network that subserves affect processing, mentalizing, episodic memory retrieval, processing of familiar faces, visual imagery, autonomic regulation, and modulation/coordination of these functions. This neural network may account for the unique, subjective quality of grief and provide new leads in understanding the health consequences of grief and the neurobiology of attachment.

  11. The brain dynamics of rapid perceptual adaptation to adverse listening conditions.

    PubMed

    Erb, Julia; Henry, Molly J; Eisner, Frank; Obleser, Jonas

    2013-06-26

    Listeners show a remarkable ability to quickly adjust to degraded speech input. Here, we aimed to identify the neural mechanisms of such short-term perceptual adaptation. In a sparse-sampling, cardiac-gated functional magnetic resonance imaging (fMRI) acquisition, human listeners heard and repeated back 4-band-vocoded sentences (in which the temporal envelope of the acoustic signal is preserved, while spectral information is highly degraded). Clear-speech trials were included as baseline. An additional fMRI experiment on amplitude modulation rate discrimination quantified the convergence of neural mechanisms that subserve coping with challenging listening conditions for speech and non-speech. First, the degraded speech task revealed an "executive" network (comprising the anterior insula and anterior cingulate cortex), parts of which were also activated in the non-speech discrimination task. Second, trial-by-trial fluctuations in successful comprehension of degraded speech drove hemodynamic signal change in classic "language" areas (bilateral temporal cortices). Third, as listeners perceptually adapted to degraded speech, downregulation in a cortico-striato-thalamo-cortical circuit was observable. The present data highlight differential upregulation and downregulation in auditory-language and executive networks, respectively, with important subcortical contributions when successfully adapting to a challenging listening situation.

  12. Brain Metabolic Dysfunction in Capgras Delusion During Alzheimer's Disease: A Positron Emission Tomography Study.

    PubMed

    Jedidi, H; Daury, N; Capa, R; Bahri, M A; Collette, F; Feyers, D; Bastin, C; Maquet, P; Salmon, E

    2015-11-01

    Capgras delusion is characterized by the misidentification of people and by the delusional belief that the misidentified persons have been replaced by impostors, generally perceived as persecutors. Since little is known regarding the neural correlates of Capgras syndrome, the cerebral metabolic pattern of a patient with probable Alzheimer's disease (AD) and Capgras syndrome was compared with those of 24-healthy elderly participants and 26 patients with AD without delusional syndrome. Comparing the healthy group with the AD group, the patient with AD had significant hypometabolism in frontal and posterior midline structures. In the light of current neural models of face perception, our patients with Capgras syndrome may be related to impaired recognition of a familiar face, subserved by the posterior cingulate/precuneus cortex, and impaired reflection about personally relevant knowledge related to a face, subserved by the dorsomedial prefrontal cortex. © The Author(s) 2013.

  13. Task-related modulation of effective connectivity during perceptual decision making: dissociation between dorsal and ventral prefrontal cortex.

    PubMed

    Akaishi, Rei; Ueda, Naoko; Sakai, Katsuyuki

    2013-01-01

    The dorsal and ventral parts of the lateral prefrontal cortex have been thought to play distinct roles in decision making. Although its dorsal part such as the frontal eye field (FEF) is shown to play roles in accumulation of sensory information during perceptual decision making, the role of the ventral prefrontal cortex (PFv) is not well-documented. Previous studies have suggested that the PFv is involved in selective attention to the task-relevant information and is associated with accuracy of the behavioral performance. It is unknown, however, whether the accumulation and selection processes are anatomically dissociated between the FEF and PFv. Here we show that, by using concurrent TMS and EEG recording, the short-latency (20-40 ms) TMS-evoked potentials after stimulation of the FEF change as a function of the time to behavioral response, whereas those after stimulation of the PFv change depending on whether the response is correct or not. The potentials after stimulation of either region did not show significant interaction between time to response and performance accuracy, suggesting dissociation between the processes subserved by the FEF and PFv networks. The results are consistent with the idea that the network involving the FEF plays a role in information accumulation, whereas the network involving the PFv plays a role in selecting task relevant information. In addition, stimulation of the FEF and PFv induced activation in common regions in the dorsolateral and medial frontal cortices, suggesting convergence of information processed in the two regions. Taken together, the results suggest dissociation between the FEF and PFv networks for their computational roles in perceptual decision making. The study also highlights the advantage of TMS-EEG technique in investigating the computational processes subserved by the neural network in the human brain with a high temporal resolution.

  14. A Place for Nouns and a Place for Verbs? A Critical Review of Neurocognitive Data on Grammatical-Class Effects

    ERIC Educational Resources Information Center

    Crepaldi, Davide; Berlingeri, Manuela; Paulesu, Eraldo; Luzzatti, Claudio

    2011-01-01

    It is generally held that noun processing is specifically sub-served by temporal areas, while the neural underpinnings of verb processing are located in the frontal lobe. However, this view is now challenged by a significant body of evidence accumulated over the years. Moreover, the results obtained so far on the neural implementation of noun and…

  15. Direct reactivation of a coherent neocortical memory of context

    PubMed Central

    Cowansage, Kiriana Kater; Shuman, Tristan; Dillingham, Blythe Christine; Chang, Allene; Golshani, Peyman; Mayford, Mark

    2014-01-01

    Summary Declarative memories are thought to be stored within anatomically distributed neuronal networks requiring the hippocampus; however, it is unclear how neocortical areas participate in memory at the time of encoding. Here, we use a c-fos-based genetic tagging system to selectively express the channelrhodopsin variant, ChEF, and optogenetically reactivate a specific neural ensemble in retrosplenial cortex (RSC) engaged by context fear conditioning. Artificial stimulation of RSC was sufficient to produce both context-specific behavior and downstream cellular activity commensurate with natural experience. Moreover, optogenetically, but not contextually-elicited responses were insensitive to hippocampal inactivation, suggesting that although the hippocampus is needed to coordinate activation by sensory cues, a higher-order cortical framework can independently subserve learned behavior, even shortly after learning. PMID:25308330

  16. Intrinsic Amygdala-Cortical Functional Connectivity Predicts Social Network Size in Humans

    PubMed Central

    Bickart, Kevin C.; Hollenbeck, Mark C.; Barrett, Lisa Feldman; Dickerson, Bradford C.

    2012-01-01

    Using resting-state functional MRI data from two independent samples of healthy adults, we parsed the amygdala’s intrinsic connectivity into three partially-distinct large-scale networks that strongly resemble the known anatomical organization of amygdala connectivity in rodents and monkeys. Moreover, in a third independent sample, we discovered that people who fostered and maintained larger and more complex social networks not only had larger amygdala volumes, but also amygdalae with stronger intrinsic connectivity within two of these networks, one putatively subserving perceptual abilities and one subserving affiliative behaviors. Our findings were anatomically specific to amygdalar circuitry in that individual differences in social network size and complexity could not be explained by the strength of intrinsic connectivity between nodes within two networks that do not typically involve the amygdala (i.e., the mentalizing and mirror networks), and were behaviorally specific in that amygdala connectivity did not correlate with other self-report measures of sociality. PMID:23077058

  17. Neural systems for social cognition in Klinefelter syndrome (47,XXY): evidence from fMRI.

    PubMed

    van Rijn, Sophie; Swaab, Hanna; Baas, Daan; de Haan, Edward; Kahn, René S; Aleman, André

    2012-08-01

    Klinefelter syndrome (KS) is a chromosomal condition (47, XXY) that may help us to unravel gene-brain behavior pathways to psychopathology. The phenotype includes social cognitive impairments and increased risk for autism traits. We used functional MRI to study neural mechanisms underlying social information processing. Eighteen nonclinical controls and thirteen men with XXY were scanned during judgments of faces with regard to trustworthiness and age. While judging faces as untrustworthy in comparison to trustworthy, men with XXY displayed less activation than controls in (i) the amygdala, which plays a key role in screening information for socio-emotional significance, (ii) the insula, which plays a role in subjective emotional experience, as well as (iii) the fusiform gyrus and (iv) the superior temporal sulcus, which are both involved in the perceptual processing of faces and which were also less involved during age judgments in men with XXY. This is the first study showing that KS can be associated with reduced involvement of the neural network subserving social cognition. Studying KS may increase our understanding of the genetic and hormonal basis of neural dysfunctions contributing to abnormalities in social cognition and behavior, which are considered core abnormalities in psychiatric disorders such as autism and schizophrenia.

  18. Measuring alterations in oscillatory brain networks in schizophrenia with resting-state MEG: State-of-the-art and methodological challenges.

    PubMed

    Alamian, Golnoush; Hincapié, Ana-Sofía; Pascarella, Annalisa; Thiery, Thomas; Combrisson, Etienne; Saive, Anne-Lise; Martel, Véronique; Althukov, Dmitrii; Haesebaert, Frédéric; Jerbi, Karim

    2017-09-01

    Neuroimaging studies provide evidence of disturbed resting-state brain networks in Schizophrenia (SZ). However, untangling the neuronal mechanisms that subserve these baseline alterations requires measurement of their electrophysiological underpinnings. This systematic review specifically investigates the contributions of resting-state Magnetoencephalography (MEG) in elucidating abnormal neural organization in SZ patients. A systematic literature review of resting-state MEG studies in SZ was conducted. This literature is discussed in relation to findings from resting-state fMRI and EEG, as well as to task-based MEG research in SZ population. Importantly, methodological limitations are considered and recommendations to overcome current limitations are proposed. Resting-state MEG literature in SZ points towards altered local and long-range oscillatory network dynamics in various frequency bands. Critical methodological challenges with respect to experiment design, and data collection and analysis need to be taken into consideration. Spontaneous MEG data show that local and global neural organization is altered in SZ patients. MEG is a highly promising tool to fill in knowledge gaps about the neurophysiology of SZ. However, to reach its fullest potential, basic methodological challenges need to be overcome. MEG-based resting-state power and connectivity findings could be great assets to clinical and translational research in psychiatry, and SZ in particular. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks

    PubMed Central

    Kucyi, Aaron; Salomons, Tim V.; Davis, Karen D.

    2013-01-01

    Human minds often wander away from their immediate sensory environment. It remains unknown whether such mind wandering is unsystematic or whether it lawfully relates to an individual’s tendency to attend to salient stimuli such as pain and their associated brain structure/function. Studies of pain–cognition interactions typically examine explicit manipulation of attention rather than spontaneous mind wandering. Here we sought to better represent natural fluctuations in pain in daily life, so we assessed behavioral and neural aspects of spontaneous disengagement of attention from pain. We found that an individual’s tendency to attend to pain related to the disruptive effect of pain on his or her cognitive task performance. Next, we linked behavioral findings to neural networks with strikingly convergent evidence from functional magnetic resonance imaging during pain coupled with thought probes of mind wandering, dynamic resting state activity fluctuations, and diffusion MRI. We found that (i) pain-induced default mode network (DMN) deactivations were attenuated during mind wandering away from pain; (ii) functional connectivity fluctuations between the DMN and periaqueductal gray (PAG) dynamically tracked spontaneous attention away from pain; and (iii) across individuals, stronger PAG–DMN structural connectivity and more dynamic resting state PAG–DMN functional connectivity were associated with the tendency to mind wander away from pain. These data demonstrate that individual tendencies to mind wander away from pain, in the absence of explicit manipulation, are subserved by functional and structural connectivity within and between default mode and antinociceptive descending modulation networks. PMID:24167282

  20. Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks.

    PubMed

    Kucyi, Aaron; Salomons, Tim V; Davis, Karen D

    2013-11-12

    Human minds often wander away from their immediate sensory environment. It remains unknown whether such mind wandering is unsystematic or whether it lawfully relates to an individual's tendency to attend to salient stimuli such as pain and their associated brain structure/function. Studies of pain-cognition interactions typically examine explicit manipulation of attention rather than spontaneous mind wandering. Here we sought to better represent natural fluctuations in pain in daily life, so we assessed behavioral and neural aspects of spontaneous disengagement of attention from pain. We found that an individual's tendency to attend to pain related to the disruptive effect of pain on his or her cognitive task performance. Next, we linked behavioral findings to neural networks with strikingly convergent evidence from functional magnetic resonance imaging during pain coupled with thought probes of mind wandering, dynamic resting state activity fluctuations, and diffusion MRI. We found that (i) pain-induced default mode network (DMN) deactivations were attenuated during mind wandering away from pain; (ii) functional connectivity fluctuations between the DMN and periaqueductal gray (PAG) dynamically tracked spontaneous attention away from pain; and (iii) across individuals, stronger PAG-DMN structural connectivity and more dynamic resting state PAG-DMN functional connectivity were associated with the tendency to mind wander away from pain. These data demonstrate that individual tendencies to mind wander away from pain, in the absence of explicit manipulation, are subserved by functional and structural connectivity within and between default mode and antinociceptive descending modulation networks.

  1. Spatio-temporal dynamics and laterality effects of face inversion, feature presence and configuration, and face outline

    PubMed Central

    Marinkovic, Ksenija; Courtney, Maureen G.; Witzel, Thomas; Dale, Anders M.; Halgren, Eric

    2014-01-01

    Although a crucial role of the fusiform gyrus (FG) in face processing has been demonstrated with a variety of methods, converging evidence suggests that face processing involves an interactive and overlapping processing cascade in distributed brain areas. Here we examine the spatio-temporal stages and their functional tuning to face inversion, presence and configuration of inner features, and face contour in healthy subjects during passive viewing. Anatomically-constrained magnetoencephalography (aMEG) combines high-density whole-head MEG recordings and distributed source modeling with high-resolution structural MRI. Each person's reconstructed cortical surface served to constrain noise-normalized minimum norm inverse source estimates. The earliest activity was estimated to the occipital cortex at ~100 ms after stimulus onset and was sensitive to an initial coarse level visual analysis. Activity in the right-lateralized ventral temporal area (inclusive of the FG) peaked at ~160 ms and was largest to inverted faces. Images containing facial features in the veridical and rearranged configuration irrespective of the facial outline elicited intermediate level activity. The M160 stage may provide structural representations necessary for downstream distributed areas to process identity and emotional expression. However, inverted faces additionally engaged the left ventral temporal area at ~180 ms and were uniquely subserved by bilateral processing. This observation is consistent with the dual route model and spared processing of inverted faces in prosopagnosia. The subsequent deflection, peaking at ~240 ms in the anterior temporal areas bilaterally, was largest to normal, upright faces. It may reflect initial engagement of the distributed network subserving individuation and familiarity. These results support dynamic models suggesting that processing of unfamiliar faces in the absence of a cognitive task is subserved by a distributed and interactive neural circuit. PMID:25426044

  2. Selective attention on representations in working memory: cognitive and neural mechanisms.

    PubMed

    Ku, Yixuan

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  3. Selective attention on representations in working memory: cognitive and neural mechanisms

    PubMed Central

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory. PMID:29629245

  4. Identifying the Neural Substrates of Procrastination: a Resting-State fMRI Study.

    PubMed

    Zhang, Wenwen; Wang, Xiangpeng; Feng, Tingyong

    2016-09-12

    Procrastination is a prevalent problematic behavior that brings serious consequences to individuals who suffer from it. Although this phenomenon has received increasing attention from researchers, the underpinning neural substrates of it is poorly studied. To examine the neural bases subserving procrastination, the present study employed resting-state fMRI. The main results were as follows: (1) the behavioral procrastination was positively correlated with the regional activity of the ventromedial prefrontal cortex (vmPFC) and the parahippocampal cortex (PHC), while negatively correlated with that of the anterior prefrontal cortex (aPFC). (2) The aPFC-seed connectivity with the anterior medial prefrontal cortex and the posterior cingulate cortex was positively associated with procrastination. (3) The connectivity between vmPFC and several other regions, such as the dorsomedial prefrontal cortex, the bilateral inferior prefrontal cortex showed a negative association with procrastination. These results suggested that procrastination could be attributed to, on the one hand, hyper-activity of the default mode network (DMN) that overrides the prefrontal control signal; while on the other hand, the failure of top-down control exerted by the aPFC on the DMN. Therefore, the present study unravels the biomarkers of procrastination and provides treatment targets for procrastination prevention.

  5. Identifying the Neural Substrates of Procrastination: a Resting-State fMRI Study

    PubMed Central

    Zhang, Wenwen; Wang, Xiangpeng; Feng, Tingyong

    2016-01-01

    Procrastination is a prevalent problematic behavior that brings serious consequences to individuals who suffer from it. Although this phenomenon has received increasing attention from researchers, the underpinning neural substrates of it is poorly studied. To examine the neural bases subserving procrastination, the present study employed resting-state fMRI. The main results were as follows: (1) the behavioral procrastination was positively correlated with the regional activity of the ventromedial prefrontal cortex (vmPFC) and the parahippocampal cortex (PHC), while negatively correlated with that of the anterior prefrontal cortex (aPFC). (2) The aPFC-seed connectivity with the anterior medial prefrontal cortex and the posterior cingulate cortex was positively associated with procrastination. (3) The connectivity between vmPFC and several other regions, such as the dorsomedial prefrontal cortex, the bilateral inferior prefrontal cortex showed a negative association with procrastination. These results suggested that procrastination could be attributed to, on the one hand, hyper-activity of the default mode network (DMN) that overrides the prefrontal control signal; while on the other hand, the failure of top-down control exerted by the aPFC on the DMN. Therefore, the present study unravels the biomarkers of procrastination and provides treatment targets for procrastination prevention. PMID:27616687

  6. Cross-language differences in the brain network subserving intelligible speech.

    PubMed

    Ge, Jianqiao; Peng, Gang; Lyu, Bingjiang; Wang, Yi; Zhuo, Yan; Niu, Zhendong; Tan, Li Hai; Leff, Alexander P; Gao, Jia-Hong

    2015-03-10

    How is language processed in the brain by native speakers of different languages? Is there one brain system for all languages or are different languages subserved by different brain systems? The first view emphasizes commonality, whereas the second emphasizes specificity. We investigated the cortical dynamics involved in processing two very diverse languages: a tonal language (Chinese) and a nontonal language (English). We used functional MRI and dynamic causal modeling analysis to compute and compare brain network models exhaustively with all possible connections among nodes of language regions in temporal and frontal cortex and found that the information flow from the posterior to anterior portions of the temporal cortex was commonly shared by Chinese and English speakers during speech comprehension, whereas the inferior frontal gyrus received neural signals from the left posterior portion of the temporal cortex in English speakers and from the bilateral anterior portion of the temporal cortex in Chinese speakers. Our results revealed that, although speech processing is largely carried out in the common left hemisphere classical language areas (Broca's and Wernicke's areas) and anterior temporal cortex, speech comprehension across different language groups depends on how these brain regions interact with each other. Moreover, the right anterior temporal cortex, which is crucial for tone processing, is equally important as its left homolog, the left anterior temporal cortex, in modulating the cortical dynamics in tone language comprehension. The current study pinpoints the importance of the bilateral anterior temporal cortex in language comprehension that is downplayed or even ignored by popular contemporary models of speech comprehension.

  7. Cross-language differences in the brain network subserving intelligible speech

    PubMed Central

    Ge, Jianqiao; Peng, Gang; Lyu, Bingjiang; Wang, Yi; Zhuo, Yan; Niu, Zhendong; Tan, Li Hai; Leff, Alexander P.; Gao, Jia-Hong

    2015-01-01

    How is language processed in the brain by native speakers of different languages? Is there one brain system for all languages or are different languages subserved by different brain systems? The first view emphasizes commonality, whereas the second emphasizes specificity. We investigated the cortical dynamics involved in processing two very diverse languages: a tonal language (Chinese) and a nontonal language (English). We used functional MRI and dynamic causal modeling analysis to compute and compare brain network models exhaustively with all possible connections among nodes of language regions in temporal and frontal cortex and found that the information flow from the posterior to anterior portions of the temporal cortex was commonly shared by Chinese and English speakers during speech comprehension, whereas the inferior frontal gyrus received neural signals from the left posterior portion of the temporal cortex in English speakers and from the bilateral anterior portion of the temporal cortex in Chinese speakers. Our results revealed that, although speech processing is largely carried out in the common left hemisphere classical language areas (Broca’s and Wernicke’s areas) and anterior temporal cortex, speech comprehension across different language groups depends on how these brain regions interact with each other. Moreover, the right anterior temporal cortex, which is crucial for tone processing, is equally important as its left homolog, the left anterior temporal cortex, in modulating the cortical dynamics in tone language comprehension. The current study pinpoints the importance of the bilateral anterior temporal cortex in language comprehension that is downplayed or even ignored by popular contemporary models of speech comprehension. PMID:25713366

  8. Processing Pathways in Mental Arithmetic—Evidence from Probabilistic Fiber Tracking

    PubMed Central

    Glauche, Volkmar; Weiller, Cornelius; Willmes, Klaus

    2013-01-01

    Numerical cognition is a case of multi-modular and distributed cerebral processing. So far neither the anatomo-functional connections between the cortex areas involved nor their integration into established frameworks such as the differentiation between dorsal and ventral processing streams have been specified. The current study addressed this issue combining a re-analysis of previously published fMRI data with probabilistic fiber tracking data from an independent sample. We aimed at differentiating neural correlates and connectivity for relatively easy and more difficult addition problems in healthy adults and their association with either rather verbally mediated fact retrieval or magnitude manipulations, respectively. The present data suggest that magnitude- and fact retrieval-related processing seem to be subserved by two largely separate networks, both of them comprising dorsal and ventral connections. Importantly, these networks not only differ in localization of activation but also in the connections between the cortical areas involved. However, it has to be noted that even though seemingly distinct anatomically, these networks operate as a functionally integrated circuit for mental calculation as revealed by a parametric analysis of brain activation. PMID:23383194

  9. Neural components of topographical representation

    PubMed Central

    Aguirre, Geoffrey K.; Zarahn, Eric; D’Esposito, Mark

    1998-01-01

    Studies of patients with focal brain damage suggest that topographical representation is subserved by dissociable neural subcomponents. This article offers a condensed review of the literature of “topographical disorientation” and describes several functional MRI studies designed to test hypotheses generated by that review. Three hypotheses are considered: (i) The parahippocampal cortex is critically involved in the acquisition of exocentric spatial information in humans; (ii) separable, posterior, dorsal, and ventral cortical regions subserve the perception and long term representation of position and identity, respectively, of landmarks; and (iii) there is a distinct area of the ventral occipitotemporal cortex that responds maximally to building stimuli and may play a role in the perception of salient landmarks. We conclude with a discussion of the inferential limitations of neuroimaging and lesion studies. It is proposed that combining these two approaches allows for inferences regarding the computational involvement of a neuroanatomical substrate in a given cognitive process although neither method can strictly support this conclusion alone. PMID:9448249

  10. Disrupted resting-state functional architecture of the brain after 45-day simulated microgravity

    PubMed Central

    Zhou, Yuan; Wang, Yun; Rao, Li-Lin; Liang, Zhu-Yuan; Chen, Xiao-Ping; Zheng, Dang; Tan, Cheng; Tian, Zhi-Qiang; Wang, Chun-Hui; Bai, Yan-Qiang; Chen, Shan-Guang; Li, Shu

    2014-01-01

    Long-term spaceflight induces both physiological and psychological changes in astronauts. To understand the neural mechanisms underlying these physiological and psychological changes, it is critical to investigate the effects of microgravity on the functional architecture of the brain. In this study, we used resting-state functional MRI (rs-fMRI) to study whether the functional architecture of the brain is altered after 45 days of −6° head-down tilt (HDT) bed rest, which is a reliable model for the simulation of microgravity. Sixteen healthy male volunteers underwent rs-fMRI scans before and after 45 days of −6° HDT bed rest. Specifically, we used a commonly employed graph-based measure of network organization, i.e., degree centrality (DC), to perform a full-brain exploration of the regions that were influenced by simulated microgravity. We subsequently examined the functional connectivities of these regions using a seed-based resting-state functional connectivity (RSFC) analysis. We found decreased DC in two regions, the left anterior insula (aINS) and the anterior part of the middle cingulate cortex (MCC; also called the dorsal anterior cingulate cortex in many studies), in the male volunteers after 45 days of −6° HDT bed rest. Furthermore, seed-based RSFC analyses revealed that a functional network anchored in the aINS and MCC was particularly influenced by simulated microgravity. These results provide evidence that simulated microgravity alters the resting-state functional architecture of the brains of males and suggest that the processing of salience information, which is primarily subserved by the aINS–MCC functional network, is particularly influenced by spaceflight. The current findings provide a new perspective for understanding the relationships between microgravity, cognitive function, autonomic neural function, and central neural activity. PMID:24926242

  11. The neural correlates of theory of mind and their role during empathy and the game of chess: A functional magnetic resonance imaging study.

    PubMed

    Powell, Joanne L; Grossi, Davide; Corcoran, Rhiannon; Gobet, Fernand; García-Fiñana, Marta

    2017-07-04

    Chess involves the capacity to reason iteratively about potential intentional choices of an opponent and therefore involves high levels of explicit theory of mind [ToM] (i.e. ability to infer mental states of others) alongside clear, strategic rule-based decision-making. Functional magnetic resonance imaging was used on 12 healthy male novice chess players to identify cortical regions associated with chess, ToM and empathizing. The blood-oxygenation-level-dependent (BOLD) response for chess and empathizing tasks was extracted from each ToM region. Results showed neural overlap between ToM, chess and empathizing tasks in right-hemisphere temporo-parietal junction (TPJ) [BA40], left-hemisphere superior temporal gyrus [BA22] and posterior cingulate gyrus [BA23/31]. TPJ is suggested to underlie the capacity to reason iteratively about another's internal state in a range of tasks. Areas activated by ToM and empathy included right-hemisphere orbitofrontal cortex and bilateral middle temporal gyrus: areas that become active when there is need to inhibit one's own experience when considering the internal state of another and for visual evaluation of action rationality. Results support previous findings, that ToM recruits a neural network with each region sub-serving a supporting role depending on the nature of the task itself. In contrast, a network of cortical regions primarily located within right- and left-hemisphere medial-frontal and parietal cortex, outside the internal representational network, was selectively recruited during the chess task. We hypothesize that in our cohort of novice chess players the strategy was to employ an iterative thinking pattern which in part involved mentalizing processes and recruited core ToM-related regions. Copyright © 2017. Published by Elsevier Ltd.

  12. The Differential Role of Verbal and Spatial Working Memory in the Neural Basis of Arithmetic

    PubMed Central

    Demir, Özlem Ece; Prado, Jérôme; Booth, James R.

    2014-01-01

    We examine the relations of verbal and spatial WM ability to the neural bases of arithmetic in school-age children. We independently localize brain regions subserving verbal versus spatial representations. For multiplication, higher verbal WM ability is associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. For multiplication and subtraction, higher spatial WM ability is associated with greater recruitment of right parietal cortex, identified by the spatial localizer. Depending on their WM ability, children engage different neural systems that manipulate different representations to solve arithmetic problems. PMID:25144257

  13. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis.

    PubMed

    Celone, Kim A; Calhoun, Vince D; Dickerson, Bradford C; Atri, Alireza; Chua, Elizabeth F; Miller, Saul L; DePeau, Kristina; Rentz, Doreen M; Selkoe, Dennis J; Blacker, Deborah; Albert, Marilyn S; Sperling, Reisa A

    2006-10-04

    Memory function is likely subserved by multiple distributed neural networks, which are disrupted by the pathophysiological process of Alzheimer's disease (AD). In this study, we used multivariate analytic techniques to investigate memory-related functional magnetic resonance imaging (fMRI) activity in 52 individuals across the continuum of normal aging, mild cognitive impairment (MCI), and mild AD. Independent component analyses revealed specific memory-related networks that activated or deactivated during an associative memory paradigm. Across all subjects, hippocampal activation and parietal deactivation demonstrated a strong reciprocal relationship. Furthermore, we found evidence of a nonlinear trajectory of fMRI activation across the continuum of impairment. Less impaired MCI subjects showed paradoxical hyperactivation in the hippocampus compared with controls, whereas more impaired MCI subjects demonstrated significant hypoactivation, similar to the levels observed in the mild AD subjects. We found a remarkably parallel curve in the pattern of memory-related deactivation in medial and lateral parietal regions with greater deactivation in less-impaired MCI and loss of deactivation in more impaired MCI and mild AD subjects. Interestingly, the failure of deactivation in these regions was also associated with increased positive activity in a neocortical attentional network in MCI and AD. Our findings suggest that loss of functional integrity of the hippocampal-based memory systems is directly related to alterations of neural activity in parietal regions seen over the course of MCI and AD. These data may also provide functional evidence of the interaction between neocortical and medial temporal lobe pathology in early AD.

  14. Neural Correlates of Music Recognition in Down Syndrome

    ERIC Educational Resources Information Center

    Virji-Babul, N.; Moiseev, A.; Sun, W.; Feng, T.; Moiseeva, N.; Watt, K. J.; Huotilainen, M.

    2013-01-01

    The brain mechanisms that subserve music recognition remain unclear despite increasing interest in this process. Here we report the results of a magnetoencephalography experiment to determine the temporal dynamics and spatial distribution of brain regions activated during listening to a familiar and unfamiliar instrumental melody in control adults…

  15. Cortical networks for encoding near and far space in the non-human primate.

    PubMed

    Cléry, Justine; Guipponi, Olivier; Odouard, Soline; Wardak, Claire; Ben Hamed, Suliann

    2018-08-01

    While extra-personal space is often erroneously considered as a unique entity, early neuropsychological studies report a dissociation between near and far space processing both in humans and in monkeys. Here, we use functional MRI in a naturalistic 3D environment to describe the non-human primate near and far space cortical networks. We describe the co-occurrence of two extended functional networks respectively dedicated to near and far space processing. Specifically, far space processing involves occipital, temporal, parietal, posterior cingulate as well as orbitofrontal regions not activated by near space, possibly subserving the processing of the shape and identity of objects. In contrast, near space processing involves temporal, parietal, prefrontal and premotor regions not activated by far space, possibly subserving the preparation of an arm/hand mediated action in this proximal space. Interestingly, this network also involves somatosensory regions, suggesting a cross-modal anticipation of touch by a nearby object. Last, we also describe cortical regions that process both far and near space with a preference for one or the other. This suggests a continuous encoding of relative distance to the body, in the form of a far-to-near gradient. We propose that these cortical gradients in space representation subserve the physically delineable peripersonal spaces described in numerous psychology and psychophysics studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Neural Responses to the Production and Comprehension of Syntax in Identical Utterances

    ERIC Educational Resources Information Center

    Indefrey, Peter; Hellwig, Frauke; Herzog, Hans; Seitz, Rudiger J.; Hagoort, Peter

    2004-01-01

    Following up on an earlier positron emission tomography (PET) experiment (Indefrey et al., 2001), we used a scene description paradigm to investigate whether a posterior inferior frontal region subserving syntactic encoding for speaking is also involved in syntactic parsing during listening. In the language production part of the experiment,…

  17. Opaque for the Reader but Transparent for the Brain: Neural Signatures of Morphological Complexity

    ERIC Educational Resources Information Center

    Meinzer, Marcus; Lahiri, Aditi; Flaisch, Tobias; Hannemann, Ronny; Eulitz, Carsten

    2009-01-01

    Within linguistics, words with a complex internal structure are commonly assumed to be decomposed into their constituent morphemes (e.g., un-help-ful). Nevertheless, an ongoing debate concerns the brain structures that subserve this process. Using functional magnetic resonance imaging, the present study varied the internal complexity of derived…

  18. Neural representations and the cortical body matrix: implications for sports medicine and future directions.

    PubMed

    Wallwork, Sarah B; Bellan, Valeria; Catley, Mark J; Moseley, G Lorimer

    2016-08-01

    Neural representations, or neurotags, refer to the idea that networks of brain cells, distributed across multiple brain areas, work in synergy to produce outputs. The brain can be considered then, a complex array of neurotags, each influencing and being influenced by each other. The output of some neurotags act on other systems, for example, movement, or on consciousness, for example, pain. This concept of neurotags has sparked a new body of research into pain and rehabilitation. We draw on this research and the concept of a cortical body matrix-a network of representations that subserves the regulation and protection of the body and the space around it-to suggest important implications for rehabilitation of sports injury and for sports performance. Protective behaviours associated with pain have been reinterpreted in light of these conceptual models. With a particular focus on rehabilitation of the injured athlete, this review presents the theoretical underpinnings of the cortical body matrix and its application within the sporting context. Therapeutic approaches based on these ideas are discussed and the efficacy of the most tested approaches is addressed. By integrating current thought in pain and cognitive neuroscience related to sports rehabilitation, recommendations for clinical practice and future research are suggested. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Functional connectivity patterns reflect individual differences in conflict adaptation.

    PubMed

    Wang, Xiangpeng; Wang, Ting; Chen, Zhencai; Hitchman, Glenn; Liu, Yijun; Chen, Antao

    2015-04-01

    Individuals differ in the ability to utilize previous conflict information to optimize current conflict resolution, which is termed the conflict adaptation effect. Previous studies have linked individual differences in conflict adaptation to distinct brain regions. However, the network-based neural mechanisms subserving the individual differences of the conflict adaptation effect have not been studied. The present study employed a psychophysiological interaction (PPI) analysis with a color-naming Stroop task to examine this issue. The main results were as follows: (1) the anterior cingulate cortex (ACC)-seeded PPI revealed the involvement of the salience network (SN) in conflict adaptation, while the posterior parietal cortex (PPC)-seeded PPI revealed the engagement of the central executive network (CEN). (2) Participants with high conflict adaptation effect showed higher intra-CEN connectivity and lower intra-SN connectivity; while those with low conflict adaptation effect showed higher intra-SN connectivity and lower intra-CEN connectivity. (3) The PPC-centered intra-CEN connectivity positively predicted the conflict adaptation effect; while the ACC-centered intra-SN connectivity had a negative correlation with this effect. In conclusion, our data demonstrated that conflict adaptation is likely supported by the CEN and the SN, providing a new perspective on studying individual differences in conflict adaptation on the basis of large-scale networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Brainstem mechanisms underlying the cough reflex and its regulation.

    PubMed

    Mutolo, Donatella

    2017-09-01

    Cough is a very important airway protective reflex. Cough-related inputs are conveyed to the caudal nucleus tractus solitarii (cNTS) that projects to the brainstem respiratory network. The latter is reconfigured to generate the cough motor pattern. A high degree of modulation is exerted on second-order neurons and the brainstem respiratory network by sensory inputs and higher brain areas. Two medullary structures proved to have key functions in cough production and to be strategic sites of action for centrally active drugs: the cNTS and the caudal ventral respiratory group (cVRG). Drugs microinjected into these medullary structures caused downregulation or upregulation of the cough reflex. The results suggest that inhibition and disinhibition are prominent regulatory mechanisms of this reflex and that both the cNTS and the cVRG are essential in the generation of the entire cough motor pattern. Studies on the basic neural mechanisms subserving the cough reflex may provide hints for novel therapeutic approaches. Different proposals for further investigations are advanced. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Articulatory rehearsal in verbal working memory: a possible neurocognitive endophenotype that differentiates between schizophrenia and schizoaffective disorder.

    PubMed

    Gruber, Oliver; Gruber, Eva; Falkai, Peter

    2006-09-11

    Recent fMRI studies have identified brain systems underlying different components of working memory in healthy individuals. The aim of this study was to compare the functional integrity of these neural networks in terms of behavioural performance in patients with schizophrenia, schizoaffective disorder and healthy controls. In order to detect specific working memory deficits based on dysfunctions of underlying brain circuits we used the same verbal and visuospatial Sternberg item-recognition tasks as in previous neuroimaging studies. Clinical and performance data from matched groups consisting of 14 subjects each were statistically analyzed. Schizophrenic patients exhibited pronounced impairments of both verbal and visuospatial working memory, whereas verbal working memory performance was preserved in schizoaffective patients. The findings provide first evidence that dysfunction of a brain system subserving articulatory rehearsal could represent a biological marker which differentiates between schizophrenia and schizoaffective disorder.

  2. CAN NONINVASIVE BRAIN STIMULATION ENHANCE COGNITION IN NEUROPSYCHIATRIC DISORDERS?

    PubMed Central

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M.; Pascual-Leone, Alvaro

    2013-01-01

    Cognitive impairment is a core symptom of many neuropsychiatric diseases and a key contributor to the patient’s quality of life. However, an effective therapeutic strategy has yet to be developed. Noninvasive brain stimulation techniques, namely transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), are promising techniques that are under investigation for a variety of otherwise treatment-resistant neuropsychiatric diseases. Notably, these tools can induce alterations in neural networks subserving cognitive operations and thus may provide a means for cognitive restoration. The purpose of this article is to review the available evidence concerning cognitive enhancing properties of noninvasive brain stimulation in neuropsychiatry. We specifically focus on major depression, Alzheimer’s disease, schizophrenia, autism and attention deficit hyperactivity disorder (ADHD), where cognitive dysfunction is a major symptom and some studies have been completed with promising results. We provide a critical assessment of the available research and suggestions to guide future efforts. PMID:22749945

  3. An fMRI Study on Conceptual, Grammatical, and Morpho-Phonological Processing

    ERIC Educational Resources Information Center

    Longoni, F.; Grande, M.; Hendrich, V.; Kastrau, F.; Huber, W.

    2005-01-01

    The aim of the present study was to determine whether processing of syntactic word information (lemma) is subserved by the same neural substrate as processing of conceptual or word form information (lexeme). We measured BOLD responses in 14 native speakers of German in three different decision tasks, each focussing specifically on one level of…

  4. Areas of Left Perisylvian Cortex Mediate Auditory-Verbal Short-Term Memory

    ERIC Educational Resources Information Center

    Koenigs, Michael; Acheson, Daniel J.; Barbey, Aron K.; Solomon, Jeffrey; Postle, Bradley R.; Grafman, Jordan

    2011-01-01

    A contentious issue in memory research is whether verbal short-term memory (STM) depends on a neural system specifically dedicated to the temporary maintenance of information, or instead relies on the same brain areas subserving the comprehension and production of language. In this study, we examined a large sample of adults with acquired brain…

  5. When Nominal Features Are Marked on Verbs: A Transcranial Magnetic Stimulation Study

    ERIC Educational Resources Information Center

    Finocchiaro, C.; Fierro, B.; Brighina, F.; Giglia, G.; Francolini, M.; Caramazza, A.

    2008-01-01

    It has been claimed that verb processing (as opposed to noun processing) is subserved by specific neural circuits in the left prefrontal cortex. In this study, we took advantage of the unusual grammatical characteristics of clitic pronouns in Italian (e.g., "lo" and "la" in "portalo" and "portala" "bring it [masculine]/[feminine]",…

  6. Role of Amygdala and Hippocampus in the Neural Circuit Subserving Conditioned Defeat in Syrian Hamsters

    ERIC Educational Resources Information Center

    Markham, Chris M.; Taylor, Stacie L.; Huhman, Kim L.

    2010-01-01

    We examined the roles of the amygdala and hippocampus in the formation of emotionally relevant memories using an ethological model of conditioned fear termed conditioned defeat (CD). Temporary inactivation of the ventral, but not dorsal hippocampus (VH, DH, respectively) using muscimol disrupted the acquisition of CD, whereas pretraining VH…

  7. Development of global cortical networks in early infancy.

    PubMed

    Homae, Fumitaka; Watanabe, Hama; Otobe, Takayuki; Nakano, Tamami; Go, Tohshin; Konishi, Yukuo; Taga, Gentaro

    2010-04-07

    Human cognition and behaviors are subserved by global networks of neural mechanisms. Although the organization of the brain is a subject of interest, the process of development of global cortical networks in early infancy has not yet been clarified. In the present study, we explored developmental changes in these networks from several days to 6 months after birth by examining spontaneous fluctuations in brain activity, using multichannel near-infrared spectroscopy. We set up 94 measurement channels over the frontal, temporal, parietal, and occipital regions of the infant brain. The obtained signals showed complex time-series properties, which were characterized as 1/f fluctuations. To reveal the functional connectivity of the cortical networks, we calculated the temporal correlations of continuous signals between all the pairs of measurement channels. We found that the cortical network organization showed regional dependency and dynamic changes in the course of development. In the temporal, parietal, and occipital regions, connectivity increased between homologous regions in the two hemispheres and within hemispheres; in the frontal regions, it decreased progressively. Frontoposterior connectivity changed to a "U-shaped" pattern within 6 months: it decreases from the neonatal period to the age of 3 months and increases from the age of 3 months to the age of 6 months. We applied cluster analyses to the correlation coefficients and showed that the bilateral organization of the networks begins to emerge during the first 3 months of life. Our findings suggest that these developing networks, which form multiple clusters, are precursors of the functional cerebral architecture.

  8. Evolution of neuroarchitecture, multi-level analyses and calibrative reductionism

    PubMed Central

    Berntson, Gary G.; Norman, Greg J.; Hawkley, Louise C.; Cacioppo, John T.

