1995-11-01
network - based AFS concepts. Neural networks can addition of vanes in each engine exhaust for thrust provide...parameter estimation programs 19-11 8.6 Neural Network Based Methods unknown parameters of the postulated state space model Artificial neural network ...Forward Neural Network the network that the applicability of the recurrent neural and ii) Recurrent Neural Network [117-119]. network to
A novel recurrent neural network with finite-time convergence for linear programming.
Liu, Qingshan; Cao, Jinde; Chen, Guanrong
2010-11-01
In this letter, a novel recurrent neural network based on the gradient method is proposed for solving linear programming problems. Finite-time convergence of the proposed neural network is proved by using the Lyapunov method. Compared with the existing neural networks for linear programming, the proposed neural network is globally convergent to exact optimal solutions in finite time, which is remarkable and rare in the literature of neural networks for optimization. Some numerical examples are given to show the effectiveness and excellent performance of the new recurrent neural network.
NASA Astrophysics Data System (ADS)
Sidelnikov, O. S.; Redyuk, A. A.; Sygletos, S.
2017-12-01
We consider neural network-based schemes of digital signal processing. It is shown that the use of a dynamic neural network-based scheme of signal processing ensures an increase in the optical signal transmission quality in comparison with that provided by other methods for nonlinear distortion compensation.
Zhang, Wei; Huang, Tingwen; He, Xing; Li, Chuandong
2017-11-01
In this study, we investigate the global exponential stability of inertial memristor-based neural networks with impulses and time-varying delays. We construct inertial memristor-based neural networks based on the characteristics of the inertial neural networks and memristor. Impulses with and without delays are considered when modeling the inertial neural networks simultaneously, which are of great practical significance in the current study. Some sufficient conditions are derived under the framework of the Lyapunov stability method, as well as an extended Halanay differential inequality and a new delay impulsive differential inequality, which depend on impulses with and without delays, in order to guarantee the global exponential stability of the inertial memristor-based neural networks. Finally, two numerical examples are provided to illustrate the efficiency of the proposed methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Method of gear fault diagnosis based on EEMD and improved Elman neural network
NASA Astrophysics Data System (ADS)
Zhang, Qi; Zhao, Wei; Xiao, Shungen; Song, Mengmeng
2017-05-01
Aiming at crack and wear and so on of gears Fault information is difficult to diagnose usually due to its weak, a gear fault diagnosis method that is based on EEMD and improved Elman neural network fusion is proposed. A number of IMF components are obtained by decomposing denoised all kinds of fault signals with EEMD, and the pseudo IMF components is eliminated by using the correlation coefficient method to obtain the effective IMF component. The energy characteristic value of each effective component is calculated as the input feature quantity of Elman neural network, and the improved Elman neural network is based on standard network by adding a feedback factor. The fault data of normal gear, broken teeth, cracked gear and attrited gear were collected by field collecting. The results were analyzed by the diagnostic method proposed in this paper. The results show that compared with the standard Elman neural network, Improved Elman neural network has the advantages of high diagnostic efficiency.
A biologically inspired neural network for dynamic programming.
Francelin Romero, R A; Kacpryzk, J; Gomide, F
2001-12-01
An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems.
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Huang, Song; Govind, Girish
1991-01-01
In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.
Modified neural networks for rapid recovery of tokamak plasma parameters for real time control
NASA Astrophysics Data System (ADS)
Sengupta, A.; Ranjan, P.
2002-07-01
Two modified neural network techniques are used for the identification of the equilibrium plasma parameters of the Superconducting Steady State Tokamak I from external magnetic measurements. This is expected to ultimately assist in a real time plasma control. As different from the conventional network structure where a single network with the optimum number of processing elements calculates the outputs, a multinetwork system connected in parallel does the calculations here in one of the methods. This network is called the double neural network. The accuracy of the recovered parameters is clearly more than the conventional network. The other type of neural network used here is based on the statistical function parametrization combined with a neural network. The principal component transformation removes linear dependences from the measurements and a dimensional reduction process reduces the dimensionality of the input space. This reduced and transformed input set, rather than the entire set, is fed into the neural network input. This is known as the principal component transformation-based neural network. The accuracy of the recovered parameters in the latter type of modified network is found to be a further improvement over the accuracy of the double neural network. This result differs from that obtained in an earlier work where the double neural network showed better performance. The conventional network and the function parametrization methods have also been used for comparison. The conventional network has been used for an optimization of the set of magnetic diagnostics. The effective set of sensors, as assessed by this network, are compared with the principal component based network. Fault tolerance of the neural networks has been tested. The double neural network showed the maximum resistance to faults in the diagnostics, while the principal component based network performed poorly. Finally the processing times of the methods have been compared. The double network and the principal component network involve the minimum computation time, although the conventional network also performs well enough to be used in real time.
Application of artificial neural networks in nonlinear analysis of trusses
NASA Technical Reports Server (NTRS)
Alam, J.; Berke, L.
1991-01-01
A method is developed to incorporate neural network model based upon the Backpropagation algorithm for material response into nonlinear elastic truss analysis using the initial stiffness method. Different network configurations are developed to assess the accuracy of neural network modeling of nonlinear material response. In addition to this, a scheme based upon linear interpolation for material data, is also implemented for comparison purposes. It is found that neural network approach can yield very accurate results if used with care. For the type of problems under consideration, it offers a viable alternative to other material modeling methods.
Li, Haibin; He, Yun; Nie, Xiaobo
2018-01-01
Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.
NASA Astrophysics Data System (ADS)
Tao, Yulong; Miao, Yunshui; Han, Jiaqi; Yan, Feiyun
2018-05-01
Aiming at the low accuracy of traditional forecasting methods such as linear regression method, this paper presents a prediction method for predicting the relationship between bridge steel box girder and its displacement with wavelet neural network. Compared with traditional forecasting methods, this scheme has better local characteristics and learning ability, which greatly improves the prediction ability of deformation. Through analysis of the instance and found that after compared with the traditional prediction method based on wavelet neural network, the rigid beam deformation prediction accuracy is higher, and is superior to the BP neural network prediction results, conform to the actual demand of engineering design.
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1992-01-01
Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.
NASA Astrophysics Data System (ADS)
Zheng, Guangdi; Pan, Mingbo; Liu, Wei; Wu, Xuetong
2018-03-01
The target identification of the sea battlefield is the prerequisite for the judgment of the enemy in the modern naval battle. In this paper, a collaborative identification method based on convolution neural network is proposed to identify the typical targets of sea battlefields. Different from the traditional single-input/single-output identification method, the proposed method constructs a multi-input/single-output co-identification architecture based on optimized convolution neural network and weighted D-S evidence theory. The simulation results show that
Neural network error correction for solving coupled ordinary differential equations
NASA Technical Reports Server (NTRS)
Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.
1992-01-01
A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.
Image object recognition based on the Zernike moment and neural networks
NASA Astrophysics Data System (ADS)
Wan, Jianwei; Wang, Ling; Huang, Fukan; Zhou, Liangzhu
1998-03-01
This paper first give a comprehensive discussion about the concept of artificial neural network its research methods and the relations with information processing. On the basis of such a discussion, we expound the mathematical similarity of artificial neural network and information processing. Then, the paper presents a new method of image recognition based on invariant features and neural network by using image Zernike transform. The method not only has the invariant properties for rotation, shift and scale of image object, but also has good fault tolerance and robustness. Meanwhile, it is also compared with statistical classifier and invariant moments recognition method.
Jeng, J T; Lee, T T
2000-01-01
A Chebyshev polynomial-based unified model (CPBUM) neural network is introduced and applied to control a magnetic bearing systems. First, we show that the CPBUM neural network not only has the same capability of universal approximator, but also has faster learning speed than conventional feedforward/recurrent neural network. It turns out that the CPBUM neural network is more suitable in the design of controller than the conventional feedforward/recurrent neural network. Second, we propose the inverse system method, based on the CPBUM neural networks, to control a magnetic bearing system. The proposed controller has two structures; namely, off-line and on-line learning structures. We derive a new learning algorithm for each proposed structure. The experimental results show that the proposed neural network architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
NASA Astrophysics Data System (ADS)
Sun, Ran; Wang, Jihe; Zhang, Dexin; Shao, Xiaowei
2018-02-01
This paper presents an adaptive neural networks-based control method for spacecraft formation with coupled translational and rotational dynamics using only aerodynamic forces. It is assumed that each spacecraft is equipped with several large flat plates. A coupled orbit-attitude dynamic model is considered based on the specific configuration of atmospheric-based actuators. For this model, a neural network-based adaptive sliding mode controller is implemented, accounting for system uncertainties and external perturbations. To avoid invalidation of the neural networks destroying stability of the system, a switching control strategy is proposed which combines an adaptive neural networks controller dominating in its active region and an adaptive sliding mode controller outside the neural active region. An optimal process is developed to determine the control commands for the plates system. The stability of the closed-loop system is proved by a Lyapunov-based method. Comparative results through numerical simulations illustrate the effectiveness of executing attitude control while maintaining the relative motion, and higher control accuracy can be achieved by using the proposed neural-based switching control scheme than using only adaptive sliding mode controller.
Nonlinear inversion of electrical resistivity imaging using pruning Bayesian neural networks
NASA Astrophysics Data System (ADS)
Jiang, Fei-Bo; Dai, Qian-Wei; Dong, Li
2016-06-01
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.
NASA Technical Reports Server (NTRS)
Leong, Harrison Monfook
1988-01-01
General formulae for mapping optimization problems into systems of ordinary differential equations associated with artificial neural networks are presented. A comparison is made to optimization using gradient-search methods. The performance measure is the settling time from an initial state to a target state. A simple analytical example illustrates a situation where dynamical systems representing artificial neural network methods would settle faster than those representing gradient-search. Settling time was investigated for a more complicated optimization problem using computer simulations. The problem was a simplified version of a problem in medical imaging: determining loci of cerebral activity from electromagnetic measurements at the scalp. The simulations showed that gradient based systems typically settled 50 to 100 times faster than systems based on current neural network optimization methods.
Pinning synchronization of memristor-based neural networks with time-varying delays.
Yang, Zhanyu; Luo, Biao; Liu, Derong; Li, Yueheng
2017-09-01
In this paper, the synchronization of memristor-based neural networks with time-varying delays via pinning control is investigated. A novel pinning method is introduced to synchronize two memristor-based neural networks which denote drive system and response system, respectively. The dynamics are studied by theories of differential inclusions and nonsmooth analysis. In addition, some sufficient conditions are derived to guarantee asymptotic synchronization and exponential synchronization of memristor-based neural networks via the presented pinning control. Furthermore, some improvements about the proposed control method are also discussed in this paper. Finally, the effectiveness of the obtained results is demonstrated by numerical simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pruning artificial neural networks using neural complexity measures.
Jorgensen, Thomas D; Haynes, Barry P; Norlund, Charlotte C F
2008-10-01
This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.
Finite-time synchronization control of a class of memristor-based recurrent neural networks.
Jiang, Minghui; Wang, Shuangtao; Mei, Jun; Shen, Yanjun
2015-03-01
This paper presents a global and local finite-time synchronization control law for memristor neural networks. By utilizing the drive-response concept, differential inclusions theory, and Lyapunov functional method, we establish several sufficient conditions for finite-time synchronization between the master and corresponding slave memristor-based neural network with the designed controller. In comparison with the existing results, the proposed stability conditions are new, and the obtained results extend some previous works on conventional recurrent neural networks. Two numerical examples are provided to illustrate the effective of the design method. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks
Wang, Changjian; Liu, Xiaohui; Jin, Shiyao
2018-01-01
Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment. PMID:29955227
Intelligent multi-spectral IR image segmentation
NASA Astrophysics Data System (ADS)
Lu, Thomas; Luong, Andrew; Heim, Stephen; Patel, Maharshi; Chen, Kang; Chao, Tien-Hsin; Chow, Edward; Torres, Gilbert
2017-05-01
This article presents a neural network based multi-spectral image segmentation method. A neural network is trained on the selected features of both the objects and background in the longwave (LW) Infrared (IR) images. Multiple iterations of training are performed until the accuracy of the segmentation reaches satisfactory level. The segmentation boundary of the LW image is used to segment the midwave (MW) and shortwave (SW) IR images. A second neural network detects the local discontinuities and refines the accuracy of the local boundaries. This article compares the neural network based segmentation method to the Wavelet-threshold and Grab-Cut methods. Test results have shown increased accuracy and robustness of this segmentation scheme for multi-spectral IR images.
Neural network based system for equipment surveillance
Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.
1998-01-01
A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.
Neural network based system for equipment surveillance
Vilim, R.B.; Gross, K.C.; Wegerich, S.W.
1998-04-28
A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.
Artificial neural network intelligent method for prediction
NASA Astrophysics Data System (ADS)
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Method and system for determining induction motor speed
Parlos, Alexander G.; Bharadwaj, Raj M.
2004-03-30
A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.
ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation.
Zhang, Jinao; Zhong, Yongmin; Smith, Julian; Gu, Chengfan
2017-07-20
Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue in the field of surgical simulation. In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue deformation by combining neural dynamics of cellular neural network with ChainMail mechanism. The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into the neural dynamics of cellular neural network. Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues' nonlinear deformation and typical mechanical behaviors. The proposed method not only improves ChainMail's linear deformation with the nonlinear characteristics of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft tissue deformation.
The biometric-based module of smart grid system
NASA Astrophysics Data System (ADS)
Engel, E.; Kovalev, I. V.; Ermoshkina, A.
2015-10-01
Within Smart Grid concept the flexible biometric-based module base on Principal Component Analysis (PCA) and selective Neural Network is developed. The formation of the selective Neural Network the biometric-based module uses the method which includes three main stages: preliminary processing of the image, face localization and face recognition. Experiments on the Yale face database show that (i) selective Neural Network exhibits promising classification capability for face detection, recognition problems; and (ii) the proposed biometric-based module achieves near real-time face detection, recognition speed and the competitive performance, as compared to some existing subspaces-based methods.
An Automatic Diagnosis Method of Facial Acne Vulgaris Based on Convolutional Neural Network.
Shen, Xiaolei; Zhang, Jiachi; Yan, Chenjun; Zhou, Hong
2018-04-11
In this paper, we present a new automatic diagnosis method for facial acne vulgaris which is based on convolutional neural networks (CNNs). To overcome the shortcomings of previous methods which were the inability to classify enough types of acne vulgaris. The core of our method is to extract features of images based on CNNs and achieve classification by classifier. A binary-classifier of skin-and-non-skin is used to detect skin area and a seven-classifier is used to achieve the classification task of facial acne vulgaris and healthy skin. In the experiments, we compare the effectiveness of our CNN and the VGG16 neural network which is pre-trained on the ImageNet data set. We use a ROC curve to evaluate the performance of binary-classifier and use a normalized confusion matrix to evaluate the performance of seven-classifier. The results of our experiments show that the pre-trained VGG16 neural network is effective in extracting features from facial acne vulgaris images. And the features are very useful for the follow-up classifiers. Finally, we try applying the classifiers both based on the pre-trained VGG16 neural network to assist doctors in facial acne vulgaris diagnosis.
Application of a neural network for reflectance spectrum classification
NASA Astrophysics Data System (ADS)
Yang, Gefei; Gartley, Michael
2017-05-01
Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)
2003-01-01
A method and system for design optimization that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The present invention employs a unique strategy called parameter-based partitioning of the given design space. In the design procedure, a sequence of composite response surfaces based on both neural networks and polynomial fits is used to traverse the design space to identify an optimal solution. The composite response surface has both the power of neural networks and the economy of low-order polynomials (in terms of the number of simulations needed and the network training requirements). The present invention handles design problems with many more parameters than would be possible using neural networks alone and permits a designer to rapidly perform a variety of trade-off studies before arriving at the final design.
Analysis Resilient Algorithm on Artificial Neural Network Backpropagation
NASA Astrophysics Data System (ADS)
Saputra, Widodo; Tulus; Zarlis, Muhammad; Widia Sembiring, Rahmat; Hartama, Dedy
2017-12-01
Prediction required by decision makers to anticipate future planning. Artificial Neural Network (ANN) Backpropagation is one of method. This method however still has weakness, for long training time. This is a reason to improve a method to accelerate the training. One of Artificial Neural Network (ANN) Backpropagation method is a resilient method. Resilient method of changing weights and bias network with direct adaptation process of weighting based on local gradient information from every learning iteration. Predicting data result of Istanbul Stock Exchange training getting better. Mean Square Error (MSE) value is getting smaller and increasing accuracy.
Method and apparatus for in-process sensing of manufacturing quality
Hartman, Daniel A [Santa Fe, NM; Dave, Vivek R [Los Alamos, NM; Cola, Mark J [Santa Fe, NM; Carpenter, Robert W [Los Alamos, NM
2005-02-22
A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining the quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.
Method and Apparatus for In-Process Sensing of Manufacturing Quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, D.A.; Dave, V.R.; Cola, M.J.
2005-02-22
A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining themore » quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.« less
Multi-modality image fusion based on enhanced fuzzy radial basis function neural networks.
Chao, Zhen; Kim, Dohyeon; Kim, Hee-Joung
2018-04-01
In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. Recently, neural network technique was applied to medical image fusion by many researchers, but there are still many deficiencies. In this study, we propose a novel fusion method to combine multi-modality medical images based on the enhanced fuzzy radial basis function neural network (Fuzzy-RBFNN), which includes five layers: input, fuzzy partition, front combination, inference, and output. Moreover, we propose a hybrid of the gravitational search algorithm (GSA) and error back propagation algorithm (EBPA) to train the network to update the parameters of the network. Two different patterns of images are used as inputs of the neural network, and the output is the fused image. A comparison with the conventional fusion methods and another neural network method through subjective observation and objective evaluation indexes reveals that the proposed method effectively synthesized the information of input images and achieved better results. Meanwhile, we also trained the network by using the EBPA and GSA, individually. The results reveal that the EBPGSA not only outperformed both EBPA and GSA, but also trained the neural network more accurately by analyzing the same evaluation indexes. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems
NASA Technical Reports Server (NTRS)
Innocenti, M.; Napolitano, M.
2003-01-01
Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.
NASA Astrophysics Data System (ADS)
Pascual Garcia, Juan
In this PhD thesis one method of shielded multilayer circuit neural network based analysis has been developed. One of the most successful analysis procedures of these kind of structures is the Integral Equation technique (IE) solved by the Method of Moments (MoM). In order to solve the IE, in the version which uses the media relevant potentials, it is necessary to have a formulation of the Green's functions associated to the mentioned potentials. The main computational burden in the IE resolution lies on the numerical evaluation of the Green's functions. In this work, the circuit analysis has been drastically accelerated thanks to the approximation of the Green's functions by means of neural networks. Once trained, the neural networks substitute the Green's functions in the IE. Two different types of neural networks have been used: the Radial basis function neural networks (RBFNN) and the Chebyshev neural networks. Thanks mainly to two distinct operations the correct approximation of the Green's functions has been possible. On the one hand, a very effective input space division has been developed. On the other hand, the elimination of the singularity makes feasible the approximation of slow variation functions. Two different singularity elimination strategies have been developed. The first one is based on the multiplication by the source-observation points distance (rho). The second one outperforms the first one. It consists of the extraction of two layers of spatial images from the whole summation of images. With regard to the Chebyshev neural networks, the OLS training algorithm has been applied in a novel fashion. This method allows the optimum design in this kind of neural networks. In this way, the performance of these neural networks outperforms greatly the RBFNNs one. In both networks, the time gain reached makes the neural method profitable. The time invested in the input space division and in the neural training is negligible with only few circuit analysis. To show, in a practical way, the ability of the neural based analysis method, two new design procedures have been developed. The first method uses the Genetic Algorithms to optimize an initial filter which does not fulfill the established specifications. A new fitness function, specially well suited to design filters, has been defined in order to assure the correct convergence of the optimization process. This new function measures the fulfillment of the specifications and it also prevents the appearance of the premature convergence problem. The second method is found on the approximation, by means of neural networks, of the relations between the electrical parameters, which defined the circuit response, and the physical dimensions that synthesize the aforementioned parameters. The neural networks trained with these data can be used in the design of many circuits in a given structure. Both methods had been show their ability in the design of practical filters.
2011-04-01
experiments was performed using an artificial neural network to try to capture the nonlinearities. The radial Gaussian artificial neural network system...Modeling Blast-Wave Propagation using Artificial Neural Network Methods‖, in International Journal of Advanced Engineering Informatics, Elsevier
[Measurement and performance analysis of functional neural network].
Li, Shan; Liu, Xinyu; Chen, Yan; Wan, Hong
2018-04-01
The measurement of network is one of the important researches in resolving neuronal population information processing mechanism using complex network theory. For the quantitative measurement problem of functional neural network, the relation between the measure indexes, i.e. the clustering coefficient, the global efficiency, the characteristic path length and the transitivity, and the network topology was analyzed. Then, the spike-based functional neural network was established and the simulation results showed that the measured network could represent the original neural connections among neurons. On the basis of the former work, the coding of functional neural network in nidopallium caudolaterale (NCL) about pigeon's motion behaviors was studied. We found that the NCL functional neural network effectively encoded the motion behaviors of the pigeon, and there were significant differences in four indexes among the left-turning, the forward and the right-turning. Overall, the establishment method of spike-based functional neural network is available and it is an effective tool to parse the brain information processing mechanism.
Construction of a pulse-coupled dipole network capable of fear-like and relief-like responses
NASA Astrophysics Data System (ADS)
Lungsi Sharma, B.
2016-07-01
The challenge for neuroscience as an interdisciplinary programme is the integration of ideas among the disciplines to achieve a common goal. This paper deals with the problem of deriving a pulse-coupled neural network that is capable of demonstrating behavioural responses (fear-like and relief-like). Current pulse-coupled neural networks are designed mostly for engineering applications, particularly image processing. The discovered neural network was constructed using the method of minimal anatomies approach. The behavioural response of a level-coded activity-based model was used as a reference. Although the spiking-based model and the activity-based model are of different scales, the use of model-reference principle means that the characteristics that is referenced is its functional properties. It is demonstrated that this strategy of dissection and systematic construction is effective in the functional design of pulse-coupled neural network system with nonlinear signalling. The differential equations for the elastic weights in the reference model are replicated in the pulse-coupled network geometrically. The network reflects a possible solution to the problem of punishment and avoidance. The network developed in this work is a new network topology for pulse-coupled neural networks. Therefore, the model-reference principle is a powerful tool in connecting neuroscience disciplines. The continuity of concepts and phenomena is further maintained by systematic construction using methods like the method of minimal anatomies.
Wind power prediction based on genetic neural network
NASA Astrophysics Data System (ADS)
Zhang, Suhan
2017-04-01
The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, B.; Wood, R.T.
1997-04-22
A method is described for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical model. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system. 1 fig.
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, Brian; Wood, Richard T.
1997-01-01
A method for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system.
A Direct Position-Determination Approach for Multiple Sources Based on Neural Network Computation.
Chen, Xin; Wang, Ding; Yin, Jiexin; Wu, Ying
2018-06-13
The most widely used localization technology is the two-step method that localizes transmitters by measuring one or more specified positioning parameters. Direct position determination (DPD) is a promising technique that directly localizes transmitters from sensor outputs and can offer superior localization performance. However, existing DPD algorithms such as maximum likelihood (ML)-based and multiple signal classification (MUSIC)-based estimations are computationally expensive, making it difficult to satisfy real-time demands. To solve this problem, we propose the use of a modular neural network for multiple-source DPD. In this method, the area of interest is divided into multiple sub-areas. Multilayer perceptron (MLP) neural networks are employed to detect the presence of a source in a sub-area and filter sources in other sub-areas, and radial basis function (RBF) neural networks are utilized for position estimation. Simulation results show that a number of appropriately trained neural networks can be successfully used for DPD. The performance of the proposed MLP-MLP-RBF method is comparable to the performance of the conventional MUSIC-based DPD algorithm for various signal-to-noise ratios and signal power ratios. Furthermore, the MLP-MLP-RBF network is less computationally intensive than the classical DPD algorithm and is therefore an attractive choice for real-time applications.
Advanced obstacle avoidance for a laser based wheelchair using optimised Bayesian neural networks.
Trieu, Hoang T; Nguyen, Hung T; Willey, Keith
2008-01-01
In this paper we present an advanced method of obstacle avoidance for a laser based intelligent wheelchair using optimized Bayesian neural networks. Three neural networks are designed for three separate sub-tasks: passing through a door way, corridor and wall following and general obstacle avoidance. The accurate usable accessible space is determined by including the actual wheelchair dimensions in a real-time map used as inputs to each networks. Data acquisitions are performed separately to collect the patterns required for specified sub-tasks. Bayesian frame work is used to determine the optimal neural network structure in each case. Then these networks are trained under the supervision of Bayesian rule. Experiment results showed that compare to the VFH algorithm our neural networks navigated a smoother path following a near optimum trajectory.
Fault detection and diagnosis using neural network approaches
NASA Technical Reports Server (NTRS)
Kramer, Mark A.
1992-01-01
Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.
Li, Hongfei; Jiang, Haijun; Hu, Cheng
2016-03-01
In this paper, we investigate a class of memristor-based BAM neural networks with time-varying delays. Under the framework of Filippov solutions, boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks are guaranteed by Chain rule and inequalities technique. Moreover, a new method involving Yoshizawa-like theorem is favorably employed to acquire the existence of periodic solution. By applying the theory of set-valued maps and functional differential inclusions, an available Lyapunov functional and some new testable algebraic criteria are derived for ensuring the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks. The obtained results expand and complement some previous work on memristor-based BAM neural networks. Finally, a numerical example is provided to show the applicability and effectiveness of our theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Simulation of Foam Divot Weight on External Tank Utilizing Least Squares and Neural Network Methods
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Coroneos, Rula M.
2007-01-01
Simulation of divot weight in the insulating foam, associated with the external tank of the U.S. space shuttle, has been evaluated using least squares and neural network concepts. The simulation required models based on fundamental considerations that can be used to predict under what conditions voids form, the size of the voids, and subsequent divot ejection mechanisms. The quadratic neural networks were found to be satisfactory for the simulation of foam divot weight in various tests associated with the external tank. Both linear least squares method and the nonlinear neural network predicted identical results.
Pulse Coupled Neural Networks for the Segmentation of Magnetic Resonance Brain Images.
1996-12-01
PULSE COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG...COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG/96D-01...research develops an automated method for segmenting Magnetic Resonance (MR) brain images based on Pulse Coupled Neural Networks (PCNN). MR brain image
Force Field for Water Based on Neural Network.
Wang, Hao; Yang, Weitao
2018-05-18
We developed a novel neural network based force field for water based on training with high level ab initio theory. The force field was built based on electrostatically embedded many-body expansion method truncated at binary interactions. Many-body expansion method is a common strategy to partition the total Hamiltonian of large systems into a hierarchy of few-body terms. Neural networks were trained to represent electrostatically embedded one-body and two-body interactions, which require as input only one and two water molecule calculations at the level of ab initio electronic structure method CCSD/aug-cc-pVDZ embedded in the molecular mechanics water environment, making it efficient as a general force field construction approach. Structural and dynamic properties of liquid water calculated with our force field show good agreement with experimental results. We constructed two sets of neural network based force fields: non-polarizable and polarizable force fields. Simulation results show that the non-polarizable force field using fixed TIP3P charges has already behaved well, since polarization effects and many-body effects are implicitly included due to the electrostatic embedding scheme. Our results demonstrate that the electrostatically embedded many-body expansion combined with neural network provides a promising and systematic way to build the next generation force fields at high accuracy and low computational costs, especially for large systems.
NASA Astrophysics Data System (ADS)
Liu, Xing-fa; Cen, Ming
2007-12-01
Neural Network system error correction method is more precise than lest square system error correction method and spheric harmonics function system error correction method. The accuracy of neural network system error correction method is mainly related to the frame of Neural Network. Analysis and simulation prove that both BP neural network system error correction method and RBF neural network system error correction method have high correction accuracy; it is better to use RBF Network system error correction method than BP Network system error correction method for little studying stylebook considering training rate and neural network scale.
A novel word spotting method based on recurrent neural networks.
Frinken, Volkmar; Fischer, Andreas; Manmatha, R; Bunke, Horst
2012-02-01
Keyword spotting refers to the process of retrieving all instances of a given keyword from a document. In the present paper, a novel keyword spotting method for handwritten documents is described. It is derived from a neural network-based system for unconstrained handwriting recognition. As such it performs template-free spotting, i.e., it is not necessary for a keyword to appear in the training set. The keyword spotting is done using a modification of the CTC Token Passing algorithm in conjunction with a recurrent neural network. We demonstrate that the proposed systems outperform not only a classical dynamic time warping-based approach but also a modern keyword spotting system, based on hidden Markov models. Furthermore, we analyze the performance of the underlying neural networks when using them in a recognition task followed by keyword spotting on the produced transcription. We point out the advantages of keyword spotting when compared to classic text line recognition.
NASA Astrophysics Data System (ADS)
Cheng, K.; Guo, L. M.; Wang, Y. K.; Zafar, M. T.
2017-11-01
In order to select effective samples in the large number of data of PV power generation years and improve the accuracy of PV power generation forecasting model, this paper studies the application of clustering analysis in this field and establishes forecasting model based on neural network. Based on three different types of weather on sunny, cloudy and rainy days, this research screens samples of historical data by the clustering analysis method. After screening, it establishes BP neural network prediction models using screened data as training data. Then, compare the six types of photovoltaic power generation prediction models before and after the data screening. Results show that the prediction model combining with clustering analysis and BP neural networks is an effective method to improve the precision of photovoltaic power generation.
ERIC Educational Resources Information Center
Carson, Andrew D.; Bizot, Elizabeth B.; Hendershot, Peggy E.; Barton, Margaret G.; Garvin, Mary K.; Kraemer, Barbara
1999-01-01
Career recommendations were made based on aptitude scores of 335 high school freshmen. Artificial neural networks were used to map recommendations to 12 occupational clusters. Overall accuracy of neural networks (.80) approached that of discriminant function analysis (.84). The two methods had different strengths and weaknesses. (SK)
The Satellite Clock Bias Prediction Method Based on Takagi-Sugeno Fuzzy Neural Network
NASA Astrophysics Data System (ADS)
Cai, C. L.; Yu, H. G.; Wei, Z. C.; Pan, J. D.
2017-05-01
The continuous improvement of the prediction accuracy of Satellite Clock Bias (SCB) is the key problem of precision navigation. In order to improve the precision of SCB prediction and better reflect the change characteristics of SCB, this paper proposes an SCB prediction method based on the Takagi-Sugeno fuzzy neural network. Firstly, the SCB values are pre-treated based on their characteristics. Then, an accurate Takagi-Sugeno fuzzy neural network model is established based on the preprocessed data to predict SCB. This paper uses the precise SCB data with different sampling intervals provided by IGS (International Global Navigation Satellite System Service) to realize the short-time prediction experiment, and the results are compared with the ARIMA (Auto-Regressive Integrated Moving Average) model, GM(1,1) model, and the quadratic polynomial model. The results show that the Takagi-Sugeno fuzzy neural network model is feasible and effective for the SCB short-time prediction experiment, and performs well for different types of clocks. The prediction results for the proposed method are better than the conventional methods obviously.
The role of simulation in the design of a neural network chip
NASA Technical Reports Server (NTRS)
Desai, Utpal; Roppel, Thaddeus A.; Padgett, Mary L.
1993-01-01
An iterative, simulation-based design procedure for a neural network chip is introduced. For this design procedure, the goal is to produce a chip layout for a neural network in which the weights are determined by transistor gate width-to-length ratios. In a given iteration, the current layout is simulated using the circuit simulator SPICE, and layout adjustments are made based on conventional gradient-decent methods. After the iteration converges, the chip is fabricated. Monte Carlo analysis is used to predict the effect of statistical fabrication process variations on the overall performance of the neural network chip.
Feed Forward Neural Network and Optimal Control Problem with Control and State Constraints
NASA Astrophysics Data System (ADS)
Kmet', Tibor; Kmet'ová, Mária
2009-09-01
A feed forward neural network based optimal control synthesis is presented for solving optimal control problems with control and state constraints. The paper extends adaptive critic neural network architecture proposed by [5] to the optimal control problems with control and state constraints. The optimal control problem is transcribed into a nonlinear programming problem which is implemented with adaptive critic neural network. The proposed simulation method is illustrated by the optimal control problem of nitrogen transformation cycle model. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
NASA Technical Reports Server (NTRS)
Lo, C. F.; Wu, K.; Whitehead, B. A.
1993-01-01
The statistical and neural networks methods have been applied to investigate the feasibility in detecting anomalies in turbopump vibration of SSME. The anomalies are detected based on the amplitude of peaks of fundamental and harmonic frequencies in the power spectral density. These data are reduced to the proper format from sensor data measured by strain gauges and accelerometers. Both methods are feasible to detect the vibration anomalies. The statistical method requires sufficient data points to establish a reasonable statistical distribution data bank. This method is applicable for on-line operation. The neural networks method also needs to have enough data basis to train the neural networks. The testing procedure can be utilized at any time so long as the characteristics of components remain unchanged.
Neural network based automatic limit prediction and avoidance system and method
NASA Technical Reports Server (NTRS)
Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)
2001-01-01
A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.
Parallel consensual neural networks.
Benediktsson, J A; Sveinsson, J R; Ersoy, O K; Swain, P H
1997-01-01
A new type of a neural-network architecture, the parallel consensual neural network (PCNN), is introduced and applied in classification/data fusion of multisource remote sensing and geographic data. The PCNN architecture is based on statistical consensus theory and involves using stage neural networks with transformed input data. The input data are transformed several times and the different transformed data are used as if they were independent inputs. The independent inputs are first classified using the stage neural networks. The output responses from the stage networks are then weighted and combined to make a consensual decision. In this paper, optimization methods are used in order to weight the outputs from the stage networks. Two approaches are proposed to compute the data transforms for the PCNN, one for binary data and another for analog data. The analog approach uses wavelet packets. The experimental results obtained with the proposed approach show that the PCNN outperforms both a conjugate-gradient backpropagation neural network and conventional statistical methods in terms of overall classification accuracy of test data.
NASA Astrophysics Data System (ADS)
Li, Hong; Ding, Xue
2017-03-01
This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.
Neural network based short-term load forecasting using weather compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chow, T.W.S.; Leung, C.T.
This paper presents a novel technique for electric load forecasting based on neural weather compensation. The proposed method is a nonlinear generalization of Box and Jenkins approach for nonstationary time-series prediction. A weather compensation neural network is implemented for one-day ahead electric load forecasting. The weather compensation neural network can accurately predict the change of actual electric load consumption from the previous day. The results, based on Hong Kong Island historical load demand, indicate that this methodology is capable of providing a more accurate load forecast with a 0.9% reduction in forecast error.
Paul, R R; Mukherjee, A; Dutta, P K; Banerjee, S; Pal, M; Chatterjee, J; Chaudhuri, K; Mukkerjee, K
2005-01-01
Aim: To describe a novel neural network based oral precancer (oral submucous fibrosis; OSF) stage detection method. Method: The wavelet coefficients of transmission electron microscopy images of collagen fibres from normal oral submucosa and OSF tissues were used to choose the feature vector which, in turn, was used to train the artificial neural network. Results: The trained network was able to classify normal and oral precancer stages (less advanced and advanced) after obtaining the image as an input. Conclusions: The results obtained from this proposed technique were promising and suggest that with further optimisation this method could be used to detect and stage OSF, and could be adapted for other conditions. PMID:16126873
Nonlinear adaptive inverse control via the unified model neural network
NASA Astrophysics Data System (ADS)
Jeng, Jin-Tsong; Lee, Tsu-Tian
1999-03-01
In this paper, we propose a new nonlinear adaptive inverse control via a unified model neural network. In order to overcome nonsystematic design and long training time in nonlinear adaptive inverse control, we propose the approximate transformable technique to obtain a Chebyshev Polynomials Based Unified Model (CPBUM) neural network for the feedforward/recurrent neural networks. It turns out that the proposed method can use less training time to get an inverse model. Finally, we apply this proposed method to control magnetic bearing system. The experimental results show that the proposed nonlinear adaptive inverse control architecture provides a greater flexibility and better performance in controlling magnetic bearing systems.
The use of artificial neural networks to predict the muscle behavior
NASA Astrophysics Data System (ADS)
Kutilek, Patrik; Viteckova, Slavka; Svoboda, Zdenĕk; Smrcka, Pavel
2013-09-01
The aim of this article is to introduce methods of prediction of muscle behavior of the lower extremities based on artificial neural networks, which can be used for medical purposes. Our work focuses on predicting muscletendon forces and moments during human gait with the use of angle-time diagram. A group of healthy children and children with cerebral palsy were measured using a Vicon MoCap system. The kinematic data was recorded and the OpenSim software system was used to identify the joint angles, muscle-tendon forces and joint muscle moment, which are presented graphically with time diagrams. The musculus gastrocnemius medialis that is often studied in the context of cerebral palsy have been chosen to study the method of prediction. The diagrams of mean muscle-tendon force and mean moment are plotted and the data about the force-time and moment-time dependencies are used for training neural networks. The new way of prediction of muscle-tendon forces and moments based on neural networks was tested. Neural networks predicted the muscle forces and moments of healthy children and children with cerebral palsy. The designed method of prediction by neural networks could help to identify the difference between muscle behavior of healthy subjects and diseased subjects.
Neural networks application to divergence-based passive ranging
NASA Technical Reports Server (NTRS)
Barniv, Yair
1992-01-01
The purpose of this report is to summarize the state of knowledge and outline the planned work in divergence-based/neural networks approach to the problem of passive ranging derived from optical flow. Work in this and closely related areas is reviewed in order to provide the necessary background for further developments. New ideas about devising a monocular passive-ranging system are then introduced. It is shown that image-plan divergence is independent of image-plan location with respect to the focus of expansion and of camera maneuvers because it directly measures the object's expansion which, in turn, is related to the time-to-collision. Thus, a divergence-based method has the potential of providing a reliable range complementing other monocular passive-ranging methods which encounter difficulties in image areas close to the focus of expansion. Image-plan divergence can be thought of as some spatial/temporal pattern. A neural network realization was chosen for this task because neural networks have generally performed well in various other pattern recognition applications. The main goal of this work is to teach a neural network to derive the divergence from the imagery.
NASA Astrophysics Data System (ADS)
Yuniarto, Budi; Kurniawan, Robert
2017-03-01
PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.
Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.
Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.; ...
2017-09-28
Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.
A New Method for Studying the Periodic System Based on a Kohonen Neural Network
ERIC Educational Resources Information Center
Chen, David Zhekai
2010-01-01
A new method for studying the periodic system is described based on the combination of a Kohonen neural network and a set of chemical and physical properties. The classification results are directly shown in a two-dimensional map and easy to interpret. This is one of the major advantages of this approach over other methods reported in the…
Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng
2017-04-10
This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks.
Ma, Xiaolei; Dai, Zhuang; He, Zhengbing; Ma, Jihui; Wang, Yong; Wang, Yunpeng
2017-01-01
This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstract traffic feature extraction and network-wide traffic speed prediction. The effectiveness of the proposed method is evaluated by taking two real-world transportation networks, the second ring road and north-east transportation network in Beijing, as examples, and comparing the method with four prevailing algorithms, namely, ordinary least squares, k-nearest neighbors, artificial neural network, and random forest, and three deep learning architectures, namely, stacked autoencoder, recurrent neural network, and long-short-term memory network. The results show that the proposed method outperforms other algorithms by an average accuracy improvement of 42.91% within an acceptable execution time. The CNN can train the model in a reasonable time and, thus, is suitable for large-scale transportation networks. PMID:28394270
Sea ice classification using fast learning neural networks
NASA Technical Reports Server (NTRS)
Dawson, M. S.; Fung, A. K.; Manry, M. T.
1992-01-01
A first learning neural network approach to the classification of sea ice is presented. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) were tested on simulated data sets based on the known dominant scattering characteristics of the target class. Four classes were used in the data simulation: open water, thick lossy saline ice, thin saline ice, and multiyear ice. The BP network was unable to consistently converge to less than 25 percent error while the FL method yielded an average error of approximately 1 percent on the first iteration of training. The fast learning method presented can significantly reduce the CPU time necessary to train a neural network as well as consistently yield higher classification accuracy than BP networks.
Neural network approach for the calculation of potential coefficients in quantum mechanics
NASA Astrophysics Data System (ADS)
Ossandón, Sebastián; Reyes, Camilo; Cumsille, Patricio; Reyes, Carlos M.
2017-05-01
A numerical method based on artificial neural networks is used to solve the inverse Schrödinger equation for a multi-parameter class of potentials. First, the finite element method was used to solve repeatedly the direct problem for different parametrizations of the chosen potential function. Then, using the attainable eigenvalues as a training set of the direct radial basis neural network a map of new eigenvalues was obtained. This relationship was later inverted and refined by training an inverse radial basis neural network, allowing the calculation of the unknown parameters and therefore estimating the potential function. Three numerical examples are presented in order to prove the effectiveness of the method. The results show that the method proposed has the advantage to use less computational resources without a significant accuracy loss.
Gan, Ruijing; Chen, Ni; Huang, Daizheng
2016-01-01
This study compares and evaluates the prediction of hepatitis in Guangxi Province, China by using back propagation neural networks based genetic algorithm (BPNN-GA), generalized regression neural networks (GRNN), and wavelet neural networks (WNN). In order to compare the results of forecasting, the data obtained from 2004 to 2013 and 2014 were used as modeling and forecasting samples, respectively. The results show that when the small data set of hepatitis has seasonal fluctuation, the prediction result by BPNN-GA will be better than the two other methods. The WNN method is suitable for predicting the large data set of hepatitis that has seasonal fluctuation and the same for the GRNN method when the data increases steadily.
NASA Astrophysics Data System (ADS)
Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung
2005-12-01
The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.
Ding, Weifu; Zhang, Jiangshe; Leung, Yee
2016-10-01
In this paper, we predict air pollutant concentration using a feedforward artificial neural network inspired by the mechanism of the human brain as a useful alternative to traditional statistical modeling techniques. The neural network is trained based on sparse response back-propagation in which only a small number of neurons respond to the specified stimulus simultaneously and provide a high convergence rate for the trained network, in addition to low energy consumption and greater generalization. Our method is evaluated on Hong Kong air monitoring station data and corresponding meteorological variables for which five air quality parameters were gathered at four monitoring stations in Hong Kong over 4 years (2012-2015). Our results show that our training method has more advantages in terms of the precision of the prediction, effectiveness, and generalization of traditional linear regression algorithms when compared with a feedforward artificial neural network trained using traditional back-propagation.
Study on algorithm of process neural network for soft sensing in sewage disposal system
NASA Astrophysics Data System (ADS)
Liu, Zaiwen; Xue, Hong; Wang, Xiaoyi; Yang, Bin; Lu, Siying
2006-11-01
A new method of soft sensing based on process neural network (PNN) for sewage disposal system is represented in the paper. PNN is an extension of traditional neural network, in which the inputs and outputs are time-variation. An aggregation operator is introduced to process neuron, and it makes the neuron network has the ability to deal with the information of space-time two dimensions at the same time, so the data processing enginery of biological neuron is imitated better than traditional neuron. Process neural network with the structure of three layers in which hidden layer is process neuron and input and output are common neurons for soft sensing is discussed. The intelligent soft sensing based on PNN may be used to fulfill measurement of the effluent BOD (Biochemical Oxygen Demand) from sewage disposal system, and a good training result of soft sensing was obtained by the method.
Statistical methods and neural network approaches for classification of data from multiple sources
NASA Technical Reports Server (NTRS)
Benediktsson, Jon Atli; Swain, Philip H.
1990-01-01
Statistical methods for classification of data from multiple data sources are investigated and compared to neural network models. A problem with using conventional multivariate statistical approaches for classification of data of multiple types is in general that a multivariate distribution cannot be assumed for the classes in the data sources. Another common problem with statistical classification methods is that the data sources are not equally reliable. This means that the data sources need to be weighted according to their reliability but most statistical classification methods do not have a mechanism for this. This research focuses on statistical methods which can overcome these problems: a method of statistical multisource analysis and consensus theory. Reliability measures for weighting the data sources in these methods are suggested and investigated. Secondly, this research focuses on neural network models. The neural networks are distribution free since no prior knowledge of the statistical distribution of the data is needed. This is an obvious advantage over most statistical classification methods. The neural networks also automatically take care of the problem involving how much weight each data source should have. On the other hand, their training process is iterative and can take a very long time. Methods to speed up the training procedure are introduced and investigated. Experimental results of classification using both neural network models and statistical methods are given, and the approaches are compared based on these results.
Crichton, Gamal; Guo, Yufan; Pyysalo, Sampo; Korhonen, Anna
2018-05-21
Link prediction in biomedical graphs has several important applications including predicting Drug-Target Interactions (DTI), Protein-Protein Interaction (PPI) prediction and Literature-Based Discovery (LBD). It can be done using a classifier to output the probability of link formation between nodes. Recently several works have used neural networks to create node representations which allow rich inputs to neural classifiers. Preliminary works were done on this and report promising results. However they did not use realistic settings like time-slicing, evaluate performances with comprehensive metrics or explain when or why neural network methods outperform. We investigated how inputs from four node representation algorithms affect performance of a neural link predictor on random- and time-sliced biomedical graphs of real-world sizes (∼ 6 million edges) containing information relevant to DTI, PPI and LBD. We compared the performance of the neural link predictor to those of established baselines and report performance across five metrics. In random- and time-sliced experiments when the neural network methods were able to learn good node representations and there was a negligible amount of disconnected nodes, those approaches outperformed the baselines. In the smallest graph (∼ 15,000 edges) and in larger graphs with approximately 14% disconnected nodes, baselines such as Common Neighbours proved a justifiable choice for link prediction. At low recall levels (∼ 0.3) the approaches were mostly equal, but at higher recall levels across all nodes and average performance at individual nodes, neural network approaches were superior. Analysis showed that neural network methods performed well on links between nodes with no previous common neighbours; potentially the most interesting links. Additionally, while neural network methods benefit from large amounts of data, they require considerable amounts of computational resources to utilise them. Our results indicate that when there is enough data for the neural network methods to use and there are a negligible amount of disconnected nodes, those approaches outperform the baselines. At low recall levels the approaches are mostly equal but at higher recall levels and average performance at individual nodes, neural network approaches are superior. Performance at nodes without common neighbours which indicate more unexpected and perhaps more useful links account for this.
A new class of methods for functional connectivity estimation
NASA Astrophysics Data System (ADS)
Lin, Wutu
Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.
A neural-visualization IDS for honeynet data.
