Evolvable synthetic neural system
NASA Technical Reports Server (NTRS)
Curtis, Steven A. (Inventor)
2009-01-01
An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.
System and method for determining stability of a neural system
NASA Technical Reports Server (NTRS)
Curtis, Steven A. (Inventor)
2011-01-01
Disclosed are methods, systems, and computer-readable media for determining stability of a neural system. The method includes tracking a function world line of an N element neural system within at least one behavioral space, determining whether the tracking function world line is approaching a psychological stability surface, and implementing a quantitative solution that corrects instability if the tracked function world line is approaching the psychological stability surface.
The science of neural interface systems.
Hatsopoulos, Nicholas G; Donoghue, John P
2009-01-01
The ultimate goal of neural interface research is to create links between the nervous system and the outside world either by stimulating or by recording from neural tissue to treat or assist people with sensory, motor, or other disabilities of neural function. Although electrical stimulation systems have already reached widespread clinical application, neural interfaces that record neural signals to decipher movement intentions are only now beginning to develop into clinically viable systems to help paralyzed people. We begin by reviewing state-of-the-art research and early-stage clinical recording systems and focus on systems that record single-unit action potentials. We then address the potential for neural interface research to enhance basic scientific understanding of brain function by offering unique insights in neural coding and representation, plasticity, brain-behavior relations, and the neurobiology of disease. Finally, we discuss technical and scientific challenges faced by these systems before they are widely adopted by severely motor-disabled patients.
Neural Systems for Speech and Song in Autism
ERIC Educational Resources Information Center
Lai, Grace; Pantazatos, Spiro P.; Schneider, Harry; Hirsch, Joy
2012-01-01
Despite language disabilities in autism, music abilities are frequently preserved. Paradoxically, brain regions associated with these functions typically overlap, enabling investigation of neural organization supporting speech and song in autism. Neural systems sensitive to speech and song were compared in low-functioning autistic and age-matched…
NASA Astrophysics Data System (ADS)
Liu, Xing-fa; Cen, Ming
2007-12-01
Neural Network system error correction method is more precise than lest square system error correction method and spheric harmonics function system error correction method. The accuracy of neural network system error correction method is mainly related to the frame of Neural Network. Analysis and simulation prove that both BP neural network system error correction method and RBF neural network system error correction method have high correction accuracy; it is better to use RBF Network system error correction method than BP Network system error correction method for little studying stylebook considering training rate and neural network scale.
Onojima, Takayuki; Goto, Takahiro; Mizuhara, Hiroaki; Aoyagi, Toshio
2018-01-01
Synchronization of neural oscillations as a mechanism of brain function is attracting increasing attention. Neural oscillation is a rhythmic neural activity that can be easily observed by noninvasive electroencephalography (EEG). Neural oscillations show the same frequency and cross-frequency synchronization for various cognitive and perceptual functions. However, it is unclear how this neural synchronization is achieved by a dynamical system. If neural oscillations are weakly coupled oscillators, the dynamics of neural synchronization can be described theoretically using a phase oscillator model. We propose an estimation method to identify the phase oscillator model from real data of cross-frequency synchronized activities. The proposed method can estimate the coupling function governing the properties of synchronization. Furthermore, we examine the reliability of the proposed method using time-series data obtained from numerical simulation and an electronic circuit experiment, and show that our method can estimate the coupling function correctly. Finally, we estimate the coupling function between EEG oscillation and the speech sound envelope, and discuss the validity of these results.
Evolvable Neural Software System
NASA Technical Reports Server (NTRS)
Curtis, Steven A.
2009-01-01
The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.
Linear and nonlinear ARMA model parameter estimation using an artificial neural network
NASA Technical Reports Server (NTRS)
Chon, K. H.; Cohen, R. J.
1997-01-01
This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.
Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung
2018-02-01
Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
Adaptive Neurotechnology for Making Neural Circuits Functional .
NASA Astrophysics Data System (ADS)
Jung, Ranu
2008-03-01
Two of the most important trends in recent technological developments are that technology is increasingly integrated with biological systems and that it is increasingly adaptive in its capabilities. Neuroprosthetic systems that provide lost sensorimotor function after a neural disability offer a platform to investigate this interplay between biological and engineered systems. Adaptive neurotechnology (hardware and software) could be designed to be biomimetic, guided by the physical and programmatic constraints observed in biological systems, and allow for real-time learning, stability, and error correction. An example will present biomimetic neural-network hardware that can be interfaced with the isolated spinal cord of a lower vertebrate to allow phase-locked real-time neural control. Another will present adaptive neural network control algorithms for functional electrical stimulation of the peripheral nervous system to provide desired movements of paralyzed limbs in rodents or people. Ultimately, the frontier lies in being able to utilize the adaptive neurotechnology to promote neuroplasticity in the living system on a long-time scale under co-adaptive conditions.
Application of neural networks with orthogonal activation functions in control of dynamical systems
NASA Astrophysics Data System (ADS)
Nikolić, Saša S.; Antić, Dragan S.; Milojković, Marko T.; Milovanović, Miroslav B.; Perić, Staniša Lj.; Mitić, Darko B.
2016-04-01
In this article, we present a new method for the synthesis of almost and quasi-orthogonal polynomials of arbitrary order. Filters designed on the bases of these functions are generators of generalised quasi-orthogonal signals for which we derived and presented necessary mathematical background. Based on theoretical results, we designed and practically implemented generalised first-order (k = 1) quasi-orthogonal filter and proved its quasi-orthogonality via performed experiments. Designed filters can be applied in many scientific areas. In this article, generated functions were successfully implemented in Nonlinear Auto Regressive eXogenous (NARX) neural network as activation functions. One practical application of the designed orthogonal neural network is demonstrated through the example of control of the complex technical non-linear system - laboratory magnetic levitation system. Obtained results were compared with neural networks with standard activation functions and orthogonal functions of trigonometric shape. The proposed network demonstrated superiority over existing solutions in the sense of system performances.
Goto, Takahiro; Aoyagi, Toshio
2018-01-01
Synchronization of neural oscillations as a mechanism of brain function is attracting increasing attention. Neural oscillation is a rhythmic neural activity that can be easily observed by noninvasive electroencephalography (EEG). Neural oscillations show the same frequency and cross-frequency synchronization for various cognitive and perceptual functions. However, it is unclear how this neural synchronization is achieved by a dynamical system. If neural oscillations are weakly coupled oscillators, the dynamics of neural synchronization can be described theoretically using a phase oscillator model. We propose an estimation method to identify the phase oscillator model from real data of cross-frequency synchronized activities. The proposed method can estimate the coupling function governing the properties of synchronization. Furthermore, we examine the reliability of the proposed method using time-series data obtained from numerical simulation and an electronic circuit experiment, and show that our method can estimate the coupling function correctly. Finally, we estimate the coupling function between EEG oscillation and the speech sound envelope, and discuss the validity of these results. PMID:29337999
NASA Technical Reports Server (NTRS)
Wheeler, Scott R.; Carrico, Michelle L.; Wilson, Beth A.; Brown, Susan J.; Skeath, James B.
2003-01-01
SUMMARY The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ache genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ache genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we fmd that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Triboliurn and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Triboliurn proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-use is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Triboliurn ache genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.
NASA Technical Reports Server (NTRS)
Wheeler, Scott R.; Carrico, Michelle L.; Wilson, Beth A.; Brown, Susan J.; Skeath, James B.
2003-01-01
The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ac/sc genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ac/sc genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we find that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Tribolium and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Tribolium proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-ase is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Tribolium ac/sc genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.
NASA Astrophysics Data System (ADS)
Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung
2018-02-01
Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
System Identification for Nonlinear Control Using Neural Networks
NASA Technical Reports Server (NTRS)
Stengel, Robert F.; Linse, Dennis J.
1990-01-01
An approach to incorporating artificial neural networks in nonlinear, adaptive control systems is described. The controller contains three principal elements: a nonlinear inverse dynamic control law whose coefficients depend on a comprehensive model of the plant, a neural network that models system dynamics, and a state estimator whose outputs drive the control law and train the neural network. Attention is focused on the system identification task, which combines an extended Kalman filter with generalized spline function approximation. Continual learning is possible during normal operation, without taking the system off line for specialized training. Nonlinear inverse dynamic control requires smooth derivatives as well as function estimates, imposing stringent goals on the approximating technique.
NASA Technical Reports Server (NTRS)
Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru
1991-01-01
Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.
Neural Control of the Immune System
ERIC Educational Resources Information Center
Sundman, Eva; Olofsson, Peder S.
2014-01-01
Neural reflexes support homeostasis by modulating the function of organ systems. Recent advances in neuroscience and immunology have revealed that neural reflexes also regulate the immune system. Activation of the vagus nerve modulates leukocyte cytokine production and alleviates experimental shock and autoimmune disease, and recent data have…
Design and experiment of a neural signal detection using a FES driving system.
Zonghao, Huang; Zhigong, Wang; Xiaoying, Lu; Wenyuan, Li; Xiaoyan, Shen; Xintai, Zhao; Shushan, Xie; Haixian, Pan; Cunliang, Zhu
2010-01-01
The channel bridging, signal regenerating, and functional rebuilding of injured nerves is one of the most important issues in life science research. In recent years, some progresses in the research area have been made in repairing injured nerves with microelectronic neural bridge. Based on the previous work, this paper presents a neural signal detection and functional electrical stimulation (FES) driving system with using high performance operational amplifiers, which has been realized. The experimental results show that the designed system meets requirements. In animal experiments, sciatic nerve signal detection, regeneration and function rebuilding between two toads have been accomplished successfully by using the designed system.
Generalised Transfer Functions of Neural Networks
NASA Astrophysics Data System (ADS)
Fung, C. F.; Billings, S. A.; Zhang, H.
1997-11-01
When artificial neural networks are used to model non-linear dynamical systems, the system structure which can be extremely useful for analysis and design, is buried within the network architecture. In this paper, explicit expressions for the frequency response or generalised transfer functions of both feedforward and recurrent neural networks are derived in terms of the network weights. The derivation of the algorithm is established on the basis of the Taylor series expansion of the activation functions used in a particular neural network. This leads to a representation which is equivalent to the non-linear recursive polynomial model and enables the derivation of the transfer functions to be based on the harmonic expansion method. By mapping the neural network into the frequency domain information about the structure of the underlying non-linear system can be recovered. Numerical examples are included to demonstrate the application of the new algorithm. These examples show that the frequency response functions appear to be highly sensitive to the network topology and training, and that the time domain properties fail to reveal deficiencies in the trained network structure.
Laviolette, S R; Grace, A A
2006-07-01
Cannabinoids represent one of the most widely used hallucinogenic drugs and induce profound alterations in sensory perception and emotional processing. Similarly, the dopamine (DA) neurotransmitter system is critical for the central processing of emotion and motivation. Functional disturbances in either of these neurotransmitter systems are well-established correlates of the psychopathological symptoms and behavioral manifestations observed in addiction and schizophrenia. Increasing evidence from the anatomical, pharmacological and behavioral neuroscience fields points to complex functional interactions between these receptor systems at the anatomical, pharmacological and neural systems levels. An important question relates to whether these systems act in an orchestrated manner to produce the emotional processing and sensory perception deficits underlying addiction and schizophrenia. This review describes evidence for functional neural interactions between cannabinoid and DA receptor systems and how disturbances in this neural circuitry may underlie the aberrant emotional learning and processing observed in disorders such as addiction and schizophrenia.
Adaptive Neural Control of Uncertain MIMO Nonlinear Systems With State and Input Constraints.
Chen, Ziting; Li, Zhijun; Chen, C L Philip
2017-06-01
An adaptive neural control strategy for multiple input multiple output nonlinear systems with various constraints is presented in this paper. To deal with the nonsymmetric input nonlinearity and the constrained states, the proposed adaptive neural control is combined with the backstepping method, radial basis function neural network, barrier Lyapunov function (BLF), and disturbance observer. By ensuring the boundedness of the BLF of the closed-loop system, it is demonstrated that the output tracking is achieved with all states remaining in the constraint sets and the general assumption on nonsingularity of unknown control coefficient matrices has been eliminated. The constructed adaptive neural control has been rigorously proved that it can guarantee the semiglobally uniformly ultimate boundedness of all signals in the closed-loop system. Finally, the simulation studies on a 2-DOF robotic manipulator system indicate that the designed adaptive control is effective.
Structure-function clustering in multiplex brain networks
NASA Astrophysics Data System (ADS)
Crofts, J. J.; Forrester, M.; O'Dea, R. D.
2016-10-01
A key question in neuroscience is to understand how a rich functional repertoire of brain activity arises within relatively static networks of structurally connected neural populations: elucidating the subtle interactions between evoked “functional connectivity” and the underlying “structural connectivity” has the potential to address this. These structural-functional networks (and neural networks more generally) are more naturally described using a multilayer or multiplex network approach, in favour of standard single-layer network analyses that are more typically applied to such systems. In this letter, we address such issues by exploring important structure-function relations in the Macaque cortical network by modelling it as a duplex network that comprises an anatomical layer, describing the known (macro-scale) network topology of the Macaque monkey, and a functional layer derived from simulated neural activity. We investigate and characterize correlations between structural and functional layers, as system parameters controlling simulated neural activity are varied, by employing recently described multiplex network measures. Moreover, we propose a novel measure of multiplex structure-function clustering which allows us to investigate the emergence of functional connections that are distinct from the underlying cortical structure, and to highlight the dependence of multiplex structure on the neural dynamical regime.
Biophoton signal transmission and processing in the brain.
Tang, Rendong; Dai, Jiapei
2014-10-05
The transmission and processing of neural information in the nervous system plays a key role in neural functions. It is well accepted that neural communication is mediated by bioelectricity and chemical molecules via the processes called bioelectrical and chemical transmission, respectively. Indeed, the traditional theories seem to give valuable explanations for the basic functions of the nervous system, but difficult to construct general accepted concepts or principles to provide reasonable explanations of higher brain functions and mental activities, such as perception, learning and memory, emotion and consciousness. Therefore, many unanswered questions and debates over the neural encoding and mechanisms of neuronal networks remain. Cell to cell communication by biophotons, also called ultra-weak photon emissions, has been demonstrated in several plants, bacteria and certain animal cells. Recently, both experimental evidence and theoretical speculation have suggested that biophotons may play a potential role in neural signal transmission and processing, contributing to the understanding of the high functions of nervous system. In this paper, we review the relevant experimental findings and discuss the possible underlying mechanisms of biophoton signal transmission and processing in the nervous system. Copyright © 2014 Elsevier B.V. All rights reserved.
Neural networks for function approximation in nonlinear control
NASA Technical Reports Server (NTRS)
Linse, Dennis J.; Stengel, Robert F.
1990-01-01
Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.
Integrative approaches for modeling regulation and function of the respiratory system.
Ben-Tal, Alona; Tawhai, Merryn H
2013-01-01
Mathematical models have been central to understanding the interaction between neural control and breathing. Models of the entire respiratory system-which comprises the lungs and the neural circuitry that controls their ventilation-have been derived using simplifying assumptions to compartmentalize each component of the system and to define the interactions between components. These full system models often rely-through necessity-on empirically derived relationships or parameters, in addition to physiological values. In parallel with the development of whole respiratory system models are mathematical models that focus on furthering a detailed understanding of the neural control network, or of the several functions that contribute to gas exchange within the lung. These models are biophysically based, and rely on physiological parameters. They include single-unit models for a breathing lung or neural circuit, through to spatially distributed models of ventilation and perfusion, or multicircuit models for neural control. The challenge is to bring together these more recent advances in models of neural control with models of lung function, into a full simulation for the respiratory system that builds upon the more detailed models but remains computationally tractable. This requires first understanding the mathematical models that have been developed for the respiratory system at different levels, and which could be used to study how physiological levels of O2 and CO2 in the blood are maintained. Copyright © 2013 Wiley Periodicals, Inc.
Neurophysiology and neural engineering: a review.
Prochazka, Arthur
2017-08-01
Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight. Copyright © 2017 the American Physiological Society.
Efficient Digital Implementation of The Sigmoidal Function For Artificial Neural Network
NASA Astrophysics Data System (ADS)
Pratap, Rana; Subadra, M.
2011-10-01
An efficient piecewise linear approximation of a nonlinear function (PLAN) is proposed. This uses simulink environment design to perform a direct transformation from X to Y, where X is the input and Y is the approximated sigmoidal output. This PLAN is then used within the outputs of an artificial neural network to perform the nonlinear approximation. In This paper, is proposed a method to implement in FPGA (Field Programmable Gate Array) circuits different approximation of the sigmoid function.. The major benefit of the proposed method resides in the possibility to design neural networks by means of predefined block systems created in System Generator environment and the possibility to create a higher level design tools used to implement neural networks in logical circuits.
Variable Neural Adaptive Robust Control: A Switched System Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianming; Hu, Jianghai; Zak, Stanislaw H.
2015-05-01
Variable neural adaptive robust control strategies are proposed for the output tracking control of a class of multi-input multi-output uncertain systems. The controllers incorporate a variable-structure radial basis function (RBF) network as the self-organizing approximator for unknown system dynamics. The variable-structure RBF network solves the problem of structure determination associated with fixed-structure RBF networks. It can determine the network structure on-line dynamically by adding or removing radial basis functions according to the tracking performance. The structure variation is taken into account in the stability analysis of the closed-loop system using a switched system approach with the aid of the piecewisemore » quadratic Lyapunov function. The performance of the proposed variable neural adaptive robust controllers is illustrated with simulations.« less
Modelling and prediction for chaotic fir laser attractor using rational function neural network.
Cho, S
2001-02-01
Many real-world systems such as irregular ECG signal, volatility of currency exchange rate and heated fluid reaction exhibit highly complex nonlinear characteristic known as chaos. These chaotic systems cannot be retreated satisfactorily using linear system theory due to its high dimensionality and irregularity. This research focuses on prediction and modelling of chaotic FIR (Far InfraRed) laser system for which the underlying equations are not given. This paper proposed a method for prediction and modelling a chaotic FIR laser time series using rational function neural network. Three network architectures, TDNN (Time Delayed Neural Network), RBF (radial basis function) network and the RF (rational function) network, are also presented. Comparisons between these networks performance show the improvements introduced by the RF network in terms of a decrement in network complexity and better ability of predictability.
A function approximation approach to anomaly detection in propulsion system test data
NASA Technical Reports Server (NTRS)
Whitehead, Bruce A.; Hoyt, W. A.
1993-01-01
Ground test data from propulsion systems such as the Space Shuttle Main Engine (SSME) can be automatically screened for anomalies by a neural network. The neural network screens data after being trained with nominal data only. Given the values of 14 measurements reflecting external influences on the SSME at a given time, the neural network predicts the expected nominal value of a desired engine parameter at that time. We compared the ability of three different function-approximation techniques to perform this nominal value prediction: a novel neural network architecture based on Gaussian bar basis functions, a conventional back propagation neural network, and linear regression. These three techniques were tested with real data from six SSME ground tests containing two anomalies. The basis function network trained more rapidly than back propagation. It yielded nominal predictions with, a tight enough confidence interval to distinguish anomalous deviations from the nominal fluctuations in an engine parameter. Since the function-approximation approach requires nominal training data only, it is capable of detecting unknown classes of anomalies for which training data is not available.
Kamiya, Atsunori; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru
2011-01-01
Abstract Although the dynamic characteristics of the baroreflex system have been described by baroreflex transfer functions obtained from open-loop analysis, the predictability of time-series output dynamics from input signals, which should confirm the accuracy of system identification, remains to be elucidated. Moreover, despite theoretical concerns over closed-loop system identification, the accuracy and the predictability of the closed-loop spontaneous baroreflex transfer function have not been evaluated compared with the open-loop transfer function. Using urethane and α-chloralose anaesthetized, vagotomized and aortic-denervated rabbits (n = 10), we identified open-loop baroreflex transfer functions by recording renal sympathetic nerve activity (SNA) while varying the vascularly isolated intracarotid sinus pressure (CSP) according to a binary random (white-noise) sequence (operating pressure ± 20 mmHg), and using a simplified equation to calculate closed-loop-spontaneous baroreflex transfer function while matching CSP with systemic arterial pressure (AP). Our results showed that the open-loop baroreflex transfer functions for the neural and peripheral arcs predicted the time-series SNA and AP outputs from measured CSP and SNA inputs, with r2 of 0.8 ± 0.1 and 0.8 ± 0.1, respectively. In contrast, the closed-loop-spontaneous baroreflex transfer function for the neural arc was markedly different from the open-loop transfer function (enhanced gain increase and a phase lead), and did not predict the time-series SNA dynamics (r2; 0.1 ± 0.1). However, the closed-loop-spontaneous baroreflex transfer function of the peripheral arc partially matched the open-loop transfer function in gain and phase functions, and had limited but reasonable predictability of the time-series AP dynamics (r2, 0.7 ± 0.1). A numerical simulation suggested that a noise predominantly in the neural arc under resting conditions might be a possible mechanism responsible for our findings. Furthermore, the predictabilities of the neural arc transfer functions obtained in open-loop and closed-loop conditions were validated by closed-loop pharmacological (phenylephrine and nitroprusside infusions) pressure interventions. Time-series SNA responses to drug-induced AP changes predicted by the open-loop transfer function matched closely the measured responses (r2, 0.9 ± 0.1), whereas SNA responses predicted by closed-loop-spontaneous transfer function deviated greatly and were the inverse of measured responses (r, −0.8 ± 0.2). These results indicate that although the spontaneous baroreflex transfer function obtained by closed-loop analysis has been believed to represent the neural arc function, it is inappropriate for system identification of the neural arc but is essentially appropriate for the peripheral arc under resting conditions, when compared with open-loop analysis. PMID:21486839
Functional and Anatomic Correlates of Neural Aging in Birds.
Ottinger, Mary Ann
2018-01-01
Avian species show variation in longevity, habitat, physiologic characteristics, and lifetime endocrine patterns. Lifetime reproductive and metabolic function vary. Much is known about the neurobiology of the song system in many altricial birds. Little is known about aging in neural systems in birds. Captive birds often survive beyond the age they would in the wild, providing an opportunity to gain an understanding of the physiologic and neural changes. This paper reviews the available information with the goal of capturing areas of potential investigation into gaps in our understanding of neural aging as reflected in physiologic, endocrine, and cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.
Optical neural network system for pose determination of spinning satellites
NASA Technical Reports Server (NTRS)
Lee, Andrew; Casasent, David
1990-01-01
An optical neural network architecture and algorithm based on a Hopfield optimization network are presented for multitarget tracking. This tracker utilizes a neuron for every possible target track, and a quadratic energy function of neural activities which is minimized using gradient descent neural evolution. The neural net tracker is demonstrated as part of a system for determining position and orientation (pose) of spinning satellites with respect to a robotic spacecraft. The input to the system is time sequence video from a single camera. Novelty detection and filtering are utilized to locate and segment novel regions from the input images. The neural net multitarget tracker determines the correspondences (or tracks) of the novel regions as a function of time, and hence the paths of object (satellite) parts. The path traced out by a given part or region is approximately elliptical in image space, and the position, shape and orientation of the ellipse are functions of the satellite geometry and its pose. Having a geometric model of the satellite, and the elliptical path of a part in image space, the three-dimensional pose of the satellite is determined. Digital simulation results using this algorithm are presented for various satellite poses and lighting conditions.
Polarity-specific high-level information propagation in neural networks.
Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan
2014-01-01
Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals.
Polarity-specific high-level information propagation in neural networks
Lin, Yen-Nan; Chang, Po-Yen; Hsiao, Pao-Yueh; Lo, Chung-Chuan
2014-01-01
Analyzing the connectome of a nervous system provides valuable information about the functions of its subsystems. Although much has been learned about the architectures of neural networks in various organisms by applying analytical tools developed for general networks, two distinct and functionally important properties of neural networks are often overlooked. First, neural networks are endowed with polarity at the circuit level: Information enters a neural network at input neurons, propagates through interneurons, and leaves via output neurons. Second, many functions of nervous systems are implemented by signal propagation through high-level pathways involving multiple and often recurrent connections rather than by the shortest paths between nodes. In the present study, we analyzed two neural networks: the somatic nervous system of Caenorhabditis elegans (C. elegans) and the partial central complex network of Drosophila, in light of these properties. Specifically, we quantified high-level propagation in the vertical and horizontal directions: the former characterizes how signals propagate from specific input nodes to specific output nodes and the latter characterizes how a signal from a specific input node is shared by all output nodes. We found that the two neural networks are characterized by very efficient vertical and horizontal propagation. In comparison, classic small-world networks show a trade-off between vertical and horizontal propagation; increasing the rewiring probability improves the efficiency of horizontal propagation but worsens the efficiency of vertical propagation. Our result provides insights into how the complex functions of natural neural networks may arise from a design that allows them to efficiently transform and combine input signals. PMID:24672472
Vitureira, Nathalia; Andrés, Rosa; Pérez-Martínez, Esther; Martínez, Albert; Bribián, Ana; Blasi, Juan; Chelliah, Shierley; López-Doménech, Guillermo; De Castro, Fernando; Burgaya, Ferran; McNagny, Kelly; Soriano, Eduardo
2010-01-01
Neural development and plasticity are regulated by neural adhesion proteins, including the polysialylated form of NCAM (PSA-NCAM). Podocalyxin (PC) is a renal PSA-containing protein that has been reported to function as an anti-adhesin in kidney podocytes. Here we show that PC is widely expressed in neurons during neural development. Neural PC interacts with the ERM protein family, and with NHERF1/2 and RhoA/G. Experiments in vitro and phenotypic analyses of podxl-deficient mice indicate that PC is involved in neurite growth, branching and axonal fasciculation, and that PC loss-of-function reduces the number of synapses in the CNS and in the neuromuscular system. We also show that whereas some of the brain PC functions require PSA, others depend on PC per se. Our results show that PC, the second highly sialylated neural adhesion protein, plays multiple roles in neural development. PMID:20706633
Marcar, Valentine L; Baselgia, Silvana; Lüthi-Eisenegger, Barbara; Jäncke, Lutz
2018-03-01
Retinal input processing in the human visual system involves a phasic and tonic neural response. We investigated the role of the magno- and parvocellular systems by comparing the influence of the active neural population size and its discharge activity on the amplitude and latency of four VEP components. We recorded the scalp electric potential of 20 human volunteers viewing a series of dartboard images presented as a pattern reversing and pattern on-/offset stimulus. These patterns were designed to vary both neural population size coding the temporal- and spatial luminance contrast property and the discharge activity of the population involved in a systematic manner. When the VEP amplitude reflected the size of the neural population coding the temporal luminance contrast property of the image, the influence of luminance contrast followed the contrast response function of the parvocellular system. When the VEP amplitude reflected the size of the neural population responding to the spatial luminance contrast property the image, the influence of luminance contrast followed the contrast response function of the magnocellular system. The latencies of the VEP components examined exhibited the same behavior across our stimulus series. This investigation demonstrates the complex interplay of the magno- and parvocellular systems on the neural response as captured by the VEP. It also demonstrates a linear relationship between stimulus property, neural response, and the VEP and reveals the importance of feedback projections in modulating the ongoing neural response. In doing so, it corroborates the conclusions of our previous study.
Hamilton, J. Paul; Chen, Michael C.; Gotlib, Ian H.
2012-01-01
Recent research detailing the intrinsic functional organization of the brain provides a unique and useful framework to gain a better understanding of the neural bases of Major Depressive Disorder (MDD). In this review, we first present a brief history of neuroimaging research that has increased our understanding of the functional macro-architecture of the brain. From this macro-architectural perspective, we examine the extant body of functional neuroimaging research assessing MDD with a specific emphasis on the contributions of default-mode, executive, and salience networks in this debilitating disorder. Next, we describe recent investigations conducted in our laboratory in which we explicitly adopt a neural-systems perspective in examining the relations among these networks in MDD. Finally, we offer directions for future research that we believe will facilitate the development of more detailed and integrative models of neural dysfunction in depression. PMID:23477309
Homeostatic control of neural activity: from phenomenology to molecular design.
Davis, Graeme W
2006-01-01
Homeostasis is a specialized form of regulation that precisely maintains the function of a system at a set point level of activity. Recently, homeostatic signaling has been suggested to control neural activity through the modulation of synaptic efficacy and membrane excitability ( Davis & Goodman 1998a, Turrigiano & Nelson 2000, Marder & Prinz 2002, Perez-Otano & Ehlers 2005 ). In this way, homeostatic signaling is thought to constrain neural plasticity and contribute to the stability of neural function over time. Using a restrictive definition of homeostasis, this review first evaluates the phenomenological and molecular evidence for homeostatic signaling in the nervous system. Then, basic principles underlying the design and molecular implementation of homeostatic signaling are reviewed on the basis of work in other, simplified biological systems such as bacterial chemotaxis and the heat shock response. Data from these systems are then discussed in the context of homeostatic signaling in the nervous system.
Classification of Magneto-Optic Images using Neural Networks
NASA Technical Reports Server (NTRS)
Nath, Shridhar; Wincheski, Buzz; Fulton, Jim; Namkung, Min
1994-01-01
A real time imaging system with a neural network classifier has been incorporated on a Macintosh computer in conjunction with an MOI system. This system images rivets on aircraft aluminium structures using eddy currents and magnetic imaging. Moment invariant functions from the image of a rivet is used to train a multilayer perceptron neural network to classify the rivets as good or bad (rivets with cracks).
Chaotic simulated annealing by a neural network with a variable delay: design and application.
Chen, Shyan-Shiou
2011-10-01
In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem. © 2011 IEEE
Pharmacological Tools to Study the Role of Astrocytes in Neural Network Functions.
Peña-Ortega, Fernando; Rivera-Angulo, Ana Julia; Lorea-Hernández, Jonathan Julio
2016-01-01
Despite that astrocytes and microglia do not communicate by electrical impulses, they can efficiently communicate among them, with each other and with neurons, to participate in complex neural functions requiring broad cell-communication and long-lasting regulation of brain function. Glial cells express many receptors in common with neurons; secrete gliotransmitters as well as neurotrophic and neuroinflammatory factors, which allow them to modulate synaptic transmission and neural excitability. All these properties allow glial cells to influence the activity of neuronal networks. Thus, the incorporation of glial cell function into the understanding of nervous system dynamics will provide a more accurate view of brain function. Our current knowledge of glial cell biology is providing us with experimental tools to explore their participation in neural network modulation. In this chapter, we review some of the classical, as well as some recent, pharmacological tools developed for the study of astrocyte's influence in neural function. We also provide some examples of the use of these pharmacological agents to understand the role of astrocytes in neural network function and dysfunction.
Brain and language: evidence for neural multifunctionality.
Cahana-Amitay, Dalia; Albert, Martin L
2014-01-01
This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term "neural multifunctionality" refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging.
A solution to neural field equations by a recurrent neural network method
NASA Astrophysics Data System (ADS)
Alharbi, Abir
2012-09-01
Neural field equations (NFE) are used to model the activity of neurons in the brain, it is introduced from a single neuron 'integrate-and-fire model' starting point. The neural continuum is spatially discretized for numerical studies, and the governing equations are modeled as a system of ordinary differential equations. In this article the recurrent neural network approach is used to solve this system of ODEs. This consists of a technique developed by combining the standard numerical method of finite-differences with the Hopfield neural network. The architecture of the net, energy function, updating equations, and algorithms are developed for the NFE model. A Hopfield Neural Network is then designed to minimize the energy function modeling the NFE. Results obtained from the Hopfield-finite-differences net show excellent performance in terms of accuracy and speed. The parallelism nature of the Hopfield approaches may make them easier to implement on fast parallel computers and give them the speed advantage over the traditional methods.
Upper Aerodigestive Tract Neurofunctional Mechanisms: Lifelong Evolution and Exercise
Robbins, JoAnne
2013-01-01
The transformation of the upper aerodigestive tract – oral cavity, pharynx and larynx – serves the functions of eating, speaking and breathing during sleeping and waking hours. These life-sustaining functions may be produced by a central neural sensorimotor system that shares certain neuroanatomic networks while maintaining separate neural functional systems and network structures. Current understanding of development, maturation, underlying neural correlates and integrative factors are discussed in light of currently available imaging modalities and recently emerging interventions. Exercise and an array of additional treatments together appear to provide promising translational pathways for evidence-based innovation, novel habilitation and rehabilitation strategies and delay, or even prevent neuromuscular decline cross-cutting functions and supporting quality of life throughout increasingly enduring lifespans. PMID:21910155
Niu, Ben; Li, Lu
2018-06-01
This brief proposes a new neural-network (NN)-based adaptive output tracking control scheme for a class of disturbed multiple-input multiple-output uncertain nonlinear switched systems with input delays. By combining the universal approximation ability of radial basis function NNs and adaptive backstepping recursive design with an improved multiple Lyapunov function (MLF) scheme, a novel adaptive neural output tracking controller design method is presented for the switched system. The feature of the developed design is that different coordinate transformations are adopted to overcome the conservativeness caused by adopting a common coordinate transformation for all subsystems. It is shown that all the variables of the resulting closed-loop system are semiglobally uniformly ultimately bounded under a class of switching signals in the presence of MLF and that the system output can follow the desired reference signal. To demonstrate the practicability of the obtained result, an adaptive neural output tracking controller is designed for a mass-spring-damper system.
Extracellular matrix and its receptors in Drosophila neural development
Broadie, Kendal; Baumgartner, Stefan; Prokop, Andreas
2011-01-01
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: 1) neural progenitor proliferation, 2) axonal growth and pathfinding and 3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions. PMID:21688401
NASA Astrophysics Data System (ADS)
Torghabeh, A. A.; Tousi, A. M.
2007-08-01
This paper presents Fuzzy Logic and Neural Networks approach to Gas Turbine Fuel schedules. Modeling of non-linear system using feed forward artificial Neural Networks using data generated by a simulated gas turbine program is introduced. Two artificial Neural Networks are used , depicting the non-linear relationship between gas generator speed and fuel flow, and turbine inlet temperature and fuel flow respectively . Off-line fast simulations are used for engine controller design for turbojet engine based on repeated simulation. The Mamdani and Sugeno models are used to expression the Fuzzy system . The linguistic Fuzzy rules and membership functions are presents and a Fuzzy controller will be proposed to provide an Open-Loop control for the gas turbine engine during acceleration and deceleration . MATLAB Simulink was used to apply the Fuzzy Logic and Neural Networks analysis. Both systems were able to approximate functions characterizing the acceleration and deceleration schedules . Surge and Flame-out avoidance during acceleration and deceleration phases are then checked . Turbine Inlet Temperature also checked and controls by Neural Networks controller. This Fuzzy Logic and Neural Network Controllers output results are validated and evaluated by GSP software . The validation results are used to evaluate the generalization ability of these artificial Neural Networks and Fuzzy Logic controllers.
Kuntanapreeda, S; Fullmer, R R
1996-01-01
A training method for a class of neural network controllers is presented which guarantees closed-loop system stability. The controllers are assumed to be nonlinear, feedforward, sampled-data, full-state regulators implemented as single hidden-layer neural networks. The controlled systems must be locally hermitian and observable. Stability of the closed-loop system is demonstrated by determining a Lyapunov function, which can be used to identify a finite stability region about the regulator point.
Functional neural networks underlying response inhibition in adolescents and adults.
Stevens, Michael C; Kiehl, Kent A; Pearlson, Godfrey D; Calhoun, Vince D
2007-07-19
This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by fronto-striatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development.
Functional neural networks underlying response inhibition in adolescents and adults
Stevens, Michael C.; Kiehl, Kent A.; Pearlson, Godfrey D.; Calhoun, Vince D.
2008-01-01
This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally-integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by frontostriatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development. PMID:17467816
Dynamical principles in neuroscience
NASA Astrophysics Data System (ADS)
Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.; Abarbanel, Henry D. I.
2006-10-01
Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?
Dynamical principles in neuroscience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabinovich, Mikhail I.; Varona, Pablo; Selverston, Allen I.
Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only amore » few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?.« less
Slits Affect the Timely Migration of Neural Crest Cells via Robo Receptor
Giovannone, Dion; Reyes, Michelle; Reyes, Rachel; Correa, Lisa; Martinez, Darwin; Ra, Hannah; Gomez, Gustavo; Kaiser, Josh; Ma, Le; Stein, Mary-Pat; de Bellard, Maria Elena
2013-01-01
SUMMARY Background Neural crest cells emerge by delamination from the dorsal neural tube and give rise to various components of the peripheral nervous system in vertebrate embryos. These cells change from non-motile into highly motile cells migrating to distant areas before further differentiation. Mechanisms controlling delamination and subsequent migration of neural crest cells are not fully understood. Slit2, a chemorepellant for axonal guidance that repels and stimulates motility of trunk neural crest cells away from the gut has recently been suggested to be a tumor suppressor molecule. The goal of this study was to further investigate the role of Slit2 in trunk neural crest cell migration by constitutive expression in neural crest cells. Results We found that Slit gain-of-function significantly impaired neural crest cell migration while Slit loss-of-function favored migration. In addition, we observed that the distribution of key cytoskeletal markers was disrupted in both gain and loss of function instances. Conclusions These findings suggest that Slit molecules might be involved in the processes that allow neural crest cells to begin migration and transitioning to a mesenchymal type. PMID:22689303
Yan, Xiaodan
2010-01-01
The current study investigated the functional connectivity of the primary sensory system with resting state fMRI and applied such knowledge into the design of the neural architecture of autonomous humanoid robots. Correlation and Granger causality analyses were utilized to reveal the functional connectivity patterns. Dissociation was within the primary sensory system, in that the olfactory cortex and the somatosensory cortex were strongly connected to the amygdala whereas the visual cortex and the auditory cortex were strongly connected with the frontal cortex. The posterior cingulate cortex (PCC) and the anterior cingulate cortex (ACC) were found to maintain constant communication with the primary sensory system, the frontal cortex, and the amygdala. Such neural architecture inspired the design of dissociated emergent-response system and fine-processing system in autonomous humanoid robots, with separate processing units and another consolidation center to coordinate the two systems. Such design can help autonomous robots to detect and respond quickly to danger, so as to maintain their sustainability and independence.
Adaptation to conflict via context-driven anticipatory signals in the dorsomedial prefrontal cortex.
Horga, Guillermo; Maia, Tiago V; Wang, Pengwei; Wang, Zhishun; Marsh, Rachel; Peterson, Bradley S
2011-11-09
Behavioral interference elicited by competing response tendencies adapts to contextual changes. Recent nonhuman primate research suggests a key mnemonic role of distinct prefrontal cells in supporting such context-driven behavioral adjustments by maintaining conflict information across trials, but corresponding prefrontal functions have yet to be probed in humans. Using event-related functional magnetic resonance imaging, we investigated the human neural substrates of contextual adaptations to conflict. We found that a neural system comprising the rostral dorsomedial prefrontal cortex and portions of the dorsolateral prefrontal cortex specifically encodes the history of previously experienced conflict and influences subsequent adaptation to conflict on a trial-by-trial basis. This neural system became active in anticipation of stimulus onsets during preparatory periods and interacted with a second neural system engaged during the processing of conflict. Our findings suggest that a dynamic interaction between a system that represents conflict history and a system that resolves conflict underlies the contextual adaptation to conflict.
Adaptation to Conflict via Context-Driven Anticipatory Signals in the Dorsomedial Prefrontal Cortex
Horga, Guillermo; Maia, Tiago V.; Wang, Pengwei; Wang, Zhishun; Marsh, Rachel; Peterson, Bradley S.
2011-01-01
Behavioral interference elicited by competing response tendencies adapts to contextual changes. Recent nonhuman primate research suggests a key mnemonic role of distinct prefrontal cells in supporting such context-driven behavioral adjustments by maintaining conflict information across trials, but corresponding prefrontal functions have yet to be probed in humans. Using event-related functional magnetic resonance imaging (fMRI), we investigated the human neural substrates of contextual adaptations to conflict. We found that a neural system comprising the rostral dorsomedial prefrontal cortex and portions of the dorsolateral prefrontal cortex specifically encodes the history of previously experienced conflict and influences subsequent adaptation to conflict on a trial-by-trial basis. This neural system became active in anticipation of stimulus onsets during preparatory periods and interacted with a second neural system engaged during the processing of conflict. Our findings suggest that a dynamic interaction between a system that represents conflict history and a system that resolves conflict underlies the contextual adaptation to conflict. PMID:22072672
León-Domínguez, Umberto; Vela-Bueno, Antonio; Froufé-Torres, Manuel; León-Carrión, Jose
2013-06-01
The thalamo-cortical system has been defined as a neural network associated with consciousness. While there seems to be wide agreement that the thalamo-cortical system directly intervenes in vigilance and arousal, a divergence of opinion persists regarding its intervention in the control of other cognitive processes necessary for consciousness. In the present manuscript, we provide a review of recent scientific findings on the thalamo-cortical system and its role in the control and regulation of the flow of neural information necessary for conscious cognitive processes. We suggest that the axis formed by the medial prefrontal cortex and different thalamic nuclei (reticular nucleus, intralaminar nucleus, and midline nucleus), represents a core component for consciousness. This axis regulates different cerebral structures which allow basic cognitive processes like attention, arousal and memory to emerge. In order to produce a synchronized coherent response, neural communication between cerebral structures must have exact timing (chronometry). Thus, a chronometric functional sub-network within the thalamo-cortical system keeps us in an optimal and continuous functional state, allowing high-order cognitive processes, essential to awareness and qualia, to take place. Copyright © 2013 Elsevier Ltd. All rights reserved.
Brain and Language: Evidence for Neural Multifunctionality
Cahana-Amitay, Dalia; Albert, Martin L.
2014-01-01
This review paper presents converging evidence from studies of brain damage and longitudinal studies of language in aging which supports the following thesis: the neural basis of language can best be understood by the concept of neural multifunctionality. In this paper the term “neural multifunctionality” refers to incorporation of nonlinguistic functions into language models of the intact brain, reflecting a multifunctional perspective whereby a constant and dynamic interaction exists among neural networks subserving cognitive, affective, and praxic functions with neural networks specialized for lexical retrieval, sentence comprehension, and discourse processing, giving rise to language as we know it. By way of example, we consider effects of executive system functions on aspects of semantic processing among persons with and without aphasia, as well as the interaction of executive and language functions among older adults. We conclude by indicating how this multifunctional view of brain-language relations extends to the realm of language recovery from aphasia, where evidence of the influence of nonlinguistic factors on the reshaping of neural circuitry for aphasia rehabilitation is clearly emerging. PMID:25009368
Neural networks for tracking of unknown SISO discrete-time nonlinear dynamic systems.
Aftab, Muhammad Saleheen; Shafiq, Muhammad
2015-11-01
This article presents a Lyapunov function based neural network tracking (LNT) strategy for single-input, single-output (SISO) discrete-time nonlinear dynamic systems. The proposed LNT architecture is composed of two feedforward neural networks operating as controller and estimator. A Lyapunov function based back propagation learning algorithm is used for online adjustment of the controller and estimator parameters. The controller and estimator error convergence and closed-loop system stability analysis is performed by Lyapunov stability theory. Moreover, two simulation examples and one real-time experiment are investigated as case studies. The achieved results successfully validate the controller performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Neural and behavioural changes in male periadolescent mice after prolonged nicotine-MDMA treatment.
Adeniyi, Philip A; Ishola, Azeez O; Laoye, Babafemi J; Olatunji, Babawale P; Bankole, Oluwamolakun O; Shallie, Philemon D; Ogundele, Olalekan M
2016-02-01
The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue.
Characterization of Radar Signals Using Neural Networks
1990-12-01
e***e*e*eeeeeeeeeeeesseeeeeese*eee*e*e************s /* Function Name: load.input.ptterns Number: 4.1 /* Description: This function determines wether ...XSE.last.layer Number: 8.5 */ /* Description: The function determines wether to backpropate the *f /* parameter by the sigmoidal or linear update...Sigmoidal Function," Mathematics of Control, Signals and Systems, 2:303-314 (March 1989). 6. Dayhoff, Judith E. Neural Network Architectures. New York: Van
The brain as a dynamic physical system.
McKenna, T M; McMullen, T A; Shlesinger, M F
1994-06-01
The brain is a dynamic system that is non-linear at multiple levels of analysis. Characterization of its non-linear dynamics is fundamental to our understanding of brain function. Identifying families of attractors in phase space analysis, an approach which has proven valuable in describing non-linear mechanical and electrical systems, can prove valuable in describing a range of behaviors and associated neural activity including sensory and motor repertoires. Additionally, transitions between attractors may serve as useful descriptors for analysing state changes in neurons and neural ensembles. Recent observations of synchronous neural activity, and the emerging capability to record the spatiotemporal dynamics of neural activity by voltage-sensitive dyes and electrode arrays, provide opportunities for observing the population dynamics of neural ensembles within a dynamic systems context. New developments in the experimental physics of complex systems, such as the control of chaotic systems, selection of attractors, attractor switching and transient states, can be a source of powerful new analytical tools and insights into the dynamics of neural systems.
Modeling Belt-Servomechanism by Chebyshev Functional Recurrent Neuro-Fuzzy Network
NASA Astrophysics Data System (ADS)
Huang, Yuan-Ruey; Kang, Yuan; Chu, Ming-Hui; Chang, Yeon-Pun
A novel Chebyshev functional recurrent neuro-fuzzy (CFRNF) network is developed from a combination of the Takagi-Sugeno-Kang (TSK) fuzzy model and the Chebyshev recurrent neural network (CRNN). The CFRNF network can emulate the nonlinear dynamics of a servomechanism system. The system nonlinearity is addressed by enhancing the input dimensions of the consequent parts in the fuzzy rules due to functional expansion of a Chebyshev polynomial. The back propagation algorithm is used to adjust the parameters of the antecedent membership functions as well as those of consequent functions. To verify the performance of the proposed CFRNF, the experiment of the belt servomechanism is presented in this paper. Both of identification methods of adaptive neural fuzzy inference system (ANFIS) and recurrent neural network (RNN) are also studied for modeling of the belt servomechanism. The analysis and comparison results indicate that CFRNF makes identification of complex nonlinear dynamic systems easier. It is verified that the accuracy and convergence of the CFRNF are superior to those of ANFIS and RNN by the identification results of a belt servomechanism.
Conic section function neural network circuitry for offline signature recognition.
Erkmen, Burcu; Kahraman, Nihan; Vural, Revna A; Yildirim, Tulay
2010-04-01
In this brief, conic section function neural network (CSFNN) circuitry was designed for offline signature recognition. CSFNN is a unified framework for multilayer perceptron (MLP) and radial basis function (RBF) networks to make simultaneous use of advantages of both. The CSFNN circuitry architecture was developed using a mixed mode circuit implementation. The designed circuit system is problem independent. Hence, the general purpose neural network circuit system could be applied to various pattern recognition problems with different network sizes on condition with the maximum network size of 16-16-8. In this brief, CSFNN circuitry system has been applied to two different signature recognition problems. CSFNN circuitry was trained with chip-in-the-loop learning technique in order to compensate typical analog process variations. CSFNN hardware achieved highly comparable computational performances with CSFNN software for nonlinear signature recognition problems.
NASA Astrophysics Data System (ADS)
Wang, Jing; Yang, Tianyu; Staskevich, Gennady; Abbe, Brian
2017-04-01
This paper studies the cooperative control problem for a class of multiagent dynamical systems with partially unknown nonlinear system dynamics. In particular, the control objective is to solve the state consensus problem for multiagent systems based on the minimisation of certain cost functions for individual agents. Under the assumption that there exist admissible cooperative controls for such class of multiagent systems, the formulated problem is solved through finding the optimal cooperative control using the approximate dynamic programming and reinforcement learning approach. With the aid of neural network parameterisation and online adaptive learning, our method renders a practically implementable approximately adaptive neural cooperative control for multiagent systems. Specifically, based on the Bellman's principle of optimality, the Hamilton-Jacobi-Bellman (HJB) equation for multiagent systems is first derived. We then propose an approximately adaptive policy iteration algorithm for multiagent cooperative control based on neural network approximation of the value functions. The convergence of the proposed algorithm is rigorously proved using the contraction mapping method. The simulation results are included to validate the effectiveness of the proposed algorithm.
Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.
Chen, Mou; Tao, Gang
2016-08-01
In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass-spring-damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.
Identifying the neural substrates of intrinsic motivation during task performance.
Lee, Woogul; Reeve, Johnmarshall
2017-10-01
Intrinsic motivation is the inherent tendency to seek out novelty and challenge, to explore and investigate, and to stretch and extend one's capacities. When people imagine performing intrinsically motivating tasks, they show heightened anterior insular cortex (AIC) activity. To fully explain the neural system of intrinsic motivation, however, requires assessing neural activity while people actually perform intrinsically motivating tasks (i.e., while answering curiosity-inducing questions or solving competence-enabling anagrams). Using event-related functional magnetic resonance imaging, we found that the neural system of intrinsic motivation involves not only AIC activity, but also striatum activity and, further, AIC-striatum functional interactions. These findings suggest that subjective feelings of intrinsic satisfaction (associated with AIC activations), reward processing (associated with striatum activations), and their interactions underlie the actual experience of intrinsic motivation. These neural findings are consistent with the conceptualization of intrinsic motivation as the pursuit and satisfaction of subjective feelings (interest and enjoyment) as intrinsic rewards.
[The mechanism and function of hippocampal neural oscillation].
Lu, Ning; Xing, Dan-Qin; Sheng, Tao; Lu, Wei
2017-10-25
Neural oscillation is rhythmic or repetitive neural activity in the central nervous system that is usually generated by oscillatory activity of neuronal ensembles, reflecting regular and synchronized activities within these cell populations. According to several oscillatory bands covering frequencies from approximately 0.5 Hz to >100 Hz, neural oscillations are usually classified as delta oscillation (0.5-3 Hz), theta oscillation (4-12 Hz), beta oscillation (12-30 Hz), gamma oscillation (30-100 Hz) and sharp-wave ripples (>100 Hz ripples superimposed on 0.01-3 Hz sharp waves). Neural oscillation in different frequencies can be detected in different brain regions of human and animal during perception, motion and sleep, and plays an essential role in cognition, learning and memory process. In this review, we summarize recent findings on neural oscillations in hippocampus, as well as the mechanism and function of hippocampal theta oscillation, gamma oscillation and sharp-wave ripples. This review may yield new insights into the functions of neural oscillation in general.
Wen, Shiping; Zeng, Zhigang; Huang, Tingwen; Meng, Qinggang; Yao, Wei
2015-07-01
This paper investigates the problem of global exponential lag synchronization of a class of switched neural networks with time-varying delays via neural activation function and applications in image encryption. The controller is dependent on the output of the system in the case of packed circuits, since it is hard to measure the inner state of the circuits. Thus, it is critical to design the controller based on the neuron activation function. Comparing the results, in this paper, with the existing ones shows that we improve and generalize the results derived in the previous literature. Several examples are also given to illustrate the effectiveness and potential applications in image encryption.
Luo, Shaohua; Wu, Songli; Gao, Ruizhen
2015-07-01
This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in the closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Shaohua; Department of Mechanical Engineering, Chongqing Aerospace Polytechnic, Chongqing, 400021; Wu, Songli
2015-07-15
This paper investigates chaos control for the brushless DC motor (BLDCM) system by adaptive dynamic surface approach based on neural network with the minimum weights. The BLDCM system contains parameter perturbation, chaotic behavior, and uncertainty. With the help of radial basis function (RBF) neural network to approximate the unknown nonlinear functions, the adaptive law is established to overcome uncertainty of the control gain. By introducing the RBF neural network and adaptive technology into the dynamic surface control design, a robust chaos control scheme is developed. It is proved that the proposed control approach can guarantee that all signals in themore » closed-loop system are globally uniformly bounded, and the tracking error converges to a small neighborhood of the origin. Simulation results are provided to show that the proposed approach works well in suppressing chaos and parameter perturbation.« less
Zhang, WenJun
2007-07-01
Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance (similarity) measures. Results with the larger consistency will be more reliable.