    2012-01-01

    Evolution has sculpted the incredibly complex human nervous system, among the most complex functions of which extend beyond the individual to an intricate social structure. Although these functions are deterministic, those determinants are legion, heavily interacting and dependent on a specific evolutionary trajectory. That trajectory was directed by the adaptive significance of quasi-random genetic variations, but was also influenced by chance and caprice. With a different evolutionary pathway, the same neural elements could subserve functions distinctly different from what they do in extant human brains. Consequently, the properties of higher level neural networks cannot be derived readily from the properties of the lower level constituent elements, without studying these elements in the aggregate. Thus, a multi-level approach to integrative neuroscience may offer an optimal strategy. Moreover, the process of calibrative reductionism, by which concepts and understandings from one level of organization or analysis can mutually inform and ‘calibrate’ those from other levels (both higher and lower), may represent a viable approach to the application of reductionism in science. This is especially relevant in social neuroscience, where the basic subject matter of interest is defined by interacting organisms across diverse environments. PMID:23386961

  9. Brain and Music: An Intraoperative Stimulation Mapping Study of a Professional Opera Singer.

    PubMed

    Riva, Marco; Casarotti, Alessandra; Comi, Alessandro; Pessina, Federico; Bello, Lorenzo

    2016-09-01

    Music is one of the most sophisticated and fascinating functions of the brain. Yet, how music is instantiated within the brain is not fully characterized. Singing is a peculiar aspect of music, in which both musical and linguistic skills are required to provide a merged vocal output. Identifying the neural correlates of this process is relevant for both clinical and research purposes. An adult white man with a presumed left temporal glioma was studied. He is a professional opera singer. A tailored music evaluation, the Montreal Battery of Evaluation of Amusia, was performed preoperatively and postoperatively, with long-term follow-up. Intraoperative stimulation mapping (ISM) with awake surgery with a specific music evaluation battery was used to identify and preserve the cortical and subcortical structures subserving music, along with standard motor-sensory and language mapping. A total resection of a grade I glioma was achieved. The Montreal Battery of Evaluation of Amusia reported an improvement in musical scores after the surgery. ISM consistently elicited several types of errors in the superior temporal gyrus and, to a lesser extent, in the inferior frontal operculum. Most errors occurred during score reading; fewer errors were elicited during the assessment of rhythm. No spontaneous errors were recorded. These areas did not overlap with eloquent sites for counting or naming. ISM and a tailored music battery enabled better characterization of a specific network within the brain subserving score reading independently from speech with long-term clinical impact. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Orientation Encoding and Viewpoint Invariance in Face Recognition: Inferring Neural Properties from Large-Scale Signals.

    PubMed

    Ramírez, Fernando M

    2018-05-01

    Viewpoint-invariant face recognition is thought to be subserved by a distributed network of occipitotemporal face-selective areas that, except for the human anterior temporal lobe, have been shown to also contain face-orientation information. This review begins by highlighting the importance of bilateral symmetry for viewpoint-invariant recognition and face-orientation perception. Then, monkey electrophysiological evidence is surveyed describing key tuning properties of face-selective neurons-including neurons bimodally tuned to mirror-symmetric face-views-followed by studies combining functional magnetic resonance imaging (fMRI) and multivariate pattern analyses to probe the representation of face-orientation and identity information in humans. Altogether, neuroimaging studies suggest that face-identity is gradually disentangled from face-orientation information along the ventral visual processing stream. The evidence seems to diverge, however, regarding the prevalent form of tuning of neural populations in human face-selective areas. In this context, caveats possibly leading to erroneous inferences regarding mirror-symmetric coding are exposed, including the need to distinguish angular from Euclidean distances when interpreting multivariate pattern analyses. On this basis, this review argues that evidence from the fusiform face area is best explained by a view-sensitive code reflecting head angular disparity, consistent with a role of this area in face-orientation perception. Finally, the importance is stressed of explicit models relating neural properties to large-scale signals.

  11. The impact of the Val158Met catechol-O-methyltransferase genotype on neural correlates of sad facial affect processing in patients with bipolar disorder and their relatives.

    PubMed

    Lelli-Chiesa, G; Kempton, M J; Jogia, J; Tatarelli, R; Girardi, P; Powell, J; Collier, D A; Frangou, S

    2011-04-01

    The Met allele of the catechol-O-methyltransferase (COMT) valine-to-methionine (Val158Met) polymorphism is known to affect dopamine-dependent affective regulation within amygdala-prefrontal cortical (PFC) networks. It is also thought to increase the risk of a number of disorders characterized by affective morbidity including bipolar disorder (BD), major depressive disorder (MDD) and anxiety disorders. The disease risk conferred is small, suggesting that this polymorphism represents a modifier locus. Therefore our aim was to investigate how the COMT Val158Met may contribute to phenotypic variation in clinical diagnosis using sad facial affect processing as a probe for its neural action. We employed functional magnetic resonance imaging to measure activation in the amygdala, ventromedial PFC (vmPFC) and ventrolateral PFC (vlPFC) during sad facial affect processing in family members with BD (n=40), MDD and anxiety disorders (n=22) or no psychiatric diagnosis (n=25) and 50 healthy controls. Irrespective of clinical phenotype, the Val158 allele was associated with greater amygdala activation and the Met158 allele with greater signal change in the vmPFC and vlPFC. Signal changes in the amygdala and vmPFC were not associated with disease expression. However, in the right vlPFC the Met158 allele was associated with greater activation in all family members with affective morbidity compared with relatives without a psychiatric diagnosis and healthy controls. Our results suggest that the COMT Val158Met polymorphism has a pleiotropic effect within the neural networks subserving emotional processing. Furthermore the Met158 allele further reduces cortical efficiency in the vlPFC in individuals with affective morbidity.

  12. Functional Heterogeneity and Convergence in the Right Temporoparietal Junction

    PubMed Central

    Lee, Su Mei; McCarthy, Gregory

    2016-01-01

    The right temporoparietal junction (rTPJ) is engaged by tasks that manipulate biological motion processing, Theory of Mind attributions, and attention reorienting. The proximity of activations elicited by these tasks raises the question of whether these tasks share common cognitive component processes that are subserved by common neural substrates. Here, we used high-resolution whole-brain functional magnetic resonance imaging in a within-subjects design to determine whether these tasks activate common regions of the rTPJ. Each participant was presented with the 3 tasks in the same imaging session. In a whole-brain analysis, we found that only the right and left TPJs were activated by all 3 tasks. Multivoxel pattern analysis revealed that the regions of overlap could still discriminate the 3 tasks. Notably, we found significant cross-task classification in the right TPJ, which suggests a shared neural process between the 3 tasks. Taken together, these results support prior studies that have indicated functional heterogeneity within the rTPJ but also suggest a convergence of function within a region of overlap. These results also call for further investigation into the nature of the function subserved in this overlap region. PMID:25477367

  13. The neuroeconomics of alcohol demand: an initial investigation of the neural correlates of alcohol cost-benefit decision making in heavy drinking men.

    PubMed

    MacKillop, James; Amlung, Michael T; Acker, John; Gray, Joshua C; Brown, Courtney L; Murphy, James G; Ray, Lara A; Sweet, Lawrence H

    2014-07-01

    Neuroeconomics integrates concepts and methods from psychology, economics, and cognitive neuroscience to understand how the brain makes decisions. In economics, demand refers to the relationship between a commodity's consumption and its cost, and, in behavioral studies, high alcohol demand has been consistently associated with greater alcohol misuse. Relatively little is known about how the brain processes demand decision making, and the current study is an initial investigation of the neural correlates of alcohol demand among heavy drinkers. Using an event-related functional magnetic resonance imaging (fMRI) paradigm, participants (N=24) selected how much they would drink under varying levels of price. These choices determined access to alcohol during a subsequent bar laboratory self-administration period. During decisions to drink in general, greater activity was present in multiple distinct subunits of the prefrontal and parietal cortices. In contrast, during decisions to drink that were demonstrably affected by the cost of alcohol, significantly greater activation was evident in frontostriatal regions, suggesting an active interplay between cognitive deliberation and subjective reward value. These choices were also characterized by significant deactivation in default mode network regions, suggesting suppression resulting from greater cognitive load. Across choice types, the anterior insula was notably recruited in diverse roles, further implicating the importance of interoceptive processing in decision-making behavior. These findings reveal the neural signatures subserving alcohol cost-benefit decision making, providing a foundation for future clinical applications of this paradigm and extending this approach to understanding the neural correlates of demand for other addictive commodities.

  14. Neural Correlates of Lexicon and Grammar: Evidence from the Production, Reading, and Judgment of Inflection in Aphasia

    ERIC Educational Resources Information Center

    Ullman, M.T.; Pancheva, R.; Love, T.; Yee, E.; Swinney, D.; Hickok, G.

    2005-01-01

    Are the linguistic forms that are memorized in the mental lexicon and those that are specified by the rules of grammar subserved by distinct neurocognitive systems or by a single computational system with relatively broad anatomic distribution? On a dual-system view, the productive -ed-suffixation of English regular past tense forms (e.g.,…

  15. Brain correlates of aesthetic judgment of beauty.

    PubMed

    Jacobsen, Thomas; Schubotz, Ricarda I; Höfel, Lea; Cramon, D Yves V

    2006-01-01

    Functional MRI was used to investigate the neural correlates of aesthetic judgments of beauty of geometrical shapes. Participants performed evaluative aesthetic judgments (beautiful or not?) and descriptive symmetry judgments (symmetric or not?) on the same stimulus material. Symmetry was employed because aesthetic judgments are known to be often guided by criteria of symmetry. Novel, abstract graphic patterns were presented to minimize influences of attitudes or memory-related processes and to test effects of stimulus symmetry and complexity. Behavioral results confirmed the influence of stimulus symmetry and complexity on aesthetic judgments. Direct contrasts showed specific activations for aesthetic judgments in the frontomedian cortex (BA 9/10), bilateral prefrontal BA 45/47, and posterior cingulate, left temporal pole, and the temporoparietal junction. In contrast, symmetry judgments elicited specific activations in parietal and premotor areas subserving spatial processing. Interestingly, beautiful judgments enhanced BOLD signals not only in the frontomedian cortex, but also in the left intraparietal sulcus of the symmetry network. Moreover, stimulus complexity caused differential effects for each of the two judgment types. Findings indicate aesthetic judgments of beauty to rely on a network partially overlapping with that underlying evaluative judgments on social and moral cues and substantiate the significance of symmetry and complexity for our judgment of beauty.

  16. A Dual-Stream Neuroanatomy of Singing

    PubMed Central

    Loui, Psyche

    2015-01-01

    Singing requires effortless and efficient use of auditory and motor systems that center around the perception and production of the human voice. Although perception and production are usually tightly coupled functions, occasional mismatches between the two systems inform us of dissociable pathways in the brain systems that enable singing. Here I review the literature on perception and production in the auditory modality, and propose a dual-stream neuroanatomical model that subserves singing. I will discuss studies surrounding the neural functions of feedforward, feedback, and efference systems that control vocal monitoring, as well as the white matter pathways that connect frontal and temporal regions that are involved in perception and production. I will also consider disruptions of the perception-production network that are evident in tone-deaf individuals and poor pitch singers. Finally, by comparing expert singers against other musicians and nonmusicians, I will evaluate the possibility that singing training might offer rehabilitation from these disruptions through neuroplasticity of the perception-production network. Taken together, the best available evidence supports a model of dorsal and ventral pathways in auditory-motor integration that enables singing and is shared with language, music, speech, and human interactions in the auditory environment. PMID:26120242

  17. The brain of opera singers: experience-dependent changes in functional activation.

    PubMed

    Kleber, B; Veit, R; Birbaumer, N; Gruzelier, J; Lotze, M

    2010-05-01

    Several studies have shown that motor-skill training over extended time periods results in reorganization of neural networks and changes in brain morphology. Yet, little is known about training-induced adaptive changes in the vocal system, which is largely subserved by intrinsic reflex mechanisms. We investigated highly accomplished opera singers, conservatory level vocal students, and laymen during overt singing of an Italian aria in a neuroimaging experiment. We provide the first evidence that the training of vocal skills is accompanied by increased functional activation of bilateral primary somatosensory cortex representing articulators and larynx. Opera singers showed additional activation in right primary sensorimotor cortex. Further training-related activation comprised the inferior parietal lobe and bilateral dorsolateral prefrontal cortex. At the subcortical level, expert singers showed increased activation in the basal ganglia, the thalamus, and the cerebellum. A regression analysis of functional activation with accumulated singing practice confirmed that vocal skills training correlates with increased activity of a cortical network for enhanced kinesthetic motor control and sensorimotor guidance together with increased involvement of implicit motor memory areas at the subcortical and cerebellar level. Our findings may have ramifications for both voice rehabilitation and deliberate practice of other implicit motor skills that require interoception.

  18. A Dual-Stream Neuroanatomy of Singing.

    PubMed

    Loui, Psyche

    2015-02-01

    Singing requires effortless and efficient use of auditory and motor systems that center around the perception and production of the human voice. Although perception and production are usually tightly coupled functions, occasional mismatches between the two systems inform us of dissociable pathways in the brain systems that enable singing. Here I review the literature on perception and production in the auditory modality, and propose a dual-stream neuroanatomical model that subserves singing. I will discuss studies surrounding the neural functions of feedforward, feedback, and efference systems that control vocal monitoring, as well as the white matter pathways that connect frontal and temporal regions that are involved in perception and production. I will also consider disruptions of the perception-production network that are evident in tone-deaf individuals and poor pitch singers. Finally, by comparing expert singers against other musicians and nonmusicians, I will evaluate the possibility that singing training might offer rehabilitation from these disruptions through neuroplasticity of the perception-production network. Taken together, the best available evidence supports a model of dorsal and ventral pathways in auditory-motor integration that enables singing and is shared with language, music, speech, and human interactions in the auditory environment.

  19. Altered Behavioral and Autonomic Pain Responses in Alzheimer’s Disease Are Associated with Dysfunctional Affective, Self-Reflective and Salience Network Resting-State Connectivity

    PubMed Central

    Beach, Paul A.; Huck, Jonathan T.; Zhu, David C.; Bozoki, Andrea C.

    2017-01-01

    While pain behaviors are increased in Alzheimer’s disease (AD) patients compared to healthy seniors (HS) across multiple disease stages, autonomic responses are reduced with advancing AD. To better understand the neural mechanisms underlying these phenomena, we undertook a controlled cross-sectional study examining behavioral (Pain Assessment in Advanced Dementia, PAINAD scores) and autonomic (heart rate, HR) pain responses in 24 HS and 20 AD subjects using acute pressure stimuli. Resting-state fMRI was utilized to investigate how group connectivity differences were related to altered pain responses. Pain behaviors (slope of PAINAD score change and mean PAINAD score) were increased in patients vs. controls. Autonomic measures (HR change intercept and mean HR change) were reduced in severe vs. mildly affected AD patients. Group functional connectivity differences associated with greater pain behavior reactivity in patients included: connectivity within a temporal limbic network (TLN) and between the TLN and ventromedial prefrontal cortex (vmPFC); between default mode network (DMN) subcomponents; between the DMN and ventral salience network (vSN). Reduced HR responses within the AD group were associated with connectivity changes within the DMN and vSN—specifically the precuneus and vmPFC. Discriminant classification indicated HR-related connectivity within the vSN to the vmPFC best distinguished AD severity. Thus, altered behavioral and autonomic pain responses in AD reflects dysfunction of networks and structures subserving affective, self-reflective, salience and autonomic regulation. PMID:28959201

  20. Visual priming within and across symbolic format using a tachistoscopic picture identification task: a PET study.

    PubMed

    Lebreton, K; Desgranges, B; Landeau, B; Baron, J C; Eustache, F

    2001-07-01

    The present work was aimed at characterizing picture priming effects from two complementary behavioral and functional neuroimaging (positron emission tomography, PET) studies. In two experiments, we used the same line drawings of common living/nonliving objects in a tachistoscopic identification task to contrast two forms of priming. In the within-format priming condition (picture-picture), subjects were instructed to perform a perceptual encoding task in the study phase, whereas in the cross-format priming condition (word-picture), they were instructed to perform a semantic encoding task. In Experiment 1, we showed significant priming effects in both priming conditions. However, the magnitude of priming effects in the same-format/perceptual encoding condition was higher than that in the different-format/semantic encoding condition, while the recognition performance did not differ between the two conditions. This finding supports the existence of two forms of priming that may be subserved by different systems. Consistent with these behavioral findings, the PET data for Experiment 2 revealed distinct priming-related patterns of regional cerebral blood flow (rCBF) decreases for the two priming conditions when primed items were compared to unprimed items. The same-format priming condition involved reductions in cerebral activity particularly in the right extrastriate cortex and left cerebellum, while the different-format priming condition was associated with rCBF decreases in the left inferior temporo-occipital cortex, left frontal regions, and the right cerebellum. These results suggest that the extrastriate cortex may subserve general aspects of perceptual priming, independent of the kind of stimuli, and that the right part of this cortex could underlie the same-format-specific system for pictures. These data also support the idea that the cross-format/semantic encoding priming for pictures represents a form of lexico-semantic priming subserved by a semantic neural network extending from left temporo-occipital cortex to left frontal regions. These results reinforce the distinction between perceptual and conceptual priming for pictures, indicating that different cerebral processes and systems are implicated in these two forms of picture priming.

  1. Differences in neural activity when processing emotional arousal and valence in autism spectrum disorders.

    PubMed

    Tseng, Angela; Wang, Zhishun; Huo, Yuankai; Goh, Suzanne; Russell, James A; Peterson, Bradley S

    2016-02-01

    Individuals with autism spectrum disorders (ASD) often have difficulty recognizing and interpreting facial expressions of emotion, which may impair their ability to navigate and communicate successfully in their social, interpersonal environments. Characterizing specific differences between individuals with ASD and their typically developing (TD) counterparts in the neural activity subserving their experience of emotional faces may provide distinct targets for ASD interventions. Thus we used functional magnetic resonance imaging (fMRI) and a parametric experimental design to identify brain regions in which neural activity correlated with ratings of arousal and valence for a broad range of emotional faces. Participants (51 ASD, 84 TD) were group-matched by age, sex, IQ, race, and socioeconomic status. Using task-related change in blood-oxygen-level-dependent (BOLD) fMRI signal as a measure, and covarying for age, sex, FSIQ, and ADOS scores, we detected significant differences across diagnostic groups in the neural activity subserving the dimension of arousal but not valence. BOLD-signal in TD participants correlated inversely with ratings of arousal in regions associated primarily with attentional functions, whereas BOLD-signal in ASD participants correlated positively with arousal ratings in regions commonly associated with impulse control and default-mode activity. Only minor differences were detected between groups in the BOLD signal correlates of valence ratings. Our findings provide unique insight into the emotional experiences of individuals with ASD. Although behavioral responses to face-stimuli were comparable across diagnostic groups, the corresponding neural activity for our ASD and TD groups differed dramatically. The near absence of group differences for valence correlates and the presence of strong group differences for arousal correlates suggest that individuals with ASD are not atypical in all aspects of emotion-processing. Studying these similarities and differences may help us to understand the origins of divergent interpersonal emotional experience in persons with ASD. Hum Brain Mapp 37:443-461, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. Differences in Neural Activity when Processing Emotional Arousal and Valence in Autism Spectrum Disorders

    PubMed Central

    Tseng, Angela; Wang, Zhishun; Huo, Yuankai; Goh, Suzanne; Russell, James A.; Peterson, Bradley S.

    2016-01-01

    Individuals with autism spectrum disorders (ASD) often have difficulty recognizing and interpreting facial expressions of emotion, which may impair their ability to navigate and communicate successfully in their social, interpersonal environments. Characterizing specific differences between individuals with ASD and their typically-developing (TD) counterparts in the neural activity subserving their experience of emotional faces may provide distinct targets for ASD interventions. Thus we used functional magnetic resonance imaging (fMRI) and a parametric experimental design to identify brain regions in which neural activity correlated with ratings of arousal and valence for a broad range of emotional faces. Participants (51 ASD, 84 TD) were group-matched by age, sex, IQ, race, and socioeconomic status. Using task-related change in blood-oxygen-level-dependent (BOLD) fMRI signal as a measure, and covarying for age, sex, FSIQ, and ADOS scores, we detected significant differences across diagnostic groups in the neural activity subserving the dimension of arousal but not valence. BOLD-signal in TD participants correlated inversely with ratings of arousal in regions associated primarily with attentional functions, whereas BOLD-signal in ASD participants correlated positively with arousal ratings in regions commonly associated with impulse control and default-mode activity. Only minor differences were detected between groups in the BOLD signal correlates of valence ratings. Our findings provide unique insight into the emotional experiences of individuals with ASD. Although behavioral responses to face-stimuli were comparable across diagnostic groups, the corresponding neural activity for our ASD and TD groups differed dramatically. The near absence of group differences for valence correlates and the presence of strong group differences for arousal correlates suggest that individuals with ASD are not atypical in all aspects of emotion-processing. Studying these similarities and differences may help us to understand the origins of divergent interpersonal emotional experience in persons with ASD. PMID:26526072

  3. Arabic morphology in the neural language system.

    PubMed

    Boudelaa, Sami; Pulvermüller, Friedemann; Hauk, Olaf; Shtyrov, Yury; Marslen-Wilson, William

    2010-05-01

    There are two views about morphology, the aspect of language concerned with the internal structure of words. One view holds that morphology is a domain of knowledge with a specific type of neurocognitive representation supported by specific brain mechanisms lateralized to left fronto-temporal cortex. The alternate view characterizes morphological effects as being a by-product of the correlation between form and meaning and where no brain area is predicted to subserve morphological processing per se. Here we provided evidence from Arabic that morphemes do have specific memory traces, which differ as a function of their functional properties. In an MMN study, we showed that the abstract consonantal root, which conveys semantic meaning (similarly to monomorphemic content words in English), elicits an MMN starting from 160 msec after the deviation point, whereas the abstract vocalic word pattern, which plays a range of grammatical roles, elicits an MMN response starting from 250 msec after the deviation point. Topographically, the root MMN has a symmetric fronto-central distribution, whereas the word pattern MMN lateralizes significantly to the left, indicating stronger involvement of left peri-sylvian areas. In languages with rich morphologies, morphemic processing seems to be supported by distinct neural networks, thereby providing evidence for a specific neuronal basis for morphology as part of the cerebral language machinery.

  4. Neural Correlates of Sound Localization in Complex Acoustic Environments

    PubMed Central

    Zündorf, Ida C.; Lewald, Jörg; Karnath, Hans-Otto

    2013-01-01

    Listening to and understanding people in a “cocktail-party situation” is a remarkable feature of the human auditory system. Here we investigated the neural correlates of the ability to localize a particular sound among others in an acoustically cluttered environment with healthy subjects. In a sound localization task, five different natural sounds were presented from five virtual spatial locations during functional magnetic resonance imaging (fMRI). Activity related to auditory stream segregation was revealed in posterior superior temporal gyrus bilaterally, anterior insula, supplementary motor area, and frontoparietal network. Moreover, the results indicated critical roles of left planum temporale in extracting the sound of interest among acoustical distracters and the precuneus in orienting spatial attention to the target sound. We hypothesized that the left-sided lateralization of the planum temporale activation is related to the higher specialization of the left hemisphere for analysis of spectrotemporal sound features. Furthermore, the precuneus − a brain area known to be involved in the computation of spatial coordinates across diverse frames of reference for reaching to objects − seems to be also a crucial area for accurately determining locations of auditory targets in an acoustically complex scene of multiple sound sources. The precuneus thus may not only be involved in visuo-motor processes, but may also subserve related functions in the auditory modality. PMID:23691185

  5. Neural mechanisms of attentional control in mindfulness meditation

    PubMed Central

    Malinowski, Peter

    2013-01-01

    The scientific interest in meditation and mindfulness practice has recently seen an unprecedented surge. After an initial phase of presenting beneficial effects of mindfulness practice in various domains, research is now seeking to unravel the underlying psychological and neurophysiological mechanisms. Advances in understanding these processes are required for improving and fine-tuning mindfulness-based interventions that target specific conditions such as eating disorders or attention deficit hyperactivity disorders. This review presents a theoretical framework that emphasizes the central role of attentional control mechanisms in the development of mindfulness skills. It discusses the phenomenological level of experience during meditation, the different attentional functions that are involved, and relates these to the brain networks that subserve these functions. On the basis of currently available empirical evidence specific processes as to how attention exerts its positive influence are considered and it is concluded that meditation practice appears to positively impact attentional functions by improving resource allocation processes. As a result, attentional resources are allocated more fully during early processing phases which subsequently enhance further processing. Neural changes resulting from a pure form of mindfulness practice that is central to most mindfulness programs are considered from the perspective that they constitute a useful reference point for future research. Furthermore, possible interrelations between the improvement of attentional control and emotion regulation skills are discussed. PMID:23382709

  6. Neural mechanisms of attentional control in mindfulness meditation.

    PubMed

    Malinowski, Peter

    2013-01-01

    The scientific interest in meditation and mindfulness practice has recently seen an unprecedented surge. After an initial phase of presenting beneficial effects of mindfulness practice in various domains, research is now seeking to unravel the underlying psychological and neurophysiological mechanisms. Advances in understanding these processes are required for improving and fine-tuning mindfulness-based interventions that target specific conditions such as eating disorders or attention deficit hyperactivity disorders. This review presents a theoretical framework that emphasizes the central role of attentional control mechanisms in the development of mindfulness skills. It discusses the phenomenological level of experience during meditation, the different attentional functions that are involved, and relates these to the brain networks that subserve these functions. On the basis of currently available empirical evidence specific processes as to how attention exerts its positive influence are considered and it is concluded that meditation practice appears to positively impact attentional functions by improving resource allocation processes. As a result, attentional resources are allocated more fully during early processing phases which subsequently enhance further processing. Neural changes resulting from a pure form of mindfulness practice that is central to most mindfulness programs are considered from the perspective that they constitute a useful reference point for future research. Furthermore, possible interrelations between the improvement of attentional control and emotion regulation skills are discussed.

  7. Kisspeptin and Puberty in Mammals

    PubMed Central

    Terasawa, Ei; Guerriero, Kathryn A.; Plant, Tony M.

    2014-01-01

    Since the discovery of the G-protein coupled receptor (kisspeptin receptor) and its ligand, kisspeptin, our understanding of the neurobiological mechanisms that govern the pituitary-gonadal axis has evolved dramatically. In this chapter, we have reviewed progress regarding the relationship between kisspeptin and puberty, and have proposed a novel hypothesis for the role of kisspeptin signaling in the onset of this crucial developmental event. According to this hypothesis, although kisspeptin neurons in the arcuate nucleus (ARC) are critical for puberty, this is simply because these cells are an integral component of the hypothalamic GnRH pulse generating mechanism that drives intermittent release of the decapeptide, as an increase in GnRH is obligatory for the onset of puberty. In our model, ARC kisspeptin neurons play no “regulatory” role in controlling the timing of puberty. Rather, as a component of the neural network responsible for GnRH pulse generation, they subserve upstream regulatory mechanisms that are responsible for the timing of puberty. PMID:23550010

  8. The Merit of Synesthesia for Consciousness Research

    PubMed Central

    van Leeuwen, Tessa M.; Singer, Wolf; Nikolić, Danko

    2015-01-01

    Synesthesia is a phenomenon in which additional perceptual experiences are elicited by sensory stimuli or cognitive concepts. Synesthetes possess a unique type of phenomenal experiences not directly triggered by sensory stimulation. Therefore, for better understanding of consciousness it is relevant to identify the mental and physiological processes that subserve synesthetic experience. In the present work we suggest several reasons why synesthesia has merit for research on consciousness. We first review the research on the dynamic and rapidly growing field of the studies of synesthesia. We particularly draw attention to the role of semantics in synesthesia, which is important for establishing synesthetic associations in the brain. We then propose that the interplay between semantics and sensory input in synesthesia can be helpful for the study of the neural correlates of consciousness, especially when making use of ambiguous stimuli for inducing synesthesia. Finally, synesthesia-related alterations of brain networks and functional connectivity can be of merit for the study of consciousness. PMID:26696921

  9. Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders?

    PubMed

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M; Pascual-Leone, Alvaro

    2013-01-01

    Cognitive impairment is a core symptom of many neuropsychiatric diseases and a key contributor to the patient's quality of life. However, an effective therapeutic strategy has yet to be developed. Noninvasive brain stimulation techniques, namely transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), are promising techniques that are under investigation for a variety of otherwise treatment-resistant neuropsychiatric diseases. Notably, these tools can induce alterations in neural networks subserving cognitive operations and thus may provide a means for cognitive restoration. The purpose of this article is to review the available evidence concerning cognitive enhancing properties of noninvasive brain stimulation in neuropsychiatry. We specifically focus on major depression, Alzheimer's disease, schizophrenia, autism and attention deficit hyperactivity disorder (ADHD), where cognitive dysfunction is a major symptom and some studies have been completed with promising results. We provide a critical assessment of the available research and suggestions to guide future efforts. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A clinicopathological approach to the diagnosis of dementia

    PubMed Central

    Elahi, Fanny M.; Miller, Bruce L.

    2018-01-01

    The most definitive classification systems for dementia are based on the underlying pathology which, in turn, is categorized largely according to the observed accumulation of abnormal protein aggregates in neurons and glia. These aggregates perturb molecular processes, cellular functions and, ultimately, cell survival, with ensuing disruption of large-scale neural networks subserving cognitive, behavioural and sensorimotor functions. The functional domains affected and the evolution of deficits in these domains over time serve as footprints that the clinician can trace back with various levels of certainty to the underlying neuropathology. The process of phenotyping and syndromic classification has substantially improved over decades of careful clinicopathological correlation, and through the discovery of in vivo biomarkers of disease. Here, we present an overview of the salient features of the most common dementia subtypes — Alzheimer disease, vascular dementia, frontotemporal dementia and related syndromes, Lewy body dementias, and prion diseases — with an emphasis on neuropathology, relevant epidemiology, risk factors, and signature signs and symptoms. PMID:28708131

  11. Violence: heightened brain attentional network response is selectively muted in Down syndrome.

    PubMed

    Anderson, Jeffrey S; Treiman, Scott M; Ferguson, Michael A; Nielsen, Jared A; Edgin, Jamie O; Dai, Li; Gerig, Guido; Korenberg, Julie R

    2015-01-01

    The ability to recognize and respond appropriately to threat is critical to survival, and the neural substrates subserving attention to threat may be probed using depictions of media violence. Whether neural responses to potential threat differ in Down syndrome is not known. We performed functional MRI scans of 15 adolescent and adult Down syndrome and 14 typically developing individuals, group matched by age and gender, during 50 min of passive cartoon viewing. Brain activation to auditory and visual features, violence, and presence of the protagonist and antagonist were compared across cartoon segments. fMRI signal from the brain's dorsal attention network was compared to thematic and violent events within the cartoons between Down syndrome and control samples. We found that in typical development, the brain's dorsal attention network was most active during violent scenes in the cartoons and that this was significantly and specifically reduced in Down syndrome. When the antagonist was on screen, there was significantly less activation in the left medial temporal lobe of individuals with Down syndrome. As scenes represented greater relative threat, the disparity between attentional brain activation in Down syndrome and control individuals increased. There was a reduction in the temporal autocorrelation of the dorsal attention network, consistent with a shortened attention span in Down syndrome. Individuals with Down syndrome exhibited significantly reduced activation in primary sensory cortices, and such perceptual impairments may constrain their ability to respond to more complex social cues such as violence. These findings may indicate a relative deficit in emotive perception of violence in Down syndrome, possibly mediated by impaired sensory perception and hypoactivation of medial temporal structures in response to threats, with relative preservation of activity in pro-social brain regions. These findings indicate that specific genetic differences associated with Down syndrome can modulate the brain's response to violence and other complex emotive ideas.

  12. Atrophy in distinct corticolimbic networks in frontotemporal dementia relates to social impairments measured using the Social Impairment Rating Scale

    PubMed Central

    Bickart, Kevin C; Brickhouse, Michael; Negreira, Alyson; Sapolsky, Daisy

    2015-01-01

    Patients with frontotemporal dementia (FTD) often exhibit prominent, early and progressive impairments in social behaviour. We developed the Social Impairment Rating Scale (SIRS), rated by a clinician after a structured interview, which grades the types and severity of social behavioural symptoms in seven domains. In 20 FTD patients, we used the SIRS to study the anatomic basis of social impairments. In support of hypotheses generated from a prior study of healthy adults, we found that the relative magnitude of brain atrophy in three partially dissociable corticolimbic networks anchored in the amygdala predicted the severity of distinct social impairments measured using the SIRS. Patients with the greatest atrophy in a mesolimbic, reward-related (affiliation) network exhibited the most severe socioemotional detachment, whereas patients with the greatest atrophy in an interoceptive, pain-related (aversion) network exhibited the most severe lack of social apprehension. Patients with the greatest atrophy in a perceptual network exhibited the most severe lack of awareness or understanding of others’ social and emotional behaviour. Our findings underscore observations that FTD is associated with heterogeneous social symptoms that can be understood in a refined manner by measuring impairments in component processes subserved by dissociable neural networks. Furthermore, these findings support the validity of the SIRS as an instrument to measure the social symptoms of patients with FTD. Ultimately, we hope it will be useful as a longitudinal outcome measure in natural history studies and in clinical trials of putative interventions to improve social functioning. PMID:24133285

  13. The long-term effects of prenatal nicotine exposure on response inhibition: an fMRI study of young adults.

    PubMed

    Longo, Carmelinda A; Fried, Peter A; Cameron, Ian; Smith, Andra M

    2013-01-01

    The long-term effects of prenatal nicotine exposure on response inhibition were investigated in young adults using functional magnetic resonance imaging (fMRI). Participants were members of the Ottawa Prenatal Prospective Study, a longitudinal study that collected a unique body of information on participants from infancy to young adulthood, which allowed for the measurement of an unprecedented number of potentially confounding drug exposure variables including: prenatal marijuana and alcohol exposure and current marijuana, nicotine and alcohol use. Twelve young adults with prenatal nicotine exposure and 13 non-exposed controls performed a Go/No-Go task while fMRI blood oxygen level-dependent responses were examined. Despite similar task performance, participants prenatally exposed to nicotine demonstrated significantly greater activity in several regions of the brain that typically subserve response inhibition including the inferior frontal gyrus, the inferior parietal lobe, the thalamus and the basal ganglia. In addition, prenatally exposed participants showed greater activity in relatively large posterior regions of the cerebellum. These results suggest that prenatal nicotine exposure leads to altered neural functioning during response inhibition that continues into adulthood. This alteration is compensated for by recruitment of greater neural resources within regions of the brain that subserve response inhibition and the recruitment of additional brain regions to successfully perform the task. Response inhibition is an important executive functioning skill and impairments can impede functioning in much of everyday life. Thus, awareness of the continued long-term neural physiological effects of prenatal nicotine exposure is critical. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Naturalistic FMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception.

    PubMed

    Lahnakoski, Juha M; Glerean, Enrico; Salmi, Juha; Jääskeläinen, Iiro P; Sams, Mikko; Hari, Riitta; Nummenmaa, Lauri

    2012-01-01

    Despite the abundant data on brain networks processing static social signals, such as pictures of faces, the neural systems supporting social perception in naturalistic conditions are still poorly understood. Here we delineated brain networks subserving social perception under naturalistic conditions in 19 healthy humans who watched, during 3-T functional magnetic resonance imaging (fMRI), a set of 137 short (approximately 16 s each, total 27 min) audiovisual movie clips depicting pre-selected social signals. Two independent raters estimated how well each clip represented eight social features (faces, human bodies, biological motion, goal-oriented actions, emotion, social interaction, pain, and speech) and six filler features (places, objects, rigid motion, people not in social interaction, non-goal-oriented action, and non-human sounds) lacking social content. These ratings were used as predictors in the fMRI analysis. The posterior superior temporal sulcus (STS) responded to all social features but not to any non-social features, and the anterior STS responded to all social features except bodies and biological motion. We also found four partially segregated, extended networks for processing of specific social signals: (1) a fronto-temporal network responding to multiple social categories, (2) a fronto-parietal network preferentially activated to bodies, motion, and pain, (3) a temporo-amygdalar network responding to faces, social interaction, and speech, and (4) a fronto-insular network responding to pain, emotions, social interactions, and speech. Our results highlight the role of the pSTS in processing multiple aspects of social information, as well as the feasibility and efficiency of fMRI mapping under conditions that resemble the complexity of real life.

  15. In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism

    PubMed Central

    Bernardi, Silvia; Anagnostou, Evdokia; Shen, Jun; Kolevzon, Alexander; Buxbaum, Joseph D.; Hollander, Eric; Hof, Patrick R.; Fan, Jin

    2010-01-01

    Attentional dysfunction is one of the most consistent findings in individuals with autism spectrum disorders (ASD). However, the significance of such findings for the pathophysiology of autism is unclear. In this study, we investigated cellular neurochemistry with proton magnetic resonance spectroscopy imaging (1H-MRS) in brain regions associated with networks subserving alerting, orienting, and executive control of attention in patients with ASD. Concentrations of cerebral N-acetyl-aspartate (NAA), creatinine + phosphocreatinine, choline-containing compounds, myo-inositol (Ins) and glutamate + glutamine (Glx) were determined by 3 T 1H-MRS examinations in 14 high-functioning medication-free adults with a diagnosis of ASD and 14 age- and IQ-matched healthy controls (HC) in the anterior cingulate cortex (ACC), thalamus, temporoparietal junction (TPJ), and areas near or along the intraparietal sulcus (IPS). Compared to HC group, the ASD group showed significantly lower Glx concentrations in right ACC and reduced Ins in left TPJ. This study provides evidence of abnormalities in neurotransmission related to networks subserving executive control and alerting of attention, functions which have been previously implicated in ASD pathogenesis. PMID:21185269

  16. How study of respiratory physiology aided our understanding of abnormal brain function in panic disorder.

    PubMed

    Sinha, S; Papp, L A; Gorman, J M

    2000-12-01

    There is a substantial body of literature demonstrating that stimulation of respiration (hyperventilation) is a common event in panic disorder patients during panic attack episodes. Further, a number of abnormalities in respiration, such as enhanced CO2 sensitivity, have been detected in panic patients. This led some to posit that there is a fundamental abnormality in the physiological mechanisms that control breathing in panic disorder and that this abnormality is central to illness etiology. More recently, however, evidence has accumulated suggesting that respiratory physiology is normal in panic patients and that their tendency to hyperventilate and to react with panic to respiratory stimulants like CO2 represents the triggering of a hypersensitive fear network. The fear network anatomy is taken from preclinical studies that have identified the brain pathways that subserve the acquisition and maintenance of conditioned fear. Included are the amygdala and its brain stem projections, the hippocampus, and the medial prefrontal cortex. Although attempts to image this system in patients during panic attacks have been difficult, the theory that the fear network is operative and hyperactive in panic patients explains why both medication and psychosocial therapies are clearly effective. Studies of respiration in panic disorder are an excellent example of the way in which peripheral markers have guided researchers in developing a more complete picture of the neural events that occur in psychopathological states.

  17. Task-specific activity and connectivity within the mentalizing network during emotion and intention mentalizing.

    PubMed

    Atique, Bijoy; Erb, Michael; Gharabaghi, Alireza; Grodd, Wolfgang; Anders, Silke

    2011-04-15

    Mentalizing, i.e. the process of inferring another person's mental state, is thought to be primarily subserved by three brain regions, the VMPFC (ventromedial prefrontal cortex), precuneus and TPJ (temporo-parietal junction). However, it is still unclear what the exact roles of these regions in mentalizing are. Here, we compare activity within, and functional connectivity between, the VMPFC, precuneus and TPJ during two different mentalizing tasks. Specifically, we examine whether inferring another person's emotion ("emotion mentalizing") and inferring another person's intention ("intention mentalizing") activate similar or distinct subregions within the VMPFC, precuneus and TPJ, and whether these different kinds of mentalizing are associated with different patterns of functional connectivity between these regions. Our results indicate that emotion mentalizing and intention mentalizing activate partly distinct subregions of the right and left TPJ that can be spatially separated across participants. These subregions also showed different patterns of functional connectivity with the VMPFC: a more anterior region of the right and left TPJ, which was more strongly activated during emotion mentalizing, showed stronger functional connectivity with the VMPFC, particularly during emotion mentalizing, than a more posterior region that was more strongly activated during intention mentalizing. Critically, this double dissociation became evident only when the fine-scale distribution of activity within activated regions was analysed, and despite the fact that there was also a significant overlap of activity during the two tasks. Our findings provide first evidence that different neural modules might have evolved within the TPJ that show distinct patterns of functional connectivity and might subserve slightly different subfunctions of mentalizing. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.

    PubMed

    Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W

    2017-10-01

    The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Deficient Activity in the Neural Systems That Mediate Self-regulatory Control in Bulimia Nervosa

    PubMed Central

    Marsh, Rachel; Steinglass, Joanna E.; Gerber, Andrew J.; O’Leary, Kara Graziano; Wang, Zhishun; Murphy, David; Walsh, B. Timothy; Peterson, Bradley S.