Herrero, Álvaro; Zurutuza, Urko; Corchado, Emilio
2012-04-01
Neural intelligent systems can provide a visualization of the network traffic for security staff, in order to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of network events are immensely useful for security personnel that monitor network behavior. The system is based on the use of different neural projection and unsupervised methods for the visual inspection of honeypot data, and may be seen as a complementary network security tool that sheds light on internal data structures through visual inspection of the traffic itself. Furthermore, it is intended to facilitate verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS), through the visualization of attack patterns. Empirical verification and comparison of the proposed projection methods are performed in a real domain, where two different case studies are defined and analyzed.
Deinterlacing using modular neural network
NASA Astrophysics Data System (ADS)
Woo, Dong H.; Eom, Il K.; Kim, Yoo S.
2004-05-01
Deinterlacing is the conversion process from the interlaced scan to progressive one. While many previous algorithms that are based on weighted-sum cause blurring in edge region, deinterlacing using neural network can reduce the blurring through recovering of high frequency component by learning process, and is found robust to noise. In proposed algorithm, input image is divided into edge and smooth region, and then, to each region, one neural network is assigned. Through this process, each neural network learns only patterns that are similar, therefore it makes learning more effective and estimation more accurate. But even within each region, there are various patterns such as long edge and texture in edge region. To solve this problem, modular neural network is proposed. In proposed modular neural network, two modules are combined in output node. One is for low frequency feature of local area of input image, and the other is for high frequency feature. With this structure, each modular neural network can learn different patterns with compensating for drawback of counterpart. Therefore it can adapt to various patterns within each region effectively. In simulation, the proposed algorithm shows better performance compared with conventional deinterlacing methods and single neural network method.
NASA Astrophysics Data System (ADS)
Lähivaara, Timo; Kärkkäinen, Leo; Huttunen, Janne M. J.; Hesthaven, Jan S.
2018-02-01
We study the feasibility of data based machine learning applied to ultrasound tomography to estimate water-saturated porous material parameters. In this work, the data to train the neural networks is simulated by solving wave propagation in coupled poroviscoelastic-viscoelastic-acoustic media. As the forward model, we consider a high-order discontinuous Galerkin method while deep convolutional neural networks are used to solve the parameter estimation problem. In the numerical experiment, we estimate the material porosity and tortuosity while the remaining parameters which are of less interest are successfully marginalized in the neural networks-based inversion. Computational examples confirms the feasibility and accuracy of this approach.
Xu, Changjin; Li, Peiluan; Pang, Yicheng
2016-12-01
In this letter, we deal with a class of memristor-based neural networks with distributed leakage delays. By applying a new Lyapunov function method, we obtain some sufficient conditions that ensure the existence, uniqueness, and global exponential stability of almost periodic solutions of neural networks. We apply the results of this solution to prove the existence and stability of periodic solutions for this delayed neural network with periodic coefficients. We then provide an example to illustrate the effectiveness of the theoretical results. Our results are completely new and complement the previous studies Chen, Zeng, and Jiang ( 2014 ) and Jiang, Zeng, and Chen ( 2015 ).
Jamil, Majid; Sharma, Sanjeev Kumar; Singh, Rajveer
2015-01-01
This paper focuses on the detection and classification of the faults on electrical power transmission line using artificial neural networks. The three phase currents and voltages of one end are taken as inputs in the proposed scheme. The feed forward neural network along with back propagation algorithm has been employed for detection and classification of the fault for analysis of each of the three phases involved in the process. A detailed analysis with varying number of hidden layers has been performed to validate the choice of the neural network. The simulation results concluded that the present method based on the neural network is efficient in detecting and classifying the faults on transmission lines with satisfactory performances. The different faults are simulated with different parameters to check the versatility of the method. The proposed method can be extended to the Distribution network of the Power System. The various simulations and analysis of signals is done in the MATLAB(®) environment.
NASA Astrophysics Data System (ADS)
Dumedah, Gift; Walker, Jeffrey P.; Chik, Li
2014-07-01
Soil moisture information is critically important for water management operations including flood forecasting, drought monitoring, and groundwater recharge estimation. While an accurate and continuous record of soil moisture is required for these applications, the available soil moisture data, in practice, is typically fraught with missing values. There are a wide range of methods available to infilling hydrologic variables, but a thorough inter-comparison between statistical methods and artificial neural networks has not been made. This study examines 5 statistical methods including monthly averages, weighted Pearson correlation coefficient, a method based on temporal stability of soil moisture, and a weighted merging of the three methods, together with a method based on the concept of rough sets. Additionally, 9 artificial neural networks are examined, broadly categorized into feedforward, dynamic, and radial basis networks. These 14 infilling methods were used to estimate missing soil moisture records and subsequently validated against known values for 13 soil moisture monitoring stations for three different soil layer depths in the Yanco region in southeast Australia. The evaluation results show that the top three highest performing methods are the nonlinear autoregressive neural network, rough sets method, and monthly replacement. A high estimation accuracy (root mean square error (RMSE) of about 0.03 m/m) was found in the nonlinear autoregressive network, due to its regression based dynamic network which allows feedback connections through discrete-time estimation. An equally high accuracy (0.05 m/m RMSE) in the rough sets procedure illustrates the important role of temporal persistence of soil moisture, with the capability to account for different soil moisture conditions.
NASA Astrophysics Data System (ADS)
Li, Lu-Ming; Zhu, Qian; Zhang, Zhi-Guo; Cai, Zhi-Min; Liao, Zhi-Jun; Hu, Zhen-Yan
2017-04-01
In this paper, a light intensity monitoring method based on FBG is proposed. The method establishes a light intensity monitoring model with cantilever beam structure and BP neural network algorithm, which is based on fiber grating sensing technology. The accuracy of the model can meet the requirements of engineering project and it can monitor light intensity in real time. The experimental results show that the method has good stability and high sensitivity.
Neural network approach to proximity effect corrections in electron-beam lithography
NASA Astrophysics Data System (ADS)
Frye, Robert C.; Cummings, Kevin D.; Rietman, Edward A.
1990-05-01
The proximity effect, caused by electron beam backscattering during resist exposure, is an important concern in writing submicron features. It can be compensated by appropriate local changes in the incident beam dose, but computation of the optimal correction usually requires a prohibitively long time. We present an example of such a computation on a small test pattern, which we performed by an iterative method. We then used this solution as a training set for an adaptive neural network. After training, the network computed the same correction as the iterative method, but in a much shorter time. Correcting the image with a software based neural network resulted in a decrease in the computation time by a factor of 30, and a hardware based network enhanced the computation speed by more than a factor of 1000. Both methods had an acceptably small error of 0.5% compared to the results of the iterative computation. Additionally, we verified that the neural network correctly generalized the solution of the problem to include patterns not contained in its training set.
Neural networks: Application to medical imaging
NASA Technical Reports Server (NTRS)
Clarke, Laurence P.
1994-01-01
The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.
Applications of neural network methods to the processing of earth observation satellite data.
Loyola, Diego G
2006-03-01
The new generation of earth observation satellites carries advanced sensors that will gather very precise data for studying the Earth system and global climate. This paper shows that neural network methods can be successfully used for solving forward and inverse remote sensing problems, providing both accurate and fast solutions. Two examples of multi-neural network systems for the determination of cloud properties and for the retrieval of total columns of ozone using satellite data are presented. The developed algorithms based on multi-neural network are currently being used for the operational processing of European atmospheric satellite sensors and will play a key role in related satellite missions planed for the near future.
Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition
NASA Astrophysics Data System (ADS)
Popko, E. A.; Weinstein, I. A.
2016-08-01
Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.
Real-time flood forecasts & risk assessment using a possibility-theory based fuzzy neural network
NASA Astrophysics Data System (ADS)
Khan, U. T.
2016-12-01
Globally floods are one of the most devastating natural disasters and improved flood forecasting methods are essential for better flood protection in urban areas. Given the availability of high resolution real-time datasets for flood variables (e.g. streamflow and precipitation) in many urban areas, data-driven models have been effectively used to predict peak flow rates in river; however, the selection of input parameters for these types of models is often subjective. Additionally, the inherit uncertainty associated with data models along with errors in extreme event observations means that uncertainty quantification is essential. Addressing these concerns will enable improved flood forecasting methods and provide more accurate flood risk assessments. In this research, a new type of data-driven model, a quasi-real-time updating fuzzy neural network is developed to predict peak flow rates in urban riverine watersheds. A possibility-to-probability transformation is first used to convert observed data into fuzzy numbers. A possibility theory based training regime is them used to construct the fuzzy parameters and the outputs. A new entropy-based optimisation criterion is used to train the network. Two existing methods to select the optimum input parameters are modified to account for fuzzy number inputs, and compared. These methods are: Entropy-Wavelet-based Artificial Neural Network (EWANN) and Combined Neural Pathway Strength Analysis (CNPSA). Finally, an automated algorithm design to select the optimum structure of the neural network is implemented. The overall impact of each component of training this network is to replace the traditional ad hoc network configuration methods, with one based on objective criteria. Ten years of data from the Bow River in Calgary, Canada (including two major floods in 2005 and 2013) are used to calibrate and test the network. The EWANN method selected lagged peak flow as a candidate input, whereas the CNPSA method selected lagged precipitation and lagged mean daily flow as candidate inputs. Model performance metric show that the CNPSA method had higher performance (with an efficiency of 0.76). Model output was used to assess the risk of extreme peak flows for a given day using an inverse possibility-to-probability transformation.
Evolutionary neural networks for anomaly detection based on the behavior of a program.
Han, Sang-Jun; Cho, Sung-Bae
2006-06-01
The process of learning the behavior of a given program by using machine-learning techniques (based on system-call audit data) is effective to detect intrusions. Rule learning, neural networks, statistics, and hidden Markov models (HMMs) are some of the kinds of representative methods for intrusion detection. Among them, neural networks are known for good performance in learning system-call sequences. In order to apply this knowledge to real-world problems successfully, it is important to determine the structures and weights of these call sequences. However, finding the appropriate structures requires very long time periods because there are no suitable analytical solutions. In this paper, a novel intrusion-detection technique based on evolutionary neural networks (ENNs) is proposed. One advantage of using ENNs is that it takes less time to obtain superior neural networks than when using conventional approaches. This is because they discover the structures and weights of the neural networks simultaneously. Experimental results with the 1999 Defense Advanced Research Projects Agency (DARPA) Intrusion Detection Evaluation (IDEVAL) data confirm that ENNs are promising tools for intrusion detection.
NASA Astrophysics Data System (ADS)
Patkin, M. L.; Rogachev, G. N.
2018-02-01
A method for constructing a multi-agent control system for mobile robots based on training with reinforcement using deep neural networks is considered. Synthesis of the management system is proposed to be carried out with reinforcement training and the modified Actor-Critic method, in which the Actor module is divided into Action Actor and Communication Actor in order to simultaneously manage mobile robots and communicate with partners. Communication is carried out by sending partners at each step a vector of real numbers that are added to the observation vector and affect the behaviour. Functions of Actors and Critic are approximated by deep neural networks. The Critics value function is trained by using the TD-error method and the Actor’s function by using DDPG. The Communication Actor’s neural network is trained through gradients received from partner agents. An environment in which a cooperative multi-agent interaction is present was developed, computer simulation of the application of this method in the control problem of two robots pursuing two goals was carried out.
Cacha, L A; Parida, S; Dehuri, S; Cho, S-B; Poznanski, R R
2016-12-01
The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.
A fast button surface defects detection method based on convolutional neural network
NASA Astrophysics Data System (ADS)
Liu, Lizhe; Cao, Danhua; Wu, Songlin; Wu, Yubin; Wei, Taoran
2018-01-01
Considering the complexity of the button surface texture and the variety of buttons and defects, we propose a fast visual method for button surface defect detection, based on convolutional neural network (CNN). CNN has the ability to extract the essential features by training, avoiding designing complex feature operators adapted to different kinds of buttons, textures and defects. Firstly, we obtain the normalized button region and then use HOG-SVM method to identify the front and back side of the button. Finally, a convolutional neural network is developed to recognize the defects. Aiming at detecting the subtle defects, we propose a network structure with multiple feature channels input. To deal with the defects of different scales, we take a strategy of multi-scale image block detection. The experimental results show that our method is valid for a variety of buttons and able to recognize all kinds of defects that have occurred, including dent, crack, stain, hole, wrong paint and uneven. The detection rate exceeds 96%, which is much better than traditional methods based on SVM and methods based on template match. Our method can reach the speed of 5 fps on DSP based smart camera with 600 MHz frequency.
The application of neural network PID controller to control the light gasoline etherification
NASA Astrophysics Data System (ADS)
Cheng, Huanxin; Zhang, Yimin; Kong, Lingling; Meng, Xiangyong
2017-06-01
Light gasoline etherification technology can effectively improve the quality of gasoline, which is environmental- friendly and economical. By combining BP neural network and PID control and using BP neural network self-learning ability for online parameter tuning, this method optimizes the parameters of PID controller and applies this to the Fcc gas flow control to achieve the control of the final product- heavy oil concentration. Finally, through MATLAB simulation, it is found that the PID control based on BP neural network has better controlling effect than traditional PID control.
Inversion of Density Interfaces Using the Pseudo-Backpropagation Neural Network Method
NASA Astrophysics Data System (ADS)
Chen, Xiaohong; Du, Yukun; Liu, Zhan; Zhao, Wenju; Chen, Xiaocheng
2018-05-01
This paper presents a new pseudo-backpropagation (BP) neural network method that can invert multi-density interfaces at one time. The new method is based on the conventional forward modeling and inverse modeling theories in addition to conventional pseudo-BP neural network arithmetic. A 3D inversion model for gravity anomalies of multi-density interfaces using the pseudo-BP neural network method is constructed after analyzing the structure and function of the artificial neural network. The corresponding iterative inverse formula of the space field is presented at the same time. Based on trials of gravity anomalies and density noise, the influence of the two kinds of noise on the inverse result is discussed and the scale of noise requested for the stability of the arithmetic is analyzed. The effects of the initial model on the reduction of the ambiguity of the result and improvement of the precision of inversion are discussed. The correctness and validity of the method were verified by the 3D model of the three interfaces. 3D inversion was performed on the observed gravity anomaly data of the Okinawa trough using the program presented herein. The Tertiary basement and Moho depth were obtained from the inversion results, which also testify the adaptability of the method. This study has made a useful attempt for the inversion of gravity density interfaces.
A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken
This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology,more » comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)« less
Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia
2014-01-01
For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy. PMID:25133210
Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.
Ly, Cheng
2015-12-01
Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.
Xiong, Wenjun; Patel, Ragini; Cao, Jinde; Zheng, Wei Xing
In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.In this brief, our purpose is to apply asynchronous and intermittent sampled-data control methods to achieve the synchronization of hierarchical time-varying neural networks. The asynchronous and intermittent sampled-data controllers are proposed for two reasons: 1) the controllers may not transmit the control information simultaneously and 2) the controllers cannot always exist at any time . The synchronization is then discussed for a kind of hierarchical time-varying neural networks based on the asynchronous and intermittent sampled-data controllers. Finally, the simulation results are given to illustrate the usefulness of the developed criteria.
Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu
2015-11-01
This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Feleppa, Ernest J; Porter, Christopher R; Ketterling, Jeffrey; Lee, Paul; Dasgupta, Shreedevi; Urban, Stella; Kalisz, Andrew
2004-07-01
Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radiofrequency (rf) echo signals combined with clinical variables such as prostate-specific antigen (PSA). Tissue typing using these parameters is performed by artificial neural networks. We employed and evaluated different approaches to data partitioning into training, validation, and test sets and different neural network configuration options. In this manner, we sought to determine what neural network configuration is optimal for these data and also to assess possible bias that might exist due to correlations among different data entries among the data for a given patient. The classification efficacy of each neural network configuration and data-partitioning method was measured using relative-operating-characteristic (ROC) methods. Neural network classification based on spectral parameters combined with clinical data generally produced ROC-curve areas of 0.80 compared to curve areas of 0.64 for conventional transrectal ultrasound imaging combined with clinical data. We then used the optimal neural network configuration to generate lookup tables that translate local spectral parameter values and global clinical-variable values into pixel values in tissue-type images (TTIs). TTIs continue to show cancerous regions successfully, and may prove to be particularly useful clinically in combination with other ultrasonic and nonultrasonic methods, e.g., magnetic-resonance spectroscopy.
Feleppa, Ernest J.; Porter, Christopher R.; Ketterling, Jeffrey; Lee, Paul; Dasgupta, Shreedevi; Urban, Stella; Kalisz, Andrew
2006-01-01
Because current methods of imaging prostate cancer are inadequate, biopsies cannot be effectively guided and treatment cannot be effectively planned and targeted. Therefore, our research is aimed at ultrasonically characterizing cancerous prostate tissue so that we can image it more effectively and thereby provide improved means of detecting, treating and monitoring prostate cancer. We base our characterization methods on spectrum analysis of radio frequency (rf) echo signals combined with clinical variables such as prostate-specific antigen (PSA). Tissue typing using these parameters is performed by artificial neural networks. We employedand evaluated different approaches to data partitioning into training, validation, and test sets and different neural network configuration options. In this manner, we sought to determine what neural network configuration is optimal for these data and also to assess possible bias that might exist due to correlations among different data entries among the data for a given patient. The classification efficacy of each neural network configuration and data-partitioning method was measured using relative-operating-characteristic (ROC) methods. Neural network classification based on spectral parameters combined with clinical data generally produced ROC-curve areas of 0.80 compared to curve areas of 0.64 for conventional transrectal ultrasound imaging combined with clinical data. We then used the optimal neural network configuration to generate lookup tables that translate local spectral parameter values and global clinical-variable values into pixel values in tissue-type images (TTIs). TTIs continue to show can cerous regions successfully, and may prove to be particularly useful clinically in combination with other ultrasonic and nonultrasonic methods, e.g., magnetic-resonance spectroscopy. PMID:15754797
NASA Astrophysics Data System (ADS)
Yang, Yunlei; Hou, Muzhou; Luo, Jianshu; Liu, Taohua
2018-06-01
With the increasing demands for vast amounts of data and high-speed signal transmission, the use of multi-conductor transmission lines is becoming more common. The impact of transmission lines on signal transmission is thus a key issue affecting the performance of high-speed digital systems. To solve the problem of lossless two-conductor transmission line equations (LTTLEs), a neural network model and algorithm are explored in this paper. By selecting the product of two triangular basis functions as the activation function of hidden layer neurons, we can guarantee the separation of time, space, and phase orthogonality. By adding the initial condition to the neural network, an improved extreme learning machine (IELM) algorithm for solving the network weight is obtained. This is different to the traditional method for converting the initial condition into the iterative constraint condition. Calculation software for solving the LTTLEs based on the IELM algorithm is developed. Numerical experiments show that the results are consistent with those of the traditional method. The proposed neural network algorithm can find the terminal voltage of the transmission line and also the voltage of any observation point. It is possible to calculate the value at any given point by using the neural network model to solve the transmission line equation.
Neural networks for data compression and invariant image recognition
NASA Technical Reports Server (NTRS)
Gardner, Sheldon
1989-01-01
An approach to invariant image recognition (I2R), based upon a model of biological vision in the mammalian visual system (MVS), is described. The complete I2R model incorporates several biologically inspired features: exponential mapping of retinal images, Gabor spatial filtering, and a neural network associative memory. In the I2R model, exponentially mapped retinal images are filtered by a hierarchical set of Gabor spatial filters (GSF) which provide compression of the information contained within a pixel-based image. A neural network associative memory (AM) is used to process the GSF coded images. We describe a 1-D shape function method for coding of scale and rotationally invariant shape information. This method reduces image shape information to a periodic waveform suitable for coding as an input vector to a neural network AM. The shape function method is suitable for near term applications on conventional computing architectures equipped with VLSI FFT chips to provide a rapid image search capability.
Modular representation of layered neural networks.
Watanabe, Chihiro; Hiramatsu, Kaoru; Kashino, Kunio
2018-01-01
Layered neural networks have greatly improved the performance of various applications including image processing, speech recognition, natural language processing, and bioinformatics. However, it is still difficult to discover or interpret knowledge from the inference provided by a layered neural network, since its internal representation has many nonlinear and complex parameters embedded in hierarchical layers. Therefore, it becomes important to establish a new methodology by which layered neural networks can be understood. In this paper, we propose a new method for extracting a global and simplified structure from a layered neural network. Based on network analysis, the proposed method detects communities or clusters of units with similar connection patterns. We show its effectiveness by applying it to three use cases. (1) Network decomposition: it can decompose a trained neural network into multiple small independent networks thus dividing the problem and reducing the computation time. (2) Training assessment: the appropriateness of a trained result with a given hyperparameter or randomly chosen initial parameters can be evaluated by using a modularity index. And (3) data analysis: in practical data it reveals the community structure in the input, hidden, and output layers, which serves as a clue for discovering knowledge from a trained neural network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Artificial neural networks for processing fluorescence spectroscopy data in skin cancer diagnostics
NASA Astrophysics Data System (ADS)
Lenhardt, L.; Zeković, I.; Dramićanin, T.; Dramićanin, M. D.
2013-11-01
Over the years various optical spectroscopic techniques have been widely used as diagnostic tools in the discrimination of many types of malignant diseases. Recently, synchronous fluorescent spectroscopy (SFS) coupled with chemometrics has been applied in cancer diagnostics. The SFS method involves simultaneous scanning of both emission and excitation wavelengths while keeping the interval of wavelengths (constant-wavelength mode) or frequencies (constant-energy mode) between them constant. This method is fast, relatively inexpensive, sensitive and non-invasive. Total synchronous fluorescence spectra of normal skin, nevus and melanoma samples were used as input for training of artificial neural networks. Two different types of artificial neural networks were trained, the self-organizing map and the feed-forward neural network. Histopathology results of investigated skin samples were used as the gold standard for network output. Based on the obtained classification success rate of neural networks, we concluded that both networks provided high sensitivity with classification errors between 2 and 4%.
Neural network for solving convex quadratic bilevel programming problems.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie
2014-03-01
In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hu, Jin; Zeng, Chunna
2017-02-01
The complex-valued Cohen-Grossberg neural network is a special kind of complex-valued neural network. In this paper, the synchronization problem of a class of complex-valued Cohen-Grossberg neural networks with known and unknown parameters is investigated. By using Lyapunov functionals and the adaptive control method based on parameter identification, some adaptive feedback schemes are proposed to achieve synchronization exponentially between the drive and response systems. The results obtained in this paper have extended and improved some previous works on adaptive synchronization of Cohen-Grossberg neural networks. Finally, two numerical examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2002-01-01
As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.
Comparative study of four time series methods in forecasting typhoid fever incidence in China.
Zhang, Xingyu; Liu, Yuanyuan; Yang, Min; Zhang, Tao; Young, Alistair A; Li, Xiaosong
2013-01-01
Accurate incidence forecasting of infectious disease is critical for early prevention and for better government strategic planning. In this paper, we present a comprehensive study of different forecasting methods based on the monthly incidence of typhoid fever. The seasonal autoregressive integrated moving average (SARIMA) model and three different models inspired by neural networks, namely, back propagation neural networks (BPNN), radial basis function neural networks (RBFNN), and Elman recurrent neural networks (ERNN) were compared. The differences as well as the advantages and disadvantages, among the SARIMA model and the neural networks were summarized and discussed. The data obtained for 2005 to 2009 and for 2010 from the Chinese Center for Disease Control and Prevention were used as modeling and forecasting samples, respectively. The performances were evaluated based on three metrics: mean absolute error (MAE), mean absolute percentage error (MAPE), and mean square error (MSE). The results showed that RBFNN obtained the smallest MAE, MAPE and MSE in both the modeling and forecasting processes. The performances of the four models ranked in descending order were: RBFNN, ERNN, BPNN and the SARIMA model.
Comparative Study of Four Time Series Methods in Forecasting Typhoid Fever Incidence in China
Zhang, Xingyu; Liu, Yuanyuan; Yang, Min; Zhang, Tao; Young, Alistair A.; Li, Xiaosong
2013-01-01
Accurate incidence forecasting of infectious disease is critical for early prevention and for better government strategic planning. In this paper, we present a comprehensive study of different forecasting methods based on the monthly incidence of typhoid fever. The seasonal autoregressive integrated moving average (SARIMA) model and three different models inspired by neural networks, namely, back propagation neural networks (BPNN), radial basis function neural networks (RBFNN), and Elman recurrent neural networks (ERNN) were compared. The differences as well as the advantages and disadvantages, among the SARIMA model and the neural networks were summarized and discussed. The data obtained for 2005 to 2009 and for 2010 from the Chinese Center for Disease Control and Prevention were used as modeling and forecasting samples, respectively. The performances were evaluated based on three metrics: mean absolute error (MAE), mean absolute percentage error (MAPE), and mean square error (MSE). The results showed that RBFNN obtained the smallest MAE, MAPE and MSE in both the modeling and forecasting processes. The performances of the four models ranked in descending order were: RBFNN, ERNN, BPNN and the SARIMA model. PMID:23650546
Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.
Rubiolo, Mariano; Milone, Diego H; Stegmayer, Georgina
2015-01-01
Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.
Permeability Estimation of Rock Reservoir Based on PCA and Elman Neural Networks
NASA Astrophysics Data System (ADS)
Shi, Ying; Jian, Shaoyong
2018-03-01
an intelligent method which based on fuzzy neural networks with PCA algorithm, is proposed to estimate the permeability of rock reservoir. First, the dimensionality reduction process is utilized for these parameters by principal component analysis method. Further, the mapping relationship between rock slice characteristic parameters and permeability had been found through fuzzy neural networks. The estimation validity and reliability for this method were tested with practical data from Yan’an region in Ordos Basin. The result showed that the average relative errors of permeability estimation for this method is 6.25%, and this method had the better convergence speed and more accuracy than other. Therefore, by using the cheap rock slice related information, the permeability of rock reservoir can be estimated efficiently and accurately, and it is of high reliability, practicability and application prospect.
Gross domestic product estimation based on electricity utilization by artificial neural network
NASA Astrophysics Data System (ADS)
Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.
2018-01-01
The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.
NASA Astrophysics Data System (ADS)
Yu, Bing; Shu, Wenjun; Cao, Can
2018-05-01
A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks is proposed. The identification principle and process based on wavelet neural networks are studied, and the modeling scheme based on NARX is proposed. Then, the time series data sets from three types of aircraft engines are utilized to build the corresponding NARX models, and these NARX models are validated by the simulation. The results show that all the best NARX models can capture the original aircraft engine's dynamic characteristic well with the high accuracy. For every type of engine, the relative identification errors of its best NARX model and the component level model are no more than 3.5 % and most of them are within 1 %.
Maximum entropy methods for extracting the learned features of deep neural networks.
Finnegan, Alex; Song, Jun S
2017-10-01
New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpreting deep neural networks, however, currently remains elusive, and a critical challenge lies in understanding which meaningful features a network is actually learning. We present a general method for interpreting deep neural networks and extracting network-learned features from input data. We describe our algorithm in the context of biological sequence analysis. Our approach, based on ideas from statistical physics, samples from the maximum entropy distribution over possible sequences, anchored at an input sequence and subject to constraints implied by the empirical function learned by a network. Using our framework, we demonstrate that local transcription factor binding motifs can be identified from a network trained on ChIP-seq data and that nucleosome positioning signals are indeed learned by a network trained on chemical cleavage nucleosome maps. Imposing a further constraint on the maximum entropy distribution also allows us to probe whether a network is learning global sequence features, such as the high GC content in nucleosome-rich regions. This work thus provides valuable mathematical tools for interpreting and extracting learned features from feed-forward neural networks.
NASA Astrophysics Data System (ADS)
Kasatkina, T. I.; Dushkin, A. V.; Pavlov, V. A.; Shatovkin, R. R.
2018-03-01
In the development of information, systems and programming to predict the series of dynamics, neural network methods have recently been applied. They are more flexible, in comparison with existing analogues and are capable of taking into account the nonlinearities of the series. In this paper, we propose a modified algorithm for predicting the series of dynamics, which includes a method for training neural networks, an approach to describing and presenting input data, based on the prediction by the multilayer perceptron method. To construct a neural network, the values of a series of dynamics at the extremum points and time values corresponding to them, formed based on the sliding window method, are used as input data. The proposed algorithm can act as an independent approach to predicting the series of dynamics, and be one of the parts of the forecasting system. The efficiency of predicting the evolution of the dynamics series for a short-term one-step and long-term multi-step forecast by the classical multilayer perceptron method and a modified algorithm using synthetic and real data is compared. The result of this modification was the minimization of the magnitude of the iterative error that arises from the previously predicted inputs to the inputs to the neural network, as well as the increase in the accuracy of the iterative prediction of the neural network.
NASA Astrophysics Data System (ADS)
Nasertdinova, A. D.; Bochkarev, V. V.
2017-11-01
Deep neural networks with a large number of parameters are a powerful tool for solving problems of pattern recognition, prediction and classification. Nevertheless, overfitting remains a serious problem in the use of such networks. A method of solving the problem of overfitting is proposed in this article. This method is based on reducing the number of independent parameters of a neural network model using the principal component analysis, and can be implemented using existing libraries of neural computing. The algorithm was tested on the problem of recognition of handwritten symbols from the MNIST database, as well as on the task of predicting time series (rows of the average monthly number of sunspots and series of the Lorentz system were used). It is shown that the application of the principal component analysis enables reducing the number of parameters of the neural network model when the results are good. The average error rate for the recognition of handwritten figures from the MNIST database was 1.12% (which is comparable to the results obtained using the "Deep training" methods), while the number of parameters of the neural network can be reduced to 130 times.
Effectiveness of feature and classifier algorithms in character recognition systems
NASA Astrophysics Data System (ADS)
Wilson, Charles L.
1993-04-01
At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.
Ladstätter, Felix; Garrosa, Eva; Moreno-Jiménez, Bernardo; Ponsoda, Vicente; Reales Aviles, José Manuel; Dai, Junming
2016-01-01
Artificial neural networks are sophisticated modelling and prediction tools capable of extracting complex, non-linear relationships between predictor (input) and predicted (output) variables. This study explores this capacity by modelling non-linearities in the hardiness-modulated burnout process with a neural network. Specifically, two multi-layer feed-forward artificial neural networks are concatenated in an attempt to model the composite non-linear burnout process. Sensitivity analysis, a Monte Carlo-based global simulation technique, is then utilised to examine the first-order effects of the predictor variables on the burnout sub-dimensions and consequences. Results show that (1) this concatenated artificial neural network approach is feasible to model the burnout process, (2) sensitivity analysis is a prolific method to study the relative importance of predictor variables and (3) the relationships among variables involved in the development of burnout and its consequences are to different degrees non-linear. Many relationships among variables (e.g., stressors and strains) are not linear, yet researchers use linear methods such as Pearson correlation or linear regression to analyse these relationships. Artificial neural network analysis is an innovative method to analyse non-linear relationships and in combination with sensitivity analysis superior to linear methods.
NASA Astrophysics Data System (ADS)
Xin, Meiting; Li, Bing; Yan, Xiao; Chen, Lei; Wei, Xiang
2018-02-01
A robust coarse-to-fine registration method based on the backpropagation (BP) neural network and shift window technology is proposed in this study. Specifically, there are three steps: coarse alignment between the model data and measured data, data simplification based on the BP neural network and point reservation in the contour region of point clouds, and fine registration with the reweighted iterative closest point algorithm. In the process of rough alignment, the initial rotation matrix and the translation vector between the two datasets are obtained. After performing subsequent simplification operations, the number of points can be reduced greatly. Therefore, the time and space complexity of the accurate registration can be significantly reduced. The experimental results show that the proposed method improves the computational efficiency without loss of accuracy.
High Performance Implementation of 3D Convolutional Neural Networks on a GPU.
Lan, Qiang; Wang, Zelong; Wen, Mei; Zhang, Chunyuan; Wang, Yijie
2017-01-01
Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version.
High Performance Implementation of 3D Convolutional Neural Networks on a GPU
Wang, Zelong; Wen, Mei; Zhang, Chunyuan; Wang, Yijie
2017-01-01
Convolutional neural networks have proven to be highly successful in applications such as image classification, object tracking, and many other tasks based on 2D inputs. Recently, researchers have started to apply convolutional neural networks to video classification, which constitutes a 3D input and requires far larger amounts of memory and much more computation. FFT based methods can reduce the amount of computation, but this generally comes at the cost of an increased memory requirement. On the other hand, the Winograd Minimal Filtering Algorithm (WMFA) can reduce the number of operations required and thus can speed up the computation, without increasing the required memory. This strategy was shown to be successful for 2D neural networks. We implement the algorithm for 3D convolutional neural networks and apply it to a popular 3D convolutional neural network which is used to classify videos and compare it to cuDNN. For our highly optimized implementation of the algorithm, we observe a twofold speedup for most of the 3D convolution layers of our test network compared to the cuDNN version. PMID:29250109
Hu, Weiming; Fan, Yabo; Xing, Junliang; Sun, Liang; Cai, Zhaoquan; Maybank, Stephen
2018-09-01
We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural network and load-balanced locality-sensitive hashing (LSH) indexing. We propose a deep constrained siamese hash coding neural network combined with deep feature learning. Our neural network is able to extract effective features for near duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image detection. Extensive experiments on three benchmark data sets demonstrate the effectiveness of our deep siamese hash encoding network and load-balanced LSH.
NASA Astrophysics Data System (ADS)
Qi, Yong; Lei, Kai; Zhang, Lizeqing; Xing, Ximing; Gou, Wenyue
2018-06-01
This paper introduced the development of a self-serving medical data assisted diagnosis software of cervical cancer on the basis of artificial neural network (SVN, FNN, KNN). The system is developed based on the idea of self-service platform, supported by the application and innovation of neural network algorithm in medical data identification. Furthermore, it combined the advanced methods in various fields to effectively solve the complicated and inaccurate problem of cervical canceration data in the traditional manual treatment.
Li, Xuanying; Li, Xiaotong; Hu, Cheng
2017-12-01
In this paper, without transforming the second order inertial neural networks into the first order differential systems by some variable substitutions, asymptotic stability and synchronization for a class of delayed inertial neural networks are investigated. Firstly, a new Lyapunov functional is constructed to directly propose the asymptotic stability of the inertial neural networks, and some new stability criteria are derived by means of Barbalat Lemma. Additionally, by designing a new feedback control strategy, the asymptotic synchronization of the addressed inertial networks is studied and some effective conditions are obtained. To reduce the control cost, an adaptive control scheme is designed to realize the asymptotic synchronization. It is noted that the dynamical behaviors of inertial neural networks are directly analyzed in this paper by constructing some new Lyapunov functionals, this is totally different from the traditional reduced-order variable substitution method. Finally, some numerical simulations are given to demonstrate the effectiveness of the derived theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
A link prediction method for heterogeneous networks based on BP neural network
NASA Astrophysics Data System (ADS)
Li, Ji-chao; Zhao, Dan-ling; Ge, Bing-Feng; Yang, Ke-Wei; Chen, Ying-Wu
2018-04-01
Most real-world systems, composed of different types of objects connected via many interconnections, can be abstracted as various complex heterogeneous networks. Link prediction for heterogeneous networks is of great significance for mining missing links and reconfiguring networks according to observed information, with considerable applications in, for example, friend and location recommendations and disease-gene candidate detection. In this paper, we put forward a novel integrated framework, called MPBP (Meta-Path feature-based BP neural network model), to predict multiple types of links for heterogeneous networks. More specifically, the concept of meta-path is introduced, followed by the extraction of meta-path features for heterogeneous networks. Next, based on the extracted meta-path features, a supervised link prediction model is built with a three-layer BP neural network. Then, the solution algorithm of the proposed link prediction model is put forward to obtain predicted results by iteratively training the network. Last, numerical experiments on the dataset of examples of a gene-disease network and a combat network are conducted to verify the effectiveness and feasibility of the proposed MPBP. It shows that the MPBP with very good performance is superior to the baseline methods.
San, Phyo Phyo; Ling, Sai Ho; Nuryani; Nguyen, Hung
2014-08-01
This paper focuses on the hybridization technology using rough sets concepts and neural computing for decision and classification purposes. Based on the rough set properties, the lower region and boundary region are defined to partition the input signal to a consistent (predictable) part and an inconsistent (random) part. In this way, the neural network is designed to deal only with the boundary region, which mainly consists of an inconsistent part of applied input signal causing inaccurate modeling of the data set. Owing to different characteristics of neural network (NN) applications, the same structure of conventional NN might not give the optimal solution. Based on the knowledge of application in this paper, a block-based neural network (BBNN) is selected as a suitable classifier due to its ability to evolve internal structures and adaptability in dynamic environments. This architecture will systematically incorporate the characteristics of application to the structure of hybrid rough-block-based neural network (R-BBNN). A global training algorithm, hybrid particle swarm optimization with wavelet mutation is introduced for parameter optimization of proposed R-BBNN. The performance of the proposed R-BBNN algorithm was evaluated by an application to the field of medical diagnosis using real hypoglycemia episodes in patients with Type 1 diabetes mellitus. The performance of the proposed hybrid system has been compared with some of the existing neural networks. The comparison results indicated that the proposed method has improved classification performance and results in early convergence of the network.
Short-term PV/T module temperature prediction based on PCA-RBF neural network
NASA Astrophysics Data System (ADS)
Li, Jiyong; Zhao, Zhendong; Li, Yisheng; Xiao, Jing; Tang, Yunfeng
2018-02-01
Aiming at the non-linearity and large inertia of temperature control in PV/T system, short-term temperature prediction of PV/T module is proposed, to make the PV/T system controller run forward according to the short-term forecasting situation to optimize control effect. Based on the analysis of the correlation between PV/T module temperature and meteorological factors, and the temperature of adjacent time series, the principal component analysis (PCA) method is used to pre-process the original input sample data. Combined with the RBF neural network theory, the simulation results show that the PCA method makes the prediction accuracy of the network model higher and the generalization performance stronger than that of the RBF neural network without the main component extraction.
Hebbian based learning with winner-take-all for spiking neural networks
NASA Astrophysics Data System (ADS)
Gupta, Ankur; Long, Lyle
2009-03-01
Learning methods for spiking neural networks are not as well developed as the traditional neural networks that widely use back-propagation training. We propose and implement a Hebbian based learning method with winner-take-all competition for spiking neural networks. This approach is spike time dependent which makes it naturally well suited for a network of spiking neurons. Homeostasis with Hebbian learning is implemented which ensures stability and quicker learning. Homeostasis implies that the net sum of incoming weights associated with a neuron remains the same. Winner-take-all is also implemented for competitive learning between output neurons. We implemented this learning rule on a biologically based vision processing system that we are developing, and use layers of leaky integrate and fire neurons. The network when presented with 4 bars (or Gabor filters) of different orientation learns to recognize the bar orientations (or Gabor filters). After training, each output neuron learns to recognize a bar at specific orientation and responds by firing more vigorously to that bar and less vigorously to others. These neurons are found to have bell shaped tuning curves and are similar to the simple cells experimentally observed by Hubel and Wiesel in the striate cortex of cat and monkey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikora, R.; Chady, T.; Baniukiewicz, P.
2010-02-22
Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Twomore » weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.« less
NASA Astrophysics Data System (ADS)
Sikora, R.; Chady, T.; Baniukiewicz, P.; Caryk, M.; Piekarczyk, B.
2010-02-01
Nondestructive testing and evaluation are under continuous development. Currently researches are concentrated on three main topics: advancement of existing methods, introduction of novel methods and development of artificial intelligent systems for automatic defect recognition (ADR). Automatic defect classification algorithm comprises of two main tasks: creating a defect database and preparing a defect classifier. Here, the database was built using defect features that describe all geometrical and texture properties of the defect. Almost twenty carefully selected features calculated for flaws extracted from real radiograms were used. The radiograms were obtained from shipbuilding industry and they were verified by qualified operator. Two weld defect's classifiers based on artificial neural networks were proposed and compared. First model consisted of one neural network model, where each output neuron corresponded to different defect group. The second model contained five neural networks. Each neural network had one neuron on output and was responsible for detection of defects from one group. In order to evaluate the effectiveness of the neural networks classifiers, the mean square errors were calculated for test radiograms and compared.
NASA Astrophysics Data System (ADS)
Luo, Junhui; Wu, Chao; Liu, Xianlin; Mi, Decai; Zeng, Fuquan; Zeng, Yongjun
2018-01-01
At present, the prediction of soft foundation settlement mostly use the exponential curve and hyperbola deferred approximation method, and the correlation between the results is poor. However, the application of neural network in this area has some limitations, and none of the models used in the existing cases adopted the TS fuzzy neural network of which calculation combines the characteristics of fuzzy system and neural network to realize the mutual compatibility methods. At the same time, the developed and optimized calculation program is convenient for engineering designers. Taking the prediction and analysis of soft foundation settlement of gully soft soil in granite area of Guangxi Guihe road as an example, the fuzzy neural network model is established and verified to explore the applicability. The TS fuzzy neural network is used to construct the prediction model of settlement and deformation, and the corresponding time response function is established to calculate and analyze the settlement of soft foundation. The results show that the prediction of short-term settlement of the model is accurate and the final settlement prediction result has certain engineering reference value.
Artificial and Bayesian Neural Networks
Korhani Kangi, Azam; Bahrampour, Abbas
2018-02-26
Introduction and purpose: In recent years the use of neural networks without any premises for investigation of prognosis in analyzing survival data has increased. Artificial neural networks (ANN) use small processors with a continuous network to solve problems inspired by the human brain. Bayesian neural networks (BNN) constitute a neural-based approach to modeling and non-linearization of complex issues using special algorithms and statistical methods. Gastric cancer incidence is the first and third ranking for men and women in Iran, respectively. The aim of the present study was to assess the value of an artificial neural network and a Bayesian neural network for modeling and predicting of probability of gastric cancer patient death. Materials and Methods: In this study, we used information on 339 patients aged from 20 to 90 years old with positive gastric cancer, referred to Afzalipoor and Shahid Bahonar Hospitals in Kerman City from 2001 to 2015. The three layers perceptron neural network (ANN) and the Bayesian neural network (BNN) were used for predicting the probability of mortality using the available data. To investigate differences between the models, sensitivity, specificity, accuracy and the area under receiver operating characteristic curves (AUROCs) were generated. Results: In this study, the sensitivity and specificity of the artificial neural network and Bayesian neural network models were 0.882, 0.903 and 0.954, 0.909, respectively. Prediction accuracy and the area under curve ROC for the two models were 0.891, 0.944 and 0.935, 0.961. The age at diagnosis of gastric cancer was most important for predicting survival, followed by tumor grade, morphology, gender, smoking history, opium consumption, receiving chemotherapy, presence of metastasis, tumor stage, receiving radiotherapy, and being resident in a village. Conclusion: The findings of the present study indicated that the Bayesian neural network is preferable to an artificial neural network for predicting survival of gastric cancer patients in Iran. Creative Commons Attribution License
Raja, Muhammad Asif Zahoor; Khan, Junaid Ali; Ahmad, Siraj-ul-Islam; Qureshi, Ijaz Mansoor
2012-01-01
A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks. The learning of the weights is carried out using particle swarm optimization algorithm used as a tool for viable global search method, hybridized with active set algorithm for rapid local convergence. The accuracy, convergence rate, and computational complexity of the scheme are analyzed based on large number of independents runs and their comprehensive statistical analysis. The comparative studies of the results obtained are made with MATHEMATICA solutions, as well as, with variational iteration method and homotopy perturbation method. PMID:22919371
Application of dynamic recurrent neural networks in nonlinear system identification
NASA Astrophysics Data System (ADS)
Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang
2006-11-01
An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.
QSAR modelling using combined simple competitive learning networks and RBF neural networks.
Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E
2018-04-01
The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.
Experiments in Neural-Network Control of a Free-Flying Space Robot
NASA Technical Reports Server (NTRS)
Wilson, Edward
1995-01-01
Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype. The first issue concerns the importance of true system level design of the control system. A new hybrid strategy is developed here, in depth, for the beneficial integration of neural networks into the total control system. A second important issue in neural network control concerns incorporating a priori knowledge into the neural network. In many applications, it is possible to get a reasonably accurate controller using conventional means. If this prior information is used purposefully to provide a starting point for the optimizing capabilities of the neural network, it can provide much faster initial learning. In a step towards addressing this issue, a new generic Fully Connected Architecture (FCA) is developed for use with backpropagation. A third issue is that neural networks are commonly trained using a gradient based optimization method such as backpropagation; but many real world systems have Discrete Valued Functions (DVFs) that do not permit gradient based optimization. One example is the on-off thrusters that are common on spacecraft. A new technique is developed here that now extends backpropagation learning for use with DVFs. The fourth issue is that the speed of adaptation is often a limiting factor in the implementation of a neural network control system. This issue has been strongly resolved in the research by drawing on the above new contributions.
Forecasting PM10 in metropolitan areas: Efficacy of neural networks.
Fernando, H J S; Mammarella, M C; Grandoni, G; Fedele, P; Di Marco, R; Dimitrova, R; Hyde, P
2012-04-01
Deterministic photochemical air quality models are commonly used for regulatory management and planning of urban airsheds. These models are complex, computer intensive, and hence are prohibitively expensive for routine air quality predictions. Stochastic methods are becoming increasingly popular as an alternative, which relegate decision making to artificial intelligence based on Neural Networks that are made of artificial neurons or 'nodes' capable of 'learning through training' via historic data. A Neural Network was used to predict particulate matter concentration at a regulatory monitoring site in Phoenix, Arizona; its development, efficacy as a predictive tool and performance vis-à-vis a commonly used regulatory photochemical model are described in this paper. It is concluded that Neural Networks are much easier, quicker and economical to implement without compromising the accuracy of predictions. Neural Networks can be used to develop rapid air quality warning systems based on a network of automated monitoring stations. Copyright © 2011 Elsevier Ltd. All rights reserved.
Thermalnet: a Deep Convolutional Network for Synthetic Thermal Image Generation
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Gorbatsevich, V. S.; Mizginov, V. A.
2017-05-01
Deep convolutional neural networks have dramatically changed the landscape of the modern computer vision. Nowadays methods based on deep neural networks show the best performance among image recognition and object detection algorithms. While polishing of network architectures received a lot of scholar attention, from the practical point of view the preparation of a large image dataset for a successful training of a neural network became one of major challenges. This challenge is particularly profound for image recognition in wavelengths lying outside the visible spectrum. For example no infrared or radar image datasets large enough for successful training of a deep neural network are available to date in public domain. Recent advances of deep neural networks prove that they are also capable to do arbitrary image transformations such as super-resolution image generation, grayscale image colorisation and imitation of style of a given artist. Thus a natural question arise: how could be deep neural networks used for augmentation of existing large image datasets? This paper is focused on the development of the Thermalnet deep convolutional neural network for augmentation of existing large visible image datasets with synthetic thermal images. The Thermalnet network architecture is inspired by colorisation deep neural networks.
