HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
Kim, J; Kasabov, N
1999-11-01
This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.
Na, Man Gyun; Oh, Seungrohk
2002-11-15
A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.
Subhi Al-batah, Mohammad; Mat Isa, Nor Ashidi; Klaib, Mohammad Fadel; Al-Betar, Mohammed Azmi
2014-01-01
To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy. PMID:24707316
Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System
Hosseini, Monireh Sheikh; Zekri, Maryam
2012-01-01
Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated. PMID:23493054
Review of Medical Image Classification using the Adaptive Neuro-Fuzzy Inference System.
Hosseini, Monireh Sheikh; Zekri, Maryam
2012-01-01
Image classification is an issue that utilizes image processing, pattern recognition and classification methods. Automatic medical image classification is a progressive area in image classification, and it is expected to be more developed in the future. Because of this fact, automatic diagnosis can assist pathologists by providing second opinions and reducing their workload. This paper reviews the application of the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in medical image classification during the past 16 years. ANFIS is a fuzzy inference system (FIS) implemented in the framework of an adaptive fuzzy neural network. It combines the explicit knowledge representation of an FIS with the learning power of artificial neural networks. The objective of ANFIS is to integrate the best features of fuzzy systems and neural networks. A brief comparison with other classifiers, main advantages and drawbacks of this classifier are investigated.
Adaptive neuro-fuzzy inference system for real-time monitoring of integrated-constructed wetlands.
Dzakpasu, Mawuli; Scholz, Miklas; McCarthy, Valerie; Jordan, Siobhán; Sani, Abdulkadir
2015-01-01
Monitoring large-scale treatment wetlands is costly and time-consuming, but required by regulators. Some analytical results are available only after 5 days or even longer. Thus, adaptive neuro-fuzzy inference system (ANFIS) models were developed to predict the effluent concentrations of 5-day biochemical oxygen demand (BOD5) and NH4-N from a full-scale integrated constructed wetland (ICW) treating domestic wastewater. The ANFIS models were developed and validated with a 4-year data set from the ICW system. Cost-effective, quicker and easier to measure variables were selected as the possible predictors based on their goodness of correlation with the outputs. A self-organizing neural network was applied to extract the most relevant input variables from all the possible input variables. Fuzzy subtractive clustering was used to identify the architecture of the ANFIS models and to optimize fuzzy rules, overall, improving the network performance. According to the findings, ANFIS could predict the effluent quality variation quite strongly. Effluent BOD5 and NH4-N concentrations were predicted relatively accurately by other effluent water quality parameters, which can be measured within a few hours. The simulated effluent BOD5 and NH4-N concentrations well fitted the measured concentrations, which was also supported by relatively low mean squared error. Thus, ANFIS can be useful for real-time monitoring and control of ICW systems.
NASA Astrophysics Data System (ADS)
Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.
2011-04-01
Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.
Classifying work rate from heart rate measurements using an adaptive neuro-fuzzy inference system.
Kolus, Ahmet; Imbeau, Daniel; Dubé, Philippe-Antoine; Dubeau, Denise
2016-05-01
In a new approach based on adaptive neuro-fuzzy inference systems (ANFIS), field heart rate (HR) measurements were used to classify work rate into four categories: very light, light, moderate, and heavy. Inter-participant variability (physiological and physical differences) was considered. Twenty-eight participants performed Meyer and Flenghi's step-test and a maximal treadmill test, during which heart rate and oxygen consumption (VO2) were measured. Results indicated that heart rate monitoring (HR, HRmax, and HRrest) and body weight are significant variables for classifying work rate. The ANFIS classifier showed superior sensitivity, specificity, and accuracy compared to current practice using established work rate categories based on percent heart rate reserve (%HRR). The ANFIS classifier showed an overall 29.6% difference in classification accuracy and a good balance between sensitivity (90.7%) and specificity (95.2%) on average. With its ease of implementation and variable measurement, the ANFIS classifier shows potential for widespread use by practitioners for work rate assessment.