Intelligent neural network and fuzzy logic control of industrial and power systems
NASA Astrophysics Data System (ADS)
Kuljaca, Ognjen
The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of adaptive and neural network control systems, as well as for the analysis of the different algorithms such as elastic fuzzy systems.
Error-based analysis of optimal tuning functions explains phenomena observed in sensory neurons.
Yaeli, Steve; Meir, Ron
2010-01-01
Biological systems display impressive capabilities in effectively responding to environmental signals in real time. There is increasing evidence that organisms may indeed be employing near optimal Bayesian calculations in their decision-making. An intriguing question relates to the properties of optimal encoding methods, namely determining the properties of neural populations in sensory layers that optimize performance, subject to physiological constraints. Within an ecological theory of neural encoding/decoding, we show that optimal Bayesian performance requires neural adaptation which reflects environmental changes. Specifically, we predict that neuronal tuning functions possess an optimal width, which increases with prior uncertainty and environmental noise, and decreases with the decoding time window. Furthermore, even for static stimuli, we demonstrate that dynamic sensory tuning functions, acting at relatively short time scales, lead to improved performance. Interestingly, the narrowing of tuning functions as a function of time was recently observed in several biological systems. Such results set the stage for a functional theory which may explain the high reliability of sensory systems, and the utility of neuronal adaptation occurring at multiple time scales.
Wang, Huanqing; Liu, Peter Xiaoping; Li, Shuai; Wang, Ding
2017-08-29
This paper presents the development of an adaptive neural controller for a class of nonlinear systems with unmodeled dynamics and immeasurable states. An observer is designed to estimate system states. The structure consistency of virtual control signals and the variable partition technique are combined to overcome the difficulties appearing in a nonlower triangular form. An adaptive neural output-feedback controller is developed based on the backstepping technique and the universal approximation property of the radial basis function (RBF) neural networks. By using the Lyapunov stability analysis, the semiglobally and uniformly ultimate boundedness of all signals within the closed-loop system is guaranteed. The simulation results show that the controlled system converges quickly, and all the signals are bounded. This paper is novel at least in the two aspects: 1) an output-feedback control strategy is developed for a class of nonlower triangular nonlinear systems with unmodeled dynamics and 2) the nonlinear disturbances and their bounds are the functions of all states, which is in a more general form than existing results.
NASA Astrophysics Data System (ADS)
Patkin, M. L.; Rogachev, G. N.
2018-02-01
A method for constructing a multi-agent control system for mobile robots based on training with reinforcement using deep neural networks is considered. Synthesis of the management system is proposed to be carried out with reinforcement training and the modified Actor-Critic method, in which the Actor module is divided into Action Actor and Communication Actor in order to simultaneously manage mobile robots and communicate with partners. Communication is carried out by sending partners at each step a vector of real numbers that are added to the observation vector and affect the behaviour. Functions of Actors and Critic are approximated by deep neural networks. The Critics value function is trained by using the TD-error method and the Actor’s function by using DDPG. The Communication Actor’s neural network is trained through gradients received from partner agents. An environment in which a cooperative multi-agent interaction is present was developed, computer simulation of the application of this method in the control problem of two robots pursuing two goals was carried out.
Changes in the interaction of resting-state neural networks from adolescence to adulthood.
Stevens, Michael C; Pearlson, Godfrey D; Calhoun, Vince D
2009-08-01
This study examined how the mutual interactions of functionally integrated neural networks during resting-state fMRI differed between adolescence and adulthood. Independent component analysis (ICA) was used to identify functionally connected neural networks in 100 healthy participants aged 12-30 years. Hemodynamic timecourses that represented integrated neural network activity were analyzed with tools that quantified system "causal density" estimates, which indexed the proportion of significant Granger causality relationships among system nodes. Mutual influences among networks decreased with age, likely reflecting stronger within-network connectivity and more efficient between-network influences with greater development. Supplemental tests showed that this normative age-related reduction in causal density was accompanied by fewer significant connections to and from each network, regional increases in the strength of functional integration within networks, and age-related reductions in the strength of numerous specific system interactions. The latter included paths between lateral prefrontal-parietal circuits and "default mode" networks. These results contribute to an emerging understanding that activity in widely distributed networks thought to underlie complex cognition influences activity in other networks. (c) 2009 Wiley-Liss, Inc.
Long, Lijun; Zhao, Jun
2017-07-01
In this paper, the problem of adaptive neural output-feedback control is addressed for a class of multi-input multioutput (MIMO) switched uncertain nonlinear systems with unknown control gains. Neural networks (NNs) are used to approximate unknown nonlinear functions. In order to avoid the conservativeness caused by adoption of a common observer for all subsystems, an MIMO NN switched observer is designed to estimate unmeasurable states. A new switched observer-based adaptive neural control technique for the problem studied is then provided by exploiting the classical average dwell time (ADT) method and the backstepping method and the Nussbaum gain technique. It effectively handles the obstacle about the coexistence of multiple Nussbaum-type function terms, and improves the classical ADT method, since the exponential decline property of Lyapunov functions for individual subsystems is no longer satisfied. It is shown that the technique proposed is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop system under a class of switching signals with ADT, and the tracking errors converge to a small neighborhood of the origin. The effectiveness of the approach proposed is illustrated by its application to a two inverted pendulum system.
Neural network applications in telecommunications
NASA Technical Reports Server (NTRS)
Alspector, Joshua
1994-01-01
Neural network capabilities include automatic and organized handling of complex information, quick adaptation to continuously changing environments, nonlinear modeling, and parallel implementation. This viewgraph presentation presents Bellcore work on applications, learning chip computational function, learning system block diagram, neural network equalization, broadband access control, calling-card fraud detection, software reliability prediction, and conclusions.
In vitro effects of Epidiferphane™ on adult human neural progenitor cells
USDA-ARS?s Scientific Manuscript database
Neural stem cells have the capacity to respond to their environment, migrate to the injury site and generate functional cell types, and thus they hold great promise for cell therapies. In addition to representing a source for central nervous system (CNS) repair, neural stem and progenitor cells als...
Solving differential equations with unknown constitutive relations as recurrent neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.
We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learningmore » literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.« less
Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Kim, Hyungmin; Youn, Inchan
2017-12-21
Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.
Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Youn, Inchan
2017-01-01
Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time. PMID:29267230
Neural-Network Quantum States, String-Bond States, and Chiral Topological States
NASA Astrophysics Data System (ADS)
Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio
2018-01-01
Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.
Stress and sodium intake in neural control of renal function in hypertension.
DiBona, G F
1991-04-01
The interaction between genetic and environmental factors is important in the pathophysiology of hypertension. By examining the effects of two environmental factors--acute psychoemotional stress and dietary sodium intake--in rats with genetic hypertension, an important influence on central neural mechanisms governing the renal sympathetic neural control of renal function has been demonstrated. Additional studies of the central opioid systems have demonstrated an important role of opioid peptides in modulating the renal functional responses to acute psychoemotional stress. The observed renal functional alterations--antidiuresis, antinatriuresis, and renal vasoconstriction--are known to be capable of contributing to the initiation, development, and maintenance of the hypertensive process.
Neural network system for purposeful behavior based on foveal visual preprocessor
NASA Astrophysics Data System (ADS)
Golovan, Alexander V.; Shevtsova, Natalia A.; Klepatch, Arkadi A.
1996-10-01
Biologically plausible model of the system with an adaptive behavior in a priori environment and resistant to impairment has been developed. The system consists of input, learning, and output subsystems. The first subsystems classifies input patterns presented as n-dimensional vectors in accordance with some associative rule. The second one being a neural network determines adaptive responses of the system to input patterns. Arranged neural groups coding possible input patterns and appropriate output responses are formed during learning by means of negative reinforcement. Output subsystem maps a neural network activity into the system behavior in the environment. The system developed has been studied by computer simulation imitating a collision-free motion of a mobile robot. After some learning period the system 'moves' along a road without collisions. It is shown that in spite of impairment of some neural network elements the system functions reliably after relearning. Foveal visual preprocessor model developed earlier has been tested to form a kind of visual input to the system.
On the Computational Power of Spiking Neural P Systems with Self-Organization.
Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan
2016-06-10
Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun.
On the Computational Power of Spiking Neural P Systems with Self-Organization
Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan
2016-01-01
Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun. PMID:27283843
On the Computational Power of Spiking Neural P Systems with Self-Organization
NASA Astrophysics Data System (ADS)
Wang, Xun; Song, Tao; Gong, Faming; Zheng, Pan
2016-06-01
Neural-like computing models are versatile computing mechanisms in the field of artificial intelligence. Spiking neural P systems (SN P systems for short) are one of the recently developed spiking neural network models inspired by the way neurons communicate. The communications among neurons are essentially achieved by spikes, i. e. short electrical pulses. In terms of motivation, SN P systems fall into the third generation of neural network models. In this study, a novel variant of SN P systems, namely SN P systems with self-organization, is introduced, and the computational power of the system is investigated and evaluated. It is proved that SN P systems with self-organization are capable of computing and accept the family of sets of Turing computable natural numbers. Moreover, with 87 neurons the system can compute any Turing computable recursive function, thus achieves Turing universality. These results demonstrate promising initiatives to solve an open problem arisen by Gh Păun.
NASA Astrophysics Data System (ADS)
Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude
2010-02-01
Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.
Grill, W M; McDonald, J W; Peckham, P H; Heetderks, W; Kocsis, J; Weinrich, M
2001-01-01
The rapid pace of recent advances in development and application of electrical stimulation of the nervous system and in neural regeneration has created opportunities to combine these two approaches to restoration of function. This paper relates the discussion on this topic from a workshop at the International Functional Electrical Stimulation Society. The goals of this workshop were to discuss the current state of interaction between the fields of neural regeneration and neural prostheses and to identify potential areas of future research that would have the greatest impact on achieving the common goal of restoring function after neurological damage. Identified areas include enhancement of axonal regeneration with applied electric fields, development of hybrid neural interfaces combining synthetic silicon and biologically derived elements, and investigation of the role of patterned neural activity in regulating various neuronal processes and neurorehabilitation. Increased communication and cooperation between the two communities and recognition by each field that the other has something to contribute to their efforts are needed to take advantage of these opportunities. In addition, creative grants combining the two approaches and more flexible funding mechanisms to support the convergence of their perspectives are necessary to achieve common objectives.
Sengupta, Abhronil; Shim, Yong; Roy, Kaushik
2016-12-01
Non-Boolean computing based on emerging post-CMOS technologies can potentially pave the way for low-power neural computing platforms. However, existing work on such emerging neuromorphic architectures have either focused on solely mimicking the neuron, or the synapse functionality. While memristive devices have been proposed to emulate biological synapses, spintronic devices have proved to be efficient at performing the thresholding operation of the neuron at ultra-low currents. In this work, we propose an All-Spin Artificial Neural Network where a single spintronic device acts as the basic building block of the system. The device offers a direct mapping to synapse and neuron functionalities in the brain while inter-layer network communication is accomplished via CMOS transistors. To the best of our knowledge, this is the first demonstration of a neural architecture where a single nanoelectronic device is able to mimic both neurons and synapses. The ultra-low voltage operation of low resistance magneto-metallic neurons enables the low-voltage operation of the array of spintronic synapses, thereby leading to ultra-low power neural architectures. Device-level simulations, calibrated to experimental results, was used to drive the circuit and system level simulations of the neural network for a standard pattern recognition problem. Simulation studies indicate energy savings by ∼ 100× in comparison to a corresponding digital/analog CMOS neuron implementation.
Retinoic acid regulates size, pattern and alignment of tissues at the head-trunk transition.
Lee, Keun; Skromne, Isaac
2014-11-01
At the head-trunk transition, hindbrain and spinal cord alignment to occipital and vertebral bones is crucial for coherent neural and skeletal system organization. Changes in neural or mesodermal tissue configuration arising from defects in the specification, patterning or relative axial placement of territories can severely compromise their integration and function. Here, we show that coordination of neural and mesodermal tissue at the zebrafish head-trunk transition crucially depends on two novel activities of the signaling factor retinoic acid (RA): one specifying the size and the other specifying the axial position relative to mesodermal structures of the hindbrain territory. These activities are each independent but coordinated with the well-established function of RA in hindbrain patterning. Using neural and mesodermal landmarks we demonstrate that the functions of RA in aligning neural and mesodermal tissues temporally precede the specification of hindbrain and spinal cord territories and the activation of hox transcription. Using cell transplantation assays we show that RA activity in the neuroepithelium regulates hindbrain patterning directly and territory size specification indirectly. This indirect function is partially dependent on Wnts but independent of FGFs. Importantly, RA specifies and patterns the hindbrain territory by antagonizing the activity of the spinal cord specification gene cdx4; loss of Cdx4 rescues the defects associated with the loss of RA, including the reduction in hindbrain size and the loss of posterior rhombomeres. We propose that at the head-trunk transition, RA coordinates specification, patterning and alignment of neural and mesodermal tissues that are essential for the organization and function of the neural and skeletal systems. © 2014. Published by The Company of Biologists Ltd.
Neural correlates of executive functions in patients with obesity.
Ho, Ming-Chou; Chen, Vincent Chin-Hung; Chao, Seh-Huang; Fang, Ching-Tzu; Liu, Yi-Chun; Weng, Jun-Cheng
2018-01-01
Obesity is one of the most challenging problems in human health and is recognized as an important risk factor for many chronic diseases. It remains unclear how the neural systems (e.g., the mesolimbic "reward" and the prefrontal "control" neural systems) are correlated with patients' executive function (EF), conceptualized as the integration of "cool" EF and "hot" EF. "Cool" EF refers to relatively abstract, non-affective operations such as inhibitory control and mental flexibility. "Hot" EF refers to motivationally significant affective operations such as affective decision-making. We tried to find the correlation between structural and functional neuroimaging indices and EF in obese patients. The study population comprised seventeen patients with obesity (seven males and 10 females, BMI = 37.99 ± 5.40, age = 31.82 ± 8.75 year-old) preparing to undergo bariatric surgery. We used noninvasive diffusion tensor imaging, generalized q-sampling imaging, and resting-state functional magnetic resonance imaging to examine the neural correlations between structural and functional neuroimaging indices and EF performances in patients with obesity. We reported that many brain areas are correlated to the patients' EF performances. More interestingly, some correlations may implicate the possible associations of EF and the incentive motivational effects of food. The neural correlation between the left precuneus and middle occipital gyrus and inhibitory control may suggest that patients with a better ability to detect appetitive food may have worse inhibitory control. Also, the neural correlation between the superior frontal blade and affective decision-making may suggest that patients' affective decision-making may be associated with the incentive motivational effects of food. Our results provide evidence suggesting neural correlates of EF in patients with obesity.
Should I stay or should I go? Cadherin function and regulation in the neural crest
Taneyhill, Lisa A.; Schiffmacher, Andrew T.
2017-01-01
Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial-to-mesenchymal-transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest. PMID:28253541
Neuropeptides in Lower Urinary Tract (LUT) Function
Arms, Lauren; Vizzard, Margaret A.
2014-01-01
Numerous neuropeptide/receptor systems including vasoactive intestinal polypeptide, pituitary adenylate cyclase-activating polypeptide, calcitonin gene-related peptide, substance P, neurokinin A, bradykinin, and endothelin-1 are expressed in the lower urinary tract (LUT) in both neural and non-neural (e.g., urothelium) components. LUT neuropeptide immunoreactivity is present in afferent and autonomic efferent neurons innervating the bladder and urethra and in the urothelium of the urinary bladder. Neuropeptides have tissue-specific distributions and functions in the LUT and exhibit neuroplastic changes in expression and function with LUT dysfunction following neural injury, inflammation and disease. LUT dysfunction with abnormal voiding including urinary urgency, increased voiding frequency, nocturia, urinary incontinence and pain may reflect a change in the balance of neuropeptides in bladder reflex pathways. LUT neuropeptide/receptor systems may represent potential targets for therapeutic intervention. PMID:21290237
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2009-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Marshall, Najja; Timme, Nicholas M.; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M.
2016-01-01
Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of “neural avalanches” (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods—power-law fitting, avalanche shape collapse, and neural complexity—have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox. PMID:27445842
Marshall, Najja; Timme, Nicholas M; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M
2016-01-01
Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of "neural avalanches" (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods-power-law fitting, avalanche shape collapse, and neural complexity-have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox.
The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.
Liu, Xilin; Zhang, Milin; Subei, Basheer; Richardson, Andrew G; Lucas, Timothy H; Van der Spiegel, Jan
2015-04-01
In this paper, a general purpose wireless Brain-Machine-Brain Interface (BMBI) system is presented. The system integrates four battery-powered wireless devices for the implementation of a closed-loop sensorimotor neural interface, including a neural signal analyzer, a neural stimulator, a body-area sensor node and a graphic user interface implemented on the PC end. The neural signal analyzer features a four channel analog front-end with configurable bandpass filter, gain stage, digitization resolution, and sampling rate. The target frequency band is configurable from EEG to single unit activity. A noise floor of 4.69 μVrms is achieved over a bandwidth from 0.05 Hz to 6 kHz. Digital filtering, neural feature extraction, spike detection, sensing-stimulating modulation, and compressed sensing measurement are realized in a central processing unit integrated in the analyzer. A flash memory card is also integrated in the analyzer. A 2-channel neural stimulator with a compliance voltage up to ± 12 V is included. The stimulator is capable of delivering unipolar or bipolar, charge-balanced current pulses with programmable pulse shape, amplitude, width, pulse train frequency and latency. A multi-functional sensor node, including an accelerometer, a temperature sensor, a flexiforce sensor and a general sensor extension port has been designed. A computer interface is designed to monitor, control and configure all aforementioned devices via a wireless link, according to a custom designed communication protocol. Wireless closed-loop operation between the sensory devices, neural stimulator, and neural signal analyzer can be configured. The proposed system was designed to link two sites in the brain, bridging the brain and external hardware, as well as creating new sensory and motor pathways for clinical practice. Bench test and in vivo experiments are performed to verify the functions and performances of the system.
Liu, Zongcheng; Dong, Xinmin; Xue, Jianping; Li, Hongbo; Chen, Yong
2016-09-01
This brief addresses the adaptive control problem for a class of pure-feedback systems with nonaffine functions possibly being nondifferentiable. Without using the mean value theorem, the difficulty of the control design for pure-feedback systems is overcome by modeling the nonaffine functions appropriately. With the help of neural network approximators, an adaptive neural controller is developed by combining the dynamic surface control (DSC) and minimal learning parameter (MLP) techniques. The key features of our approach are that, first, the restrictive assumptions on the partial derivative of nonaffine functions are removed, second, the DSC technique is used to avoid "the explosion of complexity" in the backstepping design, and the number of adaptive parameters is reduced significantly using the MLP technique, third, smooth robust compensators are employed to circumvent the influences of approximation errors and disturbances. Furthermore, it is proved that all the signals in the closed-loop system are semiglobal uniformly ultimately bounded. Finally, the simulation results are provided to demonstrate the effectiveness of the designed method.
Appraisal Psychology, Neurobiology, and Language.
ERIC Educational Resources Information Center
Schumann, John H.
2001-01-01
Proposes that the confluence of stimulus appraisal and social cognition that is effected by the neural system in the brain has important implications for language and learning theories. Describes the anatomy and functions of this neural system and discusses how it may operate in motivation for second language acquisition and how in conjunction…
Liu, Derong; Wang, Ding; Wang, Fei-Yue; Li, Hongliang; Yang, Xiong
2014-12-01
In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach.
Hardware Neural Network for a Visual Inspection System
NASA Astrophysics Data System (ADS)
Chun, Seungwoo; Hayakawa, Yoshihiro; Nakajima, Koji
The visual inspection of defects in products is heavily dependent on human experience and instinct. In this situation, it is difficult to reduce the production costs and to shorten the inspection time and hence the total process time. Consequently people involved in this area desire an automatic inspection system. In this paper, we propose a hardware neural network, which is expected to provide high-speed operation for automatic inspection of products. Since neural networks can learn, this is a suitable method for self-adjustment of criteria for classification. To achieve high-speed operation, we use parallel and pipelining techniques. Furthermore, we use a piecewise linear function instead of a conventional activation function in order to save hardware resources. Consequently, our proposed hardware neural network achieved 6GCPS and 2GCUPS, which in our test sample proved to be sufficiently fast.
From neural-based object recognition toward microelectronic eyes
NASA Technical Reports Server (NTRS)
Sheu, Bing J.; Bang, Sa Hyun
1994-01-01
Engineering neural network systems are best known for their abilities to adapt to the changing characteristics of the surrounding environment by adjusting system parameter values during the learning process. Rapid advances in analog current-mode design techniques have made possible the implementation of major neural network functions in custom VLSI chips. An electrically programmable analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of the synapse cells, neurons, and analog processor are presented. A synapse cell based on Gilbert multiplier structure can perform the linear multiplication for back-propagation networks. A double differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold region for low-power operation. The voltage gain of the sigmoid-function neurons is externally adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building blocks can be intelligently connected to form useful industrial applications. Efficient data communication is a key system-level design issue for large-scale networks. We also present analog neural processors based on perceptron architecture and Hopfield network for communication applications. Biologically inspired neural networks have played an important role towards the creation of powerful intelligent machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically inspired vision processing chips and cellular neural network chips are key design issues.
Computing single step operators of logic programming in radial basis function neural networks
NASA Astrophysics Data System (ADS)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
2014-07-01
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.
Neural network L1 adaptive control of MIMO systems with nonlinear uncertainty.
Zhen, Hong-tao; Qi, Xiao-hui; Li, Jie; Tian, Qing-min
2014-01-01
An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of an L 1 adaptive controller and an auxiliary neural network (NN) compensation controller. The L 1 adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.
A Two-Hit Model of Autism: Adolescence as the Second Hit
Picci, Giorgia; Scherf, K. Suzanne
2015-01-01
Adolescence brings dramatic changes in behavior and neural organization. Unfortunately, for some 30% of individuals with autism, there is marked decline in adaptive functioning during adolescence. We propose a two-hit model of autism. First, early perturbations in neural development function as a “first hit” that sets up a neural system that is “built to fail” in the face of a second hit. Second, the confluence of pubertal hormones, neural reorganization, and increasing social demands during adolescence provides the “second hit” that interferes with the ability to transition into adult social roles and levels of adaptive functioning. In support of this model, we review evidence about adolescent-specific neural and behavioral development in autism. We conclude with predictions and recommendations for empirical investigation about several domains in which developmental trajectories for individuals with autism may be uniquely deterred in adolescence. PMID:26609500
Music enrichment programs improve the neural encoding of speech in at-risk children.
Kraus, Nina; Slater, Jessica; Thompson, Elaine C; Hornickel, Jane; Strait, Dana L; Nicol, Trent; White-Schwoch, Travis
2014-09-03
Musicians are often reported to have enhanced neurophysiological functions, especially in the auditory system. Musical training is thought to improve nervous system function by focusing attention on meaningful acoustic cues, and these improvements in auditory processing cascade to language and cognitive skills. Correlational studies have reported musician enhancements in a variety of populations across the life span. In light of these reports, educators are considering the potential for co-curricular music programs to provide auditory-cognitive enrichment to children during critical developmental years. To date, however, no studies have evaluated biological changes following participation in existing, successful music education programs. We used a randomized control design to investigate whether community music participation induces a tangible change in auditory processing. The community music training was a longstanding and successful program that provides free music instruction to children from underserved backgrounds who stand at high risk for learning and social problems. Children who completed 2 years of music training had a stronger neurophysiological distinction of stop consonants, a neural mechanism linked to reading and language skills. One year of training was insufficient to elicit changes in nervous system function; beyond 1 year, however, greater amounts of instrumental music training were associated with larger gains in neural processing. We therefore provide the first direct evidence that community music programs enhance the neural processing of speech in at-risk children, suggesting that active and repeated engagement with sound changes neural function. Copyright © 2014 the authors 0270-6474/14/3411913-06$15.00/0.
NASA Astrophysics Data System (ADS)
Oliveira, José J.
2017-10-01
In this paper, we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations.
Fuzzy-Neural Controller in Service Requests Distribution Broker for SOA-Based Systems
NASA Astrophysics Data System (ADS)
Fras, Mariusz; Zatwarnicka, Anna; Zatwarnicki, Krzysztof
The evolution of software architectures led to the rising importance of the Service Oriented Architecture (SOA) concept. This architecture paradigm support building flexible distributed service systems. In the paper the architecture of service request distribution broker designed for use in SOA-based systems is proposed. The broker is built with idea of fuzzy control. The functional and non-functional request requirements in conjunction with monitoring of execution and communication links are used to distribute requests. Decisions are made with use of fuzzy-neural network.
Local synchronization of chaotic neural networks with sampled-data and saturating actuators.
Wu, Zheng-Guang; Shi, Peng; Su, Hongye; Chu, Jian
2014-12-01
This paper investigates the problem of local synchronization of chaotic neural networks with sampled-data and actuator saturation. A new time-dependent Lyapunov functional is proposed for the synchronization error systems. The advantage of the constructed Lyapunov functional lies in the fact that it is positive definite at sampling times but not necessarily between sampling times, and makes full use of the available information about the actual sampling pattern. A local stability condition of the synchronization error systems is derived, based on which a sampled-data controller with respect to the actuator saturation is designed to ensure that the master neural networks and slave neural networks are locally asymptotically synchronous. Two optimization problems are provided to compute the desired sampled-data controller with the aim of enlarging the set of admissible initial conditions or the admissible sampling upper bound ensuring the local synchronization of the considered chaotic neural networks. A numerical example is used to demonstrate the effectiveness of the proposed design technique.
Robustness analysis of uncertain dynamical neural networks with multiple time delays.
Senan, Sibel
2015-10-01
This paper studies the problem of global robust asymptotic stability of the equilibrium point for the class of dynamical neural networks with multiple time delays with respect to the class of slope-bounded activation functions and in the presence of the uncertainties of system parameters of the considered neural network model. By using an appropriate Lyapunov functional and exploiting the properties of the homeomorphism mapping theorem, we derive a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of neural networks with multiple time delays. The obtained stability condition basically relies on testing some relationships imposed on the interconnection matrices of the neural system, which can be easily verified by using some certain properties of matrices. An instructive numerical example is also given to illustrate the applicability of our result and show the advantages of this new condition over the previously reported corresponding results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yamazaki, Kazuto; Fukushima, Kazuyuki; Sugawara, Michiko; Tabata, Yoshikuni; Imaizumi, Yoichi; Ishihara, Yasuharu; Ito, Masashi; Tsukahara, Kappei; Kohyama, Jun; Okano, Hideyuki
2016-12-01
Because neurons are difficult to obtain from humans, generating functional neurons from human induced pluripotent stem cells (hiPSCs) is important for establishing physiological or disease-relevant screening systems for drug discovery. To examine the culture conditions leading to efficient differentiation of functional neural cells, we investigated the effects of oxygen stress (2% or 20% O 2 ) and differentiation medium (DMEM/F12:Neurobasal-based [DN] or commercial [PhoenixSongs Biologicals; PS]) on the expression of genes related to neural differentiation, glutamate receptor function, and the formation of networks of neurons differentiated from hiPSCs (201B7) via long-term self-renewing neuroepithelial-like stem (lt-NES) cells. Expression of genes related to neural differentiation occurred more quickly in PS and/or 2% O 2 than in DN and/or 20% O 2 , resulting in high responsiveness of neural cells to glutamate, N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and ( S)-3,5-dihydroxyphenylglycine (an agonist for mGluR 1/5 ), as revealed by calcium imaging assays. NMDA receptors, AMPA receptors, mGluR 1 , and mGluR 5 were functionally validated by using the specific antagonists MK-801, NBQX, JNJ16259685, and 2-methyl-6-(phenylethynyl)-pyridine, respectively. Multielectrode array analysis showed that spontaneous firing occurred earlier in cells cultured in 2% O 2 than in 20% O 2 . Optimization of O 2 tension and culture medium for neural differentiation of hiPSCs can efficiently generate physiologically relevant cells for screening systems.
Simplified and Yet Turing Universal Spiking Neural P Systems with Communication on Request.
Wu, Tingfang; Bîlbîe, Florin-Daniel; Păun, Andrei; Pan, Linqiang; Neri, Ferrante
2018-04-02
Spiking neural P systems are a class of third generation neural networks belonging to the framework of membrane computing. Spiking neural P systems with communication on request (SNQ P systems) are a type of spiking neural P system where the spikes are requested from neighboring neurons. SNQ P systems have previously been proved to be universal (computationally equivalent to Turing machines) when two types of spikes are considered. This paper studies a simplified version of SNQ P systems, i.e. SNQ P systems with one type of spike. It is proved that one type of spike is enough to guarantee the Turing universality of SNQ P systems. Theoretical results are shown in the cases of the SNQ P system used in both generating and accepting modes. Furthermore, the influence of the number of unbounded neurons (the number of spikes in a neuron is not bounded) on the computation power of SNQ P systems with one type of spike is investigated. It is found that SNQ P systems functioning as number generating devices with one type of spike and four unbounded neurons are Turing universal.
NASA Astrophysics Data System (ADS)
Fan, Meng; Ye, Dan
2005-09-01
This paper studies the dynamics of a system of retarded functional differential equations (i.e., RF=Es), which generalize the Hopfield neural network models, the bidirectional associative memory neural networks, the hybrid network models of the cellular neural network type, and some population growth model. Sufficient criteria are established for the globally exponential stability and the existence and uniqueness of pseudo almost periodic solution. The approaches are based on constructing suitable Lyapunov functionals and the well-known Banach contraction mapping principle. The paper ends with some applications of the main results to some neural network models and population growth models and numerical simulations.
Feature to prototype transition in neural networks
NASA Astrophysics Data System (ADS)
Krotov, Dmitry; Hopfield, John
Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.
Neural Alterations in Acquired Age-Related Hearing Loss
Mudar, Raksha A.; Husain, Fatima T.
2016-01-01
Hearing loss is one of the most prevalent chronic health conditions in older adults. Growing evidence suggests that hearing loss is associated with reduced cognitive functioning and incident dementia. In this mini-review, we briefly examine literature on anatomical and functional alterations in the brains of adults with acquired age-associated hearing loss, which may underlie the cognitive consequences observed in this population, focusing on studies that have used structural and functional magnetic resonance imaging, diffusion tensor imaging, and event-related electroencephalography. We discuss structural and functional alterations observed in the temporal and frontal cortices and the limbic system. These neural alterations are discussed in the context of common cause, information-degradation, and sensory-deprivation hypotheses, and we suggest possible rehabilitation strategies. Although, we are beginning to learn more about changes in neural architecture and functionality related to age-associated hearing loss, much work remains to be done. Understanding the neural alterations will provide objective markers for early identification of neural consequences of age-associated hearing loss and for evaluating benefits of intervention approaches. PMID:27313556
Greenwald, Elliot; Masters, Matthew R; Thakor, Nitish V
2016-01-01
A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very large-scale integration has advanced the design of complex integrated circuits. System-on-chip devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems.
Bidirectional Neural Interfaces
Masters, Matthew R.; Thakor, Nitish V.
2016-01-01
A bidirectional neural interface is a device that transfers information into and out of the nervous system. This class of devices has potential to improve treatment and therapy in several patient populations. Progress in very-large-scale integration (VLSI) has advanced the design of complex integrated circuits. System-on-chip (SoC) devices are capable of recording neural electrical activity and altering natural activity with electrical stimulation. Often, these devices include wireless powering and telemetry functions. This review presents the state of the art of bidirectional circuits as applied to neuroprosthetic, neurorepair, and neurotherapeutic systems. PMID:26753776
Command and control interfaces for advanced neuroprosthetic applications.
Scott, T R; Haugland, M
2001-10-01
Command and control interfaces permit the intention and situation of the user to influence the operation of the neural prosthesis. The wishes of the user are communicated via command interfaces to the neural prosthesis and the situation of the user by feedback control interfaces. Both these interfaces have been reviewed separately and are discussed in light of the current state of the art and projections for the future. It is apparent that as system functional complexity increases, the need for simpler command interfaces will increase. Such systems will demand more information to function effectively in order not to unreasonably increase user attention overhead. This will increase the need for bioelectric and biomechanical signals in a comprehensible form via elegant feedback control interfaces. Implementing such systems will also increase the computational demand on such neural prostheses.
Post interaural neural net-based vowel recognition
NASA Astrophysics Data System (ADS)
Jouny, Ismail I.
2001-10-01
Interaural head related transfer functions are used to process speech signatures prior to neural net based recognition. Data representing the head related transfer function of a dummy has been collected at MIT and made available on the Internet. This data is used to pre-process vowel signatures to mimic the effects of human ear on speech perception. Signatures representing various vowels of the English language are then presented to a multi-layer perceptron trained using the back propagation algorithm for recognition purposes. The focus in this paper is to assess the effects of human interaural system on vowel recognition performance particularly when using a classification system that mimics the human brain such as a neural net.
Chien, Yi-Hsing; Wang, Wei-Yen; Leu, Yih-Guang; Lee, Tsu-Tian
2011-04-01
This paper proposes a novel method of online modeling and control via the Takagi-Sugeno (T-S) fuzzy-neural model for a class of uncertain nonlinear systems with some kinds of outputs. Although studies about adaptive T-S fuzzy-neural controllers have been made on some nonaffine nonlinear systems, little is known about the more complicated uncertain nonlinear systems. Because the nonlinear functions of the systems are uncertain, traditional T-S fuzzy control methods can model and control them only with great difficulty, if at all. Instead of modeling these uncertain functions directly, we propose that a T-S fuzzy-neural model approximates a so-called virtual linearized system (VLS) of the system, which includes modeling errors and external disturbances. We also propose an online identification algorithm for the VLS and put significant emphasis on robust tracking controller design using an adaptive scheme for the uncertain systems. Moreover, the stability of the closed-loop systems is proven by using strictly positive real Lyapunov theory. The proposed overall scheme guarantees that the outputs of the closed-loop systems asymptotically track the desired output trajectories. To illustrate the effectiveness and applicability of the proposed method, simulation results are given in this paper.
Lin, Chuan-Kai; Wang, Sheng-De
2004-11-01
A new autopilot design for bank-to-turn (BTT) missiles is presented. In the design of autopilot, a ridge Gaussian neural network with local learning capability and fewer tuning parameters than Gaussian neural networks is proposed to model the controlled nonlinear systems. We prove that the proposed ridge Gaussian neural network, which can be a universal approximator, equals the expansions of rotated and scaled Gaussian functions. Although ridge Gaussian neural networks can approximate the nonlinear and complex systems accurately, the small approximation errors may affect the tracking performance significantly. Therefore, by employing the Hinfinity control theory, it is easy to attenuate the effects of the approximation errors of the ridge Gaussian neural networks to a prescribed level. Computer simulation results confirm the effectiveness of the proposed ridge Gaussian neural networks-based autopilot with Hinfinity stabilization.
Neural networks for feedback feedforward nonlinear control systems.
Parisini, T; Zoppoli, R
1994-01-01
This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.
Method and system for pattern analysis using a coarse-coded neural network
NASA Technical Reports Server (NTRS)
Spirkovska, Liljana (Inventor); Reid, Max B. (Inventor)
1994-01-01
A method and system for performing pattern analysis with a neural network coarse-coding a pattern to be analyzed so as to form a plurality of sub-patterns collectively defined by data. Each of the sub-patterns comprises sets of pattern data. The neural network includes a plurality fields, each field being associated with one of the sub-patterns so as to receive the sub-pattern data therefrom. Training and testing by the neural network then proceeds in the usual way, with one modification: the transfer function thresholds the value obtained from summing the weighted products of each field over all sub-patterns associated with each pattern being analyzed by the system.
ERIC Educational Resources Information Center
Posner, Michael I.
This paper reviews the aspects of cognitive science that relate best to using electrical and magnetic recording to understand the function of brain systems. It outlines a framework for relating cognitive activities of daily life (typing, reading) to underlying neural systems. The framework uses five levels of analysis: task, elementary operations,…
Neural systems for speech and song in autism
Pantazatos, Spiro P.; Schneider, Harry
2012-01-01
Despite language disabilities in autism, music abilities are frequently preserved. Paradoxically, brain regions associated with these functions typically overlap, enabling investigation of neural organization supporting speech and song in autism. Neural systems sensitive to speech and song were compared in low-functioning autistic and age-matched control children using passive auditory stimulation during functional magnetic resonance and diffusion tensor imaging. Activation in left inferior frontal gyrus was reduced in autistic children relative to controls during speech stimulation, but was greater than controls during song stimulation. Functional connectivity for song relative to speech was also increased between left inferior frontal gyrus and superior temporal gyrus in autism, and large-scale connectivity showed increased frontal–posterior connections. Although fractional anisotropy of the left arcuate fasciculus was decreased in autistic children relative to controls, structural terminations of the arcuate fasciculus in inferior frontal gyrus were indistinguishable between autistic and control groups. Fractional anisotropy correlated with activity in left inferior frontal gyrus for both speech and song conditions. Together, these findings indicate that in autism, functional systems that process speech and song were more effectively engaged for song than for speech and projections of structural pathways associated with these functions were not distinguishable from controls. PMID:22298195
Neural network-based model reference adaptive control system.
Patino, H D; Liu, D
2000-01-01
In this paper, an approach to model reference adaptive control based on neural networks is proposed and analyzed for a class of first-order continuous-time nonlinear dynamical systems. The controller structure can employ either a radial basis function network or a feedforward neural network to compensate adaptively the nonlinearities in the plant. A stable controller-parameter adjustment mechanism, which is determined using the Lyapunov theory, is constructed using a sigma-modification-type updating law. The evaluation of control error in terms of the neural network learning error is performed. That is, the control error converges asymptotically to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the neural network. In the design and analysis of neural network-based control systems, it is important to take into account the neural network learning error and its influence on the control error of the plant. Simulation results showing the feasibility and performance of the proposed approach are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason L. Wright; Milos Manic
Finding and identifying cryptography is a growing concern in the malware analysis community. In this paper, artificial neural networks are used to classify functional blocks from a disassembled program as being either cryptography related or not. The resulting system, referred to as NNLC (Neural Net for Locating Cryptography) is presented and results of applying this system to various libraries are described.
Neural network based automatic limit prediction and avoidance system and method
NASA Technical Reports Server (NTRS)
Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)
2001-01-01
A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.
Embedding recurrent neural networks into predator-prey models.
Moreau, Yves; Louiès, Stephane; Vandewalle, Joos; Brenig, Leon
1999-03-01
We study changes of coordinates that allow the embedding of ordinary differential equations describing continuous-time recurrent neural networks into differential equations describing predator-prey models-also called Lotka-Volterra systems. We transform the equations for the neural network first into quasi-monomial form (Brenig, L. (1988). Complete factorization and analytic solutions of generalized Lotka-Volterra equations. Physics Letters A, 133(7-8), 378-382), where we express the vector field of the dynamical system as a linear combination of products of powers of the variables. In practice, this transformation is possible only if the activation function is the hyperbolic tangent or the logistic sigmoid. From this quasi-monomial form, we can directly transform the system further into Lotka-Volterra equations. The resulting Lotka-Volterra system is of higher dimension than the original system, but the behavior of its first variables is equivalent to the behavior of the original neural network. We expect that this transformation will permit the application of existing techniques for the analysis of Lotka-Volterra systems to recurrent neural networks. Furthermore, our results show that Lotka-Volterra systems are universal approximators of dynamical systems, just as are continuous-time neural networks.
Conducting Polymers for Neural Prosthetic and Neural Interface Applications
2015-01-01
Neural interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural activity, the regeneration of neural tissue and the delivery of bioactive molecules for mediating device-tissue interactions. CPs form a flexible platform technology that enables the development of tailored materials for a range of neuronal diagnostic and treatment therapies. In this review the application of CPs for neural prostheses and other neural interfacing devices are discussed, with a specific focus on neural recording, neural stimulation, neural regeneration, and therapeutic drug delivery. PMID:26414302
Neurobiological correlates of social functioning in autism.
Neuhaus, Emily; Beauchaine, Theodore P; Bernier, Raphael
2010-08-01
Although autism is defined by deficits in three areas of functioning (social, communicative, and behavioral), impairments in social interest and restricted behavioral repertoires are central to the disorder. As a result, a detailed understanding of the neurobiological systems subserving social behavior may have implications for prevention, early identification, and intervention for affected families. In this paper, we review a number of potential neurobiological mechanisms--across several levels of analysis--that subserve normative social functioning. These include neural networks, neurotransmitters, and hormone systems. After describing the typical functioning of each system, we review available empirical findings specific to autism. Among the most promising potential mechanisms of social behavioral deficits in autism are those involving neural networks including the amygdala, the mesocorticolimbic dopamine system, and the oxytocin system. Particularly compelling are explanatory models that integrate mechanisms across biological systems, such as those linking dopamine and oxytocin with brain regions critical to reward processing. Copyright 2010 Elsevier Ltd. All rights reserved.
Modeling fluctuations in default-mode brain network using a spiking neural network.
Yamanishi, Teruya; Liu, Jian-Qin; Nishimura, Haruhiko
2012-08-01
Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range.
Biological Basis For Computer Vision: Some Perspectives
NASA Astrophysics Data System (ADS)
Gupta, Madan M.
1990-03-01
Using biology as a basis for the development of sensors, devices and computer vision systems is a challenge to systems and vision scientists. It is also a field of promising research for engineering applications. Biological sensory systems, such as vision, touch and hearing, sense different physical phenomena from our environment, yet they possess some common mathematical functions. These mathematical functions are cast into the neural layers which are distributed throughout our sensory regions, sensory information transmission channels and in the cortex, the centre of perception. In this paper, we are concerned with the study of the biological vision system and the emulation of some of its mathematical functions, both retinal and visual cortex, for the development of a robust computer vision system. This field of research is not only intriguing, but offers a great challenge to systems scientists in the development of functional algorithms. These functional algorithms can be generalized for further studies in such fields as signal processing, control systems and image processing. Our studies are heavily dependent on the the use of fuzzy - neural layers and generalized receptive fields. Building blocks of such neural layers and receptive fields may lead to the design of better sensors and better computer vision systems. It is hoped that these studies will lead to the development of better artificial vision systems with various applications to vision prosthesis for the blind, robotic vision, medical imaging, medical sensors, industrial automation, remote sensing, space stations and ocean exploration.
Three-dimensional hydrogel cell culture systems for modeling neural tissue
NASA Astrophysics Data System (ADS)
Frampton, John
Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was designed for use as a tool to predict the transport and processing that occurs prior to drug uptake in the central nervous system (CNS), and to predict BBB permeability. Electrochemical techniques and immunohistochemistry were used to validate this model and provide detailed information about cellular organization and function. Electrochemical impedance spectroscopy (EIS) provided evidence that endothelial cells cultured in the presence of astrocytes formed tight junctions capable of occluding the flow of electrical current. In a second series of experiments, a microglia-astrocyte co-culture system was developed to assess the effects of glial cells on electrode impedance recorded from neural prosthetic devices in vitro. Impedance measurements were compared with confocal images to determine the effects of glial cell density and cell type on electrode performance. The results indicate that EIS data can be used to model components of the reactive cell responses in brain tissue, and that impedance measurements recorded in vitro can be compared to measurements recorded in vivo. Taken together, these results demonstrate that alginate hydrogels can be used for the creation of 3-D neural cell scaffolds, and that such cell scaffolds can be used to model a variety of three-dimensional neural tissues in vitro, that cannot be studied in 2-D cultures.
Image texture segmentation using a neural network
NASA Astrophysics Data System (ADS)
Sayeh, Mohammed R.; Athinarayanan, Ragu; Dhali, Pushpuak
1992-09-01
In this paper we use a neural network called the Lyapunov associative memory (LYAM) system to segment image texture into different categories or clusters. The LYAM system is constructed by a set of ordinary differential equations which are simulated on a digital computer. The clustering can be achieved by using a single tuning parameter in the simplest model. Pattern classes are represented by the stable equilibrium states of the system. Design of the system is based on synthesizing two local energy functions, namely, the learning and recall energy functions. Before the implementation of the segmentation process, a Gauss-Markov random field (GMRF) model is applied to the raw image. This application suitably reduces the image data and prepares the texture information for the neural network process. We give a simple image example illustrating the capability of the technique. The GMRF-generated features are also used for a clustering, based on the Euclidean distance.
Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar.
Lomp, Oliver; Richter, Mathis; Zibner, Stephan K U; Schöner, Gregor
2016-01-01
Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar , which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs.
Developing Dynamic Field Theory Architectures for Embodied Cognitive Systems with cedar
Lomp, Oliver; Richter, Mathis; Zibner, Stephan K. U.; Schöner, Gregor
2016-01-01
Embodied artificial cognitive systems, such as autonomous robots or intelligent observers, connect cognitive processes to sensory and effector systems in real time. Prime candidates for such embodied intelligence are neurally inspired architectures. While components such as forward neural networks are well established, designing pervasively autonomous neural architectures remains a challenge. This includes the problem of tuning the parameters of such architectures so that they deliver specified functionality under variable environmental conditions and retain these functions as the architectures are expanded. The scaling and autonomy problems are solved, in part, by dynamic field theory (DFT), a theoretical framework for the neural grounding of sensorimotor and cognitive processes. In this paper, we address how to efficiently build DFT architectures that control embodied agents and how to tune their parameters so that the desired cognitive functions emerge while such agents are situated in real environments. In DFT architectures, dynamic neural fields or nodes are assigned dynamic regimes, that is, attractor states and their instabilities, from which cognitive function emerges. Tuning thus amounts to determining values of the dynamic parameters for which the components of a DFT architecture are in the specified dynamic regime under the appropriate environmental conditions. The process of tuning is facilitated by the software framework cedar, which provides a graphical interface to build and execute DFT architectures. It enables to change dynamic parameters online and visualize the activation states of any component while the agent is receiving sensory inputs in real time. Using a simple example, we take the reader through the workflow of conceiving of DFT architectures, implementing them on embodied agents, tuning their parameters, and assessing performance while the system is coupled to real sensory inputs. PMID:27853431
Deconstructing Memory in Drosophila
Margulies, Carla; Tully, Tim; Dubnau, Josh
2011-01-01
Unlike most organ systems, which have evolved to maintain homeostasis, the brain has been selected to sense and adapt to environmental stimuli by constantly altering interactions in a gene network that functions within a larger neural network. This unique feature of the central nervous system provides a remarkable plasticity of behavior, but also makes experimental investigations challenging. Each experimental intervention ramifies through both gene and neural networks, resulting in unpredicted and sometimes confusing phenotypic adaptations. Experimental dissection of mechanisms underlying behavioral plasticity ultimately must accomplish an integration across many levels of biological organization, including genetic pathways acting within individual neurons, neural network interactions which feed back to gene function, and phenotypic observations at the behavioral level. This dissection will be more easily accomplished for model systems such as Drosophila, which, compared with mammals, have relatively simple and manipulable nervous systems and genomes. The evolutionary conservation of behavioral phenotype and the underlying gene function ensures that much of what we learn in such model systems will be relevant to human cognition. In this essay, we have not attempted to review the entire Drosophila memory field. Instead, we have tried to discuss particular findings that provide some level of intellectual synthesis across three levels of biological organization: behavior, neural circuitry and biochemical pathways. We have attempted to use this integrative approach to evaluate distinct mechanistic hypotheses, and to propose critical experiments that will advance this field. PMID:16139203
The Effects of Spaceflight on Neurocognitive Performance: Extent, Longevity, and Neural Bases
NASA Technical Reports Server (NTRS)
Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mason, Sara; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn; Szecsy, Darcy
2017-01-01
Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. We found extensive changes in behavior, brain structure & brain function following 70 days of HDBR. Specific Aim: Aim 1-Identify changes in brain structure, function, and network integrity as a function of spaceflight and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.
Chaotic itinerancy in the oscillator neural network without Lyapunov functions.
Uchiyama, Satoki; Fujisaka, Hirokazu
2004-09-01
Chaotic itinerancy (CI), which is defined as an incessant spontaneous switching phenomenon among attractor ruins in deterministic dynamical systems without Lyapunov functions, is numerically studied in the case of an oscillator neural network model. The model is the pseudoinverse-matrix version of the previous model [S. Uchiyama and H. Fujisaka, Phys. Rev. E 65, 061912 (2002)] that was studied theoretically with the aid of statistical neurodynamics. It is found that CI in neural nets can be understood as the intermittent dynamics of weakly destabilized chaotic retrieval solutions. Copyright 2004 American Institute of Physics
Non-neural androgen receptors affect sexual differentiation of brain and behaviour.
Monks, D A; Swift-Gallant, A
2018-02-01
Although gonadal testosterone is the principal endocrine factor that promotes masculine traits in mammals, the development of a male phenotype requires local production of both androgenic and oestrogenic signals within target tissues. Much of our knowledge concerning androgenic components of testosterone signalling in sexual differentiation comes from studies of androgen receptor (Ar) loss of function mutants. Here, we review these studies of loss of Ar function and of AR overexpression either globally or selectively in the nervous system of mice. Global and neural mutations affect socio-sexual behaviour and the neuroanatomy of these mice in a sexually differentiated manner. Some masculine traits are affected by both global and neural mutation, indicative of neural mediation, whereas other masculine traits are affected only by global mutation, indicative of an obligatory non-neural androgen target. These results support a model in which multiple sites of androgen action coordinate to produce masculine phenotypes. Furthermore, AR overexpression does not always have a phenotype opposite to that of loss of Ar function mutants, indicative of a nonlinear relationship between androgen dose and masculine phenotype in some cases. Potential mechanisms of Ar gene function in non-neural targets in producing masculine phenotypes are discussed. © 2017 British Society for Neuroendocrinology.
Neurostimulation and neuromodulation: a guide to selecting the right urologic patient.
Schmidt, R A; Doggweiler, R
1998-01-01
Sensory input has an important influence on the integrity of neural circuitry. Central nervous system circuitry is programmed and reinforced by everyday experience. Even the simplest of behaviors participate in this process. A balance between inhibition and facilitation must be maintained for the CNS to function normally. For example, the bladder stores urine because of the inhibition from a closed sphincter, and relaxation of the sphincter disinhibits the bladder to permit voiding. This synergistic 'seesaw' in reflex neural activity preserves the functional and anatomical integrity of the lower urinary tract. Dysfunction and anatomical change results when an unnatural bias develops between inhibitory and facilitatory neural activity. Neurostimulation has an inherent conditioning effect on neural excitability and can restore the neural equilibrium. Voiding diaries are very useful in documenting these changes.
James, Karin H; Atwood, Thea P
2009-02-01
Functional specialization in the brain is considered a hallmark of efficient processing. It is therefore not surprising that there are brain areas specialized for processing letters. To better understand the causes of functional specialization for letters, we explore the emergence of this pattern of response in the ventral processing stream through a training paradigm. Previously, we hypothesized that the specialized response pattern seen during letter perception may be due in part to our experience in writing letters. The work presented here investigates whether or not this aspect of letter processing-the integration of sensorimotor systems through writing-leads to functional specialization in the visual system. To test this idea, we investigated whether or not different types of experiences with letter-like stimuli ("pseudoletters") led to functional specialization similar to that which exists for letters. Neural activation patterns were measured using functional magnetic resonance imaging (fMRI) before and after three different types of training sessions. Participants were trained to recognize pseudoletters by writing, typing, or purely visual practice. Results suggested that only after writing practice did neural activation patterns to pseudoletters resemble patterns seen for letters. That is, neural activation in the left fusiform and dorsal precentral gyrus was greater when participants viewed pseudoletters than other, similar stimuli but only after writing experience. Neural activation also increased after typing practice in the right fusiform and left precentral gyrus, suggesting that in some areas, any motor experience may change visual processing. The results of this experiment suggest an intimate interaction among perceptual and motor systems during pseudoletter perception that may be extended to everyday letter perception.