Iris double recognition based on modified evolutionary neural network
NASA Astrophysics Data System (ADS)
Liu, Shuai; Liu, Yuan-Ning; Zhu, Xiao-Dong; Huo, Guang; Liu, Wen-Tao; Feng, Jia-Kai
2017-11-01
Aiming at multicategory iris recognition under illumination and noise interference, this paper proposes a method of iris double recognition based on a modified evolutionary neural network. An equalization histogram and Laplace of Gaussian operator are used to process the iris to suppress illumination and noise interference and Haar wavelet to convert the iris feature to binary feature encoding. Calculate the Hamming distance for the test iris and template iris , and compare with classification threshold, determine the type of iris. If the iris cannot be identified as a different type, there needs to be a secondary recognition. The connection weights in back-propagation (BP) neural network use modified evolutionary neural network to adaptively train. The modified neural network is composed of particle swarm optimization with mutation operator and BP neural network. According to different iris libraries in different circumstances of experimental results, under illumination and noise interference, the correct recognition rate of this algorithm is higher, the ROC curve is closer to the coordinate axis, the training and recognition time is shorter, and the stability and the robustness are better.
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Lodhi, S. M.; Boulenouar, A. J.
2001-03-01
This work is in the field of automated document processing. This work addresses the problem of representation and recognition of Urdu characters using Fourier representation and a Neural Network architecture. In particular, we show that a two-stage Neural Network scheme is used here to make classification of 36 Urdu characters into seven sub-classes namely subclasses characterized by seven proposed and defined fuzzy features specifically related to Urdu characters. We show that here Fourier Descriptors and Neural Network provide a remarkably simple way to draw definite conclusions from vague, ambiguous, noisy or imprecise information. In particular, we illustrate the concept of interest regions and describe a framing method that provides a way to make the proposed technique for Urdu characters recognition robust and invariant to scaling and translation. We also show that a given character rotation is dealt with by using the Hotelling transform. This transform is based upon the eigenvalue decomposition of the covariance matrix of an image, providing a method of determining the orientation of the major axis of an object within an image. Finally experimental results are presented to show the power and robustness of the proposed two-stage Neural Network based technique for Urdu character recognition, its fault tolerance, and high recognition accuracy.
An evolutionary algorithm that constructs recurrent neural networks.
Angeline, P J; Saunders, G M; Pollack, J B
1994-01-01
Standard methods for simultaneously inducing the structure and weights of recurrent neural networks limit every task to an assumed class of architectures. Such a simplification is necessary since the interactions between network structure and function are not well understood. Evolutionary computations, which include genetic algorithms and evolutionary programming, are population-based search methods that have shown promise in many similarly complex tasks. This paper argues that genetic algorithms are inappropriate for network acquisition and describes an evolutionary program, called GNARL, that simultaneously acquires both the structure and weights for recurrent networks. GNARL's empirical acquisition method allows for the emergence of complex behaviors and topologies that are potentially excluded by the artificial architectural constraints imposed in standard network induction methods.
Model-Free Adaptive Control for Unknown Nonlinear Zero-Sum Differential Game.
Zhong, Xiangnan; He, Haibo; Wang, Ding; Ni, Zhen
2018-05-01
In this paper, we present a new model-free globalized dual heuristic dynamic programming (GDHP) approach for the discrete-time nonlinear zero-sum game problems. First, the online learning algorithm is proposed based on the GDHP method to solve the Hamilton-Jacobi-Isaacs equation associated with optimal regulation control problem. By setting backward one step of the definition of performance index, the requirement of system dynamics, or an identifier is relaxed in the proposed method. Then, three neural networks are established to approximate the optimal saddle point feedback control law, the disturbance law, and the performance index, respectively. The explicit updating rules for these three neural networks are provided based on the data generated during the online learning along the system trajectories. The stability analysis in terms of the neural network approximation errors is discussed based on the Lyapunov approach. Finally, two simulation examples are provided to show the effectiveness of the proposed method.
Movement decoupling control for two-axis fast steering mirror
NASA Astrophysics Data System (ADS)
Wang, Rui; Qiao, Yongming; Lv, Tao
2017-02-01
Based on flexure hinge and piezoelectric actuator of two-axis fast steering mirror is a complex system with time varying, uncertain and strong coupling. It is extremely difficult to achieve high precision decoupling control with the traditional PID control method. The feedback error learning method was established an inverse hysteresis model which was based inner product dynamic neural network nonlinear and no-smooth for piezo-ceramic. In order to improve the actuator high precision, a method was proposed, which was based piezo-ceramic inverse model of two dynamic neural network adaptive control. The experiment result indicated that, compared with two neural network adaptive movement decoupling control algorithm, static relative error is reduced from 4.44% to 0.30% and coupling degree is reduced from 12.71% to 0.60%, while dynamic relative error is reduced from 13.92% to 2.85% and coupling degree is reduced from 2.63% to 1.17%.
Passivity analysis of memristor-based impulsive inertial neural networks with time-varying delays.
Wan, Peng; Jian, Jigui
2018-03-01
This paper focuses on delay-dependent passivity analysis for a class of memristive impulsive inertial neural networks with time-varying delays. By choosing proper variable transformation, the memristive inertial neural networks can be rewritten as first-order differential equations. The memristive model presented here is regarded as a switching system rather than employing the theory of differential inclusion and set-value map. Based on matrix inequality and Lyapunov-Krasovskii functional method, several delay-dependent passivity conditions are obtained to ascertain the passivity of the addressed networks. In addition, the results obtained here contain those on the passivity for the addressed networks without impulse effects as special cases and can also be generalized to other neural networks with more complex pulse interference. Finally, one numerical example is presented to show the validity of the obtained results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.
Nitta, Tohru
2017-10-01
We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).
Target recognition based on convolutional neural network
NASA Astrophysics Data System (ADS)
Wang, Liqiang; Wang, Xin; Xi, Fubiao; Dong, Jian
2017-11-01
One of the important part of object target recognition is the feature extraction, which can be classified into feature extraction and automatic feature extraction. The traditional neural network is one of the automatic feature extraction methods, while it causes high possibility of over-fitting due to the global connection. The deep learning algorithm used in this paper is a hierarchical automatic feature extraction method, trained with the layer-by-layer convolutional neural network (CNN), which can extract the features from lower layers to higher layers. The features are more discriminative and it is beneficial to the object target recognition.
Neural network based chemical structure indexing.
Rughooputh, S D; Rughooputh, H C
2001-01-01
Searches on chemical databases are presently dominated by the text-based content of a paper which can be indexed into a keyword searchable form. Such traditional searches can prove to be very time-consuming and discouraging to the less frequent scientist. We report a simple chemical indexing based on the molecular structure alone. The method used is based on a one-to-one correspondence between the chemical structure presented as an image to a neural network and the corresponding binary output. The method is direct and less cumbersome (compared with traditional methods) and proves to be robust, elegant, and very versatile.
Underwater Inherent Optical Properties Estimation Using a Depth Aided Deep Neural Network.
Yu, Zhibin; Wang, Yubo; Zheng, Bing; Zheng, Haiyong; Wang, Nan; Gu, Zhaorui
2017-01-01
Underwater inherent optical properties (IOPs) are the fundamental clues to many research fields such as marine optics, marine biology, and underwater vision. Currently, beam transmissometers and optical sensors are considered as the ideal IOPs measuring methods. But these methods are inflexible and expensive to be deployed. To overcome this problem, we aim to develop a novel measuring method using only a single underwater image with the help of deep artificial neural network. The power of artificial neural network has been proved in image processing and computer vision fields with deep learning technology. However, image-based IOPs estimation is a quite different and challenging task. Unlike the traditional applications such as image classification or localization, IOP estimation looks at the transparency of the water between the camera and the target objects to estimate multiple optical properties simultaneously. In this paper, we propose a novel Depth Aided (DA) deep neural network structure for IOPs estimation based on a single RGB image that is even noisy. The imaging depth information is considered as an aided input to help our model make better decision.
Adaptive Filtering Using Recurrent Neural Networks
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
Training Deep Spiking Neural Networks Using Backpropagation.
Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael
2016-01-01
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.
Detecting event-related changes in organizational networks using optimized neural network models.
Li, Ze; Sun, Duoyong; Zhu, Renqi; Lin, Zihan
2017-01-01
Organizational external behavior changes are caused by the internal structure and interactions. External behaviors are also known as the behavioral events of an organization. Detecting event-related changes in organizational networks could efficiently be used to monitor the dynamics of organizational behaviors. Although many different methods have been used to detect changes in organizational networks, these methods usually ignore the correlation between the internal structure and external events. Event-related change detection considers the correlation and could be used for event recognition based on social network modeling and supervised classification. Detecting event-related changes could be effectively useful in providing early warnings and faster responses to both positive and negative organizational activities. In this study, event-related change in an organizational network was defined, and artificial neural network models were used to quantitatively determine whether and when a change occurred. To achieve a higher accuracy, Back Propagation Neural Networks (BPNNs) were optimized using Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). We showed the feasibility of the proposed method by comparing its performance with that of other methods using two cases. The results suggested that the proposed method could identify organizational events based on a correlation between the organizational networks and events. The results also suggested that the proposed method not only has a higher precision but also has a better robustness than the previously used techniques.
Detecting event-related changes in organizational networks using optimized neural network models
Sun, Duoyong; Zhu, Renqi; Lin, Zihan
2017-01-01
Organizational external behavior changes are caused by the internal structure and interactions. External behaviors are also known as the behavioral events of an organization. Detecting event-related changes in organizational networks could efficiently be used to monitor the dynamics of organizational behaviors. Although many different methods have been used to detect changes in organizational networks, these methods usually ignore the correlation between the internal structure and external events. Event-related change detection considers the correlation and could be used for event recognition based on social network modeling and supervised classification. Detecting event-related changes could be effectively useful in providing early warnings and faster responses to both positive and negative organizational activities. In this study, event-related change in an organizational network was defined, and artificial neural network models were used to quantitatively determine whether and when a change occurred. To achieve a higher accuracy, Back Propagation Neural Networks (BPNNs) were optimized using Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). We showed the feasibility of the proposed method by comparing its performance with that of other methods using two cases. The results suggested that the proposed method could identify organizational events based on a correlation between the organizational networks and events. The results also suggested that the proposed method not only has a higher precision but also has a better robustness than the previously used techniques. PMID:29190799
Yang, Shiju; Li, Chuandong; Huang, Tingwen
2016-03-01
The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Huisheng; Zhang, Ying; Xu, Dongpo; Liu, Xiaodong
2015-06-01
It has been shown that, by adding a chaotic sequence to the weight update during the training of neural networks, the chaos injection-based gradient method (CIBGM) is superior to the standard backpropagation algorithm. This paper presents the theoretical convergence analysis of CIBGM for training feedforward neural networks. We consider both the case of batch learning as well as the case of online learning. Under mild conditions, we prove the weak convergence, i.e., the training error tends to a constant and the gradient of the error function tends to zero. Moreover, the strong convergence of CIBGM is also obtained with the help of an extra condition. The theoretical results are substantiated by a simulation example.
Lakshmanan, Shanmugam; Prakash, Mani; Lim, Chee Peng; Rakkiyappan, Rajan; Balasubramaniam, Pagavathigounder; Nahavandi, Saeid
2018-01-01
In this paper, synchronization of an inertial neural network with time-varying delays is investigated. Based on the variable transformation method, we transform the second-order differential equations into the first-order differential equations. Then, using suitable Lyapunov-Krasovskii functionals and Jensen's inequality, the synchronization criteria are established in terms of linear matrix inequalities. Moreover, a feedback controller is designed to attain synchronization between the master and slave models, and to ensure that the error model is globally asymptotically stable. Numerical examples and simulations are presented to indicate the effectiveness of the proposed method. Besides that, an image encryption algorithm is proposed based on the piecewise linear chaotic map and the chaotic inertial neural network. The chaotic signals obtained from the inertial neural network are utilized for the encryption process. Statistical analyses are provided to evaluate the effectiveness of the proposed encryption algorithm. The results ascertain that the proposed encryption algorithm is efficient and reliable for secure communication applications.
Catic, Aida; Gurbeta, Lejla; Kurtovic-Kozaric, Amina; Mehmedbasic, Senad; Badnjevic, Almir
2018-02-13
The usage of Artificial Neural Networks (ANNs) for genome-enabled classifications and establishing genome-phenotype correlations have been investigated more extensively over the past few years. The reason for this is that ANNs are good approximates of complex functions, so classification can be performed without the need for explicitly defined input-output model. This engineering tool can be applied for optimization of existing methods for disease/syndrome classification. Cytogenetic and molecular analyses are the most frequent tests used in prenatal diagnostic for the early detection of Turner, Klinefelter, Patau, Edwards and Down syndrome. These procedures can be lengthy, repetitive; and often employ invasive techniques so a robust automated method for classifying and reporting prenatal diagnostics would greatly help the clinicians with their routine work. The database consisted of data collected from 2500 pregnant woman that came to the Institute of Gynecology, Infertility and Perinatology "Mehmedbasic" for routine antenatal care between January 2000 and December 2016. During first trimester all women were subject to screening test where values of maternal serum pregnancy-associated plasma protein A (PAPP-A) and free beta human chorionic gonadotropin (β-hCG) were measured. Also, fetal nuchal translucency thickness and the presence or absence of the nasal bone was observed using ultrasound. The architectures of linear feedforward and feedback neural networks were investigated for various training data distributions and number of neurons in hidden layer. Feedback neural network architecture out performed feedforward neural network architecture in predictive ability for all five aneuploidy prenatal syndrome classes. Feedforward neural network with 15 neurons in hidden layer achieved classification sensitivity of 92.00%. Classification sensitivity of feedback (Elman's) neural network was 99.00%. Average accuracy of feedforward neural network was 89.6% and for feedback was 98.8%. The results presented in this paper prove that an expert diagnostic system based on neural networks can be efficiently used for classification of five aneuploidy syndromes, covered with this study, based on first trimester maternal serum screening data, ultrasonographic findings and patient demographics. Developed Expert System proved to be simple, robust, and powerful in properly classifying prenatal aneuploidy syndromes.
Constructive autoassociative neural network for facial recognition.
Fernandes, Bruno J T; Cavalcanti, George D C; Ren, Tsang I
2014-01-01
Autoassociative artificial neural networks have been used in many different computer vision applications. However, it is difficult to define the most suitable neural network architecture because this definition is based on previous knowledge and depends on the problem domain. To address this problem, we propose a constructive autoassociative neural network called CANet (Constructive Autoassociative Neural Network). CANet integrates the concepts of receptive fields and autoassociative memory in a dynamic architecture that changes the configuration of the receptive fields by adding new neurons in the hidden layer, while a pruning algorithm removes neurons from the output layer. Neurons in the CANet output layer present lateral inhibitory connections that improve the recognition rate. Experiments in face recognition and facial expression recognition show that the CANet outperforms other methods presented in the literature.
Dai, Zongli; Zhao, Aiwu; He, Jie
2018-01-01
In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method. PMID:29420584
Guan, Hongjun; Dai, Zongli; Zhao, Aiwu; He, Jie
2018-01-01
In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.
Prediction of proprotein convertase cleavage sites.
Duckert, Peter; Brunak, Søren; Blom, Nikolaj
2004-01-01
Many secretory proteins and peptides are synthesized as inactive precursors that in addition to signal peptide cleavage undergo post-translational processing to become biologically active polypeptides. Precursors are usually cleaved at sites composed of single or paired basic amino acid residues by members of the subtilisin/kexin-like proprotein convertase (PC) family. In mammals, seven members have been identified, with furin being the one first discovered and best characterized. Recently, the involvement of furin in diseases ranging from Alzheimer's disease and cancer to anthrax and Ebola fever has created additional focus on proprotein processing. We have developed a method for prediction of cleavage sites for PCs based on artificial neural networks. Two different types of neural networks have been constructed: a furin-specific network based on experimental results derived from the literature, and a general PC-specific network trained on data from the Swiss-Prot protein database. The method predicts cleavage sites in independent sequences with a sensitivity of 95% for the furin neural network and 62% for the general PC network. The ProP method is made publicly available at http://www.cbs.dtu.dk/services/ProP.
A novel application of artificial neural network for wind speed estimation
NASA Astrophysics Data System (ADS)
Fang, Da; Wang, Jianzhou
2017-05-01
Providing accurate multi-steps wind speed estimation models has increasing significance, because of the important technical and economic impacts of wind speed on power grid security and environment benefits. In this study, the combined strategies for wind speed forecasting are proposed based on an intelligent data processing system using artificial neural network (ANN). Generalized regression neural network and Elman neural network are employed to form two hybrid models. The approach employs one of ANN to model the samples achieving data denoising and assimilation and apply the other to predict wind speed using the pre-processed samples. The proposed method is demonstrated in terms of the predicting improvements of the hybrid models compared with single ANN and the typical forecasting method. To give sufficient cases for the study, four observation sites with monthly average wind speed of four given years in Western China were used to test the models. Multiple evaluation methods demonstrated that the proposed method provides a promising alternative technique in monthly average wind speed estimation.
Adaptive Neural Network Based Control of Noncanonical Nonlinear Systems.
Zhang, Yanjun; Tao, Gang; Chen, Mou
2016-09-01
This paper presents a new study on the adaptive neural network-based control of a class of noncanonical nonlinear systems with large parametric uncertainties. Unlike commonly studied canonical form nonlinear systems whose neural network approximation system models have explicit relative degree structures, which can directly be used to derive parameterized controllers for adaptation, noncanonical form nonlinear systems usually do not have explicit relative degrees, and thus their approximation system models are also in noncanonical forms. It is well-known that the adaptive control of noncanonical form nonlinear systems involves the parameterization of system dynamics. As demonstrated in this paper, it is also the case for noncanonical neural network approximation system models. Effective control of such systems is an open research problem, especially in the presence of uncertain parameters. This paper shows that it is necessary to reparameterize such neural network system models for adaptive control design, and that such reparameterization can be realized using a relative degree formulation, a concept yet to be studied for general neural network system models. This paper then derives the parameterized controllers that guarantee closed-loop stability and asymptotic output tracking for noncanonical form neural network system models. An illustrative example is presented with the simulation results to demonstrate the control design procedure, and to verify the effectiveness of such a new design method.
Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub
2015-01-01
An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases. PMID:26528986
Jung, Jun-Young; Heo, Wonho; Yang, Hyundae; Park, Hyunsub
2015-10-30
An exact classification of different gait phases is essential to enable the control of exoskeleton robots and detect the intentions of users. We propose a gait phase classification method based on neural networks using sensor signals from lower limb exoskeleton robots. In such robots, foot sensors with force sensing registers are commonly used to classify gait phases. We describe classifiers that use the orientation of each lower limb segment and the angular velocities of the joints to output the current gait phase. Experiments to obtain the input signals and desired outputs for the learning and validation process are conducted, and two neural network methods (a multilayer perceptron and nonlinear autoregressive with external inputs (NARX)) are used to develop an optimal classifier. Offline and online evaluations using four criteria are used to compare the performance of the classifiers. The proposed NARX-based method exhibits sufficiently good performance to replace foot sensors as a means of classifying gait phases.
The application of hybrid artificial intelligence systems for forecasting
NASA Astrophysics Data System (ADS)
Lees, Brian; Corchado, Juan
1999-03-01
The results to date are presented from an ongoing investigation, in which the aim is to combine the strengths of different artificial intelligence methods into a single problem solving system. The premise underlying this research is that a system which embodies several cooperating problem solving methods will be capable of achieving better performance than if only a single method were employed. The work has so far concentrated on the combination of case-based reasoning and artificial neural networks. The relative merits of artificial neural networks and case-based reasoning problem solving paradigms, and their combination are discussed. The integration of these two AI problem solving methods in a hybrid systems architecture, such that the neural network provides support for learning from past experience in the case-based reasoning cycle, is then presented. The approach has been applied to the task of forecasting the variation of physical parameters of the ocean. Results obtained so far from tests carried out in the dynamic oceanic environment are presented.
Container-code recognition system based on computer vision and deep neural networks
NASA Astrophysics Data System (ADS)
Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao
2018-04-01
Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.
Some new classification methods for hyperspectral remote sensing
NASA Astrophysics Data System (ADS)
Du, Pei-jun; Chen, Yun-hao; Jones, Simon; Ferwerda, Jelle G.; Chen, Zhi-jun; Zhang, Hua-peng; Tan, Kun; Yin, Zuo-xia
2006-10-01
Hyperspectral Remote Sensing (HRS) is one of the most significant recent achievements of Earth Observation Technology. Classification is the most commonly employed processing methodology. In this paper three new hyperspectral RS image classification methods are analyzed. These methods are: Object-oriented FIRS image classification, HRS image classification based on information fusion and HSRS image classification by Back Propagation Neural Network (BPNN). OMIS FIRS image is used as the example data. Object-oriented techniques have gained popularity for RS image classification in recent years. In such method, image segmentation is used to extract the regions from the pixel information based on homogeneity criteria at first, and spectral parameters like mean vector, texture, NDVI and spatial/shape parameters like aspect ratio, convexity, solidity, roundness and orientation for each region are calculated, finally classification of the image using the region feature vectors and also using suitable classifiers such as artificial neural network (ANN). It proves that object-oriented methods can improve classification accuracy since they utilize information and features both from the point and the neighborhood, and the processing unit is a polygon (in which all pixels are homogeneous and belong to the class). HRS image classification based on information fusion, divides all bands of the image into different groups initially, and extracts features from every group according to the properties of each group. Three levels of information fusion: data level fusion, feature level fusion and decision level fusion are used to HRS image classification. Artificial Neural Network (ANN) can perform well in RS image classification. In order to promote the advances of ANN used for HIRS image classification, Back Propagation Neural Network (BPNN), the most commonly used neural network, is used to HRS image classification.
Statistical downscaling of precipitation using long short-term memory recurrent neural networks
NASA Astrophysics Data System (ADS)
Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra
2017-11-01
Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.
An improved advertising CTR prediction approach based on the fuzzy deep neural network
Gao, Shu; Li, Mingjiang
2018-01-01
Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise. PMID:29727443
An improved advertising CTR prediction approach based on the fuzzy deep neural network.
Jiang, Zilong; Gao, Shu; Li, Mingjiang
2018-01-01
Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise.
Li, Hongyi; Shi, Zhou; Sha, Jinming; Cheng, Jieliang
2006-08-01
In the present study, vegetation, soil brightness, and moisture indices were extracted from Landsat ETM remote sensing image, heat indices were extracted from MODIS land surface temperature product, and climate index and other auxiliary geographical information were selected as the input of neural network. The remote sensing eco-environmental background value of standard interest region evaluated in situ was selected as the output of neural network, and the back propagation (BP) neural network prediction model containing three layers was designed. The network was trained, and the remote sensing eco-environmental background value of Fuzhou in China was predicted by using software MATLAB. The class mapping of remote sensing eco-environmental background values based on evaluation standard showed that the total classification accuracy was 87. 8%. The method with a scheme of prediction first and classification then could provide acceptable results in accord with the regional eco-environment types.
Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case
NASA Astrophysics Data System (ADS)
Raja, R.; Marshal Anthoni, S.
2011-02-01
This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.
An industrial robot singular trajectories planning based on graphs and neural networks
NASA Astrophysics Data System (ADS)
Łęgowski, Adrian; Niezabitowski, Michał
2016-06-01
Singular trajectories are rarely used because of issues during realization. A method of planning trajectories for given set of points in task space with use of graphs and neural networks is presented. In every desired point the inverse kinematics problem is solved in order to derive all possible solutions. A graph of solutions is made. The shortest path is determined to define required nodes in joint space. Neural networks are used to define the path between these nodes.
Vukovic, Vladimir; Tabares-Velasco, Paulo Cesar; Srebric, Jelena
2010-09-01
A growing interest in security and occupant exposure to contaminants revealed a need for fast and reliable identification of contaminant sources during incidental situations. To determine potential contaminant source positions in outdoor environments, current state-of-the-art modeling methods use computational fluid dynamic simulations on parallel processors. In indoor environments, current tools match accidental contaminant distributions with cases from precomputed databases of possible concentration distributions. These methods require intensive computations in pre- and postprocessing. On the other hand, neural networks emerged as a tool for rapid concentration forecasting of outdoor environmental contaminants such as nitrogen oxides or sulfur dioxide. All of these modeling methods depend on the type of sensors used for real-time measurements of contaminant concentrations. A review of the existing sensor technologies revealed that no perfect sensor exists, but intensity of work in this area provides promising results in the near future. The main goal of the presented research study was to extend neural network modeling from the outdoor to the indoor identification of source positions, making this technology applicable to building indoor environments. The developed neural network Locator of Contaminant Sources was also used to optimize number and allocation of contaminant concentration sensors for real-time prediction of indoor contaminant source positions. Such prediction should take place within seconds after receiving real-time contaminant concentration sensor data. For the purpose of neural network training, a multizone program provided distributions of contaminant concentrations for known source positions throughout a test building. Trained networks had an output indicating contaminant source positions based on measured concentrations in different building zones. A validation case based on a real building layout and experimental data demonstrated the ability of this method to identify contaminant source positions. Future research intentions are focused on integration with real sensor networks and model improvements for much more complicated contamination scenarios.
[Research on hyperspectral remote sensing in monitoring snow contamination concentration].
Tang, Xu-guang; Liu, Dian-wei; Zhang, Bai; Du, Jia; Lei, Xiao-chun; Zeng, Li-hong; Wang, Yuan-dong; Song, Kai-shan
2011-05-01
Contaminants in the snow can be used to reflect regional and global environmental pollution caused by human activities. However, so far, the research on space-time monitoring of snow contamination concentration for a wide range or areas difficult for human to reach is very scarce. In the present paper, based on the simulated atmospheric deposition experiments, the spectroscopy technique method was applied to analyze the effect of different contamination concentration on the snow reflectance spectra. Then an evaluation of snow contamination concentration (SCC) retrieval methods was conducted using characteristic index method (SDI), principal component analysis (PCA), BP neural network and RBF neural network method, and the estimate effects of four methods were compared. The results showed that the neural network model combined with hyperspectral remote sensing data could estimate the SCC well.
Lenselink, Eelke B; Ten Dijke, Niels; Bongers, Brandon; Papadatos, George; van Vlijmen, Herman W T; Kowalczyk, Wojtek; IJzerman, Adriaan P; van Westen, Gerard J P
2017-08-14
The increase of publicly available bioactivity data in recent years has fueled and catalyzed research in chemogenomics, data mining, and modeling approaches. As a direct result, over the past few years a multitude of different methods have been reported and evaluated, such as target fishing, nearest neighbor similarity-based methods, and Quantitative Structure Activity Relationship (QSAR)-based protocols. However, such studies are typically conducted on different datasets, using different validation strategies, and different metrics. In this study, different methods were compared using one single standardized dataset obtained from ChEMBL, which is made available to the public, using standardized metrics (BEDROC and Matthews Correlation Coefficient). Specifically, the performance of Naïve Bayes, Random Forests, Support Vector Machines, Logistic Regression, and Deep Neural Networks was assessed using QSAR and proteochemometric (PCM) methods. All methods were validated using both a random split validation and a temporal validation, with the latter being a more realistic benchmark of expected prospective execution. Deep Neural Networks are the top performing classifiers, highlighting the added value of Deep Neural Networks over other more conventional methods. Moreover, the best method ('DNN_PCM') performed significantly better at almost one standard deviation higher than the mean performance. Furthermore, Multi-task and PCM implementations were shown to improve performance over single task Deep Neural Networks. Conversely, target prediction performed almost two standard deviations under the mean performance. Random Forests, Support Vector Machines, and Logistic Regression performed around mean performance. Finally, using an ensemble of DNNs, alongside additional tuning, enhanced the relative performance by another 27% (compared with unoptimized 'DNN_PCM'). Here, a standardized set to test and evaluate different machine learning algorithms in the context of multi-task learning is offered by providing the data and the protocols. Graphical Abstract .
A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks.
Alauthaman, Mohammad; Aslam, Nauman; Zhang, Li; Alasem, Rafe; Hossain, M A
2018-01-01
In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed.
Tan, Xia; Ji, Zhong; Zhang, Yadan
2018-04-25
Non-invasive continuous blood pressure monitoring can provide an important reference and guidance for doctors wishing to analyze the physiological and pathological status of patients and to prevent and diagnose cardiovascular diseases in the clinical setting. Therefore, it is very important to explore a more accurate method of non-invasive continuous blood pressure measurement. To address the shortcomings of existing blood pressure measurement models based on pulse wave transit time or pulse wave parameters, a new method of non-invasive continuous blood pressure measurement - the GA-MIV-BP neural network model - is presented. The mean impact value (MIV) method is used to select the factors that greatly influence blood pressure from the extracted pulse wave transit time and pulse wave parameters. These factors are used as inputs, and the actual blood pressure values as outputs, to train the BP neural network model. The individual parameters are then optimized using a genetic algorithm (GA) to establish the GA-MIV-BP neural network model. Bland-Altman consistency analysis indicated that the measured and predicted blood pressure values were consistent and interchangeable. Therefore, this algorithm is of great significance to promote the clinical application of a non-invasive continuous blood pressure monitoring method.
NASA Astrophysics Data System (ADS)
Wanto, Anjar; Zarlis, Muhammad; Sawaluddin; Hartama, Dedy
2017-12-01
Backpropagation is a good artificial neural network algorithm used to predict, one of which is to predict the rate of Consumer Price Index (CPI) based on the foodstuff sector. While conjugate gradient fletcher reeves is a suitable optimization method when juxtaposed with backpropagation method, because this method can shorten iteration without reducing the quality of training and testing result. Consumer Price Index (CPI) data that will be predicted to come from the Central Statistics Agency (BPS) Pematangsiantar. The results of this study will be expected to contribute to the government in making policies to improve economic growth. In this study, the data obtained will be processed by conducting training and testing with artificial neural network backpropagation by using parameter learning rate 0,01 and target error minimum that is 0.001-0,09. The training network is built with binary and bipolar sigmoid activation functions. After the results with backpropagation are obtained, it will then be optimized using the conjugate gradient fletcher reeves method by conducting the same training and testing based on 5 predefined network architectures. The result, the method used can increase the speed and accuracy result.
Dynamic decomposition of spatiotemporal neural signals
2017-01-01
Neural signals are characterized by rich temporal and spatiotemporal dynamics that reflect the organization of cortical networks. Theoretical research has shown how neural networks can operate at different dynamic ranges that correspond to specific types of information processing. Here we present a data analysis framework that uses a linearized model of these dynamic states in order to decompose the measured neural signal into a series of components that capture both rhythmic and non-rhythmic neural activity. The method is based on stochastic differential equations and Gaussian process regression. Through computer simulations and analysis of magnetoencephalographic data, we demonstrate the efficacy of the method in identifying meaningful modulations of oscillatory signals corrupted by structured temporal and spatiotemporal noise. These results suggest that the method is particularly suitable for the analysis and interpretation of complex temporal and spatiotemporal neural signals. PMID:28558039
Predicting protein complex geometries with a neural network.
Chae, Myong-Ho; Krull, Florian; Lorenzen, Stephan; Knapp, Ernst-Walter
2010-03-01
A major challenge of the protein docking problem is to define scoring functions that can distinguish near-native protein complex geometries from a large number of non-native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom-pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near-native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge-based energy functions for scoring. We show that a distance-dependent atom pair potential performs much better than a simple atom-pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge-based scoring functions such as ZDOCK 3.0, ZRANK, ITScore-PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network-based scoring function achieves a reasonable performance in rigid-body unbound docking of proteins. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
The silicon synapse or, neural net computing.
Frenger, P
1989-01-01
Recent developments have rekindled interest in the electronic neural network, a form of parallel computer architecture loosely based on the nervous system of living creatures. This paper describes the elements of neural net computers, reviews the historical milestones in their development, and lists the advantages and disadvantages of their use. Methods for software simulation of neural network systems on existing computers, as well as creation of hardware analogues, are given. The most successful applications of these techniques, involving emulation of biological system responses, are presented. The author's experiences with neural net systems are discussed.
A case for spiking neural network simulation based on configurable multiple-FPGA systems.
Yang, Shufan; Wu, Qiang; Li, Renfa
2011-09-01
Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.
[A wavelet neural network algorithm of EEG signals data compression and spikes recognition].
Zhang, Y; Liu, A; Yu, K
1999-06-01
A novel method of EEG signals compression representation and epileptiform spikes recognition based on wavelet neural network and its algorithm is presented. The wavelet network not only can compress data effectively but also can recover original signal. In addition, the characters of the spikes and the spike-slow rhythm are auto-detected from the time-frequency isoline of EEG signal. This method is well worth using in the field of the electrophysiological signal processing and time-frequency analyzing.
Low-dimensional recurrent neural network-based Kalman filter for speech enhancement.
Xia, Youshen; Wang, Jun
2015-07-01
This paper proposes a new recurrent neural network-based Kalman filter for speech enhancement, based on a noise-constrained least squares estimate. The parameters of speech signal modeled as autoregressive process are first estimated by using the proposed recurrent neural network and the speech signal is then recovered from Kalman filtering. The proposed recurrent neural network is globally asymptomatically stable to the noise-constrained estimate. Because the noise-constrained estimate has a robust performance against non-Gaussian noise, the proposed recurrent neural network-based speech enhancement algorithm can minimize the estimation error of Kalman filter parameters in non-Gaussian noise. Furthermore, having a low-dimensional model feature, the proposed neural network-based speech enhancement algorithm has a much faster speed than two existing recurrent neural networks-based speech enhancement algorithms. Simulation results show that the proposed recurrent neural network-based speech enhancement algorithm can produce a good performance with fast computation and noise reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Deep Neural Network Model for Rainfall Estimation UsingPolarimetric WSR-88DP Radar Observations
NASA Astrophysics Data System (ADS)
Tan, H.; Chandra, C. V.; Chen, H.
2016-12-01
Rainfall estimation based on radar measurements has been an important topic for a few decades. Generally, radar rainfall estimation is conducted through parametric algorisms such as reflectivity-rainfall relation (i.e., Z-R relation). On the other hand, neural networks are developed for ground rainfall estimation based on radar measurements. This nonparametric method, which takes into account of both radar observations and rainfall measurements from ground rain gauges, has been demonstrated successfully for rainfall rate estimation. However, the neural network-based rainfall estimation is limited in practice due to the model complexity and structure, data quality, as well as different rainfall microphysics. Recently, the deep learning approach has been introduced in pattern recognition and machine learning areas. Compared to traditional neural networks, the deep learning based methodologies have larger number of hidden layers and more complex structure for data representation. Through a hierarchical learning process, the high level structured information and knowledge can be extracted automatically from low level features of the data. In this paper, we introduce a novel deep neural network model for rainfall estimation based on ground polarimetric radar measurements .The model is designed to capture the complex abstractions of radar measurements at different levels using multiple layers feature identification and extraction. The abstractions at different levels can be used independently or fused with other data resource such as satellite-based rainfall products and/or topographic data to represent the rain characteristics at certain location. In particular, the WSR-88DP radar and rain gauge data collected in Dallas - Fort Worth Metroplex and Florida are used extensively to train the model, and for demonstration purposes. Quantitative evaluation of the deep neural network based rainfall products will also be presented, which is based on an independent rain gauge network.
Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy.
Nouri, S; Hosseini Pooya, S M; Soltani Nabipour, J
2017-03-01
The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients. This study evaluates the accuracy of some artificial intelligence methods including neural network and those of combination with genetic algorithm as well as particle swarm optimization (PSO) estimating tumor positions in real-time radiotherapy. One hundred recorded signals of three external markers were used as input data. The signals from 3 markers thorough 10 breathing cycles of a patient treated via a cyber-knife for a lung tumor were used as data input. Then, neural network method and its combination with genetic or PSO algorithms were applied determining the tumor locations using MATLAB© software program. The accuracies were obtained 0.8%, 12% and 14% in neural network, genetic and particle swarm optimization algorithms, respectively. The internal target volume (ITV) should be determined based on the applied neural network algorithm on training steps.
Detecting atrial fibrillation by deep convolutional neural networks.
Xia, Yong; Wulan, Naren; Wang, Kuanquan; Zhang, Henggui
2018-02-01
Atrial fibrillation (AF) is the most common cardiac arrhythmia. The incidence of AF increases with age, causing high risks of stroke and increased morbidity and mortality. Efficient and accurate diagnosis of AF based on the ECG is valuable in clinical settings and remains challenging. In this paper, we proposed a novel method with high reliability and accuracy for AF detection via deep learning. The short-term Fourier transform (STFT) and stationary wavelet transform (SWT) were used to analyze ECG segments to obtain two-dimensional (2-D) matrix input suitable for deep convolutional neural networks. Then, two different deep convolutional neural network models corresponding to STFT output and SWT output were developed. Our new method did not require detection of P or R peaks, nor feature designs for classification, in contrast to existing algorithms. Finally, the performances of the two models were evaluated and compared with those of existing algorithms. Our proposed method demonstrated favorable performances on ECG segments as short as 5 s. The deep convolutional neural network using input generated by STFT, presented a sensitivity of 98.34%, specificity of 98.24% and accuracy of 98.29%. For the deep convolutional neural network using input generated by SWT, a sensitivity of 98.79%, specificity of 97.87% and accuracy of 98.63% was achieved. The proposed method using deep convolutional neural networks shows high sensitivity, specificity and accuracy, and, therefore, is a valuable tool for AF detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prediction of U-Mo dispersion nuclear fuels with Al-Si alloy using artificial neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susmikanti, Mike, E-mail: mike@batan.go.id; Sulistyo, Jos, E-mail: soj@batan.go.id
2014-09-30
Dispersion nuclear fuels, consisting of U-Mo particles dispersed in an Al-Si matrix, are being developed as fuel for research reactors. The equilibrium relationship for a mixture component can be expressed in the phase diagram. It is important to analyze whether a mixture component is in equilibrium phase or another phase. The purpose of this research it is needed to built the model of the phase diagram, so the mixture component is in the stable or melting condition. Artificial neural network (ANN) is a modeling tool for processes involving multivariable non-linear relationships. The objective of the present work is to developmore » code based on artificial neural network models of system equilibrium relationship of U-Mo in Al-Si matrix. This model can be used for prediction of type of resulting mixture, and whether the point is on the equilibrium phase or in another phase region. The equilibrium model data for prediction and modeling generated from experimentally data. The artificial neural network with resilient backpropagation method was chosen to predict the dispersion of nuclear fuels U-Mo in Al-Si matrix. This developed code was built with some function in MATLAB. For simulations using ANN, the Levenberg-Marquardt method was also used for optimization. The artificial neural network is able to predict the equilibrium phase or in the phase region. The develop code based on artificial neural network models was built, for analyze equilibrium relationship of U-Mo in Al-Si matrix.« less
NASA Astrophysics Data System (ADS)
Qian, Xiaoshan
2018-01-01
The traditional model of evaporation process parameters have continuity and cumulative characteristics of the prediction error larger issues, based on the basis of the process proposed an adaptive particle swarm neural network forecasting method parameters established on the autoregressive moving average (ARMA) error correction procedure compensated prediction model to predict the results of the neural network to improve prediction accuracy. Taking a alumina plant evaporation process to analyze production data validation, and compared with the traditional model, the new model prediction accuracy greatly improved, can be used to predict the dynamic process of evaporation of sodium aluminate solution components.
Using Neural Networks in Decision Making for a Reconfigurable Electro Mechanical Actuator (EMA)
NASA Technical Reports Server (NTRS)
Latino, Carl D.
2001-01-01
The objectives of this project were to demonstrate applicability and advantages of a neural network approach for evaluating the performance of an electro-mechanical actuator (EMA). The EMA in question was intended for the X-37 Advanced Technology Vehicle. It will have redundant components for safety and reliability. The neural networks for this application are to monitor the operation of the redundant electronics that control the actuator in real time and decide on the operating configuration. The system we proposed consists of the actuator, sensors, control circuitry and dedicated (embedded) processors. The main purpose of the study was to develop suitable hardware and neural network capable of allowing real time reconfiguration decisions to be made. This approach was to be compared to other methods such as fuzzy logic and knowledge based systems considered for the same application. Over the course of the project a more general objective was the identification of the other neural network applications and the education of interested NASA personnel on the topic of Neural Networks.
NASA Astrophysics Data System (ADS)
Zhang, Shijun; Jing, Zhongliang; Li, Jianxun
2005-01-01
The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.
Biologically-based signal processing system applied to noise removal for signal extraction
Fu, Chi Yung; Petrich, Loren I.
2004-07-13
The method and system described herein use a biologically-based signal processing system for noise removal for signal extraction. A wavelet transform may be used in conjunction with a neural network to imitate a biological system. The neural network may be trained using ideal data derived from physical principles or noiseless signals to determine to remove noise from the signal.
A novel method for 3D measurement of RFID multi-tag network based on matching vision and wavelet
NASA Astrophysics Data System (ADS)
Zhuang, Xiao; Yu, Xiaolei; Zhao, Zhimin; Wang, Donghua; Zhang, Wenjie; Liu, Zhenlu; Lu, Dongsheng; Dong, Dingbang
2018-07-01
In the field of radio frequency identification (RFID), the three-dimensional (3D) distribution of RFID multi-tag networks has a significant impact on their reading performance. At the same time, in order to realize the anti-collision of RFID multi-tag networks in practical engineering applications, the 3D distribution of RFID multi-tag networks must be measured. In this paper, a novel method for the 3D measurement of RFID multi-tag networks is proposed. A dual-CCD system (vertical and horizontal cameras) is used to obtain images of RFID multi-tag networks from different angles. Then, the wavelet threshold denoising method is used to remove noise in the obtained images. The template matching method is used to determine the two-dimensional coordinates and vertical coordinate of each tag. The 3D coordinates of each tag are obtained subsequently. Finally, a model of the nonlinear relation between the 3D coordinate distribution of the RFID multi-tag network and the corresponding reading distance is established using the wavelet neural network. The experiment results show that the average prediction relative error is 0.71% and the time cost is 2.17 s. The values of the average prediction relative error and time cost are smaller than those of the particle swarm optimization neural network and genetic algorithm–back propagation neural network. The time cost of the wavelet neural network is about 1% of that of the other two methods. The method proposed in this paper has a smaller relative error. The proposed method can improve the real-time performance of RFID multi-tag networks and the overall dynamic performance of multi-tag networks.
NASA Technical Reports Server (NTRS)
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Wind tunnels use scale models to characterize aerodynamic coefficients, Wind tunnel testing can be slow and costly due to high personnel overhead and intensive power utilization. Although manual curve fitting can be done, it is highly efficient to use a neural network to define the complex relationship between variables. Numerical simulation of complex vehicles on the wide range of conditions required for flight simulation requires static and dynamic data. Static data at low Mach numbers and angles of attack may be obtained with simpler Euler codes. Static data of stalled vehicles where zones of flow separation are usually present at higher angles of attack require Navier-Stokes simulations which are costly due to the large processing time required to attain convergence. Preliminary dynamic data may be obtained with simpler methods based on correlations and vortex methods; however, accurate prediction of the dynamic coefficients requires complex and costly numerical simulations. A reliable and fast method of predicting complex aerodynamic coefficients for flight simulation I'S presented using a neural network. The training data for the neural network are derived from numerical simulations and wind-tunnel experiments. The aerodynamic coefficients are modeled as functions of the flow characteristics and the control surfaces of the vehicle. The basic coefficients of lift, drag and pitching moment are expressed as functions of angles of attack and Mach number. The modeled and training aerodynamic coefficients show good agreement. This method shows excellent potential for rapid development of aerodynamic models for flight simulation. Genetic Algorithms (GA) are used to optimize a previously built Artificial Neural Network (ANN) that reliably predicts aerodynamic coefficients. Results indicate that the GA provided an efficient method of optimizing the ANN model to predict aerodynamic coefficients. The reliability of the ANN using the GA includes prediction of aerodynamic coefficients to an accuracy of 110% . In our problem, we would like to get an optimized neural network architecture and minimum data set. This has been accomplished within 500 training cycles of a neural network. After removing training pairs (outliers), the GA has produced much better results. The neural network constructed is a feed forward neural network with a back propagation learning mechanism. The main goal has been to free the network design process from constraints of human biases, and to discover better forms of neural network architectures. The automation of the network architecture search by genetic algorithms seems to have been the best way to achieve this goal.
Deep neural network-based bandwidth enhancement of photoacoustic data.
Gutta, Sreedevi; Kadimesetty, Venkata Suryanarayana; Kalva, Sandeep Kumar; Pramanik, Manojit; Ganapathy, Sriram; Yalavarthy, Phaneendra K
2017-11-01
Photoacoustic (PA) signals collected at the boundary of tissue are always band-limited. A deep neural network was proposed to enhance the bandwidth (BW) of the detected PA signal, thereby improving the quantitative accuracy of the reconstructed PA images. A least square-based deconvolution method that utilizes the Tikhonov regularization framework was used for comparison with the proposed network. The proposed method was evaluated using both numerical and experimental data. The results indicate that the proposed method was capable of enhancing the BW of the detected PA signal, which inturn improves the contrast recovery and quality of reconstructed PA images without adding any significant computational burden. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Lin, Chin-Teng; Wu, Rui-Cheng; Chang, Jyh-Yeong; Liang, Sheng-Fu
2004-02-01
In this paper, a new technique for the Chinese text-to-speech (TTS) system is proposed. Our major effort focuses on the prosodic information generation. New methodologies for constructing fuzzy rules in a prosodic model simulating human's pronouncing rules are developed. The proposed Recurrent Fuzzy Neural Network (RFNN) is a multilayer recurrent neural network (RNN) which integrates a Self-cOnstructing Neural Fuzzy Inference Network (SONFIN) into a recurrent connectionist structure. The RFNN can be functionally divided into two parts. The first part adopts the SONFIN as a prosodic model to explore the relationship between high-level linguistic features and prosodic information based on fuzzy inference rules. As compared to conventional neural networks, the SONFIN can always construct itself with an economic network size in high learning speed. The second part employs a five-layer network to generate all prosodic parameters by directly using the prosodic fuzzy rules inferred from the first part as well as other important features of syllables. The TTS system combined with the proposed method can behave not only sandhi rules but also the other prosodic phenomena existing in the traditional TTS systems. Moreover, the proposed scheme can even find out some new rules about prosodic phrase structure. The performance of the proposed RFNN-based prosodic model is verified by imbedding it into a Chinese TTS system with a Chinese monosyllable database based on the time-domain pitch synchronous overlap add (TD-PSOLA) method. Our experimental results show that the proposed RFNN can generate proper prosodic parameters including pitch means, pitch shapes, maximum energy levels, syllable duration, and pause duration. Some synthetic sounds are online available for demonstration.
An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction
Li, Yiyang; Jin, Weiqi; Zhu, Jin; Zhang, Xu; Li, Shuo
2018-01-01
The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods. PMID:29342857
An Adaptive Deghosting Method in Neural Network-Based Infrared Detectors Nonuniformity Correction.