NASA Astrophysics Data System (ADS)
Oğuz, Yüksel; Üstün, Seydi Vakkas; Yabanova, İsmail; Yumurtaci, Mehmet; Güney, İrfan
2012-01-01
This article presents design of adaptive neuro-fuzzy inference system (ANFIS) for the turbine speed control for purpose of improving the power quality of the power production system of a split shaft microturbine. To improve the operation performance of the microturbine power generation system (MTPGS) and to obtain the electrical output magnitudes in desired quality and value (terminal voltage, operation frequency, power drawn by consumer and production power), a controller depended on adaptive neuro-fuzzy inference system was designed. The MTPGS consists of the microturbine speed controller, a split shaft microturbine, cylindrical pole synchronous generator, excitation circuit and voltage regulator. Modeling of dynamic behavior of synchronous generator driver with a turbine and split shaft turbine was realized by using the Matlab/Simulink and SimPowerSystems in it. It is observed from the simulation results that with the microturbine speed control made with ANFIS, when the MTPGS is operated under various loading situations, the terminal voltage and frequency values of the system can be settled in desired operation values in a very short time without significant oscillation and electrical production power in desired quality can be obtained.
Risk Mapping of Cutaneous Leishmaniasis via a Fuzzy C Means-based Neuro-Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Akhavan, P.; Karimi, M.; Pahlavani, P.
2014-10-01
Finding pathogenic factors and how they are spread in the environment has become a global demand, recently. Cutaneous Leishmaniasis (CL) created by Leishmania is a special parasitic disease which can be passed on to human through phlebotomus of vector-born. Studies show that economic situation, cultural issues, as well as environmental and ecological conditions can affect the prevalence of this disease. In this study, Data Mining is utilized in order to predict CL prevalence rate and obtain a risk map. This case is based on effective environmental parameters on CL and a Neuro-Fuzzy system was also used. Learning capacity of Neuro-Fuzzy systems in neural network on one hand and reasoning power of fuzzy systems on the other, make it very efficient to use. In this research, in order to predict CL prevalence rate, an adaptive Neuro-fuzzy inference system with fuzzy inference structure of fuzzy C Means clustering was applied to determine the initial membership functions. Regarding to high incidence of CL in Ilam province, counties of Ilam, Mehran, and Dehloran have been examined and evaluated. The CL prevalence rate was predicted in 2012 by providing effective environmental map and topography properties including temperature, moisture, annual, rainfall, vegetation and elevation. Results indicate that the model precision with fuzzy C Means clustering structure rises acceptable RMSE values of both training and checking data and support our analyses. Using the proposed data mining technology, the pattern of disease spatial distribution and vulnerable areas become identifiable and the map can be used by experts and decision makers of public health as a useful tool in management and optimal decision-making.
NASA Astrophysics Data System (ADS)
Sezer, Ebru; Pradhan, Biswajeet; Gokceoglu, Candan
2010-05-01
Landslides are one of the recurrent natural hazard problems throughout most of Malaysia. Recently, the Klang Valley area of Selangor state has faced numerous landslide and mudflow events and much damage occurred in these areas. However, only little effort has been made to assess or predict these events which resulted in serious damages. Through scientific analyses of these landslides, one can assess and predict landslide-susceptible areas and even the events as such, and thus reduce landslide damages through proper preparation and/or mitigation. For this reason , the purpose of the present paper is to produce landslide susceptibility maps of a part of the Klang Valley areas in Malaysia by employing the results of the adaptive neuro-fuzzy inference system (ANFIS) analyses. Landslide locations in the study area were identified by interpreting aerial photographs and satellite images, supported by extensive field surveys. Landsat TM satellite imagery was used to map vegetation index. Maps of topography, lineaments and NDVI were constructed from the spatial datasets. Seven landslide conditioning factors such as altitude, slope angle, plan curvature, distance from drainage, soil type, distance from faults and NDVI were extracted from the spatial database. These factors were analyzed using an ANFIS to construct the landslide susceptibility maps. During the model development works, total 5 landslide susceptibility models were obtained by using ANFIS results. For verification, the results of the analyses were then compared with the field-verified landslide locations. Additionally, the ROC curves for all landslide susceptibility models were drawn and the area under curve values was calculated. Landslide locations were used to validate results of the landslide susceptibility map and the verification results showed 98% accuracy for the model 5 employing all parameters produced in the present study as the landslide conditioning factors. The validation results showed sufficient
NASA Astrophysics Data System (ADS)
Mahandrio, Irsantyo; Budi, Andriantama; Liong, The Houw; Purqon, Acep
2015-09-01
The growing patterns in cultural and mining sectors are interesting particularly in developed country such as in Indonesia. Here, we investigate the local characteristics of stocks between the sectors of agriculture and mining which si representing two leading companies and two common companies in these sectors. We analyze the prediction by using Adaptive Neuro Fuzzy Inference System (ANFIS). The type of Fuzzy Inference System (FIS) is Sugeno type with Generalized Bell membership function (Gbell). Our results show that ANFIS is a proper method to predicting the stock market with the RMSE : 0.14% for AALI and 0.093% for SGRO representing the agriculture sectors, meanwhile, 0.073% for ANTM and 0.1107% for MDCO representing the mining sectors.