    2009-01-01

    Context Disturbances in neural systems that mediate voluntary self-regulatory processes may contribute to bulimia nervosa (BN) by releasing feeding behaviors from regulatory control. Objective To study the functional activity in neural circuits that subserve self-regulatory control in women with BN. Design We compared functional magnetic resonance imaging blood oxygenation level–dependent responses in patients with BN with healthy controls during performance of the Simon Spatial Incompatibility task. Setting University research institute. Participants Forty women: 20 patients with BN and 20 healthy control participants. Main Outcome Measure We used general linear modeling of Simon Spatial Incompatibility task–related activations to compare groups on their patterns of brain activation associated with the successful or unsuccessful engagement of self-regulatory control. Results Patients with BN responded more impulsively and made more errors on the task than did healthy controls; patients with the most severe symptoms made the most errors. During correct responding on incongruent trials, patients failed to activate frontostriatal circuits to the same degree as healthy controls in the left inferolateral prefrontal cortex (Brodmann area [BA] 45), bilateral inferior frontal gyrus (BA 44), lenticular and caudate nuclei, and anterior cingulate cortex (BA 24/32). Patients activated the dorsal anterior cingulate cortex (BA 32) more when making errors than when responding correctly. In contrast, healthy participants activated the anterior cingulate cortex more during correct than incorrect responses, and they activated the striatum more when responding incorrectly, likely reflecting an automatic response tendency that, in the absence of concomitant anterior cingulate cortex activity, produced incorrect responses. Conclusions Self-regulatory processes are impaired in women with BN, likely because of their failure to engage frontostriatal circuits appropriately. These findings enhance our understanding of the pathogenesis of BN by pointing to functional abnormalities within a neural system that subserves self-regulatory control, which may contribute to binge eating and other impulsive behaviors in women with BN. PMID:19124688

  20. Electrical stimulation of a small brain area reversibly disrupts consciousness.

    PubMed

    Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne

    2014-08-01

    The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Altered prefrontal function with aging: insights into age-associated performance decline.

    PubMed

    Solbakk, Anne-Kristin; Fuhrmann Alpert, Galit; Furst, Ansgar J; Hale, Laura A; Oga, Tatsuhide; Chetty, Sundari; Pickard, Natasha; Knight, Robert T

    2008-09-26

    We examined the effects of aging on visuo-spatial attention. Participants performed a bi-field visual selective attention task consisting of infrequent target and task-irrelevant novel stimuli randomly embedded among repeated standards in either attended or unattended visual fields. Blood oxygenation level dependent (BOLD) responses to the different classes of stimuli were measured using functional magnetic resonance imaging. The older group had slower reaction times to targets, and committed more false alarms but had comparable detection accuracy to young controls. Attended target and novel stimuli activated comparable widely distributed attention networks, including anterior and posterior association cortex, in both groups. The older group had reduced spatial extent of activation in several regions, including prefrontal, basal ganglia, and visual processing areas. In particular, the anterior cingulate and superior frontal gyrus showed more restricted activation in older compared with young adults across all attentional conditions and stimulus categories. The spatial extent of activations correlated with task performance in both age groups, but the regional pattern of association between hemodynamic responses and behavior differed between the groups. Whereas the young subjects relied on posterior regions, the older subjects engaged frontal areas. The results indicate that aging alters the functioning of neural networks subserving visual attention, and that these changes are related to cognitive performance.

  2. Calcium Dysregulation and Homeostasis of Neural Calcium in the Molecular Mechanisms of Neurodegenerative Diseases Provide Multiple Targets for Neuroprotection

    PubMed Central

    Zündorf, Gregor

    2011-01-01

    Abstract The intracellular free calcium concentration subserves complex signaling roles in brain. Calcium cations (Ca2+) regulate neuronal plasticity underlying learning and memory and neuronal survival. Homo- and heterocellular control of Ca2+ homeostasis supports brain physiology maintaining neural integrity. Ca2+ fluxes across the plasma membrane and between intracellular organelles and compartments integrate diverse cellular functions. A vast array of checkpoints controls Ca2+, like G protein-coupled receptors, ion channels, Ca2+ binding proteins, transcriptional networks, and ion exchangers, in both the plasma membrane and the membranes of mitochondria and endoplasmic reticulum. Interactions between Ca2+ and reactive oxygen species signaling coordinate signaling, which can be either beneficial or detrimental. In neurodegenerative disorders, cellular Ca2+-regulating systems are compromised. Oxidative stress, perturbed energy metabolism, and alterations of disease-related proteins result in Ca2+-dependent synaptic dysfunction, impaired plasticity, and neuronal demise. We review Ca2+ control processes relevant for physiological and pathophysiological conditions in brain tissue. Dysregulation of Ca2+ is decisive for brain cell death and degeneration after ischemic stroke, long-term neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, inflammatory processes, such as in multiple sclerosis, epileptic sclerosis, and leucodystrophies. Understanding the underlying molecular processes is of critical importance for the development of novel therapeutic strategies to prevent neurodegeneration and confer neuroprotection. Antioxid. Redox Signal. 14, 1275–1288. PMID:20615073

  3. Grasping actions and social interaction: neural bases and anatomical circuitry in the monkey

    PubMed Central

    Rozzi, Stefano; Coudé, Gino

    2015-01-01

    The study of the neural mechanisms underlying grasping actions showed that cognitive functions are deeply embedded in motor organization. In the first part of this review, we describe the anatomical structure of the motor cortex in the monkey and the cortical and sub-cortical connections of the different motor areas. In the second part, we review the neurophysiological literature showing that motor neurons are not only involved in movement execution, but also in the transformation of object physical features into motor programs appropriate to grasp them (through visuo-motor transformations). We also discuss evidence indicating that motor neurons can encode the goal of motor acts and the intention behind action execution. Then, we describe one of the mechanisms—the mirror mechanism—considered to be at the basis of action understanding and intention reading, and describe the anatomo-functional pathways through which information about the social context can reach the areas containing mirror neurons. Finally, we briefly show that a clear similarity exists between monkey and human in the organization of the motor and mirror systems. Based on monkey and human literature, we conclude that the mirror mechanism relies on a more extended network than previously thought, and possibly subserves basic social functions. We propose that this mechanism is also involved in preparing appropriate complementary response to observed actions, allowing two individuals to become attuned and cooperate in joint actions. PMID:26236258

  4. Tone-deafness – a new disconnection syndrome?

    PubMed Central

    Loui, Psyche; Alsop, David; Schlaug, Gottfried

    2009-01-01

    Communicating with one’s environment requires efficient neural interaction between action and perception. Neural substrates ofsound perception and production are connected by the arcuate fasciculus (AF). While AF is known to be involved in language, its roles in non-linguistic functions are unexplored. Here we show that tone-deaf people, with impaired sound perception and production, have reduced AF connectivity. Diffusion tensor tractography and psychophysics were assessed in tone-deaf individuals and matched controls. Abnormally-reduced AF connectivity was observed in the tone-deaf. Furthermore, we observed relationships between AF and auditory-motor behavior: superior and inferior AF branches predict psychophysically-assessed pitch-discrimination and sound production-perception abilities respectively. This neural abnormality suggests that tone-deafness leads to a reduction in connectivity resulting in pitch-related impairments. Results support a dual-stream anatomy of sound production and perception implicated in vocal communications. By identifying white-matter differences and their psychophysical correlates, results contribute to our understanding of how neural connectivity subserves behavior. PMID:19692596

  5. How do self-interest and other-need interact in the brain to determine altruistic behavior?

    PubMed

    Hu, Jie; Li, Yue; Yin, Yunlu; Blue, Philip R; Yu, Hongbo; Zhou, Xiaolin

    2017-08-15

    Altruistic behavior, i.e., promoting the welfare of others at a cost to oneself, is subserved by the integration of various social, affective, and economic factors represented in extensive brain regions. However, it is unclear how different regions interact to process/integrate information regarding the helper's interest and recipient's need when deciding whether to behave altruistically. Here we combined an interactive game with functional Magnetic Resonance Imaging (fMRI) and transcranial direct current stimulation (tDCS) to characterize the neural network underlying the processing/integration of self-interest and other-need. At the behavioral level, high self-risk decreased helping behavior and high other-need increased helping behavior. At the neural level, activity in medial prefrontal cortex (MPFC) and right dorsolateral prefrontal cortex (rDLPFC) were positively associated with self-risk levels, and activity in right inferior parietal lobe (rIPL) and rDLPFC were negatively associated with other-need levels. Dynamic causal modeling further suggested that both MPFC and rIPL were extrinsically connected to rDLPFC; high self-risk enhanced the effective connectivity from MPFC to rDLPFC, and the modulatory effect of other-need on the connectivity from rIPL to rDLPFC positively correlated with the modulatory effect of other-need on individuals' helping rate. Two tDCS experiments provided causal evidence that rDLPFC affects both self-interest and other-need concerns, and rIPL selectively affects the other-need concerns. These findings suggest a crucial role of the MPFC-IPL-DLPFC network during altruistic decision-making, with rDLPFC as a central node for integrating and modulating motives regarding self-interest and other-need. Copyright © 2017. Published by Elsevier Inc.

  6. Enhancing Innovation and Underlying Neural Mechanisms Via Cognitive Training in Healthy Older Adults

    PubMed Central

    Chapman, Sandra B.; Spence, Jeffrey S.; Aslan, Sina; Keebler, Molly W.

    2017-01-01

    Non-invasive interventions, such as cognitive training (CT) and physical exercise, are gaining momentum as ways to augment both cognitive and brain function throughout life. One of the most fundamental yet little studied aspects of human cognition is innovative thinking, especially in older adults. In this study, we utilize a measure of innovative cognition that examines both the quantity and quality of abstracted interpretations. This randomized pilot trial in cognitively normal adults (56–75 years) compared the effect of cognitive reasoning training (SMART) on innovative cognition as measured by Multiple Interpretations Measure (MIM). We also examined brain changes in relation to MIM using two MRI-based measurement of arterial spin labeling (ASL) to measure cerebral blood flow (CBF) and functional connectivity MRI (fcMRI) to measure default mode and central executive network (CEN) synchrony at rest. Participants (N = 58) were randomized to the CT, physical exercise (physical training, PT) or control (CN) group where CT and PT groups received training for 3 h/week over 12 weeks. They were assessed at baseline-, mid- and post-training using innovative cognition and MRI measures. First, the CT group showed significant gains pre- to post-training on the innovation measure whereas the physical exercise and control groups failed to show significant gains. Next, the CT group showed increased CBF in medial orbitofrontal cortex (mOFC) and bilateral posterior cingulate cortex (PCC), two nodes within the Default Mode Network (DMN) compared to physical exercise and control groups. Last, significant correlations were found between innovation performance and connectivity of two major networks: CEN (positive correlation) and DMN (negative correlation). These results support the view that both the CEN and DMN are important for enhancement of innovative cognition. We propose that neural mechanisms in healthy older adults can be modified through reasoning training to better subserve enhanced innovative cognition. PMID:29062276

  7. The Neurobiology of Anhedonia and Other Reward-Related Deficits

    PubMed Central

    Der-Avakian, Andre; Markou, Athina

    2011-01-01

    Anhedonia, or markedly diminished interest or pleasure, is a hallmark symptom of major depression, schizophrenia, and other neuropsychiatric disorders. Over the past three decades, the clinical definition of anhedonia has remained relatively unchanged, although cognitive psychology and behavioral neuroscience have expanded our understanding of other reward-related processes. Here, we review the neural bases of the construct of anhedonia that reflects deficits in hedonic capacity, and is also closely linked to the constructs of reward valuation, decision-making, anticipation, and motivation. The neural circuits subserving these reward-related processes include the ventral striatum, prefrontal cortical regions, and afferent and efferent projections. Understanding anhedonia and other reward-related constructs will facilitate diagnosis and treatment of disorders that include reward deficits as key symptoms. PMID:22177980

  8. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect.

    PubMed Central

    Kapur, S; Craik, F I; Tulving, E; Wilson, A A; Houle, S; Brown, G M

    1994-01-01

    Cognitive studies of memory processes demonstrate that memory for stimuli is a function of how they are encoded; stimuli processed semantically are better remembered than those processed in a perceptual or shallow fashion. This study investigates the neural correlates of this cognitive phenomenon. Twelve subjects performed two different cognitive tasks on a series of visually presented nouns. In one task, subjects detected the presence or absence of the letter a; in the other, subjects categorized each noun as living or nonliving. Positron emission tomography (PET) scans using 15O-labeled water were obtained during both tasks. Subjects showed substantially better recognition memory for nouns seen in the living/nonliving task, compared to nouns seen in the a-checking task. Comparison of the PET images between the two cognitive tasks revealed a significant activation in the left inferior prefrontal cortex (Brodmann's areas 45, 46, 47, and 10) in the semantic task as compared to the perceptual task. We propose that memory processes are subserved by a wide neurocognitive network and that encoding processes involve preferential activation of the structures in the left inferior prefrontal cortex. PMID:8134340

  9. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.

    PubMed

    Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel

    2016-05-15

    Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect.

    PubMed

    Kapur, S; Craik, F I; Tulving, E; Wilson, A A; Houle, S; Brown, G M

    1994-03-15

    Cognitive studies of memory processes demonstrate that memory for stimuli is a function of how they are encoded; stimuli processed semantically are better remembered than those processed in a perceptual or shallow fashion. This study investigates the neural correlates of this cognitive phenomenon. Twelve subjects performed two different cognitive tasks on a series of visually presented nouns. In one task, subjects detected the presence or absence of the letter a; in the other, subjects categorized each noun as living or nonliving. Positron emission tomography (PET) scans using 15O-labeled water were obtained during both tasks. Subjects showed substantially better recognition memory for nouns seen in the living/nonliving task, compared to nouns seen in the a-checking task. Comparison of the PET images between the two cognitive tasks revealed a significant activation in the left inferior prefrontal cortex (Brodmann's areas 45, 46, 47, and 10) in the semantic task as compared to the perceptual task. We propose that memory processes are subserved by a wide neurocognitive network and that encoding processes involve preferential activation of the structures in the left inferior prefrontal cortex.

  11. Neural correlates of lexicon and grammar: evidence from the production, reading, and judgment of inflection in aphasia.

    PubMed

    Ullman, Michael T; Pancheva, Roumyana; Love, Tracy; Yee, Eiling; Swinney, David; Hickok, Gregory

    2005-05-01

    Are the linguistic forms that are memorized in the mental lexicon and those that are specified by the rules of grammar subserved by distinct neurocognitive systems or by a single computational system with relatively broad anatomic distribution? On a dual-system view, the productive -ed-suffixation of English regular past tense forms (e.g., look-looked) depends upon the mental grammar, whereas irregular forms (e.g., dig-dug) are retrieved from lexical memory. On a single-mechanism view, the computation of both past tense types depends on associative memory. Neurological double dissociations between regulars and irregulars strengthen the dual-system view. The computation of real and novel, regular and irregular past tense forms was investigated in 20 aphasic subjects. Aphasics with non-fluent agrammatic speech and left frontal lesions were consistently more impaired at the production, reading, and judgment of regular than irregular past tenses. Aphasics with fluent speech and word-finding difficulties, and with left temporal/temporo-parietal lesions, showed the opposite pattern. These patterns held even when measures of frequency, phonological complexity, articulatory difficulty, and other factors were held constant. The data support the view that the memorized words of the mental lexicon are subserved by a brain system involving left temporal/temporo-parietal structures, whereas aspects of the mental grammar, in particular the computation of regular morphological forms, are subserved by a distinct system involving left frontal structures.

  12. Cortico-basal ganglia networks subserving goal-directed behavior mediated by conditional visuo-goal association

    PubMed Central

    Hoshi, Eiji

    2013-01-01

    Action is often executed according to information provided by a visual signal. As this type of behavior integrates two distinct neural representations, perception and action, it has been thought that identification of the neural mechanisms underlying this process will yield deeper insights into the principles underpinning goal-directed behavior. Based on a framework derived from conditional visuomotor association, prior studies have identified neural mechanisms in the dorsal premotor cortex (PMd), dorsolateral prefrontal cortex (dlPFC), ventrolateral prefrontal cortex (vlPFC), and basal ganglia (BG). However, applications resting solely on this conceptualization encounter problems related to generalization and flexibility, essential processes in executive function, because the association mode involves a direct one-to-one mapping of each visual signal onto a particular action. To overcome this problem, we extend this conceptualization and postulate a more general framework, conditional visuo-goal association. According to this new framework, the visual signal identifies an abstract behavioral goal, and an action is subsequently selected and executed to meet this goal. Neuronal activity recorded from the four key areas of the brains of monkeys performing a task involving conditional visuo-goal association revealed three major mechanisms underlying this process. First, visual-object signals are represented primarily in the vlPFC and BG. Second, all four areas are involved in initially determining the goals based on the visual signals, with the PMd and dlPFC playing major roles in maintaining the salience of the goals. Third, the cortical areas play major roles in specifying action, whereas the role of the BG in this process is restrictive. These new lines of evidence reveal that the four areas involved in conditional visuomotor association contribute to goal-directed behavior mediated by conditional visuo-goal association in an area-dependent manner. PMID:24155692

  13. Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking

    PubMed Central

    Nummenmaa, Lauri; Oksama, Lauri; Glerean, Erico; Hyönä, Jukka

    2017-01-01

    Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity-location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple-object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity-location binding during attentive tracking. PMID:27913430

  14. Does the Left Inferior Longitudinal Fasciculus Play a Role in Language? A Brain Stimulation Study

    ERIC Educational Resources Information Center

    Mandonnet, Emmanuel; Nouet, Aurelien; Gatignol, Peggy; Capelle, Laurent; Duffau, Hugues

    2007-01-01

    Although advances in diffusion tensor imaging have enabled us to better study the anatomy of the inferior longitudinal fasciculus (ILF), its function remains poorly understood. Recently, it was suggested that the subcortical network subserving the language semantics could be constituted, in parallel with the inferior occipitofrontal fasciculus, by…

  15. Neural substrates of dynamic object occlusion.

    PubMed

    Shuwairi, Sarah M; Curtis, Clayton E; Johnson, Scott P

    2007-08-01

    In everyday environments, objects frequently go out of sight as they move and our view of them becomes obstructed by nearer objects, yet we perceive these objects as continuous and enduring entities. Here, we used functional magnetic resonance imaging with an attentive tracking paradigm to clarify the nature of perceptual and cognitive mechanisms subserving this ability to fill in the gaps in perception of dynamic object occlusion. Imaging data revealed distinct regions of cortex showing increased activity during periods of occlusion relative to full visibility. These regions may support active maintenance of a representation of the target's spatiotemporal properties ensuring that the object is perceived as a persisting entity when occluded. Our findings may shed light on the neural substrates involved in object tracking that give rise to the phenomenon of object permanence.

  16. Deficits in facial affect recognition among antisocial populations: a meta-analysis.

    PubMed

    Marsh, Abigail A; Blair, R J R

    2008-01-01

    Individuals with disorders marked by antisocial behavior frequently show deficits in recognizing displays of facial affect. Antisociality may be associated with specific deficits in identifying fearful expressions, which would implicate dysfunction in neural structures that subserve fearful expression processing. A meta-analysis of 20 studies was conducted to assess: (a) if antisocial populations show any consistent deficits in recognizing six emotional expressions; (b) beyond any generalized impairment, whether specific fear recognition deficits are apparent; and (c) if deficits in fear recognition are a function of task difficulty. Results show a robust link between antisocial behavior and specific deficits in recognizing fearful expressions. This impairment cannot be attributed solely to task difficulty. These results suggest dysfunction among antisocial individuals in specified neural substrates, namely the amygdala, involved in processing fearful facial affect.

  17. Canonical correlation analysis of synchronous neural interactions and cognitive deficits in Alzheimer's dementia

    NASA Astrophysics Data System (ADS)

    Karageorgiou, Elissaios; Lewis, Scott M.; Riley McCarten, J.; Leuthold, Arthur C.; Hemmy, Laura S.; McPherson, Susan E.; Rottunda, Susan J.; Rubins, David M.; Georgopoulos, Apostolos P.

    2012-10-01

    In previous work (Georgopoulos et al 2007 J. Neural Eng. 4 349-55) we reported on the use of magnetoencephalographic (MEG) synchronous neural interactions (SNI) as a functional biomarker in Alzheimer's dementia (AD) diagnosis. Here we report on the application of canonical correlation analysis to investigate the relations between SNI and cognitive neuropsychological (NP) domains in AD patients. First, we performed individual correlations between each SNI and each NP, which provided an initial link between SNI and specific cognitive tests. Next, we performed factor analysis on each set, followed by a canonical correlation analysis between the derived SNI and NP factors. This last analysis optimally associated the entire MEG signal with cognitive function. The results revealed that SNI as a whole were mostly associated with memory and language, and, slightly less, executive function, processing speed and visuospatial abilities, thus differentiating functions subserved by the frontoparietal and the temporal cortices. These findings provide a direct interpretation of the information carried by the SNI and set the basis for identifying specific neural disease phenotypes according to cognitive deficits.

  18. Distinct Neural Circuits Subserve Interpersonal and Non-interpersonal Emotions

    PubMed Central

    Landa, Alla; Wang, Zhishun; Russell, James A.; Posner, Jonathan; Duan, Yunsuo; Kangarlu, Alayar; Huo, Yuankai; Fallon, Brian A.; Peterson, Bradley S.

    2013-01-01

    Emotions elicited by interpersonal versus non-interpersonal experiences have different effects on neurobiological functioning in both animals and humans. However, the extent to which the brain circuits underlying interpersonal and non-interpersonal emotions are distinct still remains unclear. The goal of our study was to assess whether different neural circuits are implicated in the processing of arousal and valence of interpersonal versus non-interpersonal emotions. During functional magnetic resonance imaging, participants imagined themselves in emotion-eliciting interpersonal or non-interpersonal situations and then rated the arousal and valence of emotions they experienced. We identified (a) separate neural circuits that are implicated in the arousal and valence dimensions of interpersonal versus non-interpersonal emotions, (b) circuits that are implicated in arousal and valence for both types of emotion, and (c) circuits that are responsive to the type of emotion, regardless of the valence or arousal level of the emotion. We found extensive recruitment of limbic (for arousal) and temporal-parietal (for valence) systems associated with processing of specifically interpersonal emotions compared to non-interpersonal ones. The neural bases of interpersonal and non-interpersonal emotions may, therefore, be largely distinct. PMID:24028312

  19. A roadmap for the study of conscious audition and its neural basis

    PubMed Central

    Cariani, Peter A.; Gutschalk, Alexander

    2017-01-01

    How and which aspects of neural activity give rise to subjective perceptual experience—i.e. conscious perception—is a fundamental question of neuroscience. To date, the vast majority of work concerning this question has come from vision, raising the issue of generalizability of prominent resulting theories. However, recent work has begun to shed light on the neural processes subserving conscious perception in other modalities, particularly audition. Here, we outline a roadmap for the future study of conscious auditory perception and its neural basis, paying particular attention to how conscious perception emerges (and of which elements or groups of elements) in complex auditory scenes. We begin by discussing the functional role of the auditory system, particularly as it pertains to conscious perception. Next, we ask: what are the phenomena that need to be explained by a theory of conscious auditory perception? After surveying the available literature for candidate neural correlates, we end by considering the implications that such results have for a general theory of conscious perception as well as prominent outstanding questions and what approaches/techniques can best be used to address them. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044014

  20. ERP markers of target selection discriminate children with high vs. low working memory capacity.

    PubMed

    Shimi, Andria; Nobre, Anna Christina; Scerif, Gaia

    2015-01-01

    Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM) system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults' selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children's selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults' selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc). However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the "adult time-window" related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children's neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM performance in children.

  1. Resting-state functional connectivity indexes reading competence in children and adults.

    PubMed

    Koyama, Maki S; Di Martino, Adriana; Zuo, Xi-Nian; Kelly, Clare; Mennes, Maarten; Jutagir, Devika R; Castellanos, F Xavier; Milham, Michael P

    2011-06-08

    Task-based neuroimaging studies face the challenge of developing tasks capable of equivalently probing reading networks across different age groups. Resting-state fMRI, which requires no specific task, circumvents these difficulties. Here, in 25 children (8-14 years) and 25 adults (21-46 years), we examined the extent to which individual differences in reading competence can be related to resting-state functional connectivity (RSFC) of regions implicated in reading. In both age groups, reading standard scores correlated positively with RSFC between the left precentral gyrus and other motor regions, and between Broca's and Wernicke's areas. This suggests that, regardless of age group, stronger coupling among motor regions, as well as between language/speech regions, subserves better reading, presumably reflecting automatized articulation. We also observed divergent RSFC-behavior relationships in children and adults, particularly those anchored in the left fusiform gyrus (FFG) (the visual word form area). In adults, but not children, better reading performance was associated with stronger positive correlations between FFG and phonology-related regions (Broca's area and the left inferior parietal lobule), and with stronger negative relationships between FFG and regions of the "task-negative" default network. These results suggest that both positive RSFC (functional coupling) between reading regions and negative RSFC (functional segregation) between a reading region and default network regions are important for automatized reading, characteristic of adult readers. Together, our task-independent RSFC findings highlight the importance of appreciating developmental changes in the neural correlates of reading competence, and suggest that RSFC may serve to facilitate the identification of reading disorders in different age groups.

  2. Flexibility of movement organization in piano performance.

    PubMed

    Furuya, Shinichi; Altenmüller, Eckart

    2013-01-01

    Piano performance involves a large repertoire of highly skilled movements. The acquisition of these exceptional skills despite innate neural and biomechanical constraints requires a sophisticated interaction between plasticity of the neural system and organization of a redundant number of degrees of freedom (DOF) in the motor system. Neuroplasticity subserving virtuosity of pianists has been documented in neuroimaging studies investigating effects of long-term piano training on structure and function of the cortical and subcortical regions. By contrast, recent behavioral studies have advanced the understanding of neuromuscular strategies and biomechanical principles behind the movement organization that enables skilled piano performance. Here we review the motor control and biomechanics literature, introducing the importance of describing motor behaviors not only for understanding mechanisms responsible for skillful motor actions in piano playing, but also for advancing diagnosis and rehabilitation of movement disorders caused by extensive piano practice.

  3. The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research

    PubMed Central

    Di Domenico, Stefano I.; Ryan, Richard M.

    2017-01-01

    Intrinsic motivation refers to people’s spontaneous tendencies to be curious and interested, to seek out challenges and to exercise and develop their skills and knowledge, even in the absence of operationally separable rewards. Over the past four decades, experimental and field research guided by self-determination theory (SDT; Ryan and Deci, 2017) has found intrinsic motivation to predict enhanced learning, performance, creativity, optimal development and psychological wellness. Only recently, however, have studies begun to examine the neurobiological substrates of intrinsic motivation. In the present article, we trace the history of intrinsic motivation research, compare and contrast intrinsic motivation to closely related topics (flow, curiosity, trait plasticity), link intrinsic motivation to key findings in the comparative affective neurosciences, and review burgeoning neuroscience research on intrinsic motivation. We review converging evidence suggesting that intrinsically motivated exploratory and mastery behaviors are phylogenetically ancient tendencies that are subserved by dopaminergic systems. Studies also suggest that intrinsic motivation is associated with patterns of activity across large-scale neural networks, namely, those that support salience detection, attentional control and self-referential cognition. We suggest novel research directions and offer recommendations for the application of neuroscience methods in the study of intrinsic motivation. PMID:28392765

  4. The Emerging Neuroscience of Intrinsic Motivation: A New Frontier in Self-Determination Research.

    PubMed

    Di Domenico, Stefano I; Ryan, Richard M

    2017-01-01

    Intrinsic motivation refers to people's spontaneous tendencies to be curious and interested, to seek out challenges and to exercise and develop their skills and knowledge, even in the absence of operationally separable rewards. Over the past four decades, experimental and field research guided by self-determination theory (SDT; Ryan and Deci, 2017) has found intrinsic motivation to predict enhanced learning, performance, creativity, optimal development and psychological wellness. Only recently, however, have studies begun to examine the neurobiological substrates of intrinsic motivation. In the present article, we trace the history of intrinsic motivation research, compare and contrast intrinsic motivation to closely related topics (flow, curiosity, trait plasticity), link intrinsic motivation to key findings in the comparative affective neurosciences, and review burgeoning neuroscience research on intrinsic motivation. We review converging evidence suggesting that intrinsically motivated exploratory and mastery behaviors are phylogenetically ancient tendencies that are subserved by dopaminergic systems. Studies also suggest that intrinsic motivation is associated with patterns of activity across large-scale neural networks, namely, those that support salience detection, attentional control and self-referential cognition. We suggest novel research directions and offer recommendations for the application of neuroscience methods in the study of intrinsic motivation.

  5. Primacy Versus Recency in a Quantitative Model: Activity Is the Critical Distinction

    PubMed Central

    Greene, Anthony J.; Prepscius, Colin; Levy, William B.

    2000-01-01

    Behavioral and neurobiological evidence shows that primacy and recency are subserved by memory systems for intermediate- and short-term memory, respectively. A widely accepted explanation of recency is that in short-term memory, new learning overwrites old learning. Primacy is not as well understood, but many hypotheses contend that initial items are better encoded into long-term memory because they have had more opportunity to be rehearsed. A simple, biologically motivated neural network model supports an alternative hypothesis of the distinct processing requirements for primacy and recency given single-trial learning without rehearsal. Simulations of the model exhibit either primacy or recency, but not both simultaneously. The incompatibility of primacy and recency clarifies possible reasons for two neurologically distinct systems. Inhibition, and its control of activity, determines those list items that are acquired and retained. Activity levels that are too low do not provide sufficient connections for learning to occur, while higher activity diminishes capacity. High recurrent inhibition, and progressively diminishing activity, allows acquisition and retention of early items, while later items are never acquired. Conversely, low recurrent inhibition, and the resulting high activity, allows continuous acquisition such that acquisition of later items eventually interferes with the retention of early items. PMID:10706602

  6. Neurophysiology and functional neuroanatomy of pain perception.

    PubMed

    Schnitzler, A; Ploner, M

    2000-11-01

    The traditional view that the cerebral cortex is not involved in pain processing has been abandoned during the past decades based on anatomic and physiologic investigations in animals, and lesion, functional neuroimaging, and neurophysiologic studies in humans. These studies have revealed an extensive central network associated with nociception that consistently includes the thalamus, the primary (SI) and secondary (SII) somatosensory cortices, the insula, and the anterior cingulate cortex (ACC). Anatomic and electrophysiologic data show that these cortical regions receive direct nociceptive thalamic input. From the results of human studies there is growing evidence that these different cortical structures contribute to different dimensions of pain experience. The SI cortex appears to be mainly involved in sensory-discriminative aspects of pain. The SII cortex seems to have an important role in recognition, learning, and memory of painful events. The insula has been proposed to be involved in autonomic reactions to noxious stimuli and in affective aspects of pain-related learning and memory. The ACC is closely related to pain unpleasantness and may subserve the integration of general affect, cognition, and response selection. The authors review the evidence on which the proposed relationship between cortical areas, pain-related neural activations, and components of pain perception is based.

  7. Neural basis for brain responses to TV commercials: a high-resolution EEG study.

    PubMed

    Astolfi, Laura; De Vico Fallani, F; Cincotti, F; Mattia, D; Bianchi, L; Marciani, M G; Salinari, S; Colosimo, A; Tocci, A; Soranzo, R; Babiloni, F

    2008-12-01

    We investigated brain activity during the observation of TV commercials by tracking the cortical activity and the functional connectivity changes in normal subjects. The aim was to elucidate if the TV commercials that were remembered by the subjects several days after their first observation elicited particular brain activity and connectivity compared with those generated during the observation of TV commercials that were quickly forgotten. High-resolution electroencephalogram (EEG) recordings were performed in a group of healthy subjects and the cortical activity during the observation of TV commercials was evaluated in several regions of interest coincident with the Brodmann areas (BAs). The patterns of cortical connectivity were obtained in the four principal frequency bands, Theta (3-7 Hz), Alpha (8-12 Hz), Beta (13-30 Hz), Gamma (30-40 Hz) and the directed influences between any given pair of the estimated cortical signals were evaluated by use of a multivariate spectral technique known as partial directed coherence. The topology of the cortical networks has been identified with tools derived from graph theory. Results suggest that the cortical activity and connectivity elicited by the viewing of the TV commercials that were remembered by the experimental subjects are markedly different from the brain activity elicited during the observation of the TV commercials that were forgotten. In particular, during the observation of the TV commercials that were remembered, the amount of cortical spectral activity from the frontal areas (BA 8 and 9) and from the parietal areas (BA 5, 7, and 40) is higher compared with the activity elicited by the observation of TV commercials that were forgotten. In addition, network analysis suggests a clear role of the parietal areas as a target of the incoming flow of information from all the other parts of the cortex during the observation of TV commercials that have been remembered. The techniques presented here shed new light on all the cortical networks and their behavior during the memorization of TV commercials. Such techniques could also be relevant in neuroeconomics and neuromarketing for the investigation of the neural substrates subserving other decision-making and recognition tasks.

  8. Effects of pre-experimental knowledge on recognition memory.

    PubMed

    Bird, Chris M; Davies, Rachel A; Ward, Jamie; Burgess, Neil

    2011-01-01

    The influence of pre-experimental autobiographical knowledge on recognition memory was investigated using as memoranda faces that were either personally known or unknown to the participant. Under a dual process theory, such knowledge boosted both recollection- and familiarity-based recognition judgements. Under an unequal variance signal detection model, pre-experimental knowledge increased both the variance and the separation of the target and foil memory strength distributions, boosting hits and correct rejections. Thus, pre-experimental knowledge has profound effects on the multiple, interacting processes that subserve recognition memory, and likely in the neural systems that underpin them.

  9. An Investigation of the Application of Artificial Neural Networks to Adaptive Optics Imaging Systems

    DTIC Science & Technology

    1991-12-01

    neural network and the feedforward neural network studied is the single layer perceptron artificial neural network . The recurrent artificial neural network input...features are the wavefront sensor slope outputs and neighboring actuator feedback commands. The feedforward artificial neural network input

  10. Classification of 2-dimensional array patterns: assembling many small neural networks is better than using a large one.

    PubMed

    Chen, Liang; Xue, Wei; Tokuda, Naoyuki

    2010-08-01

    In many pattern classification/recognition applications of artificial neural networks, an object to be classified is represented by a fixed sized 2-dimensional array of uniform type, which corresponds to the cells of a 2-dimensional grid of the same size. A general neural network structure, called an undistricted neural network, which takes all the elements in the array as inputs could be used for problems such as these. However, a districted neural network can be used to reduce the training complexity. A districted neural network usually consists of two levels of sub-neural networks. Each of the lower level neural networks, called a regional sub-neural network, takes the elements in a region of the array as its inputs and is expected to output a temporary class label, called an individual opinion, based on the partial information of the entire array. The higher level neural network, called an assembling sub-neural network, uses the outputs (opinions) of regional sub-neural networks as inputs, and by consensus derives the label decision for the object. Each of the sub-neural networks can be trained separately and thus the training is less expensive. The regional sub-neural networks can be trained and performed in parallel and independently, therefore a high speed can be achieved. We prove theoretically in this paper, using a simple model, that a districted neural network is actually more stable than an undistricted neural network in noisy environments. We conjecture that the result is valid for all neural networks. This theory is verified by experiments involving gender classification and human face recognition. We conclude that a districted neural network is highly recommended for neural network applications in recognition or classification of 2-dimensional array patterns in highly noisy environments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Advanced Aeroservoelastic Testing and Data Analysis (Les Essais Aeroservoelastiques et l’Analyse des Donnees).

    DTIC Science & Technology

    1995-11-01

    network - based AFS concepts. Neural networks can addition of vanes in each engine exhaust for thrust provide...parameter estimation programs 19-11 8.6 Neural Network Based Methods unknown parameters of the postulated state space model Artificial neural network ...Forward Neural Network the network that the applicability of the recurrent neural and ii) Recurrent Neural Network [117-119]. network to

  12. Examining neural plasticity and cognitive benefit through the unique lens of musical training.

    PubMed

    Moreno, Sylvain; Bidelman, Gavin M

    2014-02-01

    Training programs aimed to alleviate or improve auditory-cognitive abilities have either experienced mixed success or remain to be fully validated. The limited benefits of such regimens are largely attributable to our weak understanding of (i) how (and which) interventions provide the most robust and long lasting improvements to cognitive and perceptual abilities and (ii) how the neural mechanisms which underlie such abilities are positively modified by certain activities and experience. Recent studies indicate that music training provides robust, long-lasting biological benefits to auditory function. Importantly, the behavioral advantages conferred by musical experience extend beyond simple enhancements to perceptual abilities and even impact non-auditory functions necessary for higher-order aspects of cognition (e.g., working memory, intelligence). Collectively, preliminary findings indicate that alternative forms of arts engagement (e.g., visual arts training) may not yield such widespread enhancements, suggesting that music expertise uniquely taps and refines a hierarchy of brain networks subserving a variety of auditory as well as domain-general cognitive mechanisms. We infer that transfer from specific music experience to broad cognitive benefit might be mediated by the degree to which a listener's musical training tunes lower- (e.g., perceptual) and higher-order executive functions, and the coordination between these processes. Ultimately, understanding the broad impact of music on the brain will not only provide a more holistic picture of auditory processing and plasticity, but may help inform and tailor remediation and training programs designed to improve perceptual and cognitive benefits in human listeners. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  14. Hierarchical competitions subserving multi-attribute choice

    PubMed Central

    Hunt, Laurence T; Dolan, Raymond J; Behrens, Timothy EJ

    2015-01-01

    Valuation is a key tenet of decision neuroscience, where it is generally assumed that different attributes of competing options are assimilated into unitary values. Such values are central to current neural models of choice. By contrast, psychological studies emphasize complex interactions between choice and valuation. Principles of neuronal selection also suggest competitive inhibition may occur in early valuation stages, before option selection. Here, we show behavior in multi-attribute choice is best explained by a model involving competition at multiple levels of representation. This hierarchical model also explains neural signals in human brain regions previously linked to valuation, including striatum, parietal and prefrontal cortex, where activity represents competition within-attribute, competition between attributes, and option selection. This multi-layered inhibition framework challenges the assumption that option values are computed before choice. Instead our results indicate a canonical competition mechanism throughout all stages of a processing hierarchy, not simply at a final choice stage. PMID:25306549

  15. Changes in brain activation during working memory and facial recognition tasks in patients with bipolar disorder with Lamotrigine monotherapy.

    PubMed

    Haldane, Morgan; Jogia, Jigar; Cobb, Annabel; Kozuch, Eliza; Kumari, Veena; Frangou, Sophia

    2008-01-01

    Verbal working memory and emotional self-regulation are impaired in Bipolar Disorder (BD). Our aim was to investigate the effect of Lamotrigine (LTG), which is effective in the clinical management of BD, on the neural circuits subserving working memory and emotional processing. Functional Magnetic Resonance Imaging data from 12 stable BD patients was used to detect LTG-induced changes as the differences in brain activity between drug-free and post-LTG monotherapy conditions during a verbal working memory (N-back sequential letter task) and an angry facial affect recognition task. For both tasks, LGT monotherapy compared to baseline was associated with increased activation mostly within the prefrontal cortex and cingulate gyrus, in regions normally engaged in verbal working memory and emotional processing. Therefore, LTG monotherapy in BD patients may enhance cortical function within neural circuits involved in memory and emotional self-regulation.

  16. Applying Current Concepts in Pain-Related Brain Science to Dance Rehabilitation.

    PubMed

    Wallwork, Sarah B; Bellan, Valeria; Moseley, G Lorimer

    2017-03-01

    Dance involves exemplary sensory-motor control, which is subserved by sophisticated neural processing at the spinal cord and brain level. Such neural processing is altered in the presence of nociception and pain, and the adaptations within the central nervous system that are known to occur with persistent nociception or pain have clear implications for movement and, indeed, risk of further injury. Recent rapid advances in our understanding of the brain's representation of the body and the role of cortical representations, or "neurotags," in bodily protection and regulation have given rise to new strategies that are gaining traction in sports medicine. Those strategies are built on the principles that govern the operation of neurotags and focus on minimizing the impact of pain, injury, and immobilization on movement control and optimal performance. Here we apply empirical evidence from the chronic pain clinical neurosciences to introduce new opportunities for rehabilitation after dance injury.

  17. Flexibility of movement organization in piano performance

    PubMed Central

    Furuya, Shinichi; Altenmüller, Eckart

    2013-01-01

    Piano performance involves a large repertoire of highly skilled movements. The acquisition of these exceptional skills despite innate neural and biomechanical constraints requires a sophisticated interaction between plasticity of the neural system and organization of a redundant number of degrees of freedom (DOF) in the motor system. Neuroplasticity subserving virtuosity of pianists has been documented in neuroimaging studies investigating effects of long-term piano training on structure and function of the cortical and subcortical regions. By contrast, recent behavioral studies have advanced the understanding of neuromuscular strategies and biomechanical principles behind the movement organization that enables skilled piano performance. Here we review the motor control and biomechanics literature, introducing the importance of describing motor behaviors not only for understanding mechanisms responsible for skillful motor actions in piano playing, but also for advancing diagnosis and rehabilitation of movement disorders caused by extensive piano practice. PMID:23882199

  18. Adolescent Neurodevelopment of Cognitive Control and Risk-taking in Negative Family Contexts

    PubMed Central

    McCormick, Ethan M.; Qu, Yang; Telzer, Eva H.