Li, Yiyang; Jin, Weiqi; Zhu, Jin; Zhang, Xu; Li, Shuo
2018-01-13
The problems of the neural network-based nonuniformity correction algorithm for infrared focal plane arrays mainly concern slow convergence speed and ghosting artifacts. In general, the more stringent the inhibition of ghosting, the slower the convergence speed. The factors that affect these two problems are the estimated desired image and the learning rate. In this paper, we propose a learning rate rule that combines adaptive threshold edge detection and a temporal gate. Through the noise estimation algorithm, the adaptive spatial threshold is related to the residual nonuniformity noise in the corrected image. The proposed learning rate is used to effectively and stably suppress ghosting artifacts without slowing down the convergence speed. The performance of the proposed technique was thoroughly studied with infrared image sequences with both simulated nonuniformity and real nonuniformity. The results show that the deghosting performance of the proposed method is superior to that of other neural network-based nonuniformity correction algorithms and that the convergence speed is equivalent to the tested deghosting methods.
Chen, Zhijia; Zhu, Yuanchang; Di, Yanqiang; Feng, Shaochong
2015-01-01
In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands. PMID:25691896
Image and Video Compression with VLSI Neural Networks
NASA Technical Reports Server (NTRS)
Fang, W.; Sheu, B.
1993-01-01
An advanced motion-compensated predictive video compression system based on artificial neural networks has been developed to effectively eliminate the temporal and spatial redundancy of video image sequences and thus reduce the bandwidth and storage required for the transmission and recording of the video signal. The VLSI neuroprocessor for high-speed high-ratio image compression based upon a self-organization network and the conventional algorithm for vector quantization are compared. The proposed method is quite efficient and can achieve near-optimal results.
Hansen, J V; Nelson, R D
1997-01-01
Ever since the initial planning for the 1997 Utah legislative session, neural-network forecasting techniques have provided valuable insights for analysts forecasting tax revenues. These revenue estimates are critically important since agency budgets, support for education, and improvements to infrastructure all depend on their accuracy. Underforecasting generates windfalls that concern taxpayers, whereas overforecasting produces budget shortfalls that cause inadequately funded commitments. The pattern finding ability of neural networks gives insightful and alternative views of the seasonal and cyclical components commonly found in economic time series data. Two applications of neural networks to revenue forecasting clearly demonstrate how these models complement traditional time series techniques. In the first, preoccupation with a potential downturn in the economy distracts analysis based on traditional time series methods so that it overlooks an emerging new phenomenon in the data. In this case, neural networks identify the new pattern that then allows modification of the time series models and finally gives more accurate forecasts. In the second application, data structure found by traditional statistical tools allows analysts to provide neural networks with important information that the networks then use to create more accurate models. In summary, for the Utah revenue outlook, the insights that result from a portfolio of forecasts that includes neural networks exceeds the understanding generated from strictly statistical forecasting techniques. In this case, the synergy clearly results in the whole of the portfolio of forecasts being more accurate than the sum of the individual parts.
NASA Astrophysics Data System (ADS)
Kim, Nakwan
Utilizing the universal approximation property of neural networks, we develop several novel approaches to neural network-based adaptive output feedback control of nonlinear systems, and illustrate these approaches for several flight control applications. In particular, we address the problem of non-affine systems and eliminate the fixed point assumption present in earlier work. All of the stability proofs are carried out in a form that eliminates an algebraic loop in the neural network implementation. An approximate input/output feedback linearizing controller is augmented with a neural network using input/output sequences of the uncertain system. These approaches permit adaptation to both parametric uncertainty and unmodeled dynamics. All physical systems also have control position and rate limits, which may either deteriorate performance or cause instability for a sufficiently high control bandwidth. Here we apply a method for protecting an adaptive process from the effects of input saturation and time delays, known as "pseudo control hedging". This method was originally developed for the state feedback case, and we provide a stability analysis that extends its domain of applicability to the case of output feedback. The approach is illustrated by the design of a pitch-attitude flight control system for a linearized model of an R-50 experimental helicopter, and by the design of a pitch-rate control system for a 58-state model of a flexible aircraft consisting of rigid body dynamics coupled with actuator and flexible modes. A new approach to augmentation of an existing linear controller is introduced. It is especially useful when there is limited information concerning the plant model, and the existing controller. The approach is applied to the design of an adaptive autopilot for a guided munition. Design of a neural network adaptive control that ensures asymptotically stable tracking performance is also addressed.
NASA Astrophysics Data System (ADS)
Ichinohe, Y.; Yamada, S.; Miyazaki, N.; Saito, S.
2018-04-01
We present data preprocessing based on an artificial neural network to estimate the parameters of the X-ray emission spectra of a single-temperature thermal plasma. The method finds appropriate parameters close to the global optimum. The neural network is designed to learn the parameters of the thermal plasma (temperature, abundance, normalization and redshift) of the input spectra. After training using 9000 simulated X-ray spectra, the network has grown to predict all the unknown parameters with uncertainties of about a few per cent. The performance dependence on the network structure has been studied. We applied the neural network to an actual high-resolution spectrum obtained with Hitomi. The predicted plasma parameters agree with the known best-fitting parameters of the Perseus cluster within uncertainties of ≲10 per cent. The result shows that neural networks trained by simulated data might possibly be used to extract a feature built in the data. This would reduce human-intensive preprocessing costs before detailed spectral analysis, and would help us make the best use of the large quantities of spectral data that will be available in the coming decades.
Analysis of Mars Express Ionogram Data via a Multilayer Artificial Neural Network
NASA Astrophysics Data System (ADS)
Wilkinson, Collin; Potter, Arron; Palmer, Greg; Duru, Firdevs
2017-01-01
Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), which is a low frequency radar on the Mars Express (MEX) Spacecraft, can provide electron plasma densities of the ionosphere local at the spacecraft in addition to densities obtained with remote sounding. The local electron densities are obtained, with a standard error of about 2%, by measuring the electron plasma frequencies with an electronic ruler on ionograms, which are plots of echo intensity as a function of time and frequency. This is done by using a tool created at the University of Iowa (Duru et al., 2008). This approach is time consuming due to the rapid accumulation of ionogram data. In 2013, results from an algorithm-based analysis of ionograms were reported by Andrews et al., but this method did not improve the human error. In the interest of fast, accurate data interpretation, a neural network (NN) has been created based on the Fast Artificial Neural Network C libraries. This NN consists of artificial neurons, with 4 layers of 12960, 10000, 1000 and 1 neuron(s) each, consecutively. This network was trained using 40 iterations of 1000 orbits. The algorithm-based method of Andrews et al. had a standard error of 40%, while the neural network has achieved error on the order of 20%.
Toyota Prius HEV neurocontrol and diagnostics.
Prokhorov, Danil V
2008-01-01
A neural network controller for improved fuel efficiency of the Toyota Prius hybrid electric vehicle is proposed. A new method to detect and mitigate a battery fault is also presented. The approach is based on recurrent neural networks and includes the extended Kalman filter. The proposed approach is quite general and applicable to other control systems.
Sharma, Harshita; Zerbe, Norman; Klempert, Iris; Hellwich, Olaf; Hufnagl, Peter
2017-11-01
Deep learning using convolutional neural networks is an actively emerging field in histological image analysis. This study explores deep learning methods for computer-aided classification in H&E stained histopathological whole slide images of gastric carcinoma. An introductory convolutional neural network architecture is proposed for two computerized applications, namely, cancer classification based on immunohistochemical response and necrosis detection based on the existence of tumor necrosis in the tissue. Classification performance of the developed deep learning approach is quantitatively compared with traditional image analysis methods in digital histopathology requiring prior computation of handcrafted features, such as statistical measures using gray level co-occurrence matrix, Gabor filter-bank responses, LBP histograms, gray histograms, HSV histograms and RGB histograms, followed by random forest machine learning. Additionally, the widely known AlexNet deep convolutional framework is comparatively analyzed for the corresponding classification problems. The proposed convolutional neural network architecture reports favorable results, with an overall classification accuracy of 0.6990 for cancer classification and 0.8144 for necrosis detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recurrent-neural-network-based Boolean factor analysis and its application to word clustering.
Frolov, Alexander A; Husek, Dusan; Polyakov, Pavel Yu
2009-07-01
The objective of this paper is to introduce a neural-network-based algorithm for word clustering as an extension of the neural-network-based Boolean factor analysis algorithm (Frolov , 2007). It is shown that this extended algorithm supports even the more complex model of signals that are supposed to be related to textual documents. It is hypothesized that every topic in textual data is characterized by a set of words which coherently appear in documents dedicated to a given topic. The appearance of each word in a document is coded by the activity of a particular neuron. In accordance with the Hebbian learning rule implemented in the network, sets of coherently appearing words (treated as factors) create tightly connected groups of neurons, hence, revealing them as attractors of the network dynamics. The found factors are eliminated from the network memory by the Hebbian unlearning rule facilitating the search of other factors. Topics related to the found sets of words can be identified based on the words' semantics. To make the method complete, a special technique based on a Bayesian procedure has been developed for the following purposes: first, to provide a complete description of factors in terms of component probability, and second, to enhance the accuracy of classification of signals to determine whether it contains the factor. Since it is assumed that every word may possibly contribute to several topics, the proposed method might be related to the method of fuzzy clustering. In this paper, we show that the results of Boolean factor analysis and fuzzy clustering are not contradictory, but complementary. To demonstrate the capabilities of this attempt, the method is applied to two types of textual data on neural networks in two different languages. The obtained topics and corresponding words are at a good level of agreement despite the fact that identical topics in Russian and English conferences contain different sets of keywords.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987
The image recognition based on neural network and Bayesian decision
NASA Astrophysics Data System (ADS)
Wang, Chugege
2018-04-01
The artificial neural network began in 1940, which is an important part of artificial intelligence. At present, it has become a hot topic in the fields of neuroscience, computer science, brain science, mathematics, and psychology. Thomas Bayes firstly reported the Bayesian theory in 1763. After the development in the twentieth century, it has been widespread in all areas of statistics. In recent years, due to the solution of the problem of high-dimensional integral calculation, Bayesian Statistics has been improved theoretically, which solved many problems that cannot be solved by classical statistics and is also applied to the interdisciplinary fields. In this paper, the related concepts and principles of the artificial neural network are introduced. It also summarizes the basic content and principle of Bayesian Statistics, and combines the artificial neural network technology and Bayesian decision theory and implement them in all aspects of image recognition, such as enhanced face detection method based on neural network and Bayesian decision, as well as the image classification based on the Bayesian decision. It can be seen that the combination of artificial intelligence and statistical algorithms has always been the hot research topic.
Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics.
Sokoloski, Sacha
2017-09-01
In order to interact intelligently with objects in the world, animals must first transform neural population responses into estimates of the dynamic, unknown stimuli that caused them. The Bayesian solution to this problem is known as a Bayes filter, which applies Bayes' rule to combine population responses with the predictions of an internal model. The internal model of the Bayes filter is based on the true stimulus dynamics, and in this note, we present a method for training a theoretical neural circuit to approximately implement a Bayes filter when the stimulus dynamics are unknown. To do this we use the inferential properties of linear probabilistic population codes to compute Bayes' rule and train a neural network to compute approximate predictions by the method of maximum likelihood. In particular, we perform stochastic gradient descent on the negative log-likelihood of the neural network parameters with a novel approximation of the gradient. We demonstrate our methods on a finite-state, a linear, and a nonlinear filtering problem and show how the hidden layer of the neural network develops tuning curves consistent with findings in experimental neuroscience.
Subsonic Aircraft With Regression and Neural-Network Approximators Designed
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.
2004-01-01
At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics, Inc., Mountainview, CA), the regression training required a fraction of a CPU second, whereas neural network training was between 1 and 9 min, as given. For a single analysis cycle, the 3-sec CPU time required by the FLOPS code was reduced to milliseconds by the approximators. For design calculations, the time with the FLOPS code was 34 min. It was reduced to 2 sec with the regression method and to 4 min by the neural network technique. The performance of the regression and neural network methods was found to be satisfactory for the analysis and design optimization of the subsonic aircraft.
Cai, Congbo; Wang, Chao; Zeng, Yiqing; Cai, Shuhui; Liang, Dong; Wu, Yawen; Chen, Zhong; Ding, Xinghao; Zhong, Jianhui
2018-04-24
An end-to-end deep convolutional neural network (CNN) based on deep residual network (ResNet) was proposed to efficiently reconstruct reliable T 2 mapping from single-shot overlapping-echo detachment (OLED) planar imaging. The training dataset was obtained from simulations that were carried out on SPROM (Simulation with PRoduct Operator Matrix) software developed by our group. The relationship between the original OLED image containing two echo signals and the corresponding T 2 mapping was learned by ResNet training. After the ResNet was trained, it was applied to reconstruct the T 2 mapping from simulation and in vivo human brain data. Although the ResNet was trained entirely on simulated data, the trained network was generalized well to real human brain data. The results from simulation and in vivo human brain experiments show that the proposed method significantly outperforms the echo-detachment-based method. Reliable T 2 mapping with higher accuracy is achieved within 30 ms after the network has been trained, while the echo-detachment-based OLED reconstruction method took approximately 2 min. The proposed method will facilitate real-time dynamic and quantitative MR imaging via OLED sequence, and deep convolutional neural network has the potential to reconstruct maps from complex MRI sequences efficiently. © 2018 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Radziszewski, Kacper
2017-10-01
The following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital. During the experiment, as an input training data set, five local geometry parameters combined has given the best results: Theta, Pi, Rho in spherical coordinate system based on the capital volume centroid, followed by Z value of the Cartesian coordinate system and a distance from vertical planes created based on the capital symmetry. Additionally during the experiment, artificial neural network hidden layers optimal count and structure was found, giving results of the error below 0.2% for the mentioned before input parameters. Once successfully trained artificial network, was able to mimic the details composition on any other geometry type given. Despite of calculating the transformed geometry locally and separately for each of the thousands of surface points, system could create visually attractive and diverse, complex patterns. Designed tool, based on the supervised learning method of machine learning, gives possibility of generating new architectural forms- free of the designer’s imagination bounds. Implementing the infinitely broad computational methods of machine learning, or Artificial Intelligence in general, not only could accelerate and simplify the design process, but give an opportunity to explore never seen before, unpredictable forms or everyday architectural practice solutions.
A patch-based convolutional neural network for remote sensing image classification.
Sharma, Atharva; Liu, Xiuwen; Yang, Xiaojun; Shi, Di
2017-11-01
Availability of accurate land cover information over large areas is essential to the global environment sustainability; digital classification using medium-resolution remote sensing data would provide an effective method to generate the required land cover information. However, low accuracy of existing per-pixel based classification methods for medium-resolution data is a fundamental limiting factor. While convolutional neural networks (CNNs) with deep layers have achieved unprecedented improvements in object recognition applications that rely on fine image structures, they cannot be applied directly to medium-resolution data due to lack of such fine structures. In this paper, considering the spatial relation of a pixel to its neighborhood, we propose a new deep patch-based CNN system tailored for medium-resolution remote sensing data. The system is designed by incorporating distinctive characteristics of medium-resolution data; in particular, the system computes patch-based samples from multidimensional top of atmosphere reflectance data. With a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed new system has outperformed pixel-based neural network, pixel-based CNN and patch-based neural network by 24.36%, 24.23% and 11.52%, respectively, in overall classification accuracy. By combining the proposed deep CNN and the huge collection of medium-resolution remote sensing data, we believe that much more accurate land cover datasets can be produced over large areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Benediktsson, J. A.; Swain, P. H.; Ersoy, O. K.
1993-01-01
Application of neural networks to classification of remote sensing data is discussed. Conventional two-layer backpropagation is found to give good results in classification of remote sensing data but is not efficient in training. A more efficient variant, based on conjugate-gradient optimization, is used for classification of multisource remote sensing and geographic data and very-high-dimensional data. The conjugate-gradient neural networks give excellent performance in classification of multisource data, but do not compare as well with statistical methods in classification of very-high-dimentional data.
EEG Artifact Removal Using a Wavelet Neural Network
NASA Technical Reports Server (NTRS)
Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom
2011-01-01
!n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.
Neural network-based run-to-run controller using exposure and resist thickness adjustment
NASA Astrophysics Data System (ADS)
Geary, Shane; Barry, Ronan
2003-06-01
This paper describes the development of a run-to-run control algorithm using a feedforward neural network, trained using the backpropagation training method. The algorithm is used to predict the critical dimension of the next lot using previous lot information. It is compared to a common prediction algorithm - the exponentially weighted moving average (EWMA) and is shown to give superior prediction performance in simulations. The manufacturing implementation of the final neural network showed significantly improved process capability when compared to the case where no run-to-run control was utilised.
International experience on the use of artificial neural networks in gastroenterology.
Grossi, E; Mancini, A; Buscema, M
2007-03-01
In this paper, we reconsider the scientific background for the use of artificial intelligence tools in medicine. A review of some recent significant papers shows that artificial neural networks, the more advanced and effective artificial intelligence technique, can improve the classification accuracy and survival prediction of a number of gastrointestinal diseases. We discuss the 'added value' the use of artificial neural networks-based tools can bring in the field of gastroenterology, both at research and clinical application level, when compared with traditional statistical or clinical-pathological methods.
Robustness of a distributed neural network controller for locomotion in a hexapod robot
NASA Technical Reports Server (NTRS)
Chiel, Hillel J.; Beer, Randall D.; Quinn, Roger D.; Espenschied, Kenneth S.
1992-01-01
A distributed neural-network controller for locomotion, based on insect neurobiology, has been used to control a hexapod robot. How robust is this controller? Disabling any single sensor, effector, or central component did not prevent the robot from walking. Furthermore, statically stable gaits could be established using either sensor input or central connections. Thus, a complex interplay between central neural elements and sensor inputs is responsible for the robustness of the controller and its ability to generate a continuous range of gaits. These results suggest that biologically inspired neural-network controllers may be a robust method for robotic control.
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Hemmat Esfe, Mohammad; Abedini, Ehsan; Teimouri, Hamid
2017-03-01
The current paper first presents an empirical correlation based on experimental results for estimating thermal conductivity enhancement of MgO-water nanofluid using curve fitting method. Then, artificial neural networks (ANNs) with various numbers of neurons have been assessed by considering temperature and MgO volume fraction as the inputs variables and thermal conductivity enhancement as the output variable to select the most appropriate and optimized network. Results indicated that the network with 7 neurons had minimum error. Eventually, the output of artificial neural network was compared with the results of the proposed empirical correlation and those of the experiments. Comparisons revealed that ANN modeling was more accurate than curve-fitting method in the predicting the thermal conductivity enhancement of the nanofluid.
Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour
2012-09-01
In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Landslide Susceptibility Index Determination Using Aritificial Neural Network
NASA Astrophysics Data System (ADS)
Kawabata, D.; Bandibas, J.; Urai, M.
2004-12-01
The occurrence of landslide is the result of the interaction of complex and diverse environmental factors. The geomorphic features, rock types and geologic structure are especially important base factors of the landslide occurrence. Generating landslide susceptibility index by defining the relationship between landslide occurrence and that base factors using conventional mathematical and statistical methods is very difficult and inaccurate. This study focuses on generating landslide susceptibility index using artificial neural networks in Southern Japanese Alps. The training data are geomorphic (e.g. altitude, slope and aspect) and geologic parameters (e.g. rock type, distance from geologic boundary and geologic dip-strike angle) and landslides. Artificial neural network structure and training scheme are formulated to generate the index. Data from areas with and without landslide occurrences are used to train the network. The network is trained to output 1 when the input data are from areas with landslides and 0 when no landslide occurred. The trained network generates an output ranging from 0 to 1 reflecting the possibility of landslide occurrence based on the inputted data. Output values nearer to 1 means higher possibility of landslide occurrence. The artificial neural network model is incorporated into the GIS software to generate a landslide susceptibility map.
Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo
2015-07-01
Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.
Forecasting the short-term passenger flow on high-speed railway with neural networks.
Xie, Mei-Quan; Li, Xia-Miao; Zhou, Wen-Liang; Fu, Yan-Bing
2014-01-01
Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD) matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway.
Modeling and Computing of Stock Index Forecasting Based on Neural Network and Markov Chain
Dai, Yonghui; Han, Dongmei; Dai, Weihui
2014-01-01
The stock index reflects the fluctuation of the stock market. For a long time, there have been a lot of researches on the forecast of stock index. However, the traditional method is limited to achieving an ideal precision in the dynamic market due to the influences of many factors such as the economic situation, policy changes, and emergency events. Therefore, the approach based on adaptive modeling and conditional probability transfer causes the new attention of researchers. This paper presents a new forecast method by the combination of improved back-propagation (BP) neural network and Markov chain, as well as its modeling and computing technology. This method includes initial forecasting by improved BP neural network, division of Markov state region, computing of the state transition probability matrix, and the prediction adjustment. Results of the empirical study show that this method can achieve high accuracy in the stock index prediction, and it could provide a good reference for the investment in stock market. PMID:24782659
Application of machine learning methods for traffic signs recognition
NASA Astrophysics Data System (ADS)
Filatov, D. V.; Ignatev, K. V.; Deviatkin, A. V.; Serykh, E. V.
2018-02-01
This paper focuses on solving a relevant and pressing safety issue on intercity roads. Two approaches were considered for solving the problem of traffic signs recognition; the approaches involved neural networks to analyze images obtained from a camera in the real-time mode. The first approach is based on a sequential image processing. At the initial stage, with the help of color filters and morphological operations (dilatation and erosion), the area containing the traffic sign is located on the image, then the selected and scaled fragment of the image is analyzed using a feedforward neural network to determine the meaning of the found traffic sign. Learning of the neural network in this approach is carried out using a backpropagation method. The second approach involves convolution neural networks at both stages, i.e. when searching and selecting the area of the image containing the traffic sign, and when determining its meaning. Learning of the neural network in the second approach is carried out using the intersection over union function and a loss function. For neural networks to learn and the proposed algorithms to be tested, a series of videos from a dash cam were used that were shot under various weather and illumination conditions. As a result, the proposed approaches for traffic signs recognition were analyzed and compared by key indicators such as recognition rate percentage and the complexity of neural networks’ learning process.
Chinese Sentence Classification Based on Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Gu, Chengwei; Wu, Ming; Zhang, Chuang
2017-10-01
Sentence classification is one of the significant issues in Natural Language Processing (NLP). Feature extraction is often regarded as the key point for natural language processing. Traditional ways based on machine learning can not take high level features into consideration, such as Naive Bayesian Model. The neural network for sentence classification can make use of contextual information to achieve greater results in sentence classification tasks. In this paper, we focus on classifying Chinese sentences. And the most important is that we post a novel architecture of Convolutional Neural Network (CNN) to apply on Chinese sentence classification. In particular, most of the previous methods often use softmax classifier for prediction, we embed a linear support vector machine to substitute softmax in the deep neural network model, minimizing a margin-based loss to get a better result. And we use tanh as an activation function, instead of ReLU. The CNN model improve the result of Chinese sentence classification tasks. Experimental results on the Chinese news title database validate the effectiveness of our model.
Semi-Supervised Recurrent Neural Network for Adverse Drug Reaction mention extraction.
Gupta, Shashank; Pawar, Sachin; Ramrakhiyani, Nitin; Palshikar, Girish Keshav; Varma, Vasudeva
2018-06-13
Social media is a useful platform to share health-related information due to its vast reach. This makes it a good candidate for public-health monitoring tasks, specifically for pharmacovigilance. We study the problem of extraction of Adverse-Drug-Reaction (ADR) mentions from social media, particularly from Twitter. Medical information extraction from social media is challenging, mainly due to short and highly informal nature of text, as compared to more technical and formal medical reports. Current methods in ADR mention extraction rely on supervised learning methods, which suffer from labeled data scarcity problem. The state-of-the-art method uses deep neural networks, specifically a class of Recurrent Neural Network (RNN) which is Long-Short-Term-Memory network (LSTM). Deep neural networks, due to their large number of free parameters rely heavily on large annotated corpora for learning the end task. But in the real-world, it is hard to get large labeled data, mainly due to the heavy cost associated with the manual annotation. To this end, we propose a novel semi-supervised learning based RNN model, which can leverage unlabeled data also present in abundance on social media. Through experiments we demonstrate the effectiveness of our method, achieving state-of-the-art performance in ADR mention extraction. In this study, we tackle the problem of labeled data scarcity for Adverse Drug Reaction mention extraction from social media and propose a novel semi-supervised learning based method which can leverage large unlabeled corpus available in abundance on the web. Through empirical study, we demonstrate that our proposed method outperforms fully supervised learning based baseline which relies on large manually annotated corpus for a good performance.
Sample selection via angular distance in the space of the arguments of an artificial neural network
NASA Astrophysics Data System (ADS)
Fernández Jaramillo, J. M.; Mayerle, R.
2018-05-01
In the construction of an artificial neural network (ANN) a proper data splitting of the available samples plays a major role in the training process. This selection of subsets for training, testing and validation affects the generalization ability of the neural network. Also the number of samples has an impact in the time required for the design of the ANN and the training. This paper introduces an efficient and simple method for reducing the set of samples used for training a neural network. The method reduces the required time to calculate the network coefficients, while keeping the diversity and avoiding overtraining the ANN due the presence of similar samples. The proposed method is based on the calculation of the angle between two vectors, each one representing one input of the neural network. When the angle formed among samples is smaller than a defined threshold only one input is accepted for the training. The accepted inputs are scattered throughout the sample space. Tidal records are used to demonstrate the proposed method. The results of a cross-validation show that with few inputs the quality of the outputs is not accurate and depends on the selection of the first sample, but as the number of inputs increases the accuracy is improved and differences among the scenarios with a different starting sample have and important reduction. A comparison with the K-means clustering algorithm shows that for this application the proposed method with a smaller number of samples is producing a more accurate network.
Application of General Regression Neural Network to the Prediction of LOD Change
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Hong; Wang, Qi-Jie; Zhu, Jian-Jun; Zhang, Hao
2012-01-01
Traditional methods for predicting the change in length of day (LOD change) are mainly based on some linear models, such as the least square model and autoregression model, etc. However, the LOD change comprises complicated non-linear factors and the prediction effect of the linear models is always not so ideal. Thus, a kind of non-linear neural network — general regression neural network (GRNN) model is tried to make the prediction of the LOD change and the result is compared with the predicted results obtained by taking advantage of the BP (back propagation) neural network model and other models. The comparison result shows that the application of the GRNN to the prediction of the LOD change is highly effective and feasible.
NASA Astrophysics Data System (ADS)
Shao, Yuxiang; Chen, Qing; Wei, Zhenhua
Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.
GA-based fuzzy reinforcement learning for control of a magnetic bearing system.
Lin, C T; Jou, C P
2000-01-01
This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.
Detection of Road Surface States from Tire Noise Using Neural Network Analysis
NASA Astrophysics Data System (ADS)
Kongrattanaprasert, Wuttiwat; Nomura, Hideyuki; Kamakura, Tomoo; Ueda, Koji
This report proposes a new processing method for automatically detecting the states of road surfaces from tire noises of passing vehicles. In addition to multiple indicators of the signal features in the frequency domain, we propose a few feature indicators in the time domain to successfully classify the road states into four categories: snowy, slushy, wet, and dry states. The method is based on artificial neural networks. The proposed classification is carried out in multiple neural networks using learning vector quantization. The outcomes of the networks are then integrated by the voting decision-making scheme. Experimental results obtained from recorded signals for ten days in the snowy season demonstrated that an accuracy of approximately 90% can be attained for predicting road surface states using only tire noise data.
Generalized Predictive and Neural Generalized Predictive Control of Aerospace Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
The research work presented in this thesis addresses the problem of robust control of uncertain linear and nonlinear systems using Neural network-based Generalized Predictive Control (NGPC) methodology. A brief overview of predictive control and its comparison with Linear Quadratic (LQ) control is given to emphasize advantages and drawbacks of predictive control methods. It is shown that the Generalized Predictive Control (GPC) methodology overcomes the drawbacks associated with traditional LQ control as well as conventional predictive control methods. It is shown that in spite of the model-based nature of GPC it has good robustness properties being special case of receding horizon control. The conditions for choosing tuning parameters for GPC to ensure closed-loop stability are derived. A neural network-based GPC architecture is proposed for the control of linear and nonlinear uncertain systems. A methodology to account for parametric uncertainty in the system is proposed using on-line training capability of multi-layer neural network. Several simulation examples and results from real-time experiments are given to demonstrate the effectiveness of the proposed methodology.
Some comparisons of complexity in dictionary-based and linear computational models.
Gnecco, Giorgio; Kůrková, Věra; Sanguineti, Marcello
2011-03-01
Neural networks provide a more flexible approximation of functions than traditional linear regression. In the latter, one can only adjust the coefficients in linear combinations of fixed sets of functions, such as orthogonal polynomials or Hermite functions, while for neural networks, one may also adjust the parameters of the functions which are being combined. However, some useful properties of linear approximators (such as uniqueness, homogeneity, and continuity of best approximation operators) are not satisfied by neural networks. Moreover, optimization of parameters in neural networks becomes more difficult than in linear regression. Experimental results suggest that these drawbacks of neural networks are offset by substantially lower model complexity, allowing accuracy of approximation even in high-dimensional cases. We give some theoretical results comparing requirements on model complexity for two types of approximators, the traditional linear ones and so called variable-basis types, which include neural networks, radial, and kernel models. We compare upper bounds on worst-case errors in variable-basis approximation with lower bounds on such errors for any linear approximator. Using methods from nonlinear approximation and integral representations tailored to computational units, we describe some cases where neural networks outperform any linear approximator. Copyright © 2010 Elsevier Ltd. All rights reserved.
Markov Chain Monte Carlo Bayesian Learning for Neural Networks
NASA Technical Reports Server (NTRS)
Goodrich, Michael S.
2011-01-01
Conventional training methods for neural networks involve starting al a random location in the solution space of the network weights, navigating an error hyper surface to reach a minimum, and sometime stochastic based techniques (e.g., genetic algorithms) to avoid entrapment in a local minimum. It is further typically necessary to preprocess the data (e.g., normalization) to keep the training algorithm on course. Conversely, Bayesian based learning is an epistemological approach concerned with formally updating the plausibility of competing candidate hypotheses thereby obtaining a posterior distribution for the network weights conditioned on the available data and a prior distribution. In this paper, we developed a powerful methodology for estimating the full residual uncertainty in network weights and therefore network predictions by using a modified Jeffery's prior combined with a Metropolis Markov Chain Monte Carlo method.
Generalised Transfer Functions of Neural Networks
NASA Astrophysics Data System (ADS)
Fung, C. F.; Billings, S. A.; Zhang, H.
1997-11-01
When artificial neural networks are used to model non-linear dynamical systems, the system structure which can be extremely useful for analysis and design, is buried within the network architecture. In this paper, explicit expressions for the frequency response or generalised transfer functions of both feedforward and recurrent neural networks are derived in terms of the network weights. The derivation of the algorithm is established on the basis of the Taylor series expansion of the activation functions used in a particular neural network. This leads to a representation which is equivalent to the non-linear recursive polynomial model and enables the derivation of the transfer functions to be based on the harmonic expansion method. By mapping the neural network into the frequency domain information about the structure of the underlying non-linear system can be recovered. Numerical examples are included to demonstrate the application of the new algorithm. These examples show that the frequency response functions appear to be highly sensitive to the network topology and training, and that the time domain properties fail to reveal deficiencies in the trained network structure.
NASA Astrophysics Data System (ADS)
Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.
2018-05-01
It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.
Application of neural networks with orthogonal activation functions in control of dynamical systems
NASA Astrophysics Data System (ADS)
Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.
2016-04-01
In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.
Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement.
Ganjefar, Soheil; Tofighi, Morteza; Karami, Hamidreza
2015-11-01
In this study, we introduce an indirect adaptive fuzzy wavelet neural controller (IAFWNC) as a power system stabilizer to damp inter-area modes of oscillations in a multi-machine power system. Quantum computing is an efficient method for improving the computational efficiency of neural networks, so we developed an identifier based on a quantum neural network (QNN) to train the IAFWNC in the proposed scheme. All of the controller parameters are tuned online based on the Lyapunov stability theory to guarantee the closed-loop stability. A two-machine, two-area power system equipped with a static synchronous series compensator as a series flexible ac transmission system was used to demonstrate the effectiveness of the proposed controller. The simulation and experimental results demonstrated that the proposed IAFWNC scheme can achieve favorable control performance. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Pressure Control Method for Emulsion Pump Station Based on Elman Neural Network
Tan, Chao; Qi, Nan; Yao, Xingang; Wang, Zhongbin; Si, Lei
2015-01-01
In order to realize pressure control of emulsion pump station which is key equipment of coal mine in the safety production, the control requirements were analyzed and a pressure control method based on Elman neural network was proposed. The key techniques such as system framework, pressure prediction model, pressure control model, and the flowchart of proposed approach were presented. Finally, a simulation example was carried out and comparison results indicated that the proposed approach was feasible and efficient and outperformed others. PMID:25861253
FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model.
Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid
2014-01-01
A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well.
Completing sparse and disconnected protein-protein network by deep learning.
Huang, Lei; Liao, Li; Wu, Cathy H
2018-03-22
Protein-protein interaction (PPI) prediction remains a central task in systems biology to achieve a better and holistic understanding of cellular and intracellular processes. Recently, an increasing number of computational methods have shifted from pair-wise prediction to network level prediction. Many of the existing network level methods predict PPIs under the assumption that the training network should be connected. However, this assumption greatly affects the prediction power and limits the application area because the current golden standard PPI networks are usually very sparse and disconnected. Therefore, how to effectively predict PPIs based on a training network that is sparse and disconnected remains a challenge. In this work, we developed a novel PPI prediction method based on deep learning neural network and regularized Laplacian kernel. We use a neural network with an autoencoder-like architecture to implicitly simulate the evolutionary processes of a PPI network. Neurons of the output layer correspond to proteins and are labeled with values (1 for interaction and 0 for otherwise) from the adjacency matrix of a sparse disconnected training PPI network. Unlike autoencoder, neurons at the input layer are given all zero input, reflecting an assumption of no a priori knowledge about PPIs, and hidden layers of smaller sizes mimic ancient interactome at different times during evolution. After the training step, an evolved PPI network whose rows are outputs of the neural network can be obtained. We then predict PPIs by applying the regularized Laplacian kernel to the transition matrix that is built upon the evolved PPI network. The results from cross-validation experiments show that the PPI prediction accuracies for yeast data and human data measured as AUC are increased by up to 8.4 and 14.9% respectively, as compared to the baseline. Moreover, the evolved PPI network can also help us leverage complementary information from the disconnected training network and multiple heterogeneous data sources. Tested by the yeast data with six heterogeneous feature kernels, the results show our method can further improve the prediction performance by up to 2%, which is very close to an upper bound that is obtained by an Approximate Bayesian Computation based sampling method. The proposed evolution deep neural network, coupled with regularized Laplacian kernel, is an effective tool in completing sparse and disconnected PPI networks and in facilitating integration of heterogeneous data sources.
Gong, Yin-Xi; He, Cheng; Yan, Fei; Feng, Zhong-Ke; Cao, Meng-Lei; Gao, Yuan; Miao, Jie; Zhao, Jin-Long
2013-10-01
Multispectral remote sensing data containing rich site information are not fully used by the classic site quality evaluation system, as it merely adopts artificial ground survey data. In order to establish a more effective site quality evaluation system, a neural network model which combined remote sensing spectra factors with site factors and site index relations was established and used to study the sublot site quality evaluation in the Wangyedian Forest Farm in Inner Mongolia Province, Chifeng City. Based on the improved back propagation artificial neural network (BPANN), this model combined multispectral remote sensing data with sublot survey data, and took larch as example, Through training data set sensitivity analysis weak or irrelevant factor was excluded, the size of neural network was simplified, and the efficiency of network training was improved. This optimal site index prediction model had an accuracy up to 95.36%, which was 9.83% higher than that of the neural network model based on classic sublot survey data, and this shows that using multi-spectral remote sensing and small class survey data to determine the status of larch index prediction model has the highest predictive accuracy. The results fully indicate the effectiveness and superiority of this method.
Design of Neural Networks for Fast Convergence and Accuracy: Dynamics and Control
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Sparks, Dean W., Jr.
1997-01-01
A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.
Design of neural networks for fast convergence and accuracy: dynamics and control.
Maghami, P G; Sparks, D R
2000-01-01
A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.
NASA Astrophysics Data System (ADS)
Pahlavani, P.; Gholami, A.; Azimi, S.
2017-09-01
This paper presents an indoor positioning technique based on a multi-layer feed-forward (MLFF) artificial neural networks (ANN). Most of the indoor received signal strength (RSS)-based WLAN positioning systems use the fingerprinting technique that can be divided into two phases: the offline (calibration) phase and the online (estimation) phase. In this paper, RSSs were collected for all references points in four directions and two periods of time (Morning and Evening). Hence, RSS readings were sampled at a regular time interval and specific orientation at each reference point. The proposed ANN based model used Levenberg-Marquardt algorithm for learning and fitting the network to the training data. This RSS readings in all references points and the known position of these references points was prepared for training phase of the proposed MLFF neural network. Eventually, the average positioning error for this network using 30% check and validation data was computed approximately 2.20 meter.
An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks
Cabessa, Jérémie; Villa, Alessandro E. P.
2014-01-01
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866
Single image super-resolution based on convolutional neural networks
NASA Astrophysics Data System (ADS)
Zou, Lamei; Luo, Ming; Yang, Weidong; Li, Peng; Jin, Liujia
2018-03-01
We present a deep learning method for single image super-resolution (SISR). The proposed approach learns end-to-end mapping between low-resolution (LR) images and high-resolution (HR) images. The mapping is represented as a deep convolutional neural network which inputs the LR image and outputs the HR image. Our network uses 5 convolution layers, which kernels size include 5×5, 3×3 and 1×1. In our proposed network, we use residual-learning and combine different sizes of convolution kernels at the same layer. The experiment results show that our proposed method performs better than the existing methods in reconstructing quality index and human visual effects on benchmarked images.
Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio
2018-06-19
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.
NASA Astrophysics Data System (ADS)
Liu, G.; Aspinall, M. D.; Ma, X.; Joyce, M. J.
2009-08-01
The discrimination of neutron and γ-ray events in an organic scintillator has been investigated by using a method based on an artificial neural network (ANN). Voltage pulses arising from an EJ-301 organic liquid scintillation detector in a mixed radiation field have been recorded with a fast digital sampling oscilloscope. Piled-up events have been disentangled using a pile-up management unit based on a fitting method. Each individual pulse has subsequently been sent to a discrimination unit which discriminates neutron and γ-ray events with a method based on an artificial neural network. This discrimination technique has been verified by the corresponding mixed-field data assessed by time of flight (TOF). It is shown that the characterization of the neutrons and photons achieved by the discrimination method based on the ANN is consistent with that afforded by TOF. This approach enables events that are often as a result of scattering or pile-up to be identified and returned to the data set and affords digital discrimination of mixed radiation fields in a broad range of environments on the basis of training obtained with a single TOF dataset.
Character recognition from trajectory by recurrent spiking neural networks.
Jiangrong Shen; Kang Lin; Yueming Wang; Gang Pan
2017-07-01
Spiking neural networks are biologically plausible and power-efficient on neuromorphic hardware, while recurrent neural networks have been proven to be efficient on time series data. However, how to use the recurrent property to improve the performance of spiking neural networks is still a problem. This paper proposes a recurrent spiking neural network for character recognition using trajectories. In the network, a new encoding method is designed, in which varying time ranges of input streams are used in different recurrent layers. This is able to improve the generalization ability of our model compared with general encoding methods. The experiments are conducted on four groups of the character data set from University of Edinburgh. The results show that our method can achieve a higher average recognition accuracy than existing methods.
Winkler, David A; Le, Tu C
2017-01-01
Neural networks have generated valuable Quantitative Structure-Activity/Property Relationships (QSAR/QSPR) models for a wide variety of small molecules and materials properties. They have grown in sophistication and many of their initial problems have been overcome by modern mathematical techniques. QSAR studies have almost always used so-called "shallow" neural networks in which there is a single hidden layer between the input and output layers. Recently, a new and potentially paradigm-shifting type of neural network based on Deep Learning has appeared. Deep learning methods have generated impressive improvements in image and voice recognition, and are now being applied to QSAR and QSAR modelling. This paper describes the differences in approach between deep and shallow neural networks, compares their abilities to predict the properties of test sets for 15 large drug data sets (the kaggle set), discusses the results in terms of the Universal Approximation theorem for neural networks, and describes how DNN may ameliorate or remove troublesome "activity cliffs" in QSAR data sets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calculations of dose distributions using a neural network model
NASA Astrophysics Data System (ADS)
Mathieu, R.; Martin, E.; Gschwind, R.; Makovicka, L.; Contassot-Vivier, S.; Bahi, J.
2005-03-01
The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journées Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map.
Calculations of dose distributions using a neural network model.
Mathieu, R; Martin, E; Gschwind, R; Makovicka, L; Contassot-Vivier, S; Bahi, J
2005-03-07
The main goal of external beam radiotherapy is the treatment of tumours, while sparing, as much as possible, surrounding healthy tissues. In order to master and optimize the dose distribution within the patient, dosimetric planning has to be carried out. Thus, for determining the most accurate dose distribution during treatment planning, a compromise must be found between the precision and the speed of calculation. Current techniques, using analytic methods, models and databases, are rapid but lack precision. Enhanced precision can be achieved by using calculation codes based, for example, on Monte Carlo methods. However, in spite of all efforts to optimize speed (methods and computer improvements), Monte Carlo based methods remain painfully slow. A newer way to handle all of these problems is to use a new approach in dosimetric calculation by employing neural networks. Neural networks (Wu and Zhu 2000 Phys. Med. Biol. 45 913-22) provide the advantages of those various approaches while avoiding their main inconveniences, i.e., time-consumption calculations. This permits us to obtain quick and accurate results during clinical treatment planning. Currently, results obtained for a single depth-dose calculation using a Monte Carlo based code (such as BEAM (Rogers et al 2003 NRCC Report PIRS-0509(A) rev G)) require hours of computing. By contrast, the practical use of neural networks (Mathieu et al 2003 Proceedings Journees Scientifiques Francophones, SFRP) provides almost instant results and quite low errors (less than 2%) for a two-dimensional dosimetric map.
Elements of an algorithm for optimizing a parameter-structural neural network
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2016-06-01
The field of processing information provided by measurement results is one of the most important components of geodetic technologies. The dynamic development of this field improves classic algorithms for numerical calculations in the aspect of analytical solutions that are difficult to achieve. Algorithms based on artificial intelligence in the form of artificial neural networks, including the topology of connections between neurons have become an important instrument connected to the problem of processing and modelling processes. This concept results from the integration of neural networks and parameter optimization methods and makes it possible to avoid the necessity to arbitrarily define the structure of a network. This kind of extension of the training process is exemplified by the algorithm called the Group Method of Data Handling (GMDH), which belongs to the class of evolutionary algorithms. The article presents a GMDH type network, used for modelling deformations of the geometrical axis of a steel chimney during its operation.
ERIC Educational Resources Information Center
Baker, Bruce D.; Richards, Craig E.
1999-01-01
Applies neural network methods for forecasting 1991-95 per-pupil expenditures in U.S. public elementary and secondary schools. Forecasting models included the National Center for Education Statistics' multivariate regression model and three neural architectures. Regarding prediction accuracy, neural network results were comparable or superior to…
Electroencephalography epilepsy classifications using hybrid cuckoo search and neural network
NASA Astrophysics Data System (ADS)
Pratiwi, A. B.; Damayanti, A.; Miswanto
2017-07-01
Epilepsy is a condition that affects the brain and causes repeated seizures. This seizure is episodes that can vary and nearly undetectable to long periods of vigorous shaking or brain contractions. Epilepsy often can be confirmed with an electrocephalography (EEG). Neural Networks has been used in biomedic signal analysis, it has successfully classified the biomedic signal, such as EEG signal. In this paper, a hybrid cuckoo search and neural network are used to recognize EEG signal for epilepsy classifications. The weight of the multilayer perceptron is optimized by the cuckoo search algorithm based on its error. The aim of this methods is making the network faster to obtained the local or global optimal then the process of classification become more accurate. Based on the comparison results with the traditional multilayer perceptron, the hybrid cuckoo search and multilayer perceptron provides better performance in term of error convergence and accuracy. The purpose methods give MSE 0.001 and accuracy 90.0 %.
Parameter diagnostics of phases and phase transition learning by neural networks
NASA Astrophysics Data System (ADS)
Suchsland, Philippe; Wessel, Stefan
2018-05-01
We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously found to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.
Improved Adjoint-Operator Learning For A Neural Network
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1995-01-01
Improved method of adjoint-operator learning reduces amount of computation and associated computational memory needed to make electronic neural network learn temporally varying pattern (e.g., to recognize moving object in image) in real time. Method extension of method described in "Adjoint-Operator Learning for a Neural Network" (NPO-18352).
NASA Astrophysics Data System (ADS)
Maizir, H.; Suryanita, R.
2018-01-01
A few decades, many methods have been developed to predict and evaluate the bearing capacity of driven piles. The problem of the predicting and assessing the bearing capacity of the pile is very complicated and not yet established, different soil testing and evaluation produce a widely different solution. However, the most important thing is to determine methods used to predict and evaluate the bearing capacity of the pile to the required degree of accuracy and consistency value. Accurate prediction and evaluation of axial bearing capacity depend on some variables, such as the type of soil, diameter, and length of pile, etc. The aims of the study of Artificial Neural Networks (ANNs) are utilized to obtain more accurate and consistent axial bearing capacity of a driven pile. ANNs can be described as mapping an input to the target output data. The method using the ANN model developed to predict and evaluate the axial bearing capacity of the pile based on the pile driving analyzer (PDA) test data for more than 200 selected data. The results of the predictions obtained by the ANN model and the PDA test were then compared. This research as the neural network models give a right prediction and evaluation of the axial bearing capacity of piles using neural networks.
Zhang, Xiaolei; Zhao, Yan; Guo, Kai; Li, Gaoliang; Deng, Nianmao
2017-04-28
The mobile satcom antenna (MSA) enables a moving vehicle to communicate with a geostationary Earth orbit satellite. To realize continuous communication, the MSA should be aligned with the satellite in both sight and polarization all the time. Because of coupling effects, unknown disturbances, sensor noises and unmodeled dynamics existing in the system, the control system should have a strong adaptability. The significant features of terminal sliding mode control method are robustness and finite time convergence, but the robustness is related to the large switching control gain which is determined by uncertain issues and can lead to chattering phenomena. Neural networks can reduce the chattering and approximate nonlinear issues. In this work, a novel B-spline curve-based B-spline neural network (BSNN) is developed. The improved BSNN has the capability of shape changing and self-adaption. In addition, the output of the proposed BSNN is applied to approximate the nonlinear function in the system. The results of simulations and experiments are also compared with those of PID method, non-singularity fast terminal sliding mode (NFTSM) control and radial basis function (RBF) neural network-based NFTSM. It is shown that the proposed method has the best performance, with reliable control precision.