Yamashita, Yuichi; Tani, Jun
2008-01-01
It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties (“multiple timescales”). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional hierarchy in neural systems. PMID:18989398
Regulating the dorsal neural tube expression of Ptf1a through a distal 3' enhancer.
Mona, Bishakha; Avila, John M; Meredith, David M; Kollipara, Rahul K; Johnson, Jane E
2016-10-01
Generating the correct balance of inhibitory and excitatory neurons in a neural network is essential for normal functioning of a nervous system. The neural network in the dorsal spinal cord functions in somatosensation where it modulates and relays sensory information from the periphery. PTF1A is a key transcriptional regulator present in a specific subset of neural progenitor cells in the dorsal spinal cord, cerebellum and retina that functions to specify an inhibitory neuronal fate while suppressing excitatory neuronal fates. Thus, the regulation of Ptf1a expression is critical for determining mechanisms controlling neuronal diversity in these regions of the nervous system. Here we identify a sequence conserved, tissue-specific enhancer located 10.8kb 3' of the Ptf1a coding region that is sufficient to direct expression to dorsal neural tube progenitors that give rise to neurons in the dorsal spinal cord in chick and mouse. DNA binding motifs for Paired homeodomain (Pd-HD) and zinc finger (ZF) transcription factors are required for enhancer activity. Mutations in these sequences implicate the Pd-HD motif for activator function and the ZF motif for repressor function. Although no repressor transcription factor was identified, both PAX6 and SOX3 can increase enhancer activity in reporter assays. Thus, Ptf1a is regulated by active and repressive inputs integrated through multiple sequence elements within a highly conserved sequence downstream of the Ptf1a gene. Copyright © 2016 Elsevier Inc. All rights reserved.
Sviderskaya, Elena V.; Easty, David J.; Lawrence, Mark A.; Sánchez, Daniel P.; Negulyaev, Yuri A.; Patel, Ricken H.; Anand, Praveen; Korchev, Yuri E.; Bennett, Dorothy C.
2009-01-01
Stem cells, that is, cells that can both reproduce themselves and differentiate into functional cell types, attract much interest as potential aids to healing and disease therapy. Embryonic neural crest is pluripotent and generates the peripheral nervous system, melanocytes, and some connective tissues. Neural-crest-related stem cells have been reported previously in postnatal skin: committed melanocytic stem cells in the hair follicle, and pluripotent cell types from the hair follicle and papilla that can produce various sets of lineages. Here we describe novel pluripotent neural crest-like stem cells from neonatal mouse epidermis, with different potencies, isolated as 3 independent immortal lines. Using alternative regulatory factors, they could be converted to large numbers of either Schwann precursor cells, pigmented melanocytes, chondrocytes, or functional sensory neurons showing voltage-gated sodium channels. Some of the neurons displayed abundant active TRPV1 and TRPA1 receptors. Such functional neurons have previously been obtained in culture only with difficulty, by explantation. The system was also used to generate comparative gene expression data for the stem cells, melanocytes, and melanoblasts that sufficiently explain the lack of pigment in melanoblasts and provide a rationale for some genes expressed apparently ectopically in melanomas, such as ephrin receptors.—Sviderskaya, E. V., Easty, D. J., Lawrence, M. A., Sánchez, D. P., Negulyaev, Y. A., Patel, R. H., Anand, P., Korchev, Y. E., Bennett, D. C. Functional neurons and melanocytes induced from immortal lines of postnatal neural crest-like stem cells. PMID:19447881
Neural plasticity of development and learning.
Galván, Adriana
2010-06-01
Development and learning are powerful agents of change across the lifespan that induce robust structural and functional plasticity in neural systems. An unresolved question in developmental cognitive neuroscience is whether development and learning share the same neural mechanisms associated with experience-related neural plasticity. In this article, I outline the conceptual and practical challenges of this question, review insights gleaned from adult studies, and describe recent strides toward examining this topic across development using neuroimaging methods. I suggest that development and learning are not two completely separate constructs and instead, that they exist on a continuum. While progressive and regressive changes are central to both, the behavioral consequences associated with these changes are closely tied to the existing neural architecture of maturity of the system. Eventually, a deeper, more mechanistic understanding of neural plasticity will shed light on behavioral changes across development and, more broadly, about the underlying neural basis of cognition. (c) 2010 Wiley-Liss, Inc.
Modeling fMRI signals can provide insights into neural processing in the cerebral cortex
Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo
2015-01-01
Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. PMID:25972586
Modeling fMRI signals can provide insights into neural processing in the cerebral cortex.
Vanni, Simo; Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo
2015-08-01
Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. Copyright © 2015 the American Physiological Society.
Jaiswal, Preeti; Mohanakumar, Kochupurackal P; Rajamma, Usha
2015-08-01
Serotonergic system has long been implicated in the aetiology of autism spectrum disorders (ASD), since platelet hyperserotonemia is consistently observed in a subset of autistic patients, who respond well to selective serotonin reuptake inhibitors. Apart from being a neurotransmitter, serotonin functions as a neurotrophic factor directing brain development and as an immunoregulator modulating immune responses. Serotonin transporter (SERT) regulates serotonin level in lymphoid tissues to ensure its proper functioning in innate and adaptive responses. Immunological molecules such as cytokines in turn regulate the transcription and activity of SERT. Dysregulation of serotonergic system could trigger signalling cascades that affect normal neural-immune interactions culminating in neurodevelopmental and neural connectivity defects precipitating behavioural abnormalities, or the disease phenotypes. Therefore, we suggest that a better understanding of the cross talk between serotonergic genes, immune systems and serotonergic neurotransmission will open wider avenues to develop pharmacological leads for addressing the core ASD behavioural deficits. Copyright © 2015 Elsevier Ltd. All rights reserved.
Technologies for imaging neural activity in large volumes
Ji, Na; Freeman, Jeremy; Smith, Spencer L.
2017-01-01
Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Collecting data from individual planes, conventional microscopy cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here, we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for the processing and analysis of volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics, and help elucidate how brain regions work in concert to support behavior. PMID:27571194
Liu, Qingshan; Dang, Chuangyin; Huang, Tingwen
2013-02-01
This paper presents a decision-making model described by a recurrent neural network for dynamic portfolio optimization. The portfolio-optimization problem is first converted into a constrained fractional programming problem. Since the objective function in the programming problem is not convex, the traditional optimization techniques are no longer applicable for solving this problem. Fortunately, the objective function in the fractional programming is pseudoconvex on the feasible region. It leads to a one-layer recurrent neural network modeled by means of a discontinuous dynamic system. To ensure the optimal solutions for portfolio optimization, the convergence of the proposed neural network is analyzed and proved. In fact, the neural network guarantees to get the optimal solutions for portfolio-investment advice if some mild conditions are satisfied. A numerical example with simulation results substantiates the effectiveness and illustrates the characteristics of the proposed neural network.
Karunamuni, Ganga H.; Ma, Pei; Gu, Shi; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko
2014-01-01
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest is in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies. PMID:25220155
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu
2013-11-28
A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resultingmore » in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.« less
Computational modeling of neural plasticity for self-organization of neural networks.
Chrol-Cannon, Joseph; Jin, Yaochu
2014-11-01
Self-organization in biological nervous systems during the lifetime is known to largely occur through a process of plasticity that is dependent upon the spike-timing activity in connected neurons. In the field of computational neuroscience, much effort has been dedicated to building up computational models of neural plasticity to replicate experimental data. Most recently, increasing attention has been paid to understanding the role of neural plasticity in functional and structural neural self-organization, as well as its influence on the learning performance of neural networks for accomplishing machine learning tasks such as classification and regression. Although many ideas and hypothesis have been suggested, the relationship between the structure, dynamics and learning performance of neural networks remains elusive. The purpose of this article is to review the most important computational models for neural plasticity and discuss various ideas about neural plasticity's role. Finally, we suggest a few promising research directions, in particular those along the line that combines findings in computational neuroscience and systems biology, and their synergetic roles in understanding learning, memory and cognition, thereby bridging the gap between computational neuroscience, systems biology and computational intelligence. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kabouridis, Panagiotis S.; Pachnis, Vassilis
2015-01-01
The enteric nervous system (ENS) consists of neurons and glial cells that differentiate from neural crest progenitors. During embryogenesis, development of the ENS is controlled by the interplay of neural crest cell–intrinsic factors and instructive cues from the surrounding gut mesenchyme. However, postnatal ENS development occurs in a different context, which is characterized by the presence of microbiota and an extensive immune system, suggesting an important role of these factors on enteric neural circuit formation and function. Initial reports confirm this idea while further studies in this area promise new insights into ENS physiology and pathophysiology. PMID:25729852
Sensori-motor experience leads to changes in visual processing in the developing brain.
James, Karin Harman
2010-03-01
Since Broca's studies on language processing, cortical functional specialization has been considered to be integral to efficient neural processing. A fundamental question in cognitive neuroscience concerns the type of learning that is required for functional specialization to develop. To address this issue with respect to the development of neural specialization for letters, we used functional magnetic resonance imaging (fMRI) to compare brain activation patterns in pre-school children before and after different letter-learning conditions: a sensori-motor group practised printing letters during the learning phase, while the control group practised visual recognition. Results demonstrated an overall left-hemisphere bias for processing letters in these pre-literate participants, but, more interestingly, showed enhanced blood oxygen-level-dependent activation in the visual association cortex during letter perception only after sensori-motor (printing) learning. It is concluded that sensori-motor experience augments processing in the visual system of pre-school children. The change of activation in these neural circuits provides important evidence that 'learning-by-doing' can lay the foundation for, and potentially strengthen, the neural systems used for visual letter recognition.
Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F.
2014-01-01
Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus. PMID:25451612
Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F
2015-02-01
Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kosko, Bart
1991-01-01
Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor)
1990-01-01
Various papers on intelligent control and adaptive systems are presented. Individual topics addressed include: control architecture for a Mars walking vehicle, representation for error detection and recovery in robot task plans, real-time operating system for robots, execution monitoring of a mobile robot system, statistical mechanics models for motion and force planning, global kinematics for manipulator planning and control, exploration of unknown mechanical assemblies through manipulation, low-level representations for robot vision, harmonic functions for robot path construction, simulation of dual behavior of an autonomous system. Also discussed are: control framework for hand-arm coordination, neural network approach to multivehicle navigation, electronic neural networks for global optimization, neural network for L1 norm linear regression, planning for assembly with robot hands, neural networks in dynamical systems, control design with iterative learning, improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm.
Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures.
Forsberg, David; Thonabulsombat, Charoensri; Jäderstad, Johan; Jäderstad, Linda Maria; Olivius, Petri; Herlenius, Eric
2017-08-14
Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neural network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Shah, Prajay T; Stratton, Jo A; Stykel, Morgan Gail; Abbasi, Sepideh; Sharma, Sandeep; Mayr, Kyle A; Koblinger, Kathrin; Whelan, Patrick J; Biernaskie, Jeff
2018-05-03
Ependymal cells are multi-ciliated cells that form the brain's ventricular epithelium and a niche for neural stem cells (NSCs) in the ventricular-subventricular zone (V-SVZ). In addition, ependymal cells are suggested to be latent NSCs with a capacity to acquire neurogenic function. This remains highly controversial due to a lack of prospective in vivo labeling techniques that can effectively distinguish ependymal cells from neighboring V-SVZ NSCs. We describe a transgenic system that allows for targeted labeling of ependymal cells within the V-SVZ. Single-cell RNA-seq revealed that ependymal cells are enriched for cilia-related genes and share several stem-cell-associated genes with neural stem or progenitors. Under in vivo and in vitro neural-stem- or progenitor-stimulating environments, ependymal cells failed to demonstrate any suggestion of latent neural-stem-cell function. These findings suggest remarkable stability of ependymal cell function and provide fundamental insights into the molecular signature of the V-SVZ niche. Copyright © 2018 Elsevier Inc. All rights reserved.
Garay, Paula A.; McAllister, A. Kimberley
2010-01-01
Although the brain has classically been considered “immune-privileged”, current research suggests an extensive communication between the immune and nervous systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased central nervous system (CNS). Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system – specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of geniculate, cortical and hippocampal synapses, and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD) and schizophrenia. PMID:21423522
Non-overlapping Neural Networks in Hydra vulgaris.
Dupre, Christophe; Yuste, Rafael
2017-04-24
To understand the emergent properties of neural circuits, it would be ideal to record the activity of every neuron in a behaving animal and decode how it relates to behavior. We have achieved this with the cnidarian Hydra vulgaris, using calcium imaging of genetically engineered animals to measure the activity of essentially all of its neurons. Although the nervous system of Hydra is traditionally described as a simple nerve net, we surprisingly find instead a series of functional networks that are anatomically non-overlapping and are associated with specific behaviors. Three major functional networks extend through the entire animal and are activated selectively during longitudinal contractions, elongations in response to light, and radial contractions, whereas an additional network is located near the hypostome and is active during nodding. These results demonstrate the functional sophistication of apparently simple nerve nets, and the potential of Hydra and other basal metazoans as a model system for neural circuit studies. Published by Elsevier Ltd.
Think like a sponge: The genetic signal of sensory cells in sponges.
Mah, Jasmine L; Leys, Sally P
2017-11-01
A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the sponge sensory system. Copyright © 2017 Elsevier Inc. All rights reserved.
Novel neural control for a class of uncertain pure-feedback systems.
Shen, Qikun; Shi, Peng; Zhang, Tianping; Lim, Cheng-Chew
2014-04-01
This paper is concerned with the problem of adaptive neural tracking control for a class of uncertain pure-feedback nonlinear systems. Using the implicit function theorem and backstepping technique, a practical robust adaptive neural control scheme is proposed to guarantee that the tracking error converges to an adjusted neighborhood of the origin by choosing appropriate design parameters. In contrast to conventional Lyapunov-based design techniques, an alternative Lyapunov function is constructed for the development of control law and learning algorithms. Differing from the existing results in the literature, the control scheme does not need to compute the derivatives of virtual control signals at each step in backstepping design procedures. Furthermore, the scheme requires the desired trajectory and its first derivative rather than its first n derivatives. In addition, the useful property of the basis function of the radial basis function, which will be used in control design, is explored. Simulation results illustrate the effectiveness of the proposed techniques.
Yang, Zhaoyang; Zhang, Aifeng; Duan, Hongmei; Zhang, Sa; Hao, Peng; Ye, Keqiang; Sun, Yi E.; Li, Xiaoguang
2015-01-01
Neural stem cells (NSCs) in the adult mammalian central nervous system (CNS) hold the key to neural regeneration through proper activation, differentiation, and maturation, to establish nascent neural networks, which can be integrated into damaged neural circuits to repair function. However, the CNS injury microenvironment is often inhibitory and inflammatory, limiting the ability of activated NSCs to differentiate into neurons and form nascent circuits. Here we report that neurotrophin-3 (NT3)-coupled chitosan biomaterial, when inserted into a 5-mm gap of completely transected and excised rat thoracic spinal cord, elicited robust activation of endogenous NSCs in the injured spinal cord. Through slow release of NT3, the biomaterial attracted NSCs to migrate into the lesion area, differentiate into neurons, and form functional neural networks, which interconnected severed ascending and descending axons, resulting in sensory and motor behavioral recovery. Our study suggests that enhancing endogenous neurogenesis could be a novel strategy for treatment of spinal cord injury. PMID:26460015
Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks.
Yang, Shuai; Yu, Juan; Hu, Cheng; Jiang, Haijun
2018-08-01
In this paper, without separating the complex-valued neural networks into two real-valued systems, the quasi-projective synchronization of fractional-order complex-valued neural networks is investigated. First, two new fractional-order inequalities are established by using the theory of complex functions, Laplace transform and Mittag-Leffler functions, which generalize traditional inequalities with the first-order derivative in the real domain. Additionally, different from hybrid control schemes given in the previous work concerning the projective synchronization, a simple and linear control strategy is designed in this paper and several criteria are derived to ensure quasi-projective synchronization of the complex-valued neural networks with fractional-order based on the established fractional-order inequalities and the theory of complex functions. Moreover, the error bounds of quasi-projective synchronization are estimated. Especially, some conditions are also presented for the Mittag-Leffler synchronization of the addressed neural networks. Finally, some numerical examples with simulations are provided to show the effectiveness of the derived theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neural system prediction and identification challenge.
Vlachos, Ioannis; Zaytsev, Yury V; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind
2013-01-01
Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered.
Neural system prediction and identification challenge
Vlachos, Ioannis; Zaytsev, Yury V.; Spreizer, Sebastian; Aertsen, Ad; Kumar, Arvind
2013-01-01
Can we infer the function of a biological neural network (BNN) if we know the connectivity and activity of all its constituent neurons?This question is at the core of neuroscience and, accordingly, various methods have been developed to record the activity and connectivity of as many neurons as possible. Surprisingly, there is no theoretical or computational demonstration that neuronal activity and connectivity are indeed sufficient to infer the function of a BNN. Therefore, we pose the Neural Systems Identification and Prediction Challenge (nuSPIC). We provide the connectivity and activity of all neurons and invite participants (1) to infer the functions implemented (hard-wired) in spiking neural networks (SNNs) by stimulating and recording the activity of neurons and, (2) to implement predefined mathematical/biological functions using SNNs. The nuSPICs can be accessed via a web-interface to the NEST simulator and the user is not required to know any specific programming language. Furthermore, the nuSPICs can be used as a teaching tool. Finally, nuSPICs use the crowd-sourcing model to address scientific issues. With this computational approach we aim to identify which functions can be inferred by systematic recordings of neuronal activity and connectivity. In addition, nuSPICs will help the design and application of new experimental paradigms based on the structure of the SNN and the presumed function which is to be discovered. PMID:24399966
Contextual and Developmental Differences in the Neural Architecture of Cognitive Control.
Petrican, Raluca; Grady, Cheryl L
2017-08-09
Because both development and context impact functional brain architecture, the neural connectivity signature of a cognitive or affective predisposition may similarly vary across different ages and circumstances. To test this hypothesis, we investigated the effects of age and cognitive versus social-affective context on the stable and time-varying neural architecture of inhibition, the putative core cognitive control component, in a subsample ( N = 359, 22-36 years, 174 men) of the Human Connectome Project. Among younger individuals, a neural signature of superior inhibition emerged in both stable and dynamic connectivity analyses. Dynamically, a context-free signature emerged as stronger segregation of internal cognition (default mode) and environmentally driven control (salience, cingulo-opercular) systems. A dynamic social-affective context-specific signature was observed most clearly in the visual system. Stable connectivity analyses revealed both context-free (greater default mode segregation) and context-specific (greater frontoparietal segregation for higher cognitive load; greater attentional and environmentally driven control system segregation for greater reward value) signatures of inhibition. Superior inhibition in more mature adulthood was typified by reduced segregation in the default network with increasing reward value and increased ventral attention but reduced cingulo-opercular and subcortical system segregation with increasing cognitive load. Failure to evidence this neural profile after the age of 30 predicted poorer life functioning. Our results suggest that distinguishable neural mechanisms underlie individual differences in cognitive control during different young adult stages and across tasks, thereby underscoring the importance of better understanding the interplay among dispositional, developmental, and contextual factors in shaping adaptive versus maladaptive patterns of thought and behavior. SIGNIFICANCE STATEMENT The brain's functional architecture changes across different contexts and life stages. To test whether the neural signature of a trait similarly varies, we investigated cognitive versus social-affective context effects on the stable and time-varying neural architecture of inhibition during a period of neurobehavioral fine-tuning (age 22-36 years). Younger individuals with superior inhibition showed distinguishable context-free and context-specific neural profiles, evidenced in both static and dynamic connectivity analyses. More mature individuals with superior inhibition evidenced only context-specific profiles, revealed in the static connectivity patterns linked to increased reward or cognitive load. Delayed expression of this profile predicted poorer life functioning. Our results underscore the importance of understanding the interplay among dispositional, developmental, and contextual factors in shaping behavior. Copyright © 2017 the authors 0270-6474/17/377711-16$15.00/0.
Cardiovascular Development and the Colonizing Cardiac Neural Crest Lineage
Snider, Paige; Olaopa, Michael; Firulli, Anthony B.; Conway, Simon J.
2007-01-01
Although it is well established that transgenic manipulation of mammalian neural crest-related gene expression and microsurgical removal of premigratory chicken and Xenopus embryonic cardiac neural crest progenitors results in a wide spectrum of both structural and functional congenital heart defects, the actual functional mechanism of the cardiac neural crest cells within the heart is poorly understood. Neural crest cell migration and appropriate colonization of the pharyngeal arches and outflow tract septum is thought to be highly dependent on genes that regulate cell-autonomous polarized movement (i.e., gap junctions, cadherins, and noncanonical Wnt1 pathway regulators). Once the migratory cardiac neural crest subpopulation finally reaches the heart, they have traditionally been thought to participate in septation of the common outflow tract into separate aortic and pulmonary arteries. However, several studies have suggested these colonizing neural crest cells may also play additional unexpected roles during cardiovascular development and may even contribute to a crest-derived stem cell population. Studies in both mice and chick suggest they can also enter the heart from the venous inflow as well as the usual arterial outflow region, and may contribute to the adult semilunar and atrioventricular valves as well as part of the cardiac conduction system. Furthermore, although they are not usually thought to give rise to the cardiomyocyte lineage, neural crest cells in the zebrafish (Danio rerio) can contribute to the myocardium and may have different functions in a species-dependent context. Intriguingly, both ablation of chick and Xenopus premigratory neural crest cells, and a transgenic deletion of mouse neural crest cell migration or disruption of the normal mammalian neural crest gene expression profiles, disrupts ventral myocardial function and/or cardiomyocyte proliferation. Combined, this suggests that either the cardiac neural crest secrete factor/s that regulate myocardial proliferation, can signal to the epicardium to subsequently secrete a growth factor/s, or may even contribute directly to the heart. Although there are species differences between mouse, chick, and Xenopus during cardiac neural crest cell morphogenesis, recent data suggest mouse and chick are more similar to each other than to the zebrafish neural crest cell lineage. Several groups have used the genetically defined Pax3 (splotch) mutant mice model to address the role of the cardiac neural crest lineage. Here we review the current literature, the neural crest-related role of the Pax3 transcription factor, and discuss potential function/s of cardiac neural crest-derived cells during cardiovascular developmental remodeling. PMID:17619792
Compact VLSI neural computer integrated with active pixel sensor for real-time ATR applications
NASA Astrophysics Data System (ADS)
Fang, Wai-Chi; Udomkesmalee, Gabriel; Alkalai, Leon
1997-04-01
A compact VLSI neural computer integrated with an active pixel sensor has been under development to mimic what is inherent in biological vision systems. This electronic eye- brain computer is targeted for real-time machine vision applications which require both high-bandwidth communication and high-performance computing for data sensing, synergy of multiple types of sensory information, feature extraction, target detection, target recognition, and control functions. The neural computer is based on a composite structure which combines Annealing Cellular Neural Network (ACNN) and Hierarchical Self-Organization Neural Network (HSONN). The ACNN architecture is a programmable and scalable multi- dimensional array of annealing neurons which are locally connected with their local neurons. Meanwhile, the HSONN adopts a hierarchical structure with nonlinear basis functions. The ACNN+HSONN neural computer is effectively designed to perform programmable functions for machine vision processing in all levels with its embedded host processor. It provides a two order-of-magnitude increase in computation power over the state-of-the-art microcomputer and DSP microelectronics. A compact current-mode VLSI design feasibility of the ACNN+HSONN neural computer is demonstrated by a 3D 16X8X9-cube neural processor chip design in a 2-micrometers CMOS technology. Integration of this neural computer as one slice of a 4'X4' multichip module into the 3D MCM based avionics architecture for NASA's New Millennium Program is also described.
Kino, Tomoshige
2015-01-01
The hypothalamic-pituitary-adrenal (HPA) axis and its end-effectors glucocorticoid hormones play central roles in the adaptive response to numerous stressors that can be either internal or external. Thus, this system has a strong impact on the brain hippocampus and its major functions, such as cognition, memory as well as behavior, and mood. The hippocampal area of the adult brain contains neural stem cells or more committed neural progenitor cells, which retain throughout the human life the ability of self-renewal and to differentiate into multiple neural cell lineages, such as neurons, astrocytes, and oligodendrocytes. Importantly, these characteristic cells contribute significantly to the above-indicated functions of the hippocampus, while various stressors and glucocorticoids influence proliferation, differentiation, and fate of these cells. This review offers an overview of the current understanding on the interactions between the HPA axis/glucocorticoid stress-responsive system and hippocampal neural progenitor cells by focusing on the actions of glucocorticoids. Also addressed is a further discussion on the implications of such interactions to the pathophysiology of mood disorders.
Neural modeling and functional neuroimaging.
Horwitz, B; Sporns, O
1994-01-01
Two research areas that so far have had little interaction with one another are functional neuroimaging and computational neuroscience. The application of computational models and techniques to the inherently rich data sets generated by "standard" neurophysiological methods has proven useful for interpreting these data sets and for providing predictions and hypotheses for further experiments. We suggest that both theory- and data-driven computational modeling of neuronal systems can help to interpret data generated by functional neuroimaging methods, especially those used with human subjects. In this article, we point out four sets of questions, addressable by computational neuroscientists whose answere would be of value and interest to those who perform functional neuroimaging. The first set consist of determining the neurobiological substrate of the signals measured by functional neuroimaging. The second set concerns developing systems-level models of functional neuroimaging data. The third set of questions involves integrating functional neuroimaging data across modalities, with a particular emphasis on relating electromagnetic with hemodynamic data. The last set asks how one can relate systems-level models to those at the neuronal and neural ensemble levels. We feel that there are ample reasons to link functional neuroimaging and neural modeling, and that combining the results from the two disciplines will result in furthering our understanding of the central nervous system. © 1994 Wiley-Liss, Inc. This Article is a US Goverment work and, as such, is in the public domain in the United State of America. Copyright © 1994 Wiley-Liss, Inc.
Genetic learning in rule-based and neural systems
NASA Technical Reports Server (NTRS)
Smith, Robert E.
1993-01-01
The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.
A Wirelessly Powered Micro-Spectrometer for Neural Probe-Pin Device
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn
2015-01-01
Treatment of neurological anomalies, places stringent demands on device functionality and size. A micro-spectrometer has been developed for use as an implantable neural probe to monitor neuro-chemistry in synapses. The microspectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) enabling operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, allow real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.
A wirelessly powered microspectrometer for neural probe-pin device
NASA Astrophysics Data System (ADS)
Choi, Sang H.; Kim, Min H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn
2015-12-01
Treatment of neurological anomalies, whether done invasively or not, places stringent demands on device functionality and size. We have developed a micro-spectrometer for use as an implantable neural probe to monitor neuro-chemistry in synapses. The micro-spectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) to enable operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, enable real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.
Neural Pathways of Embarrassment and their Modulation by Social Anxiety
Müller-Pinzler, L; Gazzola, V; Keysers, C; Sommer, J; Jansen, A; Frässle, S; Einhäuser, W
2016-01-01
While being in the center of attention and exposed to other’s evaluations humans are prone to experience embarrassment. To characterize the neural underpinnings of such aversive moments, we induced genuine experiences of embarrassment during person-group interactions in a functional neuroimaging study. Using a mock-up scenario with three confederates, we examined how the presence of an audience affected physiological and neural responses and the reported emotional experiences of failures and achievements. The results indicated that publicity induced activations in mentalizing areas and failures led to activations in arousal processing systems. Mentalizing activity as well as attention towards the audience were increased in socially anxious participants. The converging integration of information from mentalizing areas and arousal processing systems within the ventral anterior insula and amygdala form the neural pathways of embarrassment. Targeting these neural markers of embarrassment in the (para-)limbic system provides new perspectives for developing treatment strategies for social anxiety disorders. PMID:26093329
Neuroprostheses to treat neurogenic bladder dysfunction: current status and future perspectives.
Rijkhoff, Nico J M
2004-02-01
Neural prostheses are a technology that uses electrical activation of the nervous system to restore function to individuals with neurological or sensory impairment. This article provides an introduction to neural prostheses and lists the most successful neural prostheses (in terms of implanted devices). The article then focuses on neurogenic bladder dysfunction and describes two clinically available implantable neural prostheses for treatment of neurogenic bladder dysfunction. Special attention is given to the usage of these neural prostheses in children. Finally, three new developments that may lead to a new generation of implantable neural prostheses for bladder control are described. They may improve the neural prostheses currently available and expand further the population of patients who can benefit from a neural prosthesis.
Yi, Qu; Zhan-ming, Li; Er-chao, Li
2012-11-01
A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Neural Control of the Lower Urinary Tract
de Groat, William C.; Griffiths, Derek; Yoshimura, Naoki
2015-01-01
This article summarizes anatomical, neurophysiological, pharmacological, and brain imaging studies in humans and animals that have provided insights into the neural circuitry and neurotransmitter mechanisms controlling the lower urinary tract. The functions of the lower urinary tract to store and periodically eliminate urine are regulated by a complex neural control system in the brain, spinal cord, and peripheral autonomic ganglia that coordinates the activity of smooth and striated muscles of the bladder and urethral outlet. The neural control of micturition is organized as a hierarchical system in which spinal storage mechanisms are in turn regulated by circuitry in the rostral brain stem that initiates reflex voiding. Input from the forebrain triggers voluntary voiding by modulating the brain stem circuitry. Many neural circuits controlling the lower urinary tract exhibit switch-like patterns of activity that turn on and off in an all-or-none manner. The major component of the micturition switching circuit is a spinobulbospinal parasympathetic reflex pathway that has essential connections in the periaqueductal gray and pontine micturition center. A computer model of this circuit that mimics the switching functions of the bladder and urethra at the onset of micturition is described. Micturition occurs involuntarily in infants and young children until the age of 3 to 5 years, after which it is regulated voluntarily. Diseases or injuries of the nervous system in adults can cause the re-emergence of involuntary micturition, leading to urinary incontinence. Neuroplasticity underlying these developmental and pathological changes in voiding function is discussed. PMID:25589273
Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form.
Chen, Bing; Zhang, Huaguang; Lin, Chong
2016-01-01
This paper focuses on the problem of adaptive neural network (NN) control for a class of nonlinear nonstrict-feedback systems via output feedback. A novel adaptive NN backstepping output-feedback control approach is first proposed for nonlinear nonstrict-feedback systems. The monotonicity of system bounding functions and the structure character of radial basis function (RBF) NNs are used to overcome the difficulties that arise from nonstrict-feedback structure. A state observer is constructed to estimate the immeasurable state variables. By combining adaptive backstepping technique with approximation capability of radial basis function NNs, an output-feedback adaptive NN controller is designed through backstepping approach. It is shown that the proposed controller guarantees semiglobal boundedness of all the signals in the closed-loop systems. Two examples are used to illustrate the effectiveness of the proposed approach.
An integrative neural model of social perception, action observation, and theory of mind.
Yang, Daniel Y-J; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A
2015-04-01
In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.
An integrative neural model of social perception, action observation, and theory of mind
Yang, Daniel Y.-J.; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A.
2016-01-01
In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957
Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng
2014-01-01
This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728
Real-space mapping of topological invariants using artificial neural networks
NASA Astrophysics Data System (ADS)
Carvalho, D.; García-Martínez, N. A.; Lado, J. L.; Fernández-Rossier, J.
2018-03-01
Topological invariants allow one to characterize Hamiltonians, predicting the existence of topologically protected in-gap modes. Those invariants can be computed by tracing the evolution of the occupied wave functions under twisted boundary conditions. However, those procedures do not allow one to calculate a topological invariant by evaluating the system locally, and thus require information about the wave functions in the whole system. Here we show that artificial neural networks can be trained to identify the topological order by evaluating a local projection of the density matrix. We demonstrate this for two different models, a one-dimensional topological superconductor and a two-dimensional quantum anomalous Hall state, both with spatially modulated parameters. Our neural network correctly identifies the different topological domains in real space, predicting the location of in-gap states. By combining a neural network with a calculation of the electronic states that uses the kernel polynomial method, we show that the local evaluation of the invariant can be carried out by evaluating a local quantity, in particular for systems without translational symmetry consisting of tens of thousands of atoms. Our results show that supervised learning is an efficient methodology to characterize the local topology of a system.
Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies
NASA Astrophysics Data System (ADS)
MacLeod, Katrina; Laurent, Gilles
1996-11-01
Stimulus-evoked oscillatory synchronization of neural assemblies and temporal patterns of neuronal activity have been observed in many sensory systems, such as the visual and auditory cortices of mammals or the olfactory system of insects. In the locust olfactory system, single odor puffs cause the immediate formation of odor-specific neural assemblies, defined both by their transient synchronized firing and their progressive transformation over the course of a response. The application of an antagonist of ionotropic γ-aminobutyric acid (GABA) receptors to the first olfactory relay neuropil selectively blocked the fast inhibitory synapse between local and projection neurons. This manipulation abolished the synchronization of the odor-coding neural ensembles but did not affect each neuron's temporal response patterns to odors, even when these patterns contained periods of inhibition. Fast GABA-mediated inhibition, therefore, appears to underlie neuronal synchronization but not response tuning in this olfactory system. The selective desynchronization of stimulus-evoked oscillating neural assemblies in vivo is now possible, enabling direct functional tests of their significance for sensation and perception.
NASA Technical Reports Server (NTRS)
Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn
2017-01-01
Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. specific Aims: Aim 1-Identify changes in brain structure, function, and network integrity as a function of head down tilt bed rest and spaceflight, and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Jin; Lu, Chun-Ming; Biswal, Bharat B.; Zang, Yu-Feng; Peng, Dan-Lin; Zhu, Chao-Zhe
2010-07-01
Functional connectivity has become one of the important approaches to understanding the functional organization of the human brain. Recently, functional near-infrared spectroscopy (fNIRS) was demonstrated as a feasible method to study resting-state functional connectivity (RSFC) in the sensory and motor systems. However, whether such fNIRS-based RSFC can be revealed in high-level and complex functional systems remains unknown. In the present study, the feasibility of such an approach is tested on the language system, of which the neural substrates have been well documented in the literature. After determination of a seed channel by a language localizer task, the correlation strength between the low frequency fluctuations of the fNIRS signal at the seed channel and those at all other channels is used to evaluate the language system RSFC. Our results show a significant RSFC between the left inferior frontal cortex and superior temporal cortex, components both associated with dominant language regions. Moreover, the RSFC map demonstrates left lateralization of the language system. In conclusion, the present study successfully utilized fNIRS-based RSFC to study a complex and high-level neural system, and provides further evidence for the validity of the fNIRS-based RSFC approach.
Jasinska, K K; Petitto, L A
2013-10-01
Is the developing bilingual brain fundamentally similar to the monolingual brain (e.g., neural resources supporting language and cognition)? Or, does early-life bilingual language experience change the brain? If so, how does age of first bilingual exposure impact neural activation for language? We compared how typically-developing bilingual and monolingual children (ages 7-10) and adults recruit brain areas during sentence processing using functional Near Infrared Spectroscopy (fNIRS) brain imaging. Bilingual participants included early-exposed (bilingual exposure from birth) and later-exposed individuals (bilingual exposure between ages 4-6). Both bilingual children and adults showed greater neural activation in left-hemisphere classic language areas, and additionally, right-hemisphere homologues (Right Superior Temporal Gyrus, Right Inferior Frontal Gyrus). However, important differences were observed between early-exposed and later-exposed bilinguals in their earliest-exposed language. Early bilingual exposure imparts fundamental changes to classic language areas instead of alterations to brain regions governing higher cognitive executive functions. However, age of first bilingual exposure does matter. Later-exposed bilinguals showed greater recruitment of the prefrontal cortex relative to early-exposed bilinguals and monolinguals. The findings provide fascinating insight into the neural resources that facilitate bilingual language use and are discussed in terms of how early-life language experiences can modify the neural systems underlying human language processing. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wen, Shiping; Zeng, Zhigang; Chen, Michael Z Q; Huang, Tingwen
2017-10-01
This paper addresses the issue of synchronization of switched delayed neural networks with communication delays via event-triggered control. For synchronizing coupled switched neural networks, we propose a novel event-triggered control law which could greatly reduce the number of control updates for synchronization tasks of coupled switched neural networks involving embedded microprocessors with limited on-board resources. The control signals are driven by properly defined events, which depend on the measurement errors and current-sampled states. By using a delay system method, a novel model of synchronization error system with delays is proposed with the communication delays and event-triggered control in the unified framework for coupled switched neural networks. The criteria are derived for the event-triggered synchronization analysis and control synthesis of switched neural networks via the Lyapunov-Krasovskii functional method and free weighting matrix approach. A numerical example is elaborated on to illustrate the effectiveness of the derived results.
Race, Elizabeth A; Shanker, Shanti; Wagner, Anthony D
2009-09-01
Past experience is hypothesized to reduce computational demands in PFC by providing bottom-up predictive information that informs subsequent stimulus-action mapping. The present fMRI study measured cortical activity reductions ("neural priming"/"repetition suppression") during repeated stimulus classification to investigate the mechanisms through which learning from the past decreases demands on the prefrontal executive system. Manipulation of learning at three levels of representation-stimulus, decision, and response-revealed dissociable neural priming effects in distinct frontotemporal regions, supporting a multiprocess model of neural priming. Critically, three distinct patterns of neural priming were identified in lateral frontal cortex, indicating that frontal computational demands are reduced by three forms of learning: (a) cortical tuning of stimulus-specific representations, (b) retrieval of learned stimulus-decision mappings, and (c) retrieval of learned stimulus-response mappings. The topographic distribution of these neural priming effects suggests a rostrocaudal organization of executive function in lateral frontal cortex.
Procedural Learning and Dyslexia
ERIC Educational Resources Information Center
Nicolson, R. I.; Fawcett, A. J.; Brookes, R. L.; Needle, J.
2010-01-01
Three major "neural systems", specialized for different types of information processing, are the sensory, declarative, and procedural systems. It has been proposed ("Trends Neurosci.",30(4), 135-141) that dyslexia may be attributable to impaired function in the procedural system together with intact declarative function. We provide a brief…
Radial Basis Function Neural Network Application to Power System Restoration Studies
Sadeghkhani, Iman; Ketabi, Abbas; Feuillet, Rene
2012-01-01
One of the most important issues in power system restoration is overvoltages caused by transformer switching. These overvoltages might damage some equipment and delay power system restoration. This paper presents a radial basis function neural network (RBFNN) to study transformer switching overvoltages. To achieve good generalization capability for developed RBFNN, equivalent parameters of the network are added to RBFNN inputs. The developed RBFNN is trained with the worst-case scenario of switching angle and remanent flux and tested for typical cases. The simulated results for a partial of 39-bus New England test system show that the proposed technique can estimate the peak values and duration of switching overvoltages with good accuracy. PMID:22792093
Experiments in Neural-Network Control of a Free-Flying Space Robot
NASA Technical Reports Server (NTRS)
Wilson, Edward
1995-01-01
Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype. The first issue concerns the importance of true system level design of the control system. A new hybrid strategy is developed here, in depth, for the beneficial integration of neural networks into the total control system. A second important issue in neural network control concerns incorporating a priori knowledge into the neural network. In many applications, it is possible to get a reasonably accurate controller using conventional means. If this prior information is used purposefully to provide a starting point for the optimizing capabilities of the neural network, it can provide much faster initial learning. In a step towards addressing this issue, a new generic Fully Connected Architecture (FCA) is developed for use with backpropagation. A third issue is that neural networks are commonly trained using a gradient based optimization method such as backpropagation; but many real world systems have Discrete Valued Functions (DVFs) that do not permit gradient based optimization. One example is the on-off thrusters that are common on spacecraft. A new technique is developed here that now extends backpropagation learning for use with DVFs. The fourth issue is that the speed of adaptation is often a limiting factor in the implementation of a neural network control system. This issue has been strongly resolved in the research by drawing on the above new contributions.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.
1993-01-01
This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.
NASA Astrophysics Data System (ADS)
Griffiths, John D.
2015-12-01
The modern understanding of the brain as a large, complex network of interacting elements is a natural consequence of the Neuron Doctrine [1,2] that has been bolstered in recent years by the tools and concepts of connectomics. In this abstracted, network-centric view, the essence of neural and cognitive function derives from the flows between network elements of activity and information - or, more generally, causal influence. The appropriate characterization of causality in neural systems, therefore, is a question at the very heart of systems neuroscience.
Sviderskaya, Elena V; Easty, David J; Lawrence, Mark A; Sánchez, Daniel P; Negulyaev, Yuri A; Patel, Ricken H; Anand, Praveen; Korchev, Yuri E; Bennett, Dorothy C
2009-09-01
Stem cells, that is, cells that can both reproduce themselves and differentiate into functional cell types, attract much interest as potential aids to healing and disease therapy. Embryonic neural crest is pluripotent and generates the peripheral nervous system, melanocytes, and some connective tissues. Neural-crest-related stem cells have been reported previously in postnatal skin: committed melanocytic stem cells in the hair follicle, and pluripotent cell types from the hair follicle and papilla that can produce various sets of lineages. Here we describe novel pluripotent neural crest-like stem cells from neonatal mouse epidermis, with different potencies, isolated as 3 independent immortal lines. Using alternative regulatory factors, they could be converted to large numbers of either Schwann precursor cells, pigmented melanocytes, chondrocytes, or functional sensory neurons showing voltage-gated sodium channels. Some of the neurons displayed abundant active TRPV1 and TRPA1 receptors. Such functional neurons have previously been obtained in culture only with difficulty, by explantation. The system was also used to generate comparative gene expression data for the stem cells, melanocytes, and melanoblasts that sufficiently explain the lack of pigment in melanoblasts and provide a rationale for some genes expressed apparently ectopically in melanomas, such as ephrin receptors.
Neural systems analysis of decision making during goal-directed navigation.
Penner, Marsha R; Mizumori, Sheri J Y
2012-01-01
The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors. Copyright © 2011. Published by Elsevier Ltd.
Automated Induction Of Rule-Based Neural Networks
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J.; Goodman, Rodney M.
1994-01-01
Prototype expert systems implemented in software and are functionally equivalent to neural networks set up automatically and placed into operation within minutes following information-theoretic approach to automated acquisition of knowledge from large example data bases. Approach based largely on use of ITRULE computer program.
A classifier neural network for rotordynamic systems
NASA Astrophysics Data System (ADS)
Ganesan, R.; Jionghua, Jin; Sankar, T. S.
1995-07-01
A feedforward backpropagation neural network is formed to identify the stability characteristic of a high speed rotordynamic system. The principal focus resides in accounting for the instability due to the bearing clearance effects. The abnormal operating condition of 'normal-loose' Coulomb rub, that arises in units supported by hydrodynamic bearings or rolling element bearings, is analysed in detail. The multiple-parameter stability problem is formulated and converted to a set of three-parameter algebraic inequality equations. These three parameters map the wider range of physical parameters of commonly-used rotordynamic systems into a narrow closed region, that is used in the supervised learning of the neural network. A binary-type state of the system is expressed through these inequalities that are deduced from the analytical simulation of the rotor system. Both the hidden layer as well as functional-link networks are formed and the superiority of the functional-link network is established. Considering the real time interpretation and control of the rotordynamic system, the network reliability and the learning time are used as the evaluation criteria to assess the superiority of the functional-link network. This functional-link network is further trained using the parameter values of selected rotor systems, and the classifier network is formed. The success rate of stability status identification is obtained to assess the potentials of this classifier network. The classifier network is shown that it can also be used, for control purposes, as an 'advisory' system that suggests the optimum way of parameter adjustment.
Holistic neural coding of Chinese character forms in bilateral ventral visual system.
Mo, Ce; Yu, Mengxia; Seger, Carol; Mo, Lei
2015-02-01
How are Chinese characters recognized and represented in the brain of skilled readers? Functional MRI fast adaptation technique was used to address this question. We found that neural adaptation effects were limited to identical characters in bilateral ventral visual system while no activation reduction was observed for partially overlapping characters regardless of the spatial location of the shared sub-character components, suggesting highly selective neuronal tuning to whole characters. The consistent neural profile across the entire ventral visual cortex indicates that Chinese characters are represented as mutually distinctive wholes rather than combinations of sub-character components, which presents a salient contrast to the left-lateralized, simple-to-complex neural representations of alphabetic words. Our findings thus revealed the cultural modulation effect on both local neuronal activity patterns and functional anatomical regions associated with written symbol recognition. Moreover, the cross-language discrepancy in written symbol recognition mechanism might stem from the language-specific early-stage learning experience. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Iwasaki, Mai; Poulsen, Thomas M.; Oka, Kotaro; Hessler, Neal A.
2013-01-01
A critical function of singing by male songbirds is to attract a female mate. Previous studies have suggested that the anterior forebrain system is involved in this courtship behavior. Neural activity in this system, including the striatal Area X, is strikingly dependent on the function of male singing. When males sing to attract a female bird rather than while alone, less variable neural activity results in less variable song spectral features, which may be attractive to the female. These characteristics of neural activity and singing thus may reflect a male's motivation for courtship. Here, we compared the variability of neural activity and song features between courtship singing directed to a female with whom a male had previously formed a pair-bond or to other females. Surprisingly, across all units, there was no clear tendency for a difference in variability of neural activity or song features between courtship of paired females, nonpaired females, or dummy females. However, across the population of recordings, there was a significant relationship between the relative variability of syllable frequency and neural activity: when syllable frequency was less variable to paired than nonpaired females, neural activity was also less variable (and vice-versa). These results show that the lower variability of neural activity and syllable frequency during directed singing is not a binary distinction from undirected singing, but can vary in intensity, possibly related to the relative preference of a male for his singing target. PMID:24312344
Development of a brain monitoring system for multimodality investigation in awake rats.
Limnuson, Kanokwan; Narayan, Raj K; Chiluwal, Amrit; Bouton, Chad; Ping Wang; Chunyan Li
2016-08-01
Multimodal brain monitoring is an important approach to gain insight into brain function, modulation, and pathology. We have developed a unique micromachined neural probe capable of real-time continuous monitoring of multiple physiological, biochemical and electrophysiological variables. However, to date, it has only been used in anesthetized animals due to a lack of an appropriate interface for awake animals. We have developed a versatile headstage for recording the small neural signal and bridging the sensors to the remote sensing units for multimodal brain monitoring in awake rats. The developed system has been successfully validated in awake rats by simultaneously measuring four cerebral variables: electrocorticography, oxygen tension, temperature and cerebral blood flow. Reliable signal recordings were obtained with minimal artifacts from movement and environmental noise. For the first time, multiple variables of cerebral function and metabolism were simultaneously recorded from awake rats using a single neural probe. The system is envisioned for studying the effects of pharmacologic treatments, mapping the development of central nervous system diseases, and better understanding normal cerebral physiology.
Implantable neurotechnologies: a review of integrated circuit neural amplifiers.
Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V
2016-01-01
Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.
Implantable neurotechnologies: a review of integrated circuit neural amplifiers
Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V.
2016-01-01
Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification. PMID:26798055
Liddell, Belinda J.; Jobson, Laura
2016-01-01
A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD. Highlights of the article Cultural variations in individualistic-collectivistic self-representation modulate many of the same neural and psychological processes disrupted in PTSD. These commonly affected processes include fear perception and regulation mechanisms, attentional biases (to threat), emotional and autobiographical memory systems, self-referential processing and attachment systems. A conceptual model is proposed whereby culture is considered integral to the development and maintenance of PTSD and its neural substrates. PMID:27302635
Independent origins of neurons and synapses: insights from ctenophores
Moroz, Leonid L.; Kohn, Andrea B.
2016-01-01
There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes. Genomics and metabolomics data from basal metazoans suggest that neural signalling evolved independently in ctenophores and cnidarians/bilaterians. This polygenesis hypothesis explains the lack of pan-neuronal and pan-synaptic genes across metazoans, including remarkable examples of lineage-specific evolution of neurogenic and signalling molecules as well as synaptic components. Sponges and placozoans are two lineages without neural and muscular systems. The possibility of secondary loss of neurons and synapses in the Porifera/Placozoa clades is a highly unlikely and less parsimonious scenario. We conclude that acetylcholine, serotonin, histamine, dopamine, octopamine and gamma-aminobutyric acid (GABA) were recruited as transmitters in the neural systems in cnidarian and bilaterian lineages. By contrast, ctenophores independently evolved numerous secretory peptides, indicating extensive adaptations within the clade and suggesting that early neural systems might be peptidergic. Comparative analysis of glutamate signalling also shows numerous lineage-specific innovations, implying the extensive use of this ubiquitous metabolite and intercellular messenger over the course of convergent and parallel evolution of mechanisms of intercellular communication. Therefore: (i) we view a neuron as a functional character but not a genetic character, and (ii) any given neural system cannot be considered as a single character because it is composed of different cell lineages with distinct genealogies, origins and evolutionary histories. Thus, when reconstructing the evolution of nervous systems, we ought to start with the identification of particular cell lineages by establishing distant neural homologies or examples of convergent evolution. In a corollary of the hypothesis of the independent origins of neurons, our analyses suggest that both electrical and chemical synapses evolved more than once. PMID:26598724
Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity.
Just, Marcel Adam; Keller, Timothy A; Malave, Vicente L; Kana, Rajesh K; Varma, Sashank
2012-04-01
The underconnectivity theory of autism attributes the disorder to lower anatomical and functional systems connectivity between frontal and more posterior cortical processing. Here we review evidence for the theory and present a computational model of an executive functioning task (Tower of London) implementing the assumptions of underconnectivity. We make two modifications to a previous computational account of performance and brain activity in typical individuals in the Tower of London task (Newman et al., 2003): (1) the communication bandwidth between frontal and parietal areas was decreased and (2) the posterior centers were endowed with more executive capability (i.e., more autonomy, an adaptation is proposed to arise in response to the lowered frontal-posterior bandwidth). The autism model succeeds in matching the lower frontal-posterior functional connectivity (lower synchronization of activation) seen in fMRI data, as well as providing insight into behavioral response time results. The theory provides a unified account of how a neural dysfunction can produce a neural systems disorder and a psychological disorder with the widespread and diverse symptoms of autism. Copyright © 2012 Elsevier Ltd. All rights reserved.
Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity
Just, Marcel Adam; Keller, Timothy A.; Malave, Vicente L.; Kana, Rajesh K.; Varma, Sashank
2012-01-01
The underconnectivity theory of autism attributes the disorder to lower anatomical and functional systems connectivity between frontal and more posterior cortical processing. Here we review evidence for the theory and present a computational model of an executive functioning task (Tower of London) implementing the assumptions of underconnectivity. We make two modifications to a previous computational account of performance and brain activity in typical individuals in the Tower of London task (Newman et al., 2003): (1) the communication bandwidth between frontal and parietal areas was decreased and (2) the posterior centers were endowed with more executive capability (i.e., more autonomy, an adaptation is proposed to arise in response to the lowered frontal-posterior bandwidth). The autism model succeeds in matching the lower frontal-posterior functional connectivity (lower synchronization of activation) seen in fMRI data, as well as providing insight into behavioral response time results. The theory provides a unified account of how a neural dysfunction can produce a neural systems disorder and a psychological disorder with the widespread and diverse symptoms of autism. PMID:22353426
Sartori, Massimo; Yavuz, Utku Ş; Farina, Dario
2017-10-18
Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system. This currently represents the major challenge to the understanding of human movement. We address this challenge by proposing a paradigm for investigating spinal motor neuron contribution to skeletal joint mechanical function in the intact human in vivo. We employ multi-muscle spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-motor neuron discharges across five lumbosacral segments in the human spinal cord. We use complete α-motor neuron discharge series to drive forward subject-specific models of the musculoskeletal system in open-loop with no corrective feedback. We perform validation tests where mechanical moments are estimated with no knowledge of reference data over unseen conditions. This enables accurate blinded estimation of ankle function purely from motor neuron information. Remarkably, this enables observing causal associations between spinal motor neuron activity and joint moment control. We provide a new class of neural data-driven musculoskeletal modeling formulations for bridging between movement neural and mechanical levels in vivo with implications for understanding motor physiology, pathology, and recovery.