    2015-01-01

    Adolescents have an increased need to regulate their behavior as they gain access to opportunities for risky behavior; however, cognitive control systems necessary for this regulation remain relatively immature. Parents can impact their adolescent child's abilities to regulate their behavior and engagement in risk taking. Since adolescents undergo significant neural change, negative parent-child relationship quality may impede or alter development in prefrontal regions subserving cognitive control. To test this hypothesis, 20 adolescents completed a go/nogo task during two fMRI scans occurring 1 year apart. Adolescents reporting greater family conflict and lower family cohesion showed longitudinal increases in risk-taking behavior, which was mediated by longitudinal increases in left VLPFC activation during cognitive control. These results underscore the importance of parent-child relationships during early adolescence, and the neural processes by which cognitive control may be derailed and lead to increased risk taking. PMID:26434803

  19. Adolescent neurodevelopment of cognitive control and risk-taking in negative family contexts.

    PubMed

    McCormick, Ethan M; Qu, Yang; Telzer, Eva H

    2016-01-01

    Adolescents have an increased need to regulate their behavior as they gain access to opportunities for risky behavior; however, cognitive control systems necessary for this regulation remain relatively immature. Parents can impact their adolescent child's abilities to regulate their behavior and engagement in risk taking. Since adolescents undergo significant neural change, negative parent-child relationship quality may impede or alter development in prefrontal regions subserving cognitive control. To test this hypothesis, 20 adolescents completed a Go/NoGo task during two fMRI scans occurring 1year apart. Adolescents reporting greater family conflict and lower family cohesion showed longitudinal increases in risk-taking behavior, which was mediated by longitudinal increases in left VLPFC activation during cognitive control. These results underscore the importance of parent-child relationships during early adolescence, and the neural processes by which cognitive control may be derailed and may lead to increased risk taking. Published by Elsevier Inc.

  20. Aging with HIV-1 Infection: Motor Functions, Cognition, and Attention--A Comparison with Parkinson's Disease.

    PubMed

    DeVaughn, S; Müller-Oehring, E M; Markey, B; Brontë-Stewart, H M; Schulte, T

    2015-12-01

    Recent advances in highly active anti-retroviral therapy (HAART) in their various combinations have dramatically increased the life expectancies of HIV-infected persons. People diagnosed with HIV are living beyond the age of 50 but are experiencing the cumulative effects of HIV infection and aging on brain function. In HIV-infected aging individuals, the potential synergy between immunosenescence and HIV viral loads increases susceptibility to HIV-related brain injury and functional brain network degradation similar to that seen in Parkinson's disease (PD), the second most common neurodegenerative disorder in the aging population. Although there are clear diagnostic differences in the primary pathology of both diseases, i.e., death of dopamine-generating cells in the substantia nigra in PD and neuroinflammation in HIV, neurotoxicity to dopaminergic terminals in the basal ganglia (BG) has been implied in the pathogenesis of HIV and neuroinflammation in the pathogenesis of PD. Similar to PD, HIV infection affects structures of the BG, which are part of interconnected circuits including mesocorticolimbic pathways linking brainstem nuclei to BG and cortices subserving attention, cognitive control, and motor functions. The present review discusses the combined effects of aging and neuroinflammation in HIV individuals on cognition and motor function in comparison with age-related neurodegenerative processes in PD. Despite the many challenges, some HIV patients manage to age successfully, most likely by redistribution of neural network resources to enhance function, as occurs in healthy elderly; such compensation could be curtailed by emerging PD.

  1. Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states

    PubMed Central

    Chandrasekaran, Sriram; Ament, Seth A.; Eddy, James A.; Rodriguez-Zas, Sandra L.; Schatz, Bruce R.; Price, Nathan D.; Robinson, Gene E.

    2011-01-01

    Using brain transcriptomic profiles from 853 individual honey bees exhibiting 48 distinct behavioral phenotypes in naturalistic contexts, we report that behavior-specific neurogenomic states can be inferred from the coordinated action of transcription factors (TFs) and their predicted target genes. Unsupervised hierarchical clustering of these transcriptomic profiles showed three clusters that correspond to three ecologically important behavioral categories: aggression, maturation, and foraging. To explore the genetic influences potentially regulating these behavior-specific neurogenomic states, we reconstructed a brain transcriptional regulatory network (TRN) model. This brain TRN quantitatively predicts with high accuracy gene expression changes of more than 2,000 genes involved in behavior, even for behavioral phenotypes on which it was not trained, suggesting that there is a core set of TFs that regulates behavior-specific gene expression in the bee brain, and other TFs more specific to particular categories. TFs playing key roles in the TRN include well-known regulators of neural and behavioral plasticity, e.g., Creb, as well as TFs better known in other biological contexts, e.g., NF-κB (immunity). Our results reveal three insights concerning the relationship between genes and behavior. First, distinct behaviors are subserved by distinct neurogenomic states in the brain. Second, the neurogenomic states underlying different behaviors rely upon both shared and distinct transcriptional modules. Third, despite the complexity of the brain, simple linear relationships between TFs and their putative target genes are a surprisingly prominent feature of the networks underlying behavior. PMID:21960440

  2. fMRI reveals two distinct cerebral networks subserving speech motor control.

    PubMed

    Riecker, A; Mathiak, K; Wildgruber, D; Erb, M; Hertrich, I; Grodd, W; Ackermann, H

    2005-02-22

    There are few data on the cerebral organization of motor aspects of speech production and the pathomechanisms of dysarthric deficits subsequent to brain lesions and diseases. The authors used fMRI to further examine the neural basis of speech motor control. In eight healthy volunteers, fMRI was performed during syllable repetitions synchronized to click trains (2 to 6 Hz; vs a passive listening task). Bilateral hemodynamic responses emerged at the level of the mesiofrontal and sensorimotor cortex, putamen/pallidum, thalamus, and cerebellum (two distinct activation spots at either side). In contrast, dorsolateral premotor cortex and anterior insula showed left-sided activation. Calculation of rate/response functions revealed a negative linear relationship between repetition frequency and blood oxygen level-dependent (BOLD) signal change within the striatum, whereas both cerebellar hemispheres exhibited a step-wise increase of activation at approximately 3 Hz. Analysis of the temporal dynamics of the BOLD effect found the various cortical and subcortical brain regions engaged in speech motor control to be organized into two separate networks (medial and dorsolateral premotor cortex, anterior insula, and superior cerebellum vs sensorimotor cortex, basal ganglia, and inferior cerebellum). These data provide evidence for two levels of speech motor control bound, most presumably, to motor preparation and execution processes. They also help to explain clinical observations such as an unimpaired or even accelerated speaking rate in Parkinson disease and slowed speech tempo, which does not fall below a rate of 3 Hz, in cerebellar disorders.

  3. Time Series Neural Network Model for Part-of-Speech Tagging Indonesian Language

    NASA Astrophysics Data System (ADS)

    Tanadi, Theo

    2018-03-01

    Part-of-speech tagging (POS tagging) is an important part in natural language processing. Many methods have been used to do this task, including neural network. This paper models a neural network that attempts to do POS tagging. A time series neural network is modelled to solve the problems that a basic neural network faces when attempting to do POS tagging. In order to enable the neural network to have text data input, the text data will get clustered first using Brown Clustering, resulting a binary dictionary that the neural network can use. To further the accuracy of the neural network, other features such as the POS tag, suffix, and affix of previous words would also be fed to the neural network.

  4. Cross-cultural reading the mind in the eyes: an fMRI investigation.

    PubMed

    Adams, Reginald B; Rule, Nicholas O; Franklin, Robert G; Wang, Elsie; Stevenson, Michael T; Yoshikawa, Sakiko; Nomura, Mitsue; Sato, Wataru; Kveraga, Kestutis; Ambady, Nalini

    2010-01-01

    The ability to infer others' thoughts, intentions, and feelings is regarded as uniquely human. Over the last few decades, this remarkable ability has captivated the attention of philosophers, primatologists, clinical and developmental psychologists, anthropologists, social psychologists, and cognitive neuroscientists. Most would agree that the capacity to reason about others' mental states is innately prepared, essential for successful human social interaction. Whether this ability is culturally tuned, however, remains entirely uncharted on both the behavioral and neural levels. Here we provide the first behavioral and neural evidence for an intracultural advantage (better performance for same- vs. other-culture) in mental state decoding in a sample of native Japanese and white American participants. We examined the neural correlates of this intracultural advantage using fMRI, revealing greater bilateral posterior superior temporal sulci recruitment during same- versus other-culture mental state decoding in both cultural groups. These findings offer preliminary support for cultural consistency in the neurological architecture subserving high-level mental state reasoning, as well as its differential recruitment based on cultural group membership.

  5. The neural mechanisms of learning from competitors.

    PubMed

    Howard-Jones, Paul A; Bogacz, Rafal; Yoo, Jee H; Leonards, Ute; Demetriou, Skevi

    2010-11-01

    Learning from competitors poses a challenge for existing theories of reward-based learning, which assume that rewarded actions are more likely to be executed in the future. Such a learning mechanism would disadvantage a player in a competitive situation because, since the competitor's loss is the player's gain, reward might become associated with an action the player should themselves avoid. Using fMRI, we investigated the neural activity of humans competing with a computer in a foraging task. We observed neural activity that represented the variables required for learning from competitors: the actions of the competitor (in the player's motor and premotor cortex) and the reward prediction error arising from the competitor's feedback. In particular, regions positively correlated with the unexpected loss of the competitor (which was beneficial to the player) included the striatum and those regions previously implicated in response inhibition. Our results suggest that learning in such contexts may involve the competitor's unexpected losses activating regions of the player's brain that subserve response inhibition, as the player learns to avoid the actions that produced them. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Coding of visual object features and feature conjunctions in the human brain.

    PubMed

    Martinovic, Jasna; Gruber, Thomas; Müller, Matthias M

    2008-01-01

    Object recognition is achieved through neural mechanisms reliant on the activity of distributed coordinated neural assemblies. In the initial steps of this process, an object's features are thought to be coded very rapidly in distinct neural assemblies. These features play different functional roles in the recognition process--while colour facilitates recognition, additional contours and edges delay it. Here, we selectively varied the amount and role of object features in an entry-level categorization paradigm and related them to the electrical activity of the human brain. We found that early synchronizations (approx. 100 ms) increased quantitatively when more image features had to be coded, without reflecting their qualitative contribution to the recognition process. Later activity (approx. 200-400 ms) was modulated by the representational role of object features. These findings demonstrate that although early synchronizations may be sufficient for relatively crude discrimination of objects in visual scenes, they cannot support entry-level categorization. This was subserved by later processes of object model selection, which utilized the representational value of object features such as colour or edges to select the appropriate model and achieve identification.

  7. Neural changes in control implementation of a continuous task.

    PubMed

    Lungu, Ovidiu V; Binenstock, Meagan M; Pline, Megan A; Yeaton, Jennifer R; Carey, James R

    2007-03-14

    It is commonly agreed that control implementation, being a resource-consuming endeavor, is not exerted continuously or in simple tasks. However, most research in the field was done using tasks that varied the need for control on a trial-by-trial basis (e.g., Stroop, flanker) in a discrete manner. In this case, the anterior cingulate cortex (ACC) was found to monitor the need for control, whereas regions in the prefrontal cortex (PFC) were found to be involved in control implementation. Whether or not the same control mechanism would be used in continuous tasks was an open question. In our study, we found that in a continuous task, the same neural substrate subserves control monitoring (ACC) but that the neural substrate of control implementation changes over time. Early in the task, regions in the PFC were involved in control implementation, whereas later the control was taken over by subcortical structures, specifically the caudate. Our results suggest that humans possess a flexible control mechanism, with a specific structure dedicated to monitoring the need for control and with multiple structures involved in control implementation.

  8. Selection of neural network structure for system error correction of electro-optical tracker system with horizontal gimbal

    NASA Astrophysics Data System (ADS)

    Liu, Xing-fa; Cen, Ming

    2007-12-01

    Neural Network system error correction method is more precise than lest square system error correction method and spheric harmonics function system error correction method. The accuracy of neural network system error correction method is mainly related to the frame of Neural Network. Analysis and simulation prove that both BP neural network system error correction method and RBF neural network system error correction method have high correction accuracy; it is better to use RBF Network system error correction method than BP Network system error correction method for little studying stylebook considering training rate and neural network scale.

  9. Nonlinear dynamics of emotion-cognition interaction: when emotion does not destroy cognition?

    PubMed

    Afraimovich, Valentin; Young, Todd; Muezzinoglu, Mehmet K; Rabinovich, Mikhail I

    2011-02-01

    Emotion (i.e., spontaneous motivation and subsequent implementation of a behavior) and cognition (i.e., problem solving by information processing) are essential to how we, as humans, respond to changes in our environment. Recent studies in cognitive science suggest that emotion and cognition are subserved by different, although heavily integrated, neural systems. Understanding the time-varying relationship of emotion and cognition is a challenging goal with important implications for neuroscience. We formulate here the dynamical model of emotion-cognition interaction that is based on the following principles: (1) the temporal evolution of cognitive and emotion modes are captured by the incoming stimuli and competition within and among themselves (competition principle); (2) metastable states exist in the unified emotion-cognition phase space; and (3) the brain processes information with robust and reproducible transients through the sequence of metastable states. Such a model can take advantage of the often ignored temporal structure of the emotion-cognition interaction to provide a robust and generalizable method for understanding the relationship between brain activation and complex human behavior. The mathematical image of the robust and reproducible transient dynamics is a Stable Heteroclinic Sequence (SHS), and the Stable Heteroclinic Channels (SHCs). These have been hypothesized to be possible mechanisms that lead to the sequential transient behavior observed in networks. We investigate the modularity of SHCs, i.e., given a SHS and a SHC that is supported in one part of a network, we study conditions under which the SHC pertaining to the cognition will continue to function in the presence of interfering activity with other parts of the network, i.e., emotion.

  10. A novel recurrent neural network with finite-time convergence for linear programming.

    PubMed

    Liu, Qingshan; Cao, Jinde; Chen, Guanrong

    2010-11-01

    In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.

  11. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  12. The role of conceptual knowledge in understanding synaesthesia: Evaluating contemporary findings from a “hub-and-spokes” perspective

    PubMed Central

    Chiou, Rocco

    2014-01-01

    Synesthesia is a phenomenon in which stimulation in one sensory modality triggers involuntary experiences typically not associated with that stimulation. Inducing stimuli (inducers) and synesthetic experiences (concurrents) may occur within the same modality (e.g., seeing colors while reading achromatic text) or span across different modalities (e.g., tasting flavors while listening to music). Although there has been considerable progress over the last decade in understanding the cognitive and neural mechanisms of synesthesia, the focus of current neurocognitive models of synesthesia does not encompass many crucial psychophysical characteristics documented in behavioral research. Prominent theories of the neurophysiological basis of synesthesia construe it as a perceptual phenomenon and hence focus primarily on the modality-specific brain regions for perception. Many behavioral studies, however, suggest an essential role for conceptual-level information in synesthesia. For example, there is evidence that synesthetic experience arises subsequent to identification of an inducing stimulus, differs substantially from real perceptual events, can be akin to perceptual memory, and is susceptible to lexical/semantic contexts. These data suggest that neural mechanisms lying beyond the realm of the perceptual cortex (especially the visual system), such as regions subserving conceptual knowledge, may play pivotal roles in the neural architecture of synesthesia. Here we discuss the significance of non-perceptual mechanisms that call for a re-evaluation of the emphasis on synesthesia as a perceptual phenomenon. We also review recent studies which hint that some aspects of synesthesia resemble our general conceptual knowledge for object attributes, at both psychophysical and neural levels. We then present a conceptual-mediation model of synesthesia in which the inducer and concurrent are linked within a conceptual-level representation. This “inducer-to-concurrent” nexus is maintained within a supramodal “hub,” while the subjective (bodily) experience of its resultant concurrent (e.g., a color) may then require activation of “spokes” in the perception-related cortices. This hypothesized “hub-and-spoke” structure would engage a distributed network of cortical regions and may account for the full breadth of this intriguing phenomenon. PMID:24653707

  13. Linear matrix inequality approach to exponential synchronization of a class of chaotic neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Cui, Bao-Tong

    2007-07-01

    In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.

  14. Impaired pitch production and preserved rhythm production in a right brain-damaged patient with amusia.

    PubMed

    Murayama, Junko; Kashiwagi, Toshihiro; Kashiwagi, Asako; Mimura, Masaru

    2004-10-01

    Pre- and postmorbid singing of a patient with amusia due to a right-hemispheric infarction was analyzed acoustically. This particular patient had a premorbid tape recording of her own singing without accompaniment. Appropriateness of pitch interval and rhythm was evaluated based on ratios of pitch and duration between neighboring notes. The results showed that melodic contours and rhythm were preserved but individual pitch intervals were conspicuously distorted. Our results support a hypothesis that pitch and rhythm are subserved by independent neural subsystems. We concluded that action-related acoustic information for controlling pitch intervals is stored in the right hemisphere.

  15. Subjective vs. Documented Reality: A Case Study of Long-Term Real-Life Autobiographical Memory

    ERIC Educational Resources Information Center

    Mendelsohn, Avi; Furman, Orit; Navon, Inbal; Dudai, Yadin

    2009-01-01

    A young woman was filmed during 2 d of her ordinary life. A few months and then again a few years later she was tested for the memory of her experiences in those days while undergoing fMRI scanning. As time passed, she came to accept more false details as true. After months, activity of a network considered to subserve autobiographical memory was…

  16. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  17. The neural network to determine the mechanical properties of the steels

    NASA Astrophysics Data System (ADS)

    Yemelyanov, Vitaliy; Yemelyanova, Nataliya; Safonova, Marina; Nedelkin, Aleksey

    2018-04-01

    The authors describe the neural network structure and software that is designed and developed to determine the mechanical properties of steels. The neural network is developed to refine upon the values of the steels properties. The results of simulations of the developed neural network are shown. The authors note the low standard error of the proposed neural network. To realize the proposed neural network the specialized software has been developed.

  18. Structural and functional neural correlates of music perception.

    PubMed

    Limb, Charles J

    2006-04-01

    This review article highlights state-of-the-art functional neuroimaging studies and demonstrates the novel use of music as a tool for the study of human auditory brain structure and function. Music is a unique auditory stimulus with properties that make it a compelling tool with which to study both human behavior and, more specifically, the neural elements involved in the processing of sound. Functional neuroimaging techniques represent a modern and powerful method of investigation into neural structure and functional correlates in the living organism. These methods have demonstrated a close relationship between the neural processing of music and language, both syntactically and semantically. Greater neural activity and increased volume of gray matter in Heschl's gyrus has been associated with musical aptitude. Activation of Broca's area, a region traditionally considered to subserve language, is important in interpreting whether a note is on or off key. The planum temporale shows asymmetries that are associated with the phenomenon of perfect pitch. Functional imaging studies have also demonstrated activation of primitive emotional centers such as ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex in listeners of moving musical passages. In addition, studies of melody and rhythm perception have elucidated mechanisms of hemispheric specialization. These studies show the power of music and functional neuroimaging to provide singularly useful tools for the study of brain structure and function.

  19. Region stability analysis and tracking control of memristive recurrent neural network.

    PubMed

    Bao, Gang; Zeng, Zhigang; Shen, Yanjun

    2018-02-01

    Memristor is firstly postulated by Leon Chua and realized by Hewlett-Packard (HP) laboratory. Research results show that memristor can be used to simulate the synapses of neurons. This paper presents a class of recurrent neural network with HP memristors. Firstly, it shows that memristive recurrent neural network has more compound dynamics than the traditional recurrent neural network by simulations. Then it derives that n dimensional memristive recurrent neural network is composed of [Formula: see text] sub neural networks which do not have a common equilibrium point. By designing the tracking controller, it can make memristive neural network being convergent to the desired sub neural network. At last, two numerical examples are given to verify the validity of our result. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints.

    PubMed

    Liang, X B; Wang, J

    2000-01-01

    This paper presents a continuous-time recurrent neural-network model for nonlinear optimization with any continuously differentiable objective function and bound constraints. Quadratic optimization with bound constraints is a special problem which can be solved by the recurrent neural network. The proposed recurrent neural network has the following characteristics. 1) It is regular in the sense that any optimum of the objective function with bound constraints is also an equilibrium point of the neural network. If the objective function to be minimized is convex, then the recurrent neural network is complete in the sense that the set of optima of the function with bound constraints coincides with the set of equilibria of the neural network. 2) The recurrent neural network is primal and quasiconvergent in the sense that its trajectory cannot escape from the feasible region and will converge to the set of equilibria of the neural network for any initial point in the feasible bound region. 3) The recurrent neural network has an attractivity property in the sense that its trajectory will eventually converge to the feasible region for any initial states even at outside of the bounded feasible region. 4) For minimizing any strictly convex quadratic objective function subject to bound constraints, the recurrent neural network is globally exponentially stable for almost any positive network parameters. Simulation results are given to demonstrate the convergence and performance of the proposed recurrent neural network for nonlinear optimization with bound constraints.

  1. Internal representations for face detection: an application of noise-based image classification to BOLD responses.

    PubMed

    Nestor, Adrian; Vettel, Jean M; Tarr, Michael J

    2013-11-01

    What basic visual structures underlie human face detection and how can we extract such structures directly from the amplitude of neural responses elicited by face processing? Here, we address these issues by investigating an extension of noise-based image classification to BOLD responses recorded in high-level visual areas. First, we assess the applicability of this classification method to such data and, second, we explore its results in connection with the neural processing of faces. To this end, we construct luminance templates from white noise fields based on the response of face-selective areas in the human ventral cortex. Using behaviorally and neurally-derived classification images, our results reveal a family of simple but robust image structures subserving face representation and detection. Thus, we confirm the role played by classical face selective regions in face detection and we help clarify the representational basis of this perceptual function. From a theory standpoint, our findings support the idea of simple but highly diagnostic neurally-coded features for face detection. At the same time, from a methodological perspective, our work demonstrates the ability of noise-based image classification in conjunction with fMRI to help uncover the structure of high-level perceptual representations. Copyright © 2012 Wiley Periodicals, Inc.

  2. Altered dynamics between neural systems sub-serving decisions for unhealthy food

    PubMed Central

    He, Qinghua; Xiao, Lin; Xue, Gui; Wong, Savio; Ames, Susan L.; Xie, Bin; Bechara, Antoine

    2014-01-01

    Using BOLD functional magnetic resonance imaging (fMRI) techniques, we examined the relationships between activities in the neural systems elicited by the decision stage of the Iowa Gambling Task (IGT), and food choices of either vegetables or snacks high in fat and sugar. Twenty-three healthy normal weight adolescents and young adults, ranging in age from 14 to 21, were studied. Neural systems implicated in decision-making and inhibitory control were engaged by having participants perform the IGT during fMRI scanning. The Youth/Adolescent Questionnaire, a food frequency questionnaire, was used to obtain daily food choices. Higher consumption of vegetables correlated with higher activity in prefrontal cortical regions, namely the left superior frontal gyrus (SFG), and lower activity in sub-cortical regions, namely the right insular cortex. In contrast, higher consumption of fatty and sugary snacks correlated with lower activity in the prefrontal regions, combined with higher activity in the sub-cortical, insular cortex. These results provide preliminary support for our hypotheses that unhealthy food choices in real life are reflected by neuronal changes in key neural systems involved in habits, decision-making and self-control processes. These findings have implications for the creation of decision-making based intervention strategies that promote healthier eating. PMID:25414630

  3. Parental Socioeconomic Status and the Neural Basis of Arithmetic: Differential Relations to Verbal and Visuo-spatial Representations

    PubMed Central

    Demir, Özlem Ece; Prado, Jérôme; Booth, James R.

    2015-01-01

    We examined the relation of parental socioeconomic status (SES) to the neural bases of subtraction in school-age children (9- to 12-year-olds). We independently localized brain regions subserving verbal versus visuo-spatial representations to determine whether the parental SES-related differences in children’s reliance on these neural representations vary as a function of math skill. At higher SES levels, higher skill was associated with greater recruitment of the left temporal cortex, identified by the verbal localizer. At lower SES levels, higher skill was associated with greater recruitment of right parietal cortex, identified by the visuo-spatial localizer. This suggests that depending on parental SES, children engage different neural systems to solve subtraction problems. Furthermore, SES was related to the activation in the left temporal and frontal cortex during the independent verbal localizer task, but it was not related to activation during the independent visuo-spatial localizer task. Differences in activation during the verbal localizer task in turn were related to differences in activation during the subtraction task in right parietal cortex. The relation was stronger at lower SES levels. This result suggests that SES-related differences in the visuo-spatial regions during subtraction might be based in SES-related verbal differences. PMID:25664675

  4. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    USGS Publications Warehouse

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  5. An Introduction to Neural Networks for Hearing Aid Noise Recognition.

    ERIC Educational Resources Information Center

    Kim, Jun W.; Tyler, Richard S.

    1995-01-01

    This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…

  6. A problem-solving task specialized for functional neuroimaging: validation of the Scarborough adaptation of the Tower of London (S-TOL) using near-infrared spectroscopy

    PubMed Central

    Ruocco, Anthony C.; Rodrigo, Achala H.; Lam, Jaeger; Di Domenico, Stefano I.; Graves, Bryanna; Ayaz, Hasan

    2014-01-01

    Problem-solving is an executive function subserved by a network of neural structures of which the dorsolateral prefrontal cortex (DLPFC) is central. Whereas several studies have evaluated the role of the DLPFC in problem-solving, few standardized tasks have been developed specifically for use with functional neuroimaging. The current study adapted a measure with established validity for the assessment of problem-solving abilities to design a test more suitable for functional neuroimaging protocols. The Scarborough adaptation of the Tower of London (S-TOL) was administered to 38 healthy adults while hemodynamic oxygenation of the PFC was measured using 16-channel continuous-wave functional near-infrared spectroscopy (fNIRS). Compared to a baseline condition, problems that required two or three steps to achieve a goal configuration were associated with higher activation in the left DLPFC and deactivation in the medial PFC. Individuals scoring higher in trait deliberation showed consistently higher activation in the left DLPFC regardless of task difficulty, whereas individuals lower in this trait displayed less activation when solving simple problems. Based on these results, the S-TOL may serve as a standardized task to evaluate problem-solving abilities in functional neuroimaging studies. PMID:24734017

  7. A coordinate-based ALE functional MRI meta-analysis of brain activation during verbal fluency tasks in healthy control subjects

    PubMed Central

    2014-01-01

    Background The processing of verbal fluency tasks relies on the coordinated activity of a number of brain areas, particularly in the frontal and temporal lobes of the left hemisphere. Recent studies using functional magnetic resonance imaging (fMRI) to study the neural networks subserving verbal fluency functions have yielded divergent results especially with respect to a parcellation of the inferior frontal gyrus for phonemic and semantic verbal fluency. We conducted a coordinate-based activation likelihood estimation (ALE) meta-analysis on brain activation during the processing of phonemic and semantic verbal fluency tasks involving 28 individual studies with 490 healthy volunteers. Results For phonemic as well as for semantic verbal fluency, the most prominent clusters of brain activation were found in the left inferior/middle frontal gyrus (LIFG/MIFG) and the anterior cingulate gyrus. BA 44 was only involved in the processing of phonemic verbal fluency tasks, BA 45 and 47 in the processing of phonemic and semantic fluency tasks. Conclusions Our comparison of brain activation during the execution of either phonemic or semantic verbal fluency tasks revealed evidence for spatially different activation in BA 44, but not other regions of the LIFG/LMFG (BA 9, 45, 47) during phonemic and semantic verbal fluency processing. PMID:24456150

  8. Quantized Synchronization of Chaotic Neural Networks With Scheduled Output Feedback Control.

    PubMed

    Wan, Ying; Cao, Jinde; Wen, Guanghui

    In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.In this paper, the synchronization problem of master-slave chaotic neural networks with remote sensors, quantization process, and communication time delays is investigated. The information communication channel between the master chaotic neural network and slave chaotic neural network consists of several remote sensors, with each sensor able to access only partial knowledge of output information of the master neural network. At each sampling instants, each sensor updates its own measurement and only one sensor is scheduled to transmit its latest information to the controller's side in order to update the control inputs for the slave neural network. Thus, such communication process and control strategy are much more energy-saving comparing with the traditional point-to-point scheme. Sufficient conditions for output feedback control gain matrix, allowable length of sampling intervals, and upper bound of network-induced delays are derived to ensure the quantized synchronization of master-slave chaotic neural networks. Lastly, Chua's circuit system and 4-D Hopfield neural network are simulated to validate the effectiveness of the main results.

  9. Modified neural networks for rapid recovery of tokamak plasma parameters for real time control

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Ranjan, P.

    2002-07-01

    Two modified neural network techniques are used for the identification of the equilibrium plasma parameters of the Superconducting Steady State Tokamak I from external magnetic measurements. This is expected to ultimately assist in a real time plasma control. As different from the conventional network structure where a single network with the optimum number of processing elements calculates the outputs, a multinetwork system connected in parallel does the calculations here in one of the methods. This network is called the double neural network. The accuracy of the recovered parameters is clearly more than the conventional network. The other type of neural network used here is based on the statistical function parametrization combined with a neural network. The principal component transformation removes linear dependences from the measurements and a dimensional reduction process reduces the dimensionality of the input space. This reduced and transformed input set, rather than the entire set, is fed into the neural network input. This is known as the principal component transformation-based neural network. The accuracy of the recovered parameters in the latter type of modified network is found to be a further improvement over the accuracy of the double neural network. This result differs from that obtained in an earlier work where the double neural network showed better performance. The conventional network and the function parametrization methods have also been used for comparison. The conventional network has been used for an optimization of the set of magnetic diagnostics. The effective set of sensors, as assessed by this network, are compared with the principal component based network. Fault tolerance of the neural networks has been tested. The double neural network showed the maximum resistance to faults in the diagnostics, while the principal component based network performed poorly. Finally the processing times of the methods have been compared. The double network and the principal component network involve the minimum computation time, although the conventional network also performs well enough to be used in real time.

  10. Control of magnetic bearing systems via the Chebyshev polynomial-based unified model (CPBUM) neural network.

    PubMed

    Jeng, J T; Lee, T T

    2000-01-01

    A Chebyshev polynomial-based unified model (CPBUM) neural network is introduced and applied to control a magnetic bearing systems. First, we show that the CPBUM neural network not only has the same capability of universal approximator, but also has faster learning speed than conventional feedforward/recurrent neural network. It turns out that the CPBUM neural network is more suitable in the design of controller than the conventional feedforward/recurrent neural network. Second, we propose the inverse system method, based on the CPBUM neural networks, to control a magnetic bearing system. The proposed controller has two structures; namely, off-line and on-line learning structures. We derive a new learning algorithm for each proposed structure. The experimental results show that the proposed neural network architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.

  11. ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.

    PubMed

    Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-07-20

    Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.

  12. Nested Neural Networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1992-01-01

    Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.

  13. Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.

    PubMed

    Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio

    2018-06-19

    Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.

  14. Quantum neural networks: Current status and prospects for development

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.

    2014-11-01

    The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

  15. Neural network approaches to capture temporal information

    NASA Astrophysics Data System (ADS)

    van Veelen, Martijn; Nijhuis, Jos; Spaanenburg, Ben

    2000-05-01

    The automated design and construction of neural networks receives growing attention of the neural networks community. Both the growing availability of computing power and development of mathematical and probabilistic theory have had severe impact on the design and modelling approaches of neural networks. This impact is most apparent in the use of neural networks to time series prediction. In this paper, we give our views on past, contemporary and future design and modelling approaches to neural forecasting.

  16. Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior

    PubMed Central

    Baldo, Brian A.; Pratt, Wayne E.; Will, Matthew J.; Hanlon, Erin C.; Bakshi, Vaishali P.; Cador, Martine

    2013-01-01

    Circuits that participate in specific subcomponents of feeding (e.g., gustatory perception, peripheral feedback relevant to satiety and energy balance, reward coding, etc.) are found at all levels of the neural axis. Further complexity is conferred by the wide variety of feeding-modulatory neurotransmitters and neuropeptides that act within these circuits. An ongoing challenge has been to refine the understanding of the functional specificity of these neurotransmitters and circuits, and there have been exciting advances in recent years. We focus here on foundational work of Dr. Ann Kelley that identified distinguishable actions of striatal opioid peptide modulation and dopamine transmission in subcomponents of reward processing. We also discuss her work in overlaying these neuropharmacological effects upon anatomical pathways that link the telencephalon (cortex and basal ganglia) with feeding-control circuits in the hypothalamus. Using these seminal contributions as a starting point, we will discuss new findings that expand our understanding of (1) the specific, differentiable motivational processes that are governed by central dopamine and opioid transmission, (2) the manner in which other striatal neuromodulators, specifically acetylcholine, endocannabinoids and adenosine, modulate these motivational processes (including via interactions with opioid systems), and (3) the organization of the cortical-subcortical network that subserves opioid-driven feeding. The findings discussed here strengthen the view that incentive-motivational properties of food are coded by substrates and neural circuits that are distinguishable from those that mediate the acute hedonic experience of food reward. Striatal opioid transmission modulates reward processing by engaging frontotemporal circuits, possibly via a hypothalamic-thalamic axis, that ultimately impinges upon hypothalamic modules dedicated to autonomic function and motor pattern control. We will conclude by discussing implications for understanding disorders of “non-homeostatic” feeding. PMID:23466532

  17. Principles of motivation revealed by the diverse functions of neuropharmacological and neuroanatomical substrates underlying feeding behavior.

    PubMed

    Baldo, Brian A; Pratt, Wayne E; Will, Matthew J; Hanlon, Erin C; Bakshi, Vaishali P; Cador, Martine

    2013-11-01

    Circuits that participate in specific subcomponents of feeding (e.g., gustatory perception, peripheral feedback relevant to satiety and energy balance, reward coding, etc.) are found at all levels of the neural axis. Further complexity is conferred by the wide variety of feeding-modulatory neurotransmitters and neuropeptides that act within these circuits. An ongoing challenge has been to refine the understanding of the functional specificity of these neurotransmitters and circuits, and there have been exciting advances in recent years. We focus here on foundational work of Dr. Ann Kelley that identified distinguishable actions of striatal opioid peptide modulation and dopamine transmission in subcomponents of reward processing. We also discuss her work in overlaying these neuropharmacological effects upon anatomical pathways that link the telencephalon (cortex and basal ganglia) with feeding-control circuits in the hypothalamus. Using these seminal contributions as a starting point, we will discuss new findings that expand our understanding of (1) the specific, differentiable motivational processes that are governed by central dopamine and opioid transmission, (2) the manner in which other striatal neuromodulators, specifically acetylcholine, endocannabinoids and adenosine, modulate these motivational processes (including via interactions with opioid systems), and (3) the organization of the cortical-subcortical network that subserves opioid-driven feeding. The findings discussed here strengthen the view that incentive-motivational properties of food are coded by substrates and neural circuits that are distinguishable from those that mediate the acute hedonic experience of food reward. Striatal opioid transmission modulates reward processing by engaging frontotemporal circuits, possibly via a hypothalamic-thalamic axis, that ultimately impinges upon hypothalamic modules dedicated to autonomic function and motor pattern control. We will conclude by discussing implications for understanding disorders of "non-homeostatic" feeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Elevated cognitive control over reward processing in recovered female patients with anorexia nervosa.

    PubMed

    Ehrlich, Stefan; Geisler, Daniel; Ritschel, Franziska; King, Joseph A; Seidel, Maria; Boehm, Ilka; Breier, Marion; Clas, Sabine; Weiss, Jessika; Marxen, Michael; Smolka, Michael N; Roessner, Veit; Kroemer, Nils B

    2015-09-01

    Individuals with anorexia nervosa are thought to exert excessive self-control to inhibit primary drives. This study used functional MRI (fMRI) to interrogate interactions between the neural correlates of cognitive control and motivational processes in the brain reward system during the anticipation of monetary reward and reward-related feedback. In order to avoid confounding effects of undernutrition, we studied female participants recovered from anorexia nervosa and closely matched healthy female controls. The fMRI analysis (including node-to-node functional connectivity) followed a region of interest approach based on models of the brain reward system and cognitive control regions implicated in anorexia nervosa: the ventral striatum, medial orbitofrontal cortex (mOFC) and dorsolateral prefrontal cortex (DLPFC). We included 30 recovered patients and 30 controls in our study. There were no behavioural differences and no differences in hemodynamic responses of the ventral striatum and the mOFC in the 2 phases of the task. However, relative to controls, recovered patients showed elevated DLPFC activity during the anticipation phase, failed to deactivate this region during the feedback phase and displayed greater functional coupling between the DLPFC and mOFC. Recovered patients also had stronger associations than controls between anticipation-related DLPFC responses and instrumental responding. The results we obtained using monetary stimuli might not generalize to other forms of reward. Unaltered neural responses in ventral limbic reward networks but increased recruitment of and connectivity with lateral-frontal brain circuitry in recovered patients suggests an elevated degree of selfregulatory processes in response to rewarding stimuli. An imbalance between brain systems subserving bottom-up and top-down processes may be a trait marker of the disorder.

  19. The role of symmetry in neural networks and their Laplacian spectra.

    PubMed

    de Lange, Siemon C; van den Heuvel, Martijn P; de Reus, Marcel A

    2016-11-01

    Human and animal nervous systems constitute complexly wired networks that form the infrastructure for neural processing and integration of information. The organization of these neural networks can be analyzed using the so-called Laplacian spectrum, providing a mathematical tool to produce systems-level network fingerprints. In this article, we examine a characteristic central peak in the spectrum of neural networks, including anatomical brain network maps of the mouse, cat and macaque, as well as anatomical and functional network maps of human brain connectivity. We link the occurrence of this central peak to the level of symmetry in neural networks, an intriguing aspect of network organization resulting from network elements that exhibit similar wiring patterns. Specifically, we propose a measure to capture the global level of symmetry of a network and show that, for both empirical networks and network models, the height of the main peak in the Laplacian spectrum is strongly related to node symmetry in the underlying network. Moreover, examination of spectra of duplication-based model networks shows that neural spectra are best approximated using a trade-off between duplication and diversification. Taken together, our results facilitate a better understanding of neural network spectra and the importance of symmetry in neural networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Synchronization Control of Neural Networks With State-Dependent Coefficient Matrices.

    PubMed

    Zhang, Junfeng; Zhao, Xudong; Huang, Jun

    2016-11-01

    This brief is concerned with synchronization control of a class of neural networks with state-dependent coefficient matrices. Being different from the existing drive-response neural networks in the literature, a novel model of drive-response neural networks is established. The concepts of uniformly ultimately bounded (UUB) synchronization and convex hull Lyapunov function are introduced. Then, by using the convex hull Lyapunov function approach, the UUB synchronization design of the drive-response neural networks is proposed, and a delay-independent control law guaranteeing the bounded synchronization of the neural networks is constructed. All present conditions are formulated in terms of bilinear matrix inequalities. By comparison, it is shown that the neural networks obtained in this brief are less conservative than those ones in the literature, and the bounded synchronization is suitable for the novel drive-response neural networks. Finally, an illustrative example is given to verify the validity of the obtained results.

  1. Alcohol Hits You When It Is Hard: Intoxication, Task Difficulty, and Theta Brain Oscillations.

    PubMed

    Rosen, Burke Q; Padovan, Nevena; Marinkovic, Ksenija

    2016-04-01

    Alcohol intoxication is known to impair decision making in a variety of situations. Previous neuroimaging evidence suggests that the neurofunctional system subserving controlled processing is especially vulnerable to alcohol in conflict-evoking tasks. The present study investigated the effects of moderate alcohol intoxication on the spatiotemporal neural dynamics of event-related total theta (4 to 7 Hz) power as a function of task difficulty. Two variants of the Simon task manipulated incongruity via simple spatial stimulus-response mismatch and, in a more difficult version, by combining spatial and semantic interference. Healthy social drinkers participated in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg for women) and placebo conditions in a counterbalanced design. Whole-head magnetoencephalography (MEG) signals were acquired and event-related total theta power was calculated on each trial with Morlet wavelets. MEG sources were estimated using anatomically constrained, noise-normalized, spectral dynamic statistical parametric mapping. Longer reaction times and lower accuracy confirmed the difficulty manipulation. Response conflict (incongruity) increased and alcohol intoxication decreased event-related theta power overall during both tasks bilaterally in the medial and ventrolateral prefrontal cortices. However, alcohol-induced theta suppression was selective for conflict only in the more difficult task which engaged the dorsal anterior cingulate (dAC) and anterior inferolateral prefrontal cortices. Theta power correlated negatively with drinking levels and disinhibition, suggesting that cognitive control is susceptible in more impulsive individuals with higher alcohol intake. The spatiotemporal theta profile across the 2 tasks supports the concept of a rostrocaudal activity gradient in the medial prefrontal cortex that is modulated by task difficulty, with the dAC as the key node in the network subserving cognitive control. Conflict-related theta power was selectively reduced by alcohol only under the more difficult task which is indicative of the alcohol-induced impairment of conflict monitoring and top-down regulation. Compromised executive control under alcohol may underlie a range of adverse effects including reduced competency in conflict-inducing or complex situations. © 2016 The Authors. Alcoholism: Clinical and Experimental Research published by Wiley Periodicals, Inc. on behalf of Research Society on Alcoholism.