Cascade process modeling with mechanism-based hierarchical neural networks.
Cong, Qiumei; Yu, Wen; Chai, Tianyou
2010-02-01
Cascade process, such as wastewater treatment plant, includes many nonlinear sub-systems and many variables. When the number of sub-systems is big, the input-output relation in the first block and the last block cannot represent the whole process. In this paper we use two techniques to overcome the above problem. Firstly we propose a new neural model: hierarchical neural networks to identify the cascade process; then we use serial structural mechanism model based on the physical equations to connect with neural model. A stable learning algorithm and theoretical analysis are given. Finally, this method is used to model a wastewater treatment plant. Real operational data of wastewater treatment plant is applied to illustrate the modeling approach.
Suzuki, Ikurou; Sugio, Yoshihiro; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Yasuda, Kenji
2004-07-01
Control over spatial distribution of individual neurons and the pattern of neural network provides an important tool for studying information processing pathways during neural network formation. Moreover, the knowledge of the direction of synaptic connections between cells in each neural network can provide detailed information on the relationship between the forward and feedback signaling. We have developed a method for topographical control of the direction of synaptic connections within a living neuronal network using a new type of individual-cell-based on-chip cell-cultivation system with an agarose microchamber array (AMCA). The advantages of this system include the possibility to control positions and number of cultured cells as well as flexible control of the direction of elongation of axons through stepwise melting of narrow grooves. Such micrometer-order microchannels are obtained by photo-thermal etching of agarose where a portion of the gel is melted with a 1064-nm infrared laser beam. Using this system, we created neural network from individual Rat hippocampal cells. We were able to control elongation of individual axons during cultivation (from cells contained within the AMCA) by non-destructive stepwise photo-thermal etching. We have demonstrated the potential of our on-chip AMCA cell cultivation system for the controlled development of individual cell-based neural networks.
ID card number detection algorithm based on convolutional neural network
NASA Astrophysics Data System (ADS)
Zhu, Jian; Ma, Hanjie; Feng, Jie; Dai, Leiyan
2018-04-01
In this paper, a new detection algorithm based on Convolutional Neural Network is presented in order to realize the fast and convenient ID information extraction in multiple scenarios. The algorithm uses the mobile device equipped with Android operating system to locate and extract the ID number; Use the special color distribution of the ID card, select the appropriate channel component; Use the image threshold segmentation, noise processing and morphological processing to take the binary processing for image; At the same time, the image rotation and projection method are used for horizontal correction when image was tilting; Finally, the single character is extracted by the projection method, and recognized by using Convolutional Neural Network. Through test shows that, A single ID number image from the extraction to the identification time is about 80ms, the accuracy rate is about 99%, It can be applied to the actual production and living environment.
The research of "blind" spot in the LVQ network
NASA Astrophysics Data System (ADS)
Guo, Zhanjie; Nan, Shupo; Wang, Xiaoli
2017-04-01
Nowadays competitive neural network has been widely used in the pattern recognition, classification and other aspects, and show the great advantages compared with the traditional clustering methods. But the competitive neural networks still has inadequate in many aspects, and it needs to be further improved. Based on the learning Vector Quantization Network proposed by Learning Kohonen [1], this paper resolve the issue of the large training error, when there are "blind" spots in a network through the introduction of threshold value learning rules and finally programs the realization with Matlab.
Traffic sign recognition by color segmentation and neural network
NASA Astrophysics Data System (ADS)
Surinwarangkoon, Thongchai; Nitsuwat, Supot; Moore, Elvin J.
2011-12-01
An algorithm is proposed for traffic sign detection and identification based on color filtering, color segmentation and neural networks. Traffic signs in Thailand are classified by color into four types: namely, prohibitory signs (red or blue), general warning signs (yellow) and construction area warning signs (amber). A color filtering method is first used to detect traffic signs and classify them by type. Then color segmentation methods adapted for each color type are used to extract inner features, e.g., arrows, bars etc. Finally, neural networks trained to recognize signs in each color type are used to identify any given traffic sign. Experiments show that the algorithm can improve the accuracy of traffic sign detection and recognition for the traffic signs used in Thailand.
Sarmanova, Olga E; Burikov, Sergey A; Dolenko, Sergey A; Isaev, Igor V; Laptinskiy, Kirill A; Prabhakar, Neeraj; Karaman, Didem Şen; Rosenholm, Jessica M; Shenderova, Olga A; Dolenko, Tatiana A
2018-04-12
In this study, a new approach to the implementation of optical imaging of fluorescent nanoparticles in a biological medium using artificial neural networks is proposed. The studies were carried out using new synthesized nanocomposites - nanometer graphene oxides, covered by the poly(ethylene imine)-poly(ethylene glycol) copolymer and by the folic acid. We present an example of a successful solution of the problem of monitoring the removal of nanocomposites based on nGO and their components with urine using fluorescent spectroscopy and artificial neural networks. However, the proposed method is applicable for optical imaging of any fluorescent nanoparticles used as theranostic agents in biological tissue. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Yan, Fengxia; Udupa, Jayaram K.; Tong, Yubing; Xu, Guoping; Odhner, Dewey; Torigian, Drew A.
2018-03-01
The recently developed body-wide Automatic Anatomy Recognition (AAR) methodology depends on fuzzy modeling of individual objects, hierarchically arranging objects, constructing an anatomy ensemble of these models, and a dichotomous object recognition-delineation process. The parent-to-offspring spatial relationship in the object hierarchy is crucial in the AAR method. We have found this relationship to be quite complex, and as such any improvement in capturing this relationship information in the anatomy model will improve the process of recognition itself. Currently, the method encodes this relationship based on the layout of the geometric centers of the objects. Motivated by the concept of virtual landmarks (VLs), this paper presents a new one-shot AAR recognition method that utilizes the VLs to learn object relationships by training a neural network to predict the pose and the VLs of an offspring object given the VLs of the parent object in the hierarchy. We set up two neural networks for each parent-offspring object pair in a body region, one for predicting the VLs and another for predicting the pose parameters. The VL-based learning/prediction method is evaluated on two object hierarchies involving 14 objects. We utilize 54 computed tomography (CT) image data sets of head and neck cancer patients and the associated object contours drawn by dosimetrists for routine radiation therapy treatment planning. The VL neural network method is found to yield more accurate object localization than the currently used simple AAR method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nedic, Vladimir, E-mail: vnedic@kg.ac.rs; Despotovic, Danijela, E-mail: ddespotovic@kg.ac.rs; Cvetanovic, Slobodan, E-mail: slobodan.cvetanovic@eknfak.ni.ac.rs
2014-11-15
Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. Themore » output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.« less
NASA Astrophysics Data System (ADS)
Narasimha Rao, Gudikandhula; Jagadeeswara Rao, Peddada; Duvvuru, Rajesh
2016-09-01
Wild fires have significant impact on atmosphere and lives. The demand of predicting exact fire area in forest may help fire management team by using drone as a robot. These are flexible, inexpensive and elevated-motion remote sensing systems that use drones as platforms are important for substantial data gaps and supplementing the capabilities of manned aircraft and satellite remote sensing systems. In addition, powerful computational tools are essential for predicting certain burned area in the duration of a forest fire. The reason of this study is to built up a smart system based on semantic neural networking for the forecast of burned areas. The usage of virtual reality simulator is used to support the instruction process of fire fighters and all users for saving of surrounded wild lives by using a naive method Semantic Neural Network System (SNNS). Semantics are valuable initially to have a enhanced representation of the burned area prediction and better alteration of simulation situation to the users. In meticulous, consequences obtained with geometric semantic neural networking is extensively superior to other methods. This learning suggests that deeper investigation of neural networking in the field of forest fires prediction could be productive.
Cho, Kyung Jin; Müller, Jacobus H; Erasmus, Pieter J; DeJour, David; Scheffer, Cornie
2014-01-01
Segmentation and computer assisted design tools have the potential to test the validity of simulated surgical procedures, e.g., trochleoplasty. A repeatable measurement method for three dimensional femur models that enables quantification of knee parameters of the distal femur is presented. Fifteen healthy knees are analysed using the method to provide a training set for an artificial neural network. The aim is to use this artificial neural network for the prediction of parameter values that describe the shape of a normal trochlear groove geometry. This is achieved by feeding the artificial neural network with the unaffected parameters of a dysplastic knee. Four dysplastic knees (Type A through D) are virtually redesigned by way of morphing the groove geometries based on the suggested shape from the artificial neural network. Each of the four resulting shapes is analysed and compared to its initial dysplastic shape in terms of three anteroposterior dimensions: lateral, central and medial. For the four knees the trochlear depth is increased, the ventral trochlear prominence reduced and the sulcus angle corrected to within published normal ranges. The results show a lateral facet elevation inadequate, with a sulcus deepening or a depression trochleoplasty more beneficial to correct trochlear dysplasia.
Chromatic characterization of a three-channel colorimeter using back-propagation neural networks
NASA Astrophysics Data System (ADS)
Pardo, P. J.; Pérez, A. L.; Suero, M. I.
2004-09-01
This work describes a method for the chromatic characterization of a three-channel colorimeter of recent design and construction dedicated to color vision research. The colorimeter consists of two fixed monochromators and a third monochromator interchangeable with a cathode ray tube or any other external light source. Back-propagation neural networks were used for the chromatic characterization to establish the relationship between each monochromator's input parameters and the tristimulus values of each chromatic stimulus generated. The results showed the effectiveness of this type of neural-network-based system for the chromatic characterization of the stimuli produced by any monochromator.
NASA Astrophysics Data System (ADS)
Zhang, Hai; Ye, Renyu; Liu, Song; Cao, Jinde; Alsaedi, Ahmad; Li, Xiaodi
2018-02-01
This paper is concerned with the asymptotic stability of the Riemann-Liouville fractional-order neural networks with discrete and distributed delays. By constructing a suitable Lyapunov functional, two sufficient conditions are derived to ensure that the addressed neural network is asymptotically stable. The presented stability criteria are described in terms of the linear matrix inequalities. The advantage of the proposed method is that one may avoid calculating the fractional-order derivative of the Lyapunov functional. Finally, a numerical example is given to show the validity and feasibility of the theoretical results.
NASA Astrophysics Data System (ADS)
Caldwell, A.; Cossavella, F.; Majorovits, B.; Palioselitis, D.; Volynets, O.
2015-07-01
A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples.
Effective Multifocus Image Fusion Based on HVS and BP Neural Network
Yang, Yong
2014-01-01
The aim of multifocus image fusion is to fuse the images taken from the same scene with different focuses to obtain a resultant image with all objects in focus. In this paper, a novel multifocus image fusion method based on human visual system (HVS) and back propagation (BP) neural network is presented. Three features which reflect the clarity of a pixel are firstly extracted and used to train a BP neural network to determine which pixel is clearer. The clearer pixels are then used to construct the initial fused image. Thirdly, the focused regions are detected by measuring the similarity between the source images and the initial fused image followed by morphological opening and closing operations. Finally, the final fused image is obtained by a fusion rule for those focused regions. Experimental results show that the proposed method can provide better performance and outperform several existing popular fusion methods in terms of both objective and subjective evaluations. PMID:24683327
Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control
Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.
1997-01-01
One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.
A modular neural network scheme applied to fault diagnosis in electric power systems.
Flores, Agustín; Quiles, Eduardo; García, Emilio; Morant, Francisco; Correcher, Antonio
2014-01-01
This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system.
A Modular Neural Network Scheme Applied to Fault Diagnosis in Electric Power Systems
Flores, Agustín; Morant, Francisco
2014-01-01
This work proposes a new method for fault diagnosis in electric power systems based on neural modules. With this method the diagnosis is performed by assigning a neural module for each type of component comprising the electric power system, whether it is a transmission line, bus or transformer. The neural modules for buses and transformers comprise two diagnostic levels which take into consideration the logic states of switches and relays, both internal and back-up, with the exception of the neural module for transmission lines which also has a third diagnostic level which takes into account the oscillograms of fault voltages and currents as well as the frequency spectrums of these oscillograms, in order to verify if the transmission line had in fact been subjected to a fault. One important advantage of the diagnostic system proposed is that its implementation does not require the use of a network configurator for the system; it does not depend on the size of the power network nor does it require retraining of the neural modules if the power network increases in size, making its application possible to only one component, a specific area, or the whole context of the power system. PMID:25610897
Application of Two-Dimensional AWE Algorithm in Training Multi-Dimensional Neural Network Model
2003-07-01
hybrid scheme . the general neural network method (Table 3.1). The training process of the software- ACKNOWLEDGMENT "Neuralmodeler" is shown in Fig. 3.2...engineering. Artificial neural networks (ANNs) have emerged Training a neural network model is the key of as a powerful technique for modeling general neural...coefficients am, the derivatives method of moments (MoM). The variables in the of matrix I have to be generated . A closed form model are frequency
NASA Technical Reports Server (NTRS)
Aires, F.; Prigent, C.; Rossow, W. B.; Rothstein, M.; Hansen, James E. (Technical Monitor)
2000-01-01
The analysis of microwave observations over land to determine atmospheric and surface parameters is still limited due to the complexity of the inverse problem. Neural network techniques have already proved successful as the basis of efficient retrieval methods for non-linear cases, however, first-guess estimates, which are used in variational methods to avoid problems of solution non-uniqueness or other forms of solution irregularity, have up to now not been used with neural network methods. In this study, a neural network approach is developed that uses a first-guess. Conceptual bridges are established between the neural network and variational methods. The new neural method retrieves the surface skin temperature, the integrated water vapor content, the cloud liquid water path and the microwave surface emissivities between 19 and 85 GHz over land from SSM/I observations. The retrieval, in parallel, of all these quantities improves the results for consistency reasons. A data base to train the neural network is calculated with a radiative transfer model and a a global collection of coincident surface and atmospheric parameters extracted from the National Center for Environmental Prediction reanalysis, from the International Satellite Cloud Climatology Project data and from microwave emissivity atlases previously calculated. The results of the neural network inversion are very encouraging. The r.m.s. error of the surface temperature retrieval over the globe is 1.3 K in clear sky conditions and 1.6 K in cloudy scenes. Water vapor is retrieved with a r.m.s. error of 3.8 kg/sq m in clear conditions and 4.9 kg/sq m in cloudy situations. The r.m.s. error in cloud liquid water path is 0.08 kg/sq m . The surface emissivities are retrieved with an accuracy of better than 0.008 in clear conditions and 0.010 in cloudy conditions. Microwave land surface temperature retrieval presents a very attractive complement to the infrared estimates in cloudy areas: time record of land surface temperature will be produced.
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-06-19
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification.
Inversion of surface parameters using fast learning neural networks
NASA Technical Reports Server (NTRS)
Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.
1992-01-01
A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.
Flight control with adaptive critic neural network
NASA Astrophysics Data System (ADS)
Han, Dongchen
2001-10-01
In this dissertation, the adaptive critic neural network technique is applied to solve complex nonlinear system control problems. Based on dynamic programming, the adaptive critic neural network can embed the optimal solution into a neural network. Though trained off-line, the neural network forms a real-time feedback controller. Because of its general interpolation properties, the neurocontroller has inherit robustness. The problems solved here are an agile missile control for U.S. Air Force and a midcourse guidance law for U.S. Navy. In the first three papers, the neural network was used to control an air-to-air agile missile to implement a minimum-time heading-reverse in a vertical plane corresponding to following conditions: a system without constraint, a system with control inequality constraint, and a system with state inequality constraint. While the agile missile is a one-dimensional problem, the midcourse guidance law is the first test-bed for multiple-dimensional problem. In the fourth paper, the neurocontroller is synthesized to guide a surface-to-air missile to a fixed final condition, and to a flexible final condition from a variable initial condition. In order to evaluate the adaptive critic neural network approach, the numerical solutions for these cases are also obtained by solving two-point boundary value problem with a shooting method. All of the results showed that the adaptive critic neural network could solve complex nonlinear system control problems.
Huang, Daizheng; Wu, Zhihui
2017-01-01
Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods. PMID:28222194
Huang, Daizheng; Wu, Zhihui
2017-01-01
Accurately predicting the trend of outpatient visits by mathematical modeling can help policy makers manage hospitals effectively, reasonably organize schedules for human resources and finances, and appropriately distribute hospital material resources. In this study, a hybrid method based on empirical mode decomposition and back-propagation artificial neural networks optimized by particle swarm optimization is developed to forecast outpatient visits on the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to December 2013 and first obtained as the original time series. Second, the original time series is decomposed into a finite and often small number of intrinsic mode functions by the empirical mode decomposition technique. Third, a three-layer back-propagation artificial neural network is constructed to forecast each intrinsic mode functions. To improve network performance and avoid falling into a local minimum, particle swarm optimization is employed to optimize the weights and thresholds of back-propagation artificial neural networks. Finally, the superposition of forecasting results of the intrinsic mode functions is regarded as the ultimate forecasting value. Simulation indicates that the proposed method attains a better performance index than the other four methods.
Zounemat-Kermani, Mohammad; Ramezani-Charmahineh, Abdollah; Adamowski, Jan; Kisi, Ozgur
2018-06-13
Chlorination, the basic treatment utilized for drinking water sources, is widely used for water disinfection and pathogen elimination in water distribution networks. Thereafter, the proper prediction of chlorine consumption is of great importance in water distribution network performance. In this respect, data mining techniques-which have the ability to discover the relationship between dependent variable(s) and independent variables-can be considered as alternative approaches in comparison to conventional methods (e.g., numerical methods). This study examines the applicability of three key methods, based on the data mining approach, for predicting chlorine levels in four water distribution networks. ANNs (artificial neural networks, including the multi-layer perceptron neural network, MLPNN, and radial basis function neural network, RBFNN), SVM (support vector machine), and CART (classification and regression tree) methods were used to estimate the concentration of residual chlorine in distribution networks for three villages in Kerman Province, Iran. Produced water (flow), chlorine consumption, and residual chlorine were collected daily for 3 years. An assessment of the studied models using several statistical criteria (NSC, RMSE, R 2 , and SEP) indicated that, in general, MLPNN has the greatest capability for predicting chlorine levels followed by CART, SVM, and RBF-ANN. Weaker performance of the data-driven methods in the water distribution networks, in some cases, could be attributed to improper chlorination management rather than the methods' capability.
Toward a More Robust Pruning Procedure for MLP Networks
NASA Technical Reports Server (NTRS)
Stepniewski, Slawomir W.; Jorgensen, Charles C.
1998-01-01
Choosing a proper neural network architecture is a problem of great practical importance. Smaller models mean not only simpler designs but also lower variance for parameter estimation and network prediction. The widespread utilization of neural networks in modeling highlights an issue in human factors. The procedure of building neural models should find an appropriate level of model complexity in a more or less automatic fashion to make it less prone to human subjectivity. In this paper we present a Singular Value Decomposition based node elimination technique and enhanced implementation of the Optimal Brain Surgeon algorithm. Combining both methods creates a powerful pruning engine that can be used for tuning feedforward connectionist models. The performance of the proposed method is demonstrated by adjusting the structure of a multi-input multi-output model used to calibrate a six-component wind tunnel strain gage.
NASA Astrophysics Data System (ADS)
Bolodurina, I. P.; Parfenov, D. I.
2018-01-01
We have elaborated a neural network model of virtual network flow identification based on the statistical properties of flows circulating in the network of the data center and characteristics that describe the content of packets transmitted through network objects. This enabled us to establish the optimal set of attributes to identify virtual network functions. We have established an algorithm for optimizing the placement of virtual data functions using the data obtained in our research. Our approach uses a hybrid method of visualization using virtual machines and containers, which enables to reduce the infrastructure load and the response time in the network of the virtual data center. The algorithmic solution is based on neural networks, which enables to scale it at any number of the network function copies.
NASA Technical Reports Server (NTRS)
Salu, Yehuda; Tilton, James
1993-01-01
The classification of multispectral image data obtained from satellites has become an important tool for generating ground cover maps. This study deals with the application of nonparametric pixel-by-pixel classification methods in the classification of pixels, based on their multispectral data. A new neural network, the Binary Diamond, is introduced, and its performance is compared with a nearest neighbor algorithm and a back-propagation network. The Binary Diamond is a multilayer, feed-forward neural network, which learns from examples in unsupervised, 'one-shot' mode. It recruits its neurons according to the actual training set, as it learns. The comparisons of the algorithms were done by using a realistic data base, consisting of approximately 90,000 Landsat 4 Thematic Mapper pixels. The Binary Diamond and the nearest neighbor performances were close, with some advantages to the Binary Diamond. The performance of the back-propagation network lagged behind. An efficient nearest neighbor algorithm, the binned nearest neighbor, is described. Ways for improving the performances, such as merging categories, and analyzing nonboundary pixels, are addressed and evaluated.
ANALYSIS OF CLINICAL AND DERMOSCOPIC FEATURES FOR BASAL CELL CARCINOMA NEURAL NETWORK CLASSIFICATION
Cheng, Beibei; Stanley, R. Joe; Stoecker, William V; Stricklin, Sherea M.; Hinton, Kristen A.; Nguyen, Thanh K.; Rader, Ryan K.; Rabinovitz, Harold S.; Oliviero, Margaret; Moss, Randy H.
2012-01-01
Background Basal cell carcinoma (BCC) is the most commonly diagnosed cancer in the United States. In this research, we examine four different feature categories used for diagnostic decisions, including patient personal profile (patient age, gender, etc.), general exam (lesion size and location), common dermoscopic (blue-gray ovoids, leaf-structure dirt trails, etc.), and specific dermoscopic lesion (white/pink areas, semitranslucency, etc.). Specific dermoscopic features are more restricted versions of the common dermoscopic features. Methods Combinations of the four feature categories are analyzed over a data set of 700 lesions, with 350 BCCs and 350 benign lesions, for lesion discrimination using neural network-based techniques, including Evolving Artificial Neural Networks and Evolving Artificial Neural Network Ensembles. Results Experiment results based on ten-fold cross validation for training and testing the different neural network-based techniques yielded an area under the receiver operating characteristic curve as high as 0.981 when all features were combined. The common dermoscopic lesion features generally yielded higher discrimination results than other individual feature categories. Conclusions Experimental results show that combining clinical and image information provides enhanced lesion discrimination capability over either information source separately. This research highlights the potential of data fusion as a model for the diagnostic process. PMID:22724561
Neural Network Assisted Inverse Dynamic Guidance for Terminally Constrained Entry Flight
Chen, Wanchun
2014-01-01
This paper presents a neural network assisted entry guidance law that is designed by applying Bézier approximation. It is shown that a fully constrained approximation of a reference trajectory can be made by using the Bézier curve. Applying this approximation, an inverse dynamic system for an entry flight is solved to generate guidance command. The guidance solution thus gotten ensures terminal constraints for position, flight path, and azimuth angle. In order to ensure terminal velocity constraint, a prediction of the terminal velocity is required, based on which, the approximated Bézier curve is adjusted. An artificial neural network is used for this prediction of the terminal velocity. The method enables faster implementation in achieving fully constrained entry flight. Results from simulations indicate improved performance of the neural network assisted method. The scheme is expected to have prospect for further research on automated onboard control of terminal velocity for both reentry and terminal guidance laws. PMID:24723821
Back propagation artificial neural network for community Alzheimer's disease screening in China.
Tang, Jun; Wu, Lei; Huang, Helang; Feng, Jiang; Yuan, Yefeng; Zhou, Yueping; Huang, Peng; Xu, Yan; Yu, Chao
2013-01-25
Alzheimer's disease patients diagnosed with the Chinese Classification of Mental Disorders diagnostic criteria were selected from the community through on-site sampling. Levels of macro and trace elements were measured in blood samples using an atomic absorption method, and neurotransmitters were measured using a radioimmunoassay method. SPSS 13.0 was used to establish a database, and a back propagation artificial neural network for Alzheimer's disease prediction was simulated using Clementine 12.0 software. With scores of activities of daily living, creatinine, 5-hydroxytryptamine, age, dopamine and aluminum as input variables, the results revealed that the area under the curve in our back propagation artificial neural network was 0.929 (95% confidence interval: 0.868-0.968), sensitivity was 90.00%, specificity was 95.00%, and accuracy was 92.50%. The findings indicated that the results of back propagation artificial neural network established based on the above six variables were satisfactory for screening and diagnosis of Alzheimer's disease in patients selected from the community.
Back propagation artificial neural network for community Alzheimer's disease screening in China★
Tang, Jun; Wu, Lei; Huang, Helang; Feng, Jiang; Yuan, Yefeng; Zhou, Yueping; Huang, Peng; Xu, Yan; Yu, Chao
2013-01-01
Alzheimer's disease patients diagnosed with the Chinese Classification of Mental Disorders diagnostic criteria were selected from the community through on-site sampling. Levels of macro and trace elements were measured in blood samples using an atomic absorption method, and neurotransmitters were measured using a radioimmunoassay method. SPSS 13.0 was used to establish a database, and a back propagation artificial neural network for Alzheimer's disease prediction was simulated using Clementine 12.0 software. With scores of activities of daily living, creatinine, 5-hydroxytryptamine, age, dopamine and aluminum as input variables, the results revealed that the area under the curve in our back propagation artificial neural network was 0.929 (95% confidence interval: 0.868–0.968), sensitivity was 90.00%, specificity was 95.00%, and accuracy was 92.50%. The findings indicated that the results of back propagation artificial neural network established based on the above six variables were satisfactory for screening and diagnosis of Alzheimer's disease in patients selected from the community. PMID:25206598
Efficient implementation of neural network deinterlacing
NASA Astrophysics Data System (ADS)
Seo, Guiwon; Choi, Hyunsoo; Lee, Chulhee
2009-02-01
Interlaced scanning has been widely used in most broadcasting systems. However, there are some undesirable artifacts such as jagged patterns, flickering, and line twitters. Moreover, most recent TV monitors utilize flat panel display technologies such as LCD or PDP monitors and these monitors require progressive formats. Consequently, the conversion of interlaced video into progressive video is required in many applications and a number of deinterlacing methods have been proposed. Recently deinterlacing methods based on neural network have been proposed with good results. On the other hand, with high resolution video contents such as HDTV, the amount of video data to be processed is very large. As a result, the processing time and hardware complexity become an important issue. In this paper, we propose an efficient implementation of neural network deinterlacing using polynomial approximation of the sigmoid function. Experimental results show that these approximations provide equivalent performance with a considerable reduction of complexity. This implementation of neural network deinterlacing can be efficiently incorporated in HW implementation.
Recurrent neural networks for breast lesion classification based on DCE-MRIs
NASA Astrophysics Data System (ADS)
Antropova, Natasha; Huynh, Benjamin; Giger, Maryellen
2018-02-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a significant role in breast cancer screening, cancer staging, and monitoring response to therapy. Recently, deep learning methods are being rapidly incorporated in image-based breast cancer diagnosis and prognosis. However, most of the current deep learning methods make clinical decisions based on 2-dimentional (2D) or 3D images and are not well suited for temporal image data. In this study, we develop a deep learning methodology that enables integration of clinically valuable temporal components of DCE-MRIs into deep learning-based lesion classification. Our work is performed on a database of 703 DCE-MRI cases for the task of distinguishing benign and malignant lesions, and uses the area under the ROC curve (AUC) as the performance metric in conducting that task. We train a recurrent neural network, specifically a long short-term memory network (LSTM), on sequences of image features extracted from the dynamic MRI sequences. These features are extracted with VGGNet, a convolutional neural network pre-trained on a large dataset of natural images ImageNet. The features are obtained from various levels of the network, to capture low-, mid-, and high-level information about the lesion. Compared to a classification method that takes as input only images at a single time-point (yielding an AUC = 0.81 (se = 0.04)), our LSTM method improves lesion classification with an AUC of 0.85 (se = 0.03).
Chen, Zhong; Liu, June; Li, Xiong
2017-01-01
A two-stage artificial neural network (ANN) based on scalarization method is proposed for bilevel biobjective programming problem (BLBOP). The induced set of the BLBOP is firstly expressed as the set of minimal solutions of a biobjective optimization problem by using scalar approach, and then the whole efficient set of the BLBOP is derived by the proposed two-stage ANN for exploring the induced set. In order to illustrate the proposed method, seven numerical examples are tested and compared with results in the classical literature. Finally, a practical problem is solved by the proposed algorithm. PMID:29312446
Deep convolutional neural network based antenna selection in multiple-input multiple-output system
NASA Astrophysics Data System (ADS)
Cai, Jiaxin; Li, Yan; Hu, Ying
2018-03-01
Antenna selection of wireless communication system has attracted increasing attention due to the challenge of keeping a balance between communication performance and computational complexity in large-scale Multiple-Input MultipleOutput antenna systems. Recently, deep learning based methods have achieved promising performance for large-scale data processing and analysis in many application fields. This paper is the first attempt to introduce the deep learning technique into the field of Multiple-Input Multiple-Output antenna selection in wireless communications. First, the label of attenuation coefficients channel matrix is generated by minimizing the key performance indicator of training antenna systems. Then, a deep convolutional neural network that explicitly exploits the massive latent cues of attenuation coefficients is learned on the training antenna systems. Finally, we use the adopted deep convolutional neural network to classify the channel matrix labels of test antennas and select the optimal antenna subset. Simulation experimental results demonstrate that our method can achieve better performance than the state-of-the-art baselines for data-driven based wireless antenna selection.
Classification of polycystic ovary based on ultrasound images using competitive neural network
NASA Astrophysics Data System (ADS)
Dewi, R. M.; Adiwijaya; Wisesty, U. N.; Jondri
2018-03-01
Infertility in the women reproduction system due to inhibition of follicles maturation process causing the number of follicles which is called polycystic ovaries (PCO). PCO detection is still operated manually by a gynecologist by counting the number and size of follicles in the ovaries, so it takes a long time and needs high accuracy. In general, PCO can be detected by calculating stereology or feature extraction and classification. In this paper, we designed a system to classify PCO by using the feature extraction (Gabor Wavelet method) and Competitive Neural Network (CNN). CNN was selected because this method is the combination between Hemming Net and The Max Net so that the data classification can be performed based on the specific characteristics of ultrasound data. Based on the result of system testing, Competitive Neural Network obtained the highest accuracy is 80.84% and the time process is 60.64 seconds (when using 32 feature vectors as well as weight and bias values respectively of 0.03 and 0.002).
Evaluation and prediction of solar radiation for energy management based on neural networks
NASA Astrophysics Data System (ADS)
Aldoshina, O. V.; Van Tai, Dinh
2017-08-01
Currently, there is a high rate of distribution of renewable energy sources and distributed power generation based on intelligent networks; therefore, meteorological forecasts are particularly useful for planning and managing the energy system in order to increase its overall efficiency and productivity. The application of artificial neural networks (ANN) in the field of photovoltaic energy is presented in this article. Implemented in this study, two periodically repeating dynamic ANS, that are the concentration of the time delay of a neural network (CTDNN) and the non-linear autoregression of a network with exogenous inputs of the NAEI, are used in the development of a model for estimating and daily forecasting of solar radiation. ANN show good productivity, as reliable and accurate models of daily solar radiation are obtained. This allows to successfully predict the photovoltaic output power for this installation. The potential of the proposed method for controlling the energy of the electrical network is shown using the example of the application of the NAEI network for predicting the electric load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu
2013-11-28
A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resultingmore » in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.« less
Classification of Weed Species Using Artificial Neural Networks Based on Color Leaf Texture Feature
NASA Astrophysics Data System (ADS)
Li, Zhichen; An, Qiu; Ji, Changying
The potential impact of herbicide utilization compel people to use new method of weed control. Selective herbicide application is optimal method to reduce herbicide usage while maintain weed control. The key of selective herbicide is how to discriminate weed exactly. The HIS color co-occurrence method (CCM) texture analysis techniques was used to extract four texture parameters: Angular second moment (ASM), Entropy(E), Inertia quadrature (IQ), and Inverse difference moment or local homogeneity (IDM).The weed species selected for studying were Arthraxon hispidus, Digitaria sanguinalis, Petunia, Cyperus, Alternanthera Philoxeroides and Corchoropsis psilocarpa. The software of neuroshell2 was used for designing the structure of the neural network, training and test the data. It was found that the 8-40-1 artificial neural network provided the best classification performance and was capable of classification accuracies of 78%.
Real-time determination of fringe pattern frequencies: An application to pressure measurement
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Piroozan, Parham
2007-05-01
Retrieving information in real time from fringe patterns is a topic of a great deal of interest in scientific and engineering applications of optical methods. This paper presents a method for fringe frequency determination based on the capability of neural networks to recognize signals that are similar but not identical to signals used to train the neural network. Sampled patterns are generated by calibration and stored in memory. Incoming patterns are analyzed by a back-propagation neural network at the speed of the recording device, a CCD camera. This method of information retrieval is utilized to measure pressures on a boundary layer flow. The sensor combines optics and electronics to analyze dynamic pressure distributions and to feed information to a control system that is capable to preserve the stability of the flow.
Solving large scale traveling salesman problems by chaotic neurodynamics.
Hasegawa, Mikio; Ikeguch, Tohru; Aihara, Kazuyuki
2002-03-01
We propose a novel approach for solving large scale traveling salesman problems (TSPs) by chaotic dynamics. First, we realize the tabu search on a neural network, by utilizing the refractory effects as the tabu effects. Then, we extend it to a chaotic neural network version. We propose two types of chaotic searching methods, which are based on two different tabu searches. While the first one requires neurons of the order of n2 for an n-city TSP, the second one requires only n neurons. Moreover, an automatic parameter tuning method of our chaotic neural network is presented for easy application to various problems. Last, we show that our method with n neurons is applicable to large TSPs such as an 85,900-city problem and exhibits better performance than the conventional stochastic searches and the tabu searches.
Li, Zhong; Liu, Ming-de; Ji, Shou-xiang
2016-03-01
The Fourier Transform Infrared Spectroscopy (FTIR) is established to find the geographic origins of Chinese wolfberry quickly. In the paper, the 45 samples of Chinese wolfberry from different places of Qinghai Province are to be surveyed by FTIR. The original data matrix of FTIR is pretreated with common preprocessing and wavelet transform. Compared with common windows shifting smoothing preprocessing, standard normal variation correction and multiplicative scatter correction, wavelet transform is an effective spectrum data preprocessing method. Before establishing model through the artificial neural networks, the spectra variables are compressed by means of the wavelet transformation so as to enhance the training speed of the artificial neural networks, and at the same time the related parameters of the artificial neural networks model are also discussed in detail. The survey shows even if the infrared spectroscopy data is compressed to 1/8 of its original data, the spectral information and analytical accuracy are not deteriorated. The compressed spectra variables are used for modeling parameters of the backpropagation artificial neural network (BP-ANN) model and the geographic origins of Chinese wolfberry are used for parameters of export. Three layers of neural network model are built to predict the 10 unknown samples by using the MATLAB neural network toolbox design error back propagation network. The number of hidden layer neurons is 5, and the number of output layer neuron is 1. The transfer function of hidden layer is tansig, while the transfer function of output layer is purelin. Network training function is trainl and the learning function of weights and thresholds is learngdm. net. trainParam. epochs=1 000, while net. trainParam. goal = 0.001. The recognition rate of 100% is to be achieved. It can be concluded that the method is quite suitable for the quick discrimination of producing areas of Chinese wolfberry. The infrared spectral analysis technology combined with the artificial neural networks is proved to be a reliable and new method for the identification of the original place of Traditional Chinese Medicine.
Gait Recognition Based on Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Sokolova, A.; Konushin, A.
2017-05-01
In this work we investigate the problem of people recognition by their gait. For this task, we implement deep learning approach using the optical flow as the main source of motion information and combine neural feature extraction with the additional embedding of descriptors for representation improvement. In order to find the best heuristics, we compare several deep neural network architectures, learning and classification strategies. The experiments were made on two popular datasets for gait recognition, so we investigate their advantages and disadvantages and the transferability of considered methods.
Neural Network Based Sensory Fusion for Landmark Detection
NASA Technical Reports Server (NTRS)
Kumbla, Kishan -K.; Akbarzadeh, Mohammad R.
1997-01-01
NASA is planning to send numerous unmanned planetary missions to explore the space. This requires autonomous robotic vehicles which can navigate in an unstructured, unknown, and uncertain environment. Landmark based navigation is a new area of research which differs from the traditional goal-oriented navigation, where a mobile robot starts from an initial point and reaches a destination in accordance with a pre-planned path. The landmark based navigation has the advantage of allowing the robot to find its way without communication with the mission control station and without exact knowledge of its coordinates. Current algorithms based on landmark navigation however pose several constraints. First, they require large memories to store the images. Second, the task of comparing the images using traditional methods is computationally intensive and consequently real-time implementation is difficult. The method proposed here consists of three stages, First stage utilizes a heuristic-based algorithm to identify significant objects. The second stage utilizes a neural network (NN) to efficiently classify images of the identified objects. The third stage combines distance information with the classification results of neural networks for efficient and intelligent navigation.
Neural network simulation of the atmospheric point spread function for the adjacency effect research
NASA Astrophysics Data System (ADS)
Ma, Xiaoshan; Wang, Haidong; Li, Ligang; Yang, Zhen; Meng, Xin
2016-10-01
Adjacency effect could be regarded as the convolution of the atmospheric point spread function (PSF) and the surface leaving radiance. Monte Carlo is a common method to simulate the atmospheric PSF. But it can't obtain analytic expression and the meaningful results can be only acquired by statistical analysis of millions of data. A backward Monte Carlo algorithm was employed to simulate photon emitting and propagating in the atmosphere under different conditions. The PSF was determined by recording the photon-receiving numbers in fixed bin at different position. A multilayer feed-forward neural network with a single hidden layer was designed to learn the relationship between the PSF's and the input condition parameters. The neural network used the back-propagation learning rule for training. Its input parameters involved atmosphere condition, spectrum range, observing geometry. The outputs of the network were photon-receiving numbers in the corresponding bin. Because the output units were too many to be allowed by neural network, the large network was divided into a collection of smaller ones. These small networks could be ran simultaneously on many workstations and/or PCs to speed up the training. It is important to note that the simulated PSF's by Monte Carlo technique in non-nadir viewing angles are more complicated than that in nadir conditions which brings difficulties in the design of the neural network. The results obtained show that the neural network approach could be very useful to compute the atmospheric PSF based on the simulated data generated by Monte Carlo method.
The Energy Coding of a Structural Neural Network Based on the Hodgkin-Huxley Model.
Zhu, Zhenyu; Wang, Rubin; Zhu, Fengyun
2018-01-01
Based on the Hodgkin-Huxley model, the present study established a fully connected structural neural network to simulate the neural activity and energy consumption of the network by neural energy coding theory. The numerical simulation result showed that the periodicity of the network energy distribution was positively correlated to the number of neurons and coupling strength, but negatively correlated to signal transmitting delay. Moreover, a relationship was established between the energy distribution feature and the synchronous oscillation of the neural network, which showed that when the proportion of negative energy in power consumption curve was high, the synchronous oscillation of the neural network was apparent. In addition, comparison with the simulation result of structural neural network based on the Wang-Zhang biophysical model of neurons showed that both models were essentially consistent.
Time Series Neural Network Model for Part-of-Speech Tagging Indonesian Language
NASA Astrophysics Data System (ADS)
Tanadi, Theo
2018-03-01
Part-of-speech tagging (POS tagging) is an important part in natural language processing. Many methods have been used to do this task, including neural network. This paper models a neural network that attempts to do POS tagging. A time series neural network is modelled to solve the problems that a basic neural network faces when attempting to do POS tagging. In order to enable the neural network to have text data input, the text data will get clustered first using Brown Clustering, resulting a binary dictionary that the neural network can use. To further the accuracy of the neural network, other features such as the POS tag, suffix, and affix of previous words would also be fed to the neural network.
Optimized star sensors laboratory calibration method using a regularization neural network.
Zhang, Chengfen; Niu, Yanxiong; Zhang, Hao; Lu, Jiazhen
2018-02-10
High-precision ground calibration is essential to ensure the performance of star sensors. However, the complex distortion and multi-error coupling have brought great difficulties to traditional calibration methods, especially for large field of view (FOV) star sensors. Although increasing the complexity of models is an effective way to improve the calibration accuracy, it significantly increases the demand for calibration data. In order to achieve high-precision calibration of star sensors with large FOV, a novel laboratory calibration method based on a regularization neural network is proposed. A multi-layer structure neural network is designed to represent the mapping of the star vector and the corresponding star point coordinate directly. To ensure the generalization performance of the network, regularization strategies are incorporated into the net structure and the training algorithm. Simulation and experiment results demonstrate that the proposed method can achieve high precision with less calibration data and without any other priori information. Compared with traditional methods, the calibration error of the star sensor decreased by about 30%. The proposed method can satisfy the precision requirement for large FOV star sensors.
Neural Network Technique for Continous Transition from Ocean to Coastal Retrackers
NASA Astrophysics Data System (ADS)
Hazrina Idris, Nurul; Deng, Xiaoli; Hawani Idris, Nurul
2017-04-01
This paper presents the development of neural network for continuous transition of altimeter sea surface heights when switching from ocean to coastal waveform retrackers. In attempting to produce precise coastal sea level anomaly (SLA) via retracking waveforms, issue arose when employing multiple retracking algorithms (i.e. MLE-4, sub-waveform and threshold). The existence of relative offset between those retrackers creates 'jump' in the retracked SLA profiles. In this study, the offset between retrackers is minimized using multi-layer feed forward neural network technique. The technique reduces the offset values by modelling the complicated functions of those retracked SLAs. The technique is tested over the region of the Great Barrier Reef (GBR), Australia. The validation with Townsville and Bundaberg tide gauges shows that the threshold retracker achieves temporal correlations (r) of 0.84 and 0.75, respectively, and root mean square (RMS) error is 16 cm for both stations, indicating that the retracker produces more accurate SLAs than those of two retrackers. Meanwhile, values of r (RMS error) for MLE-4 is only 0.79 (18 cm) and 0.71 (16 cm), respectively, and for sub-waveform is 0.82 (16 cm) and 0.67 (16 cm), respectively. Therefore, with the neural network, retracked SLAs from MLE-4 and sub-waveform are aligned to those of the threshold retracker. The performance of neural network is compared with the normal procedure of offset removal, which is based on the mean of SLA differences (mean method). The performance is assessed by computing the standard deviation of difference (STD) between the SLAs above a referenced ellipsoid and the geoidal height, and the improvement of percentage (IMP). The results indicate that the neural network provides improvement in SLA precision in all 12 cases, while the mean method provides improvement in 10 out of 12 cases and deterioration is seen in two cases. In terms of STD and IMP, neural network reduces the offset better than those of the mean method. The IMPs with neural network reaches up to 67% for Jason-1 and 73% for Jason-2, meanwhile with mean method the IMPs only reaches up to 28% and 46%, respectively. In conclusion, the neural network technique is efficient to reduce the offset among retrackers by handling the linear and nonlinear relationship between retrackers, thus providing seamless transition from the open ocean to the coast, and vice versa. Studies in currently on-going are to consider other geophysical parameters, such as significant wave height that might be related to the variation of the offset, in the neural network.
Non-Intrusive Gaze Tracking Using Artificial Neural Networks
1994-01-05
We have developed an artificial neural network based gaze tracking, system which can be customized to individual users. A three layer feed forward...empirical analysis of the performance of a large number of artificial neural network architectures for this task. Suggestions for further explorations...for neurally based gaze trackers are presented, and are related to other similar artificial neural network applications such as autonomous road following.
NASA Astrophysics Data System (ADS)
Qiu, Feng; Dai, Guang; Zhang, Ying
According to the acoustic emission information and the appearance inspection information of tank bottom online testing, the external factors associated with tank bottom corrosion status are confirmed. Applying artificial neural network intelligent evaluation method, three tank bottom corrosion status evaluation models based on appearance inspection information, acoustic emission information, and online testing information are established. Comparing with the result of acoustic emission online testing through the evaluation of test sample, the accuracy of the evaluation model based on online testing information is 94 %. The evaluation model can evaluate tank bottom corrosion accurately and realize acoustic emission online testing intelligent evaluation of tank bottom.
Multispectral embedding-based deep neural network for three-dimensional human pose recovery
NASA Astrophysics Data System (ADS)
Yu, Jialin; Sun, Jifeng
2018-01-01
Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.
Stereo-vision-based cooperative-vehicle positioning using OCC and neural networks
NASA Astrophysics Data System (ADS)
Ifthekhar, Md. Shareef; Saha, Nirzhar; Jang, Yeong Min
2015-10-01
Vehicle positioning has been subjected to extensive research regarding driving safety measures and assistance as well as autonomous navigation. The most common positioning technique used in automotive positioning is the global positioning system (GPS). However, GPS is not reliably accurate because of signal blockage caused by high-rise buildings. In addition, GPS is error prone when a vehicle is inside a tunnel. Moreover, GPS and other radio-frequency-based approaches cannot provide orientation information or the position of neighboring vehicles. In this study, we propose a cooperative-vehicle positioning (CVP) technique by using the newly developed optical camera communications (OCC). The OCC technique utilizes image sensors and cameras to receive and decode light-modulated information from light-emitting diodes (LEDs). A vehicle equipped with an OCC transceiver can receive positioning and other information such as speed, lane change, driver's condition, etc., through optical wireless links of neighboring vehicles. Thus, the target vehicle position that is too far away to establish an OCC link can be determined by a computer-vision-based technique combined with the cooperation of neighboring vehicles. In addition, we have devised a back-propagation (BP) neural-network learning method for positioning and range estimation for CVP. The proposed neural-network-based technique can estimate target vehicle position from only two image points of target vehicles using stereo vision. For this, we use rear LEDs on target vehicles as image points. We show from simulation results that our neural-network-based method achieves better accuracy than that of the computer-vision method.
Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo
2008-05-30
Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial nitric oxide synthase 690 C/T and glu298asp; vitamin K-dependent coagulation factor seven arg353glu, glycoprotein Ia/IIa 873 G/A and E-selectin ser128arg. This study provides an alternative and reliable method to approach complex diseases. Indeed, the application of a novel artificial intelligence-based method offers a new insight into genetic markers of sporadic ALS pointing out the existence of a strong genetic background.
NASA Astrophysics Data System (ADS)
Valizadeh, Maryam; Sohrabi, Mahmoud Reza
2018-03-01
In the present study, artificial neural networks (ANNs) and support vector regression (SVR) as intelligent methods coupled with UV spectroscopy for simultaneous quantitative determination of Dorzolamide (DOR) and Timolol (TIM) in eye drop. Several synthetic mixtures were analyzed for validating the proposed methods. At first, neural network time series, which one type of network from the artificial neural network was employed and its efficiency was evaluated. Afterwards, the radial basis network was applied as another neural network. Results showed that the performance of this method is suitable for predicting. Finally, support vector regression was proposed to construct the Zilomole prediction model. Also, root mean square error (RMSE) and mean recovery (%) were calculated for SVR method. Moreover, the proposed methods were compared to the high-performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them. Also, the effect of interferences was investigated in spike solutions.