NASA Astrophysics Data System (ADS)
Karimi, Gholamreza; Banitalebi, Roza; Babaei Sedaghat, Sedigheh
2013-07-01
In this article, the small-signal equivalent circuit model of SiGe:C heterojunction bipolar transistors (HBTs) has directly been extracted from S-parameter data. Moreover, in this article, we present a new modelling approach using ANFIS (adaptive neuro-fuzzy inference system), which in general has a high degree of accuracy, simplicity and novelty (independent approach). Then measured and model-calculated data show an excellent agreement with less than 1.68 × 10-5% discrepancy in the frequency range of higher than 300 GHz over a wide range of bias points in ANFIS. The results show ANFIS model is better than ANN (artificial neural network) for redeveloping the model and increasing the input parameters.
NASA Astrophysics Data System (ADS)
Trianto, Andriantama Budi; Hadi, I. M.; Liong, The Houw; Purqon, Acep
2015-09-01
Indonesian economical development is growing well. It has effect for their invesment in Banks and the stock market. In this study, we perform prediction for the three blue chips of Indonesian bank i.e. BCA, BNI, and MANDIRI by using the method of Adaptive Neuro-Fuzzy Inference System (ANFIS) with Takagi-Sugeno rules and Generalized bell (Gbell) as the membership function. Our results show that ANFIS perform good prediction with RMSE for BCA of 27, BNI of 5.29, and MANDIRI of 13.41, respectively. Furthermore, we develop an active strategy to gain more benefit. We compare between passive strategy versus active strategy. Our results shows that for the passive strategy gains 13 million rupiah, while for the active strategy gains 47 million rupiah in one year. The active investment strategy significantly shows gaining multiple benefit than the passive one.
Yang, Zhixian; Wang, Yinghua; Ouyang, Gaoxiang
2014-01-01
Background electroencephalography (EEG), recorded with scalp electrodes, in children with electrical status epilepticus during slow-wave sleep (ESES) syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using the permutation entropy (PE) and sample entropy (SampEn) in combination with the ANOVA test. It can be seen that the entropy measures of EEG are significantly different between the ESES patients and normal control subjects. Then, a classification framework based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS) classifier is proposed to distinguish ESES and normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved. PMID:24790547
Karami, Ali; Keiter, Steffen; Hollert, Henner; Courtenay, Simon C
2013-03-01
This study represents a first attempt at applying a fuzzy inference system (FIS) and an adaptive neuro-fuzzy inference system (ANFIS) to the field of aquatic biomonitoring for classification of the dosage and time of benzo[a]pyrene (BaP) injection through selected biomarkers in African catfish (Clarias gariepinus). Fish were injected either intramuscularly (i.m.) or intraperitoneally (i.p.) with BaP. Hepatic glutathione S-transferase (GST) activities, relative visceral fat weights (LSI), and four biliary fluorescent aromatic compounds (FACs) concentrations were used as the inputs in the modeling study. Contradictory rules in FIS and ANFIS models appeared after conversion of bioassay results into human language (rule-based system). A "data trimming" approach was proposed to eliminate the conflicts prior to fuzzification. However, the model produced was relevant only to relatively low exposures to BaP, especially through the i.m. route of exposure. Furthermore, sensitivity analysis was unable to raise the classification rate to an acceptable level. In conclusion, FIS and ANFIS models have limited applications in the field of fish biomarker studies.
Jhin, Changho; Hwang, Keum Taek
2015-01-01
One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models.