  2. The Laplacian spectrum of neural networks

    PubMed Central

    de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.

    2014-01-01

    The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286

  3. Introduction to Neural Networks.

    DTIC Science & Technology

    1992-03-01

    parallel processing of information that can greatly reduce the time required to perform operations which are needed in pattern recognition. Neural network, Artificial neural network , Neural net, ANN.

  4. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  5. Right sensory-motor functional networks subserve action observation therapy in aphasia.

    PubMed

    Gili, Tommaso; Fiori, Valentina; De Pasquale, Giada; Sabatini, Umberto; Caltagirone, Carlo; Marangolo, Paola

    2017-10-01

    Recent studies have shown that the systematic and repetitive observation of actions belonging to the experiential human motor repertoire without verbal facilitation enhances the recovery of verbs in non fluent aphasia. However, it is still an open question whether this approach extends its efficacy also on discourse productivity by improving the retrieval of other linguistic units (i.e. nouns, sentences, content words). Moreover, nothing is known regarding the neural substrates which support the language recovery process due to action observation treatment.In the present study, ten non fluent aphasics were presented with two videoclips (real everyday life context vs. familiar pantomimed context), each video for six consecutive weeks (Monday to Friday, weekend off). During the treatment, they were asked to observe each video and to describe it without verbal facilitation from the therapist. In all patients, language measures were collected before and at the end of treatment. Before and after each treatment condition (real vs. pantomimed context), each subject underwent a resting state fMRI. After the treatment, significant changes in functional connectivity were found in right sensory-motor networks which were accompanied by a significant improvement for the different linguistic units in the real context condition. On the contrary, the language recovery obtained in the pantomimed context did not match any functional modification. The evidence for a recruitment of the sensory-motor cortices during the observation of actions embedded in real context suggests to potentially enhance language recovery in non fluent aphasia through a simulation process related to the sensory-motor properties of actions.

  6. Double dissociation between syntactic gender and picture naming processing: a brain stimulation mapping study.

    PubMed

    Vidorreta, Jose Garbizu; Garcia, Roser; Moritz-Gasser, Sylvie; Duffau, Hugues

    2011-03-01

    Neural foundations of syntactic gender processing remain poorly understood. We used electrostimulation mapping in nine right-handed awake patients during surgery for a glioma within the left hemisphere, to study whether the cortico-subcortical structures involved in naming versus syntactic gender processing are common or distinct. In French, the article determines the grammatical gender. Thus, the patient was asked to perform a picture naming task and to give the appropriate article for each picture, with and without stimulation. Cortical stimulation elicited reproducible syntactic gender disturbances in six patients, in the inferior frontal gyrus (three cases), and in the posterior middle temporal gyrus (three cases). Interestingly, no naming disorders were generated during stimulation of the syntactic sites, while cortical areas inducing naming disturbances never elicited grammatical gender errors when stimulated. Moreover, at the subcortical level, stimulation of the white matter lateral to the caudate nucleus induced gender errors in three patients, with no naming disorders. Using cortico-subcortical electrical mapping in awake patients, we demonstrate for the first time (1) a double dissociation between syntactic gender and naming processing, supporting independent network model rather than serial theory, (2) the involvement of the left inferior frontal gyrus, especially the pars triangularis, and the posterior left middle temporal gyrus in grammatical gender processing, (3) the existence of white matter pathways, likely a sub-part of the left superior longitudinal fasciculus, underlying a large-scale distributed cortico-subcortical circuit which might selectively sub-serve syntactic gender processing, even if interconnected with parallel sub-networks involved in naming (semantic and phonological) processing. Copyright © 2010 Wiley-Liss, Inc.

  7. Youthful Brains in Older Adults: Preserved Neuroanatomy in the Default Mode and Salience Networks Contributes to Youthful Memory in Superaging.

    PubMed

    Sun, Felicia W; Stepanovic, Michael R; Andreano, Joseph; Barrett, Lisa Feldman; Touroutoglou, Alexandra; Dickerson, Bradford C

    2016-09-14

    Decline in cognitive skills, especially in memory, is often viewed as part of "normal" aging. Yet some individuals "age better" than others. Building on prior research showing that cortical thickness in one brain region, the anterior midcingulate cortex, is preserved in older adults with memory performance abilities equal to or better than those of people 20-30 years younger (i.e., "superagers"), we examined the structural integrity of two large-scale intrinsic brain networks in superaging: the default mode network, typically engaged during memory encoding and retrieval tasks, and the salience network, typically engaged during attention, motivation, and executive function tasks. We predicted that superagers would have preserved cortical thickness in critical nodes in these networks. We defined superagers (60-80 years old) based on their performance compared to young adults (18-32 years old) on the California Verbal Learning Test Long Delay Free Recall test. We found regions within the networks of interest where the cerebral cortex of superagers was thicker than that of typical older adults, and where superagers were anatomically indistinguishable from young adults; hippocampal volume was also preserved in superagers. Within the full group of older adults, thickness of a number of regions, including the anterior temporal cortex, rostral medial prefrontal cortex, and anterior midcingulate cortex, correlated with memory performance, as did the volume of the hippocampus. These results indicate older adults with youthful memory abilities have youthful brain regions in key paralimbic and limbic nodes of the default mode and salience networks that support attentional, executive, and mnemonic processes subserving memory function. Memory performance typically declines with age, as does cortical structural integrity, yet some older adults maintain youthful memory. We tested the hypothesis that superagers (older individuals with youthful memory performance) would exhibit preserved neuroanatomy in key brain networks subserving memory. We found that superagers not only perform similarly to young adults on memory testing, they also do not show the typical patterns of brain atrophy in certain regions. These regions are contained largely within two major intrinsic brain networks: the default mode network, implicated in memory encoding, storage, and retrieval, and the salience network, associated with attention and executive processes involved in encoding and retrieval. Preserved neuroanatomical integrity in these networks is associated with better memory performance among older adults. Copyright © 2016 Sun, Stepanovic et al.

  8. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases

    PubMed Central

    Ritchie, Marylyn D; White, Bill C; Parker, Joel S; Hahn, Lance W; Moore, Jason H

    2003-01-01

    Background Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve the ability of neural networks to model and detect nonlinear interactions among genes in studies of common human diseases. Results Using simulated data, we show that a genetic programming optimized neural network approach is able to model gene-gene interactions as well as a traditional back propagation neural network. Furthermore, the genetic programming optimized neural network is better than the traditional back propagation neural network approach in terms of predictive ability and power to detect gene-gene interactions when non-functional polymorphisms are present. Conclusion This study suggests that a machine learning strategy for optimizing neural network architecture may be preferable to traditional trial-and-error approaches for the identification and characterization of gene-gene interactions in common, complex human diseases. PMID:12846935

  9. Medical image analysis with artificial neural networks.

    PubMed

    Jiang, J; Trundle, P; Ren, J

    2010-12-01

    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  11. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    PubMed

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  12. The effect of the neural activity on topological properties of growing neural networks.

    PubMed

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  13. LavaNet—Neural network development environment in a general mine planning package

    NASA Astrophysics Data System (ADS)

    Kapageridis, Ioannis Konstantinou; Triantafyllou, A. G.

    2011-04-01

    LavaNet is a series of scripts written in Perl that gives access to a neural network simulation environment inside a general mine planning package. A well known and a very popular neural network development environment, the Stuttgart Neural Network Simulator, is used as the base for the development of neural networks. LavaNet runs inside VULCAN™—a complete mine planning package with advanced database, modelling and visualisation capabilities. LavaNet is taking advantage of VULCAN's Perl based scripting environment, Lava, to bring all the benefits of neural network development and application to geologists, mining engineers and other users of the specific mine planning package. LavaNet enables easy development of neural network training data sets using information from any of the data and model structures available, such as block models and drillhole databases. Neural networks can be trained inside VULCAN™ and the results be used to generate new models that can be visualised in 3D. Direct comparison of developed neural network models with conventional and geostatistical techniques is now possible within the same mine planning software package. LavaNet supports Radial Basis Function networks, Multi-Layer Perceptrons and Self-Organised Maps.

  14. Neural substrates of trait ruminations in depression

    PubMed Central

    Mandell, Darcy; Siegle, Greg; Shutt, Luann; Feldmiller, Josh; Thase, Michael E.

    2014-01-01

    Rumination in depression is a risk factor for longer, more intense, and harder-to-treat depressions. But there appear to be multiple types of depressive rumination – whether they all share these vulnerability mechanisms, and thus would benefit from the same types of clinical attention is unclear. In the current study, we examined neural correlates of empirically-derived dimensions of trait rumination in 35 depressed participants. These individuals and 29 never-depressed controls completed 17 self-report measures of rumination and an alternating emotion-processing/executive-control task during functional magnetic resonance imaging (fMRI) assessment. We examined associations of regions of interest—the amygdala and other cortical regions subserving a potential role in deficient cognitive control and elaborative emotion-processing—with trait rumination. Rumination of all types was generally associated with increased sustained amygdala reactivity. When controlling for amygdala reactivity, distinct activity patterns in hippocampus were also associated with specific dimensions of rumination. We discuss the possibly utility of targeting more basic biological substrates of emotional reactivity in depressed patients who frequently ruminate. PMID:24661157

  15. Decoding the neural mechanisms of human tool use

    PubMed Central

    Gallivan, Jason P; McLean, D Adam; Valyear, Kenneth F; Culham, Jody C

    2013-01-01

    Sophisticated tool use is a defining characteristic of the primate species but how is it supported by the brain, particularly the human brain? Here we show, using functional MRI and pattern classification methods, that tool use is subserved by multiple distributed action-centred neural representations that are both shared with and distinct from those of the hand. In areas of frontoparietal cortex we found a common representation for planned hand- and tool-related actions. In contrast, in parietal and occipitotemporal regions implicated in hand actions and body perception we found that coding remained selectively linked to upcoming actions of the hand whereas in parietal and occipitotemporal regions implicated in tool-related processing the coding remained selectively linked to upcoming actions of the tool. The highly specialized and hierarchical nature of this coding suggests that hand- and tool-related actions are represented separately at earlier levels of sensorimotor processing before becoming integrated in frontoparietal cortex. DOI: http://dx.doi.org/10.7554/eLife.00425.001 PMID:23741616

  16. Neuropharmacology of brain-stimulation-evoked aggression.

    PubMed

    Siegel, A; Roeling, T A; Gregg, T R; Kruk, M R

    1999-01-01

    Evidence is reviewed concerning the brain areas and neurotransmitters involved in aggressive behavior in the cat and rodent. In the cat, two distinct neural circuits involving the hypothalamus and PAG subserve two different kinds of aggression: defensive rage and predatory (quiet-biting) attack. The roles played by the neurotransmitters serotonin, GABA, glutamate, opioids, cholecystokinin, substance P, norepinephrine, dopamine, and acetylcholine in the modulation and expression of aggression are discussed. For the rat, a single area, largely coincident with the intermediate hypothalamic area, is crucial for the expression of attack; variations in the rat attack response in natural settings are due largely to environmental variables. Experimental evidence emphasizing the roles of serotonin and GABA in modulating hypothalamically evoked attack in the rat is discussed. It is concluded that significant progress has been made concerning our knowledge of the circuitry underlying the neural basis of aggression. Although new and important insights have been made concerning neurotransmitter regulation of aggressive behavior, wide gaps in our knowledge remain.

  17. Creative-Dynamics Approach To Neural Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1992-01-01

    Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.

  18. An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks

    PubMed Central

    Cabessa, Jérémie; Villa, Alessandro E. P.

    2014-01-01

    We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866

  19. How Neural Networks Learn from Experience.

    ERIC Educational Resources Information Center

    Hinton, Geoffrey E.

    1992-01-01

    Discusses computational studies of learning in artificial neural networks and findings that may provide insights into the learning abilities of the human brain. Describes efforts to test theories about brain information processing, using artificial neural networks. Vignettes include information concerning how a neural network represents…

  20. Neural network to diagnose lining condition

    NASA Astrophysics Data System (ADS)

    Yemelyanov, V. A.; Yemelyanova, N. Y.; Nedelkin, A. A.; Zarudnaya, M. V.

    2018-03-01

    The paper presents data on the problem of diagnosing the lining condition at the iron and steel works. The authors describe the neural network structure and software that are designed and developed to determine the lining burnout zones. The simulation results of the proposed neural networks are presented. The authors note the low learning and classification errors of the proposed neural networks. To realize the proposed neural network, the specialized software has been developed.

  1. [Measurement and performance analysis of functional neural network].

    PubMed

    Li, Shan; Liu, Xinyu; Chen, Yan; Wan, Hong

    2018-04-01

    The measurement of network is one of the important researches in resolving neuronal population information processing mechanism using complex network theory. For the quantitative measurement problem of functional neural network, the relation between the measure indexes, i.e. the clustering coefficient, the global efficiency, the characteristic path length and the transitivity, and the network topology was analyzed. Then, the spike-based functional neural network was established and the simulation results showed that the measured network could represent the original neural connections among neurons. On the basis of the former work, the coding of functional neural network in nidopallium caudolaterale (NCL) about pigeon's motion behaviors was studied. We found that the NCL functional neural network effectively encoded the motion behaviors of the pigeon, and there were significant differences in four indexes among the left-turning, the forward and the right-turning. Overall, the establishment method of spike-based functional neural network is available and it is an effective tool to parse the brain information processing mechanism.

  2. Neural network error correction for solving coupled ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.

    1992-01-01

    A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.

  3. Artificial and Bayesian Neural Networks

    PubMed

    Korhani Kangi, Azam; Bahrampour, Abbas

    2018-02-26

    Introduction and purpose: In recent years the use of neural networks without any premises for investigation of prognosis in analyzing survival data has increased. Artificial neural networks (ANN) use small processors with a continuous network to solve problems inspired by the human brain. Bayesian neural networks (BNN) constitute a neural-based approach to modeling and non-linearization of complex issues using special algorithms and statistical methods. Gastric cancer incidence is the first and third ranking for men and women in Iran, respectively. The aim of the present study was to assess the value of an artificial neural network and a Bayesian neural network for modeling and predicting of probability of gastric cancer patient death. Materials and Methods: In this study, we used information on 339 patients aged from 20 to 90 years old with positive gastric cancer, referred to Afzalipoor and Shahid Bahonar Hospitals in Kerman City from 2001 to 2015. The three layers perceptron neural network (ANN) and the Bayesian neural network (BNN) were used for predicting the probability of mortality using the available data. To investigate differences between the models, sensitivity, specificity, accuracy and the area under receiver operating characteristic curves (AUROCs) were generated. Results: In this study, the sensitivity and specificity of the artificial neural network and Bayesian neural network models were 0.882, 0.903 and 0.954, 0.909, respectively. Prediction accuracy and the area under curve ROC for the two models were 0.891, 0.944 and 0.935, 0.961. The age at diagnosis of gastric cancer was most important for predicting survival, followed by tumor grade, morphology, gender, smoking history, opium consumption, receiving chemotherapy, presence of metastasis, tumor stage, receiving radiotherapy, and being resident in a village. Conclusion: The findings of the present study indicated that the Bayesian neural network is preferable to an artificial neural network for predicting survival of gastric cancer patients in Iran. Creative Commons Attribution License

  4. Model Of Neural Network With Creative Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Barhen, Jacob

    1993-01-01

    Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.

  5. Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.

    PubMed

    Xia, Youshen; Wang, Jun

    2015-07-01

    This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Thermalnet: a Deep Convolutional Network for Synthetic Thermal Image Generation

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.; Gorbatsevich, V. S.; Mizginov, V. A.

    2017-05-01

    Deep convolutional neural networks have dramatically changed the landscape of the modern computer vision. Nowadays methods based on deep neural networks show the best performance among image recognition and object detection algorithms. While polishing of network architectures received a lot of scholar attention, from the practical point of view the preparation of a large image dataset for a successful training of a neural network became one of major challenges. This challenge is particularly profound for image recognition in wavelengths lying outside the visible spectrum. For example no infrared or radar image datasets large enough for successful training of a deep neural network are available to date in public domain. Recent advances of deep neural networks prove that they are also capable to do arbitrary image transformations such as super-resolution image generation, grayscale image colorisation and imitation of style of a given artist. Thus a natural question arise: how could be deep neural networks used for augmentation of existing large image datasets? This paper is focused on the development of the Thermalnet deep convolutional neural network for augmentation of existing large visible image datasets with synthetic thermal images. The Thermalnet network architecture is inspired by colorisation deep neural networks.

  7. Determining geophysical properties from well log data using artificial neural networks and fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Chang, Hsien-Cheng

    Two novel synergistic systems consisting of artificial neural networks and fuzzy inference systems are developed to determine geophysical properties by using well log data. These systems are employed to improve the determination accuracy in carbonate rocks, which are generally more complex than siliciclastic rocks. One system, consisting of a single adaptive resonance theory (ART) neural network and three fuzzy inference systems (FISs), is used to determine the permeability category. The other system, which is composed of three ART neural networks and a single FIS, is employed to determine the lithofacies. The geophysical properties studied in this research, permeability category and lithofacies, are treated as categorical data. The permeability values are transformed into a "permeability category" to account for the effects of scale differences between core analyses and well logs, and heterogeneity in the carbonate rocks. The ART neural networks dynamically cluster the input data sets into different groups. The FIS is used to incorporate geologic experts' knowledge, which is usually in linguistic forms, into systems. These synergistic systems thus provide viable alternative solutions to overcome the effects of heterogeneity, the uncertainties of carbonate rock depositional environments, and the scarcity of well log data. The results obtained in this research show promising improvements over backpropagation neural networks. For the permeability category, the prediction accuracies are 68.4% and 62.8% for the multiple-single ART neural network-FIS and a single backpropagation neural network, respectively. For lithofacies, the prediction accuracies are 87.6%, 79%, and 62.8% for the single-multiple ART neural network-FIS, a single ART neural network, and a single backpropagation neural network, respectively. The sensitivity analysis results show that the multiple-single ART neural networks-FIS and a single ART neural network possess the same matching trends in determining lithofacies. This research shows that the adaptive resonance theory neural networks enable decision-makers to clearly distinguish the importance of different pieces of data which are useful in three-dimensional subsurface modeling. Geologic experts' knowledge can be easily applied and maintained by using the fuzzy inference systems.

  8. Reducing neural network training time with parallel processing

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Lamarsh, William J., II

    1995-01-01

    Obtaining optimal solutions for engineering design problems is often expensive because the process typically requires numerous iterations involving analysis and optimization programs. Previous research has shown that a near optimum solution can be obtained in less time by simulating a slow, expensive analysis with a fast, inexpensive neural network. A new approach has been developed to further reduce this time. This approach decomposes a large neural network into many smaller neural networks that can be trained in parallel. Guidelines are developed to avoid some of the pitfalls when training smaller neural networks in parallel. These guidelines allow the engineer: to determine the number of nodes on the hidden layer of the smaller neural networks; to choose the initial training weights; and to select a network configuration that will capture the interactions among the smaller neural networks. This paper presents results describing how these guidelines are developed.

  9. Application of the ANNA neural network chip to high-speed character recognition.

    PubMed

    Sackinger, E; Boser, B E; Bromley, J; Lecun, Y; Jackel, L D

    1992-01-01

    A neural network with 136000 connections for recognition of handwritten digits has been implemented using a mixed analog/digital neural network chip. The neural network chip is capable of processing 1000 characters/s. The recognition system has essentially the same rate (5%) as a simulation of the network with 32-b floating-point precision.

  10. Machine Learning and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Chapline, George

    The author has previously pointed out some similarities between selforganizing neural networks and quantum mechanics. These types of neural networks were originally conceived of as away of emulating the cognitive capabilities of the human brain. Recently extensions of these networks, collectively referred to as deep learning networks, have strengthened the connection between self-organizing neural networks and human cognitive capabilities. In this note we consider whether hardware quantum devices might be useful for emulating neural networks with human-like cognitive capabilities, or alternatively whether implementations of deep learning neural networks using conventional computers might lead to better algorithms for solving the many body Schrodinger equation.

  11. Using fuzzy logic to integrate neural networks and knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Yen, John

    1991-01-01

    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.

  12. A neural network application to classification of health status of HIV/AIDS patients.

    PubMed

    Kwak, N K; Lee, C

    1997-04-01

    This paper presents an application of neural networks to classify and to predict the health status of HIV/AIDS patients. A neural network model in classifying both the well and not-well health status of HIV/AIDS patients is developed and evaluated in terms of validity and reliability of the test. Several different neural network topologies are applied to AIDS Cost and Utilization Survey (ACSUS) datasets in order to demonstrate the neural network's capability.

  13. Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis

    NASA Astrophysics Data System (ADS)

    Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr

    2017-10-01

    Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.

  14. Improvement of the Hopfield Neural Network by MC-Adaptation Rule

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen; Zhao, Hong

    2006-06-01

    We show that the performance of the Hopfield neural networks, especially the quality of the recall and the capacity of the effective storing, can be greatly improved by making use of a recently presented neural network designing method without altering the whole structure of the network. In the improved neural network, a memory pattern is recalled exactly from initial states having a given degree of similarity with the memory pattern, and thus one can avoids to apply the overlap criterion as carried out in the Hopfield neural networks.

  15. The Energy Coding of a Structural Neural Network Based on the Hodgkin-Huxley Model.

    PubMed

    Zhu, Zhenyu; Wang, Rubin; Zhu, Fengyun

    2018-01-01

    Based on the Hodgkin-Huxley model, the present study established a fully connected structural neural network to simulate the neural activity and energy consumption of the network by neural energy coding theory. The numerical simulation result showed that the periodicity of the network energy distribution was positively correlated to the number of neurons and coupling strength, but negatively correlated to signal transmitting delay. Moreover, a relationship was established between the energy distribution feature and the synchronous oscillation of the neural network, which showed that when the proportion of negative energy in power consumption curve was high, the synchronous oscillation of the neural network was apparent. In addition, comparison with the simulation result of structural neural network based on the Wang-Zhang biophysical model of neurons showed that both models were essentially consistent.

  16. An adaptive Hinfinity controller design for bank-to-turn missiles using ridge Gaussian neural networks.

    PubMed

    Lin, Chuan-Kai; Wang, Sheng-De

    2004-11-01

    A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization.

  17. Constraint satisfaction adaptive neural network and heuristics combined approaches for generalized job-shop scheduling.

    PubMed

    Yang, S; Wang, D

    2000-01-01

    This paper presents a constraint satisfaction adaptive neural network, together with several heuristics, to solve the generalized job-shop scheduling problem, one of NP-complete constraint satisfaction problems. The proposed neural network can be easily constructed and can adaptively adjust its weights of connections and biases of units based on the sequence and resource constraints of the job-shop scheduling problem during its processing. Several heuristics that can be combined with the neural network are also presented. In the combined approaches, the neural network is used to obtain feasible solutions, the heuristic algorithms are used to improve the performance of the neural network and the quality of the obtained solutions. Simulations have shown that the proposed neural network and its combined approaches are efficient with respect to the quality of solutions and the solving speed.

  18. Financial time series prediction using spiking neural networks.

    PubMed

    Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam

    2014-01-01

    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments.

  19. Non-Intrusive Gaze Tracking Using Artificial Neural Networks

    DTIC Science & Technology

    1994-01-05

    We have developed an artificial neural network based gaze tracking, system which can be customized to individual users. A three layer feed forward...empirical analysis of the performance of a large number of artificial neural network architectures for this task. Suggestions for further explorations...for neurally based gaze trackers are presented, and are related to other similar artificial neural network applications such as autonomous road following.

  20. Neural dynamics based on the recognition of neural fingerprints

    PubMed Central

    Carrillo-Medina, José Luis; Latorre, Roberto

    2015-01-01

    Experimental evidence has revealed the existence of characteristic spiking features in different neural signals, e.g., individual neural signatures identifying the emitter or functional signatures characterizing specific tasks. These neural fingerprints may play a critical role in neural information processing, since they allow receptors to discriminate or contextualize incoming stimuli. This could be a powerful strategy for neural systems that greatly enhances the encoding and processing capacity of these networks. Nevertheless, the study of information processing based on the identification of specific neural fingerprints has attracted little attention. In this work, we study (i) the emerging collective dynamics of a network of neurons that communicate with each other by exchange of neural fingerprints and (ii) the influence of the network topology on the self-organizing properties within the network. Complex collective dynamics emerge in the network in the presence of stimuli. Predefined inputs, i.e., specific neural fingerprints, are detected and encoded into coexisting patterns of activity that propagate throughout the network with different spatial organization. The patterns evoked by a stimulus can survive after the stimulation is over, which provides memory mechanisms to the network. The results presented in this paper suggest that neural information processing based on neural fingerprints can be a plausible, flexible, and powerful strategy. PMID:25852531

  1. Structural reliability calculation method based on the dual neural network and direct integration method.

    PubMed

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  2. Patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks.

    PubMed

    Aguiar, Manuela A D; Dias, Ana Paula S; Ferreira, Flora

    2017-01-01

    We consider feed-forward and auto-regulation feed-forward neural (weighted) coupled cell networks. In feed-forward neural networks, cells are arranged in layers such that the cells of the first layer have empty input set and cells of each other layer receive only inputs from cells of the previous layer. An auto-regulation feed-forward neural coupled cell network is a feed-forward neural network where additionally some cells of the first layer have auto-regulation, that is, they have a self-loop. Given a network structure, a robust pattern of synchrony is a space defined in terms of equalities of cell coordinates that is flow-invariant for any coupled cell system (with additive input structure) associated with the network. In this paper, we describe the robust patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks. Regarding feed-forward neural networks, we show that only cells in the same layer can synchronize. On the other hand, in the presence of auto-regulation, we prove that cells in different layers can synchronize in a robust way and we give a characterization of the possible patterns of synchrony that can occur for auto-regulation feed-forward neural networks.

  3. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    PubMed

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance (similarity) measures. Results with the larger consistency will be more reliable.

  4. Accelerating Learning By Neural Networks

    NASA Technical Reports Server (NTRS)

    Toomarian, Nikzad; Barhen, Jacob

    1992-01-01

    Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.

  5. Thermoelastic steam turbine rotor control based on neural network

    NASA Astrophysics Data System (ADS)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  6. The use of artificial neural networks in experimental data acquisition and aerodynamic design

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1991-01-01

    It is proposed that an artificial neural network be used to construct an intelligent data acquisition system. The artificial neural networks (ANN) model has a potential for replacing traditional procedures as well as for use in computational fluid dynamics validation. Potential advantages of the ANN model are listed. As a proof of concept, the author modeled a NACA 0012 airfoil at specific conditions, using the neural network simulator NETS, developed by James Baffes of the NASA Johnson Space Center. The neural network predictions were compared to the actual data. It is concluded that artificial neural networks can provide an elegant and valuable class of mathematical tools for data analysis.

  7. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  8. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.

    PubMed

    Li, Shuai; Li, Yangming; Wang, Zheng

    2013-03-01

    This paper presents a class of recurrent neural networks to solve quadratic programming problems. Different from most existing recurrent neural networks for solving quadratic programming problems, the proposed neural network model converges in finite time and the activation function is not required to be a hard-limiting function for finite convergence time. The stability, finite-time convergence property and the optimality of the proposed neural network for solving the original quadratic programming problem are proven in theory. Extensive simulations are performed to evaluate the performance of the neural network with different parameters. In addition, the proposed neural network is applied to solving the k-winner-take-all (k-WTA) problem. Both theoretical analysis and numerical simulations validate the effectiveness of our method for solving the k-WTA problem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Satellite image analysis using neural networks

    NASA Technical Reports Server (NTRS)

    Sheldon, Roger A.

    1990-01-01

    The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.

  10. Firing patterns transition and desynchronization induced by time delay in neural networks

    NASA Astrophysics Data System (ADS)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  11. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization.

    PubMed

    Liu, Qingshan; Guo, Zhishan; Wang, Jun

    2012-02-01

    In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Applications of artificial neural nets in clinical biomechanics.

    PubMed

    Schöllhorn, W I

    2004-11-01

    The purpose of this article is to provide an overview of current applications of artificial neural networks in the area of clinical biomechanics. The body of literature on artificial neural networks grew intractably vast during the last 15 years. Conventional statistical models may present certain limitations that can be overcome by neural networks. Artificial neural networks in general are introduced, some limitations, and some proven benefits are discussed.

  13. Neural Networks for Rapid Design and Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Maghami, Peiman G.

    1998-01-01

    Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.

  14. Generalized Adaptive Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  15. Optimal input sizes for neural network de-interlacing

    NASA Astrophysics Data System (ADS)

    Choi, Hyunsoo; Seo, Guiwon; Lee, Chulhee

    2009-02-01

    Neural network de-interlacing has shown promising results among various de-interlacing methods. In this paper, we investigate the effects of input size for neural networks for various video formats when the neural networks are used for de-interlacing. In particular, we investigate optimal input sizes for CIF, VGA and HD video formats.

  16. Impact of leakage delay on bifurcation in high-order fractional BAM neural networks.

    PubMed

    Huang, Chengdai; Cao, Jinde

    2018-02-01

    The effects of leakage delay on the dynamics of neural networks with integer-order have lately been received considerable attention. It has been confirmed that fractional neural networks more appropriately uncover the dynamical properties of neural networks, but the results of fractional neural networks with leakage delay are relatively few. This paper primarily concentrates on the issue of bifurcation for high-order fractional bidirectional associative memory(BAM) neural networks involving leakage delay. The first attempt is made to tackle the stability and bifurcation of high-order fractional BAM neural networks with time delay in leakage terms in this paper. The conditions for the appearance of bifurcation for the proposed systems with leakage delay are firstly established by adopting time delay as a bifurcation parameter. Then, the bifurcation criteria of such system without leakage delay are successfully acquired. Comparative analysis wondrously detects that the stability performance of the proposed high-order fractional neural networks is critically weakened by leakage delay, they cannot be overlooked. Numerical examples are ultimately exhibited to attest the efficiency of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Coronary Artery Diagnosis Aided by Neural Network

    NASA Astrophysics Data System (ADS)

    Stefko, Kamil

    2007-01-01

    Coronary artery disease is due to atheromatous narrowing and subsequent occlusion of the coronary vessel. Application of optimised feed forward multi-layer back propagation neural network (MLBP) for detection of narrowing in coronary artery vessels is presented in this paper. The research was performed using 580 data records from traditional ECG exercise test confirmed by coronary arteriography results. Each record of training database included description of the state of a patient providing input data for the neural network. Level and slope of ST segment of a 12 lead ECG signal recorded at rest and after effort (48 floating point values) was the main component of input data for neural network was. Coronary arteriography results (verified the existence or absence of more than 50% stenosis of the particular coronary vessels) were used as a correct neural network training output pattern. More than 96% of cases were correctly recognised by especially optimised and a thoroughly verified neural network. Leave one out method was used for neural network verification so 580 data records could be used for training as well as for verification of neural network.

  18. Predicate calculus for an architecture of multiple neural networks

    NASA Astrophysics Data System (ADS)

    Consoli, Robert H.

    1990-08-01

    Future projects with neural networks will require multiple individual network components. Current efforts along these lines are ad hoc. This paper relates the neural network to a classical device and derives a multi-part architecture from that model. Further it provides a Predicate Calculus variant for describing the location and nature of the trainings and suggests Resolution Refutation as a method for determining the performance of the system as well as the location of needed trainings for specific proofs. 2. THE NEURAL NETWORK AND A CLASSICAL DEVICE Recently investigators have been making reports about architectures of multiple neural networksL234. These efforts are appearing at an early stage in neural network investigations they are characterized by architectures suggested directly by the problem space. Touretzky and Hinton suggest an architecture for processing logical statements1 the design of this architecture arises from the syntax of a restricted class of logical expressions and exhibits syntactic limitations. In similar fashion a multiple neural netword arises out of a control problem2 from the sequence learning problem3 and from the domain of machine learning. 4 But a general theory of multiple neural devices is missing. More general attempts to relate single or multiple neural networks to classical computing devices are not common although an attempt is made to relate single neural devices to a Turing machines and Sun et a!. develop a multiple neural architecture that performs pattern classification.

  19. Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Makaryants, G. M.

    2018-01-01

    There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.

  20. Altered Synchronizations among Neural Networks in Geriatric Depression

    PubMed Central

    Wang, Lihong; Chou, Ying-Hui; Potter, Guy G.; Steffens, David C.

    2015-01-01

    Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression. PMID:26180795

  1. Altered Synchronizations among Neural Networks in Geriatric Depression.

    PubMed

    Wang, Lihong; Chou, Ying-Hui; Potter, Guy G; Steffens, David C

    2015-01-01

    Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression.

  2. A consensual neural network

    NASA Technical Reports Server (NTRS)

    Benediktsson, J. A.; Ersoy, O. K.; Swain, P. H.

    1991-01-01

    A neural network architecture called a consensual neural network (CNN) is proposed for the classification of data from multiple sources. Its relation to hierarchical and ensemble neural networks is discussed. CNN is based on the statistical consensus theory and uses nonlinearly transformed input data. The input data are transformed several times, and the different transformed data are applied as if they were independent inputs. The independent inputs are classified using stage neural networks and outputs from the stage networks are then weighted and combined to make a decision. Experimental results based on remote-sensing data and geographic data are given.

  3. Neural-Network Simulator

    NASA Technical Reports Server (NTRS)

    Mitchell, Paul H.

    1991-01-01

    F77NNS (FORTRAN 77 Neural Network Simulator) computer program simulates popular back-error-propagation neural network. Designed to take advantage of vectorization when used on computers having this capability, also used on any computer equipped with ANSI-77 FORTRAN Compiler. Problems involving matching of patterns or mathematical modeling of systems fit class of problems F77NNS designed to solve. Program has restart capability so neural network solved in stages suitable to user's resources and desires. Enables user to customize patterns of connections between layers of network. Size of neural network F77NNS applied to limited only by amount of random-access memory available to user.

  4. Feedback modulation of neural network synchrony and seizure susceptibility by Mdm2-p53-Nedd4-2 signaling.

    PubMed

    Jewett, Kathryn A; Christian, Catherine A; Bacos, Jonathan T; Lee, Kwan Young; Zhu, Jiuhe; Tsai, Nien-Pei

    2016-03-22

    Neural network synchrony is a critical factor in regulating information transmission through the nervous system. Improperly regulated neural network synchrony is implicated in pathophysiological conditions such as epilepsy. Despite the awareness of its importance, the molecular signaling underlying the regulation of neural network synchrony, especially after stimulation, remains largely unknown. In this study, we show that elevation of neuronal activity by the GABA(A) receptor antagonist, Picrotoxin, increases neural network synchrony in primary mouse cortical neuron cultures. The elevation of neuronal activity triggers Mdm2-dependent degradation of the tumor suppressor p53. We show here that blocking the degradation of p53 further enhances Picrotoxin-induced neural network synchrony, while promoting the inhibition of p53 with a p53 inhibitor reduces Picrotoxin-induced neural network synchrony. These data suggest that Mdm2-p53 signaling mediates a feedback mechanism to fine-tune neural network synchrony after activity stimulation. Furthermore, genetically reducing the expression of a direct target gene of p53, Nedd4-2, elevates neural network synchrony basally and occludes the effect of Picrotoxin. Finally, using a kainic acid-induced seizure model in mice, we show that alterations of Mdm2-p53-Nedd4-2 signaling affect seizure susceptibility. Together, our findings elucidate a critical role of Mdm2-p53-Nedd4-2 signaling underlying the regulation of neural network synchrony and seizure susceptibility and reveal potential therapeutic targets for hyperexcitability-associated neurological disorders.

  5. Neural network-based model reference adaptive control system.

    PubMed

    Patino, H D; Liu, D

    2000-01-01

    In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.

  6. Space-Time Neural Networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.; Shelton, Robert O.

    1992-01-01

    Concept of space-time neural network affords distributed temporal memory enabling such network to model complicated dynamical systems mathematically and to recognize temporally varying spatial patterns. Digital filters replace synaptic-connection weights of conventional back-error-propagation neural network.

  7. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.

    PubMed

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  8. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hui; Song, Yongduan; Xue, Fangzheng

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than themore » SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.« less

  9. Financial Time Series Prediction Using Spiking Neural Networks

    PubMed Central

    Reid, David; Hussain, Abir Jaafar; Tawfik, Hissam

    2014-01-01

    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two “traditional”, rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments. PMID:25170618

  10. Qualitative analysis of Cohen-Grossberg neural networks with multiple delays

    NASA Astrophysics Data System (ADS)

    Ye, Hui; Michel, Anthony N.; Wang, Kaining

    1995-03-01

    It is well known that a class of artificial neural networks with symmetric interconnections and without transmission delays, known as Cohen-Grossberg neural networks, possesses global stability (i.e., all trajectories tend to some equilibrium). We demonstrate in the present paper that many of the qualitative properties of Cohen-Grossberg networks will not be affected by the introduction of sufficiently small delays. Specifically, we establish some bound conditions for the time delays under which a given Cohen-Grossberg network with multiple delays is globally stable and possesses the same asymptotically stable equilibria as the corresponding network without delays. An effective method of determining the asymptotic stability of an equilibrium of a Cohen-Grossberg network with multiple delays is also presented. The present results are motivated by some of the authors earlier work [Phys. Rev. E 50, 4206 (1994)] and by some of the work of Marcus and Westervelt [Phys. Rev. A 39, 347 (1989)]. These works address qualitative analyses of Hopfield neural networks with one time delay. The present work generalizes these results to Cohen-Grossberg neural networks with multiple time delays. Hopfield neural networks constitute special cases of Cohen-Grossberg neural networks.

  11. Dynamic Neural Networks Supporting Memory Retrieval

    PubMed Central

    St. Jacques, Peggy L.; Kragel, Philip A.; Rubin, David C.

    2011-01-01

    How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) Medial Prefrontal Cortex (PFC) Network, associated with self-referential processes, 2) Medial Temporal Lobe (MTL) Network, associated with memory, 3) Frontoparietal Network, associated with strategic search, and 4) Cingulooperculum Network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior. PMID:21550407

  12. Coherence resonance in bursting neural networks

    NASA Astrophysics Data System (ADS)

    Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J.

    2015-10-01

    Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal—a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.

  13. Classification of Respiratory Sounds by Using An Artificial Neural Network

    DTIC Science & Technology

    2001-10-28

    CLASSIFICATION OF RESPIRATORY SOUNDS BY USING AN ARTIFICIAL NEURAL NETWORK M.C. Sezgin, Z. Dokur, T. Ölmez, M. Korürek Department of Electronics and...successfully classified by the GAL network. Keywords-Respiratory Sounds, Classification of Biomedical Signals, Artificial Neural Network . I. INTRODUCTION...process, feature extraction, and classification by the artificial neural network . At first, the RS signal obtained from a real-time measurement equipment is

  14. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    DTIC Science & Technology

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  15. A neural net approach to space vehicle guidance

    NASA Technical Reports Server (NTRS)

    Caglayan, Alper K.; Allen, Scott M.

    1990-01-01

    The space vehicle guidance problem is formulated using a neural network approach, and the appropriate neural net architecture for modeling optimum guidance trajectories is investigated. In particular, an investigation is made of the incorporation of prior knowledge about the characteristics of the optimal guidance solution into the neural network architecture. The online classification performance of the developed network is demonstrated using a synthesized network trained with a database of optimum guidance trajectories. Such a neural-network-based guidance approach can readily adapt to environment uncertainties such as those encountered by an AOTV during atmospheric maneuvers.

  16. Neural network and its application to CT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikravesh, M.; Kovscek, A.R.; Patzek, T.W.

    We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.

  17. Electronic neural networks for global optimization

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.

    1990-01-01

    An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.

  18. Quantitative analysis of volatile organic compounds using ion mobility spectra and cascade correlation neural networks

    NASA Technical Reports Server (NTRS)

    Harrington, Peter DEB.; Zheng, Peng

    1995-01-01

    Ion Mobility Spectrometry (IMS) is a powerful technique for trace organic analysis in the gas phase. Quantitative measurements are difficult, because IMS has a limited linear range. Factors that may affect the instrument response are pressure, temperature, and humidity. Nonlinear calibration methods, such as neural networks, may be ideally suited for IMS. Neural networks have the capability of modeling complex systems. Many neural networks suffer from long training times and overfitting. Cascade correlation neural networks train at very fast rates. They also build their own topology, that is a number of layers and number of units in each layer. By controlling the decay parameter in training neural networks, reproducible and general models may be obtained.

  19. Newly developed double neural network concept for reliable fast plasma position control

    NASA Astrophysics Data System (ADS)

    Jeon, Young-Mu; Na, Yong-Su; Kim, Myung-Rak; Hwang, Y. S.

    2001-01-01

    Neural network is considered as a parameter estimation tool in plasma controls for next generation tokamak such as ITER. The neural network has been reported to be so accurate and fast for plasma equilibrium identification that it may be applied to the control of complex tokamak plasmas. For this application, the reliability of the conventional neural network needs to be improved. In this study, a new idea of double neural network is developed to achieve this. The new idea has been applied to simple plasma position identification of KSTAR tokamak for feasibility test. Characteristics of the concept show higher reliability and fault tolerance even in severe faulty conditions, which may make neural network applicable to plasma control reliably and widely in future tokamaks.