Buller, G; Lutman, M E
1998-08-01
The increasing use of transiently evoked otoacoustic emissions (TEOAE) in large neonatal hearing screening programmes makes a standardized method of response classification desirable. Until now methods have been either subjective or based on arbitrary response characteristics. This study takes an expert system approach to standardize the subjective judgements of an experienced scorer. The method that is developed comprises three stages. First, it transforms TEOAEs from waveforms in the time domain into a simplified parameter set. Second, the parameter set is classified by an artificial neural network that has been taught on a large database TEOAE waveforms and corresponding expert scores. Third, additional fuzzy logic rules automatically detect probable artefacts in the waveforms and synchronized spontaneous emission components. In this way, the knowledge of the experienced scorer is encapsulated in the expert system software and thereafter can be accessed by non-experts. Teaching and evaluation of the neural network was based on TEOAEs from a database totalling 2190 neonatal hearing screening tests. The database was divided into learning and test groups with 820 and 1370 waveforms respectively. From each recorded waveform a set of 12 parameters was calculated, representing signal static and dynamic properties. The artifical network was taught with parameter sets of only the learning groups. Reproduction of the human scorer classification by the neural net in the learning group showed a sensitivity for detecting screen fails of 99.3% (299 from 301 failed results on subjective scoring) and a specificity for detecting screen passes of 81.1% (421 of 519 pass results). To quantify the post hoc performance of the net (generalization), the test group was then presented to the network input. Sensitivity was 99.4% (474 from 477) and specificity was 87.3% (780 from 893). To check the efficiency of the classification method, a second learning group was selected out of the previous test group, and the previous learning group was used as the test group. Repeating learning and test procedures yielded 99.3% sensitivity and 80.7% specificity for reproduction, and 99.4% sensitivity and 86.7% specificity for generalization. In all respects, performance was better than for a previously optimized method based simply on cross-correlation between replicate non-linear waveforms. It is concluded that classification methods based on neural networks show promise for application to large neonatal screening programmes utilizing TEOAEs.
Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Ricketts, Daniel; Kotaru, Raj; Thomas, Robert; Noga, Donald F. (Technical Monitor); Kankam, Mark D. (Technical Monitor)
2000-01-01
In this report, a fully integrated prototype of a flight servo control system is successfully developed and implemented using brushless dc motors. The control system is developed by the fuzzy logic theory, and implemented with a multilayer neural network. First, a neural network-based architecture is introduced for fuzzy logic control. The characteristic rules and their membership functions of fuzzy systems are represented as the processing nodes in the neural network structure. The network structure and the parameter learning are performed simultaneously and online in the fuzzy-neural network system. The structure learning is based on the partition of input space. The parameter learning is based on the supervised gradient decent method, using a delta adaptation law. Using experimental setup, the performance of the proposed control system is evaluated under various operating conditions. Test results are presented and discussed in the report. The proposed learning control system has several advantages, namely, simple structure and learning capability, robustness and high tracking performance and few nodes at hidden layers. In comparison with the PI controller, the proposed fuzzy-neural network system can yield a better dynamic performance with shorter settling time, and without overshoot. Experimental results have shown that the proposed control system is adaptive and robust in responding to a wide range of operating conditions. In summary, the goal of this study is to design and implement-advanced servosystems to actuate control surfaces for flight vehicles, namely, aircraft and helicopters, missiles and interceptors, and mini- and micro-air vehicles.
FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model
Yaghini Bonabi, Safa; Asgharian, Hassan; Safari, Saeed; Nili Ahmadabadi, Majid
2014-01-01
A set of techniques for efficient implementation of Hodgkin-Huxley-based (H-H) model of a neural network on FPGA (Field Programmable Gate Array) is presented. The central implementation challenge is H-H model complexity that puts limits on the network size and on the execution speed. However, basics of the original model cannot be compromised when effect of synaptic specifications on the network behavior is the subject of study. To solve the problem, we used computational techniques such as CORDIC (Coordinate Rotation Digital Computer) algorithm and step-by-step integration in the implementation of arithmetic circuits. In addition, we employed different techniques such as sharing resources to preserve the details of model as well as increasing the network size in addition to keeping the network execution speed close to real time while having high precision. Implementation of a two mini-columns network with 120/30 excitatory/inhibitory neurons is provided to investigate the characteristic of our method in practice. The implementation techniques provide an opportunity to construct large FPGA-based network models to investigate the effect of different neurophysiological mechanisms, like voltage-gated channels and synaptic activities, on the behavior of a neural network in an appropriate execution time. Additional to inherent properties of FPGA, like parallelism and re-configurability, our approach makes the FPGA-based system a proper candidate for study on neural control of cognitive robots and systems as well. PMID:25484854
Bianconi, André; Zuben, Cláudio J. Von; Serapião, Adriane B. de S.; Govone, José S.
2010-01-01
Bionomic features of blowflies may be clarified and detailed by the deployment of appropriate modelling techniques such as artificial neural networks, which are mathematical tools widely applied to the resolution of complex biological problems. The principal aim of this work was to use three well-known neural networks, namely Multi-Layer Perceptron (MLP), Radial Basis Function (RBF), and Adaptive Neural Network-Based Fuzzy Inference System (ANFIS), to ascertain whether these tools would be able to outperform a classical statistical method (multiple linear regression) in the prediction of the number of resultant adults (survivors) of experimental populations of Chrysomya megacephala (F.) (Diptera: Calliphoridae), based on initial larval density (number of larvae), amount of available food, and duration of immature stages. The coefficient of determination (R2) derived from the RBF was the lowest in the testing subset in relation to the other neural networks, even though its R2 in the training subset exhibited virtually a maximum value. The ANFIS model permitted the achievement of the best testing performance. Hence this model was deemed to be more effective in relation to MLP and RBF for predicting the number of survivors. All three networks outperformed the multiple linear regression, indicating that neural models could be taken as feasible techniques for predicting bionomic variables concerning the nutritional dynamics of blowflies. PMID:20569135
NASA Astrophysics Data System (ADS)
Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Chang, Kyung Hwan; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie
2017-08-01
The aim of this study is an integrated research for text-based data mining and toxicity prediction modeling system for clinical decision support system based on big data in radiation oncology as a preliminary research. The structured and unstructured data were prepared by treatment plans and the unstructured data were extracted by dose-volume data image pattern recognition of prostate cancer for research articles crawling through the internet. We modeled an artificial neural network to build a predictor model system for toxicity prediction of organs at risk. We used a text-based data mining approach to build the artificial neural network model for bladder and rectum complication predictions. The pattern recognition method was used to mine the unstructured toxicity data for dose-volume at the detection accuracy of 97.9%. The confusion matrix and training model of the neural network were achieved with 50 modeled plans (n = 50) for validation. The toxicity level was analyzed and the risk factors for 25% bladder, 50% bladder, 20% rectum, and 50% rectum were calculated by the artificial neural network algorithm. As a result, 32 plans could cause complication but 18 plans were designed as non-complication among 50 modeled plans. We integrated data mining and a toxicity modeling method for toxicity prediction using prostate cancer cases. It is shown that a preprocessing analysis using text-based data mining and prediction modeling can be expanded to personalized patient treatment decision support based on big data.
Nawaz, Tabassam; Mehmood, Zahid; Rashid, Muhammad; Habib, Hafiz Adnan
2018-01-01
Recent research on speech segregation and music fingerprinting has led to improvements in speech segregation and music identification algorithms. Speech and music segregation generally involves the identification of music followed by speech segregation. However, music segregation becomes a challenging task in the presence of noise. This paper proposes a novel method of speech segregation for unlabelled stationary noisy audio signals using the deep belief network (DBN) model. The proposed method successfully segregates a music signal from noisy audio streams. A recurrent neural network (RNN)-based hidden layer segregation model is applied to remove stationary noise. Dictionary-based fisher algorithms are employed for speech classification. The proposed method is tested on three datasets (TIMIT, MIR-1K, and MusicBrainz), and the results indicate the robustness of proposed method for speech segregation. The qualitative and quantitative analysis carried out on three datasets demonstrate the efficiency of the proposed method compared to the state-of-the-art speech segregation and classification-based methods. PMID:29558485
An annealed chaotic maximum neural network for bipartite subgraph problem.
Wang, Jiahai; Tang, Zheng; Wang, Ronglong
2004-04-01
In this paper, based on maximum neural network, we propose a new parallel algorithm that can help the maximum neural network escape from local minima by including a transient chaotic neurodynamics for bipartite subgraph problem. The goal of the bipartite subgraph problem, which is an NP- complete problem, is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. Lee et al. presented a parallel algorithm using the maximum neural model (winner-take-all neuron model) for this NP- complete problem. The maximum neural model always guarantees a valid solution and greatly reduces the search space without a burden on the parameter-tuning. However, the model has a tendency to converge to a local minimum easily because it is based on the steepest descent method. By adding a negative self-feedback to the maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm is then fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the maximum neural network and the chaotic neurodynamics. A large number of instances have been simulated to verify the proposed algorithm. The simulation results show that our algorithm finds the optimum or near-optimum solution for the bipartite subgraph problem superior to that of the best existing parallel algorithms.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Wang, Zengcai; Wang, Xiaojin; Qi, Yazhou; Liu, Qing; Zhang, Guoxin
2016-09-01
Human fatigue is an important cause of traffic accidents. To improve the safety of transportation, we propose, in this paper, a framework for fatigue expression recognition using image-based facial dynamic multi-information and a bimodal deep neural network. First, the landmark of face region and the texture of eye region, which complement each other in fatigue expression recognition, are extracted from facial image sequences captured by a single camera. Then, two stacked autoencoder neural networks are trained for landmark and texture, respectively. Finally, the two trained neural networks are combined by learning a joint layer on top of them to construct a bimodal deep neural network. The model can be used to extract a unified representation that fuses landmark and texture modalities together and classify fatigue expressions accurately. The proposed system is tested on a human fatigue dataset obtained from an actual driving environment. The experimental results demonstrate that the proposed method performs stably and robustly, and that the average accuracy achieves 96.2%.
Forecasting the Short-Term Passenger Flow on High-Speed Railway with Neural Networks
Xie, Mei-Quan; Li, Xia-Miao; Zhou, Wen-Liang; Fu, Yan-Bing
2014-01-01
Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD) matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway. PMID:25544838
Neural-tree call admission controller for ATM networks
NASA Astrophysics Data System (ADS)
Rughooputh, Harry C. S.
1999-03-01
Asynchronous Transfer Mode (ATM) has been recommended by ITU-T as the transport method for broadband integrated services digital networks. In high-speed ATM networks different types of multimedia traffic streams with widely varying traffic characteristics and Quality of Service (QoS) are asynchronously multiplexed on transmission links and switched without window flow control as found in X.25. In such an environment, a traffic control scheme is required to manage the required QoS of each class individually. To meet the QoS requirements, Bandwidth Allocation and Call Admission Control (CAC) in ATM networks must be able to adapt gracefully to the dynamic behavior of traffic and the time-varying nature of the network condition. In this paper, a Neural Network approach for CAC is proposed. The call admission problem is addressed by designing controllers based on Neural Tree Networks. Simulations reveal that the proposed scheme is not only simple but it also offers faster response than conventional neural/neuro-fuzzy controllers.
Novel maximum-margin training algorithms for supervised neural networks.
Ludwig, Oswaldo; Nunes, Urbano
2010-06-01
This paper proposes three novel training methods, two of them based on the backpropagation approach and a third one based on information theory for multilayer perceptron (MLP) binary classifiers. Both backpropagation methods are based on the maximal-margin (MM) principle. The first one, based on the gradient descent with adaptive learning rate algorithm (GDX) and named maximum-margin GDX (MMGDX), directly increases the margin of the MLP output-layer hyperplane. The proposed method jointly optimizes both MLP layers in a single process, backpropagating the gradient of an MM-based objective function, through the output and hidden layers, in order to create a hidden-layer space that enables a higher margin for the output-layer hyperplane, avoiding the testing of many arbitrary kernels, as occurs in case of support vector machine (SVM) training. The proposed MM-based objective function aims to stretch out the margin to its limit. An objective function based on Lp-norm is also proposed in order to take into account the idea of support vectors, however, overcoming the complexity involved in solving a constrained optimization problem, usually in SVM training. In fact, all the training methods proposed in this paper have time and space complexities O(N) while usual SVM training methods have time complexity O(N (3)) and space complexity O(N (2)) , where N is the training-data-set size. The second approach, named minimization of interclass interference (MICI), has an objective function inspired on the Fisher discriminant analysis. Such algorithm aims to create an MLP hidden output where the patterns have a desirable statistical distribution. In both training methods, the maximum area under ROC curve (AUC) is applied as stop criterion. The third approach offers a robust training framework able to take the best of each proposed training method. The main idea is to compose a neural model by using neurons extracted from three other neural networks, each one previously trained by MICI, MMGDX, and Levenberg-Marquard (LM), respectively. The resulting neural network was named assembled neural network (ASNN). Benchmark data sets of real-world problems have been used in experiments that enable a comparison with other state-of-the-art classifiers. The results provide evidence of the effectiveness of our methods regarding accuracy, AUC, and balanced error rate.
NASA Astrophysics Data System (ADS)
Li, Xiumin; Wang, Wei; Xue, Fangzheng; Song, Yongduan
2018-02-01
Recently there has been continuously increasing interest in building up computational models of spiking neural networks (SNN), such as the Liquid State Machine (LSM). The biologically inspired self-organized neural networks with neural plasticity can enhance the capability of computational performance, with the characteristic features of dynamical memory and recurrent connection cycles which distinguish them from the more widely used feedforward neural networks. Despite a variety of computational models for brain-like learning and information processing have been proposed, the modeling of self-organized neural networks with multi-neural plasticity is still an important open challenge. The main difficulties lie in the interplay among different forms of neural plasticity rules and understanding how structures and dynamics of neural networks shape the computational performance. In this paper, we propose a novel approach to develop the models of LSM with a biologically inspired self-organizing network based on two neural plasticity learning rules. The connectivity among excitatory neurons is adapted by spike-timing-dependent plasticity (STDP) learning; meanwhile, the degrees of neuronal excitability are regulated to maintain a moderate average activity level by another learning rule: intrinsic plasticity (IP). Our study shows that LSM with STDP+IP performs better than LSM with a random SNN or SNN obtained by STDP alone. The noticeable improvement with the proposed method is due to the better reflected competition among different neurons in the developed SNN model, as well as the more effectively encoded and processed relevant dynamic information with its learning and self-organizing mechanism. This result gives insights to the optimization of computational models of spiking neural networks with neural plasticity.
On the fusion of tuning parameters of fuzzy rules and neural network
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.
Jing, Luyang; Wang, Taiyong; Zhao, Ming; Wang, Peng
2017-01-01
A fault diagnosis approach based on multi-sensor data fusion is a promising tool to deal with complicated damage detection problems of mechanical systems. Nevertheless, this approach suffers from two challenges, which are (1) the feature extraction from various types of sensory data and (2) the selection of a suitable fusion level. It is usually difficult to choose an optimal feature or fusion level for a specific fault diagnosis task, and extensive domain expertise and human labor are also highly required during these selections. To address these two challenges, we propose an adaptive multi-sensor data fusion method based on deep convolutional neural networks (DCNN) for fault diagnosis. The proposed method can learn features from raw data and optimize a combination of different fusion levels adaptively to satisfy the requirements of any fault diagnosis task. The proposed method is tested through a planetary gearbox test rig. Handcraft features, manual-selected fusion levels, single sensory data, and two traditional intelligent models, back-propagation neural networks (BPNN) and a support vector machine (SVM), are used as comparisons in the experiment. The results demonstrate that the proposed method is able to detect the conditions of the planetary gearbox effectively with the best diagnosis accuracy among all comparative methods in the experiment. PMID:28230767
NASA Astrophysics Data System (ADS)
Kilic, Gokhan; Eren, Levent
2018-04-01
This paper reports on the fundamental role played by Ground Penetrating Radar (GPR), alongside advanced processing and presentation methods, during the tunnel boring project at a Dam and Hydro-Electric Power Station. It identifies from collected GPR data such issues as incomplete grouting and the presence of karst conduits and voids and provides full details of the procedures adopted. In particular, the application of collected GPR data to the Neural Network (NN) method is discussed.
Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A
2016-03-21
One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kusumoto, Dai; Lachmann, Mark; Kunihiro, Takeshi; Yuasa, Shinsuke; Kishino, Yoshikazu; Kimura, Mai; Katsuki, Toshiomi; Itoh, Shogo; Seki, Tomohisa; Fukuda, Keiichi
2018-06-05
Deep learning technology is rapidly advancing and is now used to solve complex problems. Here, we used deep learning in convolutional neural networks to establish an automated method to identify endothelial cells derived from induced pluripotent stem cells (iPSCs), without the need for immunostaining or lineage tracing. Networks were trained to predict whether phase-contrast images contain endothelial cells based on morphology only. Predictions were validated by comparison to immunofluorescence staining for CD31, a marker of endothelial cells. Method parameters were then automatically and iteratively optimized to increase prediction accuracy. We found that prediction accuracy was correlated with network depth and pixel size of images to be analyzed. Finally, K-fold cross-validation confirmed that optimized convolutional neural networks can identify endothelial cells with high performance, based only on morphology. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
View-invariant gait recognition method by three-dimensional convolutional neural network
NASA Astrophysics Data System (ADS)
Xing, Weiwei; Li, Ying; Zhang, Shunli
2018-01-01
Gait as an important biometric feature can identify a human at a long distance. View change is one of the most challenging factors for gait recognition. To address the cross view issues in gait recognition, we propose a view-invariant gait recognition method by three-dimensional (3-D) convolutional neural network. First, 3-D convolutional neural network (3DCNN) is introduced to learn view-invariant feature, which can capture the spatial information and temporal information simultaneously on normalized silhouette sequences. Second, a network training method based on cross-domain transfer learning is proposed to solve the problem of the limited gait training samples. We choose the C3D as the basic model, which is pretrained on the Sports-1M and then fine-tune C3D model to adapt gait recognition. In the recognition stage, we use the fine-tuned model to extract gait features and use Euclidean distance to measure the similarity of gait sequences. Sufficient experiments are carried out on the CASIA-B dataset and the experimental results demonstrate that our method outperforms many other methods.
Research on optimization of combustion efficiency of thermal power unit based on genetic algorithm
NASA Astrophysics Data System (ADS)
Zhou, Qiongyang
2018-04-01
In order to improve the economic performance and reduce pollutant emissions of thermal power units, the characteristics of neural network in establishing boiler combustion model are analyzed based on the analysis of the main factors affecting boiler efficiency by using orthogonal method. In addition, on the basis of this model, the genetic algorithm is used to find the best control amount of the furnace combustion in a certain working condition. Through the genetic algorithm based on real number encoding and roulette selection is concluded: the best control quantity at a condition of furnace combustion can be combined with the boiler combustion system model for neural network training. The precision of the neural network model is further improved, and the basic work is laid for the research of the whole boiler combustion optimization system.
NASA Astrophysics Data System (ADS)
Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen
2018-05-01
To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.
Gramatikov, Boris I
2017-04-27
Reliable detection of central fixation and eye alignment is essential in the diagnosis of amblyopia ("lazy eye"), which can lead to blindness. Our lab has developed and reported earlier a pediatric vision screener that performs scanning of the retina around the fovea and analyzes changes in the polarization state of light as the scan progresses. Depending on the direction of gaze and the instrument design, the screener produces several signal frequencies that can be utilized in the detection of central fixation. The objective of this study was to compare artificial neural networks with classical statistical methods, with respect to their ability to detect central fixation reliably. A classical feedforward, pattern recognition, two-layer neural network architecture was used, consisting of one hidden layer and one output layer. The network has four inputs, representing normalized spectral powers at four signal frequencies generated during retinal birefringence scanning. The hidden layer contains four neurons. The output suggests presence or absence of central fixation. Backpropagation was used to train the network, using the gradient descent algorithm and the cross-entropy error as the performance function. The network was trained, validated and tested on a set of controlled calibration data obtained from 600 measurements from ten eyes in a previous study, and was additionally tested on a clinical set of 78 eyes, independently diagnosed by an ophthalmologist. In the first part of this study, a neural network was designed around the calibration set. With a proper architecture and training, the network provided performance that was comparable to classical statistical methods, allowing perfect separation between the central and paracentral fixation data, with both the sensitivity and the specificity of the instrument being 100%. In the second part of the study, the neural network was applied to the clinical data. It allowed reliable separation between normal subjects and affected subjects, its accuracy again matching that of the statistical methods. With a proper choice of a neural network architecture and a good, uncontaminated training data set, the artificial neural network can be an efficient classification tool for detecting central fixation based on retinal birefringence scanning.
Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong
2013-04-01
In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.
NASA Astrophysics Data System (ADS)
Liu, Pudong; Zhou, Jiayuan; Shi, Runhe; Zhang, Chao; Liu, Chaoshun; Sun, Zhibin; Gao, Wei
2016-09-01
The aim of this work was to identify the coastal wetland plants between Bayes and BP neural network using hyperspectral data in order to optimize the classification method. For this purpose, we chose two dominant plants (invasive S. alterniflora and native P. australis) in the Yangtze Estuary, the leaf spectral reflectance of P. australis and S. alterniflora were measured by ASD field spectral machine. We tested the Bayes method and BP neural network for the identification of these two species. Results showed that three different bands (i.e., 555 nm 711 nm and 920 nm) could be identified as the sensitive bands for the input parameters for the two methods. Bayes method and BP neural network prediction model both performed well (Bayes prediction for 88.57% accuracy, BP neural network model prediction for about 80% accuracy), but Bayes theorem method could give higher accuracy and stability.
Hippert, Henrique S; Taylor, James W
2010-04-01
Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.
High solar activity predictions through an artificial neural network
NASA Astrophysics Data System (ADS)
Orozco-Del-Castillo, M. G.; Ortiz-Alemán, J. C.; Couder-Castañeda, C.; Hernández-Gómez, J. J.; Solís-Santomé, A.
The effects of high-energy particles coming from the Sun on human health as well as in the integrity of outer space electronics make the prediction of periods of high solar activity (HSA) a task of significant importance. Since periodicities in solar indexes have been identified, long-term predictions can be achieved. In this paper, we present a method based on an artificial neural network to find a pattern in some harmonics which represent such periodicities. We used data from 1973 to 2010 to train the neural network, and different historical data for its validation. We also used the neural network along with a statistical analysis of its performance with known data to predict periods of HSA with different confidence intervals according to the three-sigma rule associated with solar cycles 24-26, which we found to occur before 2040.
NASA Astrophysics Data System (ADS)
Yang, Bing; Liao, Zhen; Qin, Yahang; Wu, Yayun; Liang, Sai; Xiao, Shoune; Yang, Guangwu; Zhu, Tao
2017-05-01
To describe the complicated nonlinear process of the fatigue short crack evolution behavior, especially the change of the crack propagation rate, two different calculation methods are applied. The dominant effective short fatigue crack propagation rates are calculated based on the replica fatigue short crack test with nine smooth funnel-shaped specimens and the observation of the replica films according to the effective short fatigue cracks principle. Due to the fast decay and the nonlinear approximation ability of wavelet analysis, the self-learning ability of neural network, and the macroscopic searching and global optimization of genetic algorithm, the genetic wavelet neural network can reflect the implicit complex nonlinear relationship when considering multi-influencing factors synthetically. The effective short fatigue cracks and the dominant effective short fatigue crack are simulated and compared by the Genetic Wavelet Neural Network. The simulation results show that Genetic Wavelet Neural Network is a rational and available method for studying the evolution behavior of fatigue short crack propagation rate. Meanwhile, a traditional data fitting method for a short crack growth model is also utilized for fitting the test data. It is reasonable and applicable for predicting the growth rate. Finally, the reason for the difference between the prediction effects by these two methods is interpreted.
The purpose of this study was to develop a method of classifying cancers to specific diagnostic categories based on their gene expression signatures using artificial neural networks (ANNs). We trained the ANNs using the small, round blue-cell tumors (SRBCTs) as a model. These cancers belong to four distinct diagnostic categories and often present diagnostic dilemmas in
Study on feed forward neural network convex optimization for LiFePO4 battery parameters
NASA Astrophysics Data System (ADS)
Liu, Xuepeng; Zhao, Dongmei
2017-08-01
Based on the modern facility agriculture automatic walking equipment LiFePO4 Battery, the parameter identification of LiFePO4 Battery is analyzed. An improved method for the process model of li battery is proposed, and the on-line estimation algorithm is presented. The parameters of the battery are identified using feed forward network neural convex optimization algorithm.
A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion.
Cai, Binghuang; Jiang, Xia
2014-04-01
Biomedical prediction based on clinical and genome-wide data has become increasingly important in disease diagnosis and classification. To solve the prediction problem in an effective manner for the improvement of clinical care, we develop a novel Artificial Neural Network (ANN) method based on Matrix Pseudo-Inversion (MPI) for use in biomedical applications. The MPI-ANN is constructed as a three-layer (i.e., input, hidden, and output layers) feed-forward neural network, and the weights connecting the hidden and output layers are directly determined based on MPI without a lengthy learning iteration. The LASSO (Least Absolute Shrinkage and Selection Operator) method is also presented for comparative purposes. Single Nucleotide Polymorphism (SNP) simulated data and real breast cancer data are employed to validate the performance of the MPI-ANN method via 5-fold cross validation. Experimental results demonstrate the efficacy of the developed MPI-ANN for disease classification and prediction, in view of the significantly superior accuracy (i.e., the rate of correct predictions), as compared with LASSO. The results based on the real breast cancer data also show that the MPI-ANN has better performance than other machine learning methods (including support vector machine (SVM), logistic regression (LR), and an iterative ANN). In addition, experiments demonstrate that our MPI-ANN could be used for bio-marker selection as well. Copyright © 2013 Elsevier Inc. All rights reserved.
Implanted neural network potentials: Application to Li-Si alloys
NASA Astrophysics Data System (ADS)
Onat, Berk; Cubuk, Ekin D.; Malone, Brad D.; Kaxiras, Efthimios
2018-03-01
Modeling the behavior of materials composed of elements with different bonding and electronic structure character for large spatial and temporal scales and over a large compositional range is a challenging problem. Cases in point are amorphous alloys of Si, a prototypical covalent material, and Li, a prototypical metal, which are being considered as anodes for high-energy-density batteries. To address this challenge, we develop a methodology based on neural networks that extends the conventional training approach to incorporate pre-trained parts that capture the character of different components, into the overall network; we refer to this model as the "implanted neural network" method. We show that this approach works well for the Si-Li amorphous alloys for a wide range of compositions, giving good results for key quantities like the diffusion coefficients. The method is readily generalizable to more complicated situations that involve two or more different elements.
Regional application of multi-layer artificial neural networks in 3-D ionosphere tomography
NASA Astrophysics Data System (ADS)
Ghaffari Razin, Mir Reza; Voosoghi, Behzad
2016-08-01
Tomography is a very cost-effective method to study physical properties of the ionosphere. In this paper, residual minimization training neural network (RMTNN) is used in voxel-based tomography to reconstruct of 3-D ionosphere electron density with high spatial resolution. For numerical experiments, observations collected at 37 GPS stations from Iranian permanent GPS network (IPGN) are used. A smoothed TEC approach was used for absolute STEC recovery. To improve the vertical resolution, empirical orthogonal functions (EOFs) obtained from international reference ionosphere 2012 (IRI-2012) used as object function in training neural network. Ionosonde observations is used for validate reliability of the proposed method. Minimum relative error for RMTNN is 1.64% and maximum relative error is 15.61%. Also root mean square error (RMSE) of 0.17 × 1011 (electrons/m3) is computed for RMTNN which is less than RMSE of IRI2012. The results show that RMTNN has higher accuracy and compiles speed than other ionosphere reconstruction methods.
Knowledge extraction from evolving spiking neural networks with rank order population coding.
Soltic, Snjezana; Kasabov, Nikola
2010-12-01
This paper demonstrates how knowledge can be extracted from evolving spiking neural networks with rank order population coding. Knowledge discovery is a very important feature of intelligent systems. Yet, a disproportionally small amount of research is centered on the issue of knowledge extraction from spiking neural networks which are considered to be the third generation of artificial neural networks. The lack of knowledge representation compatibility is becoming a major detriment to end users of these networks. We show that a high-level knowledge can be obtained from evolving spiking neural networks. More specifically, we propose a method for fuzzy rule extraction from an evolving spiking network with rank order population coding. The proposed method was used for knowledge discovery on two benchmark taste recognition problems where the knowledge learnt by an evolving spiking neural network was extracted in the form of zero-order Takagi-Sugeno fuzzy IF-THEN rules.
NASA Astrophysics Data System (ADS)
Li, Zhaokun; Zhao, Xiaohui
2017-02-01
The sensor-less adaptive optics (AO) is one of the most promising methods to compensate strong wave front disturbance in free space optics communication (FSO). The back propagation (BP) artificial neural network is applied for the sensor-less AO system to design a distortion correction scheme in this study. This method only needs one or a few online measurements to correct the wave front distortion compared with other model-based approaches, by which the real-time capacity of the system is enhanced and the Strehl Ratio (SR) is largely improved. Necessary comparisons in numerical simulation with other model-based and model-free correction methods proposed in Refs. [6,8,9,10] are given to show the validity and advantage of the proposed method.
Wang, Leimin; Zeng, Zhigang; Ge, Ming-Feng; Hu, Junhao
2018-05-02
This paper deals with the stabilization problem of memristive recurrent neural networks with inertial items, discrete delays, bounded and unbounded distributed delays. First, for inertial memristive recurrent neural networks (IMRNNs) with second-order derivatives of states, an appropriate variable substitution method is invoked to transfer IMRNNs into a first-order differential form. Then, based on nonsmooth analysis theory, several algebraic criteria are established for the global stabilizability of IMRNNs under proposed feedback control, where the cases with both bounded and unbounded distributed delays are successfully addressed. Finally, the theoretical results are illustrated via the numerical simulations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Railway obstacle detection algorithm using neural network
NASA Astrophysics Data System (ADS)
Yu, Mingyang; Yang, Peng; Wei, Sen
2018-05-01
Aiming at the difficulty of detection of obstacle in outdoor railway scene, a data-oriented method based on neural network to obtain image objects is proposed. First, we mark objects of images(such as people, trains, animals) acquired on the Internet. and then use the residual learning units to build Fast R-CNN framework. Then, the neural network is trained to get the target image characteristics by using stochastic gradient descent algorithm. Finally, a well-trained model is used to identify an outdoor railway image. if it includes trains and other objects, it will issue an alert. Experiments show that the correct rate of warning reached 94.85%.
Advanced microprocessor based power protection system using artificial neural network techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z.; Kalam, A.; Zayegh, A.
This paper describes an intelligent embedded microprocessor based system for fault classification in power system protection system using advanced 32-bit microprocessor technology. The paper demonstrates the development of protective relay to provide overcurrent protection schemes for fault detection. It also describes a method for power fault classification in three-phase system based on the use of neural network technology. The proposed design is implemented and tested on a single line three phase power system in power laboratory. Both the hardware and software development are described in detail.
A fresh look at functional link neural network for motor imagery-based brain-computer interface.
Hettiarachchi, Imali T; Babaei, Toktam; Nguyen, Thanh; Lim, Chee P; Nahavandi, Saeid
2018-05-04
Artificial neural networks (ANNs) are one of the widely used classifiers in the brain-computer interface (BCI) systems-based on noninvasive electroencephalography (EEG) signals. Among the different ANN architectures, the most commonly applied for BCI classifiers is the multilayer perceptron (MLP). When appropriately designed with optimal number of neuron layers and number of neurons per layer, the ANN can act as a universal approximator. However, due to the low signal-to-noise ratio of EEG signal data, overtraining problem may become an inherent issue, causing these universal approximators to fail in real-time applications. In this study we introduce a higher order neural network, namely the functional link neural network (FLNN) as a classifier for motor imagery (MI)-based BCI systems, to remedy the drawbacks in MLP. We compare the proposed method with competing classifiers such as linear decomposition analysis, naïve Bayes, k-nearest neighbours, support vector machine and three MLP architectures. Two multi-class benchmark datasets from the BCI competitions are used. Common spatial pattern algorithm is utilized for feature extraction to build classification models. FLNN reports the highest average Kappa value over multiple subjects for both the BCI competition datasets, under similarly preprocessed data and extracted features. Further, statistical comparison results over multiple subjects show that the proposed FLNN classification method yields the best performance among the competing classifiers. Findings from this study imply that the proposed method, which has less computational complexity compared to the MLP, can be implemented effectively in practical MI-based BCI systems. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.
2004-01-01
A completely optical calibration process has been developed at Glenn for calibrating a neural-network-based nondestructive evaluation (NDE) method. The NDE method itself detects very small changes in the characteristic patterns or vibration mode shapes of vibrating structures as discussed in many references. The mode shapes or characteristic patterns are recorded using television or electronic holography and change when a structure experiences, for example, cracking, debonds, or variations in fastener properties. An artificial neural network can be trained to be very sensitive to changes in the mode shapes, but quantifying or calibrating that sensitivity in a consistent, meaningful, and deliverable manner has been challenging. The standard calibration approach has been difficult to implement, where the response to damage of the trained neural network is compared with the responses of vibration-measurement sensors. In particular, the vibration-measurement sensors are intrusive, insufficiently sensitive, and not numerous enough. In response to these difficulties, a completely optical alternative to the standard calibration approach was proposed and tested successfully. Specifically, the vibration mode to be monitored for structural damage was intentionally contaminated with known amounts of another mode, and the response of the trained neural network was measured as a function of the peak-to-peak amplitude of the contaminating mode. The neural network calibration technique essentially uses the vibration mode shapes of the undamaged structure as standards against which the changed mode shapes are compared. The published response of the network can be made nearly independent of the contaminating mode, if enough vibration modes are used to train the net. The sensitivity of the neural network can be adjusted for the environment in which the test is to be conducted. The response of a neural network trained with measured vibration patterns for use on a vibration isolation table in the presence of various sources of laboratory noise is shown. The output of the neural network is called the degradable classification index. The curve was generated by a simultaneous comparison of means, and it shows a peak-to-peak sensitivity of about 100 nm. The following graph uses model generated data from a compressor blade to show that much higher sensitivities are possible when the environment can be controlled better. The peak-to-peak sensitivity here is about 20 nm. The training procedure was modified for the second graph, and the data were subjected to an intensity-dependent transformation called folding. All the measurements for this approach to calibration were optical. The peak-to-peak amplitudes of the vibration modes were measured using heterodyne interferometry, and the modes themselves were recorded using television (electronic) holography.
Relabeling exchange method (REM) for learning in neural networks
NASA Astrophysics Data System (ADS)
Wu, Wen; Mammone, Richard J.
1994-02-01
The supervised training of neural networks require the use of output labels which are usually arbitrarily assigned. In this paper it is shown that there is a significant difference in the rms error of learning when `optimal' label assignment schemes are used. We have investigated two efficient random search algorithms to solve the relabeling problem: the simulated annealing and the genetic algorithm. However, we found them to be computationally expensive. Therefore we shall introduce a new heuristic algorithm called the Relabeling Exchange Method (REM) which is computationally more attractive and produces optimal performance. REM has been used to organize the optimal structure for multi-layered perceptrons and neural tree networks. The method is a general one and can be implemented as a modification to standard training algorithms. The motivation of the new relabeling strategy is based on the present interpretation of dyslexia as an encoding problem.
Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang
2013-09-13
Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks.
Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang
2013-01-01
Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks. PMID:24064602
Neural network-based model reference adaptive control system.
Patino, H D; Liu, D
2000-01-01
In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.
Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2006-01-01
Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more flexible than other methods in dealing with design in the context of both steady and unsteady flows, partial and complete data sets, combined experimental and numerical data, inclusion of various constraints and rules of thumb, and other issues that characterize the aerodynamic design process. Neural networks provide a natural framework within which a succession of numerical solutions of increasing fidelity, incorporating more realistic flow physics, can be represented and utilized for optimization. Neural networks also offer an excellent framework for multiple-objective and multi-disciplinary design optimization. Simulation tools from various disciplines can be integrated within this framework and rapid trade-off studies involving one or many disciplines can be performed. The prospect of combining neural network based optimization methods and evolutionary algorithms to obtain a hybrid method with the best properties of both methods will be included in this presentation. Achieving solution diversity and accurate convergence to the exact Pareto front in multiple objective optimization usually requires a significant computational effort with evolutionary algorithms. In this lecture we will also explore the possibility of using neural networks to obtain estimates of the Pareto optimal front using non-dominated solutions generated by DE as training data. Neural network estimators have the potential advantage of reducing the number of function evaluations required to obtain solution accuracy and diversity, thus reducing cost to design.
Application of artificial neural network for heat transfer in porous cone
NASA Astrophysics Data System (ADS)
Athani, Abdulgaphur; Ahamad, N. Ameer; Badruddin, Irfan Anjum
2018-05-01
Heat transfer in porous medium is one of the classical areas of research that has been active for many decades. The heat transfer in porous medium is generally studied by using numerical methods such as finite element method; finite difference method etc. that solves coupled partial differential equations by converting them into simpler forms. The current work utilizes an alternate method known as artificial neural network that mimics the learning characteristics of neurons. The heat transfer in porous medium fixed in a cone is predicted using backpropagation neural network. The artificial neural network is able to predict this behavior quite accurately.
NASA Astrophysics Data System (ADS)
Ghaderi, A. H.; Darooneh, A. H.
The behavior of nonlinear systems can be analyzed by artificial neural networks. Air temperature change is one example of the nonlinear systems. In this work, a new neural network method is proposed for forecasting maximum air temperature in two cities. In this method, the regular graph concept is used to construct some partially connected neural networks that have regular structures. The learning results of fully connected ANN and networks with proposed method are compared. In some case, the proposed method has the better result than conventional ANN. After specifying the best network, the effect of input pattern numbers on the prediction is studied and the results show that the increase of input patterns has a direct effect on the prediction accuracy.
Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks
Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei
2017-01-01
Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction. PMID:28672867
Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks.
Yu, Haiyang; Wu, Zhihai; Wang, Shuqin; Wang, Yunpeng; Ma, Xiaolei
2017-06-26
Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic speeds are converted into a series of static images and input into a novel deep architecture, namely, spatiotemporal recurrent convolutional networks (SRCNs), for traffic forecasting. The proposed SRCNs inherit the advantages of deep convolutional neural networks (DCNNs) and long short-term memory (LSTM) neural networks. The spatial dependencies of network-wide traffic can be captured by DCNNs, and the temporal dynamics can be learned by LSTMs. An experiment on a Beijing transportation network with 278 links demonstrates that SRCNs outperform other deep learning-based algorithms in both short-term and long-term traffic prediction.
Off-lexicon online Arabic handwriting recognition using neural network
NASA Astrophysics Data System (ADS)
Yahia, Hamdi; Chaabouni, Aymen; Boubaker, Houcine; Alimi, Adel M.
2017-03-01
This paper highlights a new method for online Arabic handwriting recognition based on graphemes segmentation. The main contribution of our work is to explore the utility of Beta-elliptic model in segmentation and features extraction for online handwriting recognition. Indeed, our method consists in decomposing the input signal into continuous part called graphemes based on Beta-Elliptical model, and classify them according to their position in the pseudo-word. The segmented graphemes are then described by the combination of geometric features and trajectory shape modeling. The efficiency of the considered features has been evaluated using feed forward neural network classifier. Experimental results using the benchmarking ADAB Database show the performance of the proposed method.
Neural network explanation using inversion.
Saad, Emad W; Wunsch, Donald C
2007-01-01
An important drawback of many artificial neural networks (ANN) is their lack of explanation capability [Andrews, R., Diederich, J., & Tickle, A. B. (1996). A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8, 373-389]. This paper starts with a survey of algorithms which attempt to explain the ANN output. We then present HYPINV, a new explanation algorithm which relies on network inversion; i.e. calculating the ANN input which produces a desired output. HYPINV is a pedagogical algorithm, that extracts rules, in the form of hyperplanes. It is able to generate rules with arbitrarily desired fidelity, maintaining a fidelity-complexity tradeoff. To our knowledge, HYPINV is the only pedagogical rule extraction method, which extracts hyperplane rules from continuous or binary attribute neural networks. Different network inversion techniques, involving gradient descent as well as an evolutionary algorithm, are presented. An information theoretic treatment of rule extraction is presented. HYPINV is applied to example synthetic problems, to a real aerospace problem, and compared with similar algorithms using benchmark problems.
[Early warning on measles through the neural networks].
Yu, Bin; Ding, Chun; Wei, Shan-bo; Chen, Bang-hua; Liu, Pu-lin; Luo, Tong-yong; Wang, Jia-gang; Pan, Zhi-wei; Lu, Jun-an
2011-01-01
To discuss the effects on early warning of measles, using the neural networks. Based on the available data through monthly and weekly reports on measles from January 1986 to August 2006 in Wuhan city. The modal was developed using the neural networks to predict and analyze the prevalence and incidence of measles. When the dynamic time series modal was established with back propagation (BP) networks consisting of two layers, if p was assigned as 9, the convergence speed was acceptable and the correlation coefficient was equal to 0.85. It was more acceptable for monthly forecasting the specific value, but better for weekly forecasting the classification under probabilistic neural networks (PNN). When data was big enough to serve the purpose, it seemed more feasible for early warning using the two-layer BP networks. However, when data was not enough, then PNN could be used for the purpose of prediction. This method seemed feasible to be used in the system for early warning.
NASA Technical Reports Server (NTRS)
Russell, Samuel S.; Lansing, Matthew D.
1997-01-01
This effort used a new and novel method of acquiring strains called Sub-pixel Digital Video Image Correlation (SDVIC) on impact damaged Kevlar/epoxy filament wound pressure vessels during a proof test. To predict the burst pressure, the hoop strain field distribution around the impact location from three vessels was used to train a neural network. The network was then tested on additional pressure vessels. Several variations on the network were tried. The best results were obtained using a single hidden layer. SDVIC is a fill-field non-contact computer vision technique which provides in-plane deformation and strain data over a load differential. This method was used to determine hoop and axial displacements, hoop and axial linear strains, the in-plane shear strains and rotations in the regions surrounding impact sites in filament wound pressure vessels (FWPV) during proof loading by internal pressurization. The relationship between these deformation measurement values and the remaining life of the pressure vessels, however, requires a complex theoretical model or numerical simulation. Both of these techniques are time consuming and complicated. Previous results using neural network methods had been successful in predicting the burst pressure for graphite/epoxy pressure vessels based upon acoustic emission (AE) measurements in similar tests. The neural network associates the character of the AE amplitude distribution, which depends upon the extent of impact damage, with the burst pressure. Similarly, higher amounts of impact damage are theorized to cause a higher amount of strain concentration in the damage effected zone at a given pressure and result in lower burst pressures. This relationship suggests that a neural network might be able to find an empirical relationship between the SDVIC strain field data and the burst pressure, analogous to the AE method, with greater speed and simplicity than theoretical or finite element modeling. The process of testing SDVIC neural network analysis and some encouraging preliminary results are presented in this paper. Details are given concerning the processing of SDVIC output data such that it may be used as back propagation neural network (BPNN) input data. The software written to perform this processing and the BPNN algorithm are also discussed. It will be shown that, with limited training, test results indicate an average error in burst pressure prediction of approximately six percent,
Optimal input sizes for neural network de-interlacing
NASA Astrophysics Data System (ADS)
Choi, Hyunsoo; Seo, Guiwon; Lee, Chulhee
2009-02-01
Neural network de-interlacing has shown promising results among various de-interlacing methods. In this paper, we investigate the effects of input size for neural networks for various video formats when the neural networks are used for de-interlacing. In particular, we investigate optimal input sizes for CIF, VGA and HD video formats.
NASA Technical Reports Server (NTRS)
Momoh, James A.; Wang, Yanchun; Dolce, James L.
1997-01-01
This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.
NASA Astrophysics Data System (ADS)
Xia, Y.; Tian, J.; d'Angelo, P.; Reinartz, P.
2018-05-01
3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.
Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.
Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2017-01-01
Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.
Neural dynamic programming and its application to control systems
NASA Astrophysics Data System (ADS)
Seong, Chang-Yun
There are few general practical feedback control methods for nonlinear MIMO (multi-input-multi-output) systems, although such methods exist for their linear counterparts. Neural Dynamic Programming (NDP) is proposed as a practical design method of optimal feedback controllers for nonlinear MIMO systems. NDP is an offspring of both neural networks and optimal control theory. In optimal control theory, the optimal solution to any nonlinear MIMO control problem may be obtained from the Hamilton-Jacobi-Bellman equation (HJB) or the Euler-Lagrange equations (EL). The two sets of equations provide the same solution in different forms: EL leads to a sequence of optimal control vectors, called Feedforward Optimal Control (FOC); HJB yields a nonlinear optimal feedback controller, called Dynamic Programming (DP). DP produces an optimal solution that can reject disturbances and uncertainties as a result of feedback. Unfortunately, computation and storage requirements associated with DP solutions can be problematic, especially for high-order nonlinear systems. This dissertation presents an approximate technique for solving the DP problem based on neural network techniques that provides many of the performance benefits (e.g., optimality and feedback) of DP and benefits from the numerical properties of neural networks. We formulate neural networks to approximate optimal feedback solutions whose existence DP justifies. We show the conditions under which NDP closely approximates the optimal solution. Finally, we introduce the learning operator characterizing the learning process of the neural network in searching the optimal solution. The analysis of the learning operator provides not only a fundamental understanding of the learning process in neural networks but also useful guidelines for selecting the number of weights of the neural network. As a result, NDP finds---with a reasonable amount of computation and storage---the optimal feedback solutions to nonlinear MIMO control problems that would be very difficult to solve with DP. NDP was demonstrated on several applications such as the lateral autopilot logic for a Boeing 747, the minimum fuel control of a double-integrator plant with bounded control, the backward steering of a two-trailer truck, and the set-point control of a two-link robot arm.
NASA Technical Reports Server (NTRS)
2004-01-01
The grant closure report is organized in the following four chapters: Chapter describes the two research areas Design optimization and Solid mechanics. Ten journal publications are listed in the second chapter. Five highlights is the subject matter of chapter three. CHAPTER 1. The Design Optimization Test Bed CometBoards. CHAPTER 2. Solid Mechanics: Integrated Force Method of Analysis. CHAPTER 3. Five Highlights: Neural Network and Regression Methods Demonstrated in the Design Optimization of a Subsonic Aircraft. Neural Network and Regression Soft Model Extended for PX-300 Aircraft Engine. Engine with Regression and Neural Network Approximators Designed. Cascade Optimization Strategy with Neural network and Regression Approximations Demonstrated on a Preliminary Aircraft Engine Design. Neural Network and Regression Approximations Used in Aircraft Design.