Fusaoka, Eri; Inoue, Takeshi; Mineta, Katsuhiko; Agata, Kiyokazu; Takeuchi, Kosei
2006-05-01
Precise wiring and proper remodeling of the neural network are essential for its normal function. The freshwater planarian is an attractive animal in which to study the formation and maintenance of the neural network due to its high regenerative capability and developmental plasticity. Although a recent study revealed that homologs of netrin and its receptors are required for regeneration and maintenance of the planarian central nervous system (CNS), the roles of cell adhesion in the formation and maintenance of the planarian neural network remain poorly understood. In the present study, we found primitive immunoglobulin superfamily cell adhesion molecules (IgCAMs) in a planarian that are homologous to vertebrate neural IgCAMs. We identified planarian orthologs of NCAM, L1CAM, contactin and DSCAM, and designated them DjCAM, DjLCAM, DjCTCAM and DjDSCAM, respectively. We further confirmed that they function as cell adhesion molecules using cell aggregation assays. DjCAM and DjDSCAM were found to be differentially expressed in the CNS. Functional analyses using RNA interference revealed that DjCAM is partly involved in axon formation, and that DjDSCAM plays crucial roles in neuronal cell migration, axon outgrowth, fasciculation and projection.
An Expert System for Processing Uncorrelated Satellite Tracks
1992-12-17
earthworms with much intellect e\\en though they routinely carry out this same function. One definition given artificial intelligence is "the study of mental...Networks: Benchmarking Studies ," Proceedings from the IEEE International Conference on Neural Networkv. pp. 64-65, 1988. 229 Lyddane, R., "Small...reverse if necessary and rdenqtl_ by block number, Field Group Subgroup Artificial Intelligence, Expert Systems, Neural Networks. Orbital Mechanics
Davis, Zachary W.; Chapman, Barbara
2015-01-01
Visually evoked activity is necessary for the normal development of the visual system. However, little is known about the capacity for patterned spontaneous activity to drive the maturation of receptive fields before visual experience. Retinal waves provide instructive retinotopic information for the anatomical organization of the visual thalamus. To determine whether retinal waves also drive the maturation of functional responses, we increased the frequency of retinal waves pharmacologically in the ferret (Mustela putorius furo) during a period of retinogeniculate development before eye opening. The development of geniculate receptive fields after receiving these increased neural activities was measured using single-unit electrophysiology. We found that increased retinal waves accelerate the developmental reduction of geniculate receptive field sizes. This reduction is due to a decrease in receptive field center size rather than an increase in inhibitory surround strength. This work reveals an instructive role for patterned spontaneous activity in guiding the functional development of neural circuits. SIGNIFICANCE STATEMENT Patterned spontaneous neural activity that occurs during development is known to be necessary for the proper formation of neural circuits. However, it is unknown whether the spontaneous activity alone is sufficient to drive the maturation of the functional properties of neurons. Our work demonstrates for the first time an acceleration in the maturation of neural function as a consequence of driving patterned spontaneous activity during development. This work has implications for our understanding of how neural circuits can be modified actively to improve function prematurely or to recover from injury with guided interventions of patterned neural activity. PMID:26511250
Complexin2 modulates working memory-related neural activity in patients with schizophrenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hass, Johanna; Walton, Esther; Kirsten, Holger
The specific contribution of risk or candidate gene variants to the complex phenotype of schizophrenia is largely unknown. Studying the effects of such variants on brain function can provide insight into disease-associated mechanisms on a neural systems level. Previous studies found common variants in the complexin2 ( CPLX2) gene to be highly associated with cognitive dysfunction in schizophrenia patients. Similarly, cognitive functioning was found to be impaired in Cplx2 gene-deficient mice if they were subjected to maternal deprivation or mild brain trauma during puberty. Here, we aimed to study seven common CPLX2 single-nucleotide polymorphisms (SNPs) and their neurogenetic risk mechanismsmore » by investigating their relationship to a schizophrenia-related functional neuroimaging intermediate phenotype. In this paper, we examined functional MRI and genotype data collected from 104 patients with DSM-IV-diagnosed schizophrenia and 122 healthy controls who participated in the Mind Clinical Imaging Consortium study of schizophrenia. Seven SNPs distributed over the whole CPLX2 gene were tested for association with working memory-elicited neural activity in a frontoparietal neural network. Three CPLX2 SNPs were significantly associated with increased neural activity in the dorsolateral prefrontal cortex and intraparietal sulcus in the schizophrenia sample, but showed no association in healthy controls. Finally, since increased working memory-related neural activity in individuals with or at risk for schizophrenia has been interpreted as ‘neural inefficiency,’ these findings suggest that certain variants of CPLX2 may contribute to impaired brain function in schizophrenia, possibly combined with other deleterious genetic variants, adverse environmental events, or developmental insults.« less
Complexin2 modulates working memory-related neural activity in patients with schizophrenia
Hass, Johanna; Walton, Esther; Kirsten, Holger; ...
2014-10-09
The specific contribution of risk or candidate gene variants to the complex phenotype of schizophrenia is largely unknown. Studying the effects of such variants on brain function can provide insight into disease-associated mechanisms on a neural systems level. Previous studies found common variants in the complexin2 ( CPLX2) gene to be highly associated with cognitive dysfunction in schizophrenia patients. Similarly, cognitive functioning was found to be impaired in Cplx2 gene-deficient mice if they were subjected to maternal deprivation or mild brain trauma during puberty. Here, we aimed to study seven common CPLX2 single-nucleotide polymorphisms (SNPs) and their neurogenetic risk mechanismsmore » by investigating their relationship to a schizophrenia-related functional neuroimaging intermediate phenotype. In this paper, we examined functional MRI and genotype data collected from 104 patients with DSM-IV-diagnosed schizophrenia and 122 healthy controls who participated in the Mind Clinical Imaging Consortium study of schizophrenia. Seven SNPs distributed over the whole CPLX2 gene were tested for association with working memory-elicited neural activity in a frontoparietal neural network. Three CPLX2 SNPs were significantly associated with increased neural activity in the dorsolateral prefrontal cortex and intraparietal sulcus in the schizophrenia sample, but showed no association in healthy controls. Finally, since increased working memory-related neural activity in individuals with or at risk for schizophrenia has been interpreted as ‘neural inefficiency,’ these findings suggest that certain variants of CPLX2 may contribute to impaired brain function in schizophrenia, possibly combined with other deleterious genetic variants, adverse environmental events, or developmental insults.« less
Cognition, emotion, and attention.
Müller-Oehring, Eva M; Schulte, Tilman
2014-01-01
Deficits of attention, emotion, and cognition occur in individuals with alcohol abuse and addiction. This review elucidates the concepts of attention, emotion, and cognition and references research on the underlying neural networks and their compromise in alcohol use disorder. Neuroimaging research on adolescents with family history of alcoholism contributes to the understanding of pre-existing brain structural conditions and characterization of cognition and attention processes in high-risk individuals. Attention and cognition interact with other brain functions, including perceptual selection, salience, emotion, reward, and memory, through interconnected neural networks. Recent research reports compromised microstructural and functional network connectivity in alcoholism, which can have an effect on the dynamic tuning between brain systems, e.g., the frontally based executive control system, the limbic emotion system, and the midbrain-striatal reward system, thereby impeding cognitive flexibility and behavioral adaptation to changing environments. Finally, we introduce concepts of functional compensation, the capacity to generate attentional resources for performance enhancement, and brain structure recovery with abstinence. An understanding of the neural mechanisms of attention, emotion, and cognition will likely provide the basis for better treatment strategies for developing skills that enhance alcoholism therapy adherence and quality of life, and reduce the propensity for relapse. © 2014 Elsevier B.V. All rights reserved.
2013-01-01
Introduction Intestinal dysmotility following human necrotizing enterocolitis suggests that the enteric nervous system is injured during the disease. We examined human intestinal specimens to characterize the enteric nervous system injury that occurs in necrotizing enterocolitis, and then used an animal model of experimental necrotizing enterocolitis to determine whether transplantation of neural stem cells can protect the enteric nervous system from injury. Methods Human intestinal specimens resected from patients with necrotizing enterocolitis (n = 18), from control patients with bowel atresia (n = 8), and from necrotizing enterocolitis and control patients undergoing stoma closure several months later (n = 14 and n = 6 respectively) were subjected to histologic examination, immunohistochemistry, and real-time reverse-transcription polymerase chain reaction to examine the myenteric plexus structure and neurotransmitter expression. In addition, experimental necrotizing enterocolitis was induced in newborn rat pups and neurotransplantation was performed by administration of fluorescently labeled neural stem cells, with subsequent visualization of transplanted cells and determination of intestinal integrity and intestinal motility. Results There was significant enteric nervous system damage with increased enteric nervous system apoptosis, and decreased neuronal nitric oxide synthase expression in myenteric ganglia from human intestine resected for necrotizing enterocolitis compared with control intestine. Structural and functional abnormalities persisted months later at the time of stoma closure. Similar abnormalities were identified in rat pups exposed to experimental necrotizing enterocolitis. Pups receiving neural stem cell transplantation had improved enteric nervous system and intestinal integrity, differentiation of transplanted neural stem cells into functional neurons, significantly improved intestinal transit, and significantly decreased mortality compared with control pups. Conclusions Significant injury to the enteric nervous system occurs in both human and experimental necrotizing enterocolitis. Neural stem cell transplantation may represent a novel future therapy for patients with necrotizing enterocolitis. PMID:24423414
The impact of neurotechnology on rehabilitation.
Berger, Theodore W; Gerhardt, Greg; Liker, Mark A; Soussou, Walid
2008-01-01
This paper present results of a multi-disciplinary project that is developing a microchip-based neural prosthesis for the hippocampus, a region of the brain responsible for the formation of long-term memories. Damage to the hippocampus is frequently associated with epilepsy, stroke, and dementia (Alzheimer's disease) and is considered to underlie the memory deficits related to these neurological conditions. The essential goals of the multi-laboratory effort include: (1) experimental study of neuron and neural network function--how does the hippocampus encode information? (2) formulation of biologically realistic models of neural system dynamics--can that encoding process be described mathematically to realize a predictive model of how the hippocampus responds to any event? (3) microchip implementation of neural system models--can the mathematical model be realized as a set of electronic circuits to achieve parallel processing, rapid computational speed, and miniaturization? and (4) creation of hybrid neuron-silicon interfaces-can structural and functional connections between electronic devices and neural tissue be achieved for long-term, bi-directional communication with the brain? By integrating solutions to these component problems, we are realizing a microchip-based model of hippocampal nonlinear dynamics that can perform the same function as part of the hippocampus. Through bi-directional communication with other neural tissue that normally provides the inputs and outputs to/from a damaged hippocampal area, the biomimetic model could serve as a neural prosthesis. A proof-of-concept will be presented in which the CA3 region of the hippocampal slice is surgically removed and is replaced by a microchip model of CA3 nonlinear dynamics--the "hybrid" hippocampal circuit displays normal physiological properties. How the work in brain slices is being extended to behaving animals also will be described.
Bami, Myrto; Episkopou, Vasso; Gavalas, Anthony; Gouti, Mina
2011-01-01
The evolutionarily conserved Hox family of homeodomain transcription factors plays fundamental roles in regulating cell specification along the anterior posterior axis during development of all bilaterian animals by controlling cell fate choices in a highly localized, extracellular signal and cell context dependent manner. Some studies have established downstream target genes in specific systems but their identification is insufficient to explain either the ability of Hox genes to direct homeotic transformations or the breadth of their patterning potential. To begin delineating Hox gene function in neural development we used a mouse ES cell based system that combines efficient neural differentiation with inducible Hoxb1 expression. Gene expression profiling suggested that Hoxb1 acted as both activator and repressor in the short term but predominantly as a repressor in the long run. Activated and repressed genes segregated in distinct processes suggesting that, in the context examined, Hoxb1 blocked differentiation while activating genes related to early developmental processes, wnt and cell surface receptor linked signal transduction and cell-to-cell communication. To further elucidate aspects of Hoxb1 function we used loss and gain of function approaches in the mouse and chick embryos. We show that Hoxb1 acts as an activator to establish the full expression domain of CRABPI and II in rhombomere 4 and as a repressor to restrict expression of Lhx5 and Lhx9. Thus the Hoxb1 patterning activity includes the regulation of the cellular response to retinoic acid and the delay of the expression of genes that commit cells to neural differentiation. The results of this study show that ES neural differentiation and inducible Hox gene expression can be used as a sensitive model system to systematically identify Hox novel target genes, delineate their interactions with signaling pathways in dictating cell fate and define the extent of functional overlap among different Hox genes. PMID:21637844
The receptive field is dead. Long live the receptive field?
Fairhall, Adrienne
2014-01-01
Advances in experimental techniques, including behavioral paradigms using rich stimuli under closed loop conditions and the interfacing of neural systems with external inputs and outputs, reveal complex dynamics in the neural code and require a revisiting of standard concepts of representation. High-throughput recording and imaging methods along with the ability to observe and control neuronal subpopulations allow increasingly detailed access to the neural circuitry that subserves these representations and the computations they support. How do we harness theory to build biologically grounded models of complex neural function? PMID:24618227
The Brain as a Distributed Intelligent Processing System: An EEG Study
da Rocha, Armando Freitas; Rocha, Fábio Theoto; Massad, Eduardo
2011-01-01
Background Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion The present results support these claims and the neural efficiency hypothesis. PMID:21423657
Cummine, Jacqueline; Cribben, Ivor; Luu, Connie; Kim, Esther; Bahktiari, Reyhaneh; Georgiou, George; Boliek, Carol A
2016-05-01
The neural circuitry associated with language processing is complex and dynamic. Graphical models are useful for studying complex neural networks as this method provides information about unique connectivity between regions within the context of the entire network of interest. Here, the authors explored the neural networks during covert reading to determine the role of feedforward and feedback loops in covert speech production. Brain activity of skilled adult readers was assessed in real word and pseudoword reading tasks with functional MRI (fMRI). The authors provide evidence for activity coherence in the feedforward system (inferior frontal gyrus-supplementary motor area) during real word reading and in the feedback system (supramarginal gyrus-precentral gyrus) during pseudoword reading. Graphical models provided evidence of an extensive, highly connected, neural network when individuals read real words that relied on coordination of the feedforward system. In contrast, when individuals read pseudowords the authors found a limited/restricted network that relied on coordination of the feedback system. Together, these results underscore the importance of considering multiple pathways and articulatory loops during language tasks and provide evidence for a print-to-speech neural network. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Wang, Sheng-Jun; Ouyang, Guang; Guang, Jing; Zhang, Mingsha; Wong, K. Y. Michael; Zhou, Changsong
2016-01-01
Self-organized critical states (SOCs) and stochastic oscillations (SOs) are simultaneously observed in neural systems, which appears to be theoretically contradictory since SOCs are characterized by scale-free avalanche sizes but oscillations indicate typical scales. Here, we show that SOs can emerge in SOCs of small size systems due to temporal correlation between large avalanches at the finite-size cutoff, resulting from the accumulation-release process in SOCs. In contrast, the critical branching process without accumulation-release dynamics cannot exhibit oscillations. The reconciliation of SOCs and SOs is demonstrated both in the sandpile model and robustly in biologically plausible neuronal networks. The oscillations can be suppressed if external inputs eliminate the prominent slow accumulation process, providing a potential explanation of the widely studied Berger effect or event-related desynchronization in neural response. The features of neural oscillations and suppression are confirmed during task processing in monkey eye-movement experiments. Our results suggest that finite-size, columnar neural circuits may play an important role in generating neural oscillations around the critical states, potentially enabling functional advantages of both SOCs and oscillations for sensitive response to transient stimuli.
A computational model of conditioning inspired by Drosophila olfactory system.
Faghihi, Faramarz; Moustafa, Ahmed A; Heinrich, Ralf; Wörgötter, Florentin
2017-03-01
Recent studies have demonstrated that Drosophila melanogaster (briefly Drosophila) can successfully perform higher cognitive processes including second order olfactory conditioning. Understanding the neural mechanism of this behavior can help neuroscientists to unravel the principles of information processing in complex neural systems (e.g. the human brain) and to create efficient and robust robotic systems. In this work, we have developed a biologically-inspired spiking neural network which is able to execute both first and second order conditioning. Experimental studies demonstrated that volume signaling (e.g. by the gaseous transmitter nitric oxide) contributes to memory formation in vertebrates and invertebrates including insects. Based on the existing knowledge of odor encoding in Drosophila, the role of retrograde signaling in memory function, and the integration of synaptic and non-synaptic neural signaling, a neural system is implemented as Simulated fly. Simulated fly navigates in a two-dimensional environment in which it receives odors and electric shocks as sensory stimuli. The model suggests some experimental research on retrograde signaling to investigate neural mechanisms of conditioning in insects and other animals. Moreover, it illustrates a simple strategy to implement higher cognitive capabilities in machines including robots. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neural control of magnetic suspension systems
NASA Technical Reports Server (NTRS)
Gray, W. Steven
1993-01-01
The purpose of this research program is to design, build and test (in cooperation with NASA personnel from the NASA Langley Research Center) neural controllers for two different small air-gap magnetic suspension systems. The general objective of the program is to study neural network architectures for the purpose of control in an experimental setting and to demonstrate the feasibility of the concept. The specific objectives of the research program are: (1) to demonstrate through simulation and experimentation the feasibility of using neural controllers to stabilize a nonlinear magnetic suspension system; (2) to investigate through simulation and experimentation the performance of neural controllers designs under various types of parametric and nonparametric uncertainty; (3) to investigate through simulation and experimentation various types of neural architectures for real-time control with respect to performance and complexity; and (4) to benchmark in an experimental setting the performance of neural controllers against other types of existing linear and nonlinear compensator designs. To date, the first one-dimensional, small air-gap magnetic suspension system has been built, tested and delivered to the NASA Langley Research Center. The device is currently being stabilized with a digital linear phase-lead controller. The neural controller hardware is under construction. Two different neural network paradigms are under consideration, one based on hidden layer feedforward networks trained via back propagation and one based on using Gaussian radial basis functions trained by analytical methods related to stability conditions. Some advanced nonlinear control algorithms using feedback linearization and sliding mode control are in simulation studies.
Systematic construction and control of stereo nerve vision network in intelligent manufacturing
NASA Astrophysics Data System (ADS)
Liu, Hua; Wang, Helong; Guo, Chunjie; Ding, Quanxin; Zhou, Liwei
2017-10-01
A system method of constructing stereo vision by using neural network is proposed, and the operation and control mechanism in actual operation are proposed. This method makes effective use of the neural network in learning and memory function, by after training with samples. Moreover, the neural network can learn the nonlinear relationship in the stereoscopic vision system and the internal and external orientation elements. These considerations are Worthy of attention, which includes limited constraints, the scientific of critical group, the operating speed and the operability in technical aspects. The results support our theoretical forecast.
Gulsen, Salih
2015-03-15
The first goal in neurosurgery is to protect neural function as long as it is possible. Moreover, while protecting the neural function, a neurosurgeon should extract the maximum amount of tumoral tissue from the tumour region of the brain. So neurosurgery and technological advancement go hand in hand to realize this goal. Using of CT compatible stereotaxy for removing a cranial tumour is to be commended as a cornerstone of these technological advancements. Following CT compatible stereotaxic system applications in neurosurgery, different techniques have taken place in neurosurgical practice. These techniques are magnetic resonance imaging (MRI), MRI compatible stereotaxis, frameless stereotaxy, volumetric stereotaxy, functional MRI, diffusion tensor (DT) imaging techniques (tractography of the white matter), intraoperative MRI and neuronavigation systems. However, to use all of this equipment having these technologies would be impossible because of economic reasons. However, when we correlated this technique with MRI scans of the patients with CT compatible stereotaxy scans, it is possible to provide gross total resection and protect and improve patients' neural functions.
Multiple neural network approaches to clinical expert systems
NASA Astrophysics Data System (ADS)
Stubbs, Derek F.
1990-08-01
We briefly review the concept of computer aided medical diagnosis and more extensively review the the existing literature on neural network applications in the field. Neural networks can function as simple expert systems for diagnosis or prognosis. Using a public database we develop a neural network for the diagnosis of a major presenting symptom while discussing the development process and possible approaches. MEDICAL EXPERTS SYSTEMS COMPUTER AIDED DIAGNOSIS Biomedicine is an incredibly diverse and multidisciplinary field and it is not surprising that neural networks with their many applications are finding more and more applications in the highly non-linear field of biomedicine. I want to concentrate on neural networks as medical expert systems for clinical diagnosis or prognosis. Expert Systems started out as a set of computerized " ifthen" rules. Everything was reduced to boolean logic and the promised land of computer experts was said to be in sight. It never came. Why? First the computer code explodes as the number of " ifs" increases. All the " ifs" have to interact. Second experts are not very good at reducing expertise to language. It turns out that experts recognize patterns and have non-verbal left-brain intuition decision processes. Third learning by example rather than learning by rule is the way natural brains works and making computers work by rule-learning is hideously labor intensive. Neural networks can learn from example. They learn the results
NASA Astrophysics Data System (ADS)
Liu, Xiaosong; Shan, Zebiao; Li, Yuanchun
2017-04-01
Pinpoint landing is a critical step in some asteroid exploring missions. This paper is concerned with the descent trajectory control for soft touching down on a small irregularly-shaped asteroid. A dynamic boundary layer based neural network quasi-sliding mode control law is proposed to track a desired descending path. The asteroid's gravitational acceleration acting on the spacecraft is described by the polyhedron method. Considering the presence of input constraint and unmodeled acceleration, the dynamic equation of relative motion is presented first. The desired descending path is planned using cubic polynomial method, and a collision detection algorithm is designed. To perform trajectory tracking, a neural network sliding mode control law is given first, where the sliding mode control is used to ensure the convergence of system states. Two radial basis function neural networks (RBFNNs) are respectively used as an approximator for the unmodeled term and a compensator for the difference between the actual control input with magnitude constraint and nominal control. To improve the chattering induced by the traditional sliding mode control and guarantee the reachability of the system, a specific saturation function with dynamic boundary layer is proposed to replace the sign function in the preceding control law. Through the Lyapunov approach, the reachability condition of the control system is given. The improved control law can guarantee the system state move within a gradually shrinking quasi-sliding mode band. Numerical simulation results demonstrate the effectiveness of the proposed control strategy.
Hybrid multiphoton volumetric functional imaging of large-scale bioengineered neuronal networks
NASA Astrophysics Data System (ADS)
Dana, Hod; Marom, Anat; Paluch, Shir; Dvorkin, Roman; Brosh, Inbar; Shoham, Shy
2014-06-01
Planar neural networks and interfaces serve as versatile in vitro models of central nervous system physiology, but adaptations of related methods to three dimensions (3D) have met with limited success. Here, we demonstrate for the first time volumetric functional imaging in a bioengineered neural tissue growing in a transparent hydrogel with cortical cellular and synaptic densities, by introducing complementary new developments in nonlinear microscopy and neural tissue engineering. Our system uses a novel hybrid multiphoton microscope design combining a 3D scanning-line temporal-focusing subsystem and a conventional laser-scanning multiphoton microscope to provide functional and structural volumetric imaging capabilities: dense microscopic 3D sampling at tens of volumes per second of structures with mm-scale dimensions containing a network of over 1,000 developing cells with complex spontaneous activity patterns. These developments open new opportunities for large-scale neuronal interfacing and for applications of 3D engineered networks ranging from basic neuroscience to the screening of neuroactive substances.
Kanegusuku, Hélcio; Queiroz, Andréia C; Silva, Valdo J; de Mello, Marco T; Ugrinowitsch, Carlos; Forjaz, Cláudia L
2015-07-01
The effects of high-intensity progressive resistance training (HIPRT) on cardiovascular function and autonomic neural regulation in older adults are unclear. To investigate this issue, 25 older adults were randomly divided into two groups: control (CON, N = 13, 63 ± 4 years; no training) and HIPRT (N = 12, 64 ± 4 years; 2 sessions/week, 7 exercises, 2–4 sets, 10–4 RM). Before and after four months, maximal strength, quadriceps cross-sectional area (QCSA), clinic and ambulatory blood pressures (BP), systemic hemodynamics, and cardiovascular autonomic modulation were measured. Maximal strength and QCSA increased in the HIPRT group and did not change in the CON group. Clinic and ambulatory BP, cardiac output, systemic vascular resistance, stroke volume, heart rate, and cardiac sympathovagal balance did not change in the HIPRT group or the CON group. In conclusion, HIPRT was effective at increasing muscle mass and strength without promoting changes in cardiovascular function or autonomic neural regulation.
Neural Substrates for Processing Task-Irrelevant Sad Images in Adolescents
ERIC Educational Resources Information Center
Wang, Lihong; Huettel, Scott; De Bellis, Michael D.
2008-01-01
Neural systems related to cognitive and emotional processing were examined in adolescents using event-related functional magnetic resonance imaging (fMRI). Ten healthy adolescents performed an emotional oddball task. Subjects detected infrequent circles (targets) within a continual stream of phase-scrambled images (standards). Sad and neutral…
Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)
Shang, Chunfeng; Yang, Wenbin; Bai, Lu; Du, Jiulin
2017-01-01
The internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here, we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish. PMID:28930070
Physiological changes in neurodegeneration - mechanistic insights and clinical utility.
Ahmed, Rebekah M; Ke, Yazi D; Vucic, Steve; Ittner, Lars M; Seeley, William; Hodges, John R; Piguet, Olivier; Halliday, Glenda; Kiernan, Matthew C
2018-05-01
The effects of neurodegenerative syndromes extend beyond cognitive function to involve key physiological processes, including eating and metabolism, autonomic nervous system function, sleep, and motor function. Changes in these physiological processes are present in several conditions, including frontotemporal dementia, amyotrophic lateral sclerosis, Alzheimer disease and the parkinsonian plus conditions. Key neural structures that mediate physiological changes across these conditions include neuroendocrine and hypothalamic pathways, reward pathways, motor systems and the autonomic nervous system. In this Review, we highlight the key changes in physiological processing in neurodegenerative syndromes and the similarities in these changes between different progressive neurodegenerative brain conditions. The changes and similarities between disorders might provide novel insights into the human neural correlates of physiological functioning. Given the evidence that physiological changes can arise early in the neurodegenerative process, these changes could provide biomarkers to aid in the early diagnosis of neurodegenerative diseases and in treatment trials.
Yun, Richard J; Krystal, John H; Mathalon, Daniel H
2010-03-01
The human working memory system provides an experimentally useful model for examination of neural overload effects on subsequent functioning of the overloaded system. This study employed functional magnetic resonance imaging in conjunction with a parametric working memory task to characterize the behavioral and neural effects of cognitive overload on subsequent cognitive performance, with particular attention to cognitive-limbic interactions. Overloading the working memory system was associated with varying degrees of subsequent decline in performance accuracy and reduced activation of brain regions central to both task performance and suppression of negative affect. The degree of performance decline was independently predicted by three separate factors operating during the overload condition: the degree of task failure, the degree of amygdala activation, and the degree of inverse coupling between the amygdala and dorsolateral prefrontal cortex. These findings suggest that vulnerability to overload effects in cognitive functioning may be mediated by reduced amygdala suppression and subsequent amygdala-prefrontal interaction.
Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia
Berridge, Michael J.
2013-01-01
Neurons have highly developed Ca2+ signaling systems responsible for regulating a large number of neural functions such as the control of brain rhythms, information processing and the changes in synaptic plasticity that underpin learning and memory. The tonic excitatory drive, which is activated by the ascending arousal system, is particularly important for processes such as sensory perception, cognition and consciousness. The Ca2+ signaling pathway is a key component of this arousal system that regulates the neuronal excitability responsible for controlling the neural brain rhythms required for information processing and cognition. Dysregulation of the Ca2+ signaling pathway responsible for many of these neuronal processes has been implicated in the development of some of the major neural diseases in man such as Alzheimer disease, bipolar disorder and schizophrenia. Various treatments, which are known to act by reducing the activity of Ca2+ signaling, have proved successful in alleviating the symptoms of some of these neural diseases. PMID:22895098
EDITORIAL: Focus on the neural interface Focus on the neural interface
NASA Astrophysics Data System (ADS)
Durand, Dominique M.
2009-10-01
The possibility of an effective connection between neural tissue and computers has inspired scientists and engineers to develop new ways of controlling and obtaining information from the nervous system. These applications range from `brain hacking' to neural control of artificial limbs with brain signals. Notwithstanding the significant advances in neural prosthetics in the last few decades and the success of some stimulation devices such as cochlear prosthesis, neurotechnology remains below its potential for restoring neural function in patients with nervous system disorders. One of the reasons for this limited impact can be found at the neural interface and close attention to the integration between electrodes and tissue should improve the possibility of successful outcomes. The neural interfaces research community consists of investigators working in areas such as deep brain stimulation, functional neuromuscular/electrical stimulation, auditory prostheses, cortical prostheses, neuromodulation, microelectrode array technology, brain-computer/machine interfaces. Following the success of previous neuroprostheses and neural interfaces workshops, funding (from NIH) was obtained to establish a biennial conference in the area of neural interfaces. The first Neural Interfaces Conference took place in Cleveland, OH in 2008 and several topics from this conference have been selected for publication in this special section of the Journal of Neural Engineering. Three `perspectives' review the areas of neural regeneration (Corredor and Goldberg), cochlear implants (O'Leary et al) and neural prostheses (Anderson). Seven articles focus on various aspects of neural interfacing. One of the most popular of these areas is the field of brain-computer interfaces. Fraser et al, report on a method to generate robust control with simple signal processing algorithms of signals obtained with electrodes implanted in the brain. One problem with implanted electrode arrays, however, is that they can fail to record reliably neural signals for long periods of time. McConnell et al show that by measuring the impedance of the tissue, one can evaluate the extent of the tissue response to the presence of the electrode. Another problem with the neural interface is the mismatch of the mechanical properties between electrode and tissue. Basinger et al use finite element modeling to analyze this mismatch in retinal prostheses and guide the design of new implantable devices. Electrical stimulation has been the method of choice to activate externally the nervous system. However, Zhang et al show that a novel dual hybrid device integrating electrical and optical stimulation can provide an effective interface for simultaneous recording and stimulation. By interfacing an EMG recording system and a movement detection system, Johnson and Fuglevand develop a model capable of predicting muscle activity during movement that could be important for the development of motor prostheses. Sensory restoration is another unsolved problem in neural prostheses. By developing a novel interface between the dorsal root ganglia and electrodes arrays, Gaunt et al show that it is possible to recruit afferent fibers for sensory substitution. Finally, by interfacing directly with muscles, Jung and colleagues show that stimulation of muscles involved in locomotion following spinal cord damage in rats can provide an effective treatment modality for incomplete spinal cord injury. This series of articles clearly shows that the interface is indeed one of the keys to successful therapeutic neural devices. The next Neural Interfaces Conference will take place in Los Angeles, CA in June 2010 and one can expect to see new developments in neural engineering obtained by focusing on the neural interface.
Alkobtawi, Mansour; Ray, Heather; Barriga, Elias H; Moreno, Mauricio; Kerney, Ryan; Monsoro-Burq, Anne-Helene; Saint-Jeannet, Jean-Pierre; Mayor, Roberto
2018-03-06
The neural crest is a multipotent population of cells that originates a variety of cell types. Many animal models are used to study neural crest induction, migration and differentiation, with amphibians and birds being the most widely used systems. A major technological advance to study neural crest development in mouse, chick and zebrafish has been the generation of transgenic animals in which neural crest specific enhancers/promoters drive the expression of either fluorescent proteins for use as lineage tracers, or modified genes for use in functional studies. Unfortunately, no such transgenic animals currently exist for the amphibians Xenopus laevis and tropicalis, key model systems for studying neural crest development. Here we describe the generation and characterization of two transgenic Xenopus laevis lines, Pax3-GFP and Sox10-GFP, in which GFP is expressed in the pre-migratory and migratory neural crest, respectively. We show that Pax3-GFP could be a powerful tool to study neural crest induction, whereas Sox10-GFP could be used in the study of neural crest migration in living embryos. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
A class of convergent neural network dynamics
NASA Astrophysics Data System (ADS)
Fiedler, Bernold; Gedeon, Tomáš
1998-01-01
We consider a class of systems of differential equations in Rn which exhibits convergent dynamics. We find a Lyapunov function and show that every bounded trajectory converges to the set of equilibria. Our result generalizes the results of Cohen and Grossberg (1983) for convergent neural networks. It replaces the symmetry assumption on the matrix of weights by the assumption on the structure of the connections in the neural network. We prove the convergence result also for a large class of Lotka-Volterra systems. These are naturally defined on the closed positive orthant. We show that there are no heteroclinic cycles on the boundary of the positive orthant for the systems in this class.
Neural differentiation promoted by truncated trkC receptors in collaboration with p75(NTR).
Hapner, S J; Boeshore, K L; Large, T H; Lefcort, F
1998-09-01
trkC receptors, which serve critical functions during the development of the nervous system, are alternatively spliced to yield isoforms containing the catalytic tyrosine kinase domain (TK+) and truncated isoforms which lack this domain (TK-). To test for potential differences in their roles during early stages of neural development, TK+ and TK- isoforms were ectopically expressed in cultures of neural crest, the stem cell population that gives rise to the vast majority of the peripheral nervous system. NT-3 activation of ectopically expressed trkC TK+ receptors promoted both proliferation of neural crest cells and neuronal differentiation. Strikingly, the trkC TK- isoform was significantly more effective at promoting neuronal differentiation, but had no effect on proliferation. Furthermore, the trkC TK- response was dependent on a conserved receptor cytoplasmic domain and required the participation of the p75(NTR) neurotrophin receptor. Antibody-mediated receptor dimerization of TK+ receptors, but not TK- receptors, was sufficient to stimulate differentiation. These data identify a phenotypic response to activation of the trkC TK- receptor and demonstrate a functional interaction with p75(NTR), indicating there may be multiple trkC receptor-mediated systems guiding neuronal differentiation. Copyright 1998 Academic Press.
ERIC Educational Resources Information Center
Norton, Elizabeth S.; Kovelman, Ioulia; Petitto, Laura-Ann
2007-01-01
How do people spell the thousands of words at the tips of their tongues? Are words with "regular" sound-to-letter correspondences (e.g., "blink") spelled using the same neural systems as those with "irregular" correspondences (e.g., "yacht")? By offering novel neuroimaging evidence, we aim to advance contemporary debate about whether people use a…
Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling.
Lorenz, Carmen; Prigione, Alessandro
2017-12-01
Modulation of energy metabolism is emerging as a key aspect associated with cell fate transition. The establishment of a correct metabolic program is particularly relevant for neural cells given their high bioenergetic requirements. Accordingly, diseases of the nervous system commonly involve mitochondrial impairment. Recent studies in animals and in neural derivatives of human pluripotent stem cells (PSCs) highlighted the importance of mitochondrial metabolism for neural fate decisions in health and disease. The mitochondria-based metabolic program of early neurogenesis suggests that PSC-derived neural stem cells (NSCs) may be used for modeling neurological disorders. Understanding how metabolic programming is orchestrated during neural commitment may provide important information for the development of therapies against conditions affecting neural functions, including aging and mitochondrial disorders. Copyright © 2017. Published by Elsevier Ltd.
Si, Wenjie; Dong, Xunde; Yang, Feifei
2018-03-01
This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dobek, Christine E; Beynon, Michaela E; Bosma, Rachael L; Stroman, Patrick W
2014-10-01
The oldest known method for relieving pain is music, and yet, to date, the underlying neural mechanisms have not been studied. Here, we investigate these neural mechanisms by applying a well-defined painful stimulus while participants listened to their favorite music or to no music. Neural responses in the brain, brain stem, and spinal cord were mapped with functional magnetic resonance imaging spanning the cortex, brain stem, and spinal cord. Subjective pain ratings were observed to be significantly lower when pain was administered with music than without music. The pain stimulus without music elicited neural activity in brain regions that are consistent with previous studies. Brain regions associated with pleasurable music listening included limbic, frontal, and auditory regions, when comparing music to non-music pain conditions. In addition, regions demonstrated activity indicative of descending pain modulation when contrasting the 2 conditions. These regions include the dorsolateral prefrontal cortex, periaqueductal gray matter, rostral ventromedial medulla, and dorsal gray matter of the spinal cord. This is the first imaging study to characterize the neural response of pain and how pain is mitigated by music, and it provides new insights into the neural mechanism of music-induced analgesia within the central nervous system. This article presents the first investigation of neural processes underlying music analgesia in human participants. Music modulates pain responses in the brain, brain stem, and spinal cord, and neural activity changes are consistent with engagement of the descending analgesia system. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.
Using neural networks and Dyna algorithm for integrated planning, reacting and learning in systems
NASA Technical Reports Server (NTRS)
Lima, Pedro; Beard, Randal
1992-01-01
The traditional AI answer to the decision making problem for a robot is planning. However, planning is usually CPU-time consuming, depending on the availability and accuracy of a world model. The Dyna system generally described in earlier work, uses trial and error to learn a world model which is simultaneously used to plan reactions resulting in optimal action sequences. It is an attempt to integrate planning, reactive, and learning systems. The architecture of Dyna is presented. The different blocks are described. There are three main components of the system. The first is the world model used by the robot for internal world representation. The input of the world model is the current state and the action taken in the current state. The output is the corresponding reward and resulting state. The second module in the system is the policy. The policy observes the current state and outputs the action to be executed by the robot. At the beginning of program execution, the policy is stochastic and through learning progressively becomes deterministic. The policy decides upon an action according to the output of an evaluation function, which is the third module of the system. The evaluation function takes the following as input: the current state of the system, the action taken in that state, the resulting state, and a reward generated by the world which is proportional to the current distance from the goal state. Originally, the work proposed was as follows: (1) to implement a simple 2-D world where a 'robot' is navigating around obstacles, to learn the path to a goal, by using lookup tables; (2) to substitute the world model and Q estimate function Q by neural networks; and (3) to apply the algorithm to a more complex world where the use of a neural network would be fully justified. In this paper, the system design and achieved results will be described. First we implement the world model with a neural network and leave Q implemented as a look up table. Next, we use a lookup table for the world model and implement the Q function with a neural net. Time limitations prevented the combination of these two approaches. The final section discusses the results and gives clues for future work.
[Modeling developmental aspects of sensorimotor control of speech production].
Kröger, B J; Birkholz, P; Neuschaefer-Rube, C
2007-05-01
Detailed knowledge of the neurophysiology of speech acquisition is important for understanding the developmental aspects of speech perception and production and for understanding developmental disorders of speech perception and production. A computer implemented neural model of sensorimotor control of speech production was developed. The model is capable of demonstrating the neural functions of different cortical areas during speech production in detail. (i) Two sensory and two motor maps or neural representations and the appertaining neural mappings or projections establish the sensorimotor feedback control system. These maps and mappings are already formed and trained during the prelinguistic phase of speech acquisition. (ii) The feedforward sensorimotor control system comprises the lexical map (representations of sounds, syllables, and words of the first language) and the mappings from lexical to sensory and to motor maps. The training of the appertaining mappings form the linguistic phase of speech acquisition. (iii) Three prelinguistic learning phases--i. e. silent mouthing, quasi stationary vocalic articulation, and realisation of articulatory protogestures--can be defined on the basis of our simulation studies using the computational neural model. These learning phases can be associated with temporal phases of prelinguistic speech acquisition obtained from natural data. The neural model illuminates the detailed function of specific cortical areas during speech production. In particular it can be shown that developmental disorders of speech production may result from a delayed or incorrect process within one of the prelinguistic learning phases defined by the neural model.
NASA Astrophysics Data System (ADS)
Cummings, K. D.; Frye, R. C.; Rietman, E. A.
1990-10-01
This letter describes the initial results of using a theoretical determination of the proximity function and an adaptively trained neural network to proximity-correct patterns written on a Cambridge electron beam lithography system. The methods described are complete and may be applied to any electron beam exposure system that can modify the dose during exposure. The patterns produced in resist show the effects of proximity correction versus noncorrected patterns.
Bhowmik, David; Shanahan, Murray
2013-01-01
Groups of neurons firing synchronously are hypothesized to underlie many cognitive functions such as attention, associative learning, memory, and sensory selection. Recent theories suggest that transient periods of synchronization and desynchronization provide a mechanism for dynamically integrating and forming coalitions of functionally related neural areas, and that at these times conditions are optimal for information transfer. Oscillating neural populations display a great amount of spectral complexity, with several rhythms temporally coexisting in different structures and interacting with each other. This paper explores inter-band frequency modulation between neural oscillators using models of quadratic integrate-and-fire neurons and Hodgkin-Huxley neurons. We vary the structural connectivity in a network of neural oscillators, assess the spectral complexity, and correlate the inter-band frequency modulation. We contrast this correlation against measures of metastable coalition entropy and synchrony. Our results show that oscillations in different neural populations modulate each other so as to change frequency, and that the interaction of these fluctuating frequencies in the network as a whole is able to drive different neural populations towards episodes of synchrony. Further to this, we locate an area in the connectivity space in which the system directs itself in this way so as to explore a large repertoire of synchronous coalitions. We suggest that such dynamics facilitate versatile exploration, integration, and communication between functionally related neural areas, and thereby supports sophisticated cognitive processing in the brain. PMID:23614040
Cholinergic regulation of the vasopressin neuroendocrine system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michels, K.M.
1987-01-01
To clarify the physical and functional relationship between the cholinergic system, and the neurodocrine cells of the supraoptic nucleus, a combination of experiments on receptor binding, localization and function were carried out. The putative nicotinic receptor probe (/sup 125/I)alpha bungarotoxin ((/sup 125/I)alpha BTX) bound with high affinity and specificity to the vasopressin and oxytocin magnocellular neurons of the supraoptic nucleus, nucleus circularis, and paraventricular nucleus. Binding of (/sup 125/I)alpha BTX within the neural lobe was very low. In contrast, the muscarinic cholinergic receptor probe (/sup 3/H)quinuclidinylbenzilate ((/sup 3/H)QNB) did not bind to magnocellular vasopressin and oxytocin cell groups. The medianmore » eminence, which contains the neurosecretory axons, and the neural lobe of the pituitary contain low levels of (/sup 3/H)QNB binding. The physiological significance of these cholinergic receptors in regulation of vasopressin release was tested using an in vitro preparation of the supraoptic - neural lobe system.« less
Convergent dysregulation of frontal cortical cognitive and reward systems in eating disorders.
Stefano, George B; Ptáček, Radek; Kuželová, Hana; Mantione, Kirk J; Raboch, Jiří; Papezova, Hana; Kream, Richard M
2013-05-10
A substantive literature has drawn a compelling case for the functional involvement of mesolimbic/prefrontal cortical neural reward systems in normative control of eating and in the etiology and persistence of severe eating disorders that affect diverse human populations. Presently, we provide a short review that develops an equally compelling case for the importance of dysregulated frontal cortical cognitive neural networks acting in concert with regional reward systems in the regulation of complex eating behaviors and in the presentation of complex pathophysiological symptoms associated with major eating disorders. Our goal is to highlight working models of major eating disorders that incorporate complementary approaches to elucidate functionally interactive neural circuits defined by their regulatory neurochemical phenotypes. Importantly, we also review evidence-based linkages between widely studied psychiatric and neurodegenerative syndromes (e.g., autism spectrum disorders and Parkinson's disease) and co-morbid eating disorders to elucidate basic mechanisms involving dopaminergic transmission and its regulation by endogenously expressed morphine in these same cortical regions.
Suzuki, Hitoshi; Osaki, Ken; Sano, Kaori; Alam, A H M Khurshid; Nakamura, Yuichiro; Ishigaki, Yasuhito; Kawahara, Kozo; Tsukahara, Toshifumi
2011-02-18
Alternative splicing, which produces multiple mRNAs from a single gene, occurs in most human genes and contributes to protein diversity. Many alternative isoforms are expressed in a spatio-temporal manner, and function in diverse processes, including in the neural system. The purpose of the present study was to comprehensively investigate neural-splicing using P19 cells. GeneChip Exon Array analysis was performed using total RNAs purified from cells during neuronal cell differentiation. To efficiently and readily extract the alternative exon candidates, 9 filtering conditions were prepared, yielding 262 candidate exons (236 genes). Semiquantitative RT-PCR results in 30 randomly selected candidates suggested that 87% of the candidates were differentially alternatively spliced in neuronal cells compared to undifferentiated cells. Gene ontology and pathway analyses suggested that many of the candidate genes were associated with neural events. Together with 66 genes whose functions in neural cells or organs were reported previously, 47 candidate genes were found to be linked to 189 events in the gene-level profile of neural differentiation. By text-mining for the alternative isoform, distinct functions of the isoforms of 9 candidate genes indicated by the result of Exon Array were confirmed. Alternative exons were successfully extracted. Results from the informatics analyses suggested that neural events were primarily governed by genes whose expression was increased and whose transcripts were differentially alternatively spliced in the neuronal cells. In addition to known functions in neural cells or organs, the uninvestigated alternative splicing events of 11 genes among 47 candidate genes suggested that cell cycle events are also potentially important. These genes may help researchers to differentiate the roles of alternative splicing in cell differentiation and cell proliferation.
Inter-subject synchrony as an index of functional specialization in early childhood.
Moraczewski, Dustin; Chen, Gang; Redcay, Elizabeth
2018-02-02
Early childhood is a time of significant change within multiple cognitive domains including social cognition, memory, executive function, and language; however, the corresponding neural changes remain poorly understood. This is likely due to the difficulty in acquiring artifact-free functional MRI data during complex task-based or unconstrained resting-state experiments in young children. In addition, task-based and resting state experiments may not capture dynamic real-world processing. Here we overcome both of these challenges through use of naturalistic viewing (i.e., passively watching a movie in the scanner) combined with inter-subject neural synchrony to examine functional specialization within 4- and 6-year old children. Using a novel and stringent crossed random effect statistical analysis, we find that children show more variable patterns of activation compared to adults, particularly within regions of the default mode network (DMN). In addition, we found partial evidence that child-to-adult synchrony increased as a function of age within a DMN region: the temporoparietal junction. Our results suggest age-related differences in functional brain organization within a cross-sectional sample during an ecologically valid context and demonstrate that neural synchrony during naturalistic viewing fMRI can be used to examine functional specialization during early childhood - a time when neural and cognitive systems are in flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong
Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed amore » new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.« less
Shahdoost, Shahab; Frost, Shawn; Dunham, Caleb; DeJong, Stacey; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram
2015-08-01
Approximately 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress toward developing a miniaturized brain-machine-spinal cord interface (BMSI) that converts in real time the neural command signals recorded from the cortical motor regions to electrical stimuli delivered to the spinal cord below the injury level. Using a combination of custom integrated circuit (IC) technology for corticospinal interfacing and field-programmable gate array (FPGA)-based technology for embedded signal processing, we demonstrate proof-of-concept of distinct muscle pattern activation via intraspinal microstimulation (ISMS) controlled in real time by intracortical neural spikes in an anesthetized laboratory rat.
Shared neural circuits for mentalizing about the self and others.
Lombardo, Michael V; Chakrabarti, Bhismadev; Bullmore, Edward T; Wheelwright, Sally J; Sadek, Susan A; Suckling, John; Baron-Cohen, Simon
2010-07-01
Although many examples exist for shared neural representations of self and other, it is unknown how such shared representations interact with the rest of the brain. Furthermore, do high-level inference-based shared mentalizing representations interact with lower level embodied/simulation-based shared representations? We used functional neuroimaging (fMRI) and a functional connectivity approach to assess these questions during high-level inference-based mentalizing. Shared mentalizing representations in ventromedial prefrontal cortex, posterior cingulate/precuneus, and temporo-parietal junction (TPJ) all exhibited identical functional connectivity patterns during mentalizing of both self and other. Connectivity patterns were distributed across low-level embodied neural systems such as the frontal operculum/ventral premotor cortex, the anterior insula, the primary sensorimotor cortex, and the presupplementary motor area. These results demonstrate that identical neural circuits are implementing processes involved in mentalizing of both self and other and that the nature of such processes may be the integration of low-level embodied processes within higher level inference-based mentalizing.
Microfluidic systems for stem cell-based neural tissue engineering.
Karimi, Mahdi; Bahrami, Sajad; Mirshekari, Hamed; Basri, Seyed Masoud Moosavi; Nik, Amirala Bakhshian; Aref, Amir R; Akbari, Mohsen; Hamblin, Michael R
2016-07-05
Neural tissue engineering aims at developing novel approaches for the treatment of diseases of the nervous system, by providing a permissive environment for the growth and differentiation of neural cells. Three-dimensional (3D) cell culture systems provide a closer biomimetic environment, and promote better cell differentiation and improved cell function, than could be achieved by conventional two-dimensional (2D) culture systems. With the recent advances in the discovery and introduction of different types of stem cells for tissue engineering, microfluidic platforms have provided an improved microenvironment for the 3D-culture of stem cells. Microfluidic systems can provide more precise control over the spatiotemporal distribution of chemical and physical cues at the cellular level compared to traditional systems. Various microsystems have been designed and fabricated for the purpose of neural tissue engineering. Enhanced neural migration and differentiation, and monitoring of these processes, as well as understanding the behavior of stem cells and their microenvironment have been obtained through application of different microfluidic-based stem cell culture and tissue engineering techniques. As the technology advances it may be possible to construct a "brain-on-a-chip". In this review, we describe the basics of stem cells and tissue engineering as well as microfluidics-based tissue engineering approaches. We review recent testing of various microfluidic approaches for stem cell-based neural tissue engineering.
NASA Astrophysics Data System (ADS)
Arik, Sabri
2006-02-01
This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature.
Center for Neural Engineering: applications of pulse-coupled neural networks
NASA Astrophysics Data System (ADS)
Malkani, Mohan; Bodruzzaman, Mohammad; Johnson, John L.; Davis, Joel
1999-03-01
Pulsed-Coupled Neural Network (PCNN) is an oscillatory model neural network where grouping of cells and grouping among the groups that form the output time series (number of cells that fires in each input presentation also called `icon'). This is based on the synchronicity of oscillations. Recent work by Johnson and others demonstrated the functional capabilities of networks containing such elements for invariant feature extraction using intensity maps. PCNN thus presents itself as a more biologically plausible model with solid functional potential. This paper will present the summary of several projects and their results where we successfully applied PCNN. In project one, the PCNN was applied for object recognition and classification through a robotic vision system. The features (icons) generated by the PCNN were then fed into a feedforward neural network for classification. In project two, we developed techniques for sensory data fusion. The PCNN algorithm was implemented and tested on a B14 mobile robot. The PCNN-based features were extracted from the images taken from the robot vision system and used in conjunction with the map generated by data fusion of the sonar and wheel encoder data for the navigation of the mobile robot. In our third project, we applied the PCNN for speaker recognition. The spectrogram image of speech signals are fed into the PCNN to produce invariant feature icons which are then fed into a feedforward neural network for speaker identification.
Numerical solution of the nonlinear Schrodinger equation by feedforward neural networks
NASA Astrophysics Data System (ADS)
Shirvany, Yazdan; Hayati, Mohsen; Moradian, Rostam
2008-12-01
We present a method to solve boundary value problems using artificial neural networks (ANN). A trial solution of the differential equation is written as a feed-forward neural network containing adjustable parameters (the weights and biases). From the differential equation and its boundary conditions we prepare the energy function which is used in the back-propagation method with momentum term to update the network parameters. We improved energy function of ANN which is derived from Schrodinger equation and the boundary conditions. With this improvement of energy function we can use unsupervised training method in the ANN for solving the equation. Unsupervised training aims to minimize a non-negative energy function. We used the ANN method to solve Schrodinger equation for few quantum systems. Eigenfunctions and energy eigenvalues are calculated. Our numerical results are in agreement with their corresponding analytical solution and show the efficiency of ANN method for solving eigenvalue problems.