  20. Rule extraction from minimal neural networks for credit card screening.

    PubMed

    Setiono, Rudy; Baesens, Bart; Mues, Christophe

    2011-08-01

    While feedforward neural networks have been widely accepted as effective tools for solving classification problems, the issue of finding the best network architecture remains unresolved, particularly so in real-world problem settings. We address this issue in the context of credit card screening, where it is important to not only find a neural network with good predictive performance but also one that facilitates a clear explanation of how it produces its predictions. We show that minimal neural networks with as few as one hidden unit provide good predictive accuracy, while having the added advantage of making it easier to generate concise and comprehensible classification rules for the user. To further reduce model size, a novel approach is suggested in which network connections from the input units to this hidden unit are removed by a very straightaway pruning procedure. In terms of predictive accuracy, both the minimized neural networks and the rule sets generated from them are shown to compare favorably with other neural network based classifiers. The rules generated from the minimized neural networks are concise and thus easier to validate in a real-life setting.

  1. An improved wavelet neural network medical image segmentation algorithm with combined maximum entropy

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang

    2018-05-01

    In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.

  2. Knowledge extraction from evolving spiking neural networks with rank order population coding.

    PubMed

    Soltic, Snjezana; Kasabov, Nikola

    2010-12-01

    This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.

  3. Adaptive neural network motion control of manipulators with experimental evaluations.

    PubMed

    Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.

  4. Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations

    PubMed Central

    Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.

    2014-01-01

    A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910

  5. Research on image retrieval using deep convolutional neural network combining L1 regularization and PRelu activation function

    NASA Astrophysics Data System (ADS)

    QingJie, Wei; WenBin, Wang

    2017-06-01

    In this paper, the image retrieval using deep convolutional neural network combined with regularization and PRelu activation function is studied, and improves image retrieval accuracy. Deep convolutional neural network can not only simulate the process of human brain to receive and transmit information, but also contains a convolution operation, which is very suitable for processing images. Using deep convolutional neural network is better than direct extraction of image visual features for image retrieval. However, the structure of deep convolutional neural network is complex, and it is easy to over-fitting and reduces the accuracy of image retrieval. In this paper, we combine L1 regularization and PRelu activation function to construct a deep convolutional neural network to prevent over-fitting of the network and improve the accuracy of image retrieval

  6. Program Helps Simulate Neural Networks

    NASA Technical Reports Server (NTRS)

    Villarreal, James; Mcintire, Gary

    1993-01-01

    Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.

  7. Establishing a Dynamic Self-Adaptation Learning Algorithm of the BP Neural Network and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Xiang, Suying; Zhu, Pengfei; Wu, Min

    2015-12-01

    In order to avoid the inherent deficiencies of the traditional BP neural network, such as slow convergence speed, that easily leading to local minima, poor generalization ability and difficulty in determining the network structure, the dynamic self-adaptive learning algorithm of the BP neural network is put forward to improve the function of the BP neural network. The new algorithm combines the merit of principal component analysis, particle swarm optimization, correlation analysis and self-adaptive model, hence can effectively solve the problems of selecting structural parameters, initial connection weights and thresholds and learning rates of the BP neural network. This new algorithm not only reduces the human intervention, optimizes the topological structures of BP neural networks and improves the network generalization ability, but also accelerates the convergence speed of a network, avoids trapping into local minima, and enhances network adaptation ability and prediction ability. The dynamic self-adaptive learning algorithm of the BP neural network is used to forecast the total retail sale of consumer goods of Sichuan Province, China. Empirical results indicate that the new algorithm is superior to the traditional BP network algorithm in predicting accuracy and time consumption, which shows the feasibility and effectiveness of the new algorithm.

  8. Neural net target-tracking system using structured laser patterns

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Wan; Lee, Yong-Bum; Lee, Nam-Ho; Park, Soon-Yong; Lee, Jongmin; Choi, Gapchu; Baek, Sunghyun; Park, Dong-Sun

    1996-06-01

    In this paper, we describe a robot endeffector tracking system using sensory information from recently-announced structured pattern laser diodes, which can generate images with several different types of structured pattern. The neural network approach is employed to recognize the robot endeffector covering the situation of three types of motion: translation, scaling and rotation. Features for the neural network to detect the position of the endeffector are extracted from the preprocessed images. Artificial neural networks are used to store models and to match with unknown input features recognizing the position of the robot endeffector. Since a minimal number of samples are used for different directions of the robot endeffector in the system, an artificial neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network with the generalization capability can be utilized for unknown input features. A feedforward neural network trained with the back propagation learning is used to detect the position of the robot endeffector. Another feedforward neural network module is used to estimate the motion from a sequence of images and to control movements of the robot endeffector. COmbining the tow neural networks for recognizing the robot endeffector and estimating the motion with the preprocessing stage, the whole system keeps tracking of the robot endeffector effectively.

  9. Chaotic simulated annealing by a neural network with a variable delay: design and application.

    PubMed

    Chen, Shyan-Shiou

    2011-10-01

    In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem. © 2011 IEEE

  10. Modeling and control of magnetorheological fluid dampers using neural networks

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  11. Deep neural networks for direct, featureless learning through observation: The case of two-dimensional spin models

    NASA Astrophysics Data System (ADS)

    Mills, Kyle; Tamblyn, Isaac

    2018-03-01

    We demonstrate the capability of a convolutional deep neural network in predicting the nearest-neighbor energy of the 4 ×4 Ising model. Using its success at this task, we motivate the study of the larger 8 ×8 Ising model, showing that the deep neural network can learn the nearest-neighbor Ising Hamiltonian after only seeing a vanishingly small fraction of configuration space. Additionally, we show that the neural network has learned both the energy and magnetization operators with sufficient accuracy to replicate the low-temperature Ising phase transition. We then demonstrate the ability of the neural network to learn other spin models, teaching the convolutional deep neural network to accurately predict the long-range interaction of a screened Coulomb Hamiltonian, a sinusoidally attenuated screened Coulomb Hamiltonian, and a modified Potts model Hamiltonian. In the case of the long-range interaction, we demonstrate the ability of the neural network to recover the phase transition with equivalent accuracy to the numerically exact method. Furthermore, in the case of the long-range interaction, the benefits of the neural network become apparent; it is able to make predictions with a high degree of accuracy, and do so 1600 times faster than a CUDA-optimized exact calculation. Additionally, we demonstrate how the neural network succeeds at these tasks by looking at the weights learned in a simplified demonstration.

  12. Tensor Basis Neural Network v. 1.0 (beta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Julia; Templeton, Jeremy

    This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.

  13. A renaissance of neural networks in drug discovery.

    PubMed

    Baskin, Igor I; Winkler, David; Tetko, Igor V

    2016-08-01

    Neural networks are becoming a very popular method for solving machine learning and artificial intelligence problems. The variety of neural network types and their application to drug discovery requires expert knowledge to choose the most appropriate approach. In this review, the authors discuss traditional and newly emerging neural network approaches to drug discovery. Their focus is on backpropagation neural networks and their variants, self-organizing maps and associated methods, and a relatively new technique, deep learning. The most important technical issues are discussed including overfitting and its prevention through regularization, ensemble and multitask modeling, model interpretation, and estimation of applicability domain. Different aspects of using neural networks in drug discovery are considered: building structure-activity models with respect to various targets; predicting drug selectivity, toxicity profiles, ADMET and physicochemical properties; characteristics of drug-delivery systems and virtual screening. Neural networks continue to grow in importance for drug discovery. Recent developments in deep learning suggests further improvements may be gained in the analysis of large chemical data sets. It's anticipated that neural networks will be more widely used in drug discovery in the future, and applied in non-traditional areas such as drug delivery systems, biologically compatible materials, and regenerative medicine.

  14. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification

    NASA Astrophysics Data System (ADS)

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-12-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.

  15. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification.

    PubMed

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-12-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.

  16. A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification

    PubMed Central

    Cao, Jianfang; Chen, Lichao; Wang, Min; Shi, Hao; Tian, Yun

    2016-01-01

    Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value. PMID:27905520

  17. Deinterlacing using modular neural network

    NASA Astrophysics Data System (ADS)

    Woo, Dong H.; Eom, Il K.; Kim, Yoo S.

    2004-05-01

    Deinterlacing is the conversion process from the interlaced scan to progressive one. While many previous algorithms that are based on weighted-sum cause blurring in edge region, deinterlacing using neural network can reduce the blurring through recovering of high frequency component by learning process, and is found robust to noise. In proposed algorithm, input image is divided into edge and smooth region, and then, to each region, one neural network is assigned. Through this process, each neural network learns only patterns that are similar, therefore it makes learning more effective and estimation more accurate. But even within each region, there are various patterns such as long edge and texture in edge region. To solve this problem, modular neural network is proposed. In proposed modular neural network, two modules are combined in output node. One is for low frequency feature of local area of input image, and the other is for high frequency feature. With this structure, each modular neural network can learn different patterns with compensating for drawback of counterpart. Therefore it can adapt to various patterns within each region effectively. In simulation, the proposed algorithm shows better performance compared with conventional deinterlacing methods and single neural network method.

  18. Pruning artificial neural networks using neural complexity measures.

    PubMed

    Jorgensen, Thomas D; Haynes, Barry P; Norlund, Charlotte C F

    2008-10-01

    This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.

  19. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    PubMed

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.

    PubMed

    Liu, Qingshan; Wang, Jun

    2011-04-01

    This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.

  1. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks

    PubMed Central

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423

  2. Periodicity and stability for variable-time impulsive neural networks.

    PubMed

    Li, Hongfei; Li, Chuandong; Huang, Tingwen

    2017-10-01

    The paper considers a general neural networks model with variable-time impulses. It is shown that each solution of the system intersects with every discontinuous surface exactly once via several new well-proposed assumptions. Moreover, based on the comparison principle, this paper shows that neural networks with variable-time impulse can be reduced to the corresponding neural network with fixed-time impulses under well-selected conditions. Meanwhile, the fixed-time impulsive systems can be regarded as the comparison system of the variable-time impulsive neural networks. Furthermore, a series of sufficient criteria are derived to ensure the existence and global exponential stability of periodic solution of variable-time impulsive neural networks, and to illustrate the same stability properties between variable-time impulsive neural networks and the fixed-time ones. The new criteria are established by applying Schaefer's fixed point theorem combined with the use of inequality technique. Finally, a numerical example is presented to show the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Linear and nonlinear ARMA model parameter estimation using an artificial neural network

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Cohen, R. J.

    1997-01-01

    This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

  4. Financial Time Series Prediction Using Elman Recurrent Random Neural Networks.

    PubMed

    Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli

    2016-01-01

    In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices.

  5. A novel neural-wavelet approach for process diagnostics and complex system modeling

    NASA Astrophysics Data System (ADS)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  6. Active Control of Wind-Tunnel Model Aeroelastic Response Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.

    2000-01-01

    NASA Langley Research Center, Hampton, VA 23681 Under a joint research and development effort conducted by the National Aeronautics and Space Administration and The Boeing Company (formerly McDonnell Douglas) three neural-network based control systems were developed and tested. The control systems were experimentally evaluated using a transonic wind-tunnel model in the Langley Transonic Dynamics Tunnel. One system used a neural network to schedule flutter suppression control laws, another employed a neural network in a predictive control scheme, and the third employed a neural network in an inverse model control scheme. All three of these control schemes successfully suppressed flutter to or near the limits of the testing apparatus, and represent the first experimental applications of neural networks to flutter suppression. This paper will summarize the findings of this project.

  7. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  8. Implicit false-belief processing in the human brain.

    PubMed

    Schneider, Dana; Slaughter, Virginia P; Becker, Stefanie I; Dux, Paul E

    2014-11-01

    Eye-movement patterns in 'Sally-Anne' tasks reflect humans' ability to implicitly process the mental states of others, particularly false-beliefs - a key theory of mind (ToM) operation. It has recently been proposed that an efficient ToM system, which operates in the absence of awareness (implicit ToM, iToM), subserves the analysis of belief-like states. This contrasts to consciously available belief processing, performed by the explicit ToM system (eToM). The frontal, temporal and parietal cortices are engaged when humans explicitly 'mentalize' about others' beliefs. However, the neural underpinnings of implicit false-belief processing and the extent to which they draw on networks involved in explicit general-belief processing are unknown. Here, participants watched 'Sally-Anne' movies while fMRI and eye-tracking measures were acquired simultaneously. Participants displayed eye-movements consistent with implicit false-belief processing. After independently localizing the brain areas involved in explicit general-belief processing, only the left anterior superior temporal sulcus and precuneus revealed greater blood-oxygen-level-dependent activity for false- relative to true-belief trials in our iToM paradigm. No such difference was found for the right temporal-parietal junction despite significant activity in this area. These findings fractionate brain regions that are associated with explicit general ToM reasoning and false-belief processing in the absence of awareness. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Exponential H(infinity) synchronization of general discrete-time chaotic neural networks with or without time delays.

    PubMed

    Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin

    2010-08-01

    This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.

  10. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  11. Predicting Slag Generation in Sub-Scale Test Motors Using a Neural Network

    NASA Technical Reports Server (NTRS)

    Wiesenberg, Brent

    1999-01-01

    Generation of slag (aluminum oxide) is an important issue for the Reusable Solid Rocket Motor (RSRM). Thiokol performed testing to quantify the relationship between raw material variations and slag generation in solid propellants by testing sub-scale motors cast with propellant containing various combinations of aluminum fuel and ammonium perchlorate (AP) oxidizer particle sizes. The test data were analyzed using statistical methods and an artificial neural network. This paper primarily addresses the neural network results with some comparisons to the statistical results. The neural network showed that the particle sizes of both the aluminum and unground AP have a measurable effect on slag generation. The neural network analysis showed that aluminum particle size is the dominant driver in slag generation, about 40% more influential than AP. The network predictions of the amount of slag produced during firing of sub-scale motors were 16% better than the predictions of a statistically derived empirical equation. Another neural network successfully characterized the slag generated during full-scale motor tests. The success is attributable to the ability of neural networks to characterize multiple complex factors including interactions that affect slag generation.

  12. Application of Two-Dimensional AWE Algorithm in Training Multi-Dimensional Neural Network Model

    DTIC Science & Technology

    2003-07-01

    hybrid scheme . the general neural network method (Table 3.1). The training process of the software- ACKNOWLEDGMENT "Neuralmodeler" is shown in Fig. 3.2...engineering. Artificial neural networks (ANNs) have emerged Training a neural network model is the key of as a powerful technique for modeling general neural...coefficients am, the derivatives method of moments (MoM). The variables in the of matrix I have to be generated . A closed form model are frequency

  13. Center for Neural Engineering at Tennessee State University, ASSERT Annual Progress Report.

    DTIC Science & Technology

    1995-07-01

    neural networks . Their research topics are: (1) developing frequency dependent oscillatory neural networks ; (2) long term pontentiation learning rules...as applied to spatial navigation; (3) design and build a servo joint robotic arm and (4) neural network based prothesis control. One graduate student

  14. A Feasibility Study of Synthesizing Subsurfaces Modeled with Computational Neural Networks

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Housner, Jerrold M.; Szewczyk, Z. Peter

    1998-01-01

    This paper investigates the feasibility of synthesizing substructures modeled with computational neural networks. Substructures are modeled individually with computational neural networks and the response of the assembled structure is predicted by synthesizing the neural networks. A superposition approach is applied to synthesize models for statically determinate substructures while an interface displacement collocation approach is used to synthesize statically indeterminate substructure models. Beam and plate substructures along with components of a complicated Next Generation Space Telescope (NGST) model are used in this feasibility study. In this paper, the limitations and difficulties of synthesizing substructures modeled with neural networks are also discussed.

  15. Optical-Correlator Neural Network Based On Neocognitron

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Stoner, William W.

    1994-01-01

    Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.

  16. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.

    1998-01-01

    A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.

  17. Neural network based system for equipment surveillance

    DOEpatents

    Vilim, R.B.; Gross, K.C.; Wegerich, S.W.

    1998-04-28

    A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.

  18. Neural networks for function approximation in nonlinear control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis J.; Stengel, Robert F.

    1990-01-01

    Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.

  19. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1997-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  20. Vibrational Analysis of Engine Components Using Neural-Net Processing and Electronic Holography

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    The use of computational-model trained artificial neural networks to acquire damage specific information from electronic holograms is discussed. A neural network is trained to transform two time-average holograms into a pattern related to the bending-induced-strain distribution of the vibrating component. The bending distribution is very sensitive to component damage unlike the characteristic fringe pattern or the displacement amplitude distribution. The neural network processor is fast for real-time visualization of damage. The two-hologram limit makes the processor more robust to speckle pattern decorrelation. Undamaged and cracked cantilever plates serve as effective objects for testing the combination of electronic holography and neural-net processing. The requirements are discussed for using finite-element-model trained neural networks for field inspections of engine components. The paper specifically discusses neural-network fringe pattern analysis in the presence of the laser speckle effect and the performances of two limiting cases of the neural-net architecture.

  1. Overlapping neurobehavioral circuits in ADHD, obesity, and binge eating: Evidence from Neuroimaging Research

    PubMed Central

    Seymour, Karen E.; Reinblatt, Shauna P.; Benson, Leora; Carnell, Susan

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) and conditions involving excessive eating (e.g. obesity, binge / loss of control eating) are increasingly prevalent within pediatric populations, and correlational and some longitudinal studies have suggested inter-relationships between these disorders. In addition, a number of common neural correlates are emerging across conditions, e.g. functional abnormalities within circuits subserving reward processing and executive functioning. To explore this potential cross-condition overlap in neurobehavioral underpinnings, we selectively review relevant functional neuroimaging literature, specifically focusing on studies probing i) reward processing, ii) response inhibition, and iii) emotional processing and regulation, and outline three specific shared neurobehavioral circuits. Based on our review, we also identify gaps within the literature that would benefit from further research. PMID:26098969

  2. Neurocognitive mechanisms underlying social learning in infancy: infants' neural processing of the effects of others' actions.

    PubMed

    Paulus, Markus; Hunnius, Sabine; Bekkering, Harold

    2013-10-01

    Social transmission of knowledge is one of the reasons for human evolutionary success, and it has been suggested that already human infants possess eminent social learning abilities. However, nothing is known about the neurocognitive mechanisms that subserve infants' acquisition of novel action knowledge through the observation of other people's actions and their consequences in the physical world. In an electroencephalogram study on social learning in infancy, we demonstrate that 9-month-old infants represent the environmental effects of others' actions in their own motor system, although they never achieved these effects themselves before. The results provide first insights into the neurocognitive basis of human infants' unique ability for social learning of novel action knowledge.

  3. Neural networks for vertical microcode compaction

    NASA Astrophysics Data System (ADS)

    Chu, Pong P.

    1992-09-01

    Neural networks provide an alternative way to solve complex optimization problems. Instead of performing a program of instructions sequentially as in a traditional computer, neural network model explores many competing hypotheses simultaneously using its massively parallel net. The paper shows how to use the neural network approach to perform vertical micro-code compaction for a micro-programmed control unit. The compaction procedure includes two basic steps. The first step determines the compatibility classes and the second step selects a minimal subset to cover the control signals. Since the selection process is an NP- complete problem, to find an optimal solution is impractical. In this study, we employ a customized neural network to obtain the minimal subset. We first formalize this problem, and then define an `energy function' and map it to a two-layer fully connected neural network. The modified network has two types of neurons and can always obtain a valid solution.

  4. Advances in Artificial Neural Networks - Methodological Development and Application

    USDA-ARS?s Scientific Manuscript database

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  5. Artificial Neural Network Metamodels of Stochastic Computer Simulations

    DTIC Science & Technology

    1994-08-10

    SUBTITLE r 5. FUNDING NUMBERS Artificial Neural Network Metamodels of Stochastic I () Computer Simulations 6. AUTHOR(S) AD- A285 951 Robert Allen...8217!298*1C2 ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC COMPUTER SIMULATIONS by Robert Allen Kilmer B.S. in Education Mathematics, Indiana...dedicate this document to the memory of my father, William Ralph Kilmer. mi ABSTRACT Signature ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC

  6. Theta oscillations are sensitive to both early and late conflict processing stages: effects of alcohol intoxication.

    PubMed

    Kovacevic, Sanja; Azma, Sheeva; Irimia, Andrei; Sherfey, Jason; Halgren, Eric; Marinkovic, Ksenija

    2012-01-01

    Prior neuroimaging evidence indicates that decision conflict activates medial and lateral prefrontal and parietal cortices. Theoretical accounts of cognitive control highlight anterior cingulate cortex (ACC) as a central node in this network. However, a better understanding of the relative primacy and functional contributions of these areas to decision conflict requires insight into the neural dynamics of successive processing stages including conflict detection, response selection and execution. Moderate alcohol intoxication impairs cognitive control as it interferes with the ability to inhibit dominant, prepotent responses when they are no longer correct. To examine the effects of moderate intoxication on successive processing stages during cognitive control, spatio-temporal changes in total event-related theta power were measured during Stroop-induced conflict. Healthy social drinkers served as their own controls by participating in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg women) and placebo conditions in a counterbalanced design. Anatomically-constrained magnetoencephalography (aMEG) approach was applied to complex power spectra for theta (4-7 Hz) frequencies. The principal generator of event-related theta power to conflict was estimated to ACC, with contributions from fronto-parietal areas. The ACC was uniquely sensitive to conflict during both early conflict detection, and later response selection and execution stages. Alcohol attenuated theta power to conflict across successive processing stages, suggesting that alcohol-induced deficits in cognitive control may result from theta suppression in the executive network. Slower RTs were associated with attenuated theta power estimated to ACC, indicating that alcohol impairs motor preparation and execution subserved by the ACC. In addition to their relevance for the currently prevailing accounts of cognitive control, our results suggest that alcohol-induced impairment of top-down strategic processing underlies poor self-control and inability to refrain from drinking.

  7. Research on wind field algorithm of wind lidar based on BP neural network and grey prediction

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Chen, Chun-Li; Luo, Xiong; Zhang, Yan; Yang, Ze-hou; Zhou, Jie; Shi, Xiao-ding; Wang, Lei

    2018-01-01

    This paper uses the BP neural network and grey algorithm to forecast and study radar wind field. In order to reduce the residual error in the wind field prediction which uses BP neural network and grey algorithm, calculating the minimum value of residual error function, adopting the residuals of the gray algorithm trained by BP neural network, using the trained network model to forecast the residual sequence, using the predicted residual error sequence to modify the forecast sequence of the grey algorithm. The test data show that using the grey algorithm modified by BP neural network can effectively reduce the residual value and improve the prediction precision.

  8. Gestational age modulates neural correlates of intentional, but not automatic number magnitude processing in children born preterm.

    PubMed

    Klein, Elise; Moeller, Korbinian; Huber, Stefan; Willmes, Klaus; Kiechl-Kohlendorfer, Ursula; Kaufmann, Liane

    2018-04-01

    Premature birth is a significant risk factor for learning disabilities in general and mathematics learning difficulties in particular. However, the exact reasons for this relation are still unknown. While typical numerical development is associated with a frontal-to-parietal shift of brain activation with increasing age, influences of gestational age have hardly been considered so far. Therefore, we investigated the influence of gestational age on the neural correlates of number processing in 6- and 7-year-old children born prematurely (n=16). Only the numerical distance effect - as a measure of intentional number magnitude processing - elicited the fronto-parietal activation pattern typically observed for numerical cognition. On the other hand, the size congruity effect - as a measure of automatic number magnitude processing - was associated with activation of brain areas typically attributed to cognitive control. Most importantly, however, we observed that gestational age reliably predicted the frontal-to-parietal shift of activation observed for the numerical distance effect. Our findings seem to indicate that human numerical development may start even before birth and prematurity might hamper neural facilitation of the brain circuitry subserving numerical cognition. In turn, this might contribute to the high risk of premature children to develop mathematical learning difficulties. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  9. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  10. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    PubMed Central

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  11. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optical neural networks based on holographic correlators

    NASA Astrophysics Data System (ADS)

    Sokolov, V. K.; Shubnikov, E. I.

    1995-10-01

    The three most important models of neural networks — a bidirectional associative memory, Hopfield networks, and adaptive resonance networks — are used as examples to show that a holographic correlator has its place in the neural computing paradigm.

  12. Comparison of artificial intelligence classifiers for SIP attack data

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Slachta, Jiri

    2016-05-01

    Honeypot application is a source of valuable data about attacks on the network. We run several SIP honeypots in various computer networks, which are separated geographically and logically. Each honeypot runs on public IP address and uses standard SIP PBX ports. All information gathered via honeypot is periodically sent to the centralized server. This server classifies all attack data by neural network algorithm. The paper describes optimizations of a neural network classifier, which lower the classification error. The article contains the comparison of two neural network algorithm used for the classification of validation data. The first is the original implementation of the neural network described in recent work; the second neural network uses further optimizations like input normalization or cross-entropy cost function. We also use other implementations of neural networks and machine learning classification algorithms. The comparison test their capabilities on validation data to find the optimal classifier. The article result shows promise for further development of an accurate SIP attack classification engine.

  13. Parallel consensual neural networks.

    PubMed

    Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H

    1997-01-01

    A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.

  14. Unfolding the neutron spectrum of a NE213 scintillator using artificial neural networks.

    PubMed

    Sharghi Ido, A; Bonyadi, M R; Etaati, G R; Shahriari, M

    2009-10-01

    Artificial neural networks technology has been applied to unfold the neutron spectra from the pulse height distribution measured with NE213 liquid scintillator. Here, both the single and multi-layer perceptron neural network models have been implemented to unfold the neutron spectrum from an Am-Be neutron source. The activation function and the connectivity of the neurons have been investigated and the results have been analyzed in terms of the network's performance. The simulation results show that the neural network that utilizes the Satlins transfer function has the best performance. In addition, omitting the bias connection of the neurons improve the performance of the network. Also, the SCINFUL code is used for generating the response functions in the training phase of the process. Finally, the results of the neural network simulation have been compared with those of the FORIST unfolding code for both (241)Am-Be and (252)Cf neutron sources. The results of neural network are in good agreement with FORIST code.

  15. A neural-network-based model for the dynamic simulation of the tire/suspension system while traversing road irregularities.

    PubMed

    Guarneri, Paolo; Rocca, Gianpiero; Gobbi, Massimiliano

    2008-09-01

    This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.

  16. Activating Developmental Reserve Capacity Via Cognitive Training or Non-invasive Brain Stimulation: Potentials for Promoting Fronto-Parietal and Hippocampal-Striatal Network Functions in Old Age

    PubMed Central

    Passow, Susanne; Thurm, Franka; Li, Shu-Chen

    2017-01-01

    Existing neurocomputational and empirical data link deficient neuromodulation of the fronto-parietal and hippocampal-striatal circuitries with aging-related increase in processing noise and declines in various cognitive functions. Specifically, the theory of aging neuronal gain control postulates that aging-related suboptimal neuromodulation may attenuate neuronal gain control, which yields computational consequences on reducing the signal-to-noise-ratio of synaptic signal transmission and hampering information processing within and between cortical networks. Intervention methods such as cognitive training and non-invasive brain stimulation, e.g., transcranial direct current stimulation (tDCS), have been considered as means to buffer cognitive functions or delay cognitive decline in old age. However, to date the reported effect sizes of immediate training gains and maintenance effects of a variety of cognitive trainings are small to moderate at best; moreover, training-related transfer effects to non-trained but closely related (i.e., near-transfer) or other (i.e., far-transfer) cognitive functions are inconsistent or lacking. Similarly, although applying different tDCS protocols to reduce aging-related cognitive impairments by inducing temporary changes in cortical excitability seem somewhat promising, evidence of effects on short- and long-term plasticity is still equivocal. In this article, we will review and critically discuss existing findings of cognitive training- and stimulation-related behavioral and neural plasticity effects in the context of cognitive aging, focusing specifically on working memory and episodic memory functions, which are subserved by the fronto-parietal and hippocampal-striatal networks, respectively. Furthermore, in line with the theory of aging neuronal gain control we will highlight that developing age-specific brain stimulation protocols and the concurrent applications of tDCS during cognitive training may potentially facilitate short- and long-term cognitive and brain plasticity in old age. PMID:28280465

  17. Computational modeling of spiking neural network with learning rules from STDP and intrinsic plasticity

    NASA Astrophysics Data System (ADS)

    Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan

    2018-02-01

    Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.

  18. Plant Growth Models Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  19. Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males.

    PubMed

    Akinsal, Emre Can; Haznedar, Bulent; Baydilli, Numan; Kalinli, Adem; Ozturk, Ahmet; Ekmekçioğlu, Oğuz

    2018-02-04

    To evaluate whether an artifical neural network helps to diagnose any chromosomal abnormalities in azoospermic males. The data of azoospermic males attending to a tertiary academic referral center were evaluated retrospectively. Height, total testicular volume, follicle stimulating hormone, luteinising hormone, total testosterone and ejaculate volume of the patients were used for the analyses. In artificial neural network, the data of 310 azoospermics were used as the education and 115 as the test set. Logistic regression analyses and discriminant analyses were performed for statistical analyses. The tests were re-analysed with a neural network. Both logistic regression analyses and artificial neural network predicted the presence or absence of chromosomal abnormalities with more than 95% accuracy. The use of artificial neural network model has yielded satisfactory results in terms of distinguishing patients whether they have any chromosomal abnormality or not.

  20. Synchronization criteria for generalized reaction-diffusion neural networks via periodically intermittent control.

    PubMed

    Gan, Qintao; Lv, Tianshi; Fu, Zhenhua

    2016-04-01

    In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.

  1. Global exponential stability of inertial memristor-based neural networks with time-varying delays and impulses.

    PubMed

    Zhang, Wei; Huang, Tingwen; He, Xing; Li, Chuandong

    2017-11-01

    In this study, we investigate the global exponential stability of inertial memristor-based neural networks with impulses and time-varying delays. We construct inertial memristor-based neural networks based on the characteristics of the inertial neural networks and memristor. Impulses with and without delays are considered when modeling the inertial neural networks simultaneously, which are of great practical significance in the current study. Some sufficient conditions are derived under the framework of the Lyapunov stability method, as well as an extended Halanay differential inequality and a new delay impulsive differential inequality, which depend on impulses with and without delays, in order to guarantee the global exponential stability of the inertial memristor-based neural networks. Finally, two numerical examples are provided to illustrate the efficiency of the proposed methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Neural joint control for Space Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Atkins, Mark A.; Cox, Chadwick J.; Lothers, Michael D.; Pap, Robert M.; Thomas, Charles R.

    1992-01-01

    Neural networks are being used to control a robot arm in a telerobotic operation. The concept uses neural networks for both joint and inverse kinematics in a robotic control application. An upper level neural network is trained to learn inverse kinematic mappings. The output, a trajectory, is then fed to the Decentralized Adaptive Joint Controllers. This neural network implementation has shown that the controlled arm recovers from unexpected payload changes while following the reference trajectory. The neural network-based decentralized joint controller is faster, more robust and efficient than conventional approaches. Implementations of this architecture are discussed that would relax assumptions about dynamics, obstacles, and heavy loads. This system is being developed to use with the Space Shuttle Remote Manipulator System.

  3. Application of a neural network for reflectance spectrum classification

    NASA Astrophysics Data System (ADS)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  4. Dissociable Neural Mechanisms Underlying the Modulation of Pain and Anxiety? An fMRI Pilot Study

    PubMed Central

    Moseley, Graham Lorimer; Berna, Chantal; Ploner, Markus; Tracey, Irene

    2014-01-01

    The down-regulation of pain through beliefs is commonly discussed as a form of emotion regulation. In line with this interpretation, the analgesic effect has been shown to co-occur with reduced anxiety and increased activity in the ventrolateral prefrontal cortex (VLPFC), which is a key region of emotion regulation. This link between pain and anxiety modulation raises the question whether the two effects are rooted in the same neural mechanism. In this pilot fMRI study, we compared the neural basis of the analgesic and anxiolytic effect of two types of threat modulation: a “behavioral control” paradigm, which involves the ability to terminate a noxious stimulus, and a “safety signaling” paradigm, which involves visual cues that signal the threat (or absence of threat) that a subsequent noxious stimulus might be of unusually high intensity. Analgesia was paralleled by VLPFC activity during behavioral control. Safety signaling engaged elements of the descending pain control system, including the rostral anterior cingulate cortex that showed increased functional connectivity with the periaqueductal gray and VLPFC. Anxiety reduction, in contrast, scaled with dorsolateral prefrontal cortex activation during behavioral control but had no distinct neural signature during safety signaling. Our pilot data therefore suggest that analgesic and anxiolytic effects are instantiated in distinguishable neural mechanisms and differ between distinct stress- and pain-modulatory approaches, supporting the recent notion of multiple pathways subserving top-down modulation of the pain experience. Additional studies in larger cohorts are needed to follow up on these preliminary findings. PMID:25502237

  5. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    PubMed

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  6. Nanophotonic particle simulation and inverse design using artificial neural networks.

    PubMed

    Peurifoy, John; Shen, Yichen; Jing, Li; Yang, Yi; Cano-Renteria, Fidel; DeLacy, Brendan G; Joannopoulos, John D; Tegmark, Max; Soljačić, Marin

    2018-06-01

    We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.

  7. Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling

    NASA Astrophysics Data System (ADS)

    Bakanovskaya, L. N.

    2016-08-01

    The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.

  8. Enhancement of electrical signaling in neural networks on graphene films.

    PubMed

    Tang, Mingliang; Song, Qin; Li, Ning; Jiang, Ziyun; Huang, Rong; Cheng, Guosheng

    2013-09-01

    One of the key challenges for neural tissue engineering is to exploit supporting materials with robust functionalities not only to govern cell-specific behaviors, but also to form functional neural network. The unique electrical and mechanical properties of graphene imply it as a promising candidate for neural interfaces, but little is known about the details of neural network formation on graphene as a scaffold material for tissue engineering. Therapeutic regenerative strategies aim to guide and enhance the intrinsic capacity of the neurons to reorganize by promoting plasticity mechanisms in a controllable manner. Here, we investigated the impact of graphene on the formation and performance in the assembly of neural networks in neural stem cell (NSC) culture. Using calcium imaging and electrophysiological recordings, we demonstrate the capabilities of graphene to support the growth of functional neural circuits, and improve neural performance and electrical signaling in the network. These results offer a better understanding of interactions between graphene and NSCs, also they clearly present the great potentials of graphene as neural interface in tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. On the Relationships between Generative Encodings, Regularity, and Learning Abilities when Evolving Plastic Artificial Neural Networks

    PubMed Central

    Tonelli, Paul; Mouret, Jean-Baptiste

    2013-01-01

    A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1) the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2) synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT). Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1) in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2) whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities. PMID:24236099

  10. Modular representation of layered neural networks.

    PubMed

    Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio

    2018-01-01

    Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Bio-inspired spiking neural network for nonlinear systems control.

    PubMed

    Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M

    2018-08-01

    Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Neural coordination can be enhanced by occasional interruption of normal firing patterns: a self-optimizing spiking neural network model.

    PubMed

    Woodward, Alexander; Froese, Tom; Ikegami, Takashi

    2015-02-01

    The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Criteria for Choosing the Best Neural Network: Part 1

    DTIC Science & Technology

    1991-07-24

    Touretzky, pp. 177-185. San Mateo: Morgan Kaufmann. Harp, S.A., Samad , T., and Guha, A . (1990). Designing application-specific neural networks using genetic...determining a parsimonious neural network for use in prediction/generalization based on a given fixed learning sample. Both the classification and...statistical settings, algorithms for selecting the number of hidden layer nodes in a three layer, feedforward neural network are presented. The selection

  14. Keypoint Density-Based Region Proposal for Fine-Grained Object Detection and Classification Using Regions with Convolutional Neural Network Features

    DTIC Science & Technology

    2015-12-15

    Keypoint Density-based Region Proposal for Fine-Grained Object Detection and Classification using Regions with Convolutional Neural Network ... Convolutional Neural Networks (CNNs) enable them to outperform conventional techniques on standard object detection and classification tasks, their...detection accuracy and speed on the fine-grained Caltech UCSD bird dataset (Wah et al., 2011). Recently, Convolutional Neural Networks (CNNs), a deep

  15. Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach.

    DTIC Science & Technology

    1998-05-01

    Coverage Probability with a Random Optimization Procedure: An Artificial Neural Network Approach by Biing T. Guan, George Z. Gertner, and Alan B...Modeling Training Site Vegetation Coverage Probability with a Random Optimizing Procedure: An Artificial Neural Network Approach 6. AUTHOR(S) Biing...coverage based on past coverage. Approach A literature survey was conducted to identify artificial neural network analysis techniques applicable for

  16. Semantic Interpretation of An Artificial Neural Network

    DTIC Science & Technology

    1995-12-01

    ARTIFICIAL NEURAL NETWORK .7,’ THESIS Stanley Dale Kinderknecht Captain, USAF 770 DEAT7ET77,’H IR O C 7... ARTIFICIAL NEURAL NETWORK THESIS Stanley Dale Kinderknecht Captain, USAF AFIT/GCS/ENG/95D-07 Approved for public release; distribution unlimited The views...Government. AFIT/GCS/ENG/95D-07 SEMANTIC INTERPRETATION OF AN ARTIFICIAL NEURAL NETWORK THESIS Presented to the Faculty of the School of Engineering of

  17. Trimaran Resistance Artificial Neural Network

    DTIC Science & Technology

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  18. Application of Fuzzy-Logic Controller and Neural Networks Controller in Gas Turbine Speed Control and Overheating Control and Surge Control on Transient Performance

    NASA Astrophysics Data System (ADS)

    Torghabeh, A. A.; Tousi, A. M.

    2007-08-01

    This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.

  19. A research using hybrid RBF/Elman neural networks for intrusion detection system secure model

    NASA Astrophysics Data System (ADS)

    Tong, Xiaojun; Wang, Zhu; Yu, Haining

    2009-10-01

    A hybrid RBF/Elman neural network model that can be employed for both anomaly detection and misuse detection is presented in this paper. The IDSs using the hybrid neural network can detect temporally dispersed and collaborative attacks effectively because of its memory of past events. The RBF network is employed as a real-time pattern classification and the Elman network is employed to restore the memory of past events. The IDSs using the hybrid neural network are evaluated against the intrusion detection evaluation data sponsored by U.S. Defense Advanced Research Projects Agency (DARPA). Experimental results are presented in ROC curves. Experiments show that the IDSs using this hybrid neural network improve the detection rate and decrease the false positive rate effectively.

  20. Advanced obstacle avoidance for a laser based wheelchair using optimised Bayesian neural networks.

    PubMed

    Trieu, Hoang T; Nguyen, Hung T; Willey, Keith

    2008-01-01

    In this paper we present an advanced method of obstacle avoidance for a laser based intelligent wheelchair using optimized Bayesian neural networks. Three neural networks are designed for three separate sub-tasks: passing through a door way, corridor and wall following and general obstacle avoidance. The accurate usable accessible space is determined by including the actual wheelchair dimensions in a real-time map used as inputs to each networks. Data acquisitions are performed separately to collect the patterns required for specified sub-tasks. Bayesian frame work is used to determine the optimal neural network structure in each case. Then these networks are trained under the supervision of Bayesian rule. Experiment results showed that compare to the VFH algorithm our neural networks navigated a smoother path following a near optimum trajectory.

  1. Influence of neural adaptation on dynamics and equilibrium state of neural activities in a ring neural network

    NASA Astrophysics Data System (ADS)

    Takiyama, Ken

    2017-12-01

    How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.

  2. Ultrasonographic Diagnosis of Cirrhosis Based on Preprocessing Using Pyramid Recurrent Neural Network

    NASA Astrophysics Data System (ADS)

    Lu, Jianming; Liu, Jiang; Zhao, Xueqin; Yahagi, Takashi

    In this paper, a pyramid recurrent neural network is applied to characterize the hepatic parenchymal diseases in ultrasonic B-scan texture. The cirrhotic parenchymal diseases are classified into 4 types according to the size of hypoechoic nodular lesions. The B-mode patterns are wavelet transformed , and then the compressed data are feed into a pyramid neural network to diagnose the type of cirrhotic diseases. Compared with the 3-layer neural networks, the performance of the proposed pyramid recurrent neural network is improved by utilizing the lower layer effectively. The simulation result shows that the proposed system is suitable for diagnosis of cirrhosis diseases.

  3. Application of artificial neural networks to composite ply micromechanics

    NASA Technical Reports Server (NTRS)

    Brown, D. A.; Murthy, P. L. N.; Berke, L.

    1991-01-01

    Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.

  4. Using Neural Networks for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William

    1998-01-01

    This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.

  5. Decoding small surface codes with feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen

    2018-01-01

    Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.

  6. A Comparison of Conventional Linear Regression Methods and Neural Networks for Forecasting Educational Spending.

    ERIC Educational Resources Information Center

    Baker, Bruce D.; Richards, Craig E.

    1999-01-01

    Applies neural network methods for forecasting 1991-95 per-pupil expenditures in U.S. public elementary and secondary schools. Forecasting models included the National Center for Education Statistics' multivariate regression model and three neural architectures. Regarding prediction accuracy, neural network results were comparable or superior to…

  7. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    DOT National Transportation Integrated Search

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  8. Deconvolution using a neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, S.K.