Ley-Bosch, Carlos; Quintana-Suárez, Miguel A.
2018-01-01
Indoor localization estimation has become an attractive research topic due to growing interest in location-aware services. Many research works have proposed solving this problem by using wireless communication systems based on radiofrequency. Nevertheless, those approaches usually deliver an accuracy of up to two metres, since they are hindered by multipath propagation. On the other hand, in the last few years, the increasing use of light-emitting diodes in illumination systems has provided the emergence of Visible Light Communication technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. This brings a brand new approach to high accuracy indoor positioning because this kind of network is not affected by electromagnetic interferences and the received optical power is more stable than radio signals. Our research focus on to propose a fingerprinting indoor positioning estimation system based on neural networks to predict the device position in a 3D environment. Neural networks are an effective classification and predictive method. The localization system is built using a dataset of received signal strength coming from a grid of different points. From the these values, the position in Cartesian coordinates (x,y,z) is estimated. The use of three neural networks is proposed in this work, where each network is responsible for estimating the position by each axis. Experimental results indicate that the proposed system leads to substantial improvements to accuracy over the widely-used traditional fingerprinting methods, yielding an accuracy above 99% and an average error distance of 0.4 mm. PMID:29601525
NASA Technical Reports Server (NTRS)
Benediktsson, J. A.; Ersoy, O. K.; Swain, P. H.
1991-01-01
A neural network architecture called a consensual neural network (CNN) is proposed for the classification of data from multiple sources. Its relation to hierarchical and ensemble neural networks is discussed. CNN is based on the statistical consensus theory and uses nonlinearly transformed input data. The input data are transformed several times, and the different transformed data are applied as if they were independent inputs. The independent inputs are classified using stage neural networks and outputs from the stage networks are then weighted and combined to make a decision. Experimental results based on remote-sensing data and geographic data are given.
Cao, Hui; Li, Yao-Jiang; Zhou, Yan; Wang, Yan-Xia
2014-11-01
To deal with nonlinear characteristics of spectra data for the thermal power plant flue, a nonlinear partial least square (PLS) analysis method with internal model based on neural network is adopted in the paper. The latent variables of the independent variables and the dependent variables are extracted by PLS regression firstly, and then they are used as the inputs and outputs of neural network respectively to build the nonlinear internal model by train process. For spectra data of flue gases of the thermal power plant, PLS, the nonlinear PLS with the internal model of back propagation neural network (BP-NPLS), the non-linear PLS with the internal model of radial basis function neural network (RBF-NPLS) and the nonlinear PLS with the internal model of adaptive fuzzy inference system (ANFIS-NPLS) are compared. The root mean square error of prediction (RMSEP) of sulfur dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 16.96%, 16.60% and 19.55% than that of PLS, respectively. The RMSEP of nitric oxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 8.60%, 8.47% and 10.09% than that of PLS, respectively. The RMSEP of nitrogen dioxide of BP-NPLS, RBF-NPLS and ANFIS-NPLS are reduced by 2.11%, 3.91% and 3.97% than that of PLS, respectively. Experimental results show that the nonlinear PLS is more suitable for the quantitative analysis of glue gas than PLS. Moreover, by using neural network function which can realize high approximation of nonlinear characteristics, the nonlinear partial least squares method with internal model mentioned in this paper have well predictive capabilities and robustness, and could deal with the limitations of nonlinear partial least squares method with other internal model such as polynomial and spline functions themselves under a certain extent. ANFIS-NPLS has the best performance with the internal model of adaptive fuzzy inference system having ability to learn more and reduce the residuals effectively. Hence, ANFIS-NPLS is an accurate and useful quantitative thermal power plant flue gas analysis method.
NASA Technical Reports Server (NTRS)
Baram, Yoram
1992-01-01
Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.
NASA Astrophysics Data System (ADS)
Sammouda, Rachid; Niki, Noboru; Nishitani, Hiroshi; Nakamura, S.; Mori, Shinichiro
1997-04-01
The paper presents a method for automatic segmentation of sputum cells with color images, to develop an efficient algorithm for lung cancer diagnosis based on a Hopfield neural network. We formulate the segmentation problem as a minimization of an energy function constructed with two terms, the cost-term as a sum of squared errors, and the second term a temporary noise added to the network as an excitation to escape certain local minima with the result of being closer to the global minimum. To increase the accuracy in segmenting the regions of interest, a preclassification technique is used to extract the sputum cell regions within the color image and remove those of the debris cells. The former is then given with the raw image to the input of Hopfield neural network to make a crisp segmentation by assigning each pixel to label such as background, cytoplasm, and nucleus. The proposed technique has yielded correct segmentation of complex scene of sputum prepared by ordinary manual staining method in most of the tested images selected from our database containing thousands of sputum color images.
A neural network architecture for implementation of expert systems for real time monitoring
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.
1991-01-01
Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.
NASA Astrophysics Data System (ADS)
Barreiro, Andrea K.; Ly, Cheng
2017-08-01
Rapid experimental advances now enable simultaneous electrophysiological recording of neural activity at single-cell resolution across large regions of the nervous system. Models of this neural network activity will necessarily increase in size and complexity, thus increasing the computational cost of simulating them and the challenge of analyzing them. Here we present a method to approximate the activity and firing statistics of a general firing rate network model (of the Wilson-Cowan type) subject to noisy correlated background inputs. The method requires solving a system of transcendental equations and is fast compared to Monte Carlo simulations of coupled stochastic differential equations. We implement the method with several examples of coupled neural networks and show that the results are quantitatively accurate even with moderate coupling strengths and an appreciable amount of heterogeneity in many parameters. This work should be useful for investigating how various neural attributes qualitatively affect the spiking statistics of coupled neural networks.
Neural dynamics based on the recognition of neural fingerprints
Carrillo-Medina, José Luis; Latorre, Roberto
2015-01-01
Experimental evidence has revealed the existence of characteristic spiking features in different neural signals, e.g., individual neural signatures identifying the emitter or functional signatures characterizing specific tasks. These neural fingerprints may play a critical role in neural information processing, since they allow receptors to discriminate or contextualize incoming stimuli. This could be a powerful strategy for neural systems that greatly enhances the encoding and processing capacity of these networks. Nevertheless, the study of information processing based on the identification of specific neural fingerprints has attracted little attention. In this work, we study (i) the emerging collective dynamics of a network of neurons that communicate with each other by exchange of neural fingerprints and (ii) the influence of the network topology on the self-organizing properties within the network. Complex collective dynamics emerge in the network in the presence of stimuli. Predefined inputs, i.e., specific neural fingerprints, are detected and encoded into coexisting patterns of activity that propagate throughout the network with different spatial organization. The patterns evoked by a stimulus can survive after the stimulation is over, which provides memory mechanisms to the network. The results presented in this paper suggest that neural information processing based on neural fingerprints can be a plausible, flexible, and powerful strategy. PMID:25852531
Neural networks applications to control and computations
NASA Technical Reports Server (NTRS)
Luxemburg, Leon A.
1994-01-01
Several interrelated problems in the area of neural network computations are described. First an interpolation problem is considered, then a control problem is reduced to a problem of interpolation by a neural network via Lyapunov function approach, and finally a new, faster method of learning as compared with the gradient descent method, was introduced.
A fuzzy neural network for intelligent data processing
NASA Astrophysics Data System (ADS)
Xie, Wei; Chu, Feng; Wang, Lipo; Lim, Eng Thiam
2005-03-01
In this paper, we describe an incrementally generated fuzzy neural network (FNN) for intelligent data processing. This FNN combines the features of initial fuzzy model self-generation, fast input selection, partition validation, parameter optimization and rule-base simplification. A small FNN is created from scratch -- there is no need to specify the initial network architecture, initial membership functions, or initial weights. Fuzzy IF-THEN rules are constantly combined and pruned to minimize the size of the network while maintaining accuracy; irrelevant inputs are detected and deleted, and membership functions and network weights are trained with a gradient descent algorithm, i.e., error backpropagation. Experimental studies on synthesized data sets demonstrate that the proposed Fuzzy Neural Network is able to achieve accuracy comparable to or higher than both a feedforward crisp neural network, i.e., NeuroRule, and a decision tree, i.e., C4.5, with more compact rule bases for most of the data sets used in our experiments. The FNN has achieved outstanding results for cancer classification based on microarray data. The excellent classification result for Small Round Blue Cell Tumors (SRBCTs) data set is shown. Compared with other published methods, we have used a much fewer number of genes for perfect classification, which will help researchers directly focus their attention on some specific genes and may lead to discovery of deep reasons of the development of cancers and discovery of drugs.
Jian, Yulin; Huang, Daoyu; Yan, Jia; Lu, Kun; Huang, Ying; Wen, Tailai; Zeng, Tanyue; Zhong, Shijie; Xie, Qilong
2017-01-01
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coefficients of base kernels are regarded as external parameters of single-hidden layer feedforward neural networks (SLFNs). The combination coefficients of base kernels, the model parameters of each base kernel, and the regularization parameter are optimized by QPSO simultaneously before implementing the kernel extreme learning machine (KELM) with the composite kernel function. Four types of common single kernel functions (Gaussian kernel, polynomial kernel, sigmoid kernel, and wavelet kernel) are utilized to constitute different composite kernel functions. Moreover, the method is also compared with other existing classification methods: extreme learning machine (ELM), kernel extreme learning machine (KELM), k-nearest neighbors (KNN), support vector machine (SVM), multi-layer perceptron (MLP), radical basis function neural network (RBFNN), and probabilistic neural network (PNN). The results have demonstrated that the proposed QWMK-ELM outperforms the aforementioned methods, not only in precision, but also in efficiency for gas classification. PMID:28629202
Prediction of stock market characteristics using neural networks
NASA Astrophysics Data System (ADS)
Pandya, Abhijit S.; Kondo, Tadashi; Shah, Trupti U.; Gandhi, Viraf R.
1999-03-01
International stocks trading, currency and derivative contracts play an increasingly important role for many investors. Neural network is playing a dominant role in predicting the trends in stock markets and in currency speculation. In most economic applications, the success rate using neural networks is limited to 70 - 80%. By means of the new approach of GMDH (Group Method of Data Handling) neural network predictions can be improved further by 10 - 15%. It was observed in our study, that using GMDH for short, noisy or inaccurate data sample resulted in the best-simplified model. In the GMDH model accuracy of prediction is higher and the structure is simpler than that of the usual full physical model. As an example, prediction of the activity on the stock exchange in New York was considered. On the basis of observations in the period of Jan '95 to July '98, several variables of the stock market (S&P 500, Small Cap, Dow Jones, etc.) were predicted. A model portfolio using various stocks (Amgen, Merck, Office Depot, etc.) was built and its performance was evaluated based on neural network forecasting of the closing prices. Comparison of results was made with various neural network models such as Multilayer Perceptrons with Back Propagation, and the GMDH neural network. Variations of GMDH were studied and analysis of their performance is reported in the paper.
Resource constrained design of artificial neural networks using comparator neural network
NASA Technical Reports Server (NTRS)
Wah, Benjamin W.; Karnik, Tanay S.
1992-01-01
We present a systematic design method executed under resource constraints for automating the design of artificial neural networks using the back error propagation algorithm. Our system aims at finding the best possible configuration for solving the given application with proper tradeoff between the training time and the network complexity. The design of such a system is hampered by three related problems. First, there are infinitely many possible network configurations, each may take an exceedingly long time to train; hence, it is impossible to enumerate and train all of them to completion within fixed time, space, and resource constraints. Second, expert knowledge on predicting good network configurations is heuristic in nature and is application dependent, rendering it difficult to characterize fully in the design process. A learning procedure that refines this knowledge based on examples on training neural networks for various applications is, therefore, essential. Third, the objective of the network to be designed is ill-defined, as it is based on a subjective tradeoff between the training time and the network cost. A design process that proposes alternate configurations under different cost-performance tradeoff is important. We have developed a Design System which schedules the available time, divided into quanta, for testing alternative network configurations. Its goal is to select/generate and test alternative network configurations in each quantum, and find the best network when time is expended. Since time is limited, a dynamic schedule that determines the network configuration to be tested in each quantum is developed. The schedule is based on relative comparison of predicted training times of alternative network configurations using comparator network paradigm. The comparator network has been trained to compare training times for a large variety of traces of TSSE-versus-time collected during back-propagation learning of various applications.
Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.
Mall, Susmita; Chakraverty, S
2016-08-01
Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.
NASA Astrophysics Data System (ADS)
Ibarra, Juan G.; Tao, Yang; Xin, Hongwei
2000-11-01
A noninvasive method for the estimation of internal temperature in chicken meat immediately following cooking is proposed. The external temperature from IR images was correlated with measured internal temperature through a multilayer neural network. To provide inputs for the network, time series experiments were conducted to obtain simultaneous observations of internal and external temperatures immediately after cooking during the cooling process. An IR camera working at the spectral band of 3.4 to 5.0 micrometers registered external temperature distributions without the interference of close-to-oven environment, while conventional thermocouples registered internal temperatures. For an internal temperature at a given time, simultaneous and lagged external temperature observations were used as the input of the neural network. Based on practical and statistical considerations, a criterion is established to reduce the nodes in the neural network input. The combined method was able to estimate internal temperature for times between 0 and 540 s within a standard error of +/- 1.01 degree(s)C, and within an error of +/- 1.07 degree(s)C for short times after cooking (3 min), with two thermograms at times t and t+30s. The method has great potential for monitoring of doneness of chicken meat in conveyor belt type cooking and can be used as a platform for similar studies in other food products.
Event Recognition Based on Deep Learning in Chinese Texts
Zhang, Yajun; Liu, Zongtian; Zhou, Wen
2016-01-01
Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%. PMID:27501231
Event Recognition Based on Deep Learning in Chinese Texts.
Zhang, Yajun; Liu, Zongtian; Zhou, Wen
2016-01-01
Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.
Trakoolwilaiwan, Thanawin; Behboodi, Bahareh; Lee, Jaeseok; Kim, Kyungsoo; Choi, Ji-Woong
2018-01-01
The aim of this work is to develop an effective brain-computer interface (BCI) method based on functional near-infrared spectroscopy (fNIRS). In order to improve the performance of the BCI system in terms of accuracy, the ability to discriminate features from input signals and proper classification are desired. Previous studies have mainly extracted features from the signal manually, but proper features need to be selected carefully. To avoid performance degradation caused by manual feature selection, we applied convolutional neural networks (CNNs) as the automatic feature extractor and classifier for fNIRS-based BCI. In this study, the hemodynamic responses evoked by performing rest, right-, and left-hand motor execution tasks were measured on eight healthy subjects to compare performances. Our CNN-based method provided improvements in classification accuracy over conventional methods employing the most commonly used features of mean, peak, slope, variance, kurtosis, and skewness, classified by support vector machine (SVM) and artificial neural network (ANN). Specifically, up to 6.49% and 3.33% improvement in classification accuracy was achieved by CNN compared with SVM and ANN, respectively.
Single-hidden-layer feed-forward quantum neural network based on Grover learning.
Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min
2013-09-01
In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
Talebi, H A; Khorasani, K; Tafazoli, S
2009-01-01
This paper presents a robust fault detection and isolation (FDI) scheme for a general class of nonlinear systems using a neural-network-based observer strategy. Both actuator and sensor faults are considered. The nonlinear system considered is subject to both state and sensor uncertainties and disturbances. Two recurrent neural networks are employed to identify general unknown actuator and sensor faults, respectively. The neural network weights are updated according to a modified backpropagation scheme. Unlike many previous methods developed in the literature, our proposed FDI scheme does not rely on availability of full state measurements. The stability of the overall FDI scheme in presence of unknown sensor and actuator faults as well as plant and sensor noise and uncertainties is shown by using the Lyapunov's direct method. The stability analysis developed requires no restrictive assumptions on the system and/or the FDI algorithm. Magnetorquer-type actuators and magnetometer-type sensors that are commonly employed in the attitude control subsystem (ACS) of low-Earth orbit (LEO) satellites for attitude determination and control are considered in our case studies. The effectiveness and capabilities of our proposed fault diagnosis strategy are demonstrated and validated through extensive simulation studies.
Deep Learning Neural Networks and Bayesian Neural Networks in Data Analysis
NASA Astrophysics Data System (ADS)
Chernoded, Andrey; Dudko, Lev; Myagkov, Igor; Volkov, Petr
2017-10-01
Most of the modern analyses in high energy physics use signal-versus-background classification techniques of machine learning methods and neural networks in particular. Deep learning neural network is the most promising modern technique to separate signal and background and now days can be widely and successfully implemented as a part of physical analysis. In this article we compare Deep learning and Bayesian neural networks application as a classifiers in an instance of top quark analysis.
Atzori, Manfredo; Cognolato, Matteo; Müller, Henning
2016-01-01
Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too. PMID:27656140
Atzori, Manfredo; Cognolato, Matteo; Müller, Henning
2016-01-01
Natural control methods based on surface electromyography (sEMG) and pattern recognition are promising for hand prosthetics. However, the control robustness offered by scientific research is still not sufficient for many real life applications, and commercial prostheses are capable of offering natural control for only a few movements. In recent years deep learning revolutionized several fields of machine learning, including computer vision and speech recognition. Our objective is to test its methods for natural control of robotic hands via sEMG using a large number of intact subjects and amputees. We tested convolutional networks for the classification of an average of 50 hand movements in 67 intact subjects and 11 transradial amputees. The simple architecture of the neural network allowed to make several tests in order to evaluate the effect of pre-processing, layer architecture, data augmentation and optimization. The classification results are compared with a set of classical classification methods applied on the same datasets. The classification accuracy obtained with convolutional neural networks using the proposed architecture is higher than the average results obtained with the classical classification methods, but lower than the results obtained with the best reference methods in our tests. The results show that convolutional neural networks with a very simple architecture can produce accurate results comparable to the average classical classification methods. They show that several factors (including pre-processing, the architecture of the net and the optimization parameters) can be fundamental for the analysis of sEMG data. Larger networks can achieve higher accuracy on computer vision and object recognition tasks. This fact suggests that it may be interesting to evaluate if larger networks can increase sEMG classification accuracy too.
Bio-inspired spiking neural network for nonlinear systems control.
Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M
2018-08-01
Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Scaling of counter-current imbibition recovery curves using artificial neural networks
NASA Astrophysics Data System (ADS)
Jafari, Iman; Masihi, Mohsen; Nasiri Zarandi, Masoud
2018-06-01
Scaling imbibition curves are of great importance in the characterization and simulation of oil production from naturally fractured reservoirs. Different parameters such as matrix porosity and permeability, oil and water viscosities, matrix dimensions, and oil/water interfacial tensions have an effective on the imbibition process. Studies on the scaling imbibition curves along with the consideration of different assumptions have resulted in various scaling equations. In this work, using an artificial neural network (ANN) method, a novel technique is presented for scaling imbibition recovery curves, which can be used for scaling the experimental and field-scale imbibition cases. The imbibition recovery curves for training and testing the neural network were gathered through the simulation of different scenarios using a commercial reservoir simulator. In this ANN-based method, six parameters were assumed to have an effect on the imbibition process and were considered as the inputs for training the network. Using the ‘Bayesian regularization’ training algorithm, the network was trained and tested. Training and testing phases showed superior results in comparison with the other scaling methods. It is concluded that using the new technique is useful for scaling imbibition recovery curves, especially for complex cases, for which the common scaling methods are not designed.
Bernal, Javier; Torres-Jimenez, Jose
2015-01-01
SAGRAD (Simulated Annealing GRADient), a Fortran 77 program for computing neural networks for classification using batch learning, is discussed. Neural network training in SAGRAD is based on a combination of simulated annealing and Møller's scaled conjugate gradient algorithm, the latter a variation of the traditional conjugate gradient method, better suited for the nonquadratic nature of neural networks. Different aspects of the implementation of the training process in SAGRAD are discussed, such as the efficient computation of gradients and multiplication of vectors by Hessian matrices that are required by Møller's algorithm; the (re)initialization of weights with simulated annealing required to (re)start Møller's algorithm the first time and each time thereafter that it shows insufficient progress in reaching a possibly local minimum; and the use of simulated annealing when Møller's algorithm, after possibly making considerable progress, becomes stuck at a local minimum or flat area of weight space. Outlines of the scaled conjugate gradient algorithm, the simulated annealing procedure and the training process used in SAGRAD are presented together with results from running SAGRAD on two examples of training data.
Li, Chunhui; Yu, Chuanhua
2013-01-01
To provide a reference for evaluating public non-profit hospitals in the new environment of medical reform, we established a performance evaluation system for public non-profit hospitals. The new “input-output” performance model for public non-profit hospitals is based on four primary indexes (input, process, output and effect) that include 11 sub-indexes and 41 items. The indicator weights were determined using the analytic hierarchy process (AHP) and entropy weight method. The BP neural network was applied to evaluate the performance of 14 level-3 public non-profit hospitals located in Hubei Province. The most stable BP neural network was produced by comparing different numbers of neurons in the hidden layer and using the “Leave-one-out” Cross Validation method. The performance evaluation system we established for public non-profit hospitals could reflect the basic goal of the new medical health system reform in China. Compared with PLSR, the result indicated that the BP neural network could be used effectively for evaluating the performance public non-profit hospitals. PMID:23955238
2017-01-01
Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the geometric and biological complexity. To address this problem we introduce the element-specific persistent homology (ESPH) method. ESPH represents 3D complex geometry by one-dimensional (1D) topological invariants and retains important biological information via a multichannel image-like representation. This representation reveals hidden structure-function relationships in biomolecules. We further integrate ESPH and deep convolutional neural networks to construct a multichannel topological neural network (TopologyNet) for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the deep learning limitations from small and noisy training sets, we propose a multi-task multichannel topological convolutional neural network (MM-TCNN). We demonstrate that TopologyNet outperforms the latest methods in the prediction of protein-ligand binding affinities, mutation induced globular protein folding free energy changes, and mutation induced membrane protein folding free energy changes. Availability: weilab.math.msu.edu/TDL/ PMID:28749969
Zhang, Zhijun; Li, Zhijun; Zhang, Yunong; Luo, Yamei; Li, Yuanqing
2015-12-01
We propose a dual-arm cyclic-motion-generation (DACMG) scheme by a neural-dynamic method, which can remedy the joint-angle-drift phenomenon of a humanoid robot. In particular, according to a neural-dynamic design method, first, a cyclic-motion performance index is exploited and applied. This cyclic-motion performance index is then integrated into a quadratic programming (QP)-type scheme with time-varying constraints, called the time-varying-constrained DACMG (TVC-DACMG) scheme. The scheme includes the kinematic motion equations of two arms and the time-varying joint limits. The scheme can not only generate the cyclic motion of two arms for a humanoid robot but also control the arms to move to the desired position. In addition, the scheme considers the physical limit avoidance. To solve the QP problem, a recurrent neural network is presented and used to obtain the optimal solutions. Computer simulations and physical experiments demonstrate the effectiveness and the accuracy of such a TVC-DACMG scheme and the neural network solver.
NASA Astrophysics Data System (ADS)
Park, Gilsoon; Hong, Jinwoo; Lee, Jong-Min
2018-03-01
In human brain, Corpus Callosum (CC) is the largest white matter structure, connecting between right and left hemispheres. Structural features such as shape and size of CC in midsagittal plane are of great significance for analyzing various neurological diseases, for example Alzheimer's disease, autism and epilepsy. For quantitative and qualitative studies of CC in brain MR images, robust segmentation of CC is important. In this paper, we present a novel method for CC segmentation. Our approach is based on deep neural networks and the prior information generated from multi-atlas images. Deep neural networks have recently shown good performance in various image processing field. Convolutional neural networks (CNN) have shown outstanding performance for classification and segmentation in medical image fields. We used convolutional neural networks for CC segmentation. Multi-atlas based segmentation model have been widely used in medical image segmentation because atlas has powerful information about the target structure we want to segment, consisting of MR images and corresponding manual segmentation of the target structure. We combined the prior information, such as location and intensity distribution of target structure (i.e. CC), made from multi-atlas images in CNN training process for more improving training. The CNN with prior information showed better segmentation performance than without.
Gong, Kuang; Yang, Jaewon; Kim, Kyungsang; El Fakhri, Georges; Seo, Youngho; Li, Quanzheng
2018-05-23
Positron Emission Tomography (PET) is a functional imaging modality widely used in neuroscience studies. To obtain meaningful quantitative results from PET images, attenuation correction is necessary during image reconstruction. For PET/MR hybrid systems, PET attenuation is challenging as Magnetic Resonance (MR) images do not reflect attenuation coefficients directly. To address this issue, we present deep neural network methods to derive the continuous attenuation coefficients for brain PET imaging from MR images. With only Dixon MR images as the network input, the existing U-net structure was adopted and analysis using forty patient data sets shows it is superior than other Dixon based methods. When both Dixon and zero echo time (ZTE) images are available, we have proposed a modified U-net structure, named GroupU-net, to efficiently make use of both Dixon and ZTE information through group convolution modules when the network goes deeper. Quantitative analysis based on fourteen real patient data sets demonstrates that both network approaches can perform better than the standard methods, and the proposed network structure can further reduce the PET quantification error compared to the U-net structure. © 2018 Institute of Physics and Engineering in Medicine.
Automated detection of videotaped neonatal seizures based on motion segmentation methods.
Karayiannis, Nicolaos B; Tao, Guozhi; Frost, James D; Wise, Merrill S; Hrachovy, Richard A; Mizrahi, Eli M
2006-07-01
This study was aimed at the development of a seizure detection system by training neural networks using quantitative motion information extracted by motion segmentation methods from short video recordings of infants monitored for seizures. The motion of the infants' body parts was quantified by temporal motion strength signals extracted from video recordings by motion segmentation methods based on optical flow computation. The area of each frame occupied by the infants' moving body parts was segmented by direct thresholding, by clustering of the pixel velocities, and by clustering the motion parameters obtained by fitting an affine model to the pixel velocities. The computational tools and procedures developed for automated seizure detection were tested and evaluated on 240 short video segments selected and labeled by physicians from a set of video recordings of 54 patients exhibiting myoclonic seizures (80 segments), focal clonic seizures (80 segments), and random infant movements (80 segments). The experimental study described in this paper provided the basis for selecting the most effective strategy for training neural networks to detect neonatal seizures as well as the decision scheme used for interpreting the responses of the trained neural networks. Depending on the decision scheme used for interpreting the responses of the trained neural networks, the best neural networks exhibited sensitivity above 90% or specificity above 90%. The best among the motion segmentation methods developed in this study produced quantitative features that constitute a reliable basis for detecting myoclonic and focal clonic neonatal seizures. The performance targets of this phase of the project may be achieved by combining the quantitative features described in this paper with those obtained by analyzing motion trajectory signals produced by motion tracking methods. A video system based upon automated analysis potentially offers a number of advantages. Infants who are at risk for seizures could be monitored continuously using relatively inexpensive and non-invasive video techniques that supplement direct observation by nursery personnel. This would represent a major advance in seizure surveillance and offers the possibility for earlier identification of potential neurological problems and subsequent intervention.
Classification of urine sediment based on convolution neural network
NASA Astrophysics Data System (ADS)
Pan, Jingjing; Jiang, Cunbo; Zhu, Tiantian
2018-04-01
By designing a new convolution neural network framework, this paper breaks the constraints of the original convolution neural network framework requiring large training samples and samples of the same size. Move and cropping the input images, generate the same size of the sub-graph. And then, the generated sub-graph uses the method of dropout, increasing the diversity of samples and preventing the fitting generation. Randomly select some proper subset in the sub-graphic set and ensure that the number of elements in the proper subset is same and the proper subset is not the same. The proper subsets are used as input layers for the convolution neural network. Through the convolution layer, the pooling, the full connection layer and output layer, we can obtained the classification loss rate of test set and training set. In the red blood cells, white blood cells, calcium oxalate crystallization classification experiment, the classification accuracy rate of 97% or more.
Study of the Gray Scale, Polychromatic, Distortion Invariant Neural Networks Using the Ipa Model.
NASA Astrophysics Data System (ADS)
Uang, Chii-Maw
Research in the optical neural network field is primarily motivated by the fact that humans recognize objects better than the conventional digital computers and the massively parallel inherent nature of optics. This research represents a continuous effort during the past several years in the exploitation of using neurocomputing for pattern recognition. Based on the interpattern association (IPA) model and Hamming net model, many new systems and applications are introduced. A gray level discrete associative memory that is based on object decomposition/composition is proposed for recognizing gray-level patterns. This technique extends the processing ability from the binary mode to gray-level mode, and thus the information capacity is increased. Two polychromatic optical neural networks using color liquid crystal television (LCTV) panels for color pattern recognition are introduced. By introducing a color encoding technique in conjunction with the interpattern associative algorithm, a color associative memory was realized. Based on the color decomposition and composition technique, a color exemplar-based Hamming net was built for color image classification. A shift-invariant neural network is presented through use of the translation invariant property of the modulus of the Fourier transformation and the hetero-associative interpattern association (IPA) memory. To extract the main features, a quadrantal sampling method is used to sampled data and then replace the training patterns. Using the concept of hetero-associative memory to recall the distorted object. A shift and rotation invariant neural network using an interpattern hetero-association (IHA) model is presented. To preserve the shift and rotation invariant properties, a set of binarized-encoded circular harmonic expansion (CHE) functions at the Fourier domain is used as the training set. We use the shift and symmetric properties of the modulus of the Fourier spectrum to avoid the problem of centering the CHE functions. Almost all neural networks have the positive and negative weights, which increases the difficulty of optical implementation. A method to construct a unipolar IPA IWM is discussed. By searching the redundant interconnection links, an effective way that removes all negative links is discussed.
Reduced-Order Modeling for Flutter/LCO Using Recurrent Artificial Neural Network
NASA Technical Reports Server (NTRS)
Yao, Weigang; Liou, Meng-Sing
2012-01-01
The present study demonstrates the efficacy of a recurrent artificial neural network to provide a high fidelity time-dependent nonlinear reduced-order model (ROM) for flutter/limit-cycle oscillation (LCO) modeling. An artificial neural network is a relatively straightforward nonlinear method for modeling an input-output relationship from a set of known data, for which we use the radial basis function (RBF) with its parameters determined through a training process. The resulting RBF neural network, however, is only static and is not yet adequate for an application to problems of dynamic nature. The recurrent neural network method [1] is applied to construct a reduced order model resulting from a series of high-fidelity time-dependent data of aero-elastic simulations. Once the RBF neural network ROM is constructed properly, an accurate approximate solution can be obtained at a fraction of the cost of a full-order computation. The method derived during the study has been validated for predicting nonlinear aerodynamic forces in transonic flow and is capable of accurate flutter/LCO simulations. The obtained results indicate that the present recurrent RBF neural network is accurate and efficient for nonlinear aero-elastic system analysis
Driving profile modeling and recognition based on soft computing approach.
Wahab, Abdul; Quek, Chai; Tan, Chin Keong; Takeda, Kazuya
2009-04-01
Advancements in biometrics-based authentication have led to its increasing prominence and are being incorporated into everyday tasks. Existing vehicle security systems rely only on alarms or smart card as forms of protection. A biometric driver recognition system utilizing driving behaviors is a highly novel and personalized approach and could be incorporated into existing vehicle security system to form a multimodal identification system and offer a greater degree of multilevel protection. In this paper, detailed studies have been conducted to model individual driving behavior in order to identify features that may be efficiently and effectively used to profile each driver. Feature extraction techniques based on Gaussian mixture models (GMMs) are proposed and implemented. Features extracted from the accelerator and brake pedal pressure were then used as inputs to a fuzzy neural network (FNN) system to ascertain the identity of the driver. Two fuzzy neural networks, namely, the evolving fuzzy neural network (EFuNN) and the adaptive network-based fuzzy inference system (ANFIS), are used to demonstrate the viability of the two proposed feature extraction techniques. The performances were compared against an artificial neural network (NN) implementation using the multilayer perceptron (MLP) network and a statistical method based on the GMM. Extensive testing was conducted and the results show great potential in the use of the FNN for real-time driver identification and verification. In addition, the profiling of driver behaviors has numerous other potential applications for use by law enforcement and companies dealing with buses and truck drivers.
NASA Astrophysics Data System (ADS)
Li, Chengcheng; Li, Yuefeng; Wang, Guanglin
2017-07-01
The work presented in this paper seeks to address the tracking problem for uncertain continuous nonlinear systems with external disturbances. The objective is to obtain a model that uses a reference-based output feedback tracking control law. The control scheme is based on neural networks and a linear difference inclusion (LDI) model, and a PDC structure and H∞ performance criterion are used to attenuate external disturbances. The stability of the whole closed-loop model is investigated using the well-known quadratic Lyapunov function. The key principles of the proposed approach are as follows: neural networks are first used to approximate nonlinearities, to enable a nonlinear system to then be represented as a linearised LDI model. An LMI (linear matrix inequality) formula is obtained for uncertain and disturbed linear systems. This formula enables a solution to be obtained through an interior point optimisation method for some nonlinear output tracking control problems. Finally, simulations and comparisons are provided on two practical examples to illustrate the validity and effectiveness of the proposed method.
Vanishing points detection using combination of fast Hough transform and deep learning
NASA Astrophysics Data System (ADS)
Sheshkus, Alexander; Ingacheva, Anastasia; Nikolaev, Dmitry
2018-04-01
In this paper we propose a novel method for vanishing points detection based on convolutional neural network (CNN) approach and fast Hough transform algorithm. We show how to determine fast Hough transform neural network layer and how to use it in order to increase usability of the neural network approach to the vanishing point detection task. Our algorithm includes CNN with consequence of convolutional and fast Hough transform layers. We are building estimator for distribution of possible vanishing points in the image. This distribution can be used to find candidates of vanishing point. We provide experimental results from tests of suggested method using images collected from videos of road trips. Our approach shows stable result on test images with different projective distortions and noise. Described approach can be effectively implemented for mobile GPU and CPU.
A lithology identification method for continental shale oil reservoir based on BP neural network
NASA Astrophysics Data System (ADS)
Han, Luo; Fuqiang, Lai; Zheng, Dong; Weixu, Xia
2018-06-01
The Dongying Depression and Jiyang Depression of the Bohai Bay Basin consist of continental sedimentary facies with a variable sedimentary environment and the shale layer system has a variety of lithologies and strong heterogeneity. It is difficult to accurately identify the lithologies with traditional lithology identification methods. The back propagation (BP) neural network was used to predict the lithology of continental shale oil reservoirs. Based on the rock slice identification, x-ray diffraction bulk rock mineral analysis, scanning electron microscope analysis, and the data of well logging and logging, the lithology was divided with carbonate, clay and felsic as end-member minerals. According to the core-electrical relationship, the frequency histogram was then used to calculate the logging response range of each lithology. The lithology-sensitive curves selected from 23 logging curves (GR, AC, CNL, DEN, etc) were chosen as the input variables. Finally, the BP neural network training model was established to predict the lithology. The lithology in the study area can be divided into four types: mudstone, lime mudstone, lime oil-mudstone, and lime argillaceous oil-shale. The logging responses of lithology were complicated and characterized by the low values of four indicators and medium values of two indicators. By comparing the number of hidden nodes and the number of training times, we found that the number of 15 hidden nodes and 1000 times of training yielded the best training results. The optimal neural network training model was established based on the above results. The lithology prediction results of BP neural network of well XX-1 showed that the accuracy rate was over 80%, indicating that the method was suitable for lithology identification of continental shale stratigraphy. The study provided the basis for the reservoir quality and oily evaluation of continental shale reservoirs and was of great significance to shale oil and gas exploration.
2015-12-15
Keypoint Density-based Region Proposal for Fine-Grained Object Detection and Classification using Regions with Convolutional Neural Network ... Convolutional Neural Networks (CNNs) enable them to outperform conventional techniques on standard object detection and classification tasks, their...detection accuracy and speed on the fine-grained Caltech UCSD bird dataset (Wah et al., 2011). Recently, Convolutional Neural Networks (CNNs), a deep
Linking structure and activity in nonlinear spiking networks
Josić, Krešimir; Shea-Brown, Eric
2017-01-01
Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks’ spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities—including those of different cell types—combine with connectivity to shape population activity and function. PMID:28644840
Cough event classification by pretrained deep neural network.
Liu, Jia-Ming; You, Mingyu; Wang, Zheng; Li, Guo-Zheng; Xu, Xianghuai; Qiu, Zhongmin
2015-01-01
Cough is an essential symptom in respiratory diseases. In the measurement of cough severity, an accurate and objective cough monitor is expected by respiratory disease society. This paper aims to introduce a better performed algorithm, pretrained deep neural network (DNN), to the cough classification problem, which is a key step in the cough monitor. The deep neural network models are built from two steps, pretrain and fine-tuning, followed by a Hidden Markov Model (HMM) decoder to capture tamporal information of the audio signals. By unsupervised pretraining a deep belief network, a good initialization for a deep neural network is learned. Then the fine-tuning step is a back propogation tuning the neural network so that it can predict the observation probability associated with each HMM states, where the HMM states are originally achieved by force-alignment with a Gaussian Mixture Model Hidden Markov Model (GMM-HMM) on the training samples. Three cough HMMs and one noncough HMM are employed to model coughs and noncoughs respectively. The final decision is made based on viterbi decoding algorihtm that generates the most likely HMM sequence for each sample. A sample is labeled as cough if a cough HMM is found in the sequence. The experiments were conducted on a dataset that was collected from 22 patients with respiratory diseases. Patient dependent (PD) and patient independent (PI) experimental settings were used to evaluate the models. Five criteria, sensitivity, specificity, F1, macro average and micro average are shown to depict different aspects of the models. From overall evaluation criteria, the DNN based methods are superior to traditional GMM-HMM based method on F1 and micro average with maximal 14% and 11% error reduction in PD and 7% and 10% in PI, meanwhile keep similar performances on macro average. They also surpass GMM-HMM model on specificity with maximal 14% error reduction on both PD and PI. In this paper, we tried pretrained deep neural network in cough classification problem. Our results showed that comparing with the conventional GMM-HMM framework, the HMM-DNN could get better overall performance on cough classification task.
Biologically plausible learning in neural networks: a lesson from bacterial chemotaxis.
Shimansky, Yury P
2009-12-01
Learning processes in the brain are usually associated with plastic changes made to optimize the strength of connections between neurons. Although many details related to biophysical mechanisms of synaptic plasticity have been discovered, it is unclear how the concurrent performance of adaptive modifications in a huge number of spatial locations is organized to minimize a given objective function. Since direct experimental observation of even a relatively small subset of such changes is not feasible, computational modeling is an indispensable investigation tool for solving this problem. However, the conventional method of error back-propagation (EBP) employed for optimizing synaptic weights in artificial neural networks is not biologically plausible. This study based on computational experiments demonstrated that such optimization can be performed rather efficiently using the same general method that bacteria employ for moving closer to an attractant or away from a repellent. With regard to neural network optimization, this method consists of regulating the probability of an abrupt change in the direction of synaptic weight modification according to the temporal gradient of the objective function. Neural networks utilizing this method (regulation of modification probability, RMP) can be viewed as analogous to swimming in the multidimensional space of their parameters in the flow of biochemical agents carrying information about the optimality criterion. The efficiency of RMP is comparable to that of EBP, while RMP has several important advantages. Since the biological plausibility of RMP is beyond a reasonable doubt, the RMP concept provides a constructive framework for the experimental analysis of learning in natural neural networks.
NASA Astrophysics Data System (ADS)
Mofavvaz, Shirin; Sohrabi, Mahmoud Reza; Nezamzadeh-Ejhieh, Alireza
2017-07-01
In the present study, artificial neural networks (ANNs) and least squares support vector machines (LS-SVM) as intelligent methods based on absorption spectra in the range of 230-300 nm have been used for determination of antihistamine decongestant contents. In the first step, one type of network (feed-forward back-propagation) from the artificial neural network with two different training algorithms, Levenberg-Marquardt (LM) and gradient descent with momentum and adaptive learning rate back-propagation (GDX) algorithm, were employed and their performance was evaluated. The performance of the LM algorithm was better than the GDX algorithm. In the second one, the radial basis network was utilized and results compared with the previous network. In the last one, the other intelligent method named least squares support vector machine was proposed to construct the antihistamine decongestant prediction model and the results were compared with two of the aforementioned networks. The values of the statistical parameters mean square error (MSE), Regression coefficient (R2), correlation coefficient (r) and also mean recovery (%), relative standard deviation (RSD) used for selecting the best model between these methods. Moreover, the proposed methods were compared to the high- performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them.
Classifying medical relations in clinical text via convolutional neural networks.
He, Bin; Guan, Yi; Dai, Rui
2018-05-16
Deep learning research on relation classification has achieved solid performance in the general domain. This study proposes a convolutional neural network (CNN) architecture with a multi-pooling operation for medical relation classification on clinical records and explores a loss function with a category-level constraint matrix. Experiments using the 2010 i2b2/VA relation corpus demonstrate these models, which do not depend on any external features, outperform previous single-model methods and our best model is competitive with the existing ensemble-based method. Copyright © 2018. Published by Elsevier B.V.
Wang, Dandan; Zong, Qun; Tian, Bailing; Shao, Shikai; Zhang, Xiuyun; Zhao, Xinyi
2018-02-01
The distributed finite-time formation tracking control problem for multiple unmanned helicopters is investigated in this paper. The control object is to maintain the positions of follower helicopters in formation with external interferences. The helicopter model is divided into a second order outer-loop subsystem and a second order inner-loop subsystem based on multiple-time scale features. Using radial basis function neural network (RBFNN) technique, we first propose a novel finite-time multivariable neural network disturbance observer (FMNNDO) to estimate the external disturbance and model uncertainty, where the neural network (NN) approximation errors can be dynamically compensated by adaptive law. Next, based on FMNNDO, a distributed finite-time formation tracking controller and a finite-time attitude tracking controller are designed using the nonsingular fast terminal sliding mode (NFTSM) method. In order to estimate the second derivative of the virtual desired attitude signal, a novel finite-time sliding mode integral filter is designed. Finally, Lyapunov analysis and multiple-time scale principle ensure the realization of control goal in finite-time. The effectiveness of the proposed FMNNDO and controllers are then verified by numerical simulations. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Detection of inter-turn short-circuit at start-up of induction machine based on torque analysis
NASA Astrophysics Data System (ADS)
Pietrowski, Wojciech; Górny, Konrad
2017-12-01
Recently, interest in new diagnostics methods in a field of induction machines was observed. Research presented in the paper shows the diagnostics of induction machine based on torque pulsation, under inter-turn short-circuit, during start-up of a machine. In the paper three numerical techniques were used: finite element analysis, signal analysis and artificial neural networks (ANN). The elaborated numerical model of faulty machine consists of field, circuit and motion equations. Voltage excited supply allowed to determine the torque waveform during start-up. The inter-turn short-circuit was treated as a galvanic connection between two points of the stator winding. The waveforms were calculated for different amounts of shorted-turns from 0 to 55. Due to the non-stationary waveforms a wavelet packet decomposition was used to perform an analysis of the torque. The obtained results of analysis were used as input vector for ANN. The response of the neural network was the number of shorted-turns in the stator winding. Special attention was paid to compare response of general regression neural network (GRNN) and multi-layer perceptron neural network (MLP). Based on the results of the research, the efficiency of the developed algorithm can be inferred.
Accelerating Learning By Neural Networks
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1992-01-01
Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.
Using fuzzy logic to integrate neural networks and knowledge-based systems
NASA Technical Reports Server (NTRS)
Yen, John
1991-01-01
Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems.
Improvement of the Hopfield Neural Network by MC-Adaptation Rule
NASA Astrophysics Data System (ADS)
Zhou, Zhen; Zhao, Hong
2006-06-01
We show that the performance of the Hopfield neural networks, especially the quality of the recall and the capacity of the effective storing, can be greatly improved by making use of a recently presented neural network designing method without altering the whole structure of the network. In the improved neural network, a memory pattern is recalled exactly from initial states having a given degree of similarity with the memory pattern, and thus one can avoids to apply the overlap criterion as carried out in the Hopfield neural networks.
Liu, Meiqin; Zhang, Senlin
2008-10-01
A unified neural network model termed standard neural network model (SNNM) is advanced. Based on the robust L(2) gain (i.e. robust H(infinity) performance) analysis of the SNNM with external disturbances, a state-feedback control law is designed for the SNNM to stabilize the closed-loop system and eliminate the effect of external disturbances. The control design constraints are shown to be a set of linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms (e.g. interior-point algorithms) to determine the control law. Most discrete-time recurrent neural network (RNNs) and discrete-time nonlinear systems modelled by neural networks or Takagi and Sugeno (T-S) fuzzy models can be transformed into the SNNMs to be robust H(infinity) performance analyzed or robust H(infinity) controller synthesized in a unified SNNM's framework. Finally, some examples are presented to illustrate the wide application of the SNNMs to the nonlinear systems, and the proposed approach is compared with related methods reported in the literature.
Noorizadeh, Hadi; Farmany, Abbas; Narimani, Hojat; Noorizadeh, Mehrab
2013-05-01
A quantitative structure-retention relationship (QSRR) study based on an artificial neural network (ANN) was carried out for the prediction of the ultra-performance liquid chromatography-Time-of-Flight mass spectrometry (UPLC-TOF-MS) retention time (RT) of a set of 52 pharmaceuticals and drugs of abuse in hair. The genetic algorithm was used as a variable selection tool. A partial least squares (PLS) method was used to select the best descriptors which were used as input neurons in neural network model. For choosing the best predictive model from among comparable models, square correlation coefficient R(2) for the whole set calculated based on leave-group-out predicted values of the training set and model-derived predicted values for the test set compounds is suggested to be a good criterion. Finally, to improve the results, structure-retention relationships were followed by a non-linear approach using artificial neural networks and consequently better results were obtained. This also demonstrates the advantages of ANN. Copyright © 2011 John Wiley & Sons, Ltd.
Neural Energy Supply-Consumption Properties Based on Hodgkin-Huxley Model
2017-01-01
Electrical activity is the foundation of the neural system. Coding theories that describe neural electrical activity by the roles of action potential timing or frequency have been thoroughly studied. However, an alternative method to study coding questions is the energy method, which is more global and economical. In this study, we clearly defined and calculated neural energy supply and consumption based on the Hodgkin-Huxley model, during firing action potentials and subthreshold activities using ion-counting and power-integral model. Furthermore, we analyzed energy properties of each ion channel and found that, under the two circumstances, power synchronization of ion channels and energy utilization ratio have significant differences. This is particularly true of the energy utilization ratio, which can rise to above 100% during subthreshold activity, revealing an overdraft property of energy use. These findings demonstrate the distinct status of the energy properties during neuronal firings and subthreshold activities. Meanwhile, after introducing a synapse energy model, this research can be generalized to energy calculation of a neural network. This is potentially important for understanding the relationship between dynamical network activities and cognitive behaviors. PMID:28316842
Optical-Correlator Neural Network Based On Neocognitron
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Stoner, William W.