C8orf46 homolog encodes a novel protein Vexin that is required for neurogenesis in Xenopus laevis.
Moore, Kathryn B; Logan, Mary A; Aldiri, Issam; Roberts, Jacqueline M; Steele, Michael; Vetter, Monica L
2018-05-01
Neural basic helix-loop helix (bHLH) transcription factors promote progenitor cell differentiation by activation of downstream target genes that coordinate neuronal differentiation. Here we characterize a neural bHLH target gene in Xenopus laevis, vexin (vxn; previously sbt1), that is homologous to human c8orf46 and is conserved across vertebrate species. C8orf46 has been implicated in cancer progression, but its function is unknown. Vxn is transiently expressed in differentiating progenitors in the developing central nervous system (CNS), and is required for neurogenesis in the neural plate and retina. Its function is conserved, since overexpression of either Xenopus or mouse vxn expands primary neurogenesis and promotes early retinal cell differentiation in cooperation with neural bHLH factors. Vxn protein is localized to the cell membrane and the nucleus, but functions in the nucleus to promote neural differentiation. Vxn inhibits cell proliferation, and works with the cyclin-dependent kinase inhibitor p27Xic1 (cdkn1b) to enhance neurogenesis and increase levels of the proneural protein Neurog2. We propose that vxn provides a key link between neural bHLH activity and execution of the neurogenic program. Copyright © 2018 Elsevier Inc. All rights reserved.
Functional expansion representations of artificial neural networks
NASA Technical Reports Server (NTRS)
Gray, W. Steven
1992-01-01
In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.
Fetsch, Christopher R
2016-04-01
The success of systems neuroscience depends on the ability to forge quantitative links between neural activity and behavior. Traditionally, this process has benefited from the rigorous development and testing of hypotheses using tools derived from classical psychophysics and computational motor control. As our capacity for measuring neural activity improves, accompanied by powerful new analysis strategies, it seems prudent to remember what these traditional approaches have to offer. Here I present a perspective on the merits of principled task design and tight behavioral control, along with some words of caution about interpretation in unguided, large-scale neural recording studies. I argue that a judicious combination of new and old approaches is the best way to advance our understanding of higher brain function in health and disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Research on Environmental Adjustment of Cloud Ranch Based on BP Neural Network PID Control
NASA Astrophysics Data System (ADS)
Ren, Jinzhi; Xiang, Wei; Zhao, Lin; Wu, Jianbo; Huang, Lianzhen; Tu, Qinggang; Zhao, Heming
2018-01-01
In order to make the intelligent ranch management mode replace the traditional artificial one gradually, this paper proposes a pasture environment control system based on cloud server, and puts forward the PID control algorithm based on BP neural network to control temperature and humidity better in the pasture environment. First, to model the temperature and humidity (controlled object) of the pasture, we can get the transfer function. Then the traditional PID control algorithm and the PID one based on BP neural network are applied to the transfer function. The obtained step tracking curves can be seen that the PID controller based on BP neural network has obvious superiority in adjusting time and error, etc. This algorithm, calculating reasonable control parameters of the temperature and humidity to control environment, can be better used in the cloud service platform.
Li, Jinqing; Qi, Hui; Cong, Ligang; Yang, Huamin
2017-01-01
Both symmetric and asymmetric color image encryption have advantages and disadvantages. In order to combine their advantages and try to overcome their disadvantages, chaos synchronization is used to avoid the key transmission for the proposed semi-symmetric image encryption scheme. Our scheme is a hybrid chaotic encryption algorithm, and it consists of a scrambling stage and a diffusion stage. The control law and the update rule of function projective synchronization between the 3-cell quantum cellular neural networks (QCNN) response system and the 6th-order cellular neural network (CNN) drive system are formulated. Since the function projective synchronization is used to synchronize the response system and drive system, Alice and Bob got the key by two different chaotic systems independently and avoid the key transmission by some extra security links, which prevents security key leakage during the transmission. Both numerical simulations and security analyses such as information entropy analysis, differential attack are conducted to verify the feasibility, security, and efficiency of the proposed scheme. PMID:28910349
Graf, Heiko; Metzger, Coraline D; Walter, Martin; Abler, Birgit
2016-01-06
Investigating the effects of serotonergic antidepressants on neural correlates of visual erotic stimulation revealed decreased reactivity within the dopaminergic reward network along with decreased subjective sexual functioning compared with placebo. However, a global dampening of the reward system under serotonergic drugs is not intuitive considering clinical observations of their beneficial effects in the treatment of depression. Particularly, learning signals as coded in prediction error processing within the dopaminergic reward system can be assumed to be rather enhanced as antidepressant drugs have been demonstrated to facilitate the efficacy of psychotherapeutic interventions relying on learning processes. Within the same study sample, we now explored the effects of serotonergic and dopaminergic/noradrenergic antidepressants on prediction error signals compared with placebo by functional MRI. A total of 17 healthy male participants (mean age: 25.4 years) were investigated under the administration of paroxetine, bupropion and placebo for 7 days each within a randomized, double-blind, within-subject cross-over design. During functional MRI, we used an established monetary incentive task to explore neural prediction error signals within the bilateral nucleus accumbens as region of interest within the dopaminergic reward system. In contrast to diminished neural activations and subjective sexual functioning under the serotonergic agent paroxetine under visual erotic stimulation, we revealed unaffected or even enhanced neural prediction error processing within the nucleus accumbens under this antidepressant along with unaffected behavioural processing. Our study provides evidence that serotonergic antidepressants facilitate prediction error signalling and may support suggestions of beneficial effects of these agents on reinforced learning as an essential element in behavioural psychotherapy.
LVQ and backpropagation neural networks applied to NASA SSME data
NASA Technical Reports Server (NTRS)
Doniere, Timothy F.; Dhawan, Atam P.
1993-01-01
Feedfoward neural networks with backpropagation learning have been used as function approximators for modeling the space shuttle main engine (SSME) sensor signals. The modeling of these sensor signals is aimed at the development of a sensor fault detection system that can be used during ground test firings. The generalization capability of a neural network based function approximator depends on the training vectors which in this application may be derived from a number of SSME ground test-firings. This yields a large number of training vectors. Large training sets can cause the time required to train the network to be very large. Also, the network may not be able to generalize for large training sets. To reduce the size of the training sets, the SSME test-firing data is reduced using the learning vector quantization (LVQ) based technique. Different compression ratios were used to obtain compressed data in training the neural network model. The performance of the neural model trained using reduced sets of training patterns is presented and compared with the performance of the model trained using complete data. The LVQ can also be used as a function approximator. The performance of the LVQ as a function approximator using reduced training sets is presented and compared with the performance of the backpropagation network.
Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M
2014-11-01
Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.
Neural bases of ingroup altruistic motivation in soccer fans.
Bortolini, Tiago; Bado, Patrícia; Hoefle, Sebastian; Engel, Annerose; Zahn, Roland; de Oliveira Souza, Ricardo; Dreher, Jean-Claude; Moll, Jorge
2017-11-23
Humans have a strong need to belong to social groups and a natural inclination to benefit ingroup members. Although the psychological mechanisms behind human prosociality have extensively been studied, the specific neural systems bridging group belongingness and altruistic motivation remain to be identified. Here, we used soccer fandom as an ecological framing of group membership to investigate the neural mechanisms underlying ingroup altruistic behaviour in male fans using event-related functional magnetic resonance. We designed an effort measure based on handgrip strength to assess the motivation to earn money (i) for oneself, (ii) for anonymous ingroup fans, or (iii) for a neutral group of anonymous non-fans. While overlapping valuation signals in the medial orbitofrontal cortex (mOFC) were observed for the three conditions, the subgenual cingulate cortex (SCC) exhibited increased functional connectivity with the mOFC as well as stronger hemodynamic responses for ingroup versus outgroup decisions. These findings indicate a key role for the SCC, a region previously implicated in altruistic decisions and group affiliation, in dovetailing altruistic motivations with neural valuation systems in real-life ingroup behaviour.
Loss of Neurofilament Labeling in the Primary Visual Cortex of Monocularly Deprived Monkeys
Duffy, Kevin R.; Livingstone, Margaret S.
2009-01-01
Visual experience during early life is important for the development of neural organizations that support visual function. Closing one eye (monocular deprivation) during this sensitive period can cause a reorganization of neural connections within the visual system that leaves the deprived eye functionally disconnected. We have assessed the pattern of neurofilament labeling in monocularly deprived macaque monkeys to examine the possibility that a cytoskeleton change contributes to deprivation-induced reorganization of neural connections within the primary visual cortex (V-1). Monocular deprivation for three months starting around the time of birth caused a significant loss of neurofilament labeling within deprived-eye ocular dominance columns. Three months of monocular deprivation initiated in adulthood did not produce a loss of neurofilament labeling. The evidence that neurofilament loss was found only when deprivation occurred during the sensitive period supports the notion that the loss permits restructuring of deprived-eye neural connections within the visual system. These results provide evidence that, in addition to reorganization of LGN inputs, the intrinsic circuitry of V-1 neurons is altered when monocular deprivation occurs early in development. PMID:15563721
Sex differences in the development of brain mechanisms for processing biological motion.
Anderson, L C; Bolling, D Z; Schelinski, S; Coffman, M C; Pelphrey, K A; Kaiser, M D
2013-12-01
Disorders related to social functioning including autism and schizophrenia differ drastically in incidence and severity between males and females. Little is known about the neural systems underlying these sex-linked differences in risk and resiliency. Using functional magnetic resonance imaging and a task involving the visual perception of point-light displays of coherent and scrambled biological motion, we discovered sex differences in the development of neural systems for basic social perception. In adults, we identified enhanced activity during coherent biological motion perception in females relative to males in a network of brain regions previously implicated in social perception including amygdala, medial temporal gyrus, and temporal pole. These sex differences were less pronounced in our sample of school-age youth. We hypothesize that the robust neural circuitry supporting social perception in females, which diverges from males beginning in childhood, may underlie sex differences in disorders related to social processing. © 2013 Elsevier Inc. All rights reserved.
Sex Differences in the Development of Brain Mechanisms for Processing Biological Motion
Anderson, L.C.; Bolling, D.Z.; Schelinski, S.; Coffman, M.C.; Pelphrey, K.A.; Kaiser, M.D.
2013-01-01
Disorders related to social functioning including autism and schizophrenia differ drastically in incidence and severity between males and females. Little is known about the neural systems underlying these sex-linked differences in risk and resiliency. Using functional magnetic resonance imaging and a task involving the visual perception of point-light displays of coherent and scrambled biological motion, we discovered sex differences in the development of neural systems for basic social perception. In adults, we identified enhanced activity during coherent biological motion perception in females relative to males in a network of brain regions previously implicated in social perception including amygdala, medial temporal gyrus, and temporal pole. These sex differences were less pronounced in our sample of school-age youth. We hypothesize that the robust neural circuitry supporting social perception in females, which diverges from males beginning in childhood, may underlie sex differences in disorders related to social processing. PMID:23876243
Navigating the Neural Space in Search of the Neural Code.
Jazayeri, Mehrdad; Afraz, Arash
2017-03-08
The advent of powerful perturbation tools, such as optogenetics, has created new frontiers for probing causal dependencies in neural and behavioral states. These approaches have significantly enhanced the ability to characterize the contribution of different cells and circuits to neural function in health and disease. They have shifted the emphasis of research toward causal interrogations and increased the demand for more precise and powerful tools to control and manipulate neural activity. Here, we clarify the conditions under which measurements and perturbations support causal inferences. We note that the brain functions at multiple scales and that causal dependencies may be best inferred with perturbation tools that interface with the system at the appropriate scale. Finally, we develop a geometric framework to facilitate the interpretation of causal experiments when brain perturbations do or do not respect the intrinsic patterns of brain activity. We describe the challenges and opportunities of applying perturbations in the presence of dynamics, and we close with a general perspective on navigating the activity space of neurons in the search for neural codes. Copyright © 2017 Elsevier Inc. All rights reserved.
The neurobiology of focus and distraction: The case for incorporating mindfulness into leadership.
Mohapel, Paul
2018-05-01
Increasingly health leaders are experiencing greater demands and pressures, which require the need for better focus while limiting unwarranted distractions. This article offers a neurobiological explanation of how the brain focuses and becomes distracted, in order to help health leaders gain insight into their own effectiveness. Two main neural circuits are contrasted: the mind-wandering default mode circuit and the attentional central executive system. These two systems act in an antagonistic pairing, where the degree of toggling between systems is associated with the degree a person can sustain focus and filter out unwarranted distractions. Excessive multitasking appears to compromise the neural switch of these two systems, thereby diminishing our focus and concentration. In contrast, mindfulness practice is shown to have the opposite effect by enhancing the neural switch, thereby enhancing leadership focus that can lead to greater flexibility, foresight, regulation, and creativity. To conclude, leaders who are excessively distracted, such as with multitasking, may be compromising cognitive brain functioning, while engaging in mindfulness may replenish the brain and thereby enhance leaders' ability to sustain focus and tap into higher cognitive functioning.
3D in vitro modeling of the central nervous system
Hopkins, Amy M.; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L.
2015-01-01
There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here. PMID:25461688
Hu, Hailan
2016-07-08
To benefit from opportunities and cope with challenges in the environment, animals must adapt their behavior to acquire rewards and to avoid punishments. Maladaptive changes in the neuromodulatory systems and neural circuits for reward and aversion can lead to manifestation of several prominent psychiatric disorders including addiction and depression. Recent progress is pushing the boundaries of knowledge on two major fronts in research on reward and aversion: First, new layers of complexity have been reported on the functions of dopamine (DA) and serotonin (5-HT) neuromodulatory systems in reward and aversion. Second, specific circuit components in the neural pathways that encode reward and aversion have begun to be identified. This review aims to outline historic perspectives and new insights into the functions of DA and 5-HT systems in coding the distinct components of rewards. It also highlights recent advances in neural circuit studies enabled by new technologies, such as cell-type-specific electrophysiology and tracing, and optogenetics-based behavioral manipulation. This knowledge may provide guidance for developing novel treatment strategies for neuropsychiatric diseases related to the malfunction of the reward system.
Computing the Social Brain Connectome Across Systems and States.
Alcalá-López, Daniel; Smallwood, Jonathan; Jefferies, Elizabeth; Van Overwalle, Frank; Vogeley, Kai; Mars, Rogier B; Turetsky, Bruce I; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B; Bzdok, Danilo
2017-05-18
Social skills probably emerge from the interaction between different neural processing levels. However, social neuroscience is fragmented into highly specialized, rarely cross-referenced topics. The present study attempts a systematic reconciliation by deriving a social brain definition from neural activity meta-analyses on social-cognitive capacities. The social brain was characterized by meta-analytic connectivity modeling evaluating coactivation in task-focused brain states and physiological fluctuations evaluating correlations in task-free brain states. Network clustering proposed a functional segregation into (1) lower sensory, (2) limbic, (3) intermediate, and (4) high associative neural circuits that together mediate various social phenomena. Functional profiling suggested that no brain region or network is exclusively devoted to social processes. Finally, nodes of the putative mirror-neuron system were coherently cross-connected during tasks and more tightly coupled to embodied simulation systems rather than abstract emulation systems. These first steps may help reintegrate the specialized research agendas in the social and affective sciences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Aging and the interaction of sensory cortical function and structure.
Peiffer, Ann M; Hugenschmidt, Christina E; Maldjian, Joseph A; Casanova, Ramon; Srikanth, Ryali; Hayasaka, Satoru; Burdette, Jonathan H; Kraft, Robert A; Laurienti, Paul J
2009-01-01
Even the healthiest older adults experience changes in cognitive and sensory function. Studies show that older adults have reduced neural responses to sensory information. However, it is well known that sensory systems do not act in isolation but function cooperatively to either enhance or suppress neural responses to individual environmental stimuli. Very little research has been dedicated to understanding how aging affects the interactions between sensory systems, especially cross-modal deactivations or the ability of one sensory system (e.g., audition) to suppress the neural responses in another sensory system cortex (e.g., vision). Such cross-modal interactions have been implicated in attentional shifts between sensory modalities and could account for increased distractibility in older adults. To assess age-related changes in cross-modal deactivations, functional MRI studies were performed in 61 adults between 18 and 80 years old during simple auditory and visual discrimination tasks. Results within visual cortex confirmed previous findings of decreased responses to visual stimuli for older adults. Age-related changes in the visual cortical response to auditory stimuli were, however, much more complex and suggested an alteration with age in the functional interactions between the senses. Ventral visual cortical regions exhibited cross-modal deactivations in younger but not older adults, whereas more dorsal aspects of visual cortex were suppressed in older but not younger adults. These differences in deactivation also remained after adjusting for age-related reductions in brain volume of sensory cortex. Thus, functional differences in cortical activity between older and younger adults cannot solely be accounted for by differences in gray matter volume. (c) 2007 Wiley-Liss, Inc.
Modeling for Visual Feature Extraction Using Spiking Neural Networks
NASA Astrophysics Data System (ADS)
Kimura, Ichiro; Kuroe, Yasuaki; Kotera, Hiromichi; Murata, Tomoya
This paper develops models for “visual feature extraction” in biological systems by using “spiking neural network (SNN)”. The SNN is promising for developing the models because the information is encoded and processed by spike trains similar to biological neural networks. Two architectures of SNN are proposed for modeling the directionally selective and the motion parallax cell in neuro-sensory systems and they are trained so as to possess actual biological responses of each cell. To validate the developed models, their representation ability is investigated and their visual feature extraction mechanisms are discussed from the neurophysiological viewpoint. It is expected that this study can be the first step to developing a sensor system similar to the biological systems and also a complementary approach to investigating the function of the brain.
A theoretical framework for understanding neuromuscular response to lower extremity joint injury.
Pietrosimone, Brian G; McLeod, Michelle M; Lepley, Adam S
2012-01-01
Neuromuscular alterations are common following lower extremity joint injury and often lead to decreased function and disability. These neuromuscular alterations manifest in inhibition or abnormal facilitation of the uninjured musculature surrounding an injured joint. Unfortunately, these neural alterations are poorly understood, which may affect clinical recognition and treatment of these injuries. Understanding how these neural alterations affect physical function may be important for proper clinical management of lower extremity joint injuries. Pertinent articles focusing on neuromuscular consequences and treatment of knee and ankle injuries were collected from peer-reviewed sources available on the Web of Science and Medline databases from 1975 through 2010. A theoretical model to illustrate potential relationships between neural alterations and clinical impairments was constructed from the current literature. Lower extremity joint injury affects upstream cortical and spinal reflexive excitability pathways as well as downstream muscle function and overall physical performance. Treatment targeting the central nervous system provides an alternate means of treating joint injury that may be effective for patients with neuromuscular alterations. Disability is common following joint injury. There is mounting evidence that alterations in the central nervous system may relate to clinical changes in biomechanics that may predispose patients to further injury, and novel clinical interventions that target neural alterations may improve therapeutic outcomes.
A Theoretical Framework for Understanding Neuromuscular Response to Lower Extremity Joint Injury
Pietrosimone, Brian G.; McLeod, Michelle M.; Lepley, Adam S.
2012-01-01
Background: Neuromuscular alterations are common following lower extremity joint injury and often lead to decreased function and disability. These neuromuscular alterations manifest in inhibition or abnormal facilitation of the uninjured musculature surrounding an injured joint. Unfortunately, these neural alterations are poorly understood, which may affect clinical recognition and treatment of these injuries. Understanding how these neural alterations affect physical function may be important for proper clinical management of lower extremity joint injuries. Methods: Pertinent articles focusing on neuromuscular consequences and treatment of knee and ankle injuries were collected from peer-reviewed sources available on the Web of Science and Medline databases from 1975 through 2010. A theoretical model to illustrate potential relationships between neural alterations and clinical impairments was constructed from the current literature. Results: Lower extremity joint injury affects upstream cortical and spinal reflexive excitability pathways as well as downstream muscle function and overall physical performance. Treatment targeting the central nervous system provides an alternate means of treating joint injury that may be effective for patients with neuromuscular alterations. Conclusions: Disability is common following joint injury. There is mounting evidence that alterations in the central nervous system may relate to clinical changes in biomechanics that may predispose patients to further injury, and novel clinical interventions that target neural alterations may improve therapeutic outcomes. PMID:23016066
An embryonic chick (Gallus domesticus) whole-organ pancreas culture system was developed for use as an in vitro model to study cholinergic regulation of exocrine pancreatic function. The culture system was examined for characteristic exocrine function and viability by measuring e...
Hu, Jin; Zeng, Chunna
2017-02-01
The complex-valued Cohen-Grossberg neural network is a special kind of complex-valued neural network. In this paper, the synchronization problem of a class of complex-valued Cohen-Grossberg neural networks with known and unknown parameters is investigated. By using Lyapunov functionals and the adaptive control method based on parameter identification, some adaptive feedback schemes are proposed to achieve synchronization exponentially between the drive and response systems. The results obtained in this paper have extended and improved some previous works on adaptive synchronization of Cohen-Grossberg neural networks. Finally, two numerical examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hong, Xia
2006-07-01
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.
Li, Xuanying; Li, Xiaotong; Hu, Cheng
2017-12-01
In this paper, without transforming the second order inertial neural networks into the first order differential systems by some variable substitutions, asymptotic stability and synchronization for a class of delayed inertial neural networks are investigated. Firstly, a new Lyapunov functional is constructed to directly propose the asymptotic stability of the inertial neural networks, and some new stability criteria are derived by means of Barbalat Lemma. Additionally, by designing a new feedback control strategy, the asymptotic synchronization of the addressed inertial networks is studied and some effective conditions are obtained. To reduce the control cost, an adaptive control scheme is designed to realize the asymptotic synchronization. It is noted that the dynamical behaviors of inertial neural networks are directly analyzed in this paper by constructing some new Lyapunov functionals, this is totally different from the traditional reduced-order variable substitution method. Finally, some numerical simulations are given to demonstrate the effectiveness of the derived theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, L. M.
2017-09-01
A novel model-free adaptive sliding mode strategy is proposed for a generalized projective synchronization (GPS) between two entirely unknown fractional-order chaotic systems subject to the external disturbances. To solve the difficulties from the little knowledge about the master-slave system and to overcome the bad effects of the external disturbances on the generalized projective synchronization, the radial basis function neural networks are used to approach the packaged unknown master system and the packaged unknown slave system (including the external disturbances). Consequently, based on the slide mode technology and the neural network theory, a model-free adaptive sliding mode controller is designed to guarantee asymptotic stability of the generalized projective synchronization error. The main contribution of this paper is that a control strategy is provided for the generalized projective synchronization between two entirely unknown fractional-order chaotic systems subject to the unknown external disturbances, and the proposed control strategy only requires that the master system has the same fractional orders as the slave system. Moreover, the proposed method allows us to achieve all kinds of generalized projective chaos synchronizations by turning the user-defined parameters onto the desired values. Simulation results show the effectiveness of the proposed method and the robustness of the controlled system.
Wang, Jinling; Jiang, Haijun; Ma, Tianlong; Hu, Cheng
2018-05-01
This paper considers the delay-dependent stability of memristive complex-valued neural networks (MCVNNs). A novel linear mapping function is presented to transform the complex-valued system into the real-valued system. Under such mapping function, both continuous-time and discrete-time MCVNNs are analyzed in this paper. Firstly, when activation functions are continuous but not Lipschitz continuous, an extended matrix inequality is proved to ensure the stability of continuous-time MCVNNs. Furthermore, if activation functions are discontinuous, a discontinuous adaptive controller is designed to acquire its stability by applying Lyapunov-Krasovskii functionals. Secondly, compared with techniques in continuous-time MCVNNs, the Halanay-type inequality and comparison principle are firstly used to exploit the dynamical behaviors of discrete-time MCVNNs. Finally, the effectiveness of theoretical results is illustrated through numerical examples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jia, Zi-Jun; Song, Yong-Duan
2017-06-01
This paper presents a new approach to construct neural adaptive control for uncertain nonaffine systems. By integrating locally weighted learning with barrier Lyapunov function (BLF), a novel control design method is presented to systematically address the two critical issues in neural network (NN) control field: one is how to fulfill the compact set precondition for NN approximation, and the other is how to use varying rather than a fixed NN structure to improve the functionality of NN control. A BLF is exploited to ensure the NN inputs to remain bounded during the entire system operation. To account for system nonlinearities, a neuron self-growing strategy is proposed to guide the process for adding new neurons to the system, resulting in a self-adjustable NN structure for better learning capabilities. It is shown that the number of neurons needed to accomplish the control task is finite, and better performance can be obtained with less number of neurons as compared with traditional methods. The salient feature of the proposed method also lies in the continuity of the control action everywhere. Furthermore, the resulting control action is smooth almost everywhere except for a few time instants at which new neurons are added. Numerical example illustrates the effectiveness of the proposed approach.
Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.
Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua
2016-11-14
In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.
A Review of Organic and Inorganic Biomaterials for Neural Interfaces
Fattahi, Pouria; Yang, Guang; Kim, Gloria
2015-01-01
Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided first, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces. PMID:24677434
A review of organic and inorganic biomaterials for neural interfaces.
Fattahi, Pouria; Yang, Guang; Kim, Gloria; Abidian, Mohammad Reza
2014-03-26
Recent advances in nanotechnology have generated wide interest in applying nanomaterials for neural prostheses. An ideal neural interface should create seamless integration into the nervous system and performs reliably for long periods of time. As a result, many nanoscale materials not originally developed for neural interfaces become attractive candidates to detect neural signals and stimulate neurons. In this comprehensive review, an overview of state-of-the-art microelectrode technologies provided fi rst, with focus on the material properties of these microdevices. The advancements in electro active nanomaterials are then reviewed, including conducting polymers, carbon nanotubes, graphene, silicon nanowires, and hybrid organic-inorganic nanomaterials, for neural recording, stimulation, and growth. Finally, technical and scientific challenges are discussed regarding biocompatibility, mechanical mismatch, and electrical properties faced by these nanomaterials for the development of long-lasting functional neural interfaces.
Evolving RBF neural networks for adaptive soft-sensor design.
Alexandridis, Alex
2013-12-01
This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.
Incomplete fuzzy data processing systems using artificial neural network
NASA Technical Reports Server (NTRS)
Patyra, Marek J.
1992-01-01
In this paper, the implementation of a fuzzy data processing system using an artificial neural network (ANN) is discussed. The binary representation of fuzzy data is assumed, where the universe of discourse is decartelized into n equal intervals. The value of a membership function is represented by a binary number. It is proposed that incomplete fuzzy data processing be performed in two stages. The first stage performs the 'retrieval' of incomplete fuzzy data, and the second stage performs the desired operation on the retrieval data. The method of incomplete fuzzy data retrieval is proposed based on the linear approximation of missing values of the membership function. The ANN implementation of the proposed system is presented. The system was computationally verified and showed a relatively small total error.
Pavlov, Valentin A.; Tracey, Kevin J.
2015-01-01
Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000
Neural Networks and other Techniques for Fault Identification and Isolation of Aircraft Systems
NASA Technical Reports Server (NTRS)
Innocenti, M.; Napolitano, M.
2003-01-01
Fault identification, isolation, and accomodation have become critical issues in the overall performance of advanced aircraft systems. Neural Networks have shown to be a very attractive alternative to classic adaptation methods for identification and control of non-linear dynamic systems. The purpose of this paper is to show the improvements in neural network applications achievable through the use of learning algorithms more efficient than the classic Back-Propagation, and through the implementation of the neural schemes in parallel hardware. The results of the analysis of a scheme for Sensor Failure, Detection, Identification and Accommodation (SFDIA) using experimental flight data of a research aircraft model are presented. Conventional approaches to the problem are based on observers and Kalman Filters while more recent methods are based on neural approximators. The work described in this paper is based on the use of neural networks (NNs) as on-line learning non-linear approximators. The performances of two different neural architectures were compared. The first architecture is based on a Multi Layer Perceptron (MLP) NN trained with the Extended Back Propagation algorithm (EBPA). The second architecture is based on a Radial Basis Function (RBF) NN trained with the Extended-MRAN (EMRAN) algorithms. In addition, alternative methods for communications links fault detection and accomodation are presented, relative to multiple unmanned aircraft applications.
Miniaturized neural sensing and optogenetic stimulation system for behavioral studies in the rat
NASA Astrophysics Data System (ADS)
Kim, Min Hyuck; Nam, Ilho; Ryu, Youngki; Wellman, Laurie W.; Sanford, Larry D.; Yoon, Hargsoon
2015-04-01
Real time sensing of localized electrophysiological and neurochemical signals associated with spontaneous and evoked neural activity is critically important for understanding neural networks in the brain. Our goal is to enhance the functionality and flexibility of a neural sensing and stimulation system for the observation of brain activity that will enable better understanding from the level of individual cells to that of global structures. We have thus developed a miniaturized electronic system for in-vivo neurotransmitter sensing and optogenetic stimulation amenable to behavioral studies in the rat. The system contains a potentiostat, a data acquisition unit, a control unit, and a wireless data transfer unit. For the potentiostat, we applied embedded op-amps to build single potential amperometry for electrochemical sensing of dopamine. A light emitting diode is controlled by a microcontroller and pulse width modulation utilized to control optogenetic stimulation within a sub-millisecond level. In addition, this proto-typed electronic system contains a Bluetooth module for wireless data communication. In the future, an application-specific integrated circuit (ASIC) will be designed for further miniaturization of the system.
Efficient self-organizing multilayer neural network for nonlinear system modeling.
Han, Hong-Gui; Wang, Li-Dan; Qiao, Jun-Fei
2013-07-01
It has been shown extensively that the dynamic behaviors of a neural system are strongly influenced by the network architecture and learning process. To establish an artificial neural network (ANN) with self-organizing architecture and suitable learning algorithm for nonlinear system modeling, an automatic axon-neural network (AANN) is investigated in the following respects. First, the network architecture is constructed automatically to change both the number of hidden neurons and topologies of the neural network during the training process. The approach introduced in adaptive connecting-and-pruning algorithm (ACP) is a type of mixed mode operation, which is equivalent to pruning or adding the connecting of the neurons, as well as inserting some required neurons directly. Secondly, the weights are adjusted, using a feedforward computation (FC) to obtain the information for the gradient during learning computation. Unlike most of the previous studies, AANN is able to self-organize the architecture and weights, and to improve the network performances. Also, the proposed AANN has been tested on a number of benchmark problems, ranging from nonlinear function approximating to nonlinear systems modeling. The experimental results show that AANN can have better performances than that of some existing neural networks. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Vocal learning in elephants: neural bases and adaptive context
Stoeger, Angela S; Manger, Paul
2014-01-01
In the last decade clear evidence has accumulated that elephants are capable of vocal production learning. Examples of vocal imitation are documented in African (Loxodonta africana) and Asian (Elephas maximus) elephants, but little is known about the function of vocal learning within the natural communication systems of either species. We are also just starting to identify the neural basis of elephant vocalizations. The African elephant diencephalon and brainstem possess specializations related to aspects of neural information processing in the motor system (affecting the timing and learning of trunk movements) and the auditory and vocalization system. Comparative interdisciplinary (from behavioral to neuroanatomical) studies are strongly warranted to increase our understanding of both vocal learning and vocal behavior in elephants. PMID:25062469
Spikes alone do not behavior make: Why neuroscience needs biomechanics
Tytell, E.D.; Holmes, P.; Cohen, A.H.
2011-01-01
Neural circuits do not function in isolation; they interact with the physical world, accepting sensory inputs and producing outputs via muscles. Since both these pathways are constrained by physics, the activity of neural circuits can only be understood by considering biomechanics of muscles, bodies, and the exterior world. We discuss how animal bodies have natural stable motions that require relatively little activation or control from the nervous system. The nervous system can substantially alter these motions, by subtly changing mechanical properties such as leg sti ness. Mechanics can also provide robustness to perturbations without sensory reflexes. By considering a complete neuromechanical system, neuroscientists and biomechanicians together can provide a more integrated view of neural circuitry and behavior. PMID:21683575
NASA Astrophysics Data System (ADS)
Gelain, F.; Cigognini, D.; Caprini, A.; Silva, D.; Colleoni, B.; Donegá, M.; Antonini, S.; Cohen, B. E.; Vescovi, A.
2012-04-01
Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications.Developing functionalized biomaterials for enhancing transplanted cell engraftment in vivo and stimulating the regeneration of injured tissues requires a multi-disciplinary approach customized for the tissue to be regenerated. In particular, nervous tissue engineering may take a great advantage from the discovery of novel functional motifs fostering transplanted stem cell engraftment and nervous fiber regeneration. Using phage display technology we have discovered new peptide sequences that bind to murine neural stem cell (NSC)-derived neural precursor cells (NPCs), and promote their viability and differentiation in vitro when linked to LDLK12 self-assembling peptide (SAPeptide). We characterized the newly functionalized LDLK12 SAPeptides via atomic force microscopy, circular dichroism and rheology, obtaining nanostructured hydrogels that support human and murine NSC proliferation and differentiation in vitro. One functionalized SAPeptide (Ac-FAQ), showing the highest stem cell viability and neural differentiation in vitro, was finally tested in acute contusive spinal cord injury in rats, where it fostered nervous tissue regrowth and improved locomotor recovery. Interestingly, animals treated with the non-functionalized LDLK12 had an axon sprouting/regeneration intermediate between Ac-FAQ-treated animals and controls. These results suggest that hydrogels functionalized with phage-derived peptides may constitute promising biomimetic scaffolds for in vitro NSC differentiation, as well as regenerative therapy of the injured nervous system. Moreover, this multi-disciplinary approach can be used to customize SAPeptides for other specific tissue engineering applications. Electronic supplementary information (ESI) available: Supporting methods and data about CD spectral analysis of SAPeptide solutions (Fig. S1), neural differentiation of murine and human NSCs (Fig. S2) on SAPeptide scaffolds, and their statistical analysis (Table S1). See DOI: 10.1039/c2nr30220a
Meis2 is essential for cranial and cardiac neural crest development.
Machon, Ondrej; Masek, Jan; Machonova, Olga; Krauss, Stefan; Kozmik, Zbynek
2015-11-06
TALE-class homeodomain transcription factors Meis and Pbx play important roles in formation of the embryonic brain, eye, heart, cartilage or hematopoiesis. Loss-of-function studies of Pbx1, 2 and 3 and Meis1 documented specific functions in embryogenesis, however, functional studies of Meis2 in mouse are still missing. We have generated a conditional allele of Meis2 in mice and shown that systemic inactivation of the Meis2 gene results in lethality by the embryonic day 14 that is accompanied with hemorrhaging. We show that neural crest cells express Meis2 and Meis2-defficient embryos display defects in tissues that are derived from the neural crest, such as an abnormal heart outflow tract with the persistent truncus arteriosus and abnormal cranial nerves. The importance of Meis2 for neural crest cells is further confirmed by means of conditional inactivation of Meis2 using crest-specific AP2α-IRES-Cre mouse. Conditional mutants display perturbed development of the craniofacial skeleton with severe anomalies in cranial bones and cartilages, heart and cranial nerve abnormalities. Meis2-null mice are embryonic lethal. Our results reveal a critical role of Meis2 during cranial and cardiac neural crest cells development in mouse.
Biological neural networks as model systems for designing future parallel processing computers
NASA Technical Reports Server (NTRS)
Ross, Muriel D.
1991-01-01
One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.
Amigo adhesion protein regulates development of neural circuits in zebrafish brain.
Zhao, Xiang; Kuja-Panula, Juha; Sundvik, Maria; Chen, Yu-Chia; Aho, Vilma; Peltola, Marjaana A; Porkka-Heiskanen, Tarja; Panula, Pertti; Rauvala, Heikki
2014-07-18
The Amigo protein family consists of three transmembrane proteins characterized by six leucine-rich repeat domains and one immunoglobulin-like domain in their extracellular moieties. Previous in vitro studies have suggested a role as homophilic adhesion molecules in brain neurons, but the in vivo functions remain unknown. Here we have cloned all three zebrafish amigos and show that amigo1 is the predominant family member expressed during nervous system development in zebrafish. Knockdown of amigo1 expression using morpholino oligonucleotides impairs the formation of fasciculated tracts in early fiber scaffolds of brain. A similar defect in fiber tract development is caused by mRNA-mediated expression of the Amigo1 ectodomain that inhibits adhesion mediated by the full-length protein. Analysis of differentiated neural circuits reveals defects in the catecholaminergic system. At the behavioral level, the disturbed formation of neural circuitry is reflected in enhanced locomotor activity and in the inability of the larvae to perform normal escape responses. We suggest that Amigo1 is essential for the development of neural circuits of zebrafish, where its mechanism involves homophilic interactions within the developing fiber tracts and regulation of the Kv2.1 potassium channel to form functional neural circuitry that controls locomotion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Ferrante, Simona; Pedrocchi, Alessandra; Iannò, Marco; De Momi, Elena; Ferrarin, Maurizio; Ferrigno, Giancarlo
2004-01-01
This study falls within the ambit of research on functional electrical stimulation for the design of rehabilitation training for spinal cord injured patients. In this context, a crucial issue is the control of the stimulation parameters in order to optimize the patterns of muscle activation and to increase the duration of the exercises. An adaptive control system (NEURADAPT) based on artificial neural networks (ANNs) was developed to control the knee joint in accordance with desired trajectories by stimulating quadriceps muscles. This strategy includes an inverse neural model of the stimulated limb in the feedforward line and a neural network trained on-line in the feedback loop. NEURADAPT was compared with a linear closed-loop proportional integrative derivative (PID) controller and with a model-based neural controller (NEUROPID). Experiments on two subjects (one healthy and one paraplegic) show the good performance of NEURADAPT, which is able to reduce the time lag introduced by the PID controller. In addition, control systems based on ANN techniques do not require complicated calibration procedures at the beginning of each experimental session. After the initial learning phase, the ANN, thanks to its generalization capacity, is able to cope with a certain range of variability of skeletal muscle properties.
Cracking the barcode of fullerene-like cortical microcolumns.
Tozzi, Arturo; Peters, James F; Ori, Ottorino
2017-03-22
Artificial neural systems and nervous graph theoretical analysis rely upon the stance that the neural code is embodied in logic circuits, e.g., spatio-temporal sequences of ON/OFF spiking neurons. Nevertheless, this assumption does not fully explain complex brain functions. Here we show how nervous activity, other than logic circuits, could instead depend on topological transformations and symmetry constraints occurring at the micro-level of the cortical microcolumn, i.e., the embryological, anatomical and functional basic unit of the brain. Tubular microcolumns can be flattened in fullerene-like two-dimensional lattices, equipped with about 80 nodes standing for pyramidal neurons where neural computations take place. We show how the countless possible combinations of activated neurons embedded in the lattice resemble a barcode. Despite the fact that further experimental verification is required in order to validate our claim, different assemblies of firing neurons might have the appearance of diverse codes, each one responsible for a single mental activity. A two-dimensional fullerene-like lattice, grounded on simple topological changes standing for pyramidal neurons' activation, not just displays analogies with the real microcolumn's microcircuitry and the neural connectome, but also the potential for the manufacture of plastic, robust and fast artificial networks in robotic forms of full-fledged neural systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Examination of neural systems sub-serving facebook "addiction".
Turel, Ofir; He, Qinghua; Xue, Gui; Xiao, Lin; Bechara, Antoine
2014-12-01
Because addictive behaviors typically result from violated homeostasis of the impulsive (amygdala-striatal) and inhibitory (prefrontal cortex) brain systems, this study examined whether these systems sub-serve a specific case of technology-related addiction, namely Facebook "addiction." Using a go/no-go paradigm in functional MRI settings, the study examined how these brain systems in 20 Facebook users (M age = 20.3 yr., SD = 1.3, range = 18-23) who completed a Facebook addiction questionnaire, responded to Facebook and less potent (traffic sign) stimuli. The findings indicated that at least at the examined levels of addiction-like symptoms, technology-related "addictions" share some neural features with substance and gambling addictions, but more importantly they also differ from such addictions in their brain etiology and possibly pathogenesis, as related to abnormal functioning of the inhibitory-control brain system.
Selective Manipulation of Neural Circuits.
Park, Hong Geun; Carmel, Jason B
2016-04-01
Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.
Two Unipolar Terminal-Attractor-Based Associative Memories
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Wu, Chwan-Hwa
1995-01-01
Two unipolar mathematical models of electronic neural network functioning as terminal-attractor-based associative memory (TABAM) developed. Models comprise sets of equations describing interactions between time-varying inputs and outputs of neural-network memory, regarded as dynamical system. Simplifies design and operation of optoelectronic processor to implement TABAM performing associative recall of images. TABAM concept described in "Optoelectronic Terminal-Attractor-Based Associative Memory" (NPO-18790). Experimental optoelectronic apparatus that performed associative recall of binary images described in "Optoelectronic Inner-Product Neural Associative Memory" (NPO-18491).
Senan, Sibel; Arik, Sabri
2007-10-01
This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.
Rafts, Nanoparticles and Neural Disease
Gulati, Vishal; Wallace, Ron
2012-01-01
This review examines the role of membrane rafts in neural disease as a rationale for drug targeting utilizing lipid-based nanoparticles. The article begins with an overview of methodological issues involving the existence, sizes, and lifetimes of rafts, and then examines raft function in the etiologies of three major neural diseases—epilepsy, Parkinson’s disease, and Alzheimer’s disease—selected as promising candidates for raft-based therapeutics. Raft-targeting drug delivery systems involving liposomes and solid lipid nanoparticles are then examined in detail. PMID:28348305
NASA Astrophysics Data System (ADS)
Ali, M. Syed; Zhu, Quanxin; Pavithra, S.; Gunasekaran, N.
2018-03-01
This study examines the problem of dissipative synchronisation of coupled reaction-diffusion neural networks with time-varying delays. This paper proposes a complex dynamical network consisting of N linearly and diffusively coupled identical reaction-diffusion neural networks. By constructing a suitable Lyapunov-Krasovskii functional (LKF), utilisation of Jensen's inequality and reciprocally convex combination (RCC) approach, strictly ?-dissipative conditions of the addressed systems are derived. Finally, a numerical example is given to show the effectiveness of the theoretical results.
Neural electrical activity and neural network growth.
Gafarov, F M
2018-05-01
The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.
Prager, Angela; Hagenlocher, Cathrin; Ott, Tim; Schambony, Alexandra; Feistel, Kerstin
2017-10-01
Development of the central nervous system requires orchestration of morphogenetic processes which drive elevation and apposition of the neural folds and their fusion into a neural tube. The newly formed tube gives rise to the brain in anterior regions and continues to develop into the spinal cord posteriorly. Conspicuous differences between the anterior and posterior neural tube become visible already during neural tube closure (NTC). Planar cell polarity (PCP)-mediated convergent extension (CE) movements are restricted to the posterior neural plate, i.e. hindbrain and spinal cord, where they propagate neural fold apposition. The lack of CE in the anterior neural plate correlates with a much slower mode of neural fold apposition anteriorly. The morphogenetic processes driving anterior NTC have not been addressed in detail. Here, we report a novel role for the breast cancer susceptibility gene and microtubule (MT) binding protein Hmmr (Hyaluronan-mediated motility receptor, RHAMM) in anterior neurulation and forebrain development in Xenopus laevis. Loss of hmmr function resulted in a lack of telencephalic hemisphere separation, arising from defective roof plate formation, which in turn was caused by impaired neural tissue narrowing. hmmr regulated polarization of neural cells, a function which was dependent on the MT binding domains. hmmr cooperated with the core PCP component vangl2 in regulating cell polarity and neural morphogenesis. Disrupted cell polarization and elongation in hmmr and vangl2 morphants prevented radial intercalation (RI), a cell behavior essential for neural morphogenesis. Our results pinpoint a novel role of hmmr in anterior neural development and support the notion that RI is a major driving force for anterior neurulation and forebrain morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Video Views and Reviews: Neurulation and the Fashioning of the Vertebrate Central Nervous System
ERIC Educational Resources Information Center
Watters, Christopher
2006-01-01
The central nervous system (CNS) is the first adult organ system to appear during vertebrate development, and the process of its emergence is commonly called neurulation. Such biological "urgency" is perhaps not surprising given the structural and functional complexity of the CNS and the importance of neural function to adaptive behavior and…
Construction of a Piezoresistive Neural Sensor Array
NASA Technical Reports Server (NTRS)
Carlson, W. B.; Schulze, W. A.; Pilgrim, P. M.
1996-01-01
The construction of a piezoresistive - piezoelectric sensor (or actuator) array is proposed using 'neural' connectivity for signal recognition and possible actuation functions. A closer integration of the sensor and decision functions is necessary in order to achieve intrinsic identification within the sensor. A neural sensor is the next logical step in development of truly 'intelligent' arrays. This proposal will integrate 1-3 polymer piezoresistors and MLC electroceramic devices for applications involving acoustic identification. The 'intelligent' piezoresistor -piezoelectric system incorporates printed resistors, composite resistors, and a feedback for the resetting of resistances. A model of a design is proposed in order to simulate electromechanical resistor interactions. The goal of optimizing a sensor geometry for improving device reliability, training, & signal identification capabilities is the goal of this work. At present, studies predict performance of a 'smart' device with a significant control of 'effective' compliance over a narrow pressure range due to a piezoresistor percolation threshold. An interesting possibility may be to use an array of control elements to shift the threshold function in order to change the level of resistance in a neural sensor array for identification, or, actuation applications. The proposed design employs elements of: (1) conductor loaded polymers for a 'fast' RC time constant response; and (2) multilayer ceramics for actuation or sensing and shifting of resistance in the polymer. Other material possibilities also exist using magnetoresistive layered systems for shifting the resistance. It is proposed to use a neural net configuration to test and to help study the possible changes required in the materials design of these devices. Numerical design models utilize electromechanical elements, in conjunction with structural elements in order to simulate piezoresistively controlled actuators and changes in resistance of sensors. The construction of these devices may show significant improvement in ability to interrogate signals and in the control of effective compliance. This work focuses on the development a variety of series/parallel interconnected piezoresistive control elements for the neural sensing function.
What We Know About the Brain Structure-Function Relationship.
Batista-García-Ramó, Karla; Fernández-Verdecia, Caridad Ivette
2018-04-18
How the human brain works is still a question, as is its implication with brain architecture: the non-trivial structure–function relationship. The main hypothesis is that the anatomic architecture conditions, but does not determine, the neural network dynamic. The functional connectivity cannot be explained only considering the anatomical substrate. This involves complex and controversial aspects of the neuroscience field and that the methods and methodologies to obtain structural and functional connectivity are not always rigorously applied. The goal of the present article is to discuss about the progress made to elucidate the structure–function relationship of the Central Nervous System, particularly at the brain level, based on results from human and animal studies. The current novel systems and neuroimaging techniques with high resolutive physio-structural capacity have brought about the development of an integral framework of different structural and morphometric tools such as image processing, computational modeling and graph theory. Different laboratories have contributed with in vivo, in vitro and computational/mathematical models to study the intrinsic neural activity patterns based on anatomical connections. We conclude that multi-modal techniques of neuroimaging are required such as an improvement on methodologies for obtaining structural and functional connectivity. Even though simulations of the intrinsic neural activity based on anatomical connectivity can reproduce much of the observed patterns of empirical functional connectivity, future models should be multifactorial to elucidate multi-scale relationships and to infer disorder mechanisms.
A Neuron-Specific Antiviral Mechanism Prevents Lethal Flaviviral Infection of Mosquitoes
Xiao, Xiaoping; Zhang, Rudian; Pang, Xiaojing; Liang, Guodong; Wang, Penghua; Cheng, Gong
2015-01-01
Mosquitoes are natural vectors for many etiologic agents of human viral diseases. Mosquito-borne flaviviruses can persistently infect the mosquito central nervous system without causing dramatic pathology or influencing the mosquito behavior and lifespan. The mechanism by which the mosquito nervous system resists flaviviral infection is still largely unknown. Here we report that an Aedes aegypti homologue of the neural factor Hikaru genki (AaHig) efficiently restricts flavivirus infection of the central nervous system. AaHig was predominantly expressed in the mosquito nervous system and localized to the plasma membrane of neural cells. Functional blockade of AaHig enhanced Dengue virus (DENV) and Japanese encephalitis virus (JEV), but not Sindbis virus (SINV), replication in mosquito heads and consequently caused neural apoptosis and a dramatic reduction in the mosquito lifespan. Consistently, delivery of recombinant AaHig to mosquitoes reduced viral infection. Furthermore, the membrane-localized AaHig directly interfaced with a highly conserved motif in the surface envelope proteins of DENV and JEV, and consequently interrupted endocytic viral entry into mosquito cells. Loss of either plasma membrane targeting or virion-binding ability rendered AaHig nonfunctional. Interestingly, Culex pipien pallens Hig also demonstrated a prominent anti-flavivirus activity, suggesting a functionally conserved function for Hig. Our results demonstrate that an evolutionarily conserved antiviral mechanism prevents lethal flaviviral infection of the central nervous system in mosquitoes, and thus may facilitate flaviviral transmission in nature. PMID:25915054
Neural mechanisms tracking popularity in real-world social networks.
Zerubavel, Noam; Bearman, Peter S; Weber, Jochen; Ochsner, Kevin N
2015-12-08
Differences in popularity are a key aspect of status in virtually all human groups and shape social interactions within them. Little is known, however, about how we track and neurally represent others' popularity. We addressed this question in two real-world social networks using sociometric methods to quantify popularity. Each group member (perceiver) viewed faces of every other group member (target) while whole-brain functional MRI data were collected. Independent functional localizer tasks were used to identify brain systems supporting affective valuation (ventromedial prefrontal cortex, ventral striatum, amygdala) and social cognition (dorsomedial prefrontal cortex, precuneus, temporoparietal junction), respectively. During the face-viewing task, activity in both types of neural systems tracked targets' sociometric popularity, even when controlling for potential confounds. The target popularity-social cognition system relationship was mediated by valuation system activity, suggesting that observing popular individuals elicits value signals that facilitate understanding their mental states. The target popularity-valuation system relationship was strongest for popular perceivers, suggesting enhanced sensitivity to differences among other group members' popularity. Popular group members also demonstrated greater interpersonal sensitivity by more accurately predicting how their own personalities were perceived by other individuals in the social network. These data offer insights into the mechanisms by which status guides social behavior.
Determining the neural substrates of goal-directed learning in the human brain.
Valentin, Vivian V; Dickinson, Anthony; O'Doherty, John P
2007-04-11
Instrumental conditioning is considered to involve at least two distinct learning systems: a goal-directed system that learns associations between responses and the incentive value of outcomes, and a habit system that learns associations between stimuli and responses without any link to the outcome that that response engendered. Lesion studies in rodents suggest that these two distinct components of instrumental conditioning may be mediated by anatomically distinct neural systems. The aim of the present study was to determine the neural substrates of the goal-directed component of instrumental learning in humans. Nineteen human subjects were scanned with functional magnetic resonance imaging while they learned to choose instrumental actions that were associated with the subsequent delivery of different food rewards (tomato juice, chocolate milk, and orange juice). After training, one of these foods was devalued by feeding the subject to satiety on that food. The subjects were then scanned again, while being re-exposed to the instrumental choice procedure (in extinction). We hypothesized that regions of the brain involved in goal-directed learning would show changes in their activity as a function of outcome devaluation. Our results indicate that neural activity in one brain region in particular, the orbitofrontal cortex, showed a strong modulation in its activity during selection of a devalued compared with a nondevalued action. These results suggest an important contribution of orbitofrontal cortex in guiding goal-directed instrumental choices in humans.