    1990-11-15

    Viewing one dimensional deconvolution as a matrix inversion problem, we compare a neural network backpropagation matrix inverse with LMS, and pseudo-inverse. This is a largely an exercise in understanding how our neural network code works. 1 ref.

  9. Application of structured support vector machine backpropagation to a convolutional neural network for human pose estimation.

    PubMed

    Witoonchart, Peerajak; Chongstitvatana, Prabhas

    2017-08-01

    In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Flank wears Simulation by using back propagation neural network when cutting hardened H-13 steel in CNC End Milling

    NASA Astrophysics Data System (ADS)

    Hazza, Muataz Hazza F. Al; Adesta, Erry Y. T.; Riza, Muhammad

    2013-12-01

    High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models.

  11. Using an Extended Kalman Filter Learning Algorithm for Feed-Forward Neural Networks to Describe Tracer Correlations

    NASA Technical Reports Server (NTRS)

    Lary, David J.; Mussa, Yussuf

    2004-01-01

    In this study a new extended Kalman filter (EKF) learning algorithm for feed-forward neural networks (FFN) is used. With the EKF approach, the training of the FFN can be seen as state estimation for a non-linear stationary process. The EKF method gives excellent convergence performances provided that there is enough computer core memory and that the machine precision is high. Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). The neural network was able to reproduce the CH4-N2O correlation with a correlation coefficient between simulated and training values of 0.9997. The neural network Fortran code used is available for download.

  12. Neural network classification of clinical neurophysiological data for acute care monitoring

    NASA Technical Reports Server (NTRS)

    Sgro, Joseph

    1994-01-01

    The purpose of neurophysiological monitoring of the 'acute care' patient is to allow the accurate recognition of changing or deteriorating neurological function as close to the moment of occurrence as possible, thus permitting immediate intervention. Results confirm that: (1) neural networks are able to accurately identify electroencephalogram (EEG) patterns and evoked potential (EP) wave components, and measuring EP waveform latencies and amplitudes; (2) neural networks are able to accurately detect EP and EEG recordings that have been contaminated by noise; (3) the best performance was obtained consistently with the back propagation network for EP and the HONN for EEG's; (4) neural network performed consistently better than other methods evaluated; and (5) neural network EEG and EP analyses are readily performed on multichannel data.

  13. Neural computation of arithmetic functions

    NASA Technical Reports Server (NTRS)

    Siu, Kai-Yeung; Bruck, Jehoshua

    1990-01-01

    An area of application of neural networks is considered. A neuron is modeled as a linear threshold gate, and the network architecture considered is the layered feedforward network. It is shown how common arithmetic functions such as multiplication and sorting can be efficiently computed in a shallow neural network. Some known results are improved by showing that the product of two n-bit numbers and sorting of n n-bit numbers can be computed by a polynomial-size neural network using only four and five unit delays, respectively. Moreover, the weights of each threshold element in the neural networks require O(log n)-bit (instead of n-bit) accuracy. These results can be extended to more complicated functions such as multiple products, division, rational functions, and approximation of analytic functions.

  14. Neural evidence of the strategic choice between working memory and episodic memory in prospective remembering.

    PubMed

    Lewis-Peacock, Jarrod A; Cohen, Jonathan D; Norman, Kenneth A

    2016-12-01

    Theories of prospective memory (PM) posit that it can be subserved either by working memory (WM) or episodic memory (EM). Testing and refining these multiprocess theories of PM requires a way of tracking participants' reliance on WM versus EM. Here we use multi-voxel pattern analysis (MVPA) to derive a trial-by-trial measure of WM use in prospective memory. We manipulated strategy demands by varying the degree of proactive interference (which impairs EM) and the memory load required to perform the secondary task (which impairs WM). For the condition in which participants were pushed to rely more on WM, our MVPA measures showed 1) greater WM use and 2) a trial-by-trial correlation between WM use and PM behavior. Finally, we also showed that MVPA measures of WM use are not redundant with other behavioral measures: in the condition in which participants were pushed more to rely on WM, using neural and behavioral measures together led to better prediction of PM accuracy than either measure on its own. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Nitric oxide negatively regulates mammalian adult neurogenesis

    NASA Astrophysics Data System (ADS)

    Packer, Michael A.; Stasiv, Yuri; Benraiss, Abdellatif; Chmielnicki, Eva; Grinberg, Alexander; Westphal, Heiner; Goldman, Steven A.; Enikolopov, Grigori

    2003-08-01

    Neural progenitor cells are widespread throughout the adult central nervous system but only give rise to neurons in specific loci. Negative regulators of neurogenesis have therefore been postulated, but none have yet been identified as subserving a significant role in the adult brain. Here we report that nitric oxide (NO) acts as an important negative regulator of cell proliferation in the adult mammalian brain. We used two independent approaches to examine the function of NO in adult neurogenesis. In a pharmacological approach, we suppressed NO production in the rat brain by intraventricular infusion of an NO synthase inhibitor. In a genetic approach, we generated a null mutant neuronal NO synthase knockout mouse line by targeting the exon encoding active center of the enzyme. In both models, the number of new cells generated in neurogenic areas of the adult brain, the olfactory subependyma and the dentate gyrus, was strongly augmented, which indicates that division of neural stem cells in the adult brain is controlled by NO and suggests a strategy for enhancing neurogenesis in the adult central nervous system.

  16. Oxytocin receptor mRNA expression in rat brain: implications for behavioral integration and reproductive success.

    PubMed

    Ostrowski, N L

    1998-11-01

    The nonapeptide, oxytocin (OT), has been implicated in a wide range of physiological, behavioral and pharmacological effects related to learning and memory, parturition and lactation, maternal and sexual behavior, and the formation of social attachments. Specific G-protein linked membrane bound OT receptors mediate OTs effects. The unavailability of highly selective pharmacological ligands that discriminate the OT receptor from the highly homologous vasopressin receptors (V1a, V1b and V2 subtypes) has made it difficult to confirm specific effects of oxytocin, particularly in brain regions where OT and multiple AVP receptor subtypes may be coexpressed. Here, data on the oxytocin receptor (OTR) messenger ribonucleic acid (mRNA) localization in brain are presented in the context of a model that proposes a reproductive state-dependent role for steroid-hormone restructuring of neural circuits, and a role for oxytocin in the integration of neural transmission in pathways subserving: (1) steroid-sensitive reproductive behaviors; (2) learning; and (3) reinforcement. It is hypothesized that social attachments emerge as a consequence of a conditioned association between OT-related activity in these pathways and the eliciting stimulus.

  17. Recognition of Telugu characters using neural networks.

    PubMed

    Sukhaswami, M B; Seetharamulu, P; Pujari, A K

    1995-09-01

    The aim of the present work is to recognize printed and handwritten Telugu characters using artificial neural networks (ANNs). Earlier work on recognition of Telugu characters has been done using conventional pattern recognition techniques. We make an initial attempt here of using neural networks for recognition with the aim of improving upon earlier methods which do not perform effectively in the presence of noise and distortion in the characters. The Hopfield model of neural network working as an associative memory is chosen for recognition purposes initially. Due to limitation in the capacity of the Hopfield neural network, we propose a new scheme named here as the Multiple Neural Network Associative Memory (MNNAM). The limitation in storage capacity has been overcome by combining multiple neural networks which work in parallel. It is also demonstrated that the Hopfield network is suitable for recognizing noisy printed characters as well as handwritten characters written by different "hands" in a variety of styles. Detailed experiments have been carried out using several learning strategies and results are reported. It is shown here that satisfactory recognition is possible using the proposed strategy. A detailed preprocessing scheme of the Telugu characters from digitized documents is also described.

  18. Multistability in bidirectional associative memory neural networks

    NASA Astrophysics Data System (ADS)

    Huang, Gan; Cao, Jinde

    2008-04-01

    In this Letter, the multistability issue is studied for Bidirectional Associative Memory (BAM) neural networks. Based on the existence and stability analysis of the neural networks with or without delay, it is found that the 2 n-dimensional networks can have 3 equilibria and 2 equilibria of them are locally exponentially stable, where each layer of the BAM network has n neurons. Furthermore, the results has been extended to (n+m)-dimensional BAM neural networks, where there are n and m neurons on the two layers respectively. Finally, two numerical examples are presented to illustrate the validity of our results.

  19. Application of Neural Network Optimized by Mind Evolutionary Computation in Building Energy Prediction

    NASA Astrophysics Data System (ADS)

    Song, Chen; Zhong-Cheng, Wu; Hong, Lv

    2018-03-01

    Building Energy forecasting plays an important role in energy management and plan. Using mind evolutionary algorithm to find the optimal network weights and threshold, to optimize the BP neural network, can overcome the problem of the BP neural network into a local minimum point. The optimized network is used for time series prediction, and the same month forecast, to get two predictive values. Then two kinds of predictive values are put into neural network, to get the final forecast value. The effectiveness of the method was verified by experiment with the energy value of three buildings in Hefei.

  20. Verification and Validation Methodology of Real-Time Adaptive Neural Networks for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Loparo, Kenneth; Mackall, Dale; Schumann, Johann; Soares, Fola

    2004-01-01

    Recent research has shown that adaptive neural based control systems are very effective in restoring stability and control of an aircraft in the presence of damage or failures. The application of an adaptive neural network with a flight critical control system requires a thorough and proven process to ensure safe and proper flight operation. Unique testing tools have been developed as part of a process to perform verification and validation (V&V) of real time adaptive neural networks used in recent adaptive flight control system, to evaluate the performance of the on line trained neural networks. The tools will help in certification from FAA and will help in the successful deployment of neural network based adaptive controllers in safety-critical applications. The process to perform verification and validation is evaluated against a typical neural adaptive controller and the results are discussed.

  1. Pulse Coupled Neural Networks for the Segmentation of Magnetic Resonance Brain Images.

    DTIC Science & Technology

    1996-12-01

    PULSE COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG...COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG/96D-01...research develops an automated method for segmenting Magnetic Resonance (MR) brain images based on Pulse Coupled Neural Networks (PCNN). MR brain image

  2. Angle of Arrival Detection Through Artificial Neural Network Analysis of Optical Fiber Intensity Patterns

    DTIC Science & Technology

    1990-12-01

    ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS THESIS Scott Thomas Captain, USAF AFIT/GE/ENG/90D-62 DTIC...ELECTE ao • JAN08 1991 Approved for public release; distribution unlimited. AFIT/GE/ENG/90D-62 ANGLE OF ARRIVAL DETECTION THROUGH ARTIFICIAL NEURAL NETWORK ANALYSIS... ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS L Introduction The optical sensors of United States Air Force reconnaissance

  3. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  4. Bio-Inspired Computation: Clock-Free, Grid-Free, Scale-Free and Symbol Free

    DTIC Science & Technology

    2015-06-11

    for Prediction Tasks in Spiking Neural Networks ." Artificial Neural Networks and Machine Learning–ICANN 2014. Springer, 2014. pp 635-642. Gibson, T...Henderson, JA and Wiles, J. "Predicting temporal sequences using an event-based spiking neural network incorporating learnable delays." IEEE...Adelaide (2014 Jan). Gibson, T and Wiles, J "Predicting temporal sequences using an event-based spiking neural network incorporating learnable delays" at

  5. A neural network architecture for implementation of expert systems for real time monitoring

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.

    1991-01-01

    Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.

  6. Stability and synchronization analysis of inertial memristive neural networks with time delays.

    PubMed

    Rakkiyappan, R; Premalatha, S; Chandrasekar, A; Cao, Jinde

    2016-10-01

    This paper is concerned with the problem of stability and pinning synchronization of a class of inertial memristive neural networks with time delay. In contrast to general inertial neural networks, inertial memristive neural networks is applied to exhibit the synchronization and stability behaviors due to the physical properties of memristors and the differential inclusion theory. By choosing an appropriate variable transmission, the original system can be transformed into first order differential equations. Then, several sufficient conditions for the stability of inertial memristive neural networks by using matrix measure and Halanay inequality are derived. These obtained criteria are capable of reducing computational burden in the theoretical part. In addition, the evaluation is done on pinning synchronization for an array of linearly coupled inertial memristive neural networks, to derive the condition using matrix measure strategy. Finally, the two numerical simulations are presented to show the effectiveness of acquired theoretical results.

  7. A comparison of neural network architectures for the prediction of MRR in EDM

    NASA Astrophysics Data System (ADS)

    Jena, A. R.; Das, Raja

    2017-11-01

    The aim of the research work is to predict the material removal rate of a work-piece in electrical discharge machining (EDM). Here, an effort has been made to predict the material removal rate through back-propagation neural network (BPN) and radial basis function neural network (RBFN) for a work-piece of AISI D2 steel. The input parameters for the architecture are discharge-current (Ip), pulse-duration (Ton), and duty-cycle (τ) taken for consideration to obtained the output for material removal rate of the work-piece. In the architecture, it has been observed that radial basis function neural network is comparatively faster than back-propagation neural network but logically back-propagation neural network results more real value. Therefore BPN may consider as a better process in this architecture for consistent prediction to save time and money for conducting experiments.

  8. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance

    DOE PAGES

    Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy

    2016-10-18

    There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property.more » Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.« less

  9. Synchronization of Switched Neural Networks With Communication Delays via the Event-Triggered Control.

    PubMed

    Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen

    2017-10-01

    This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.

  10. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy

    There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property.more » Furthermore, the Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.« less

  11. A One-Layer Recurrent Neural Network for Real-Time Portfolio Optimization With Probability Criterion.

    PubMed

    Liu, Qingshan; Dang, Chuangyin; Huang, Tingwen

    2013-02-01

    This paper presents a decision-making model described by a recurrent neural network for dynamic portfolio optimization. The portfolio-optimization problem is first converted into a constrained fractional programming problem. Since the objective function in the programming problem is not convex, the traditional optimization techniques are no longer applicable for solving this problem. Fortunately, the objective function in the fractional programming is pseudoconvex on the feasible region. It leads to a one-layer recurrent neural network modeled by means of a discontinuous dynamic system. To ensure the optimal solutions for portfolio optimization, the convergence of the proposed neural network is analyzed and proved. In fact, the neural network guarantees to get the optimal solutions for portfolio-investment advice if some mild conditions are satisfied. A numerical example with simulation results substantiates the effectiveness and illustrates the characteristics of the proposed neural network.

  12. Retinal constraints on orientation specificity in cat visual cortex.

    PubMed

    Schall, J D; Vitek, D J; Leventhal, A G

    1986-03-01

    Most retinal ganglion cells (Levick and Thibos, 1982) and cortical cells (Leventhal, 1983; Leventhal et al., 1984) subserving peripheral vision respond best to stimuli that are oriented radially, i.e., like the spokes of a wheel with the area centralis at the hub. We have extended this work by comparing directly the distributions of orientations represented in topographically corresponding regions of retina and visual cortex. Both central and peripheral regions were studied. The relations between the orientations of neighboring ganglion cells and the manner in which the overrepresentation of radial orientations is accommodated in the functional architecture of visual cortex were also studied. Our results are based on an analysis of the orientations of the dendritic fields of 1296 ganglion cells throughout the retina and the preferred orientations of 1389 cells located in retinotopically corresponding regions of cortical areas 17, 18, and 19 in the cat. We find that horizontal and vertical orientations are overrepresented in regions of both retina and visual cortex subserving the central 5 degrees of vision. The distributions of the orientations of retinal ganglion cells and cortical cells subserving the horizontal, vertical, and diagonal meridians outside the area centralis differ significantly. The distribution of the preferred orientations of the S (simple) cells in areas 17, 18 and 19 subserving a given part of the retina corresponds to the distribution of the dendritic field orientations of the ganglion cells in that part of retina. The distribution of the preferred orientations of C (complex) cells with narrow receptive fields in area 17 but not C cells with wide receptive fields in areas 17, 18, or 19 subserving a given part of the retina matches the distribution of the orientations of the ganglion cells in that part of retina. The orientations of all of the alpha-cells in 5-9 mm2 patches of retina along the horizontal, vertical, and oblique meridians were determined. A comparison of the orientations of neighboring cells indicates that other than a mutual tendency to be oriented radially, ganglion cells with similar orientations are not clustered in the retina. Reconstructions of electrode penetrations into regions of visual cortex representing peripheral retina indicate that columns subserving radial orientations are wider than those subserving nonradial orientations. Our results provide evidence that the distribution of the preferred orientations of simple cells in visual cortex subserving any region of the visual field matches the distribution of the orientations of the ganglion cells subserving the same region of the visual field.(ABSTRACT TRUNCATED AT 400 WORDS)

  13. Application of two neural network paradigms to the study of voluntary employee turnover.

    PubMed

    Somers, M J

    1999-04-01

    Two neural network paradigms--multilayer perceptron and learning vector quantization--were used to study voluntary employee turnover with a sample of 577 hospital employees. The objectives of the study were twofold. The 1st was to assess whether neural computing techniques offered greater predictive accuracy than did conventional turnover methodologies. The 2nd was to explore whether computer models of turnover based on neural network technologies offered new insights into turnover processes. When compared with logistic regression analysis, both neural network paradigms provided considerably more accurate predictions of turnover behavior, particularly with respect to the correct classification of leavers. In addition, these neural network paradigms captured nonlinear relationships that are relevant for theory development. Results are discussed in terms of their implications for future research.

  14. Polarity-specific high-level information propagation in neural networks.

    PubMed

    Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2014-01-01

    Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals.

  15. Polarity-specific high-level information propagation in neural networks

    PubMed Central

    Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan

    2014-01-01

    Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals. PMID:24672472

  16. Devices and circuits for nanoelectronic implementation of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Turel, Ozgur

    Biological neural networks perform complicated information processing tasks at speeds better than conventional computers based on conventional algorithms. This has inspired researchers to look into the way these networks function, and propose artificial networks that mimic their behavior. Unfortunately, most artificial neural networks, either software or hardware, do not provide either the speed or the complexity of a human brain. Nanoelectronics, with high density and low power dissipation that it provides, may be used in developing more efficient artificial neural networks. This work consists of two major contributions in this direction. First is the proposal of the CMOL concept, hybrid CMOS-molecular hardware [1-8]. CMOL may circumvent most of the problems in posed by molecular devices, such as low yield, vet provide high active device density, ˜1012/cm 2. The second contribution is CrossNets, artificial neural networks that are based on CMOL. We showed that CrossNets, with their fault tolerance, exceptional speed (˜ 4 to 6 orders of magnitude faster than biological neural networks) can perform any task any artificial neural network can perform. Moreover, there is a hope that if their integration scale is increased to that of human cerebral cortex (˜ 1010 neurons and ˜ 1014 synapses), they may be capable of performing more advanced tasks.

  17. Artificial neural network intelligent method for prediction

    NASA Astrophysics Data System (ADS)

    Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi

    2017-09-01

    Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.

  18. Seismic signal auto-detecing from different features by using Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Zhou, Y.; Yue, H.; Zhou, S.

    2017-12-01

    We try Convolutional Neural Network to detect some features of seismic data and compare their efficience. The features include whether a signal is seismic signal or noise and the arrival time of P and S phase and each feature correspond to a Convolutional Neural Network. We first use traditional STA/LTA to recongnize some events and then use templete matching to find more events as training set for the Neural Network. To make the training set more various, we add some noise to the seismic data and make some synthetic seismic data and noise. The 3-component raw signal and time-frequancy ananlyze are used as the input data for our neural network. Our Training is performed on GPUs to achieve efficient convergence. Our method improved the precision in comparison with STA/LTA and template matching. We will move to recurrent neural network to see if this kind network is better in detect P and S phase.

  19. Geometrical structure of Neural Networks: Geodesics, Jeffrey's Prior and Hyper-ribbons

    NASA Astrophysics Data System (ADS)

    Hayden, Lorien; Alemi, Alex; Sethna, James

    2014-03-01

    Neural networks are learning algorithms which are employed in a host of Machine Learning problems including speech recognition, object classification and data mining. In practice, neural networks learn a low dimensional representation of high dimensional data and define a model manifold which is an embedding of this low dimensional structure in the higher dimensional space. In this work, we explore the geometrical structure of a neural network model manifold. A Stacked Denoising Autoencoder and a Deep Belief Network are trained on handwritten digits from the MNIST database. Construction of geodesics along the surface and of slices taken from the high dimensional manifolds reveal a hierarchy of widths corresponding to a hyper-ribbon structure. This property indicates that neural networks fall into the class of sloppy models, in which certain parameter combinations dominate the behavior. Employing this information could prove valuable in designing both neural network architectures and training algorithms. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No . DGE-1144153.

  20. Neural networks within multi-core optic fibers

    PubMed Central

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-01-01

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks. PMID:27383911

  1. Neural networks within multi-core optic fibers.

    PubMed

    Cohen, Eyal; Malka, Dror; Shemer, Amir; Shahmoon, Asaf; Zalevsky, Zeev; London, Michael

    2016-07-07

    Hardware implementation of artificial neural networks facilitates real-time parallel processing of massive data sets. Optical neural networks offer low-volume 3D connectivity together with large bandwidth and minimal heat production in contrast to electronic implementation. Here, we present a conceptual design for in-fiber optical neural networks. Neurons and synapses are realized as individual silica cores in a multi-core fiber. Optical signals are transferred transversely between cores by means of optical coupling. Pump driven amplification in erbium-doped cores mimics synaptic interactions. We simulated three-layered feed-forward neural networks and explored their capabilities. Simulations suggest that networks can differentiate between given inputs depending on specific configurations of amplification; this implies classification and learning capabilities. Finally, we tested experimentally our basic neuronal elements using fibers, couplers, and amplifiers, and demonstrated that this configuration implements a neuron-like function. Therefore, devices similar to our proposed multi-core fiber could potentially serve as building blocks for future large-scale small-volume optical artificial neural networks.

  2. Method of gear fault diagnosis based on EEMD and improved Elman neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhao, Wei; Xiao, Shungen; Song, Mengmeng

    2017-05-01

    Aiming at crack and wear and so on of gears Fault information is difficult to diagnose usually due to its weak, a gear fault diagnosis method that is based on EEMD and improved Elman neural network fusion is proposed. A number of IMF components are obtained by decomposing denoised all kinds of fault signals with EEMD, and the pseudo IMF components is eliminated by using the correlation coefficient method to obtain the effective IMF component. The energy characteristic value of each effective component is calculated as the input feature quantity of Elman neural network, and the improved Elman neural network is based on standard network by adding a feedback factor. The fault data of normal gear, broken teeth, cracked gear and attrited gear were collected by field collecting. The results were analyzed by the diagnostic method proposed in this paper. The results show that compared with the standard Elman neural network, Improved Elman neural network has the advantages of high diagnostic efficiency.

  3. Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach.

    PubMed

    Liu, Meiqin

    2009-09-01

    This paper investigates the optimal exponential synchronization problem of general chaotic neural networks with or without time delays by virtue of Lyapunov-Krasovskii stability theory and the linear matrix inequality (LMI) technique. This general model, which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator, covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks (CNNs), bidirectional associative memory (BAM) networks, and recurrent multilayer perceptrons (RMLPs) with or without delays. Using the drive-response concept, time-delay feedback controllers are designed to synchronize two identical chaotic neural networks as quickly as possible. The control design equations are shown to be a generalized eigenvalue problem (GEVP) which can be easily solved by various convex optimization algorithms to determine the optimal control law and the optimal exponential synchronization rate. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.

  4. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind

    PubMed Central

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T.; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J.; Sadato, Norihiro

    2012-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience. PMID:23372547

  5. Neural Basis of Self and Other Representation in Autism: An fMRI Study of Self-Face Recognition

    PubMed Central

    Uddin, Lucina Q.; Davies, Mari S.; Scott, Ashley A.; Zaidel, Eran; Bookheimer, Susan Y.; Iacoboni, Marco; Dapretto, Mirella

    2008-01-01

    Background Autism is a developmental disorder characterized by decreased interest and engagement in social interactions and by enhanced self-focus. While previous theoretical approaches to understanding autism have emphasized social impairments and altered interpersonal interactions, there is a recent shift towards understanding the nature of the representation of the self in individuals with autism spectrum disorders (ASD). Still, the neural mechanisms subserving self-representations in ASD are relatively unexplored. Methodology/Principal Findings We used event-related fMRI to investigate brain responsiveness to images of the subjects' own face and to faces of others. Children with ASD and typically developing (TD) children viewed randomly presented digital morphs between their own face and a gender-matched other face, and made “self/other” judgments. Both groups of children activated a right premotor/prefrontal system when identifying images containing a greater percentage of the self face. However, while TD children showed activation of this system during both self- and other-processing, children with ASD only recruited this system while viewing images containing mostly their own face. Conclusions/Significance This functional dissociation between the representation of self versus others points to a potential neural substrate for the characteristic self-focus and decreased social understanding exhibited by these individuals, and suggests that individuals with ASD lack the shared neural representations for self and others that TD children and adults possess and may use to understand others. PMID:18958161

  6. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind.

    PubMed

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J; Sadato, Norihiro

    2013-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience.

  7. Nanophotonic particle simulation and inverse design using artificial neural networks

    PubMed Central

    Peurifoy, John; Shen, Yichen; Jing, Li; Cano-Renteria, Fidel; DeLacy, Brendan G.; Joannopoulos, John D.; Tegmark, Max

    2018-01-01

    We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical. PMID:29868640

  8. Neural Networks In Mining Sciences - General Overview And Some Representative Examples

    NASA Astrophysics Data System (ADS)

    Tadeusiewicz, Ryszard

    2015-12-01

    The many difficult problems that must now be addressed in mining sciences make us search for ever newer and more efficient computer tools that can be used to solve those problems. Among the numerous tools of this type, there are neural networks presented in this article - which, although not yet widely used in mining sciences, are certainly worth consideration. Neural networks are a technique which belongs to so called artificial intelligence, and originates from the attempts to model the structure and functioning of biological nervous systems. Initially constructed and tested exclusively out of scientific curiosity, as computer models of parts of the human brain, neural networks have become a surprisingly effective calculation tool in many areas: in technology, medicine, economics, and even social sciences. Unfortunately, they are relatively rarely used in mining sciences and mining technology. The article is intended to convince the readers that neural networks can be very useful also in mining sciences. It contains information how modern neural networks are built, how they operate and how one can use them. The preliminary discussion presented in this paper can help the reader gain an opinion whether this is a tool with handy properties, useful for him, and what it might come in useful for. Of course, the brief introduction to neural networks contained in this paper will not be enough for the readers who get convinced by the arguments contained here, and want to use neural networks. They will still need a considerable portion of detailed knowledge so that they can begin to independently create and build such networks, and use them in practice. However, an interested reader who decides to try out the capabilities of neural networks will also find here links to references that will allow him to start exploration of neural networks fast, and then work with this handy tool efficiently. This will be easy, because there are currently quite a few ready-made computer programs, easily available, which allow their user to quickly and effortlessly create artificial neural networks, run them, train and use in practice. The key issue is the question how to use these networks in mining sciences. The fact that this is possible and desirable is shown by convincing examples included in the second part of this study. From the very rich literature on the various applications of neural networks, we have selected several works that show how and what neural networks are used in the mining industry, and what has been achieved thanks to their use. The review of applications will continue in the next article, filed already for publication in the journal "Archives of Mining Sciences". Only studying these two articles will provide sufficient knowledge for initial guidance in the area of issues under consideration here.

  9. A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study.

    PubMed

    Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo

    2015-07-01

    Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.

  10. Anti-synchronization control of BAM memristive neural networks with multiple proportional delays and stochastic perturbations

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; Yuan, Manman; Luo, Xiong; Liu, Linlin; Zhang, Yao

    2018-01-01

    Proportional delay is a class of unbounded time-varying delay. A class of bidirectional associative memory (BAM) memristive neural networks with multiple proportional delays is concerned in this paper. First, we propose the model of BAM memristive neural networks with multiple proportional delays and stochastic perturbations. Furthermore, by choosing suitable nonlinear variable transformations, the BAM memristive neural networks with multiple proportional delays can be transformed into the BAM memristive neural networks with constant delays. Based on the drive-response system concept, differential inclusions theory and Lyapunov stability theory, some anti-synchronization criteria are obtained. Finally, the effectiveness of proposed criteria are demonstrated through numerical examples.

  11. A biologically inspired neural network for dynamic programming.

    PubMed

    Francelin Romero, R A; Kacpryzk, J; Gomide, F

    2001-12-01

    An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems.

  12. Blood glucose prediction using neural network

    NASA Astrophysics Data System (ADS)

    Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock

    2008-02-01

    We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.

  13. Neural network for solving convex quadratic bilevel programming problems.

    PubMed

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Typing mineral deposits using their associated rocks, grades and tonnages using a probabilistic neural network

    USGS Publications Warehouse

    Singer, D.A.

    2006-01-01

    A probabilistic neural network is employed to classify 1610 mineral deposits into 18 types using tonnage, average Cu, Mo, Ag, Au, Zn, and Pb grades, and six generalized rock types. The purpose is to examine whether neural networks might serve for integrating geoscience information available in large mineral databases to classify sites by deposit type. Successful classifications of 805 deposits not used in training - 87% with grouped porphyry copper deposits - and the nature of misclassifications demonstrate the power of probabilistic neural networks and the value of quantitative mineral-deposit models. The results also suggest that neural networks can classify deposits as well as experienced economic geologists. ?? International Association for Mathematical Geology 2006.

  15. Adaptive exponential synchronization of complex-valued Cohen-Grossberg neural networks with known and unknown parameters.

    PubMed

    Hu, Jin; Zeng, Chunna

    2017-02-01

    The complex-valued Cohen-Grossberg neural network is a special kind of complex-valued neural network. In this paper, the synchronization problem of a class of complex-valued Cohen-Grossberg neural networks with known and unknown parameters is investigated. By using Lyapunov functionals and the adaptive control method based on parameter identification, some adaptive feedback schemes are proposed to achieve synchronization exponentially between the drive and response systems. The results obtained in this paper have extended and improved some previous works on adaptive synchronization of Cohen-Grossberg neural networks. Finally, two numerical examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Stability analysis of fractional-order Hopfield neural networks with time delays.

    PubMed

    Wang, Hu; Yu, Yongguang; Wen, Guoguang

    2014-07-01

    This paper investigates the stability for fractional-order Hopfield neural networks with time delays. Firstly, the fractional-order Hopfield neural networks with hub structure and time delays are studied. Some sufficient conditions for stability of the systems are obtained. Next, two fractional-order Hopfield neural networks with different ring structures and time delays are developed. By studying the developed neural networks, the corresponding sufficient conditions for stability of the systems are also derived. It is shown that the stability conditions are independent of time delays. Finally, numerical simulations are given to illustrate the effectiveness of the theoretical results obtained in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. High variation subarctic topsoil pollutant concentration prediction using neural network residual kriging

    NASA Astrophysics Data System (ADS)

    Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Subbotina, I. E.; Shichkin, A. V.; Sergeeva, M. V.; Lvova, O. A.

    2017-06-01

    The work deals with the application of neural networks residual kriging (NNRK) to the spatial prediction of the abnormally distributed soil pollutant (Cr). It is known that combination of geostatistical interpolation approaches (kriging) and neural networks leads to significantly better prediction accuracy and productivity. Generalized regression neural networks and multilayer perceptrons are classes of neural networks widely used for the continuous function mapping. Each network has its own pros and cons; however both demonstrated fast training and good mapping possibilities. In the work, we examined and compared two combined techniques: generalized regression neural network residual kriging (GRNNRK) and multilayer perceptron residual kriging (MLPRK). The case study is based on the real data sets on surface contamination by chromium at a particular location of the subarctic Novy Urengoy, Russia, obtained during the previously conducted screening. The proposed models have been built, implemented and validated using ArcGIS and MATLAB environments. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. MLRPK showed the best predictive accuracy comparing to the geostatistical approach (kriging) and even to GRNNRK.

  18. Artificial Neural Network Analysis System

    DTIC Science & Technology

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  19. An Evaluation of Artificial Neural Network Modeling for Manpower Analysis

    DTIC Science & Technology

    1993-09-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California 0- I 1 ’(ft ADV "’r-"A THESIS AN EVALUATION OF ARTIFICIAL NEURAL NETWORK MODELING FOR MANPOWER...AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September, 1993 4. TITLE AND SUBTITLE An Evaluation Of Artificial Neural Network 5...unlimited. An Evaluation of Artificial Neural Network Modeling for Manpower Analysis by Brian J. Byrne Captain, United States Marine Corps B.S

  20. An Artificial Neural Network Control System for Spacecraft Attitude Stabilization

    DTIC Science & Technology

    1990-06-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California ’-DTIC 0 ELECT f NMARO 5 191 N S, U, THESIS B . AN ARTIFICIAL NEURAL NETWORK CONTROL SYSTEM FOR...NO. NO. NO ACCESSION NO 11. TITLE (Include Security Classification) AN ARTIFICIAL NEURAL NETWORK CONTROL SYSTEM FOR SPACECRAFT ATTITUDE STABILIZATION...obsolete a U.S. G v pi.. iim n P.. oiice! toog-eo.5s43 i Approved for public release; distribution is unlimited. AN ARTIFICIAL NEURAL NETWORK CONTROL

  1. Spatio-Temporal Neural Networks for Vision, Reasoning and Rapid Decision Making

    DTIC Science & Technology

    1994-08-31

    something that is obviously not pattern for long-term knowledge base (LTKB) facts. As a matter possiblc in common neural networks (as units in a...Conferences on Neural Davis, P. (19W0) Application of op~tical chaos to temporal pattern search in a Networks . Piscataway, NJ. [SC] nonlinear optical...Science Institute PROJECT TITLE: Spatio-temporal Neural Networks for Vision, Reasoning and Rapid Decision Making (N00014-93-1-1149) Number of ONR

  2. Training product unit neural networks with genetic algorithms

    NASA Technical Reports Server (NTRS)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  3. High-Dimensional Function Approximation With Neural Networks for Large Volumes of Data.

    PubMed

    Andras, Peter

    2018-02-01

    Approximation of high-dimensional functions is a challenge for neural networks due to the curse of dimensionality. Often the data for which the approximated function is defined resides on a low-dimensional manifold and in principle the approximation of the function over this manifold should improve the approximation performance. It has been show that projecting the data manifold into a lower dimensional space, followed by the neural network approximation of the function over this space, provides a more precise approximation of the function than the approximation of the function with neural networks in the original data space. However, if the data volume is very large, the projection into the low-dimensional space has to be based on a limited sample of the data. Here, we investigate the nature of the approximation error of neural networks trained over the projection space. We show that such neural networks should have better approximation performance than neural networks trained on high-dimensional data even if the projection is based on a relatively sparse sample of the data manifold. We also find that it is preferable to use a uniformly distributed sparse sample of the data for the purpose of the generation of the low-dimensional projection. We illustrate these results considering the practical neural network approximation of a set of functions defined on high-dimensional data including real world data as well.

  4. Flight control with adaptive critic neural network

    NASA Astrophysics Data System (ADS)

    Han, Dongchen

    2001-10-01

    In this dissertation, the adaptive critic neural network technique is applied to solve complex nonlinear system control problems. Based on dynamic programming, the adaptive critic neural network can embed the optimal solution into a neural network. Though trained off-line, the neural network forms a real-time feedback controller. Because of its general interpolation properties, the neurocontroller has inherit robustness. The problems solved here are an agile missile control for U.S. Air Force and a midcourse guidance law for U.S. Navy. In the first three papers, the neural network was used to control an air-to-air agile missile to implement a minimum-time heading-reverse in a vertical plane corresponding to following conditions: a system without constraint, a system with control inequality constraint, and a system with state inequality constraint. While the agile missile is a one-dimensional problem, the midcourse guidance law is the first test-bed for multiple-dimensional problem. In the fourth paper, the neurocontroller is synthesized to guide a surface-to-air missile to a fixed final condition, and to a flexible final condition from a variable initial condition. In order to evaluate the adaptive critic neural network approach, the numerical solutions for these cases are also obtained by solving two-point boundary value problem with a shooting method. All of the results showed that the adaptive critic neural network could solve complex nonlinear system control problems.

  5. Performance of an artificial neural network for vertical root fracture detection: an ex vivo study.

    PubMed

    Kositbowornchai, Suwadee; Plermkamon, Supattra; Tangkosol, Tawan

    2013-04-01

    To develop an artificial neural network for vertical root fracture detection. A probabilistic neural network design was used to clarify whether a tooth root was sound or had a vertical root fracture. Two hundred images (50 sound and 150 vertical root fractures) derived from digital radiography--used to train and test the artificial neural network--were divided into three groups according to the number of training and test data sets: 80/120,105/95 and 130/70, respectively. Either training or tested data were evaluated using grey-scale data per line passing through the root. These data were normalized to reduce the grey-scale variance and fed as input data of the neural network. The variance of function in recognition data was calculated between 0 and 1 to select the best performance of neural network. The performance of the neural network was evaluated using a diagnostic test. After testing data under several variances of function, we found the highest sensitivity (98%), specificity (90.5%) and accuracy (95.7%) occurred in Group three, for which the variance of function in recognition data was between 0.025 and 0.005. The neural network designed in this study has sufficient sensitivity, specificity and accuracy to be a model for vertical root fracture detection. © 2012 John Wiley & Sons A/S.

  6. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    PubMed

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  7. Reservoir characterization using core, well log, and seismic data and intelligent software

    NASA Astrophysics Data System (ADS)

    Soto Becerra, Rodolfo

    We have developed intelligent software, Oilfield Intelligence (OI), as an engineering tool to improve the characterization of oil and gas reservoirs. OI integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphics design, and inference engine modules. More than 1,200 lines of programming code as M-files using the language MATLAB been written. The degree of success of many oil and gas drilling, completion, and production activities depends upon the accuracy of the models used in a reservoir description. Neural networks have been applied for identification of nonlinear systems in almost all scientific fields of humankind. Solving reservoir characterization problems is no exception. Neural networks have a number of attractive features that can help to extract and recognize underlying patterns, structures, and relationships among data. However, before developing a neural network model, we must solve the problem of dimensionality such as determining dominant and irrelevant variables. We can apply principal components and factor analysis to reduce the dimensionality and help the neural networks formulate more realistic models. We validated OI by obtaining confident models in three different oil field problems: (1) A neural network in-situ stress model using lithology and gamma ray logs for the Travis Peak formation of east Texas, (2) A neural network permeability model using porosity and gamma ray and a neural network pseudo-gamma ray log model using 3D seismic attributes for the reservoir VLE 196 Lamar field located in Block V of south-central Lake Maracaibo (Venezuela), and (3) Neural network primary ultimate oil recovery (PRUR), initial waterflooding ultimate oil recovery (IWUR), and infill drilling ultimate oil recovery (IDUR) models using reservoir parameters for San Andres and Clearfork carbonate formations in west Texas. In all cases, we compared the results from the neural network models with the results from regression statistical and non-parametric approach models. The results show that it is possible to obtain the highest cross-correlation coefficient between predicted and actual target variables, and the lowest average absolute errors using the integrated techniques of multivariate statistical analysis and neural networks in our intelligent software.

  8. Reliability analysis of C-130 turboprop engine components using artificial neural network

    NASA Astrophysics Data System (ADS)

    Qattan, Nizar A.

    In this study, we predict the failure rate of Lockheed C-130 Engine Turbine. More than thirty years of local operational field data were used for failure rate prediction and validation. The Weibull regression model and the Artificial Neural Network model including (feed-forward back-propagation, radial basis neural network, and multilayer perceptron neural network model); will be utilized to perform this study. For this purpose, the thesis will be divided into five major parts. First part deals with Weibull regression model to predict the turbine general failure rate, and the rate of failures that require overhaul maintenance. The second part will cover the Artificial Neural Network (ANN) model utilizing the feed-forward back-propagation algorithm as a learning rule. The MATLAB package will be used in order to build and design a code to simulate the given data, the inputs to the neural network are the independent variables, the output is the general failure rate of the turbine, and the failures which required overhaul maintenance. In the third part we predict the general failure rate of the turbine and the failures which require overhaul maintenance, using radial basis neural network model on MATLAB tool box. In the fourth part we compare the predictions of the feed-forward back-propagation model, with that of Weibull regression model, and radial basis neural network model. The results show that the failure rate predicted by the feed-forward back-propagation artificial neural network model is closer in agreement with radial basis neural network model compared with the actual field-data, than the failure rate predicted by the Weibull model. By the end of the study, we forecast the general failure rate of the Lockheed C-130 Engine Turbine, the failures which required overhaul maintenance and six categorical failures using multilayer perceptron neural network (MLP) model on DTREG commercial software. The results also give an insight into the reliability of the engine turbine under actual operating conditions, which can be used by aircraft operators for assessing system and component failures and customizing the maintenance programs recommended by the manufacturer.

  9. Machine Learning Topological Invariants with Neural Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Shen, Huitao; Zhai, Hui

    2018-02-01

    In this Letter we supervisedly train neural networks to distinguish different topological phases in the context of topological band insulators. After training with Hamiltonians of one-dimensional insulators with chiral symmetry, the neural network can predict their topological winding numbers with nearly 100% accuracy, even for Hamiltonians with larger winding numbers that are not included in the training data. These results show a remarkable success that the neural network can capture the global and nonlinear topological features of quantum phases from local inputs. By opening up the neural network, we confirm that the network does learn the discrete version of the winding number formula. We also make a couple of remarks regarding the role of the symmetry and the opposite effect of regularization techniques when applying machine learning to physical systems.