1994-01-01
Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.
Rock images classification by using deep convolution neural network
NASA Astrophysics Data System (ADS)
Cheng, Guojian; Guo, Wenhui
2017-08-01
Granularity analysis is one of the most essential issues in authenticate under microscope. To improve the efficiency and accuracy of traditional manual work, an convolutional neural network based method is proposed for granularity analysis from thin section image, which chooses and extracts features from image samples while build classifier to recognize granularity of input image samples. 4800 samples from Ordos basin are used for experiments under colour spaces of HSV, YCbCr and RGB respectively. On the test dataset, the correct rate in RGB colour space is 98.5%, and it is believable in HSV and YCbCr colour space. The results show that the convolution neural network can classify the rock images with high reliability.
Abbaspour, Alireza; Aboutalebi, Payam; Yen, Kang K; Sargolzaei, Arman
2017-03-01
A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Plagianakos, V P; Magoulas, G D; Vrahatis, M N
2006-03-01
Distributed computing is a process through which a set of computers connected by a network is used collectively to solve a single problem. In this paper, we propose a distributed computing methodology for training neural networks for the detection of lesions in colonoscopy. Our approach is based on partitioning the training set across multiple processors using a parallel virtual machine. In this way, interconnected computers of varied architectures can be used for the distributed evaluation of the error function and gradient values, and, thus, training neural networks utilizing various learning methods. The proposed methodology has large granularity and low synchronization, and has been implemented and tested. Our results indicate that the parallel virtual machine implementation of the training algorithms developed leads to considerable speedup, especially when large network architectures and training sets are used.
LavaNet—Neural network development environment in a general mine planning package
NASA Astrophysics Data System (ADS)
Kapageridis, Ioannis Konstantinou; Triantafyllou, A. G.
2011-04-01
LavaNet is a series of scripts written in Perl that gives access to a neural network simulation environment inside a general mine planning package. A well known and a very popular neural network development environment, the Stuttgart Neural Network Simulator, is used as the base for the development of neural networks. LavaNet runs inside VULCAN™—a complete mine planning package with advanced database, modelling and visualisation capabilities. LavaNet is taking advantage of VULCAN's Perl based scripting environment, Lava, to bring all the benefits of neural network development and application to geologists, mining engineers and other users of the specific mine planning package. LavaNet enables easy development of neural network training data sets using information from any of the data and model structures available, such as block models and drillhole databases. Neural networks can be trained inside VULCAN™ and the results be used to generate new models that can be visualised in 3D. Direct comparison of developed neural network models with conventional and geostatistical techniques is now possible within the same mine planning software package. LavaNet supports Radial Basis Function networks, Multi-Layer Perceptrons and Self-Organised Maps.
Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen
2017-10-01
This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.
Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang
2009-01-01
The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3–11.3 μm; IR2, 11.5–12.5 μm and WV 6.3–7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products. PMID:22346714
Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang
2009-01-01
The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.
Radar signal categorization using a neural network
NASA Technical Reports Server (NTRS)
Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.
1991-01-01
Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.
Karayiannis, Nicolaos B; Mukherjee, Amit; Glover, John R; Ktonas, Periklis Y; Frost, James D; Hrachovy, Richard A; Mizrahi, Eli M
2006-04-01
This paper presents an approach to detect epileptic seizure segments in the neonatal electroencephalogram (EEG) by characterizing the spectral features of the EEG waveform using a rule-based algorithm cascaded with a neural network. A rule-based algorithm screens out short segments of pseudosinusoidal EEG patterns as epileptic based on features in the power spectrum. The output of the rule-based algorithm is used to train and compare the performance of conventional feedforward neural networks and quantum neural networks. The results indicate that the trained neural networks, cascaded with the rule-based algorithm, improved the performance of the rule-based algorithm acting by itself. The evaluation of the proposed cascaded scheme for the detection of pseudosinusoidal seizure segments reveals its potential as a building block of the automated seizure detection system under development.
Super-pixel extraction based on multi-channel pulse coupled neural network
NASA Astrophysics Data System (ADS)
Xu, GuangZhu; Hu, Song; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun
2018-04-01
Super-pixel extraction techniques group pixels to form over-segmented image blocks according to the similarity among pixels. Compared with the traditional pixel-based methods, the image descripting method based on super-pixel has advantages of less calculation, being easy to perceive, and has been widely used in image processing and computer vision applications. Pulse coupled neural network (PCNN) is a biologically inspired model, which stems from the phenomenon of synchronous pulse release in the visual cortex of cats. Each PCNN neuron can correspond to a pixel of an input image, and the dynamic firing pattern of each neuron contains both the pixel feature information and its context spatial structural information. In this paper, a new color super-pixel extraction algorithm based on multi-channel pulse coupled neural network (MPCNN) was proposed. The algorithm adopted the block dividing idea of SLIC algorithm, and the image was divided into blocks with same size first. Then, for each image block, the adjacent pixels of each seed with similar color were classified as a group, named a super-pixel. At last, post-processing was adopted for those pixels or pixel blocks which had not been grouped. Experiments show that the proposed method can adjust the number of superpixel and segmentation precision by setting parameters, and has good potential for super-pixel extraction.
A renaissance of neural networks in drug discovery.
Baskin, Igor I; Winkler, David; Tetko, Igor V
2016-08-01
Neural networks are becoming a very popular method for solving machine learning and artificial intelligence problems. The variety of neural network types and their application to drug discovery requires expert knowledge to choose the most appropriate approach. In this review, the authors discuss traditional and newly emerging neural network approaches to drug discovery. Their focus is on backpropagation neural networks and their variants, self-organizing maps and associated methods, and a relatively new technique, deep learning. The most important technical issues are discussed including overfitting and its prevention through regularization, ensemble and multitask modeling, model interpretation, and estimation of applicability domain. Different aspects of using neural networks in drug discovery are considered: building structure-activity models with respect to various targets; predicting drug selectivity, toxicity profiles, ADMET and physicochemical properties; characteristics of drug-delivery systems and virtual screening. Neural networks continue to grow in importance for drug discovery. Recent developments in deep learning suggests further improvements may be gained in the analysis of large chemical data sets. It's anticipated that neural networks will be more widely used in drug discovery in the future, and applied in non-traditional areas such as drug delivery systems, biologically compatible materials, and regenerative medicine.
A neurally inspired musical instrument classification system based upon the sound onset.
Newton, Michael J; Smith, Leslie S
2012-06-01
Physiological evidence suggests that sound onset detection in the auditory system may be performed by specialized neurons as early as the cochlear nucleus. Psychoacoustic evidence shows that the sound onset can be important for the recognition of musical sounds. Here the sound onset is used in isolation to form tone descriptors for a musical instrument classification task. The task involves 2085 isolated musical tones from the McGill dataset across five instrument categories. A neurally inspired tone descriptor is created using a model of the auditory system's response to sound onset. A gammatone filterbank and spiking onset detectors, built from dynamic synapses and leaky integrate-and-fire neurons, create parallel spike trains that emphasize the sound onset. These are coded as a descriptor called the onset fingerprint. Classification uses a time-domain neural network, the echo state network. Reference strategies, based upon mel-frequency cepstral coefficients, evaluated either over the whole tone or only during the sound onset, provide context to the method. Classification success rates for the neurally-inspired method are around 75%. The cepstral methods perform between 73% and 76%. Further testing with tones from the Iowa MIS collection shows that the neurally inspired method is considerably more robust when tested with data from an unrelated dataset.
Multisensory visual servoing by a neural network.
Wei, G Q; Hirzinger, G
1999-01-01
Conventional computer vision methods for determining a robot's end-effector motion based on sensory data needs sensor calibration (e.g., camera calibration) and sensor-to-hand calibration (e.g., hand-eye calibration). This involves many computations and even some difficulties, especially when different kinds of sensors are involved. In this correspondence, we present a neural network approach to the motion determination problem without any calibration. Two kinds of sensory data, namely, camera images and laser range data, are used as the input to a multilayer feedforward network to associate the direct transformation from the sensory data to the required motions. This provides a practical sensor fusion method. Using a recursive motion strategy and in terms of a network correction, we relax the requirement for the exactness of the learned transformation. Another important feature of our work is that the goal position can be changed without having to do network retraining. Experimental results show the effectiveness of our method.
Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.
Shen, Lin; Wu, Jingheng; Yang, Weitao
2016-10-11
Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.
Biological modelling of a computational spiking neural network with neuronal avalanches.
Li, Xiumin; Chen, Qing; Xue, Fangzheng
2017-06-28
In recent years, an increasing number of studies have demonstrated that networks in the brain can self-organize into a critical state where dynamics exhibit a mixture of ordered and disordered patterns. This critical branching phenomenon is termed neuronal avalanches. It has been hypothesized that the homeostatic level balanced between stability and plasticity of this critical state may be the optimal state for performing diverse neural computational tasks. However, the critical region for high performance is narrow and sensitive for spiking neural networks (SNNs). In this paper, we investigated the role of the critical state in neural computations based on liquid-state machines, a biologically plausible computational neural network model for real-time computing. The computational performance of an SNN when operating at the critical state and, in particular, with spike-timing-dependent plasticity for updating synaptic weights is investigated. The network is found to show the best computational performance when it is subjected to critical dynamic states. Moreover, the active-neuron-dominant structure refined from synaptic learning can remarkably enhance the robustness of the critical state and further improve computational accuracy. These results may have important implications in the modelling of spiking neural networks with optimal computational performance.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'. © 2017 The Author(s).
Biological modelling of a computational spiking neural network with neuronal avalanches
NASA Astrophysics Data System (ADS)
Li, Xiumin; Chen, Qing; Xue, Fangzheng
2017-05-01
In recent years, an increasing number of studies have demonstrated that networks in the brain can self-organize into a critical state where dynamics exhibit a mixture of ordered and disordered patterns. This critical branching phenomenon is termed neuronal avalanches. It has been hypothesized that the homeostatic level balanced between stability and plasticity of this critical state may be the optimal state for performing diverse neural computational tasks. However, the critical region for high performance is narrow and sensitive for spiking neural networks (SNNs). In this paper, we investigated the role of the critical state in neural computations based on liquid-state machines, a biologically plausible computational neural network model for real-time computing. The computational performance of an SNN when operating at the critical state and, in particular, with spike-timing-dependent plasticity for updating synaptic weights is investigated. The network is found to show the best computational performance when it is subjected to critical dynamic states. Moreover, the active-neuron-dominant structure refined from synaptic learning can remarkably enhance the robustness of the critical state and further improve computational accuracy. These results may have important implications in the modelling of spiking neural networks with optimal computational performance. This article is part of the themed issue `Mathematical methods in medicine: neuroscience, cardiology and pathology'.
Xu, Kele; Feng, Dawei; Mi, Haibo
2017-11-23
The automatic detection of diabetic retinopathy is of vital importance, as it is the main cause of irreversible vision loss in the working-age population in the developed world. The early detection of diabetic retinopathy occurrence can be very helpful for clinical treatment; although several different feature extraction approaches have been proposed, the classification task for retinal images is still tedious even for those trained clinicians. Recently, deep convolutional neural networks have manifested superior performance in image classification compared to previous handcrafted feature-based image classification methods. Thus, in this paper, we explored the use of deep convolutional neural network methodology for the automatic classification of diabetic retinopathy using color fundus image, and obtained an accuracy of 94.5% on our dataset, outperforming the results obtained by using classical approaches.
Bio-Inspired Computation: Clock-Free, Grid-Free, Scale-Free and Symbol Free
2015-06-11
for Prediction Tasks in Spiking Neural Networks ." Artificial Neural Networks and Machine Learning–ICANN 2014. Springer, 2014. pp 635-642. Gibson, T...Henderson, JA and Wiles, J. "Predicting temporal sequences using an event-based spiking neural network incorporating learnable delays." IEEE...Adelaide (2014 Jan). Gibson, T and Wiles, J "Predicting temporal sequences using an event-based spiking neural network incorporating learnable delays" at
Deep Learning: A Primer for Radiologists.
Chartrand, Gabriel; Cheng, Phillip M; Vorontsov, Eugene; Drozdzal, Michal; Turcotte, Simon; Pal, Christopher J; Kadoury, Samuel; Tang, An
2017-01-01
Deep learning is a class of machine learning methods that are gaining success and attracting interest in many domains, including computer vision, speech recognition, natural language processing, and playing games. Deep learning methods produce a mapping from raw inputs to desired outputs (eg, image classes). Unlike traditional machine learning methods, which require hand-engineered feature extraction from inputs, deep learning methods learn these features directly from data. With the advent of large datasets and increased computing power, these methods can produce models with exceptional performance. These models are multilayer artificial neural networks, loosely inspired by biologic neural systems. Weighted connections between nodes (neurons) in the network are iteratively adjusted based on example pairs of inputs and target outputs by back-propagating a corrective error signal through the network. For computer vision tasks, convolutional neural networks (CNNs) have proven to be effective. Recently, several clinical applications of CNNs have been proposed and studied in radiology for classification, detection, and segmentation tasks. This article reviews the key concepts of deep learning for clinical radiologists, discusses technical requirements, describes emerging applications in clinical radiology, and outlines limitations and future directions in this field. Radiologists should become familiar with the principles and potential applications of deep learning in medical imaging. © RSNA, 2017.
A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
2001-01-01
An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.
Neural network regulation driven by autonomous neural firings
NASA Astrophysics Data System (ADS)
Cho, Myoung Won
2016-07-01
Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.
Digital Image Compression Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Serra-Ricart, M.; Garrido, L.; Gaitan, V.; Aloy, A.
1993-01-01
The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC.
Evolving neural networks for strategic decision-making problems.
Kohl, Nate; Miikkulainen, Risto
2009-04-01
Evolution of neural networks, or neuroevolution, has been a successful approach to many low-level control problems such as pole balancing, vehicle control, and collision warning. However, certain types of problems-such as those involving strategic decision-making-have remained difficult for neuroevolution to solve. This paper evaluates the hypothesis that such problems are difficult because they are fractured: The correct action varies discontinuously as the agent moves from state to state. A method for measuring fracture using the concept of function variation is proposed and, based on this concept, two methods for dealing with fracture are examined: neurons with local receptive fields, and refinement based on a cascaded network architecture. Experiments in several benchmark domains are performed to evaluate how different levels of fracture affect the performance of neuroevolution methods, demonstrating that these two modifications improve performance significantly. These results form a promising starting point for expanding neuroevolution to strategic tasks.
NASA Astrophysics Data System (ADS)
Wang, Jing; Yang, Tianyu; Staskevich, Gennady; Abbe, Brian
2017-04-01
This paper studies the cooperative control problem for a class of multiagent dynamical systems with partially unknown nonlinear system dynamics. In particular, the control objective is to solve the state consensus problem for multiagent systems based on the minimisation of certain cost functions for individual agents. Under the assumption that there exist admissible cooperative controls for such class of multiagent systems, the formulated problem is solved through finding the optimal cooperative control using the approximate dynamic programming and reinforcement learning approach. With the aid of neural network parameterisation and online adaptive learning, our method renders a practically implementable approximately adaptive neural cooperative control for multiagent systems. Specifically, based on the Bellman's principle of optimality, the Hamilton-Jacobi-Bellman (HJB) equation for multiagent systems is first derived. We then propose an approximately adaptive policy iteration algorithm for multiagent cooperative control based on neural network approximation of the value functions. The convergence of the proposed algorithm is rigorously proved using the contraction mapping method. The simulation results are included to validate the effectiveness of the proposed algorithm.
Risk assessment of logistics outsourcing based on BP neural network
NASA Astrophysics Data System (ADS)
Liu, Xiaofeng; Tian, Zi-you
The purpose of this article is to evaluate the risk of the enterprises logistics outsourcing. To get this goal, the paper first analysed he main risks existing in the logistics outsourcing, and then set up a risk evaluation index system of the logistics outsourcing; second applied BP neural network into the logistics outsourcing risk evaluation and used MATLAB to the simulation. It proved that the network error is small and has strong practicability. And this method can be used by enterprises to evaluate the risks of logistics outsourcing.
Method for neural network control of motion using real-time environmental feedback
NASA Technical Reports Server (NTRS)
Buckley, Theresa M. (Inventor)
1997-01-01
A method of motion control for robotics and other automatically controlled machinery using a neural network controller with real-time environmental feedback. The method is illustrated with a two-finger robotic hand having proximity sensors and force sensors that provide environmental feedback signals. The neural network controller is taught to control the robotic hand through training sets using back- propagation methods. The training sets are created by recording the control signals and the feedback signal as the robotic hand or a simulation of the robotic hand is moved through a representative grasping motion. The data recorded is divided into discrete increments of time and the feedback data is shifted out of phase with the control signal data so that the feedback signal data lag one time increment behind the control signal data. The modified data is presented to the neural network controller as a training set. The time lag introduced into the data allows the neural network controller to account for the temporal component of the robotic motion. Thus trained, the neural network controlled robotic hand is able to grasp a wide variety of different objects by generalizing from the training sets.
Lee, Christine K; Hofer, Ira; Gabel, Eilon; Baldi, Pierre; Cannesson, Maxime
2018-04-17
The authors tested the hypothesis that deep neural networks trained on intraoperative features can predict postoperative in-hospital mortality. The data used to train and validate the algorithm consists of 59,985 patients with 87 features extracted at the end of surgery. Feed-forward networks with a logistic output were trained using stochastic gradient descent with momentum. The deep neural networks were trained on 80% of the data, with 20% reserved for testing. The authors assessed improvement of the deep neural network by adding American Society of Anesthesiologists (ASA) Physical Status Classification and robustness of the deep neural network to a reduced feature set. The networks were then compared to ASA Physical Status, logistic regression, and other published clinical scores including the Surgical Apgar, Preoperative Score to Predict Postoperative Mortality, Risk Quantification Index, and the Risk Stratification Index. In-hospital mortality in the training and test sets were 0.81% and 0.73%. The deep neural network with a reduced feature set and ASA Physical Status classification had the highest area under the receiver operating characteristics curve, 0.91 (95% CI, 0.88 to 0.93). The highest logistic regression area under the curve was found with a reduced feature set and ASA Physical Status (0.90, 95% CI, 0.87 to 0.93). The Risk Stratification Index had the highest area under the receiver operating characteristics curve, at 0.97 (95% CI, 0.94 to 0.99). Deep neural networks can predict in-hospital mortality based on automatically extractable intraoperative data, but are not (yet) superior to existing methods.
NASA Astrophysics Data System (ADS)
Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood
2015-10-01
Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.
Airplane detection in remote sensing images using convolutional neural networks
NASA Astrophysics Data System (ADS)
Ouyang, Chao; Chen, Zhong; Zhang, Feng; Zhang, Yifei
2018-03-01
Airplane detection in remote sensing images remains a challenging problem and has also been taking a great interest to researchers. In this paper we propose an effective method to detect airplanes in remote sensing images using convolutional neural networks. Deep learning methods show greater advantages than the traditional methods with the rise of deep neural networks in target detection, and we give an explanation why this happens. To improve the performance on detection of airplane, we combine a region proposal algorithm with convolutional neural networks. And in the training phase, we divide the background into multi classes rather than one class, which can reduce false alarms. Our experimental results show that the proposed method is effective and robust in detecting airplane.
Neural network method to correct bidirectional effects in water-leaving radiance.
Fan, Yongzhen; Li, Wei; Voss, Kenneth J; Gatebe, Charles K; Stamnes, Knut
2016-01-01
Ocean color algorithms that rely on "atmospherically corrected" nadir water-leaving radiances to infer information about marine constituents such as the chlorophyll concentration depend on a reliable method to convert the angle-dependent measured radiances from the observation direction to the nadir direction. It is also important to convert the measured radiances to the nadir direction when comparing and merging products from different satellite missions. The standard correction method developed by Morel and coworkers requires knowledge of the chlorophyll concentration. Also, the standard method was developed based on the Case 1 (open ocean) assumption, which makes it unsuitable for Case 2 situations such as turbid coastal waters. We introduce a neural network method to convert the angle-dependent water-leaving radiance (or the corresponding remote sensing reflectance) from the observation direction to the nadir direction. This method relies on neither an "atmospheric correction" nor prior knowledge of the water constituents or the inherent optical properties. It directly converts the remote sensing reflectance from an arbitrary slanted viewing direction to the nadir direction by using a trained neural network. This method is fast and accurate, and it can be easily adapted to different remote sensing instruments. Validation using NuRADS measurements in different types of water shows that this method is suitable for both Case 1 and Case 2 waters. In Case 1 or chlorophyll-dominated waters, our neural network method produces corrections similar to those of the standard method. In Case 2 waters, especially sediment-dominated waters, a significant improvement was obtained compared to the standard method.
Neural attractor network for application in visual field data classification.
Fink, Wolfgang
2004-07-07
The purpose was to introduce a novel method for computer-based classification of visual field data derived from perimetric examination, that may act as a 'counsellor', providing an independent 'second opinion' to the diagnosing physician. The classification system consists of a Hopfield-type neural attractor network that obtains its input data from perimetric examination results. An iterative relaxation process determines the states of the neurons dynamically. Therefore, even 'noisy' perimetric output, e.g., early stages of a disease, may eventually be classified correctly according to the predefined idealized visual field defect (scotoma) patterns, stored as attractors of the network, that are found with diseases of the eye, optic nerve and the central nervous system. Preliminary tests of the classification system on real visual field data derived from perimetric examinations have shown a classification success of over 80%. Some of the main advantages of the Hopfield-attractor-network-based approach over feed-forward type neural networks are: (1) network architecture is defined by the classification problem; (2) no training is required to determine the neural coupling strengths; (3) assignment of an auto-diagnosis confidence level is possible by means of an overlap parameter and the Hamming distance. In conclusion, the novel method for computer-based classification of visual field data, presented here, furnishes a valuable first overview and an independent 'second opinion' in judging perimetric examination results, pointing towards a final diagnosis by a physician. It should not be considered a substitute for the diagnosing physician. Thanks to the worldwide accessibility of the Internet, the classification system offers a promising perspective towards modern computer-assisted diagnosis in both medicine and tele-medicine, for example and in particular, with respect to non-ophthalmic clinics or in communities where perimetric expertise is not readily available.
Yeh, Wei-Chang
Network reliability is an important index to the provision of useful information for decision support in the modern world. There is always a need to calculate symbolic network reliability functions (SNRFs) due to dynamic and rapid changes in network parameters. In this brief, the proposed squeezed artificial neural network (SqANN) approach uses the Monte Carlo simulation to estimate the corresponding reliability of a given designed matrix from the Box-Behnken design, and then the Taguchi method is implemented to find the appropriate number of neurons and activation functions of the hidden layer and the output layer in ANN to evaluate SNRFs. According to the experimental results of the benchmark networks, the comparison appears to support the superiority of the proposed SqANN method over the traditional ANN-based approach with at least 16.6% improvement in the median absolute deviation in the cost of extra 2 s on average for all experiments.Network reliability is an important index to the provision of useful information for decision support in the modern world. There is always a need to calculate symbolic network reliability functions (SNRFs) due to dynamic and rapid changes in network parameters. In this brief, the proposed squeezed artificial neural network (SqANN) approach uses the Monte Carlo simulation to estimate the corresponding reliability of a given designed matrix from the Box-Behnken design, and then the Taguchi method is implemented to find the appropriate number of neurons and activation functions of the hidden layer and the output layer in ANN to evaluate SNRFs. According to the experimental results of the benchmark networks, the comparison appears to support the superiority of the proposed SqANN method over the traditional ANN-based approach with at least 16.6% improvement in the median absolute deviation in the cost of extra 2 s on average for all experiments.
Przednowek, Krzysztof; Iskra, Janusz; Wiktorowicz, Krzysztof; Krzeszowski, Tomasz; Maszczyk, Adam
2017-12-01
This paper presents a novel approach to planning training loads in hurdling using artificial neural networks. The neural models performed the task of generating loads for athletes' training for the 400 meters hurdles. All the models were calculated based on the training data of 21 Polish National Team hurdlers, aged 22.25 ± 1.96, competing between 1989 and 2012. The analysis included 144 training plans that represented different stages in the annual training cycle. The main contribution of this paper is to develop neural models for planning training loads for the entire career of a typical hurdler. In the models, 29 variables were used, where four characterized the runner and 25 described the training process. Two artificial neural networks were used: a multi-layer perceptron and a network with radial basis functions. To assess the quality of the models, the leave-one-out cross-validation method was used in which the Normalized Root Mean Squared Error was calculated. The analysis shows that the method generating the smallest error was the radial basis function network with nine neurons in the hidden layer. Most of the calculated training loads demonstrated a non-linear relationship across the entire competitive period. The resulting model can be used as a tool to assist a coach in planning training loads during a selected training period.
Iskra, Janusz; Wiktorowicz, Krzysztof; Krzeszowski, Tomasz; Maszczyk, Adam
2017-01-01
Abstract This paper presents a novel approach to planning training loads in hurdling using artificial neural networks. The neural models performed the task of generating loads for athletes’ training for the 400 meters hurdles. All the models were calculated based on the training data of 21 Polish National Team hurdlers, aged 22.25 ± 1.96, competing between 1989 and 2012. The analysis included 144 training plans that represented different stages in the annual training cycle. The main contribution of this paper is to develop neural models for planning training loads for the entire career of a typical hurdler. In the models, 29 variables were used, where four characterized the runner and 25 described the training process. Two artificial neural networks were used: a multi-layer perceptron and a network with radial basis functions. To assess the quality of the models, the leave-one-out cross-validation method was used in which the Normalized Root Mean Squared Error was calculated. The analysis shows that the method generating the smallest error was the radial basis function network with nine neurons in the hidden layer. Most of the calculated training loads demonstrated a non-linear relationship across the entire competitive period. The resulting model can be used as a tool to assist a coach in planning training loads during a selected training period. PMID:29339998
A Compact Optical Instrument with Artificial Neural Network for pH Determination
Capel-Cuevas, Sonia; López-Ruiz, Nuria; Martinez-Olmos, Antonio; Cuéllar, Manuel P.; Pegalajar, Maria del Carmen; Palma, Alberto José; de Orbe-Payá, Ignacio; Capitán-Vallvey, Luis Fermin
2012-01-01
The aim of this work was the determination of pH with a sensor array-based optical portable instrument. This sensor array consists of eleven membranes with selective colour changes at different pH intervals. The method for the pH calculation is based on the implementation of artificial neural networks that use the responses of the membranes to generate a final pH value. A multi-objective algorithm was used to select the minimum number of sensing elements required to achieve an accurate pH determination from the neural network, and also to minimise the network size. This helps to minimise instrument and array development costs and save on microprocessor energy consumption. A set of artificial neural networks that fulfils these requirements is proposed using different combinations of the membranes in the sensor array, and is evaluated in terms of accuracy and reliability. In the end, the network including the response of the eleven membranes in the sensor was selected for validation in the instrument prototype because of its high accuracy. The performance of the instrument was evaluated by measuring the pH of a large set of real samples, showing that high precision can be obtained in the full range. PMID:22778668
NASA Astrophysics Data System (ADS)
Mrozek, T.; Perlicki, K.; Tajmajer, T.; Wasilewski, P.
2017-08-01
The article presents an image analysis method, obtained from an asynchronous delay tap sampling (ADTS) technique, which is used for simultaneous monitoring of various impairments occurring in the physical layer of the optical network. The ADTS method enables the visualization of the optical signal in the form of characteristics (so called phase portraits) that change their shape under the influence of impairments such as chromatic dispersion, polarization mode dispersion and ASE noise. Using this method, a simulation model was built with OptSim 4.0. After the simulation study, data were obtained in the form of images that were further analyzed using the convolutional neural network algorithm. The main goal of the study was to train a convolutional neural network to recognize the selected impairment (distortion); then to test its accuracy and estimate the impairment for the selected set of test images. The input data consisted of processed binary images in the form of two-dimensional matrices, with the position of the pixel. This article focuses only on the analysis of images containing chromatic dispersion.
Witoonchart, Peerajak; Chongstitvatana, Prabhas
2017-08-01
In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.
A hybrid model based on neural networks for biomedical relation extraction.
Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Zhang, Shaowu; Sun, Yuanyuan; Yang, Liang
2018-05-01
Biomedical relation extraction can automatically extract high-quality biomedical relations from biomedical texts, which is a vital step for the mining of biomedical knowledge hidden in the literature. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two major neural network models for biomedical relation extraction. Neural network-based methods for biomedical relation extraction typically focus on the sentence sequence and employ RNNs or CNNs to learn the latent features from sentence sequences separately. However, RNNs and CNNs have their own advantages for biomedical relation extraction. Combining RNNs and CNNs may improve biomedical relation extraction. In this paper, we present a hybrid model for the extraction of biomedical relations that combines RNNs and CNNs. First, the shortest dependency path (SDP) is generated based on the dependency graph of the candidate sentence. To make full use of the SDP, we divide the SDP into a dependency word sequence and a relation sequence. Then, RNNs and CNNs are employed to automatically learn the features from the sentence sequence and the dependency sequences, respectively. Finally, the output features of the RNNs and CNNs are combined to detect and extract biomedical relations. We evaluate our hybrid model using five public (protein-protein interaction) PPI corpora and a (drug-drug interaction) DDI corpus. The experimental results suggest that the advantages of RNNs and CNNs in biomedical relation extraction are complementary. Combining RNNs and CNNs can effectively boost biomedical relation extraction performance. Copyright © 2018 Elsevier Inc. All rights reserved.
The Cognitive, Perceptual, and Neural Bases of Skilled Performance
1988-09-01
shunting, masking field, bidirectional associative memory, Volterra - Lotka , Gilpin-Ayala, ani Eigen-Schuster models. The Cohen-Grossberg model thus...field, bidirectional associative memory, Volterra - Lotka , Gilpin-Ayala, and Eigen-Schuster models. A Liapunov functional method is described for...storage by neural networks: A general model and global Liapunov method. In E.L. Schwartz (Ed.), Computational neuroscience. Cambridge, MA: MIT Press
A pre-trained convolutional neural network based method for thyroid nodule diagnosis.
Ma, Jinlian; Wu, Fa; Zhu, Jiang; Xu, Dong; Kong, Dexing
2017-01-01
In ultrasound images, most thyroid nodules are in heterogeneous appearances with various internal components and also have vague boundaries, so it is difficult for physicians to discriminate malignant thyroid nodules from benign ones. In this study, we propose a hybrid method for thyroid nodule diagnosis, which is a fusion of two pre-trained convolutional neural networks (CNNs) with different convolutional layers and fully-connected layers. Firstly, the two networks pre-trained with ImageNet database are separately trained. Secondly, we fuse feature maps learned by trained convolutional filters, pooling and normalization operations of the two CNNs. Finally, with the fused feature maps, a softmax classifier is used to diagnose thyroid nodules. The proposed method is validated on 15,000 ultrasound images collected from two local hospitals. Experiment results show that the proposed CNN based methods can accurately and effectively diagnose thyroid nodules. In addition, the fusion of the two CNN based models lead to significant performance improvement, with an accuracy of 83.02%±0.72%. These demonstrate the potential clinical applications of this method. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Junming; Wu, Yan
2018-03-28
Many systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.
A neutron spectrum unfolding code based on generalized regression artificial neural networks.
Del Rosario Martinez-Blanco, Ma; Ornelas-Vargas, Gerardo; Castañeda-Miranda, Celina Lizeth; Solís-Sánchez, Luis Octavio; Castañeda-Miranada, Rodrigo; Vega-Carrillo, Héctor René; Celaya-Padilla, Jose M; Garza-Veloz, Idalia; Martínez-Fierro, Margarita; Ortiz-Rodríguez, José Manuel
2016-11-01
The most delicate part of neutron spectrometry, is the unfolding process. The derivation of the spectral information is not simple because the unknown is not given directly as a result of the measurements. Novel methods based on Artificial Neural Networks have been widely investigated. In prior works, back propagation neural networks (BPNN) have been used to solve the neutron spectrometry problem, however, some drawbacks still exist using this kind of neural nets, i.e. the optimum selection of the network topology and the long training time. Compared to BPNN, it's usually much faster to train a generalized regression neural network (GRNN). That's mainly because spread constant is the only parameter used in GRNN. Another feature is that the network will converge to a global minimum, provided that the optimal values of spread has been determined and that the dataset adequately represents the problem space. In addition, GRNN are often more accurate than BPNN in the prediction. These characteristics make GRNNs to be of great interest in the neutron spectrometry domain. This work presents a computational tool based on GRNN capable to solve the neutron spectrometry problem. This computational code, automates the pre-processing, training and testing stages using a k-fold cross validation of 3 folds, the statistical analysis and the post-processing of the information, using 7 Bonner spheres rate counts as only entrance data. The code was designed for a Bonner Spheres System based on a 6 LiI(Eu) neutron detector and a response matrix expressed in 60 energy bins taken from an International Atomic Energy Agency compilation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Co-Attention Based Neural Network for Source-Dependent Essay Scoring
ERIC Educational Resources Information Center
Zhang, Haoran; Litman, Diane
2018-01-01
This paper presents an investigation of using a co-attention based neural network for source-dependent essay scoring. We use a co-attention mechanism to help the model learn the importance of each part of the essay more accurately. Also, this paper shows that the co-attention based neural network model provides reliable score prediction of…
Wlan-Based Indoor Localization Using Neural Networks
NASA Astrophysics Data System (ADS)
Saleem, Fasiha; Wyne, Shurjeel
2016-07-01
Wireless indoor localization has generated recent research interest due to its numerous applications. This work investigates Wi-Fi based indoor localization using two variants of the fingerprinting approach. Specifically, we study the application of an artificial neural network (ANN) for implementing the fingerprinting approach and compare its localization performance with a probabilistic fingerprinting method that is based on maximum likelihood estimation (MLE) of the user location. We incorporate spatial correlation of fading into our investigations, which is often neglected in simulation studies and leads to erroneous location estimates. The localization performance is quantified in terms of accuracy, precision, robustness, and complexity. Multiple methods for handling the case of missing APs in online stage are investigated. Our results indicate that ANN-based fingerprinting outperforms the probabilistic approach for all performance metrics considered in this work.
Neural network-based landmark detection for mobile robot
NASA Astrophysics Data System (ADS)
Sekiguchi, Minoru; Okada, Hiroyuki; Watanabe, Nobuo
1996-03-01
The mobile robot can essentially have only the relative position data for the real world. However, there are many cases that the robot has to know where it is located. In those cases, the useful method is to detect landmarks in the real world and adjust its position using detected landmarks. In this point of view, it is essential to develop a mobile robot that can accomplish the path plan successfully using natural or artificial landmarks. However, artificial landmarks are often difficult to construct and natural landmarks are very complicated to detect. In this paper, the method of acquiring landmarks by using the sensor data from the mobile robot necessary for planning the path is described. The landmark we discuss here is the natural one and is composed of the compression of sensor data from the robot. The sensor data is compressed and memorized by using five layered neural network that is called a sand glass model. The input and output data that neural network should learn is the sensor data of the robot that are exactly the same. Using the intermediate output data of the network, a compressed data is obtained, which expresses a landmark data. If the sensor data is ambiguous or enormous, it is easy to detect the landmark because the data is compressed and classified by the neural network. Using the backward three layers, the compressed landmark data is expanded to original data at some level. The studied neural network categorizes the detected sensor data to the known landmark.
Prediction of β-turns in proteins from multiple alignment using neural network
Kaur, Harpreet; Raghava, Gajendra Pal Singh
2003-01-01
A neural network-based method has been developed for the prediction of β-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST–generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Qpred, Qobs, and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published β-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach. PMID:12592033
Recurrent neural network based virtual detection line
NASA Astrophysics Data System (ADS)
Kadikis, Roberts
2018-04-01
The paper proposes an efficient method for detection of moving objects in the video. The objects are detected when they cross a virtual detection line. Only the pixels of the detection line are processed, which makes the method computationally efficient. A Recurrent Neural Network processes these pixels. The machine learning approach allows one to train a model that works in different and changing outdoor conditions. Also, the same network can be trained for various detection tasks, which is demonstrated by the tests on vehicle and people counting. In addition, the paper proposes a method for semi-automatic acquisition of labeled training data. The labeling method is used to create training and testing datasets, which in turn are used to train and evaluate the accuracy and efficiency of the detection method. The method shows similar accuracy as the alternative efficient methods but provides greater adaptability and usability for different tasks.
NASA Astrophysics Data System (ADS)
Ojha, Maheswar; Maiti, Saumen
2016-03-01
A novel approach based on the concept of Bayesian neural network (BNN) has been implemented for classifying sediment boundaries using downhole log data obtained during Integrated Ocean Drilling Program (IODP) Expedition 323 in the Bering Sea slope region. The Bayesian framework in conjunction with Markov Chain Monte Carlo (MCMC)/hybrid Monte Carlo (HMC) learning paradigm has been applied to constrain the lithology boundaries using density, density porosity, gamma ray, sonic P-wave velocity and electrical resistivity at the Hole U1344A. We have demonstrated the effectiveness of our supervised classification methodology by comparing our findings with a conventional neural network and a Bayesian neural network optimized by scaled conjugate gradient method (SCG), and tested the robustness of the algorithm in the presence of red noise in the data. The Bayesian results based on the HMC algorithm (BNN.HMC) resolve detailed finer structures at certain depths in addition to main lithology such as silty clay, diatom clayey silt and sandy silt. Our method also recovers the lithology information from a depth ranging between 615 and 655 m Wireline log Matched depth below Sea Floor of no core recovery zone. Our analyses demonstrate that the BNN based approach renders robust means for the classification of complex lithology successions at the Hole U1344A, which could be very useful for other studies and understanding the oceanic crustal inhomogeneity and structural discontinuities.
NASA Astrophysics Data System (ADS)
Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.
2017-07-01
The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.
Electronic neural networks for global optimization
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.
1990-01-01
An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.
Wang, Jie-sheng; Li, Shu-xia; Gao, Jie
2014-01-01
For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.
Analog neural network control method proposed for use in a backup satellite control mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frigo, J.R.; Tilden, M.W.
1998-03-01
The authors propose to use an analog neural network controller implemented in hardware, independent of the active control system, for use in a satellite backup control mode. The controller uses coarse sun sensor inputs. The field of view of the sensors activate the neural controller, creating an analog dead band with respect to the direction of the sun on each axis. This network controls the orientation of the vehicle toward the sunlight to ensure adequate power for the system. The attitude of the spacecraft is stabilized with respect to the ambient magnetic field on orbit. This paper develops a modelmore » of the controller using real-time coarse sun sensor data and a dynamic model of a prototype system based on a satellite system. The simulation results and the feasibility of this control method for use in a satellite backup control mode are discussed.« less
Study on application of adaptive fuzzy control and neural network in the automatic leveling system
NASA Astrophysics Data System (ADS)
Xu, Xiping; Zhao, Zizhao; Lan, Weiyong; Sha, Lei; Qian, Cheng
2015-04-01
This paper discusses the adaptive fuzzy control and neural network BP algorithm in large flat automatic leveling control system application. The purpose is to develop a measurement system with a flat quick leveling, Make the installation on the leveling system of measurement with tablet, to be able to achieve a level in precision measurement work quickly, improve the efficiency of the precision measurement. This paper focuses on the automatic leveling system analysis based on fuzzy controller, Use of the method of combining fuzzy controller and BP neural network, using BP algorithm improve the experience rules .Construct an adaptive fuzzy control system. Meanwhile the learning rate of the BP algorithm has also been run-rate adjusted to accelerate convergence. The simulation results show that the proposed control method can effectively improve the leveling precision of automatic leveling system and shorten the time of leveling.
Deep neural network and noise classification-based speech enhancement
NASA Astrophysics Data System (ADS)
Shi, Wenhua; Zhang, Xiongwei; Zou, Xia; Han, Wei
2017-07-01
In this paper, a speech enhancement method using noise classification and Deep Neural Network (DNN) was proposed. Gaussian mixture model (GMM) was employed to determine the noise type in speech-absent frames. DNN was used to model the relationship between noisy observation and clean speech. Once the noise type was determined, the corresponding DNN model was applied to enhance the noisy speech. GMM was trained with mel-frequency cepstrum coefficients (MFCC) and the parameters were estimated with an iterative expectation-maximization (EM) algorithm. Noise type was updated by spectrum entropy-based voice activity detection (VAD). Experimental results demonstrate that the proposed method could achieve better objective speech quality and smaller distortion under stationary and non-stationary conditions.
A solution to neural field equations by a recurrent neural network method
NASA Astrophysics Data System (ADS)
Alharbi, Abir
2012-09-01
Neural field equations (NFE) are used to model the activity of neurons in the brain, it is introduced from a single neuron 'integrate-and-fire model' starting point. The neural continuum is spatially discretized for numerical studies, and the governing equations are modeled as a system of ordinary differential equations. In this article the recurrent neural network approach is used to solve this system of ODEs. This consists of a technique developed by combining the standard numerical method of finite-differences with the Hopfield neural network. The architecture of the net, energy function, updating equations, and algorithms are developed for the NFE model. A Hopfield Neural Network is then designed to minimize the energy function modeling the NFE. Results obtained from the Hopfield-finite-differences net show excellent performance in terms of accuracy and speed. The parallelism nature of the Hopfield approaches may make them easier to implement on fast parallel computers and give them the speed advantage over the traditional methods.
An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuman, Catherine D; Plank, James; Disney, Adam
2016-01-01
As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.
Robust neural network with applications to credit portfolio data analysis.
Feng, Yijia; Li, Runze; Sudjianto, Agus; Zhang, Yiyun
2010-01-01
In this article, we study nonparametric conditional quantile estimation via neural network structure. We proposed an estimation method that combines quantile regression and neural network (robust neural network, RNN). It provides good smoothing performance in the presence of outliers and can be used to construct prediction bands. A Majorization-Minimization (MM) algorithm was developed for optimization. Monte Carlo simulation study is conducted to assess the performance of RNN. Comparison with other nonparametric regression methods (e.g., local linear regression and regression splines) in real data application demonstrate the advantage of the newly proposed procedure.
Hanson, Jack; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi
2017-03-01
Capturing long-range interactions between structural but not sequence neighbors of proteins is a long-standing challenging problem in bioinformatics. Recently, long short-term memory (LSTM) networks have significantly improved the accuracy of speech and image classification problems by remembering useful past information in long sequential events. Here, we have implemented deep bidirectional LSTM recurrent neural networks in the problem of protein intrinsic disorder prediction. The new method, named SPOT-Disorder, has steadily improved over a similar method using a traditional, window-based neural network (SPINE-D) in all datasets tested without separate training on short and long disordered regions. Independent tests on four other datasets including the datasets from critical assessment of structure prediction (CASP) techniques and >10 000 annotated proteins from MobiDB, confirmed SPOT-Disorder as one of the best methods in disorder prediction. Moreover, initial studies indicate that the method is more accurate in predicting functional sites in disordered regions. These results highlight the usefulness combining LSTM with deep bidirectional recurrent neural networks in capturing non-local, long-range interactions for bioinformatics applications. SPOT-disorder is available as a web server and as a standalone program at: http://sparks-lab.org/server/SPOT-disorder/index.php . j.hanson@griffith.edu.au or yuedong.yang@griffith.edu.au or yaoqi.zhou@griffith.edu.au. Supplementary data is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Genetic algorithm for the optimization of features and neural networks in ECG signals classification
NASA Astrophysics Data System (ADS)
Li, Hongqiang; Yuan, Danyang; Ma, Xiangdong; Cui, Dianyin; Cao, Lu
2017-01-01
Feature extraction and classification of electrocardiogram (ECG) signals are necessary for the automatic diagnosis of cardiac diseases. In this study, a novel method based on genetic algorithm-back propagation neural network (GA-BPNN) for classifying ECG signals with feature extraction using wavelet packet decomposition (WPD) is proposed. WPD combined with the statistical method is utilized to extract the effective features of ECG signals. The statistical features of the wavelet packet coefficients are calculated as the feature sets. GA is employed to decrease the dimensions of the feature sets and to optimize the weights and biases of the back propagation neural network (BPNN). Thereafter, the optimized BPNN classifier is applied to classify six types of ECG signals. In addition, an experimental platform is constructed for ECG signal acquisition to supply the ECG data for verifying the effectiveness of the proposed method. The GA-BPNN method with the MIT-BIH arrhythmia database achieved a dimension reduction of nearly 50% and produced good classification results with an accuracy of 97.78%. The experimental results based on the established acquisition platform indicated that the GA-BPNN method achieved a high classification accuracy of 99.33% and could be efficiently applied in the automatic identification of cardiac arrhythmias.
Kadiyala, Akhil; Kaur, Devinder; Kumar, Ashok
2013-02-01
The present study developed a novel approach to modeling indoor air quality (IAQ) of a public transportation bus by the development of hybrid genetic-algorithm-based neural networks (also known as evolutionary neural networks) with input variables optimized from using the regression trees, referred as the GART approach. This study validated the applicability of the GART modeling approach in solving complex nonlinear systems by accurately predicting the monitored contaminants of carbon dioxide (CO2), carbon monoxide (CO), nitric oxide (NO), sulfur dioxide (SO2), 0.3-0.4 microm sized particle numbers, 0.4-0.5 microm sized particle numbers, particulate matter (PM) concentrations less than 1.0 microm (PM10), and PM concentrations less than 2.5 microm (PM2.5) inside a public transportation bus operating on 20% grade biodiesel in Toledo, OH. First, the important variables affecting each monitored in-bus contaminant were determined using regression trees. Second, the analysis of variance was used as a complimentary sensitivity analysis to the regression tree results to determine a subset of statistically significant variables affecting each monitored in-bus contaminant. Finally, the identified subsets of statistically significant variables were used as inputs to develop three artificial neural network (ANN) models. The models developed were regression tree-based back-propagation network (BPN-RT), regression tree-based radial basis function network (RBFN-RT), and GART models. Performance measures were used to validate the predictive capacity of the developed IAQ models. The results from this approach were compared with the results obtained from using a theoretical approach and a generalized practicable approach to modeling IAQ that included the consideration of additional independent variables when developing the aforementioned ANN models. The hybrid GART models were able to capture majority of the variance in the monitored in-bus contaminants. The genetic-algorithm-based neural network IAQ models outperformed the traditional ANN methods of the back-propagation and the radial basis function networks. The novelty of this research is the development of a novel approach to modeling vehicular indoor air quality by integration of the advanced methods of genetic algorithms, regression trees, and the analysis of variance for the monitored in-vehicle gaseous and particulate matter contaminants, and comparing the results obtained from using the developed approach with conventional artificial intelligence techniques of back propagation networks and radial basis function networks. This study validated the newly developed approach using holdout and threefold cross-validation methods. These results are of great interest to scientists, researchers, and the public in understanding the various aspects of modeling an indoor microenvironment. This methodology can easily be extended to other fields of study also.