Dynamics of a neural system with a multiscale architecture
Breakspear, Michael; Stam, Cornelis J
2005-01-01
The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested. PMID:16087448
Zhang, Xiaolei; Zhao, Yan; Guo, Kai; Li, Gaoliang; Deng, Nianmao
2017-04-28
The mobile satcom antenna (MSA) enables a moving vehicle to communicate with a geostationary Earth orbit satellite. To realize continuous communication, the MSA should be aligned with the satellite in both sight and polarization all the time. Because of coupling effects, unknown disturbances, sensor noises and unmodeled dynamics existing in the system, the control system should have a strong adaptability. The significant features of terminal sliding mode control method are robustness and finite time convergence, but the robustness is related to the large switching control gain which is determined by uncertain issues and can lead to chattering phenomena. Neural networks can reduce the chattering and approximate nonlinear issues. In this work, a novel B-spline curve-based B-spline neural network (BSNN) is developed. The improved BSNN has the capability of shape changing and self-adaption. In addition, the output of the proposed BSNN is applied to approximate the nonlinear function in the system. The results of simulations and experiments are also compared with those of PID method, non-singularity fast terminal sliding mode (NFTSM) control and radial basis function (RBF) neural network-based NFTSM. It is shown that the proposed method has the best performance, with reliable control precision.
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)
2007-01-01
A method and system for data modeling that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The invention partitions the parameters into a first set of s simple parameters, where observable data are expressible as low order polynomials, and c complex parameters that reflect more complicated variation of the observed data. Variation of the data with the simple parameters is modeled using polynomials; and variation of the data with the complex parameters at each vertex is analyzed using a neural network. Variations with the simple parameters and with the complex parameters are expressed using a first sequence of shape functions and a second sequence of neural network functions. The first and second sequences are multiplicatively combined to form a composite response surface, dependent upon the parameter values, that can be used to identify an accurate mode
Numerical Analysis of Modeling Based on Improved Elman Neural Network
Jie, Shao
2014-01-01
A modeling based on the improved Elman neural network (IENN) is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE) varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA) with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL) model, Chebyshev neural network (CNN) model, and basic Elman neural network (BENN) model, the proposed model has better performance. PMID:25054172
da Fonseca Neto, João Viana; Abreu, Ivanildo Silva; da Silva, Fábio Nogueira
2010-04-01
Toward the synthesis of state-space controllers, a neural-genetic model based on the linear quadratic regulator design for the eigenstructure assignment of multivariable dynamic systems is presented. The neural-genetic model represents a fusion of a genetic algorithm and a recurrent neural network (RNN) to perform the selection of the weighting matrices and the algebraic Riccati equation solution, respectively. A fourth-order electric circuit model is used to evaluate the convergence of the computational intelligence paradigms and the control design method performance. The genetic search convergence evaluation is performed in terms of the fitness function statistics and the RNN convergence, which is evaluated by landscapes of the energy and norm, as a function of the parameter deviations. The control problem solution is evaluated in the time and frequency domains by the impulse response, singular values, and modal analysis.
Distinct neural substrates for visual short-term memory of actions.
Cai, Ying; Urgolites, Zhisen; Wood, Justin; Chen, Chuansheng; Li, Siyao; Chen, Antao; Xue, Gui
2018-06-26
Fundamental theories of human cognition have long posited that the short-term maintenance of actions is supported by one of the "core knowledge" systems of human visual cognition, yet its neural substrates are still not well understood. In particular, it is unclear whether the visual short-term memory (VSTM) of actions has distinct neural substrates or, as proposed by the spatio-object architecture of VSTM, shares them with VSTM of objects and spatial locations. In two experiments, we tested these two competing hypotheses by directly contrasting the neural substrates for VSTM of actions with those for objects and locations. Our results showed that the bilateral middle temporal cortex (MT) was specifically involved in VSTM of actions because its activation and its functional connectivity with the frontal-parietal network (FPN) were only modulated by the memory load of actions, but not by that of objects/agents or locations. Moreover, the brain regions involved in the maintenance of spatial location information (i.e., superior parietal lobule, SPL) was also recruited during the maintenance of actions, consistent with the temporal-spatial nature of actions. Meanwhile, the frontoparietal network (FPN) was commonly involved in all types of VSTM and showed flexible functional connectivity with the domain-specific regions, depending on the current working memory tasks. Together, our results provide clear evidence for a distinct neural system for maintaining actions in VSTM, which supports the core knowledge system theory and the domain-specific and domain-general architectures of VSTM. © 2018 Wiley Periodicals, Inc.
Neural system modeling and simulation using Hybrid Functional Petri Net.
Tang, Yin; Wang, Fei
2012-02-01
The Petri net formalism has been proved to be powerful in biological modeling. It not only boasts of a most intuitive graphical presentation but also combines the methods of classical systems biology with the discrete modeling technique. Hybrid Functional Petri Net (HFPN) was proposed specially for biological system modeling. An array of well-constructed biological models using HFPN yielded very interesting results. In this paper, we propose a method to represent neural system behavior, where biochemistry and electrical chemistry are both included using the Petri net formalism. We built a model for the adrenergic system using HFPN and employed quantitative analysis. Our simulation results match the biological data well, showing that the model is very effective. Predictions made on our model further manifest the modeling power of HFPN and improve the understanding of the adrenergic system. The file of our model and more results with their analysis are available in our supplementary material.
A new BP Fourier algorithm and its application in English teaching evaluation
NASA Astrophysics Data System (ADS)
Pei, Xuehui; Pei, Guixin
2017-08-01
BP neural network algorithm has wide adaptability and accuracy when used in complicated system evaluation, but its calculation defects such as slow convergence have limited its practical application. The paper tries to speed up the calculation convergence of BP neural network algorithm with Fourier basis functions and presents a new BP Fourier algorithm for complicated system evaluation. First, shortages and working principle of BP algorithm are analyzed for subsequent targeted improvement; Second, the presented BP Fourier algorithm adopts Fourier basis functions to simplify calculation structure, designs new calculation transfer function between input and output layers, and conducts theoretical analysis to prove the efficiency of the presented algorithm; Finally, the presented algorithm is used in evaluating university English teaching and the application results shows that the presented BP Fourier algorithm has better performance in calculation efficiency and evaluation accuracy and can be used in evaluating complicated system practically.
The vomeronasal system mediates sick conspecific avoidance.
Boillat, Madlaina; Challet, Ludivine; Rossier, Daniel; Kan, Chenda; Carleton, Alan; Rodriguez, Ivan
2015-01-19
Although sociability offers many advantages, a major drawback is the increased risk of exposure to contagious pathogens, like parasites, viruses, or bacteria. Social species have evolved various behavioral strategies reducing the probability of pathogen exposure. In rodents, sick conspecific avoidance can be induced by olfactory cues emitted by parasitized or infected conspecifics. The neural circuits involved in this behavior remain largely unknown. We observed that olfactory cues present in bodily products of mice in an acute inflammatory state or infected with a viral pathogen are aversive to conspecifics. We found that these chemical signals trigger neural activity in the vomeronasal system, an olfactory subsystem controlling various innate behaviors. Supporting the functional relevance of these observations, we show that preference toward healthy individuals is abolished in mice with impaired vomeronasal function. These findings reveal a novel function played by the vomeronasal system. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Neural Crest in Cardiac Congenital Anomalies
Keyte, Anna; Hutson, Mary Redmond
2012-01-01
This review discusses the function of neural crest as they relate to cardiovascular defects. The cardiac neural crest cells are a subpopulation of cranial neural crest discovered nearly 30 years ago by ablation of premigratory neural crest. The cardiac neural crest cells are necessary for normal cardiovascular development. We begin with a description of the crest cells in normal development, including their function in remodeling the pharyngeal arch arteries, outflow tract septation, valvulogenesis, and development of the cardiac conduction system. The cells are also responsible for modulating signaling in the caudal pharynx, including the second heart field. Many of the molecular pathways that are known to influence specification, migration, patterning and final targeting of the cardiac neural crest cells are reviewed. The cardiac neural crest cells play a critical role in the pathogenesis of various human cardiocraniofacial syndromes such as DiGeorge, Velocardiofacial, CHARGE, Fetal Alcohol, Alagille, LEOPARD, and Noonan syndromes, as well as Retinoic Acid Embryopathy. The loss of neural crest cells or their dysfunction may not always directly cause abnormal cardiovascular development, but are involved secondarily because crest cells represent a major component in the complex tissue interactions in the head, pharynx and outflow tract. Thus many of the human syndromes linking defects in the heart, face and brain can be better understood when considered within the context of a single cardiocraniofacial developmental module with the neural crest being a key cell type that interconnects the regions. PMID:22595346
Geometrical approach to neural net control of movements and posture
NASA Technical Reports Server (NTRS)
Pellionisz, A. J.; Ramos, C. F.
1993-01-01
In one approach to modeling brain function, sensorimotor integration is described as geometrical mapping among coordinates of non-orthogonal frames that are intrinsic to the system; in such a case sensors represent (covariant) afferents and motor effectors represent (contravariant) motor efferents. The neuronal networks that perform such a function are viewed as general tensor transformations among different expressions and metric tensors determining the geometry of neural functional spaces. Although the non-orthogonality of a coordinate system does not impose a specific geometry on the space, this "Tensor Network Theory of brain function" allows for the possibility that the geometry is non-Euclidean. It is suggested that investigation of the non-Euclidean nature of the geometry is the key to understanding brain function and to interpreting neuronal network function. This paper outlines three contemporary applications of such a theoretical modeling approach. The first is the analysis and interpretation of multi-electrode recordings. The internal geometries of neural networks controlling external behavior of the skeletomuscle system is experimentally determinable using such multi-unit recordings. The second application of this geometrical approach to brain theory is modeling the control of posture and movement. A preliminary simulation study has been conducted with the aim of understanding the control of balance in a standing human. The model appears to unify postural control strategies that have previously been considered to be independent of each other. Third, this paper emphasizes the importance of the geometrical approach for the design and fabrication of neurocomputers that could be used in functional neuromuscular stimulation (FNS) for replacing lost motor control.
Visual pathways from the perspective of cost functions and multi-task deep neural networks.
Scholte, H Steven; Losch, Max M; Ramakrishnan, Kandan; de Haan, Edward H F; Bohte, Sander M
2018-01-01
Vision research has been shaped by the seminal insight that we can understand the higher-tier visual cortex from the perspective of multiple functional pathways with different goals. In this paper, we try to give a computational account of the functional organization of this system by reasoning from the perspective of multi-task deep neural networks. Machine learning has shown that tasks become easier to solve when they are decomposed into subtasks with their own cost function. We hypothesize that the visual system optimizes multiple cost functions of unrelated tasks and this causes the emergence of a ventral pathway dedicated to vision for perception, and a dorsal pathway dedicated to vision for action. To evaluate the functional organization in multi-task deep neural networks, we propose a method that measures the contribution of a unit towards each task, applying it to two networks that have been trained on either two related or two unrelated tasks, using an identical stimulus set. Results show that the network trained on the unrelated tasks shows a decreasing degree of feature representation sharing towards higher-tier layers while the network trained on related tasks uniformly shows high degree of sharing. We conjecture that the method we propose can be used to analyze the anatomical and functional organization of the visual system and beyond. We predict that the degree to which tasks are related is a good descriptor of the degree to which they share downstream cortical-units. Copyright © 2017 Elsevier Ltd. All rights reserved.
Krucoff, Max O.; Rahimpour, Shervin; Slutzky, Marc W.; Edgerton, V. Reggie; Turner, Dennis A.
2016-01-01
After an initial period of recovery, human neurological injury has long been thought to be static. In order to improve quality of life for those suffering from stroke, spinal cord injury, or traumatic brain injury, researchers have been working to restore the nervous system and reduce neurological deficits through a number of mechanisms. For example, neurobiologists have been identifying and manipulating components of the intra- and extracellular milieu to alter the regenerative potential of neurons, neuro-engineers have been producing brain-machine and neural interfaces that circumvent lesions to restore functionality, and neurorehabilitation experts have been developing new ways to revitalize the nervous system even in chronic disease. While each of these areas holds promise, their individual paths to clinical relevance remain difficult. Nonetheless, these methods are now able to synergistically enhance recovery of native motor function to levels which were previously believed to be impossible. Furthermore, such recovery can even persist after training, and for the first time there is evidence of functional axonal regrowth and rewiring in the central nervous system of animal models. To attain this type of regeneration, rehabilitation paradigms that pair cortically-based intent with activation of affected circuits and positive neurofeedback appear to be required—a phenomenon which raises new and far reaching questions about the underlying relationship between conscious action and neural repair. For this reason, we argue that multi-modal therapy will be necessary to facilitate a truly robust recovery, and that the success of investigational microscopic techniques may depend on their integration into macroscopic frameworks that include task-based neurorehabilitation. We further identify critical components of future neural repair strategies and explore the most updated knowledge, progress, and challenges in the fields of cellular neuronal repair, neural interfacing, and neurorehabilitation, all with the goal of better understanding neurological injury and how to improve recovery. PMID:28082858
Zheng, Zane Z.; Vicente-Grabovetsky, Alejandro; MacDonald, Ewen N.; Munhall, Kevin G.; Cusack, Rhodri; Johnsrude, Ingrid S.
2013-01-01
The everyday act of speaking involves the complex processes of speech motor control. An important component of control is monitoring, detection and processing of errors when auditory feedback does not correspond to the intended motor gesture. Here we show, using fMRI and converging operations within a multi-voxel pattern analysis framework, that this sensorimotor process is supported by functionally differentiated brain networks. During scanning, a real-time speech-tracking system was employed to deliver two acoustically different types of distorted auditory feedback or unaltered feedback while human participants were vocalizing monosyllabic words, and to present the same auditory stimuli while participants were passively listening. Whole-brain analysis of neural-pattern similarity revealed three functional networks that were differentially sensitive to distorted auditory feedback during vocalization, compared to during passive listening. One network of regions appears to encode an ‘error signal’ irrespective of acoustic features of the error: this network, including right angular gyrus, right supplementary motor area, and bilateral cerebellum, yielded consistent neural patterns across acoustically different, distorted feedback types, only during articulation (not during passive listening). In contrast, a fronto-temporal network appears sensitive to the speech features of auditory stimuli during passive listening; this preference for speech features was diminished when the same stimuli were presented as auditory concomitants of vocalization. A third network, showing a distinct functional pattern from the other two, appears to capture aspects of both neural response profiles. Taken together, our findings suggest that auditory feedback processing during speech motor control may rely on multiple, interactive, functionally differentiated neural systems. PMID:23467350
Effects of Nerve Injury and Segmental Regeneration on the Cellular Correlates of Neural Morphallaxis
Martinez, Veronica G.; Manson, Josiah M.B.; Zoran, Mark J.
2009-01-01
Functional recovery of neural networks after injury requires a series of signaling events similar to the embryonic processes that governed initial network construction. Neural morphallaxis, a form of nervous system regeneration, involves reorganization of adult neural connectivity patterns. Neural morphallaxis in the worm, Lumbriculus variegatus, occurs during asexual reproduction and segmental regeneration, as body fragments acquire new positional identities along the anterior–posterior axis. Ectopic head (EH) formation, induced by ventral nerve cord lesion, generated morphallactic plasticity including the reorganization of interneuronal sensory fields and the induction of a molecular marker of neural morphallaxis. Morphallactic changes occurred only in segments posterior to an EH. Neither EH formation, nor neural morphallaxis was observed after dorsal body lesions, indicating a role for nerve cord injury in morphallaxis induction. Furthermore, a hierarchical system of neurobehavioral control was observed, where anterior heads were dominant and an EH controlled body movements only in the absence of the anterior head. Both suppression of segmental regeneration and blockade of asexual fission, after treatment with boric acid, disrupted the maintenance of neural morphallaxis, but did not block its induction. Therefore, segmental regeneration (i.e., epimorphosis) may not be required for the induction of morphallactic remodeling of neural networks. However, on-going epimorphosis appears necessary for the long-term consolidation of cellular and molecular mechanisms underlying the morphallaxis of neural circuitry. PMID:18561185
Neural mechanisms of social dominance
Watanabe, Noriya; Yamamoto, Miyuki
2015-01-01
In a group setting, individuals' perceptions of their own level of dominance or of the dominance level of others, and the ability to adequately control their behavior based on these perceptions are crucial for living within a social environment. Recent advances in neural imaging and molecular technology have enabled researchers to investigate the neural substrates that support the perception of social dominance and the formation of a social hierarchy in humans. At the systems' level, recent studies showed that dominance perception is represented in broad brain regions which include the amygdala, hippocampus, striatum, and various cortical networks such as the prefrontal, and parietal cortices. Additionally, neurotransmitter systems such as the dopaminergic and serotonergic systems, modulate and are modulated by the formation of the social hierarchy in a group. While these monoamine systems have a wide distribution and multiple functions, it was recently found that the Neuropeptide B/W contributes to the perception of dominance and is present in neurons that have a limited projection primarily to the amygdala. The present review discusses the specific roles of these neural regions and neurotransmitter systems in the perception of dominance and in hierarchy formation. PMID:26136644
NASA Astrophysics Data System (ADS)
Gore, Russell K.; Choi, Yoonsu; Bellamkonda, Ravi; English, Arthur
2015-02-01
Objective. Neural interface technologies could provide controlling connections between the nervous system and external technologies, such as limb prosthetics. The recording of efferent, motor potentials is a critical requirement for a peripheral neural interface, as these signals represent the user-generated neural output intended to drive external devices. Our objective was to evaluate structural and functional neural regeneration through a microchannel neural interface and to characterize potentials recorded from electrodes placed within the microchannels in awake and behaving animals. Approach. Female rats were implanted with muscle EMG electrodes and, following unilateral sciatic nerve transection, the cut nerve was repaired either across a microchannel neural interface or with end-to-end surgical repair. During a 13 week recovery period, direct muscle responses to nerve stimulation proximal to the transection were monitored weekly. In two rats repaired with the neural interface, four wire electrodes were embedded in the microchannels and recordings were obtained within microchannels during proximal stimulation experiments and treadmill locomotion. Main results. In these proof-of-principle experiments, we found that axons from cut nerves were capable of functional reinnervation of distal muscle targets, whether regenerating through a microchannel device or after direct end-to-end repair. Discrete stimulation-evoked and volitional potentials were recorded within interface microchannels in a small group of awake and behaving animals and their firing patterns correlated directly with intramuscular recordings during locomotion. Of 38 potentials extracted, 19 were identified as motor axons reinnervating tibialis anterior or soleus muscles using spike triggered averaging. Significance. These results are evidence for motor axon regeneration through microchannels and are the first report of in vivo recordings from regenerated motor axons within microchannels in a small group of awake and behaving animals. These unique findings provide preliminary evidence that efferent, volitional motor potentials can be recorded from the microchannel-based peripheral neural interface; a critical requirement for any neural interface intended to facilitate direct neural control of external technologies.
Calcium signaling mediates five types of cell morphological changes to form neural rosettes.
Hříbková, Hana; Grabiec, Marta; Klemová, Dobromila; Slaninová, Iva; Sun, Yuh-Man
2018-02-12
Neural rosette formation is a critical morphogenetic process during neural development, whereby neural stem cells are enclosed in rosette niches to equipoise proliferation and differentiation. How neural rosettes form and provide a regulatory micro-environment remains to be elucidated. We employed the human embryonic stem cell-based neural rosette system to investigate the structural development and function of neural rosettes. Our study shows that neural rosette formation consists of five types of morphological change: intercalation, constriction, polarization, elongation and lumen formation. Ca 2+ signaling plays a pivotal role in the five steps by regulating the actions of the cytoskeletal complexes, actin, myosin II and tubulin during intercalation, constriction and elongation. These, in turn, control the polarizing elements, ZO-1, PARD3 and β-catenin during polarization and lumen production for neural rosette formation. We further demonstrate that the dismantlement of neural rosettes, mediated by the destruction of cytoskeletal elements, promotes neurogenesis and astrogenesis prematurely, indicating that an intact rosette structure is essential for orderly neural development. © 2018. Published by The Company of Biologists Ltd.
Ferguson, Michael A.; Anderson, Jeffrey S.; Spreng, R. Nathan
2017-01-01
Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830), we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease.
NASA Astrophysics Data System (ADS)
Broccard, Frédéric D.; Joshi, Siddharth; Wang, Jun; Cauwenberghs, Gert
2017-08-01
Objective. Computation in nervous systems operates with different computational primitives, and on different hardware, than traditional digital computation and is thus subjected to different constraints from its digital counterpart regarding the use of physical resources such as time, space and energy. In an effort to better understand neural computation on a physical medium with similar spatiotemporal and energetic constraints, the field of neuromorphic engineering aims to design and implement electronic systems that emulate in very large-scale integration (VLSI) hardware the organization and functions of neural systems at multiple levels of biological organization, from individual neurons up to large circuits and networks. Mixed analog/digital neuromorphic VLSI systems are compact, consume little power and operate in real time independently of the size and complexity of the model. Approach. This article highlights the current efforts to interface neuromorphic systems with neural systems at multiple levels of biological organization, from the synaptic to the system level, and discusses the prospects for future biohybrid systems with neuromorphic circuits of greater complexity. Main results. Single silicon neurons have been interfaced successfully with invertebrate and vertebrate neural networks. This approach allowed the investigation of neural properties that are inaccessible with traditional techniques while providing a realistic biological context not achievable with traditional numerical modeling methods. At the network level, populations of neurons are envisioned to communicate bidirectionally with neuromorphic processors of hundreds or thousands of silicon neurons. Recent work on brain-machine interfaces suggests that this is feasible with current neuromorphic technology. Significance. Biohybrid interfaces between biological neurons and VLSI neuromorphic systems of varying complexity have started to emerge in the literature. Primarily intended as a computational tool for investigating fundamental questions related to neural dynamics, the sophistication of current neuromorphic systems now allows direct interfaces with large neuronal networks and circuits, resulting in potentially interesting clinical applications for neuroengineering systems, neuroprosthetics and neurorehabilitation.
Dura-Bernal, Salvador; Li, Kan; Neymotin, Samuel A.; Francis, Joseph T.; Principe, Jose C.; Lytton, William W.
2016-01-01
Neural stimulation can be used as a tool to elicit natural sensations or behaviors by modulating neural activity. This can be potentially used to mitigate the damage of brain lesions or neural disorders. However, in order to obtain the optimal stimulation sequences, it is necessary to develop neural control methods, for example by constructing an inverse model of the target system. For real brains, this can be very challenging, and often unfeasible, as it requires repeatedly stimulating the neural system to obtain enough probing data, and depends on an unwarranted assumption of stationarity. By contrast, detailed brain simulations may provide an alternative testbed for understanding the interactions between ongoing neural activity and external stimulation. Unlike real brains, the artificial system can be probed extensively and precisely, and detailed output information is readily available. Here we employed a spiking network model of sensorimotor cortex trained to drive a realistic virtual musculoskeletal arm to reach a target. The network was then perturbed, in order to simulate a lesion, by either silencing neurons or removing synaptic connections. All lesions led to significant behvaioral impairments during the reaching task. The remaining cells were then systematically probed with a set of single and multiple-cell stimulations, and results were used to build an inverse model of the neural system. The inverse model was constructed using a kernel adaptive filtering method, and was used to predict the neural stimulation pattern required to recover the pre-lesion neural activity. Applying the derived neurostimulation to the lesioned network improved the reaching behavior performance. This work proposes a novel neurocontrol method, and provides theoretical groundwork on the use biomimetic brain models to develop and evaluate neurocontrollers that restore the function of damaged brain regions and the corresponding motor behaviors. PMID:26903796
Huang, Wei-Chen; Lo, Yu-Chih; Chu, Chao-Yi; Lai, Hsin-Yi; Chen, You-Yin; Chen, San-Yuan
2017-04-01
Chronic brain stimulation has become a promising physical therapy with increased efficacy and efficiency in the treatment of neurodegenerative diseases. The application of deep brain electrical stimulation (DBS) combined with manganese-enhanced magnetic resonance imaging (MEMRI) provides an unbiased representation of the functional anatomy, which shows the communication between areas of the brain responding to the therapy. However, it is challenging for the current system to provide a real-time high-resolution image because the incorporated MnCl 2 solution through microinjection usually results in image blurring or toxicity due to the uncontrollable diffusion of Mn 2+ . In this study, we developed a new type of conductive nanogel-based neural interface composed of amphiphilic chitosan-modified poly(3,4 -ethylenedioxythiophene) (PMSDT) that can exhibit biomimic structural/mechanical properties and ionic/electrical conductivity comparable to that of Au. More importantly, the PMSDT enables metal-ligand bonding with Mn 2+ ions, so that the system can release Mn 2+ ions rather than MnCl 2 solution directly and precisely controlled by electrical stimulation (ES) to achieve real-time high-resolution MEMRI. With the integration of PMSDT nanogel-based coating in polyimide-based microelectrode arrays, the post-implantation DBS enables frequency-dependent MR imaging in vivo, as well as small focal imaging in response to channel site-specific stimulation on the implant. The MR imaging of the implanted brain treated with 5-min electrical stimulation showed a thalamocortical neuronal pathway after 36 h, confirming the effective activation of a downstream neuronal circuit following DBS. By eliminating the susceptibility to artifact and toxicity, this system, in combination with a MR-compatible implant and a bio-compliant neural interface, provides a harmless and synchronic functional anatomy for DBS. The study demonstrates a model of MEMRI-functionalized DBS based on functional neural interface engineering and controllable delivery technology, which can be utilized in more detailed exploration of the functional anatomy in the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B.
2012-01-01
The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem. PMID:22649480
Alvarellos-González, Alberto; Pazos, Alejandro; Porto-Pazos, Ana B
2012-01-01
The importance of astrocytes, one part of the glial system, for information processing in the brain has recently been demonstrated. Regarding information processing in multilayer connectionist systems, it has been shown that systems which include artificial neurons and astrocytes (Artificial Neuron-Glia Networks) have well-known advantages over identical systems including only artificial neurons. Since the actual impact of astrocytes in neural network function is unknown, we have investigated, using computational models, different astrocyte-neuron interactions for information processing; different neuron-glia algorithms have been implemented for training and validation of multilayer Artificial Neuron-Glia Networks oriented toward classification problem resolution. The results of the tests performed suggest that all the algorithms modelling astrocyte-induced synaptic potentiation improved artificial neural network performance, but their efficacy depended on the complexity of the problem.
Using Dual Process Models to Examine Impulsivity Throughout Neural Maturation.
Leshem, Rotem
2016-01-01
The multivariate construct of impulsivity is examined through neural systems and connections that comprise the executive functioning system. It is proposed that cognitive and behavioral components of impulsivity can be divided into two distinct groups, mediated by (1) the cognitive control system: deficits in top-down cognitive control processes referred to as action/cognitive impulsivity and (2) the socioemotional system: related to bottom-up affective/motivational processes referred to as affective impulsivity. Examination of impulsivity from a developmental viewpoint can guide future research, potentially enabling the selection of more effective interventions for impulsive individuals, based on the cognitive components requiring improvement.
HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
Kim, J; Kasabov, N
1999-11-01
This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.
Güntürkün, Rüştü
2010-08-01
In this study, Elman recurrent neural networks have been defined by using conjugate gradient algorithm in order to determine the depth of anesthesia in the continuation stage of the anesthesia and to estimate the amount of medicine to be applied at that moment. The feed forward neural networks are also used for comparison. The conjugate gradient algorithm is compared with back propagation (BP) for training of the neural Networks. The applied artificial neural network is composed of three layers, namely the input layer, the hidden layer and the output layer. The nonlinear activation function sigmoid (sigmoid function) has been used in the hidden layer and the output layer. EEG data has been recorded with Nihon Kohden 9200 brand 22-channel EEG device. The international 8-channel bipolar 10-20 montage system (8 TB-b system) has been used in assembling the recording electrodes. EEG data have been recorded by being sampled once in every 2 milliseconds. The artificial neural network has been designed so as to have 60 neurons in the input layer, 30 neurons in the hidden layer and 1 neuron in the output layer. The values of the power spectral density (PSD) of 10-second EEG segments which correspond to the 1-50 Hz frequency range; the ratio of the total power of PSD values of the EEG segment at that moment in the same range to the total of PSD values of EEG segment taken prior to the anesthesia.
Non-invasive neural stimulation
NASA Astrophysics Data System (ADS)
Tyler, William J.; Sanguinetti, Joseph L.; Fini, Maria; Hool, Nicholas
2017-05-01
Neurotechnologies for non-invasively interfacing with neural circuits have been evolving from those capable of sensing neural activity to those capable of restoring and enhancing human brain function. Generally referred to as non-invasive neural stimulation (NINS) methods, these neuromodulation approaches rely on electrical, magnetic, photonic, and acoustic or ultrasonic energy to influence nervous system activity, brain function, and behavior. Evidence that has been surmounting for decades shows that advanced neural engineering of NINS technologies will indeed transform the way humans treat diseases, interact with information, communicate, and learn. The physics underlying the ability of various NINS methods to modulate nervous system activity can be quite different from one another depending on the energy modality used as we briefly discuss. For members of commercial and defense industry sectors that have not traditionally engaged in neuroscience research and development, the science, engineering and technology required to advance NINS methods beyond the state-of-the-art presents tremendous opportunities. Within the past few years alone there have been large increases in global investments made by federal agencies, foundations, private investors and multinational corporations to develop advanced applications of NINS technologies. Driven by these efforts NINS methods and devices have recently been introduced to mass markets via the consumer electronics industry. Further, NINS continues to be explored in a growing number of defense applications focused on enhancing human dimensions. The present paper provides a brief introduction to the field of non-invasive neural stimulation by highlighting some of the more common methods in use or under current development today.
A new delay-independent condition for global robust stability of neural networks with time delays.
Samli, Ruya
2015-06-01
This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
MATLAB Simulation of Gradient-Based Neural Network for Online Matrix Inversion
NASA Astrophysics Data System (ADS)
Zhang, Yunong; Chen, Ke; Ma, Weimu; Li, Xiao-Dong
This paper investigates the simulation of a gradient-based recurrent neural network for online solution of the matrix-inverse problem. Several important techniques are employed as follows to simulate such a neural system. 1) Kronecker product of matrices is introduced to transform a matrix-differential-equation (MDE) to a vector-differential-equation (VDE); i.e., finally, a standard ordinary-differential-equation (ODE) is obtained. 2) MATLAB routine "ode45" is introduced to solve the transformed initial-value ODE problem. 3) In addition to various implementation errors, different kinds of activation functions are simulated to show the characteristics of such a neural network. Simulation results substantiate the theoretical analysis and efficacy of the gradient-based neural network for online constant matrix inversion.
Object-processing neural efficiency differentiates object from spatial visualizers.
Motes, Michael A; Malach, Rafael; Kozhevnikov, Maria
2008-11-19
The visual system processes object properties and spatial properties in distinct subsystems, and we hypothesized that this distinction might extend to individual differences in visual processing. We conducted a functional MRI study investigating the neural underpinnings of individual differences in object versus spatial visual processing. Nine participants of high object-processing ability ('object' visualizers) and eight participants of high spatial-processing ability ('spatial' visualizers) were scanned, while they performed an object-processing task. Object visualizers showed lower bilateral neural activity in lateral occipital complex and lower right-lateralized neural activity in dorsolateral prefrontal cortex. The data indicate that high object-processing ability is associated with more efficient use of visual-object resources, resulting in less neural activity in the object-processing pathway.
Zhang, Guodong; Zeng, Zhigang; Hu, Junhao
2018-01-01
This paper is concerned with the global exponential dissipativity of memristive inertial neural networks with discrete and distributed time-varying delays. By constructing appropriate Lyapunov-Krasovskii functionals, some new sufficient conditions ensuring global exponential dissipativity of memristive inertial neural networks are derived. Moreover, the globally exponential attractive sets and positive invariant sets are also presented here. In addition, the new proposed results here complement and extend the earlier publications on conventional or memristive neural network dynamical systems. Finally, numerical simulations are given to illustrate the effectiveness of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Energy Model of Place Cell Network in Three Dimensional Space.
Wang, Yihong; Xu, Xuying; Wang, Rubin
2018-01-01
Place cells are important elements in the spatial representation system of the brain. A considerable amount of experimental data and classical models are achieved in this area. However, an important question has not been addressed, which is how the three dimensional space is represented by the place cells. This question is preliminarily surveyed by energy coding method in this research. Energy coding method argues that neural information can be expressed by neural energy and it is convenient to model and compute for neural systems due to the global and linearly addable properties of neural energy. Nevertheless, the models of functional neural networks based on energy coding method have not been established. In this work, we construct a place cell network model to represent three dimensional space on an energy level. Then we define the place field and place field center and test the locating performance in three dimensional space. The results imply that the model successfully simulates the basic properties of place cells. The individual place cell obtains unique spatial selectivity. The place fields in three dimensional space vary in size and energy consumption. Furthermore, the locating error is limited to a certain level and the simulated place field agrees to the experimental results. In conclusion, this is an effective model to represent three dimensional space by energy method. The research verifies the energy efficiency principle of the brain during the neural coding for three dimensional spatial information. It is the first step to complete the three dimensional spatial representing system of the brain, and helps us further understand how the energy efficiency principle directs the locating, navigating, and path planning function of the brain.
Wang, Min; Ge, Shuzhi Sam; Hong, Keum-Shik
2010-11-01
This paper presents adaptive neural tracking control for a class of non-affine pure-feedback systems with multiple unknown state time-varying delays. To overcome the design difficulty from non-affine structure of pure-feedback system, mean value theorem is exploited to deduce affine appearance of state variables x(i) as virtual controls α(i), and of the actual control u. The separation technique is introduced to decompose unknown functions of all time-varying delayed states into a series of continuous functions of each delayed state. The novel Lyapunov-Krasovskii functionals are employed to compensate for the unknown functions of current delayed state, which is effectively free from any restriction on unknown time-delay functions and overcomes the circular construction of controller caused by the neural approximation of a function of u and [Formula: see text] . Novel continuous functions are introduced to overcome the design difficulty deduced from the use of one adaptive parameter. To achieve uniformly ultimate boundedness of all the signals in the closed-loop system and tracking performance, control gains are effectively modified as a dynamic form with a class of even function, which makes stability analysis be carried out at the present of multiple time-varying delays. Simulation studies are provided to demonstrate the effectiveness of the proposed scheme.
Kim, Yoon Jae; Park, Sung Woo; Yeom, Hong Gi; Bang, Moon Suk; Kim, June Sic; Chung, Chun Kee; Kim, Sungwan
2015-08-20
A brain-machine interface (BMI) should be able to help people with disabilities by replacing their lost motor functions. To replace lost functions, robot arms have been developed that are controlled by invasive neural signals. Although invasive neural signals have a high spatial resolution, non-invasive neural signals are valuable because they provide an interface without surgery. Thus, various researchers have developed robot arms driven by non-invasive neural signals. However, robot arm control based on the imagined trajectory of a human hand can be more intuitive for patients. In this study, therefore, an integrated robot arm-gripper system (IRAGS) that is driven by three-dimensional (3D) hand trajectories predicted from non-invasive neural signals was developed and verified. The IRAGS was developed by integrating a six-degree of freedom robot arm and adaptive robot gripper. The system was used to perform reaching and grasping motions for verification. The non-invasive neural signals, magnetoencephalography (MEG) and electroencephalography (EEG), were obtained to control the system. The 3D trajectories were predicted by multiple linear regressions. A target sphere was placed at the terminal point of the real trajectories, and the system was commanded to grasp the target at the terminal point of the predicted trajectories. The average correlation coefficient between the predicted and real trajectories in the MEG case was [Formula: see text] ([Formula: see text]). In the EEG case, it was [Formula: see text] ([Formula: see text]). The success rates in grasping the target plastic sphere were 18.75 and 7.50 % with MEG and EEG, respectively. The success rates of touching the target were 52.50 and 58.75 % respectively. A robot arm driven by 3D trajectories predicted from non-invasive neural signals was implemented, and reaching and grasping motions were performed. In most cases, the robot closely approached the target, but the success rate was not very high because the non-invasive neural signal is less accurate. However the success rate could be sufficiently improved for practical applications by using additional sensors. Robot arm control based on hand trajectories predicted from EEG would allow for portability, and the performance with EEG was comparable to that with MEG.
The anatomy of the intralingual neural interconnections.
Păduraru, Dumitru; Rusu, Mugurel Constantin
2013-08-01
The intrinsic lingual neural interconnections are overlooked. It was hypothesized that intralingual anatomically well defined anastomoses interconnect the somatic and autonomic neural systems of the tongue. It was thus aimed to evaluate the intralingual neural scaffold in human tongues. Human tongue samples (ten adult and one pediatric) were microdissected (4.5 magnification). In the interstitium between the genioglossus and hyoglossus muscles, the branches of the lingual nerve (LN) and the medial trunk of the hypoglossal nerve (HN) had a layered disposition of the outer and inner side, respectively, of the lingual artery with its periarterial plexus. Anastomoses of these three distinctive neural suppliers of tongue were recorded, as also were those of the LN with the lateral trunk of the HN and the anastomoses between successive terminal branches of the LN. Successive ansae linguales were joining the LN branches and the medial trunk of the HN. The intrinsic neural system of the tongue supports integrative functions and allows a better retrospective understanding of various experimental studies. The topographical pattern is useful for an accurate diagnosis of intralingual nerves on microscopic slides.
Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen
2015-09-01
In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Synchronization stability of memristor-based complex-valued neural networks with time delays.
Liu, Dan; Zhu, Song; Ye, Er
2017-12-01
This paper focuses on the dynamical property of a class of memristor-based complex-valued neural networks (MCVNNs) with time delays. By constructing the appropriate Lyapunov functional and utilizing the inequality technique, sufficient conditions are proposed to guarantee exponential synchronization of the coupled systems based on drive-response concept. The proposed results are very easy to verify, and they also extend some previous related works on memristor-based real-valued neural networks. Meanwhile, the obtained sufficient conditions of this paper may be conducive to qualitative analysis of some complex-valued nonlinear delayed systems. A numerical example is given to demonstrate the effectiveness of our theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Suzuki, Takumi; Sato, Makoto
2017-11-15
Diversification of neuronal types is key to establishing functional variations in neural circuits. The first critical step to generate neuronal diversity is to organize the compartmental domains of developing brains into spatially distinct neural progenitor pools. Neural progenitors in each pool then generate a unique set of diverse neurons through specific spatiotemporal specification processes. In this review article, we focus on an additional mechanism, 'inter-progenitor pool wiring', that further expands the diversity of neural circuits. After diverse types of neurons are generated in one progenitor pool, a fraction of these neurons start migrating toward a remote brain region containing neurons that originate from another progenitor pool. Finally, neurons of different origins are intermingled and eventually form complex but precise neural circuits. The developing cerebral cortex of mammalian brains is one of the best examples of inter-progenitor pool wiring. However, Drosophila visual system development has revealed similar mechanisms in invertebrate brains, suggesting that inter-progenitor pool wiring is an evolutionarily conserved strategy that expands neural circuit diversity. Here, we will discuss how inter-progenitor pool wiring is accomplished in mammalian and fly brain systems. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Qian; Liu, Guohai; Xu, Dezhi; Xu, Liang; Xu, Gaohong; Aamir, Nazir
2018-05-01
This paper proposes a new decoupled control for a five-phase in-wheel fault-tolerant permanent magnet (IW-FTPM) motor drive, in which radial basis function neural network inverse (RBF-NNI) and internal model control (IMC) are combined. The RBF-NNI system is introduced into original system to construct a pseudo-linear system, and IMC is used as a robust controller. Hence, the newly proposed control system incorporates the merits of the IMC and RBF-NNI methods. In order to verify the proposed strategy, an IW-FTPM motor drive is designed based on dSPACE real-time control platform. Then, the experimental results are offered to verify that the d-axis current and the rotor speed are successfully decoupled. Besides, the proposed motor drive exhibits strong robustness even under load torque disturbance.
Venkataraman, Archana; Yang, Daniel Y-J; Dvornek, Nicha; Staib, Lawrence H; Duncan, James S; Pelphrey, Kevin A; Ventola, Pamela
2016-09-28
Behavioral interventions for autism have gained prominence in recent years; however, the neural-systems-level targets of these interventions remain poorly understood. We use a novel Bayesian framework to extract network-based differences before and after a 16-week pivotal response treatment (PRT) regimen. Our results suggest that the functional changes induced by PRT localize to the posterior cingulate and are marked by a shift in connectivity from the orbitofrontal cortex to the occipital-temporal cortex. Our results illuminate a potential PRT-induced learning mechanism, whereby the neural circuits involved during social perception shift from sensory and attentional systems to higher-level object and face processing areas.
Venkataraman, Archana; Yang, Daniel Y.-J.; Dvornek, Nicha; Staib, Lawrence H.; Duncan, James S.; Pelphrey, Kevin A.; Ventola, Pamela
2016-01-01
Behavioral interventions for autism have gained prominence in recent years; however, the neural-systems-level targets of these interventions remain poorly understood. We use a novel Bayesian framework to extract network-based differences before and after a 16-week Pivotal Response Treatment (PRT) regimen. Our results suggest that functional changes induced by PRT localize to the posterior cingulate and are marked by a shift in connectivity from the orbitofrontal cortex to the occipital temporal cortex. Our results illuminate a potential PRT-induced learning mechanism, whereby the neural circuits involved during social perception shift from sensory and attentional systems to higher-level object and face processing areas. PMID:27532879
Chen, Weisheng
2009-07-01
This paper focuses on the problem of adaptive neural network tracking control for a class of discrete-time pure-feedback systems with unknown control direction under amplitude and rate actuator constraints. Two novel state-feedback and output-feedback dynamic control laws are established where the function tanh(.) is employed to solve the saturation constraint problem. Implicit function theorem and mean value theorem are exploited to deal with non-affine variables that are used as actual control. Radial basis function neural networks are used to approximate the desired input function. Discrete Nussbaum gain is used to estimate the unknown sign of control gain. The uniform boundedness of all closed-loop signals is guaranteed. The tracking error is proved to converge to a small residual set around the origin. A simulation example is provided to illustrate the effectiveness of control schemes proposed in this paper.
Toward an Integration of Deep Learning and Neuroscience
Marblestone, Adam H.; Wayne, Greg; Kording, Konrad P.
2016-01-01
Neuroscience has focused on the detailed implementation of computation, studying neural codes, dynamics and circuits. In machine learning, however, artificial neural networks tend to eschew precisely designed codes, dynamics or circuits in favor of brute force optimization of a cost function, often using simple and relatively uniform initial architectures. Two recent developments have emerged within machine learning that create an opportunity to connect these seemingly divergent perspectives. First, structured architectures are used, including dedicated systems for attention, recursion and various forms of short- and long-term memory storage. Second, cost functions and training procedures have become more complex and are varied across layers and over time. Here we think about the brain in terms of these ideas. We hypothesize that (1) the brain optimizes cost functions, (2) the cost functions are diverse and differ across brain locations and over development, and (3) optimization operates within a pre-structured architecture matched to the computational problems posed by behavior. In support of these hypotheses, we argue that a range of implementations of credit assignment through multiple layers of neurons are compatible with our current knowledge of neural circuitry, and that the brain's specialized systems can be interpreted as enabling efficient optimization for specific problem classes. Such a heterogeneously optimized system, enabled by a series of interacting cost functions, serves to make learning data-efficient and precisely targeted to the needs of the organism. We suggest directions by which neuroscience could seek to refine and test these hypotheses. PMID:27683554
Prefrontal contributions to visual selective attention.
Squire, Ryan F; Noudoost, Behrad; Schafer, Robert J; Moore, Tirin
2013-07-08
The faculty of attention endows us with the capacity to process important sensory information selectively while disregarding information that is potentially distracting. Much of our understanding of the neural circuitry underlying this fundamental cognitive function comes from neurophysiological studies within the visual modality. Past evidence suggests that a principal function of the prefrontal cortex (PFC) is selective attention and that this function involves the modulation of sensory signals within posterior cortices. In this review, we discuss recent progress in identifying the specific prefrontal circuits controlling visual attention and its neural correlates within the primate visual system. In addition, we examine the persisting challenge of precisely defining how behavior should be affected when attentional function is lost.
Alkan, Yelda; Biswal, Bharat B.; Alvarez, Tara L.
2011-01-01
Purpose Eye movement research has traditionally studied solely saccade and/or vergence eye movements by isolating these systems within a laboratory setting. While the neural correlates of saccadic eye movements are established, few studies have quantified the functional activity of vergence eye movements using fMRI. This study mapped the neural substrates of vergence eye movements and compared them to saccades to elucidate the spatial commonality and differentiation between these systems. Methodology The stimulus was presented in a block design where the ‘off’ stimulus was a sustained fixation and the ‘on’ stimulus was random vergence or saccadic eye movements. Data were collected with a 3T scanner. A general linear model (GLM) was used in conjunction with cluster size to determine significantly active regions. A paired t-test of the GLM beta weight coefficients was computed between the saccade and vergence functional activities to test the hypothesis that vergence and saccadic stimulation would have spatial differentiation in addition to shared neural substrates. Results Segregated functional activation was observed within the frontal eye fields where a portion of the functional activity from the vergence task was located anterior to the saccadic functional activity (z>2.3; p<0.03). An area within the midbrain was significantly correlated with the experimental design for the vergence but not the saccade data set. Similar functional activation was observed within the following regions of interest: the supplementary eye field, dorsolateral prefrontal cortex, ventral lateral prefrontal cortex, lateral intraparietal area, cuneus, precuneus, anterior and posterior cingulates, and cerebellar vermis. The functional activity from these regions was not different between the vergence and saccade data sets assessed by analyzing the beta weights of the paired t-test (p>0.2). Conclusion Functional MRI can elucidate the differences between the vergence and saccade neural substrates within the frontal eye fields and midbrain. PMID:22073141
Wang, Zhanshan; Liu, Lei; Wu, Yanming; Zhang, Huaguang
2018-06-01
This paper investigates the problem of optimal fault-tolerant control (FTC) for a class of unknown nonlinear discrete-time systems with actuator fault in the framework of adaptive critic design (ACD). A pivotal highlight is the adaptive auxiliary signal of the actuator fault, which is designed to offset the effect of the fault. The considered systems are in strict-feedback forms and involve unknown nonlinear functions, which will result in the causal problem. To solve this problem, the original nonlinear systems are transformed into a novel system by employing the diffeomorphism theory. Besides, the action neural networks (ANNs) are utilized to approximate a predefined unknown function in the backstepping design procedure. Combined the strategic utility function and the ACD technique, a reinforcement learning algorithm is proposed to set up an optimal FTC, in which the critic neural networks (CNNs) provide an approximate structure of the cost function. In this case, it not only guarantees the stability of the systems, but also achieves the optimal control performance as well. In the end, two simulation examples are used to show the effectiveness of the proposed optimal FTC strategy.
NASA Astrophysics Data System (ADS)
Çebi, A.; Akdoğan, E.; Celen, A.; Dalkilic, A. S.
2017-02-01
An artificial neural network (ANN) model of friction factor in smooth and microfin tubes under heating, cooling and isothermal conditions was developed in this study. Data used in ANN was taken from a vertically positioned heat exchanger experimental setup. Multi-layered feed-forward neural network with backpropagation algorithm, radial basis function networks and hybrid PSO-neural network algorithm were applied to the database. Inputs were the ratio of cross sectional flow area to hydraulic diameter, experimental condition number depending on isothermal, heating, or cooling conditions and mass flow rate while the friction factor was the output of the constructed system. It was observed that such neural network based system could effectively predict the friction factor values of the flows regardless of their tube types. A dependency analysis to determine the strongest parameter that affected the network and database was also performed and tube geometry was found to be the strongest parameter of all as a result of analysis.
Dynamics of modularity of neural activity in the brain during development
NASA Astrophysics Data System (ADS)
Deem, Michael; Chen, Man
2014-03-01
Theory suggests that more modular systems can have better response functions at short times. This theory suggests that greater cognitive performance may be achieved for more modular neural activity, and that modularity of neural activity may, therefore, likely increase with development in children. We study the relationship between age and modularity of brain neural activity in developing children. The value of modularity calculated from fMRI data is observed to increase during childhood development and peak in young adulthood. We interpret these results as evidence of selection for plasticity in the cognitive function of the human brain. We present a model to illustrate how modularity can provide greater cognitive performance at short times and enhance fast, low-level, automatic cognitive processes. Conversely, high-level, effortful, conscious cognitive processes may not benefit from modularity. We use quasispecies theory to predict how the average modularity evolves with age, given a fitness function extracted from the model. We suggest further experiments exploring the effect of modularity on cognitive performance and suggest that modularity may be a potential biomarker for injury, rehabilitation, or disease.
Neural correlates of eating disorders: translational potential
McAdams, Carrie J; Smith, Whitney
2015-01-01
Eating disorders are complex and serious psychiatric illnesses whose etiology includes psychological, biological, and social factors. Treatment of eating disorders is challenging as there are few evidence-based treatments and limited understanding of the mechanisms that result in sustained recovery. In the last 20 years, we have begun to identify neural pathways that are altered in eating disorders. Consideration of how these pathways may contribute to an eating disorder can provide an understanding of expected responses to treatments. Eating disorder behaviors include restrictive eating, compulsive overeating, and purging behaviors after eating. Eating disorders are associated with changes in many neural systems. In this targeted review, we focus on three cognitive processes associated with neurocircuitry differences in subjects with eating disorders such as reward, decision-making, and social behavior. We briefly examine how each of these systems function in healthy people, using Neurosynth meta-analysis to identify key regions commonly implicated in these circuits. We review the evidence for disruptions of these regions and systems in eating disorders. Finally, we describe psychiatric and psychological treatments that are likely to function by impacting these regions. PMID:26767185
Maffucci, Jacqueline A.; Gore, Andrea C.
2009-01-01
The hypothalamic-pituitary-gonadal (HPG) axis undergoes a number of changes throughout the reproductive life cycle that are responsible for the development, puberty, adulthood, and senescence of reproductive systems. This natural progression is dictated by the neural network controlling the hypothalamus including the cells that synthesize and release gonadotropin-releasing hormone (GnRH) and their regulatory neurotransmitters. Glutamate and GABA are the primary excitatory and inhibitory neurotransmitters in the central nervous system, and as such contribute a great deal to modulating this axis throughout the lifetime via their actions on receptors in the hypothalamus, both directly on GnRH neurons as well as indirectly though other hypothalamic neural networks. Interactions among GnRH neurons, glutamate, and GABA, including the regulation of GnRH gene and protein expression, hormone release, and modulation by estrogen, are critical to age-appropriate changes in reproductive function. Here, we present evidence for the modulation of GnRH neurosecretory cells by the balance of glutamate and GABA in the hypothalamus, and the functional consequences of these interactions on reproductive physiology across the life cycle. PMID:19349036
Kappenman, Emily S; Luck, Steven J
2012-01-01
Event-related potentials (ERPs) are a powerful tool in understanding and evaluating cognitive, affective, motor, and sensory processing in both healthy and pathological samples. A typical ERP recording session takes considerable time but is designed to isolate only 1-2 components. Although this is appropriate for most basic science purposes, it is an inefficient approach for measuring the broad set of neurocognitive functions that may be disrupted in a neurological or psychiatric disease. The present study provides a framework for more efficiently evaluating multiple neural processes in a single experimental paradigm through the manipulation of functionally orthogonal dimensions. We describe the general MONSTER (Manipulation of Orthogonal Neural Systems Together in Electrophysiological Recordings) approach and explain how it can be adapted to investigate a variety of neurocognitive domains, ERP components, and neural processes of interest. We also demonstrate how this approach can be used to assess group differences by providing data from an implementation of the MONSTER approach in younger (18-30 y of age) and older (65-85 y of age) adult samples. This specific implementation of the MONSTER framework assesses 4 separate neural processes in the visual domain: (1) early sensory processing, using the C1 wave; (2) shifts of covert attention, with the N2pc component; (3) categorization, with the P3 component; and (4) self-monitoring, with the error-related negativity. Although the MONSTER approach is primarily described in the context of ERP experiments, it could also be adapted easily for use with functional magnetic resonance imaging.