  10. Character recognition from trajectory by recurrent spiking neural networks.

    PubMed

    Jiangrong Shen; Kang Lin; Yueming Wang; Gang Pan

    2017-07-01

    Spiking neural networks are biologically plausible and power-efficient on neuromorphic hardware, while recurrent neural networks have been proven to be efficient on time series data. However, how to use the recurrent property to improve the performance of spiking neural networks is still a problem. This paper proposes a recurrent spiking neural network for character recognition using trajectories. In the network, a new encoding method is designed, in which varying time ranges of input streams are used in different recurrent layers. This is able to improve the generalization ability of our model compared with general encoding methods. The experiments are conducted on four groups of the character data set from University of Edinburgh. The results show that our method can achieve a higher average recognition accuracy than existing methods.

  11. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting

    PubMed Central

    Ghazali, Rozaida; Herawan, Tutut

    2016-01-01

    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network. PMID:27959927

  12. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting.

    PubMed

    Waheeb, Waddah; Ghazali, Rozaida; Herawan, Tutut

    2016-01-01

    Time series forecasting has gained much attention due to its many practical applications. Higher-order neural network with recurrent feedback is a powerful technique that has been used successfully for time series forecasting. It maintains fast learning and the ability to learn the dynamics of the time series over time. Network output feedback is the most common recurrent feedback for many recurrent neural network models. However, not much attention has been paid to the use of network error feedback instead of network output feedback. In this study, we propose a novel model, called Ridge Polynomial Neural Network with Error Feedback (RPNN-EF) that incorporates higher order terms, recurrence and error feedback. To evaluate the performance of RPNN-EF, we used four univariate time series with different forecasting horizons, namely star brightness, monthly smoothed sunspot numbers, daily Euro/Dollar exchange rate, and Mackey-Glass time-delay differential equation. We compared the forecasting performance of RPNN-EF with the ordinary Ridge Polynomial Neural Network (RPNN) and the Dynamic Ridge Polynomial Neural Network (DRPNN). Simulation results showed an average 23.34% improvement in Root Mean Square Error (RMSE) with respect to RPNN and an average 10.74% improvement with respect to DRPNN. That means that using network errors during training helps enhance the overall forecasting performance for the network.

  13. Radar signal categorization using a neural network

    NASA Technical Reports Server (NTRS)

    Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.

    1991-01-01

    Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.

  14. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    PubMed

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.

  15. Communications and control for electric power systems: Power system stability applications of artificial neural networks

    NASA Technical Reports Server (NTRS)

    Toomarian, N.; Kirkham, Harold

    1994-01-01

    This report investigates the application of artificial neural networks to the problem of power system stability. The field of artificial intelligence, expert systems, and neural networks is reviewed. Power system operation is discussed with emphasis on stability considerations. Real-time system control has only recently been considered as applicable to stability, using conventional control methods. The report considers the use of artificial neural networks to improve the stability of the power system. The networks are considered as adjuncts and as replacements for existing controllers. The optimal kind of network to use as an adjunct to a generator exciter is discussed.

  16. Application of Artificial Neural Network to Optical Fluid Analyzer

    NASA Astrophysics Data System (ADS)

    Kimura, Makoto; Nishida, Katsuhiko

    1994-04-01

    A three-layer artificial neural network has been applied to the presentation of optical fluid analyzer (OFA) raw data, and the accuracy of oil fraction determination has been significantly improved compared to previous approaches. To apply the artificial neural network approach to solving a problem, the first step is training to determine the appropriate weight set for calculating the target values. This involves using a series of data sets (each comprising a set of input values and an associated set of output values that the artificial neural network is required to determine) to tune artificial neural network weighting parameters so that the output of the neural network to the given set of input values is as close as possible to the required output. The physical model used to generate the series of learning data sets was the effective flow stream model, developed for OFA data presentation. The effectiveness of the training was verified by reprocessing the same input data as were used to determine the weighting parameters and then by comparing the results of the artificial neural network to the expected output values. The standard deviation of the expected and obtained values was approximately 10% (two sigma).

  17. Some comparisons of complexity in dictionary-based and linear computational models.

    PubMed

    Gnecco, Giorgio; Kůrková, Věra; Sanguineti, Marcello

    2011-03-01

    Neural networks provide a more flexible approximation of functions than traditional linear regression. In the latter, one can only adjust the coefficients in linear combinations of fixed sets of functions, such as orthogonal polynomials or Hermite functions, while for neural networks, one may also adjust the parameters of the functions which are being combined. However, some useful properties of linear approximators (such as uniqueness, homogeneity, and continuity of best approximation operators) are not satisfied by neural networks. Moreover, optimization of parameters in neural networks becomes more difficult than in linear regression. Experimental results suggest that these drawbacks of neural networks are offset by substantially lower model complexity, allowing accuracy of approximation even in high-dimensional cases. We give some theoretical results comparing requirements on model complexity for two types of approximators, the traditional linear ones and so called variable-basis types, which include neural networks, radial, and kernel models. We compare upper bounds on worst-case errors in variable-basis approximation with lower bounds on such errors for any linear approximator. Using methods from nonlinear approximation and integral representations tailored to computational units, we describe some cases where neural networks outperform any linear approximator. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Re-Evaluation of the AASHTO-Flexible Pavement Design Equation with Neural Network Modeling

    PubMed Central

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance. PMID:25397962

  19. Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling.

    PubMed

    Tiğdemir, Mesut

    2014-01-01

    Here we establish that equivalent single-axle loads values can be estimated using artificial neural networks without the complex design equality of American Association of State Highway and Transportation Officials (AASHTO). More importantly, we find that the neural network model gives the coefficients to be able to obtain the actual load values using the AASHTO design values. Thus, those design traffic values that might result in deterioration can be better calculated using the neural networks model than with the AASHTO design equation. The artificial neural network method is used for this purpose. The existing AASHTO flexible pavement design equation does not currently predict the pavement performance of the strategic highway research program (Long Term Pavement Performance studies) test sections very accurately, and typically over-estimates the number of equivalent single axle loads needed to cause a measured loss of the present serviceability index. Here we aimed to demonstrate that the proposed neural network model can more accurately represent the loads values data, compared against the performance of the AASHTO formula. It is concluded that the neural network may be an appropriate tool for the development of databased-nonparametric models of pavement performance.

  20. Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network

    NASA Technical Reports Server (NTRS)

    Yao, Weigang; Liou, Meng-Sing

    2012-01-01

    The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis

  1. Fault detection and diagnosis using neural network approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Mark A.

    1992-01-01

    Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.

  2. An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation.

    PubMed

    Wang, Runchun; Cohen, Gregory; Stiefel, Klaus M; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, André

    2013-01-01

    We present an FPGA implementation of a re-configurable, polychronous spiking neural network with a large capacity for spatial-temporal patterns. The proposed neural network generates delay paths de novo, so that only connections that actually appear in the training patterns will be created. This allows the proposed network to use all the axons (variables) to store information. Spike Timing Dependent Delay Plasticity is used to fine-tune and add dynamics to the network. We use a time multiplexing approach allowing us to achieve 4096 (4k) neurons and up to 1.15 million programmable delay axons on a Virtex 6 FPGA. Test results show that the proposed neural network is capable of successfully recalling more than 95% of all spikes for 96% of the stored patterns. The tests also show that the neural network is robust to noise from random input spikes.

  3. Parameter diagnostics of phases and phase transition learning by neural networks

    NASA Astrophysics Data System (ADS)

    Suchsland, Philippe; Wessel, Stefan

    2018-05-01

    We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously found to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.

  4. Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neuralmore » networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing information [2]. Each one of these cells acts as a simple processor. When individual cells interact with one another, the complex abilities of the brain are made possible. In neural networks, the input or data are processed by a propagation function that adds up the values of all the incoming data. The ending value is then compared with a threshold or specific value. The resulting value must exceed the activation function value in order to become output. The activation function is a mathematical function that a neuron uses to produce an output referring to its input value. [8] Figure 1 depicts this process. Neural networks usually have three components an input, a hidden, and an output. These layers create the end result of the neural network. A real world example is a child associating the word dog with a picture. The child says dog and simultaneously looks a picture of a dog. The input is the spoken word ''dog'', the hidden is the brain processing, and the output will be the category of the word dog based on the picture. This illustration describes how a neural network functions.« less

  5. Geometric Bioinspired Networks for Recognition of 2-D and 3-D Low-Level Structures and Transformations.

    PubMed

    Bayro-Corrochano, Eduardo; Vazquez-Santacruz, Eduardo; Moya-Sanchez, Eduardo; Castillo-Munis, Efrain

    2016-10-01

    This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions.

  6. Neural-Network Quantum States, String-Bond States, and Chiral Topological States

    NASA Astrophysics Data System (ADS)

    Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio

    2018-01-01

    Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.

  7. Positive reinforcement modulates fronto-limbic systems subserving emotional interference in adolescents.

    PubMed

    Ladouceur, Cecile D; Schlund, Michael W; Segreti, Anna-Maria

    2018-02-15

    Fronto-limbic systems play an important role in supporting resistance to emotional distraction to promote goal-directed behavior. Despite evidence that alterations in the functioning of these systems are implicated in developmental trajectories of psychopathology, most studies have been conducted in adults. This study examined the functioning of fronto-limbic systems subserving emotional interference in adolescents and whether differential reinforcement of correct responding can modulate these neural systems in ways that could promote resistance to emotional distraction. Fourteen healthy adolescents (ages 9-15) completed an emotional delayed working memory task during fMRI with emotional distracters (none, neutral, negative) while positive reinforcement (i.e., monetary reward) was provided for correct responses under some conditions. Adolescents showed slightly reduced behavioral performance and greater activation in amygdala and prefrontal cortical regions (ventrolateral, ventromedial, dorsolateral) on correct trials with negative distracters compared to those with no or neutral distracters. Positive reinforcement yielded an overall improvement in accuracy and reaction times and counteracted the effects of negative distracters as evidenced by significant reductions in activation in key fronto-limbic regions. The present findings extend results on emotional interference from adults to adolescents and suggest that positive reinforcement could be used to potentially promote insulation from emotional distraction. A challenge for the future will be to build upon these findings for constructing reinforcement-based attention training programs that could be used to reduce emotional attention biases in anxious youth. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  9. Multispectral image fusion using neural networks

    NASA Technical Reports Server (NTRS)

    Kagel, J. H.; Platt, C. A.; Donaven, T. W.; Samstad, E. A.

    1990-01-01

    A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard, a circuit card assembly, and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations, results, and a description of the prototype system are presented.

  10. Using Neural Networks in the Mapping of Mixed Discrete/Continuous Design Spaces With Application to Structural Design

    DTIC Science & Technology

    1994-02-01

    desired that the problem to which the design space mapping techniques were applied be easily analyzed, yet provide a design space with realistic complexity...consistent fully stressed solution. 3 DESIGN SPACE MAPPING In order to reduce the computational expense required to optimize design spaces, neural networks...employed in this study. Some of the issues involved in using neural networks to do design space mapping are how to configure the neural network, how much

  11. Neural Networks: A Primer

    DTIC Science & Technology

    1991-05-01

    AL-TP-1 991-0011 LA )_ NEURAL NETWORKS : A PRIMER.R • M 1 - T< R Vince L Wiggins 0 RRC, Incorporated N 3833 Texas Avenue, Suite 256 G Bryan, TX 77802T...5.av bln)2FUOTDTEF.-EOTTP NDIN NUMBCOERSD Neural Networks : A Primer C - F41 689-88-D-0251 PE - 62205F PR - 7719 6. AUTHOR(S) TA - 20 Vin~ce L Wiggins...Maximum 200 words) Neural network technology has recently demonstrated capabilities in areas important to personnel research such as statistical analysis

  12. Development and application of deep convolutional neural network in target detection

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaowei; Wang, Chunping; Fu, Qiang

    2018-04-01

    With the development of big data and algorithms, deep convolution neural networks with more hidden layers have more powerful feature learning and feature expression ability than traditional machine learning methods, making artificial intelligence surpass human level in many fields. This paper first reviews the development and application of deep convolutional neural networks in the field of object detection in recent years, then briefly summarizes and ponders some existing problems in the current research, and the future development of deep convolutional neural network is prospected.

  13. Genetic algorithm for neural networks optimization

    NASA Astrophysics Data System (ADS)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  14. Neural networks and MIMD-multiprocessors

    NASA Technical Reports Server (NTRS)

    Vanhala, Jukka; Kaski, Kimmo

    1990-01-01

    Two artificial neural network models are compared. They are the Hopfield Neural Network Model and the Sparse Distributed Memory model. Distributed algorithms for both of them are designed and implemented. The run time characteristics of the algorithms are analyzed theoretically and tested in practice. The storage capacities of the networks are compared. Implementations are done using a distributed multiprocessor system.

  15. Neural-Network Computer Transforms Coordinates

    NASA Technical Reports Server (NTRS)

    Josin, Gary M.

    1990-01-01

    Numerical simulation demonstrated ability of conceptual neural-network computer to generalize what it has "learned" from few examples. Ability to generalize achieved with even simple neural network (relatively few neurons) and after exposure of network to only few "training" examples. Ability to obtain fairly accurate mappings after only few training examples used to provide solutions to otherwise intractable mapping problems.

  16. Cascade Back-Propagation Learning in Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2003-01-01

    The cascade back-propagation (CBP) algorithm is the basis of a conceptual design for accelerating learning in artificial neural networks. The neural networks would be implemented as analog very-large-scale integrated (VLSI) circuits, and circuits to implement the CBP algorithm would be fabricated on the same VLSI circuit chips with the neural networks. Heretofore, artificial neural networks have learned slowly because it has been necessary to train them via software, for lack of a good on-chip learning technique. The CBP algorithm is an on-chip technique that provides for continuous learning in real time. Artificial neural networks are trained by example: A network is presented with training inputs for which the correct outputs are known, and the algorithm strives to adjust the weights of synaptic connections in the network to make the actual outputs approach the correct outputs. The input data are generally divided into three parts. Two of the parts, called the "training" and "cross-validation" sets, respectively, must be such that the corresponding input/output pairs are known. During training, the cross-validation set enables verification of the status of the input-to-output transformation learned by the network to avoid over-learning. The third part of the data, termed the "test" set, consists of the inputs that are required to be transformed into outputs; this set may or may not include the training set and/or the cross-validation set. Proposed neural-network circuitry for on-chip learning would be divided into two distinct networks; one for training and one for validation. Both networks would share the same synaptic weights.

  17. Neural-like growing networks

    NASA Astrophysics Data System (ADS)

    Yashchenko, Vitaliy A.

    2000-03-01

    On the basis of the analysis of scientific ideas reflecting the law in the structure and functioning the biological structures of a brain, and analysis and synthesis of knowledge, developed by various directions in Computer Science, also there were developed the bases of the theory of a new class neural-like growing networks, not having the analogue in world practice. In a base of neural-like growing networks the synthesis of knowledge developed by classical theories - semantic and neural of networks is. The first of them enable to form sense, as objects and connections between them in accordance with construction of the network. With thus each sense gets a separate a component of a network as top, connected to other tops. In common it quite corresponds to structure reflected in a brain, where each obvious concept is presented by certain structure and has designating symbol. Secondly, this network gets increased semantic clearness at the expense owing to formation not only connections between neural by elements, but also themselves of elements as such, i.e. here has a place not simply construction of a network by accommodation sense structures in environment neural of elements, and purely creation of most this environment, as of an equivalent of environment of memory. Thus neural-like growing networks are represented by the convenient apparatus for modeling of mechanisms of teleological thinking, as a fulfillment of certain psychophysiological of functions.

  18. Neural Networks for Modeling and Control of Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  19. Neural Networks for Modeling and Control of Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  20. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  1. An optimally evolved connective ratio of neural networks that maximizes the occurrence of synchronized bursting behavior

    PubMed Central

    2012-01-01

    Background Synchronized bursting activity (SBA) is a remarkable dynamical behavior in both ex vivo and in vivo neural networks. Investigations of the underlying structural characteristics associated with SBA are crucial to understanding the system-level regulatory mechanism of neural network behaviors. Results In this study, artificial pulsed neural networks were established using spike response models to capture fundamental dynamics of large scale ex vivo cortical networks. Network simulations with synaptic parameter perturbations showed the following two findings. (i) In a network with an excitatory ratio (ER) of 80-90%, its connective ratio (CR) was within a range of 10-30% when the occurrence of SBA reached the highest expectation. This result was consistent with the experimental observation in ex vivo neuronal networks, which were reported to possess a matured inhibitory synaptic ratio of 10-20% and a CR of 10-30%. (ii) No SBA occurred when a network does not contain any all-positive-interaction feedback loop (APFL) motif. In a neural network containing APFLs, the number of APFLs presented an optimal range corresponding to the maximal occurrence of SBA, which was very similar to the optimal CR. Conclusions In a neural network, the evolutionarily selected CR (10-30%) optimizes the occurrence of SBA, and APFL serves a pivotal network motif required to maximize the occurrence of SBA. PMID:22462685

  2. A neural network approach to burst detection.

    PubMed

    Mounce, S R; Day, A J; Wood, A S; Khan, A; Widdop, P D; Machell, J

    2002-01-01

    This paper describes how hydraulic and water quality data from a distribution network may be used to provide a more efficient leakage management capability for the water industry. The research presented concerns the application of artificial neural networks to the issue of detection and location of leakage in treated water distribution systems. An architecture for an Artificial Neural Network (ANN) based system is outlined. The neural network uses time series data produced by sensors to directly construct an empirical model for predication and classification of leaks. Results are presented using data from an experimental site in Yorkshire Water's Keighley distribution system.

  3. Application of artificial neural networks in nonlinear analysis of trusses

    NASA Technical Reports Server (NTRS)

    Alam, J.; Berke, L.

    1991-01-01

    A method is developed to incorporate neural network model based upon the Backpropagation algorithm for material response into nonlinear elastic truss analysis using the initial stiffness method. Different network configurations are developed to assess the accuracy of neural network modeling of nonlinear material response. In addition to this, a scheme based upon linear interpolation for material data, is also implemented for comparison purposes. It is found that neural network approach can yield very accurate results if used with care. For the type of problems under consideration, it offers a viable alternative to other material modeling methods.

  4. Design of a MIMD neural network processor

    NASA Astrophysics Data System (ADS)

    Saeks, Richard E.; Priddy, Kevin L.; Pap, Robert M.; Stowell, S.

    1994-03-01

    The Accurate Automation Corporation (AAC) neural network processor (NNP) module is a fully programmable multiple instruction multiple data (MIMD) parallel processor optimized for the implementation of neural networks. The AAC NNP design fully exploits the intrinsic sparseness of neural network topologies. Moreover, by using a MIMD parallel processing architecture one can update multiple neurons in parallel with efficiency approaching 100 percent as the size of the network increases. Each AAC NNP module has 8 K neurons and 32 K interconnections and is capable of 140,000,000 connections per second with an eight processor array capable of over one billion connections per second.

  5. Neural network regulation driven by autonomous neural firings

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Won

    2016-07-01

    Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.

  6. A Decade of Neural Networks: Practical Applications and Prospects

    NASA Technical Reports Server (NTRS)

    Kemeny, Sabrina E.

    1994-01-01

    The Jet Propulsion Laboratory Neural Network Workshop, sponsored by NASA and DOD, brings together sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and application prospects. While the speed and computing power of microprocessors continue to grow at an ever-increasing pace, the demand to intelligently and adaptively deal with the complex, fuzzy, and often ill-defined world around us remains to a large extent unaddressed. Powerful, highly parallel computing paradigms such as neural networks promise to have a major impact in addressing these needs. Papers in the workshop proceedings highlight benefits of neural networks in real-world applications compared to conventional computing techniques. Topics include fault diagnosis, pattern recognition, and multiparameter optimization.

  7. A decade of neural networks: Practical applications and prospects

    NASA Technical Reports Server (NTRS)

    Kemeny, Sabrina (Editor); Thakoor, Anil (Editor)

    1994-01-01

    On May 11-13, 1994, JPL's Center for Space Microelectronics Technology (CSMT) hosted a neural network workshop entitled, 'A Decade of Neural Networks: Practical Applications and Prospects,' sponsored by DOD and NASA. The past ten years of renewed activity in neural network research has brought the technology to a crossroads regarding the overall scope of its future practical applicability. The purpose of the workshop was to bring together the sponsoring agencies, active researchers, and the user community to formulate a vision for the next decade of neural network research and development prospects, with emphasis on practical applications. Of the 93 participants, roughly 15% were from government agencies, 30% were from industry, 20% were from universities, and 35% were from Federally Funded Research and Development Centers (FFRDC's).

  8. Reduced Synchronization Persistence in Neural Networks Derived from Atm-Deficient Mice

    PubMed Central

    Levine-Small, Noah; Yekutieli, Ziv; Aljadeff, Jonathan; Boccaletti, Stefano; Ben-Jacob, Eshel; Barzilai, Ari

    2011-01-01

    Many neurodegenerative diseases are characterized by malfunction of the DNA damage response. Therefore, it is important to understand the connection between system level neural network behavior and DNA. Neural networks drawn from genetically engineered animals, interfaced with micro-electrode arrays allowed us to unveil connections between networks’ system level activity properties and such genome instability. We discovered that Atm protein deficiency, which in humans leads to progressive motor impairment, leads to a reduced synchronization persistence compared to wild type synchronization, after chemically imposed DNA damage. Not only do these results suggest a role for DNA stability in neural network activity, they also establish an experimental paradigm for empirically determining the role a gene plays on the behavior of a neural network. PMID:21519382

  9. Fast Recall for Complex-Valued Hopfield Neural Networks with Projection Rules.

    PubMed

    Kobayashi, Masaki

    2017-01-01

    Many models of neural networks have been extended to complex-valued neural networks. A complex-valued Hopfield neural network (CHNN) is a complex-valued version of a Hopfield neural network. Complex-valued neurons can represent multistates, and CHNNs are available for the storage of multilevel data, such as gray-scale images. The CHNNs are often trapped into the local minima, and their noise tolerance is low. Lee improved the noise tolerance of the CHNNs by detecting and exiting the local minima. In the present work, we propose a new recall algorithm that eliminates the local minima. We show that our proposed recall algorithm not only accelerated the recall but also improved the noise tolerance through computer simulations.

  10. A neural network model for credit risk evaluation.

    PubMed

    Khashman, Adnan

    2009-08-01

    Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.

  11. On Extended Dissipativity of Discrete-Time Neural Networks With Time Delay.

    PubMed

    Feng, Zhiguang; Zheng, Wei Xing

    2015-12-01

    In this brief, the problem of extended dissipativity analysis for discrete-time neural networks with time-varying delay is investigated. The definition of extended dissipativity of discrete-time neural networks is proposed, which unifies several performance measures, such as the H∞ performance, passivity, l2 - l∞ performance, and dissipativity. By introducing a triple-summable term in Lyapunov function, the reciprocally convex approach is utilized to bound the forward difference of the triple-summable term and then the extended dissipativity criterion for discrete-time neural networks with time-varying delay is established. The derived condition guarantees not only the extended dissipativity but also the stability of the neural networks. Two numerical examples are given to demonstrate the reduced conservatism and effectiveness of the obtained results.

  12. A new delay-independent condition for global robust stability of neural networks with time delays.

    PubMed

    Samli, Ruya

    2015-06-01

    This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Method and system for determining induction motor speed

    DOEpatents

    Parlos, Alexander G.; Bharadwaj, Raj M.

    2004-03-30

    A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.

  14. An intercomparison of artificial intelligence approaches for polar scene identification

    NASA Technical Reports Server (NTRS)

    Tovinkere, V. R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R. C.; Berendes, T. A.; Welch, R. M.

    1993-01-01

    The following six different artificial-intelligence (AI) approaches to polar scene identification are examined: (1) a feed forward back propagation neural network, (2) a probabilistic neural network, (3) a hybrid neural network, (4) a 'don't care' feed forward perception model, (5) a 'don't care' feed forward back propagation neural network, and (6) a fuzzy logic based expert system. The ten classes into which six AVHRR local-coverage arctic scenes were classified were: water, solid sea ice, broken sea ice, snow-covered mountains, land, stratus over ice, stratus over water, cirrus over water, cumulus over water, and multilayer cloudiness. It was found that 'don't care' back propagation neural network produced the highest accuracies. This approach has also low CPU requirement.

  15. Category Learning in the Brain

    PubMed Central

    Seger, Carol A.; Miller, Earl K.

    2013-01-01

    The ability to group items and events into functional categories is a fundamental characteristic of sophisticated thought. It is subserved by plasticity in many neural systems, including neocortical regions (sensory, prefrontal, parietal, and motor cortex), the medial temporal lobe, the basal ganglia, and midbrain dopaminergic systems. These systems interact during category learning. Corticostriatal loops may mediate recursive, bootstrapping interactions between fast reward-gated plasticity in the basal ganglia and slow reward-shaded plasticity in the cortex. This can provide a balance between acquisition of details of experiences and generalization across them. Interactions between the corticostriatal loops can integrate perceptual, response, and feedback-related aspects of the task and mediate the shift from novice to skilled performance. The basal ganglia and medial temporal lobe interact competitively or cooperatively, depending on the demands of the learning task. PMID:20572771

  16. Investment behavior and the negative side of emotion.

    PubMed

    Shiv, Baba; Loewenstein, George; Bechara, Antoine; Damasio, Hanna; Damasio, Antonio R

    2005-06-01

    Can dysfunction in neural systems subserving emotion lead, under certain circumstances, to more advantageous decisions? To answer this question, we investigated how normal participants, patients with stable focal lesions in brain regions related to emotion (target patients), and patients with stable focal lesions in brain regions unrelated to emotion (control patients) made 20 rounds of investment decisions. Target patients made more advantageous decisions and ultimately earned more money from their investments than the normal participants and control patients. When normal participants and control patients either won or lost money on an investment round, they adopted a conservative strategy and became more reluctant to invest on the subsequent round; these results suggest that they were more affected than target patients by the outcomes of decisions made in the previous rounds.

  17. Solving differential equations with unknown constitutive relations as recurrent neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.

    We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learningmore » literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.« less

  18. Neural Network Computing and Natural Language Processing.

    ERIC Educational Resources Information Center

    Borchardt, Frank

    1988-01-01

    Considers the application of neural network concepts to traditional natural language processing and demonstrates that neural network computing architecture can: (1) learn from actual spoken language; (2) observe rules of pronunciation; and (3) reproduce sounds from the patterns derived by its own processes. (Author/CB)

  19. An overview on development of neural network technology

    NASA Technical Reports Server (NTRS)

    Lin, Chun-Shin

    1993-01-01

    The study has been to obtain a bird's-eye view of the current neural network technology and the neural network research activities in NASA. The purpose was two fold. One was to provide a reference document for NASA researchers who want to apply neural network techniques to solve their problems. Another one was to report out survey results regarding NASA research activities and provide a view on what NASA is doing, what potential difficulty exists and what NASA can/should do. In a ten week study period, we interviewed ten neural network researchers in the Langley Research Center and sent out 36 survey forms to researchers at the Johnson Space Center, Lewis Research Center, Ames Research Center and Jet Propulsion Laboratory. We also sent out 60 similar forms to educators and corporation researchers to collect general opinions regarding this field. Twenty-eight survey forms, 11 from NASA researchers and 17 from outside, were returned. Survey results were reported in our final report. In the final report, we first provided an overview on the neural network technology. We reviewed ten neural network structures, discussed the applications in five major areas, and compared the analog, digital and hybrid electronic implementation of neural networks. In the second part, we summarized known NASA neural network research studies and reported the results of the questionnaire survey. Survey results show that most studies are still in the development and feasibility study stage. We compared the techniques, application areas, researchers' opinions on this technology, and many aspects between NASA and non-NASA groups. We also summarized their opinions on difficulties encountered. Applications are considered the top research priority by most researchers. Hardware development and learning algorithm improvement are the next. The lack of financial and management support is among the difficulties in research study. All researchers agree that the use of neural networks could result in cost saving. Fault tolerance has been claimed as one important feature of neural computing. However, the survey indicates that very few studies address this issue. Fault tolerance is important in space mission and aircraft control. We believe that it is worthy for NASA to devote more efforts into the utilization of this feature.

  20. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    PubMed

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-01-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.

  1. Relationship between isoseismal area and magnitude of historical earthquakes in Greece by a hybrid fuzzy neural network method

    NASA Astrophysics Data System (ADS)

    Tselentis, G.-A.; Sokos, E.

    2012-01-01

    In this paper we suggest the use of diffusion-neural-networks, (neural networks with intrinsic fuzzy logic abilities) to assess the relationship between isoseismal area and earthquake magnitude for the region of Greece. It is of particular importance to study historical earthquakes for which we often have macroseismic information in the form of isoseisms but it is statistically incomplete to assess magnitudes from an isoseismal area or to train conventional artificial neural networks for magnitude estimation. Fuzzy relationships are developed and used to train a feed forward neural network with a back propagation algorithm to obtain the final relationships. Seismic intensity data from 24 earthquakes in Greece have been used. Special attention is being paid to the incompleteness and contradictory patterns in scanty historical earthquake records. The results show that the proposed processing model is very effective, better than applying classical artificial neural networks since the magnitude macroseismic intensity target function has a strong nonlinearity and in most cases the macroseismic datasets are very small.

  2. Tutorial: Neural networks and their potential application in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhrig, R.E.

    A neural network is a data processing system consisting of a number of simple, highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks have emerged in the past few years as an area of unusual opportunity for research, development and application to a variety of real world problems. Indeed, neural networks exhibit characteristics and capabilities not provided by any other technology. Examples include reading Japanese Kanjimore » characters and human handwriting, reading a typewritten manuscript aloud, compensating for alignment errors in robots, interpreting very noise'' signals (e.g. electroencephalograms), modeling complex systems that cannot be modelled mathematically, and predicting whether proposed loans will be good or fail. This paper presents a brief tutorial on neural networks and describes research on the potential applications to nuclear power plants.« less

  3. Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network

    PubMed Central

    Adak, M. Fatih; Yumusak, Nejat

    2016-01-01

    Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data. PMID:26927124

  4. Using Neural Networks to Describe Tracer Correlations

    NASA Technical Reports Server (NTRS)

    Lary, D. J.; Mueller, M. D.; Mussa, H. Y.

    2003-01-01

    Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation co- efficient of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4, (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.

  5. Artificial neural networks applied to forecasting time series.

    PubMed

    Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar

    2011-04-01

    This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.

  6. Method and apparatus for in-process sensing of manufacturing quality

    DOEpatents

    Hartman, Daniel A [Santa Fe, NM; Dave, Vivek R [Los Alamos, NM; Cola, Mark J [Santa Fe, NM; Carpenter, Robert W [Los Alamos, NM

    2005-02-22

    A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining the quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.

  7. Using Neural Networks in Decision Making for a Reconfigurable Electro Mechanical Actuator (EMA)

    NASA Technical Reports Server (NTRS)

    Latino, Carl D.

    2001-01-01

    The objectives of this project were to demonstrate applicability and advantages of a neural network approach for evaluating the performance of an electro-mechanical actuator (EMA). The EMA in question was intended for the X-37 Advanced Technology Vehicle. It will have redundant components for safety and reliability. The neural networks for this application are to monitor the operation of the redundant electronics that control the actuator in real time and decide on the operating configuration. The system we proposed consists of the actuator, sensors, control circuitry and dedicated (embedded) processors. The main purpose of the study was to develop suitable hardware and neural network capable of allowing real time reconfiguration decisions to be made. This approach was to be compared to other methods such as fuzzy logic and knowledge based systems considered for the same application. Over the course of the project a more general objective was the identification of the other neural network applications and the education of interested NASA personnel on the topic of Neural Networks.

  8. Neural networks: Alternatives to conventional techniques for automatic docking

    NASA Technical Reports Server (NTRS)

    Vinz, Bradley L.

    1994-01-01

    Automatic docking of orbiting spacecraft is a crucial operation involving the identification of vehicle orientation as well as complex approach dynamics. The chaser spacecraft must be able to recognize the target spacecraft within a scene and achieve accurate closing maneuvers. In a video-based system, a target scene must be captured and transformed into a pattern of pixels. Successful recognition lies in the interpretation of this pattern. Due to their powerful pattern recognition capabilities, artificial neural networks offer a potential role in interpretation and automatic docking processes. Neural networks can reduce the computational time required by existing image processing and control software. In addition, neural networks are capable of recognizing and adapting to changes in their dynamic environment, enabling enhanced performance, redundancy, and fault tolerance. Most neural networks are robust to failure, capable of continued operation with a slight degradation in performance after minor failures. This paper discusses the particular automatic docking tasks neural networks can perform as viable alternatives to conventional techniques.

  9. Training Data Requirement for a Neural Network to Predict Aerodynamic Coefficients

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David (Technical Monitor); Rajkumar, T.; Bardina, Jorge

    2003-01-01

    Basic aerodynamic coefficients are modeled as functions of angle of attack, speed brake deflection angle, Mach number, and side slip angle. Most of the aerodynamic parameters can be well-fitted using polynomial functions. We previously demonstrated that a neural network is a fast, reliable way of predicting aerodynamic coefficients. We encountered few under fitted and/or over fitted results during prediction. The training data for the neural network are derived from wind tunnel test measurements and numerical simulations. The basic questions that arise are: how many training data points are required to produce an efficient neural network prediction, and which type of transfer functions should be used between the input-hidden layer and hidden-output layer. In this paper, a comparative study of the efficiency of neural network prediction based on different transfer functions and training dataset sizes is presented. The results of the neural network prediction reflect the sensitivity of the architecture, transfer functions, and training dataset size.

  10. Nonlinear recurrent neural networks for finite-time solution of general time-varying linear matrix equations.

    PubMed

    Xiao, Lin; Liao, Bolin; Li, Shuai; Chen, Ke

    2018-02-01

    In order to solve general time-varying linear matrix equations (LMEs) more efficiently, this paper proposes two nonlinear recurrent neural networks based on two nonlinear activation functions. According to Lyapunov theory, such two nonlinear recurrent neural networks are proved to be convergent within finite-time. Besides, by solving differential equation, the upper bounds of the finite convergence time are determined analytically. Compared with existing recurrent neural networks, the proposed two nonlinear recurrent neural networks have a better convergence property (i.e., the upper bound is lower), and thus the accurate solutions of general time-varying LMEs can be obtained with less time. At last, various different situations have been considered by setting different coefficient matrices of general time-varying LMEs and a great variety of computer simulations (including the application to robot manipulators) have been conducted to validate the better finite-time convergence of the proposed two nonlinear recurrent neural networks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Periodicity and global exponential stability of generalized Cohen-Grossberg neural networks with discontinuous activations and mixed delays.

    PubMed

    Wang, Dongshu; Huang, Lihong

    2014-03-01

    In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of nonsmooth analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth condition) and monotonicity of the discontinuous neuron activation functions, our results will also be valid. Moreover, our results extend previous works not only on discrete time-varying and distributed delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete time-varying and distributed delayed neural networks with discontinuous activations. We give some numerical examples to show the applicability and effectiveness of our main results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Classification of E-Nose Aroma Data of Four Fruit Types by ABC-Based Neural Network.

    PubMed

    Adak, M Fatih; Yumusak, Nejat

    2016-02-27

    Electronic nose technology is used in many areas, and frequently in the beverage industry for classification and quality-control purposes. In this study, four different aroma data (strawberry, lemon, cherry, and melon) were obtained using a MOSES II electronic nose for the purpose of fruit classification. To improve the performance of the classification, the training phase of the neural network with two hidden layers was optimized using artificial bee colony algorithm (ABC), which is known to be successful in exploration. Test data were given to two different neural networks, each of which were trained separately with backpropagation (BP) and ABC, and average test performances were measured as 60% for the artificial neural network trained with BP and 76.39% for the artificial neural network trained with ABC. Training and test phases were repeated 30 times to obtain these average performance measurements. This level of performance shows that the artificial neural network trained with ABC is successful in classifying aroma data.

  13. Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson's disease prediction.

    PubMed

    Khan, Maryam Mahsal; Mendes, Alexandre; Chalup, Stephan K

    2018-01-01

    Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson's disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results.

  14. Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson’s disease prediction

    PubMed Central

    Mendes, Alexandre; Chalup, Stephan K.

    2018-01-01

    Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson’s disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results. PMID:29420578

  15. Method and Apparatus for In-Process Sensing of Manufacturing Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, D.A.; Dave, V.R.; Cola, M.J.

    2005-02-22

    A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining themore » quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.« less

  16. Childhood poverty and stress reactivity are associated with aberrant functional connectivity in default mode network.

    PubMed

    Sripada, Rebecca K; Swain, James E; Evans, Gary W; Welsh, Robert C; Liberzon, Israel

    2014-08-01

    Convergent research suggests that childhood poverty is associated with perturbation in the stress response system. This might extend to aberrations in the connectivity of large-scale brain networks, which subserve key cognitive and emotional functions. Resting-state brain activity was measured in adults with a documented history of childhood poverty (n=26) and matched controls from middle-income families (n=26). Participants also underwent a standard laboratory social stress test and provided saliva samples for cortisol assay. Childhood poverty was associated with reduced default mode network (DMN) connectivity. This, in turn, was associated with higher cortisol levels in anticipation of social stress. These results suggest a possible brain basis for exaggerated stress sensitivity in low-income individuals. Alterations in DMN may be associated with less efficient cognitive processing or greater risk for development of stress-related psychopathology among individuals who experienced the adversity of chronic childhood poverty.

  17. Real-Time Adaptive Color Segmentation by Neural Networks

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.

    2004-01-01

    Artificial neural networks that would utilize the cascade error projection (CEP) algorithm have been proposed as means of autonomous, real-time, adaptive color segmentation of images that change with time. In the original intended application, such a neural network would be used to analyze digitized color video images of terrain on a remote planet as viewed from an uninhabited spacecraft approaching the planet. During descent toward the surface of the planet, information on the segmentation of the images into differently colored areas would be updated adaptively in real time to capture changes in contrast, brightness, and resolution, all in an effort to identify a safe and scientifically productive landing site and provide control feedback to steer the spacecraft toward that site. Potential terrestrial applications include monitoring images of crops to detect insect invasions and monitoring of buildings and other facilities to detect intruders. The CEP algorithm is reliable and is well suited to implementation in very-large-scale integrated (VLSI) circuitry. It was chosen over other neural-network learning algorithms because it is better suited to realtime learning: It provides a self-evolving neural-network structure, requires fewer iterations to converge and is more tolerant to low resolution (that is, fewer bits) in the quantization of neural-network synaptic weights. Consequently, a CEP neural network learns relatively quickly, and the circuitry needed to implement it is relatively simple. Like other neural networks, a CEP neural network includes an input layer, hidden units, and output units (see figure). As in other neural networks, a CEP network is presented with a succession of input training patterns, giving rise to a set of outputs that are compared with the desired outputs. Also as in other neural networks, the synaptic weights are updated iteratively in an effort to bring the outputs closer to target values. A distinctive feature of the CEP neural network and algorithm is that each update of synaptic weights takes place in conjunction with the addition of another hidden unit, which then remains in place as still other hidden units are added on subsequent iterations. For a given training pattern, the synaptic weight between (1) the inputs and the previously added hidden units and (2) the newly added hidden unit is updated by an amount proportional to the partial derivative of a quadratic error function with respect to the synaptic weight. The synaptic weight between the newly added hidden unit and each output unit is given by a more complex function that involves the errors between the outputs and their target values, the transfer functions (hyperbolic tangents) of the neural units, and the derivatives of the transfer functions.

  18. High Performance Implementation of 3D Convolutional Neural Networks on a GPU.

    PubMed

    Lan, Qiang; Wang, Zelong; Wen, Mei; Zhang, Chunyuan; Wang, Yijie

    2017-01-01

    Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version.

  19. High Performance Implementation of 3D Convolutional Neural Networks on a GPU

    PubMed Central

    Wang, Zelong; Wen, Mei; Zhang, Chunyuan; Wang, Yijie

    2017-01-01

    Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version. PMID:29250109

  20. Neural network for processing both spatial and temporal data with time based back-propagation

    NASA Technical Reports Server (NTRS)

    Villarreal, James A. (Inventor); Shelton, Robert O. (Inventor)

    1993-01-01

    Neural networks are computing systems modeled after the paradigm of the biological brain. For years, researchers using various forms of neural networks have attempted to model the brain's information processing and decision-making capabilities. Neural network algorithms have impressively demonstrated the capability of modeling spatial information. On the other hand, the application of parallel distributed models to the processing of temporal data has been severely restricted. The invention introduces a novel technique which adds the dimension of time to the well known back-propagation neural network algorithm. In the space-time neural network disclosed herein, the synaptic weights between two artificial neurons (processing elements) are replaced with an adaptable-adjustable filter. Instead of a single synaptic weight, the invention provides a plurality of weights representing not only association, but also temporal dependencies. In this case, the synaptic weights are the coefficients to the adaptable digital filters. Novelty is believed to lie in the disclosure of a processing element and a network of the processing elements which are capable of processing temporal as well as spacial data.

Top