Signal acquisition and analysis for cortical control of neuroprosthetics.
Tillery, Stephen I Helms; Taylor, Dawn M
2004-12-01
Work in cortically controlled neuroprosthetic systems has concentrated on decoding natural behaviors from neural activity, with the idea that if the behavior could be fully decoded it could be duplicated using an artificial system. Initial estimates from this approach suggested that a high-fidelity signal comprised of many hundreds of neurons would be required to control a neuroprosthetic system successfully. However, recent studies are showing hints that these systems can be controlled effectively using only a few tens of neurons. Attempting to decode the pre-existing relationship between neural activity and natural behavior is not nearly as important as choosing a decoding scheme that can be more readily deployed and trained to generate the desired actions of the artificial system. These artificial systems need not resemble or behave similarly to any natural biological system. Effective matching of discrete and continuous neural command signals to appropriately configured device functions will enable effective control of both natural and abstract artificial systems using compatible thought processes.
Neural Markers of the Development of Executive Function: Relevance for Education
Shanmugan, Sheila; Satterthwaite, Theodore D.
2016-01-01
Executive functions are involved in the development of academic skills and are critical for functioning in school settings. The relevance of executive functions to education begins early and continues throughout development, with clear impact on achievement. Diverse efforts increasingly suggest ways in which facilitating development of executive function may be used to improve academic performance. Such interventions seek to alter the trajectory of executive development, which exhibits a protracted course of maturation that stretches into young adulthood. As such, it may be useful to understand how the executive system develops normally and abnormally in order to tailor interventions within educational settings. Here we review recent work investigating the neural basis for executive development during childhood and adolescence. PMID:27182537
The role of symmetry in neural networks and their Laplacian spectra.
de Lange, Siemon C; van den Heuvel, Martijn P; de Reus, Marcel A
2016-11-01
Human and animal nervous systems constitute complexly wired networks that form the infrastructure for neural processing and integration of information. The organization of these neural networks can be analyzed using the so-called Laplacian spectrum, providing a mathematical tool to produce systems-level network fingerprints. In this article, we examine a characteristic central peak in the spectrum of neural networks, including anatomical brain network maps of the mouse, cat and macaque, as well as anatomical and functional network maps of human brain connectivity. We link the occurrence of this central peak to the level of symmetry in neural networks, an intriguing aspect of network organization resulting from network elements that exhibit similar wiring patterns. Specifically, we propose a measure to capture the global level of symmetry of a network and show that, for both empirical networks and network models, the height of the main peak in the Laplacian spectrum is strongly related to node symmetry in the underlying network. Moreover, examination of spectra of duplication-based model networks shows that neural spectra are best approximated using a trade-off between duplication and diversification. Taken together, our results facilitate a better understanding of neural network spectra and the importance of symmetry in neural networks. Copyright © 2016 Elsevier Inc. All rights reserved.
Garza-Lombó, Carla; Gonsebatt, María E.
2016-01-01
The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning. mTOR is present during early neural development and participates in axon and dendrite development, neuron differentiation, and gliogenesis, among other processes. Furthermore, mTOR has been shown to modulate lifespan in multiple organisms. This protein is an important energy sensor that is present throughout our lifetime its role must be precisely described in order to develop therapeutic strategies and prevent diseases of the central nervous system. The aim of this review is to present our current understanding of the functions of mTOR in neural development, the adult brain and aging. PMID:27378854
Puglia, Meghan H; Connelly, Jessica J; Morris, James P
2018-06-15
Aberrant attentional biases to social stimuli have been implicated in a number of disorders including autism and social anxiety disorder. Oxytocin, a naturally-occurring mammalian hormone and neuromodulator involved in regulating social behavior, has been proposed to impact basic biological systems that facilitate the detection of and orientation to social information. Here, we investigate a role for naturally-occurring variability in the endogenous oxytocinergic system in regulating neural response during attention to social information. Participants performed a selective social attention task while undergoing fMRI, provided a blood sample for epigenetic analysis, and completed self-report measures of social functioning. We find that a functional epigenetic modification to the oxytocin receptor, OXTR methylation, is associated with increased neural response within and decreased functional coupling between regions of the salience and attentional control networks during selective social attention. We also show that subclinical variability in autistic and social anxiety traits moderates this epigenetic regulation of neural response. These data offer a mechanistic explanation to a growing literature associating social behavior and disorder with epigenetic modification to OXTR by suggesting that OXTR methylation reflects a decrease in the extent to which social information automatically captures attention. We highlight the importance that treatment efficacy be considered in relation to individual differences in molecular makeup, and that future studies aimed at uncovering biomarkers of disorder carefully consider measurement at both the biological and phenotypic level.
Wu, Xi; Yang, Zhipeng; Bailey, Stephen K; Zhou, Jiliu; Cutting, Laurie E; Gore, John C; Ding, Zhaohua
2017-05-15
Functional MRI has proven to be effective in detecting neural activity in brain cortices on the basis of blood oxygenation level dependent (BOLD) contrast, but has relatively poor sensitivity for detecting neural activity in white matter. To demonstrate that BOLD signals in white matter are detectable and contain information on neural activity, we stimulated the somatosensory system and examined distributions of BOLD signals in related white matter pathways. The temporal correlation profiles and frequency contents of BOLD signals were compared between stimulation and resting conditions, and between relevant white matter fibers and background regions, as well as between left and right side stimulations. Quantitative analyses show that, overall, MR signals from white matter fiber bundles in the somatosensory system exhibited significantly greater temporal correlations with the primary sensory cortex and greater signal power during tactile stimulations than in a resting state, and were stronger than corresponding measurements for background white matter both during stimulations and in a resting state. The temporal correlation and signal power under stimulation were found to be twice those observed from the same bundle in a resting state, and bore clear relations with the side of stimuli. These indicate that BOLD signals in white matter fibers encode neural activity related to their functional roles connecting cortical volumes, which are detectable with appropriate methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Differential neural contributions to native- and foreign-language talker identification
Perrachione, Tyler K.; Pierrehumbert, Janet B.; Wong, Patrick C.M.
2009-01-01
Humans are remarkably adept at identifying individuals by the sound of their voice, a behavior supported by the nervous system’s ability to integrate information from voice and speech perception. Talker-identification abilities are significantly impaired when listeners are unfamiliar with the language being spoken. Recent behavioral studies describing the language-familiarity effect implicate functionally integrated neural systems for speech and voice perception, yet specific neuroscientific evidence demonstrating the basis for such integration has not yet been shown. Listeners in the present study learned to identify voices speaking a familiar (native) or unfamiliar (foreign) language. The talker-identification performance of neural circuitry in each cerebral hemisphere was assessed using dichotic listening. To determine the relative contribution of circuitry in each hemisphere to ecological (binaural) talker identification abilities, we compared the predictive capacity of dichotic performance on binaural performance across languages. We found listeners’ right-ear (left hemisphere) performance to be a better predictor of overall accuracy in their native language than a foreign one. The enhanced predictive capacity of the classically language-dominant left-hemisphere on overall talker-identification accuracy demonstrates functionally integrated neural systems for speech and voice perception during natural talker identification. PMID:19968445
Design of Neural Networks for Fast Convergence and Accuracy: Dynamics and Control
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Sparks, Dean W., Jr.
1997-01-01
A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.
Design of neural networks for fast convergence and accuracy: dynamics and control.
Maghami, P G; Sparks, D R
2000-01-01
A procedure for the design and training of artificial neural networks, used for rapid and efficient controls and dynamics design and analysis for flexible space systems, has been developed. Artificial neural networks are employed, such that once properly trained, they provide a means of evaluating the impact of design changes rapidly. Specifically, two-layer feedforward neural networks are designed to approximate the functional relationship between the component/spacecraft design changes and measures of its performance or nonlinear dynamics of the system/components. A training algorithm, based on statistical sampling theory, is presented, which guarantees that the trained networks provide a designer-specified degree of accuracy in mapping the functional relationship. Within each iteration of this statistical-based algorithm, a sequential design algorithm is used for the design and training of the feedforward network to provide rapid convergence to the network goals. Here, at each sequence a new network is trained to minimize the error of previous network. The proposed method should work for applications wherein an arbitrary large source of training data can be generated. Two numerical examples are performed on a spacecraft application in order to demonstrate the feasibility of the proposed approach.
Finite time convergent learning law for continuous neural networks.
Chairez, Isaac
2014-02-01
This paper addresses the design of a discontinuous finite time convergent learning law for neural networks with continuous dynamics. The neural network was used here to obtain a non-parametric model for uncertain systems described by a set of ordinary differential equations. The source of uncertainties was the presence of some external perturbations and poor knowledge of the nonlinear function describing the system dynamics. A new adaptive algorithm based on discontinuous algorithms was used to adjust the weights of the neural network. The adaptive algorithm was derived by means of a non-standard Lyapunov function that is lower semi-continuous and differentiable in almost the whole space. A compensator term was included in the identifier to reject some specific perturbations using a nonlinear robust algorithm. Two numerical examples demonstrated the improvements achieved by the learning algorithm introduced in this paper compared to classical schemes with continuous learning methods. The first one dealt with a benchmark problem used in the paper to explain how the discontinuous learning law works. The second one used the methane production model to show the benefits in engineering applications of the learning law proposed in this paper. Copyright © 2013 Elsevier Ltd. All rights reserved.
A program for the Bayesian Neural Network in the ROOT framework
NASA Astrophysics Data System (ADS)
Zhong, Jiahang; Huang, Run-Sheng; Lee, Shih-Chang
2011-12-01
We present a Bayesian Neural Network algorithm implemented in the TMVA package (Hoecker et al., 2007 [1]), within the ROOT framework (Brun and Rademakers, 1997 [2]). Comparing to the conventional utilization of Neural Network as discriminator, this new implementation has more advantages as a non-parametric regression tool, particularly for fitting probabilities. It provides functionalities including cost function selection, complexity control and uncertainty estimation. An example of such application in High Energy Physics is shown. The algorithm is available with ROOT release later than 5.29. Program summaryProgram title: TMVA-BNN Catalogue identifier: AEJX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD license No. of lines in distributed program, including test data, etc.: 5094 No. of bytes in distributed program, including test data, etc.: 1,320,987 Distribution format: tar.gz Programming language: C++ Computer: Any computer system or cluster with C++ compiler and UNIX-like operating system Operating system: Most UNIX/Linux systems. The application programs were thoroughly tested under Fedora and Scientific Linux CERN. Classification: 11.9 External routines: ROOT package version 5.29 or higher ( http://root.cern.ch) Nature of problem: Non-parametric fitting of multivariate distributions Solution method: An implementation of Neural Network following the Bayesian statistical interpretation. Uses Laplace approximation for the Bayesian marginalizations. Provides the functionalities of automatic complexity control and uncertainty estimation. Running time: Time consumption for the training depends substantially on the size of input sample, the NN topology, the number of training iterations, etc. For the example in this manuscript, about 7 min was used on a PC/Linux with 2.0 GHz processors.
Weidel, Philipp; Djurfeldt, Mikael; Duarte, Renato C; Morrison, Abigail
2016-01-01
In order to properly assess the function and computational properties of simulated neural systems, it is necessary to account for the nature of the stimuli that drive the system. However, providing stimuli that are rich and yet both reproducible and amenable to experimental manipulations is technically challenging, and even more so if a closed-loop scenario is required. In this work, we present a novel approach to solve this problem, connecting robotics and neural network simulators. We implement a middleware solution that bridges the Robotic Operating System (ROS) to the Multi-Simulator Coordinator (MUSIC). This enables any robotic and neural simulators that implement the corresponding interfaces to be efficiently coupled, allowing real-time performance for a wide range of configurations. This work extends the toolset available for researchers in both neurorobotics and computational neuroscience, and creates the opportunity to perform closed-loop experiments of arbitrary complexity to address questions in multiple areas, including embodiment, agency, and reinforcement learning.
Weidel, Philipp; Djurfeldt, Mikael; Duarte, Renato C.; Morrison, Abigail
2016-01-01
In order to properly assess the function and computational properties of simulated neural systems, it is necessary to account for the nature of the stimuli that drive the system. However, providing stimuli that are rich and yet both reproducible and amenable to experimental manipulations is technically challenging, and even more so if a closed-loop scenario is required. In this work, we present a novel approach to solve this problem, connecting robotics and neural network simulators. We implement a middleware solution that bridges the Robotic Operating System (ROS) to the Multi-Simulator Coordinator (MUSIC). This enables any robotic and neural simulators that implement the corresponding interfaces to be efficiently coupled, allowing real-time performance for a wide range of configurations. This work extends the toolset available for researchers in both neurorobotics and computational neuroscience, and creates the opportunity to perform closed-loop experiments of arbitrary complexity to address questions in multiple areas, including embodiment, agency, and reinforcement learning. PMID:27536234
The C. elegans Connectome Consists of Homogenous Circuits with Defined Functional Roles
Azulay, Aharon; Zaslaver, Alon
2016-01-01
A major goal of systems neuroscience is to decipher the structure-function relationship in neural networks. Here we study network functionality in light of the common-neighbor-rule (CNR) in which a pair of neurons is more likely to be connected the more common neighbors it shares. Focusing on the fully-mapped neural network of C. elegans worms, we establish that the CNR is an emerging property in this connectome. Moreover, sets of common neighbors form homogenous structures that appear in defined layers of the network. Simulations of signal propagation reveal their potential functional roles: signal amplification and short-term memory at the sensory/inter-neuron layer, and synchronized activity at the motoneuron layer supporting coordinated movement. A coarse-grained view of the neural network based on homogenous connected sets alone reveals a simple modular network architecture that is intuitive to understand. These findings provide a novel framework for analyzing larger, more complex, connectomes once these become available. PMID:27606684
A Systems Neuroscience Approach to the Pathophysiology of Pediatric Mood and Anxiety Disorders
Leibenluft, Ellen; Brotman, Melissa A.
2015-01-01
Emotional dysregulation is a core feature of pediatric mood and anxiety disorders. Emerging evidence suggests that these disorders are mediated by abnormalities in the functions and structures of the developing brain. This chapter reviews recent behavioral and functional magnetic resonance imaging (fMRI) research on pediatric mood and anxiety disorders, focusing on the neural mechanisms underlying these disorders. Throughout the chapter, we highlight the relationship between neural and behavioral findings, and potential novel treatments. The chapter concludes with directions for future research. PMID:24281907
Mohammed, Ali I; Gritton, Howard J; Tseng, Hua-an; Bucklin, Mark E; Yao, Zhaojie; Han, Xue
2016-02-08
Advances in neurotechnology have been integral to the investigation of neural circuit function in systems neuroscience. Recent improvements in high performance fluorescent sensors and scientific CMOS cameras enables optical imaging of neural networks at a much larger scale. While exciting technical advances demonstrate the potential of this technique, further improvement in data acquisition and analysis, especially those that allow effective processing of increasingly larger datasets, would greatly promote the application of optical imaging in systems neuroscience. Here we demonstrate the ability of wide-field imaging to capture the concurrent dynamic activity from hundreds to thousands of neurons over millimeters of brain tissue in behaving mice. This system allows the visualization of morphological details at a higher spatial resolution than has been previously achieved using similar functional imaging modalities. To analyze the expansive data sets, we developed software to facilitate rapid downstream data processing. Using this system, we show that a large fraction of anatomically distinct hippocampal neurons respond to discrete environmental stimuli associated with classical conditioning, and that the observed temporal dynamics of transient calcium signals are sufficient for exploring certain spatiotemporal features of large neural networks.
Coordination dynamics in a socially situated nervous system
Coey, Charles A.; Varlet, Manuel; Richardson, Michael J.
2012-01-01
Traditional theories of cognitive science have typically accounted for the organization of human behavior by detailing requisite computational/representational functions and identifying neurological mechanisms that might perform these functions. Put simply, such approaches hold that neural activity causes behavior. This same general framework has been extended to accounts of human social behavior via concepts such as “common-coding” and “co-representation” and much recent neurological research has been devoted to brain structures that might execute these social-cognitive functions. Although these neural processes are unquestionably involved in the organization and control of human social interactions, there is good reason to question whether they should be accorded explanatory primacy. Alternatively, we propose that a full appreciation of the role of neural processes in social interactions requires appropriately situating them in their context of embodied-embedded constraints. To this end, we introduce concepts from dynamical systems theory and review research demonstrating that the organization of human behavior, including social behavior, can be accounted for in terms of self-organizing processes and lawful dynamics of animal-environment systems. Ultimately, we hope that these alternative concepts can complement the recent advances in cognitive neuroscience and thereby provide opportunities to develop a complete and coherent account of human social interaction. PMID:22701413
Stability of discrete time recurrent neural networks and nonlinear optimization problems.
Singh, Jayant; Barabanov, Nikita
2016-02-01
We consider the method of Reduction of Dissipativity Domain to prove global Lyapunov stability of Discrete Time Recurrent Neural Networks. The standard and advanced criteria for Absolute Stability of these essentially nonlinear systems produce rather weak results. The method mentioned above is proved to be more powerful. It involves a multi-step procedure with maximization of special nonconvex functions over polytopes on every step. We derive conditions which guarantee an existence of at most one point of local maximum for such functions over every hyperplane. This nontrivial result is valid for wide range of neuron transfer functions. Copyright © 2015 Elsevier Ltd. All rights reserved.
GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement
Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei
2011-01-01
Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433
The neural system of metacognition accompanying decision-making in the prefrontal cortex
Qiu, Lirong; Su, Jie; Ni, Yinmei; Bai, Yang; Zhang, Xuesong; Li, Xiaoli
2018-01-01
Decision-making is usually accompanied by metacognition, through which a decision maker monitors uncertainty regarding a decision and may then consequently revise the decision. These metacognitive processes can occur prior to or in the absence of feedback. However, the neural mechanisms of metacognition remain controversial. One theory proposes an independent neural system for metacognition in the prefrontal cortex (PFC); the other, that metacognitive processes coincide and overlap with the systems used for the decision-making process per se. In this study, we devised a novel “decision–redecision” paradigm to investigate the neural metacognitive processes involved in redecision as compared to the initial decision-making process. The participants underwent a perceptual decision-making task and a rule-based decision-making task during functional magnetic resonance imaging (fMRI). We found that the anterior PFC, including the dorsal anterior cingulate cortex (dACC) and lateral frontopolar cortex (lFPC), were more extensively activated after the initial decision. The dACC activity in redecision positively scaled with decision uncertainty and correlated with individual metacognitive uncertainty monitoring abilities—commonly occurring in both tasks—indicating that the dACC was specifically involved in decision uncertainty monitoring. In contrast, the lFPC activity seen in redecision processing was scaled with decision uncertainty reduction and correlated with individual accuracy changes—positively in the rule-based decision-making task and negatively in the perceptual decision-making task. Our results show that the lFPC was specifically involved in metacognitive control of decision adjustment and was subject to different control demands of the tasks. Therefore, our findings support that a separate neural system in the PFC is essentially involved in metacognition and further, that functions of the PFC in metacognition are dissociable. PMID:29684004
Classification of neural tumors in laboratory rodents, emphasizing the rat.
Weber, Klaus; Garman, Robert H; Germann, Paul-Georg; Hardisty, Jerry F; Krinke, Georg; Millar, Peter; Pardo, Ingrid D
2011-01-01
Neoplasms of the nervous system, whether spontaneous or induced, are infrequent in laboratory rodents and very rare in other laboratory animal species. The morphology of neural tumors depends on the intrinsic functions and properties of the cell type, the interactions between the neoplasm and surrounding normal tissue, and regressive changes. The incidence of neural neoplasms varies with sex, location, and age of tumor onset. Although the onset of spontaneous tumor development cannot be established in routine oncogenicity studies, calculations using the time of diagnosis (day of death) have revealed significant differences in tumor biology among different rat strains. In the central nervous system, granular cell tumors (a meningioma variant), followed by glial tumors, are the most common neoplasms in rats, whereas glial cell tumors are observed most frequently in mice. Central nervous system tumors usually affect the brain rather than the spinal cord. Other than adrenal gland pheochromocytomas, the most common neoplasms of the peripheral nervous system are schwannomas. Neural tumors may develop in the central nervous system and peripheral nervous system from other cell lineages (including extraneural elements like adipose tissue and lymphocytes), but such lesions are very rare in laboratory animals.
An Application Development Platform for Neuromorphic Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, Mark; Chan, Jason; Daffron, Christopher
2016-01-01
Dynamic Adaptive Neural Network Arrays (DANNAs) are neuromorphic computing systems developed as a hardware based approach to the implementation of neural networks. They feature highly adaptive and programmable structural elements, which model arti cial neural networks with spiking behavior. We design them to solve problems using evolutionary optimization. In this paper, we highlight the current hardware and software implementations of DANNA, including their features, functionalities and performance. We then describe the development of an Application Development Platform (ADP) to support efficient application implementation and testing of DANNA based solutions. We conclude with future directions.
Application of neural networks to autonomous rendezvous and docking of space vehicles
NASA Technical Reports Server (NTRS)
Dabney, Richard W.
1992-01-01
NASA-Marshall has investigated the feasibility of numerous autonomous rendezvous and docking (ARD) candidate techniques. Neural networks have been studied as a viable basis for such systems' implementation, due to their intrinsic representation of such nonlinear functions as those for which analytical solutions are either difficult or nonexistent. Neural networks are also able to recognize and adapt to changes in their dynamic environment, thereby enhancing redundancy and fault tolerance. Outstanding performance has been obtained from ARD azimuth, elevation, and roll networks of this type.
Frequency Domain Analysis of Narx Neural Networks
NASA Astrophysics Data System (ADS)
Chance, J. E.; Worden, K.; Tomlinson, G. R.
1998-06-01
A method is proposed for interpreting the behaviour of NARX neural networks. The correspondence between time-delay neural networks and Volterra series is extended to the NARX class of networks. The Volterra kernels, or rather, their Fourier transforms, are obtained via harmonic probing. In the same way that the Volterra kernels generalize the impulse response to non-linear systems, the Volterra kernel transforms can be viewed as higher-order analogues of the Frequency Response Functions commonly used in Engineering dynamics; they can be interpreted in much the same way.
Stimulatory effect of icariin on the proliferation of neural stem cells from rat hippocampus.
Fu, Xiaolong; Li, Shujun; Zhou, Shaoyu; Wu, Qin; Jin, Feng; Shi, Jingshan
2018-01-29
Icariin (ICA), a major ingredient of Epimediumbrevicornum, has various pharmacological activities including central nervous system protective functions such as the improvement of learning and memory function in mice models of Alzheimer's disease. It has been reported that ICA can promote regeneration of peripheral nerve and functional recovery. The purpose of this study was to investigate the potentiating effect of ICA on the proliferation of rat hippocampal neural stem cells, and explore the possible mechanism involved. Primary neural stem cells were prepared from the hippocampus of newly born SD rats, and cells were cultured in special stem cell culture medium. Neural stem cells were confirmed by immunofluorescence detection of nestin, NSE and GFAP expression. The effect of ICA on the growth and proliferation of the neural stem cells was evaluated by 5-ethynyl-2-deoxyuridine (EdU) labeling of proliferating cells, and photomicrographic images of the cultured neural stem cells. Further, the mechanism of ICA-induced cell proliferation of neural stem cells was investigated by analyzing the gene and protein expression of cell cycle related genes cyclin D1 and p21. The present study showed that icariin promotes the growth and proliferation of neural stem cells from rat hippocampus in a dose-dependent manner. Incubation of cells with icariin resulted in significant increase in the number of stem cell spheres as well as the increased incorporation of EdU when compared with cells exposed to control vehicle. In addition, it was found that icariin-induced effect on neural stem cells is associated with increased mRNA and protein expression of cell cycle genes cyclin D1 and p21. This study evidently demonstrates the potentiating effect of ICA on neural stem cell growth and proliferation, which might be mediated through regulation of cell cycle gene and protein expression promoting cell cycle progression.
Improving Neural Recording Technology at the Nanoscale
NASA Astrophysics Data System (ADS)
Ferguson, John Eric
Neural recording electrodes are widely used to study normal brain function (e.g., learning, memory, and sensation) and abnormal brain function (e.g., epilepsy, addiction, and depression) and to interface with the nervous system for neuroprosthetics. With a deep understanding of the electrode interface at the nanoscale and the use of novel nanofabrication processes, neural recording electrodes can be designed that surpass previous limits and enable new applications. In this thesis, I will discuss three projects. In the first project, we created an ultralow-impedance electrode coating by controlling the nanoscale texture of electrode surfaces. In the second project, we developed a novel nanowire electrode for long-term intracellular recordings. In the third project, we created a means of wirelessly communicating with ultra-miniature, implantable neural recording devices. The techniques developed for these projects offer significant improvements in the quality of neural recordings. They can also open the door to new types of experiments and medical devices, which can lead to a better understanding of the brain and can enable novel and improved tools for clinical applications.
NASA Astrophysics Data System (ADS)
Guo, Rui; Liu, Jing
2017-10-01
With significant advantages in rapidly restoring the nerve function, electrical stimulation of nervous tissue is a crucial treatment of peripheral nerve injuries leading to common movement disorder. However, the currently available stimulating electrodes generally based on rigid conductive materials would cause a potential mechanical mismatch with soft neural tissues which thus reduces long-term effects of electrical stimulation. Here, we proposed and fabricated a flexible neural microelectrode array system based on the liquid metal GaIn alloy (75.5% Ga and 24.5% In by weight) and via printing approach. Such an alloy with a unique low melting point (10.35 °C) owns excellent electrical conductivity and high compliance, which are beneficial to serve as implantable flexible neural electrodes. The flexible neural microelectrode array embeds four liquid metal electrodes and stretchable interconnects in a PDMS membrane (500 µm in thickness) that possess a lower elastic modulus (1.055 MPa), which is similar to neural tissues with elastic moduli in the 0.1-1.5 MPa range. The electrical experiments indicate that the liquid metal interconnects could sustain over 7000 mechanical stretch cycles with resistance approximately staying at 4 Ω. Over the conceptual experiments on animal sciatic nerve electrical stimulation, the dead bullfrog implanted with flexible neural microelectrode array could even rhythmically contract and move its lower limbs under the electrical stimulations from the implant. This demonstrates a highly efficient way for quickly recovering biological nerve functions. Further, the good biocompatibility of the liquid metal material was justified via a series of biological experiments. This liquid metal modality for neural stimulation is expected to play important roles as biologic electrodes to overcome the fundamental mismatch in mechanics between biological tissues and electronic devices in the coming time.
Adaptive Neural Tracking Control for Switched High-Order Stochastic Nonlinear Systems.
Zhao, Xudong; Wang, Xinyong; Zong, Guangdeng; Zheng, Xiaolong
2017-10-01
This paper deals with adaptive neural tracking control design for a class of switched high-order stochastic nonlinear systems with unknown uncertainties and arbitrary deterministic switching. The considered issues are: 1) completely unknown uncertainties; 2) stochastic disturbances; and 3) high-order nonstrict-feedback system structure. The considered mathematical models can represent many practical systems in the actual engineering. By adopting the approximation ability of neural networks, common stochastic Lyapunov function method together with adding an improved power integrator technique, an adaptive state feedback controller with multiple adaptive laws is systematically designed for the systems. Subsequently, a controller with only two adaptive laws is proposed to solve the problem of over parameterization. Under the designed controllers, all the signals in the closed-loop system are bounded-input bounded-output stable in probability, and the system output can almost surely track the target trajectory within a specified bounded error. Finally, simulation results are presented to show the effectiveness of the proposed approaches.
Ewing, Graham E.
2009-01-01
There is a compelling argument that the occurrence of regressive autism is attributable to genetic and chromosomal abnormalities, arising from the overuse of vaccines, which subsequently affects the stability and function of the autonomic nervous system and physiological systems. That sense perception is linked to the autonomic nervous system and the function of the physiological systems enables us to examine the significance of autistic symptoms from a systemic perspective. Failure of the excretory system influences elimination of heavy metals and facilitates their accumulation and subsequent manifestation as neurotoxins: the long-term consequences of which would lead to neurodegeneration, cognitive and developmental problems. It may also influence regulation of neural hyperthermia. This article explores the issues and concludes that sensory dysfunction and systemic failure, manifested as autism, is the inevitable consequence arising from subtle DNA alteration and consequently from the overuse of vaccines. PMID:22666668
Neutral Theory and Scale-Free Neural Dynamics
NASA Astrophysics Data System (ADS)
Martinello, Matteo; Hidalgo, Jorge; Maritan, Amos; di Santo, Serena; Plenz, Dietmar; Muñoz, Miguel A.
2017-10-01
Neural tissues have been consistently observed to be spontaneously active and to generate highly variable (scale-free distributed) outbursts of activity in vivo and in vitro. Understanding whether these heterogeneous patterns of activity stem from the underlying neural dynamics operating at the edge of a phase transition is a fascinating possibility, as criticality has been argued to entail many possible important functional advantages in biological computing systems. Here, we employ a well-accepted model for neural dynamics to elucidate an alternative scenario in which diverse neuronal avalanches, obeying scaling, can coexist simultaneously, even if the network operates in a regime far from the edge of any phase transition. We show that perturbations to the system state unfold dynamically according to a "neutral drift" (i.e., guided only by stochasticity) with respect to the background of endogenous spontaneous activity, and that such a neutral dynamics—akin to neutral theories of population genetics and of biogeography—implies marginal propagation of perturbations and scale-free distributed causal avalanches. We argue that causal information, not easily accessible to experiments, is essential to elucidate the nature and statistics of neural avalanches, and that neutral dynamics is likely to play an important role in the cortex functioning. We discuss the implications of these findings to design new empirical approaches to shed further light on how the brain processes and stores information.
Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P. C.; Livesey, Frederick J.
2015-01-01
A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. PMID:26395144
Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J
2015-09-15
A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (<10) of presynaptic inputs, whereas a small set of hub-like neurons have large numbers of synaptic connections (>40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.
An analysis of neural receptive field plasticity by point process adaptive filtering
Brown, Emery N.; Nguyen, David P.; Frank, Loren M.; Wilson, Matthew A.; Solo, Victor
2001-01-01
Neural receptive fields are plastic: with experience, neurons in many brain regions change their spiking responses to relevant stimuli. Analysis of receptive field plasticity from experimental measurements is crucial for understanding how neural systems adapt their representations of relevant biological information. Current analysis methods using histogram estimates of spike rate functions in nonoverlapping temporal windows do not track the evolution of receptive field plasticity on a fine time scale. Adaptive signal processing is an established engineering paradigm for estimating time-varying system parameters from experimental measurements. We present an adaptive filter algorithm for tracking neural receptive field plasticity based on point process models of spike train activity. We derive an instantaneous steepest descent algorithm by using as the criterion function the instantaneous log likelihood of a point process spike train model. We apply the point process adaptive filter algorithm in a study of spatial (place) receptive field properties of simulated and actual spike train data from rat CA1 hippocampal neurons. A stability analysis of the algorithm is sketched in the Appendix. The adaptive algorithm can update the place field parameter estimates on a millisecond time scale. It reliably tracked the migration, changes in scale, and changes in maximum firing rate characteristic of hippocampal place fields in a rat running on a linear track. Point process adaptive filtering offers an analytic method for studying the dynamics of neural receptive fields. PMID:11593043
Computational exploration of neuron and neural network models in neurobiology.
Prinz, Astrid A
2007-01-01
The electrical activity of individual neurons and neuronal networks is shaped by the complex interplay of a large number of non-linear processes, including the voltage-dependent gating of ion channels and the activation of synaptic receptors. These complex dynamics make it difficult to understand how individual neuron or network parameters-such as the number of ion channels of a given type in a neuron's membrane or the strength of a particular synapse-influence neural system function. Systematic exploration of cellular or network model parameter spaces by computational brute force can overcome this difficulty and generate comprehensive data sets that contain information about neuron or network behavior for many different combinations of parameters. Searching such data sets for parameter combinations that produce functional neuron or network output provides insights into how narrowly different neural system parameters have to be tuned to produce a desired behavior. This chapter describes the construction and analysis of databases of neuron or neuronal network models and describes some of the advantages and downsides of such exploration methods.
Learning in Artificial Neural Systems
NASA Technical Reports Server (NTRS)
Matheus, Christopher J.; Hohensee, William E.
1987-01-01
This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.
NASA Technical Reports Server (NTRS)
Lure, Y. M. Fleming; Grody, Norman C.; Chiou, Y. S. Peter; Yeh, H. Y. Michael
1993-01-01
A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR).
NASA Astrophysics Data System (ADS)
Simeral, J. D.; Kim, S.-P.; Black, M. J.; Donoghue, J. P.; Hochberg, L. R.
2011-04-01
The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor.
Simeral, J D; Kim, S-P; Black, M J; Donoghue, J P; Hochberg, L R
2013-01-01
The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor. PMID:21436513
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639
Sensitive periods for the functional specialization of the neural system for human face processing.
Röder, Brigitte; Ley, Pia; Shenoy, Bhamy H; Kekunnaya, Ramesh; Bottari, Davide
2013-10-15
The aim of the study was to identify possible sensitive phases in the development of the processing system for human faces. We tested the neural processing of faces in 11 humans who had been blind from birth and had undergone cataract surgery between 2 mo and 14 y of age. Pictures of faces and houses, scrambled versions of these pictures, and pictures of butterflies were presented while event-related potentials were recorded. Participants had to respond to the pictures of butterflies (targets) only. All participants, even those who had been blind from birth for several years, were able to categorize the pictures and to detect the targets. In healthy controls and in a group of visually impaired individuals with a history of developmental or incomplete congenital cataracts, the well-known enhancement of the N170 (negative peak around 170 ms) event-related potential to faces emerged, but a face-sensitive response was not observed in humans with a history of congenital dense cataracts. By contrast, this group showed a similar N170 response to all visual stimuli, which was indistinguishable from the N170 response to faces in the controls. The face-sensitive N170 response has been associated with the structural encoding of faces. Therefore, these data provide evidence for the hypothesis that the functional differentiation of category-specific neural representations in humans, presumably involving the elaboration of inhibitory circuits, is dependent on experience and linked to a sensitive period. Such functional specialization of neural systems seems necessary to archive high processing proficiency.
Multiple mechanisms of consciousness: the neural correlates of emotional awareness.
Amting, Jayna M; Greening, Steven G; Mitchell, Derek G V
2010-07-28
Emotional stimuli, including facial expressions, are thought to gain rapid and privileged access to processing resources in the brain. Despite this access, we are conscious of only a fraction of the myriad of emotion-related cues we face everyday. It remains unclear, therefore, what the relationship is between activity in neural regions associated with emotional representation and the phenomenological experience of emotional awareness. We used functional magnetic resonance imaging and binocular rivalry to delineate the neural correlates of awareness of conflicting emotional expressions in humans. Behaviorally, fearful faces were significantly more likely to be perceived than disgusted or neutral faces. Functionally, increased activity was observed in regions associated with facial expression processing, including the amygdala and fusiform gyrus during emotional awareness. In contrast, awareness of neutral faces and suppression of fearful faces were associated with increased activity in dorsolateral prefrontal and inferior parietal cortices. The amygdala showed increased functional connectivity with ventral visual system regions during fear awareness and increased connectivity with perigenual prefrontal cortex (pgPFC; Brodmann's area 32/10) when fear was suppressed. Despite being prioritized for awareness, emotional items were associated with reduced activity in areas considered critical for consciousness. Contributions to consciousness from bottom-up and top-down neural regions may be additive, such that increased activity in specialized regions within the extended ventral visual system may reduce demands on a frontoparietal system important for awareness. The possibility is raised that interactions between pgPFC and the amygdala, previously implicated in extinction, may also influence whether or not an emotional stimulus is accessible to consciousness.
Richards, Jessica M.; Plate, Rista C.; Ernst, Monique
2013-01-01
The neural systems underlying reward-related behaviors across development have recently generated a great amount of interest. Yet, the neurodevelopmental literature on reward processing is marked by inconsistencies due to the heterogeneity of the reward paradigms used, the complexity of the behaviors being studied, and the developing brain itself as a moving target. The present review will examine task design as one source of variability across findings by compiling this literature along three dimensions: (1) task structures, (2) cognitive processes, and (3) neural systems. We start with the presentation of a heuristic neural systems model, the Triadic Model, as a way to provide a theoretical framework for the neuroscience research on motivated behaviors. We then discuss the principles guiding reward task development. Finally, we review the extant developmental neuroimaging literature on reward-related processing, organized by reward task type. We hope that this approach will help to clarify the literature on the functional neurodevelopment of reward-related neural systems, and to identify the role of the experimental parameters that significantly influence these findings. PMID:23518270
Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.
Wang, Leimin; Shen, Yi; Zhang, Guodong
Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.
Experimental Design and Interpretation of Functional Neuroimaging Studies of Cognitive Processes
Caplan, David
2008-01-01
This article discusses how the relation between experimental and baseline conditions in functional neuroimaging studies affects the conclusions that can be drawn from a study about the neural correlates of components of the cognitive system and about the nature and organization of those components. I argue that certain designs in common use—in particular the contrast of qualitatively different representations that are processed at parallel stages of a functional architecture—can never identify the neural basis of a cognitive operation and have limited use in providing information about the nature of cognitive systems. Other types of designs—such as ones that contrast representations that are computed in immediately sequential processing steps and ones that contrast qualitatively similar representations that are parametrically related within a single processing stage—are more easily interpreted. PMID:17979122
H∞ state estimation of stochastic memristor-based neural networks with time-varying delays.
Bao, Haibo; Cao, Jinde; Kurths, Jürgen; Alsaedi, Ahmed; Ahmad, Bashir
2018-03-01
This paper addresses the problem of H ∞ state estimation for a class of stochastic memristor-based neural networks with time-varying delays. Under the framework of Filippov solution, the stochastic memristor-based neural networks are transformed into systems with interval parameters. The present paper is the first to investigate the H ∞ state estimation problem for continuous-time Itô-type stochastic memristor-based neural networks. By means of Lyapunov functionals and some stochastic technique, sufficient conditions are derived to ensure that the estimation error system is asymptotically stable in the mean square with a prescribed H ∞ performance. An explicit expression of the state estimator gain is given in terms of linear matrix inequalities (LMIs). Compared with other results, our results reduce control gain and control cost effectively. Finally, numerical simulations are provided to demonstrate the efficiency of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Neuromorphic photonic networks using silicon photonic weight banks.
Tait, Alexander N; de Lima, Thomas Ferreira; Zhou, Ellen; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R
2017-08-07
Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.
Experimental Verification of Electric Drive Technologies Based on Artificial Intelligence Tools
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Ricketts, Daniel; Kotaru, Raj; Thomas, Robert; Noga, Donald F. (Technical Monitor); Kankam, Mark D. (Technical Monitor)
2000-01-01
In this report, a fully integrated prototype of a flight servo control system is successfully developed and implemented using brushless dc motors. The control system is developed by the fuzzy logic theory, and implemented with a multilayer neural network. First, a neural network-based architecture is introduced for fuzzy logic control. The characteristic rules and their membership functions of fuzzy systems are represented as the processing nodes in the neural network structure. The network structure and the parameter learning are performed simultaneously and online in the fuzzy-neural network system. The structure learning is based on the partition of input space. The parameter learning is based on the supervised gradient decent method, using a delta adaptation law. Using experimental setup, the performance of the proposed control system is evaluated under various operating conditions. Test results are presented and discussed in the report. The proposed learning control system has several advantages, namely, simple structure and learning capability, robustness and high tracking performance and few nodes at hidden layers. In comparison with the PI controller, the proposed fuzzy-neural network system can yield a better dynamic performance with shorter settling time, and without overshoot. Experimental results have shown that the proposed control system is adaptive and robust in responding to a wide range of operating conditions. In summary, the goal of this study is to design and implement-advanced servosystems to actuate control surfaces for flight vehicles, namely, aircraft and helicopters, missiles and interceptors, and mini- and micro-air vehicles.
Johnson, Zachary V.; Young, Larry J.
2017-01-01
Oxytocin- and vasopressin-related systems are present in invertebrate and vertebrate bilaterian animals, including humans, and exhibit conserved neuroanatomical and functional properties. In vertebrates, these systems innervate conserved neural networks that regulate social learning and behavior, including conspecific recognition, social attachment, and parental behavior. Individual and species-level variation in central organization of oxytocin and vasopressin systems has been linked to individual and species variation in social learning and behavior. In humans, genetic polymorphisms in the genes encoding oxytocin and vasopressin peptides and/or their respective target receptors have been associated with individual variation in social recognition, social attachment phenotypes, parental behavior, and psychiatric phenotypes such as autism. Here we describe both conserved and variable features of central oxytocin and vasopressin systems in the context of social behavioral diversity, with a particular focus on neural networks that modulate social learning, behavior, and salience of sociosensory stimuli during species-typical social contexts. PMID:28434591
Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks
de Santos-Sierra, Daniel; Sanchez-Jimenez, Abel; Garcia-Vellisca, Mariano A.; Navas, Adrian; Villacorta-Atienza, Jose A.
2015-01-01
Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though, the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the slave neuron is able to anticipate in time the behavior of the master one. In this paper, we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI), one of the main features of the neural response associated with the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh–Rose neurons. PMID:26648863
Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks.
de Santos-Sierra, Daniel; Sanchez-Jimenez, Abel; Garcia-Vellisca, Mariano A; Navas, Adrian; Villacorta-Atienza, Jose A
2015-01-01
Synchronization is one of the central phenomena involved in information processing in living systems. It is known that the nervous system requires the coordinated activity of both local and distant neural populations. Such an interplay allows to merge different information modalities in a whole processing supporting high-level mental skills as understanding, memory, abstraction, etc. Though, the biological processes underlying synchronization in the brain are not fully understood there have been reported a variety of mechanisms supporting different types of synchronization both at theoretical and experimental level. One of the more intriguing of these phenomena is the anticipating synchronization, which has been recently reported in a pair of unidirectionally coupled artificial neurons under simple conditions (Pyragiene and Pyragas, 2013), where the slave neuron is able to anticipate in time the behavior of the master one. In this paper, we explore the effect of spike anticipation over the information processing performed by a neural network at functional and structural level. We show that the introduction of intermediary neurons in the network enhances spike anticipation and analyse how these variations in spike anticipation can significantly change the firing regime of the neural network according to its functional and structural properties. In addition we show that the interspike interval (ISI), one of the main features of the neural response associated with the information coding, can be closely related to spike anticipation by each spike, and how synaptic plasticity can be modulated through that relationship. This study has been performed through numerical simulation of a coupled system of Hindmarsh-Rose neurons.
Mueller, Stefanie Verena; Mihov, Yoan; Federspiel, Andrea; Wiest, Roland; Hasler, Gregor
2017-07-01
Bulimia nervosa has been associated with a dysregulated catecholamine system. Nevertheless, the influence of this dysregulation on bulimic symptoms, on neural activity, and on the course of the illness is not clear yet. An instructive paradigm for directly investigating the relationship between catecholaminergic functioning and bulimia nervosa has involved the behavioral and neural responses to experimental catecholamine depletion. The purpose of this study was to examine the neural substrate of catecholaminergic dysfunction in bulimia nervosa and its relationship to relapse. In a randomized, double-blind and crossover study design, catecholamine depletion was achieved by using the oral administration of alpha-methyl-paratyrosine (AMPT) over 24 h in 18 remitted bulimic (rBN) and 22 healthy (HC) female participants. Cerebral blood flow (CBF) was measured using a pseudo continuous arterial spin labeling (pCASL) sequence. In a follow-up telephone interview, bulimic relapse was assessed. Following AMPT, rBN participants revealed an increased vigor reduction and CBF decreases in the pallidum and posterior midcingulate cortex (pMCC) relative to HC participants showing no CBF changes in these regions. These results indicated that the pallidum and the pMCC are the functional neural correlates of the dysregulated catecholamine system in bulimia nervosa. Bulimic relapse was associated with increased depressive symptoms and CBF reduction in the hippocampus/parahippocampal gyrus following catecholamine depletion. AMPT-induced increased CBF in this region predicted staying in remission. These findings demonstrated the importance of depressive symptoms and the stress system in the course of bulimia nervosa. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Fukushima, Kazuyuki; Miura, Yuji; Sawada, Kohei; Yamazaki, Kazuto; Ito, Masashi
2016-01-01
Using human cell models mimicking the central nervous system (CNS) provides a better understanding of the human CNS, and it is a key strategy to improve success rates in CNS drug development. In the CNS, neurons function as networks in which astrocytes play important roles. Thus, an assessment system of neuronal network functions in a co-culture of human neurons and astrocytes has potential to accelerate CNS drug development. We previously demonstrated that human hippocampus-derived neural stem/progenitor cells (HIP-009 cells) were a novel tool to obtain human neurons and astrocytes in the same culture. In this study, we applied HIP-009 cells to a multielectrode array (MEA) system to detect neuronal signals as neuronal network functions. We observed spontaneous firings of HIP-009 neurons, and validated functional formation of neuronal networks pharmacologically. By using this assay system, we investigated effects of several reference compounds, including agonists and antagonists of glutamate and γ-aminobutyric acid receptors, and sodium, potassium, and calcium channels, on neuronal network functions using firing and burst numbers, and synchrony as readouts. These results indicate that the HIP-009/MEA assay system is applicable to the pharmacological assessment of drug candidates affecting synaptic functions for CNS drug development. © 2015 Society for Laboratory Automation and Screening.
A neuro-fuzzy architecture for real-time applications
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Huang, Song
1992-01-01
Neural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach.
Florin, Esther; Baillet, Sylvain
2015-01-01
Functional imaging of the resting brain consistently reveals broad motifs of correlated blood oxygen level dependent (BOLD) activity that engage cerebral regions from distinct functional systems. Yet, the neurophysiological processes underlying these organized, large-scale fluctuations remain to be uncovered. Using magnetoencephalography (MEG) imaging during rest in 12 healthy subjects we analyse the resting state networks and their underlying neurophysiology. We first demonstrate non-invasively that cortical occurrences of high-frequency oscillatory activity are conditioned to the phase of slower spontaneous fluctuations in neural ensembles. We further show that resting-state networks emerge from synchronized phase-amplitude coupling across the brain. Overall, these findings suggest a unified principle of local-to-global neural signaling for long-range brain communication. PMID:25680519
Drug Delivery to the Inner Ear
Wise, Andrew K; Gillespie, Lisa N
2012-01-01
Bionic devices electrically activate neural populations to partially restore lost function. Of fundamental importance is the functional integrity of the targeted neurons. However, in many conditions the ongoing pathology can lead to continued neural degeneration and death that may compromise the effectiveness of the device and limit future strategies to improve performance. The use of drugs that can prevent nerve cell degeneration and promote their regeneration may improve clinical outcomes. In this paper we focus on strategies of delivering neuroprotective drugs to the auditory system in a way that is safe and clinically relevant for use in combination with a cochlear implant. The aim of this approach is to prevent neural degeneration and promote nerve regrowth in order to improve outcomes for cochlear implant recipients using techniques that can be translated to the clinic. PMID:23186937
The Assessment of Neurological Systems with Functional Imaging
ERIC Educational Resources Information Center
Eidelberg, David
2007-01-01
In recent years a number of multivariate approaches have been introduced to map neural systems in health and disease. In this review, we focus on spatial covariance methods applied to functional imaging data to identify patterns of regional activity associated with behavior. In the rest state, this form of network analysis can be used to detect…
Darda, Kohinoor M; Butler, Emily E; Ramsey, Richard
2018-06-01
Humans show an involuntary tendency to copy other people's actions. Although automatic imitation builds rapport and affiliation between individuals, we do not copy actions indiscriminately. Instead, copying behaviors are guided by a selection mechanism, which inhibits some actions and prioritizes others. To date, the neural underpinnings of the inhibition of automatic imitation and differences between the sexes in imitation control are not well understood. Previous studies involved small sample sizes and low statistical power, which produced mixed findings regarding the involvement of domain-general and domain-specific neural architectures. Here, we used data from Experiment 1 ( N = 28) to perform a power analysis to determine the sample size required for Experiment 2 ( N = 50; 80% power). Using independent functional localizers and an analysis pipeline that bolsters sensitivity, during imitation control we show clear engagement of the multiple-demand network (domain-general), but no sensitivity in the theory-of-mind network (domain-specific). Weaker effects were observed with regard to sex differences, suggesting that there are more similarities than differences between the sexes in terms of the neural systems engaged during imitation control. In summary, neurocognitive models of imitation require revision to reflect that the inhibition of imitation relies to a greater extent on a domain-general selection system rather than a domain-specific system that supports social cognition.
Global exponential stability for switched memristive neural networks with time-varying delays.
Xin, Youming; Li, Yuxia; Cheng, Zunshui; Huang, Xia
2016-08-01
This paper considers the problem of exponential stability for switched memristive neural networks (MNNs) with time-varying delays. Different from most of the existing papers, we model a memristor as a continuous system, and view switched MNNs as switched neural networks with uncertain time-varying parameters. Based on average dwell time technique, mode-dependent average dwell time technique and multiple Lyapunov-Krasovskii functional approach, two conditions are derived to design the switching signal and guarantee the exponential stability of the considered neural networks, which are delay-dependent and formulated by linear matrix inequalities (LMIs). Finally, the effectiveness of the theoretical results is demonstrated by two numerical examples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neural mechanisms tracking popularity in real-world social networks
Zerubavel, Noam; Bearman, Peter S.; Weber, Jochen; Ochsner, Kevin N.
2015-01-01
Differences in popularity are a key aspect of status in virtually all human groups and shape social interactions within them. Little is known, however, about how we track and neurally represent others’ popularity. We addressed this question in two real-world social networks using sociometric methods to quantify popularity. Each group member (perceiver) viewed faces of every other group member (target) while whole-brain functional MRI data were collected. Independent functional localizer tasks were used to identify brain systems supporting affective valuation (ventromedial prefrontal cortex, ventral striatum, amygdala) and social cognition (dorsomedial prefrontal cortex, precuneus, temporoparietal junction), respectively. During the face-viewing task, activity in both types of neural systems tracked targets’ sociometric popularity, even when controlling for potential confounds. The target popularity–social cognition system relationship was mediated by valuation system activity, suggesting that observing popular individuals elicits value signals that facilitate understanding their mental states. The target popularity–valuation system relationship was strongest for popular perceivers, suggesting enhanced sensitivity to differences among other group members’ popularity. Popular group members also demonstrated greater interpersonal sensitivity by more accurately predicting how their own personalities were perceived by other individuals in the social network. These data offer insights into the mechanisms by which status guides social behavior. PMID:26598684
Kuwajima, Mariko; Sawaguchi, Toshiyuki
2010-10-01
General fluid intelligence (gF) is a major component of intellect in both adults and children. Whereas its neural substrates have been studied relatively thoroughly in adults, those are poorly understood in children, particularly preschoolers. Here, we hypothesized that gF and visuospatial working memory share a common neural system within the lateral prefrontal cortex (LPFC) during the preschool years (4-6 years). At the behavioral level, we found that gF positively and significantly correlated with abilities (especially accuracy) in visuospatial working memory. Optical topography revealed that the LPFC of preschoolers was activated and deactivated during the visuospatial working memory task and the gF task. We found that the spatio-temporal features of neural activity in the LPFC were similar for both the visuospatial working memory task and the gF task. Further, 2 months of training for the visuospatial working memory task significantly increased gF in the preschoolers. These findings suggest that a common neural system in the LPFC is recruited to improve the visuospatial working memory and gF in preschoolers. Efficient recruitment of this neural system may be important for good performance in these functions in preschoolers, and behavioral training using this system would help to increase gF at these ages.
Phillips, Mary L; Mataix-Cols, David
2004-04-01
Despite its heterogeneous symptomatology, obsessive-compulsive disorder (OCD) is currently conceptualized as a unitary diagnostic entity. Recent factor-analytic studies have identified several OCD symptom dimensions that are associated with different demographic variables, comorbidity, patterns of genetic transmission, and treatment response. Functional abnormalities in neural systems important for emotion perception, including the orbitofrontal cortex, lateral prefrontal cortex, anterior cingulate gyrus, and limbic regions, have been reported in OCD. In this review, we discuss the extent to which neurobiological markers may distinguish these different symptom dimensions and whether specific symptom dimensions, such as contamination/washing, are associated with abnormalities in emotion and, in particular, disgust, perception in OCD. Also discussed are findings that indicate that anxiety can be induced in healthy volunteers in response to OCD symptom-related material, and that associated increases in activity within neural systems important for emotion perception occur to washing- and hoarding-related material in particular in these subjects. Further examination of neural responses during provocation of different symptom dimensions in OCD patients will help determine the extent to which specific abnormalities in neural systems underlying emotion perception are associated with different symptom dimensions and predict treatment response in OCD.
Mastinu, Enzo; Doguet, Pascal; Botquin, Yohan; Hakansson, Bo; Ortiz-Catalan, Max
2017-08-01
Despite the technological progress in robotics achieved in the last decades, prosthetic limbs still lack functionality, reliability, and comfort. Recently, an implanted neuromusculoskeletal interface built upon osseointegration was developed and tested in humans, namely the Osseointegrated Human-Machine Gateway. Here, we present an embedded system to exploit the advantages of this technology. Our artificial limb controller allows for bioelectric signals acquisition, processing, decoding of motor intent, prosthetic control, and sensory feedback. It includes a neurostimulator to provide direct neural feedback based on sensory information. The system was validated using real-time tasks characterization, power consumption evaluation, and myoelectric pattern recognition performance. Functionality was proven in a first pilot patient from whom results of daily usage were obtained. The system was designed to be reliably used in activities of daily living, as well as a research platform to monitor prosthesis usage and training, machine-learning-based control algorithms, and neural stimulation paradigms.
Simulation of fMRI signals to validate dynamic causal modeling estimation
NASA Astrophysics Data System (ADS)
Anandwala, Mobin; Siadat, Mohamad-Reza; Hadi, Shamil M.
2012-03-01
Through cognitive tasks certain brain areas are activated and also receive increased blood to them. This is modeled through a state system consisting of two separate parts one that deals with the neural node stimulation and the other blood response during that stimulation. The rationale behind using this state system is to validate existing analysis methods such as DCM to see what levels of noise they can handle. Using the forward Euler's method this system was approximated in a series of difference equations. What was obtained was the hemodynamic response for each brain area and this was used to test an analysis tool to estimate functional connectivity between each brain area with a given amount of noise. The importance of modeling this system is to not only have a model for neural response but also to compare to actual data obtained through functional imaging scans.
Yap, Keem Siah; Lim, Chee Peng; Au, Mau Teng
2011-12-01
Generalized adaptive resonance theory (GART) is a neural network model that is capable of online learning and is effective in tackling pattern classification tasks. In this paper, we propose an improved GART model (IGART), and demonstrate its applicability to power systems. IGART enhances the dynamics of GART in several aspects, which include the use of the Laplacian likelihood function, a new vigilance function, a new match-tracking mechanism, an ordering algorithm for determining the sequence of training data, and a rule extraction capability to elicit if-then rules from the network. To assess the effectiveness of IGART and to compare its performances with those from other methods, three datasets that are related to power systems are employed. The experimental results demonstrate the usefulness of IGART with the rule extraction capability in undertaking classification problems in power systems engineering.
A Supramolecular Gel Approach to Minimize the Neural Cell Damage during Cryopreservation Process.
Zeng, Jie; Yin, Yixia; Zhang, Li; Hu, Wanghui; Zhang, Chaocan; Chen, Wanyu
2016-03-01
The storage method for living cells is one of the major challenges in cell-based applications. Here, a novel supramolecular gel cryopreservation system (BDTC gel system) is introduced, which can observably increase the neural cell viability during cryopreservation process because this system can (1) confine the ice crystal growth in the porous of BDTC gel system, (2) decrease the amount of ice crystallization and cryopreservation system's freezing point, and (3) reduce the change rates of cell volumes and osmotic shock. In addition, thermoreversible BDTC supramolecular gel is easy to be removed after thawing so it does not hinder the adherence, growth, and proliferation of cells. The results of functionality assessments indicate that BDTC gel system can minimize the neural cell damage during cryopreservation process. This method will be potentially applied in cryopreservation of other cell types, tissues, or organs and will benefit cell therapy, tissue engineering, and organs transplantation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbon nanotubes in neural interfacing applications
NASA Astrophysics Data System (ADS)
Voge, Christopher M.; Stegemann, Jan P.
2011-02-01
Carbon nanotubes (CNT) are remarkable materials with a simple and inert molecular structure that gives rise to a range of potentially valuable physical and electronic properties, including high aspect ratio, high mechanical strength and excellent electrical conductivity. This review summarizes recent research on the application of CNT-based materials to study and control cells of the nervous system. It includes the use of CNT as cell culture substrates, to create patterned surfaces and to study cell-matrix interactions. It also summarizes recent investigations of CNT toxicity, particularly as related to neural cells. The application of CNT-based materials to directing the differentiation of progenitor and stem cells toward neural lineages is also discussed. The emphasis is on how CNT surface chemistry and nanotopography can be altered, and how such changes can affect neural cell function. This knowledge can be applied to creating improved neural interfaces and devices, as well as providing new approaches to neural tissue engineering and regeneration.
Imbeault, Sophie; Gauvin, Lianne G; Toeg, Hadi D; Pettit, Alexandra; Sorbara, Catherine D; Migahed, Lamiaa; DesRoches, Rebecca; Menzies, A Sheila; Nishii, Kiyomasa; Paul, David L; Simon, Alexander M; Bennett, Steffany AL
2009-01-01
Background Gap junction protein and extracellular matrix signalling systems act in concert to influence developmental specification of neural stem and progenitor cells. It is not known how these two signalling systems interact. Here, we examined the role of ECM components in regulating connexin expression and function in postnatal hippocampal progenitor cells. Results We found that Cx26, Cx29, Cx30, Cx37, Cx40, Cx43, Cx45, and Cx47 mRNA and protein but only Cx32 and Cx36 mRNA are detected in distinct neural progenitor cell populations cultured in the absence of exogenous ECM. Multipotential Type 1 cells express Cx26, Cx30, and Cx43 protein. Their Type 2a progeny but not Type 2b and 3 neuronally committed progenitor cells additionally express Cx37, Cx40, and Cx45. Cx29 and Cx47 protein is detected in early oligodendrocyte progenitors and mature oligodendrocytes respectively. Engagement with a laminin substrate markedly increases Cx26 protein expression, decreases Cx40, Cx43, Cx45, and Cx47 protein expression, and alters subcellular localization of Cx30. These changes are associated with decreased neurogenesis. Further, laminin elicits the appearance of Cx32 protein in early oligodendrocyte progenitors and Cx36 protein in immature neurons. These changes impact upon functional connexin-mediated hemichannel activity but not gap junctional intercellular communication. Conclusion Together, these findings demonstrate a new role for extracellular matrix-cell interaction, specifically laminin, in the regulation of intrinsic connexin expression and function in postnatal neural progenitor cells. PMID:19236721
Epigenetic Principles and Mechanisms Underlying Nervous System Functions in Health and Disease
Mehler, Mark F.
2009-01-01
Epigenetics and epigenomic medicine encompass a new science of brain and behavior that are already providing unique insights into the mechanisms underlying brain development, evolution, neuronal and network plasticity and homeostasis, senescence, the etiology of diverse neurological diseases and neural regenerative processes. Epigenetic mechanisms include DNA methylation, histone modifications, nucleosome repositioning, higher-order chromatin remodeling, non-coding RNAs, and RNA and DNA editing. RNA is centrally involved in directing these processes, implying that the transcriptional state of the cell is the primary determinant of epigenetic memory. This transcriptional state can be modified by internal and external cues affecting gene expression and post-transcriptional processing, but also by RNA and DNA editing through activity-dependent intracellular transport and modulation of RNAs and RNA regulatory supercomplexes, and through trans-neuronal and systemic trafficking of functional RNA subclasses. These integrated processes promote dynamic reorganization of nuclear architecture and the genomic landscape to modulate functional gene and neural networks with complex temporal and spatial trajectories. Epigenetics represents the long sought after molecular interface mediating gene-environmental interactions during critical periods throughout the lifecycle. The discipline of environmental epigenomics has begun to identify combinatorial profiles of environmental stressors modulating the latency, initiation and progression of specific neurological disorders, and more selective disease biomarkers and graded molecular responses to emerging therapeutic interventions. Pharmacoepigenomic therapies will promote accelerated recovery of impaired and seemingly irrevocably lost cognitive, behavioral, sensorimotor functions through epigenetic reprogramming of endogenous regional neural stem cell fate decisions, targeted tissue remodeling and restoration of neural network integrity, plasticity and connectivity. PMID:18940229
Communication: Fitting potential energy surfaces with fundamental invariant neural network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Kejie; Chen, Jun; Zhao, Zhiqiang
A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energymore » surfaces for OH{sub 3} and CH{sub 4} were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.« less
Memory-related brain lateralisation in birds and humans.
Moorman, Sanne; Nicol, Alister U
2015-03-01
Visual imprinting in chicks and song learning in songbirds are prominent model systems for the study of the neural mechanisms of memory. In both systems, neural lateralisation has been found to be involved in memory formation. Although many processes in the human brain are lateralised--spatial memory and musical processing involves mostly right hemisphere dominance, whilst language is mostly left hemisphere dominant--it is unclear what the function of lateralisation is. It might enhance brain capacity, make processing more efficient, or prevent occurrence of conflicting signals. In both avian paradigms we find memory-related lateralisation. We will discuss avian lateralisation findings and propose that birds provide a strong model for studying neural mechanisms of memory-related lateralisation. Copyright © 2014. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Deeba, Farah; Sanz-Leon, Paula; Robinson, Peter
A neural field model of the corticothalamic system is used to investigate the dynamics of absence seizures in the presence of temporally varying connection strength between the cerebral cortex and thalamus. Variation of connection strength from cortex to thalamus drives the system into seizure once a threshold is passed and a supercritical Hopf bifurcation occurs. The dynamics and spectral characteristics of the resulting seizures are explored as functions of maximum connection strength, time above threshold, and ramp rate. The results enable spectral and temporal characteristics of seizures to be related to underlying physiological variations via nonlinear dynamics and neural field theory. Notably, this analysis adds to neural field modeling of a wide variety of brain activity phenomena and measurements in recent years. Australian Research Council Grants FL1401000225 and CE140100007.
Conjugated Polymer Actuators for Articulating Neural Probes and Electrode Interfaces
NASA Astrophysics Data System (ADS)
Daneshvar, Eugene Dariush
This thesis investigated the potential use of polypyrrole (PPy) doped with dodecylbenzenesulfonate (DBS) to controllably articulate (bend or guide) flexible neural probes and electrodes. PPy(DBS) actuation performance was characterized in the ionic mixture and temperature found in the brain. Nearly all the ions in aCSF were exchanged into the PPy---the cations Na +, K+, Mg2+, Ca2+, as well as the anion PO43-; Cl- was not present. Nevertheless, deflections in aCSF were comparable to those in NaDBS and they were monotonic with oxidation level: strain increased upon reduction, with no reversal of motion despite the mixture of ionic charges and valences being exchanged. Actuation depended on temperature. Upon warming, the cyclic voltammograms showed additional peaks and an increase of 70% in the consumed charge. Actuation strain was monotonic under these conditions, demonstrating that conducting polymer actuators can indeed be used for neural interface and neural probe applications. In addition, a novel microelectro-mechanical system (MEMS) was developed to measure previously disregarded residual stress in a bilayer actuator. Residual stresses are a major concern for MEMS devices as that they can dramatically influence their yield and functionality. This device introduced a new technique to measure micro-scaled actuation forces that may be useful for characterization of other MEMS actuators. Finally, a functional movable parylene-based neural electrode prototype was developed. Employing PPy(DBS) actuators, electrode projections were successfully controlled to either remain flat or actuate out-of-plane and into a brain phantom during insertion. An electrode projection 800 microm long and 50 microm wide was able to deflect almost 800 microm away from the probe substrate. Applications that do not require insertion into tissue may also benefit from the electrode projections described here. Implantable neural interface devices are a critical component to a broad class of emerging neuroprosthetic and neurostimulation systems aimed to restore functionality, or abate symptoms related to physical impairments, loss of sensory abilities, and neurological disorders. The therapeutic outcome and performance of these systems hinge to a large degree on the proximity, size, and placement of the device or interface with respect to the targeted neurons or tissue.
Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Crampton, Sean; McKelvey, Laura; Nolan, Aoife; O'Keeffe, Gerard; Gutierrez, Humberto
2015-01-01
During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune-related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS.
When a loved one feels unfamiliar: a case study on the neural basis of Capgras delusion.
Thiel, Christiane M; Studte, Sara; Hildebrandt, Helmut; Huster, Rene; Weerda, Riklef
2014-03-01
Perception of familiar faces depends on a core system analysing visual appearance and an extended system dealing with inference of mental states and emotional responses. Damage to the core system impairs face perception as seen in prosopagnosia. In contrast, patients with Capgras delusion show intact face perception but believe that closely related persons are impostors. It has been suggested that two deficits are necessary for the delusion, an aberrant perceptual or affective experience that leads to a bizarre belief as well as an impaired ability to evaluate beliefs. Using functional magnetic resonance imaging, we compared neural activity to familiar and unfamiliar faces in a patient with Capgras delusion and an age matched control group. We provide evidence that Capgras delusion is related to dysfunctional activity in the extended face processing system. The patient, who developed the delusion for the partner after a large right prefrontal lesion sparing the ventromedial and medial orbitofrontal cortex, lacked neural activity to the partner's face in left posterior cingulate cortex and left posterior superior temporal sulcus. Further, we found impaired functional connectivity of the latter region with the left superior frontal gyrus and to a lesser extent with the right superior frontal sulcus/middle frontal gyrus. The findings of this case study suggest that the first factor in Capgras delusion may be reduced neural activity in the extended face processing system that deals with inference of mental states while the second factor may be due to a lesion in the right middle frontal gyrus. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pohlmeyer, Eric A.; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline W.; Sanchez, Justin C.
2014-01-01
Brain-machine interface (BMI) systems give users direct neural control of robotic, communication, or functional electrical stimulation systems. As BMI systems begin transitioning from laboratory settings into activities of daily living, an important goal is to develop neural decoding algorithms that can be calibrated with a minimal burden on the user, provide stable control for long periods of time, and can be responsive to fluctuations in the decoder’s neural input space (e.g. neurons appearing or being lost amongst electrode recordings). These are significant challenges for static neural decoding algorithms that assume stationary input/output relationships. Here we use an actor-critic reinforcement learning architecture to provide an adaptive BMI controller that can successfully adapt to dramatic neural reorganizations, can maintain its performance over long time periods, and which does not require the user to produce specific kinetic or kinematic activities to calibrate the BMI. Two marmoset monkeys used the Reinforcement Learning BMI (RLBMI) to successfully control a robotic arm during a two-target reaching task. The RLBMI was initialized using random initial conditions, and it quickly learned to control the robot from brain states using only a binary evaluative feedback regarding whether previously chosen robot actions were good or bad. The RLBMI was able to maintain control over the system throughout sessions spanning multiple weeks. Furthermore, the RLBMI was able to quickly adapt and maintain control of the robot despite dramatic perturbations to the neural inputs, including a series of tests in which the neuron input space was deliberately halved or doubled. PMID:24498055
Dynamical systems, attractors, and neural circuits.
Miller, Paul
2016-01-01
Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.
Neural Correlates of Impaired Reward-Effort Integration in Remitted Bulimia Nervosa.
Mueller, Stefanie Verena; Morishima, Yosuke; Schwab, Simon; Wiest, Roland; Federspiel, Andrea; Hasler, Gregor
2018-03-01
The integration of reward magnitudes and effort costs is required for an effective behavioral guidance. This reward-effort integration was reported to be dependent on dopaminergic neurotransmission. As bulimia nervosa has been associated with a dysregulated dopamine system and catecholamine depletion led to reward-processing deficits in remitted bulimia nervosa, the purpose of this study was to identify the role of catecholamine dysfunction and its relation to behavioral and neural reward-effort integration in bulimia nervosa. To investigate the interaction between catecholamine functioning and behavioral, and neural responses directly, 17 remitted bulimic (rBN) and 21 healthy individuals (HC) received alpha-methyl-paratyrosine (AMPT) over 24 h to achieve catecholamine depletion in a randomized, crossover study design. We used functional magnetic resonance imaging (fMRI) and the monetary incentive delay (MID) task to assess reward-effort integration in relation to catecholaminergic neurotransmission at the behavioral and neural level. AMPT reduced the ability to integrate rewards and efforts effectively in HC participants. In contrast, in rBN participants, the reduced reward-effort integration was associated with illness duration in the sham condition and unrelated to catecholamine depletion. Regarding neural activation, AMPT decreased the reward anticipation-related neural activation in the anteroventral striatum. This decrease was associated with the AMPT-induced reduction of monetary earning in HC in contrast to rBN participants. Our findings contributed to the theory of a desensitized dopaminergic system in bulimia nervosa. A disrupted processing of reward magnitudes and effort costs might increase the probability of maintenance of bulimic symptoms.
Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall.
Hampson, Robert E; Song, Dong; Robinson, Brian S; Fetterhoff, Dustin; Dakos, Alexander S; Roeder, Brent M; She, Xiwei; Wicks, Robert T; Witcher, Mark R; Couture, Daniel E; Laxton, Adrian W; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J; Whitlow, Christopher T; Marmarelis, Vasilis Z; Berger, Theodore W; Deadwyler, Sam A
2018-06-01
We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient's own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.
Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall
NASA Astrophysics Data System (ADS)
Hampson, Robert E.; Song, Dong; Robinson, Brian S.; Fetterhoff, Dustin; Dakos, Alexander S.; Roeder, Brent M.; She, Xiwei; Wicks, Robert T.; Witcher, Mark R.; Couture, Daniel E.; Laxton, Adrian W.; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J.; Whitlow, Christopher T.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.
2018-06-01
Objective. We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient’s own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. Approach. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. Significance. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.
Hooker, Christine I; Bruce, Lori; Fisher, Melissa; Verosky, Sara C; Miyakawa, Asako; D'Esposito, Mark; Vinogradov, Sophia
2013-08-30
Both cognitive and social-cognitive deficits impact functional outcome in schizophrenia. Cognitive remediation studies indicate that targeted cognitive and/or social-cognitive training improves behavioral performance on trained skills. However, the neural effects of training in schizophrenia and their relation to behavioral gains are largely unknown. This study tested whether a 50-h intervention which included both cognitive and social-cognitive training would influence neural mechanisms that support social ccognition. Schizophrenia participants completed a computer-based intervention of either auditory-based cognitive training (AT) plus social-cognition training (SCT) (N=11) or non-specific computer games (CG) (N=11). Assessments included a functional magnetic resonance imaging (fMRI) task of facial emotion recognition, and behavioral measures of cognition, social cognition, and functional outcome. The fMRI results showed the predicted group-by-time interaction. Results were strongest for emotion recognition of happy, surprise and fear: relative to CG participants, AT+SCT participants showed a neural activity increase in bilateral amygdala, right putamen and right medial prefrontal cortex. Across all participants, pre-to-post intervention neural activity increase in these regions predicted behavioral improvement on an independent emotion perception measure (MSCEIT: Perceiving Emotions). Among AT+SCT participants alone, neural activity increase in right amygdala predicted behavioral improvement in emotion perception. The findings indicate that combined cognition and social-cognition training improves neural systems that support social-cognition skills. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Combined expert system/neural networks method for process fault diagnosis
Reifman, Jaques; Wei, Thomas Y. C.
1995-01-01
A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.
Combined expert system/neural networks method for process fault diagnosis
Reifman, J.; Wei, T.Y.C.
1995-08-15
A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.
The ventral visual pathway: an expanded neural framework for the processing of object quality.
Kravitz, Dwight J; Saleem, Kadharbatcha S; Baker, Chris I; Ungerleider, Leslie G; Mishkin, Mortimer
2013-01-01
Since the original characterization of the ventral visual pathway, our knowledge of its neuroanatomy, functional properties, and extrinsic targets has grown considerably. Here we synthesize this recent evidence and propose that the ventral pathway is best understood as a recurrent occipitotemporal network containing neural representations of object quality both utilized and constrained by at least six distinct cortical and subcortical systems. Each system serves its own specialized behavioral, cognitive, or affective function, collectively providing the raison d'être for the ventral visual pathway. This expanded framework contrasts with the depiction of the ventral visual pathway as a largely serial staged hierarchy culminating in singular object representations and more parsimoniously incorporates attentional, contextual, and feedback effects. Published by Elsevier Ltd.
A spiking neural network based on the basal ganglia functional anatomy.
Baladron, Javier; Hamker, Fred H
2015-07-01
We introduce a spiking neural network of the basal ganglia capable of learning stimulus-action associations. We model learning in the three major basal ganglia pathways, direct, indirect and hyperdirect, by spike time dependent learning and considering the amount of dopamine available (reward). Moreover, we allow to learn a cortico-thalamic pathway that bypasses the basal ganglia. As a result the system develops new functionalities for the different basal ganglia pathways: The direct pathway selects actions by disinhibiting the thalamus, the hyperdirect one suppresses alternatives and the indirect pathway learns to inhibit common mistakes. Numerical experiments show that the system is capable of learning sets of either deterministic or stochastic rules. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chiral topological phases from artificial neural networks
NASA Astrophysics Data System (ADS)
Kaubruegger, Raphael; Pastori, Lorenzo; Budich, Jan Carl
2018-05-01
Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by explicit construction how n -body correlations can be kept at an exact level with ANN wave functions exhibiting polynomial scaling with power n in system size. Using this construction, we analytically represent the paradigmatic Laughlin wave function as an ANN state.
Effectiveness of feature and classifier algorithms in character recognition systems
NASA Astrophysics Data System (ADS)
Wilson, Charles L.
1993-04-01
At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.
Liang, X B; Wang, J
2000-01-01
This paper presents a continuous-time recurrent neural-network model for nonlinear optimization with any continuously differentiable objective function and bound constraints. Quadratic optimization with bound constraints is a special problem which can be solved by the recurrent neural network. The proposed recurrent neural network has the following characteristics. 1) It is regular in the sense that any optimum of the objective function with bound constraints is also an equilibrium point of the neural network. If the objective function to be minimized is convex, then the recurrent neural network is complete in the sense that the set of optima of the function with bound constraints coincides with the set of equilibria of the neural network. 2) The recurrent neural network is primal and quasiconvergent in the sense that its trajectory cannot escape from the feasible region and will converge to the set of equilibria of the neural network for any initial point in the feasible bound region. 3) The recurrent neural network has an attractivity property in the sense that its trajectory will eventually converge to the feasible region for any initial states even at outside of the bounded feasible region. 4) For minimizing any strictly convex quadratic objective function subject to bound constraints, the recurrent neural network is globally exponentially stable for almost any positive network parameters. Simulation results are given to demonstrate the convergence and performance of the proposed recurrent neural network for nonlinear optimization with bound constraints.
Concurrent evolution of feature extractors and modular artificial neural networks
NASA Astrophysics Data System (ADS)
Hannak, Victor; Savakis, Andreas; Yang, Shanchieh Jay; Anderson, Peter
2009-05-01
This paper presents a new approach for the design of feature-extracting recognition networks that do not require expert knowledge in the application domain. Feature-Extracting Recognition Networks (FERNs) are composed of interconnected functional nodes (feurons), which serve as feature extractors, and are followed by a subnetwork of traditional neural nodes (neurons) that act as classifiers. A concurrent evolutionary process (CEP) is used to search the space of feature extractors and neural networks in order to obtain an optimal recognition network that simultaneously performs feature extraction and recognition. By constraining the hill-climbing search functionality of the CEP on specific parts of the solution space, i.e., individually limiting the evolution of feature extractors and neural networks, it was demonstrated that concurrent evolution is a necessary component of the system. Application of this approach to a handwritten digit recognition task illustrates that the proposed methodology is capable of producing recognition networks that perform in-line with other methods without the need for expert knowledge in image processing.
Neural networks for data compression and invariant image recognition
NASA Technical Reports Server (NTRS)
Gardner, Sheldon
1989-01-01
An approach to invariant image recognition (I2R), based upon a model of biological vision in the mammalian visual system (MVS), is described. The complete I2R model incorporates several biologically inspired features: exponential mapping of retinal images, Gabor spatial filtering, and a neural network associative memory. In the I2R model, exponentially mapped retinal images are filtered by a hierarchical set of Gabor spatial filters (GSF) which provide compression of the information contained within a pixel-based image. A neural network associative memory (AM) is used to process the GSF coded images. We describe a 1-D shape function method for coding of scale and rotationally invariant shape information. This method reduces image shape information to a periodic waveform suitable for coding as an input vector to a neural network AM. The shape function method is suitable for near term applications on conventional computing architectures equipped with VLSI FFT chips to provide a rapid image search capability.
NASA Astrophysics Data System (ADS)
Li, Bo; Rui, Xiaoting
2018-01-01
Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.
Inferring neural activity from BOLD signals through nonlinear optimization.
Vakorin, Vasily A; Krakovska, Olga O; Borowsky, Ron; Sarty, Gordon E
2007-11-01
The blood oxygen level-dependent (BOLD) fMRI signal does not measure neuronal activity directly. This fact is a key concern for interpreting functional imaging data based on BOLD. Mathematical models describing the path from neural activity to the BOLD response allow us to numerically solve the inverse problem of estimating the timing and amplitude of the neuronal activity underlying the BOLD signal. In fact, these models can be viewed as an advanced substitute for the impulse response function. In this work, the issue of estimating the dynamics of neuronal activity from the observed BOLD signal is considered within the framework of optimization problems. The model is based on the extended "balloon" model and describes the conversion of neuronal signals into the BOLD response through the transitional dynamics of the blood flow-inducing signal, cerebral blood flow, cerebral blood volume and deoxyhemoglobin concentration. Global optimization techniques are applied to find a control input (the neuronal activity and/or the biophysical parameters in the model) that causes the system to follow an admissible solution to minimize discrepancy between model and experimental data. As an alternative to a local linearization (LL) filtering scheme, the optimization method escapes the linearization of the transition system and provides a possibility to search for the global optimum, avoiding spurious local minima. We have found that the dynamics of the neural signals and the physiological variables as well as the biophysical parameters can be robustly reconstructed from the BOLD responses. Furthermore, it is shown that spiking off/on dynamics of the neural activity is the natural mathematical solution of the model. Incorporating, in addition, the expansion of the neural input by smooth basis functions, representing a low-pass filtering, allows us to model local field potential (LFP) solutions instead of spiking solutions.
Baroreflex regulation of blood pressure during dynamic exercise
NASA Technical Reports Server (NTRS)
Raven, P. B.; Potts, J. T.; Shi, X.; Blomqvist, C. G. (Principal Investigator)
1997-01-01
From the work of Potts et al. Papelier et al. and Shi et al. it is readily apparent that the arterial (aortic and carotid) baroreflexes are reset to function at the prevailing ABP of exercise. The blood pressure of exercise is the result of the hemodynamic (cardiac output and TPR) responses, which appear to be regulated by two redundant neural control systems, "Central Command" and the "exercise pressor reflex". Central Command is a feed-forward neural control system that operates in parallel with the neural regulation of the locomotor system and appears to establish the hemodynamic response to exercise. Within the central nervous system it appears that the HLR may be the operational site for Central Command. Specific neural sites within the HLR have been demonstrated in animals to be active during exercise. With the advent of positron emission tomography (PET) and single-photon emission computed tomography (SPECT), the anatomical areas of the human brain related to Central Command are being mapped. It also appears that the Nucleus Tractus Solitarius and the ventrolateral medulla may serve as an integrating site as they receive neural information from the working muscles via the group III/IV muscle afferents as well as from higher brain centers. This anatomical site within the CNS is now the focus of many investigations in which arterial baroreflex function, Central Command and the "exercise pressor reflex" appear to demonstrate inhibitory or facilitatory interaction. The concept of whether Central Command is the prime mover in the resetting of the arterial baroreceptors to function at the exercising ABP or whether the resetting is an integration of the "exercise pressor reflex" information with that of Central Command is now under intense investigation. However, it would be justified to conclude, from the data of Bevegard and Shepherd, Dicarlo and Bishop, Potts et al., and Papelier et al. that the act of exercise results in the resetting of the arterial baroreflex. In addition, if, as we have proposed, the cardiopulmonary baroreceptors primarily monitors and reflexly regulates cardiac filling volume, it would seem from the data of Mack et al. and Potts et al. that the cardiopulmonary baroreceptor is also reset at the beginning of exercise. Therefore, investigations of the neural mechanisms of regulation involving Central Command and cardiopulmonary afferents, similar to those being undertaken for the arterial baroreflex, need to be established.
The p75 neurotrophin receptor: at the crossroad of neural repair and death
Meeker, Rick B.; Williams, Kimberly S.
2015-01-01
The strong repair and pro-survival functions of neurotrophins at their primary receptors, TrkA, TrkB and TrkC, have made them attractive candidates for treatment of nervous system injury and disease. However, difficulties with the clinical implementation of neurotrophin therapies have prompted the search for treatments that are stable, easier to deliver and allow more precise regulation of neurotrophin actions. Recently, the p75 neurotrophin receptor (p75NTR) has emerged as a potential target for pharmacological control of neurotrophin activity, supported in part by studies demonstrating 1) regulation of neural plasticity in the mature nervous system, 2) promotion of adult neurogenesis and 3) increased expression in neurons, macrophages, microglia, astrocytes and/or Schwann cells in response to injury and neurodegenerative diseases. Although the receptor has no intrinsic catalytic activity it interacts with and modulates the function of TrkA, TrkB, and TrkC, as well as sortilin and the Nogo receptor. This provides substantial cellular and molecular diversity for regulation of neuron survival, neurogenesis, immune responses and processes that support neural function. Upregulation of the p75NTR under pathological conditions places the receptor in a key position to control numerous processes necessary for nervous system recovery. Support for this possibility has come from recent studies showing that small, non-peptide p75NTR ligands can selectively modify pro-survival and repair functions. While a great deal remains to be discovered about the wide ranging functions of the p75NTR, studies summarized in this review highlight the immense potential for development of novel neuroprotective and neurorestorative therapies. PMID:26109945
Literature Review of Cognitive Neuroscience and Anorexia Nervosa.
Reville, Marie-Claire; O'Connor, Lorna; Frampton, Ian
2016-02-01
Studies published between the beginning of 2013 and May 2015 on the neuropsychological functioning of patients with anorexia nervosa compared with healthy participants framed in the context of the Research Domain Criteria matrix identifies evidence for functional differences in three domains: Negative Valance Systems-negative attentional biases and lack of neural responsivity to hunger; Cognitive Systems-limited congruence between clinical and cognitive performance, poorer non-verbal than verbal performance, altered attentional styles to disorder related stimuli, perceptual processing impairment in discriminating body images, weaknesses in central coherence, set shifting weaknesses at low weight status, decision-making weaknesses, and greater neural resources required for working memory; Systems for Social Processes-patients appear to have a different attentional response to faces, and perception and understanding of self and others. Hence, there is evidence to suggest that patients with anorexia nervosa have a specific neuropsychological performance style across tasks in three domains of functioning. Some current controversies and areas for future development are identified.
NASA Astrophysics Data System (ADS)
Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli
2013-03-01
Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.
The Role of Lamination in Neocortical Function
1991-12-20
U. Studies of the Tectofugal System: Tectal pathways to the telencephalon in birds and mammals. The tecto-thalamo-telencephalic visual pathway is...significance of lamination of the telencephalon . Visual Structures and Integrated Functions, Research Notes in Neural Computing (Michael Arbib and J6rg
Varoquaux, G; Gramfort, A; Poline, J B; Thirion, B
2012-01-01
Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware.
Rast, Alexander; Galluppi, Francesco; Davies, Sergio; Plana, Luis; Patterson, Cameron; Sharp, Thomas; Lester, David; Furber, Steve
2011-11-01
Dedicated hardware is becoming increasingly essential to simulate emerging very-large-scale neural models. Equally, however, it needs to be able to support multiple models of the neural dynamics, possibly operating simultaneously within the same system. This may be necessary either to simulate large models with heterogeneous neural types, or to simplify simulation and analysis of detailed, complex models in a large simulation by isolating the new model to a small subpopulation of a larger overall network. The SpiNNaker neuromimetic chip is a dedicated neural processor able to support such heterogeneous simulations. Implementing these models on-chip uses an integrated library-based tool chain incorporating the emerging PyNN interface that allows a modeller to input a high-level description and use an automated process to generate an on-chip simulation. Simulations using both LIF and Izhikevich models demonstrate the ability of the SpiNNaker system to generate and simulate heterogeneous networks on-chip, while illustrating, through the network-scale effects of wavefront synchronisation and burst gating, methods that can provide effective behavioural abstractions for large-scale hardware modelling. SpiNNaker's asynchronous virtual architecture permits greater scope for model exploration, with scalable levels of functional and temporal abstraction, than conventional (or neuromorphic) computing platforms. The complete system illustrates a potential path to understanding the neural model of computation, by building (and breaking) neural models at various scales, connecting the blocks, then comparing them against the biology: computational cognitive neuroscience. Copyright © 2011 Elsevier Ltd. All rights reserved.
Design of fuzzy system by NNs and realization of adaptability
NASA Technical Reports Server (NTRS)
Takagi, Hideyuki
1993-01-01
The issue of designing and tuning fuzzy membership functions by neural networks (NN's) was started by NN-driven Fuzzy Reasoning in 1988. NN-driven fuzzy reasoning involves a NN embedded in the fuzzy system which generates membership values. In conventional fuzzy system design, the membership functions are hand-crafted by trial and error for each input variable. In contrast, NN-driven fuzzy reasoning considers several variables simultaneously and can design a multidimensional, nonlinear membership function for the entire subspace.
Miedl, Stephan F; Peters, Jan; Büchel, Christian
2012-02-01
The neural basis of excessive delay discounting and reduced risk sensitivity of pathological gamblers with a particular focus on subjective neural reward representations has not been previously examined. To examine how pathological gamblers represent subjective reward value at a neural level and how this is affected by gambling severity. Model-based functional magnetic resonance imaging study with patients and control subjects. Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf. Participants were recruited from the local community by advertisement and through self-help groups. A sample of 16 pathological gamblers (according to the DSM-IV definition) was matched by age, sex, smoking status, income, educational level, and handedness to 16 healthy controls. Pathological gamblers showed increased discounting of delayed rewards and a trend toward decreased discounting of probabilistic rewards compared with matched controls. At the neural level, a significant group × condition interaction indicated that reward representations in the gamblers were modulated in a condition-specific manner, such that they exhibited increased (delay discounting) and decreased (probability discounting) neural value correlations in the reward system. In addition, throughout the reward system, neuronal value signals for delayed rewards were negatively correlated with gambling severity. The results extend previous reports of a generally hypoactive reward system in pathological gamblers by showing that, even when subjective reward valuation is accounted for, gamblers still show altered reward representations. Furthermore, results point toward a gradual degradation of mesolimbic reward representations for delayed rewards during the course of pathological gambling.
[Measurement and performance analysis of functional neural network].
Li, Shan; Liu, Xinyu; Chen, Yan; Wan, Hong
2018-04-01
The measurement of network is one of the important researches in resolving neuronal population information processing mechanism using complex network theory. For the quantitative measurement problem of functional neural network, the relation between the measure indexes, i.e. the clustering coefficient, the global efficiency, the characteristic path length and the transitivity, and the network topology was analyzed. Then, the spike-based functional neural network was established and the simulation results showed that the measured network could represent the original neural connections among neurons. On the basis of the former work, the coding of functional neural network in nidopallium caudolaterale (NCL) about pigeon's motion behaviors was studied. We found that the NCL functional neural network effectively encoded the motion behaviors of the pigeon, and there were significant differences in four indexes among the left-turning, the forward and the right-turning. Overall, the establishment method of spike-based functional neural network is available and it is an effective tool to parse the brain information processing mechanism.
Arnold, Aiden E G F; Iaria, Giuseppe; Goghari, Vina M
2016-02-28
Schizophrenia is associated with deficits in face perception and emotion recognition. Despite consistent behavioural results, the neural mechanisms underlying these cognitive abilities have been difficult to isolate, in part due to differences in neuroimaging methods used between studies for identifying regions in the face processing system. Given this problem, we aimed to validate a recently developed fMRI-based dynamic functional localizer task for use in studies of psychiatric populations and specifically schizophrenia. Previously, this functional localizer successfully identified each of the core face processing regions (i.e. fusiform face area, occipital face area, superior temporal sulcus), and regions within an extended system (e.g. amygdala) in healthy individuals. In this study, we tested the functional localizer success rate in 27 schizophrenia patients and in 24 community controls. Overall, the core face processing regions were localized equally between both the schizophrenia and control group. Additionally, the amygdala, a candidate brain region from the extended system, was identified in nearly half the participants from both groups. These results indicate the effectiveness of a dynamic functional localizer at identifying regions of interest associated with face perception and emotion recognition in schizophrenia. The use of dynamic functional localizers may help standardize the investigation of the facial and emotion processing system in this and other clinical populations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Alam, Monzurul; Chen, Xi; Zhang, Zicong; Li, Yan; He, Jufang
2014-01-01
A brain-machine interface (BMI) is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking) could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics. PMID:25084446
Alam, Monzurul; Chen, Xi; Zhang, Zicong; Li, Yan; He, Jufang
2014-01-01
A brain-machine interface (BMI) is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking) could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.
HYBRID NEURAL NETWORK AND SUPPORT VECTOR MACHINE METHOD FOR OPTIMIZATION
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2005-01-01
System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.
Hybrid Neural Network and Support Vector Machine Method for Optimization
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor)
2007-01-01
System and method for optimization of a design associated with a response function, using a hybrid neural net and support vector machine (NN/SVM) analysis to minimize or maximize an objective function, optionally subject to one or more constraints. As a first example, the NN/SVM analysis is applied iteratively to design of an aerodynamic component, such as an airfoil shape, where the objective function measures deviation from a target pressure distribution on the perimeter of the aerodynamic component. As a second example, the NN/SVM analysis is applied to data classification of a sequence of data points in a multidimensional space. The NN/SVM analysis is also applied to data regression.
Conserved gene regulatory module specifies lateral neural borders across bilaterians
Li, Yongbin; Zhao, Di; Horie, Takeo; Chen, Geng; Bao, Hongcun; Chen, Siyu; Liu, Weihong; Horie, Ryoko; Liang, Tao; Dong, Biyu; Feng, Qianqian; Tao, Qinghua
2017-01-01
The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans. Second, orthologs of the vertebrate NPB specification module (Msx/vab-15, Pax3/7/pax-3, and Zic/ref-2) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref-2 in C. elegans. Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans, Drosophila melanogaster, and Ciona intestinalis. We also identify a novel lateral neural border specifier, ZNF703/tlp-1, which functions synergistically with Msx/vab-15 in both C. elegans and Xenopus laevis. These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians. PMID:28716930
Conserved gene regulatory module specifies lateral neural borders across bilaterians.
Li, Yongbin; Zhao, Di; Horie, Takeo; Chen, Geng; Bao, Hongcun; Chen, Siyu; Liu, Weihong; Horie, Ryoko; Liang, Tao; Dong, Biyu; Feng, Qianqian; Tao, Qinghua; Liu, Xiao
2017-08-01
The lateral neural plate border (NPB), the neural part of the vertebrate neural border, is composed of central nervous system (CNS) progenitors and peripheral nervous system (PNS) progenitors. In invertebrates, PNS progenitors are also juxtaposed to the lateral boundary of the CNS. Whether there are conserved molecular mechanisms determining vertebrate and invertebrate lateral neural borders remains unclear. Using single-cell-resolution gene-expression profiling and genetic analysis, we present evidence that orthologs of the NPB specification module specify the invertebrate lateral neural border, which is composed of CNS and PNS progenitors. First, like in vertebrates, the conserved neuroectoderm lateral border specifier Msx/vab-15 specifies lateral neuroblasts in Caenorhabditis elegans Second, orthologs of the vertebrate NPB specification module ( Msx/vab-15 , Pax3/7/pax-3 , and Zic/ref-2 ) are significantly enriched in worm lateral neuroblasts. In addition, like in other bilaterians, the expression domain of Msx/vab-15 is more lateral than those of Pax3/7/pax-3 and Zic/ref- 2 in C. elegans Third, we show that Msx/vab-15 regulates the development of mechanosensory neurons derived from lateral neural progenitors in multiple invertebrate species, including C. elegans , Drosophila melanogaster , and Ciona intestinalis We also identify a novel lateral neural border specifier, ZNF703/tlp-1 , which functions synergistically with Msx/vab- 15 in both C. elegans and Xenopus laevis These data suggest a common origin of the molecular mechanism specifying lateral neural borders across bilaterians.
Neural dynamics based on the recognition of neural fingerprints
Carrillo-Medina, José Luis; Latorre, Roberto
2015-01-01
Experimental evidence has revealed the existence of characteristic spiking features in different neural signals, e.g., individual neural signatures identifying the emitter or functional signatures characterizing specific tasks. These neural fingerprints may play a critical role in neural information processing, since they allow receptors to discriminate or contextualize incoming stimuli. This could be a powerful strategy for neural systems that greatly enhances the encoding and processing capacity of these networks. Nevertheless, the study of information processing based on the identification of specific neural fingerprints has attracted little attention. In this work, we study (i) the emerging collective dynamics of a network of neurons that communicate with each other by exchange of neural fingerprints and (ii) the influence of the network topology on the self-organizing properties within the network. Complex collective dynamics emerge in the network in the presence of stimuli. Predefined inputs, i.e., specific neural fingerprints, are detected and encoded into coexisting patterns of activity that propagate throughout the network with different spatial organization. The patterns evoked by a stimulus can survive after the stimulation is over, which provides memory mechanisms to the network. The results presented in this paper suggest that neural information processing based on neural fingerprints can be a plausible, flexible, and powerful strategy. PMID:25852531
Polychronidou, Eleftheria; Vlachakis, Dimitrios; Vlamos, Panayiotis; Baumann, Marc; Kossida, Sophia
2015-01-01
Notch signaling is a master controller of the neural stem cell and neural development maintaining a significant role in the normal brain function. Notch genes are involved in embryogenesis, nervous system, and cardiovascular and endocrine function. On the other side, there are studies representing the involvement of Notch mutations in sporadic Alzheimer disease, other neurodegenerative diseases such as Down syndrome, Pick's and Prion's disease, and CADASIL. This manuscript attempts to present a holistic view of the positive or negative contribution of Notch signaling in the adult brain, and at the same time to present and promote the promising research fields of study.
Correlations Decrease with Propagation of Spiking Activity in the Mouse Barrel Cortex
Ranganathan, Gayathri Nattar; Koester, Helmut Joachim
2011-01-01
Propagation of suprathreshold spiking activity through neuronal populations is important for the function of the central nervous system. Neural correlations have an impact on cortical function particularly on the signaling of information and propagation of spiking activity. Therefore we measured the change in correlations as suprathreshold spiking activity propagated between recurrent neuronal networks of the mammalian cerebral cortex. Using optical methods we recorded spiking activity from large samples of neurons from two neural populations simultaneously. The results indicate that correlations decreased as spiking activity propagated from layer 4 to layer 2/3 in the rodent barrel cortex. PMID:21629764
Core Training in Low Back Disorders: Role of the Pilates Method.
Joyce, Andrew A; Kotler, Dana H
The Pilates method is a system of exercises developed by Joseph Pilates, which emphasizes recruitment and strengthening of the core muscles, flexibility, and breathing, to promote stability and control of movement. Its focus bears similarity to current evidence-based exercise programs for low back disorders. Spinal stability is a function of three interdependent systems, osseoligamentous, muscular, and neural control; exercise addresses both the muscular and neural function. The "core" typically refers to the muscular control required to maintain functional stability. Prior research has highlighted the importance of muscular strength and recruitment, with debate over the importance of individual muscles in the wider context of core control. Though developed long before the current evidence, the Pilates method is relevant in this setting and clearly relates to current evidence-based exercise interventions. Current literature supports the Pilates method as a treatment for low back disorders, but its benefit when compared with other exercise is less clear.
Engraftment of enteric neural progenitor cells into the injured adult brain.
Belkind-Gerson, Jaime; Hotta, Ryo; Whalen, Michael; Nayyar, Naema; Nagy, Nandor; Cheng, Lily; Zuckerman, Aaron; Goldstein, Allan M; Dietrich, Jorg
2016-01-25
A major area of unmet need is the development of strategies to restore neuronal network systems and to recover brain function in patients with neurological disease. The use of cell-based therapies remains an attractive approach, but its application has been challenging due to the lack of suitable cell sources, ethical concerns, and immune-mediated tissue rejection. We propose an innovative approach that utilizes gut-derived neural tissue for cell-based therapies following focal or diffuse central nervous system injury. Enteric neuronal stem and progenitor cells, able to differentiate into neuronal and glial lineages, were isolated from the postnatal enteric nervous system and propagated in vitro. Gut-derived neural progenitors, genetically engineered to express fluorescent proteins, were transplanted into the injured brain of adult mice. Using different models of brain injury in combination with either local or systemic cell delivery, we show that transplanted enteric neuronal progenitor cells survive, proliferate, and differentiate into neuronal and glial lineages in vivo. Moreover, transplanted cells migrate extensively along neuronal pathways and appear to modulate the local microenvironment to stimulate endogenous neurogenesis. Our findings suggest that enteric nervous system derived cells represent a potential source for tissue regeneration in the central nervous system. Further studies are needed to validate these findings and to explore whether autologous gut-derived cell transplantation into the injured brain can result in functional neurologic recovery.
Wang, Hong-Xing; Wang, Yu-Ping
2016-01-01
Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future. PMID:27647198
Girard, Beatrice M.; Tooke, Katharine; Vizzard, Margaret A.
2017-01-01
Complex organization of CNS and PNS pathways is necessary for the coordinated and reciprocal functions of the urinary bladder, urethra and urethral sphincters. Injury, inflammation, psychogenic stress or diseases that affect these nerve pathways and target organs can produce lower urinary tract (LUT) dysfunction. Numerous neuropeptide/receptor systems are expressed in the neural pathways of the LUT and non-neural components of the LUT (e.g., urothelium) also express peptides. One such neuropeptide receptor system, pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate receptor, PAC1 (Adcyap1r1), have tissue-specific distributions in the LUT. Mice with a genetic deletion of PACAP exhibit bladder dysfunction and altered somatic sensation. PACAP and associated receptors are expressed in the LUT and exhibit neuroplastic changes with neural injury, inflammation, and diseases of the LUT as well as psychogenic stress. Blockade of the PACAP/PAC1 receptor system reduces voiding frequency in preclinical animal models and transgenic mouse models that mirror some clinical symptoms of bladder dysfunction. A change in the balance of the expression and resulting function of the PACAP/receptor system in CNS and PNS bladder reflex pathways may underlie LUT dysfunction including symptoms of urinary urgency, increased voiding frequency, and visceral pain. The PACAP/receptor system in micturition pathways may represent a potential target for therapeutic intervention to reduce LUT dysfunction. PMID:29255407
The neurobiology of food intake in an obesogenic environment
Berthoud, Hans-Rudolf
2012-01-01
The objective of this non-systematic review of the literature is to highlight some of the neural systems and pathways that are affected by the various intake-promoting aspects of the modern food environment and explore potential modes of interaction between core systems such as hypothalamus and brainstem primarily receptive to internal signals of fuel availability and forebrain areas such as the cortex, amygdala and meso-corticolimbic dopamine system, primarily processing external signals. The modern lifestyle with its drastic changes in the way we eat and move puts pressure on the homoeostatic system responsible for the regulation of body weight, which has led to an increase in overweight and obesity. The power of food cues targeting susceptible emotions and cognitive brain functions, particularly of children and adolescents, is increasingly exploited by modern neuromarketing tools. Increased intake of energy-dense foods high in fat and sugar is not only adding more energy, but may also corrupt neural functions of brain systems involved in nutrient sensing as well as in hedonic, motivational and cognitive processing. It is concluded that only long-term prospective studies in human subjects and animal models with the capacity to demonstrate sustained over-eating and development of obesity are necessary to identify the critical environmental factors as well as the underlying neural systems involved. Insights from these studies and from modern neuromarketing research should be increasingly used to promote consumption of healthy foods. PMID:22800810
The neurobiology of food intake in an obesogenic environment.
Berthoud, Hans-Rudolf
2012-11-01
The objective of this non-systematic review of the literature is to highlight some of the neural systems and pathways that are affected by the various intake-promoting aspects of the modern food environment and explore potential modes of interaction between core systems such as hypothalamus and brainstem primarily receptive to internal signals of fuel availability and forebrain areas such as the cortex, amygdala and meso-corticolimbic dopamine system, primarily processing external signals. The modern lifestyle with its drastic changes in the way we eat and move puts pressure on the homoeostatic system responsible for the regulation of body weight, which has led to an increase in overweight and obesity. The power of food cues targeting susceptible emotions and cognitive brain functions, particularly of children and adolescents, is increasingly exploited by modern neuromarketing tools. Increased intake of energy-dense foods high in fat and sugar is not only adding more energy, but may also corrupt neural functions of brain systems involved in nutrient sensing as well as in hedonic, motivational and cognitive processing. It is concluded that only long-term prospective studies in human subjects and animal models with the capacity to demonstrate sustained over-eating and development of obesity are necessary to identify the critical environmental factors as well as the underlying neural systems involved. Insights from these studies and from modern neuromarketing research should be increasingly used to promote consumption of healthy foods.
White-Schwoch, Travis; Woodruff Carr, Kali; Anderson, Samira; Strait, Dana L; Kraus, Nina
2013-11-06
Aging results in pervasive declines in nervous system function. In the auditory system, these declines include neural timing delays in response to fast-changing speech elements; this causes older adults to experience difficulty understanding speech, especially in challenging listening environments. These age-related declines are not inevitable, however: older adults with a lifetime of music training do not exhibit neural timing delays. Yet many people play an instrument for a few years without making a lifelong commitment. Here, we examined neural timing in a group of human older adults who had nominal amounts of music training early in life, but who had not played an instrument for decades. We found that a moderate amount (4-14 years) of music training early in life is associated with faster neural timing in response to speech later in life, long after training stopped (>40 years). We suggest that early music training sets the stage for subsequent interactions with sound. These experiences may interact over time to sustain sharpened neural processing in central auditory nuclei well into older age.
White-Schwoch, Travis; Carr, Kali Woodruff; Anderson, Samira; Strait, Dana L.
2013-01-01
Aging results in pervasive declines in nervous system function. In the auditory system, these declines include neural timing delays in response to fast-changing speech elements; this causes older adults to experience difficulty understanding speech, especially in challenging listening environments. These age-related declines are not inevitable, however: older adults with a lifetime of music training do not exhibit neural timing delays. Yet many people play an instrument for a few years without making a lifelong commitment. Here, we examined neural timing in a group of human older adults who had nominal amounts of music training early in life, but who had not played an instrument for decades. We found that a moderate amount (4–14 years) of music training early in life is associated with faster neural timing in response to speech later in life, long after training stopped (>40 years). We suggest that early music training sets the stage for subsequent interactions with sound. These experiences may interact over time to sustain sharpened neural processing in central auditory nuclei well into older age. PMID:24198359
Arik, Sabri
2005-05-01
This paper presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all continuous nonmonotonic neuron activation functions. It is shown that in some special cases of the results, the stability criteria can be easily checked. Some examples are also given to compare the results with the previous results derived in the literature.