NASA Astrophysics Data System (ADS)
Salehi, Mohammad Reza; Noori, Leila; Abiri, Ebrahim
2016-11-01
In this paper, a subsystem consisting of a microstrip bandpass filter and a microstrip low noise amplifier (LNA) is designed for WLAN applications. The proposed filter has a small implementation area (49 mm2), small insertion loss (0.08 dB) and wide fractional bandwidth (FBW) (61%). To design the proposed LNA, the compact microstrip cells, an field effect transistor, and only a lumped capacitor are used. It has a low supply voltage and a low return loss (-40 dB) at the operation frequency. The matching condition of the proposed subsystem is predicted using subsystem analysis, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). To design the proposed filter, the transmission matrix of the proposed resonator is obtained and analysed. The performance of the proposed ANN and ANFIS models is tested using the numerical data by four performance measures, namely the correlation coefficient (CC), the mean absolute error (MAE), the average percentage error (APE) and the root mean square error (RMSE). The obtained results show that these models are in good agreement with the numerical data, and a small error between the predicted values and numerical solution is obtained.
NASA Astrophysics Data System (ADS)
Teimouri, Reza; Sohrabpoor, Hamed
2013-12-01
Electrochemical machining process (ECM) is increasing its importance due to some of the specific advantages which can be exploited during machining operation. The process offers several special privileges such as higher machining rate, better accuracy and control, and wider range of materials that can be machined. Contribution of too many predominate parameters in the process, makes its prediction and selection of optimal values really complex, especially while the process is programmized for machining of hard materials. In the present work in order to investigate effects of electrolyte concentration, electrolyte flow rate, applied voltage and feed rate on material removal rate (MRR) and surface roughness (SR) the adaptive neuro-fuzzy inference systems (ANFIS) have been used for creation predictive models based on experimental observations. Then the ANFIS 3D surfaces have been plotted for analyzing effects of process parameters on MRR and SR. Finally, the cuckoo optimization algorithm (COA) was used for selection solutions in which the process reaches maximum material removal rate and minimum surface roughness simultaneously. Results indicated that the ANFIS technique has superiority in modeling of MRR and SR with high prediction accuracy. Also, results obtained while applying of COA have been compared with those derived from confirmatory experiments which validate the applicability and suitability of the proposed techniques in enhancing the performance of ECM process.
NASA Technical Reports Server (NTRS)
Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.
2015-01-01
Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.
Jhin, Changho; Hwang, Keum Taek
2015-01-01
One of the physiological characteristics of carotenoids is their radical scavenging activity. In this study, the relationship between radical scavenging activities and quantum chemical descriptors of carotenoids was determined. Adaptive neuro-fuzzy inference system (ANFIS) applied quantitative structure-activity relationship models (QSAR) were also developed for predicting and comparing radical scavenging activities of carotenoids. Semi-empirical PM6 and PM7 quantum chemical calculations were done by MOPAC. Ionisation energies of neutral and monovalent cationic carotenoids and the product of chemical potentials of neutral and monovalent cationic carotenoids were significantly correlated with the radical scavenging activities, and consequently these descriptors were used as independent variables for the QSAR study. The ANFIS applied QSAR models were developed with two triangular-shaped input membership functions made for each of the independent variables and optimised by a backpropagation method. High prediction efficiencies were achieved by the ANFIS applied QSAR. The R-square values of the developed QSAR models with the variables calculated by PM6 and PM7 methods were 0.921 and 0.902, respectively. The results of this study demonstrated reliabilities of the selected quantum chemical descriptors and the significance of QSAR models. PMID:26474167
Djukanovic, M.B.; Calovic, M.S.; Vesovic, B.V.; Sobajic, D.J.
1997-12-01
This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.
Jhin, Changho; Hwang, Keum Taek
2014-01-01
Radical scavenging activity of anthocyanins is well known, but only a few studies have been conducted by quantum chemical approach. The adaptive neuro-fuzzy inference system (ANFIS) is an effective technique for solving problems with uncertainty. The purpose of this study was to construct and evaluate quantitative structure-activity relationship (QSAR) models for predicting radical scavenging activities of anthocyanins with good prediction efficiency. ANFIS-applied QSAR models were developed by using quantum chemical descriptors of anthocyanins calculated by semi-empirical PM6 and PM7 methods. Electron affinity (A) and electronegativity (χ) of flavylium cation, and ionization potential (I) of quinoidal base were significantly correlated with radical scavenging activities of anthocyanins. These descriptors were used as independent variables for QSAR models. ANFIS models with two triangular-shaped input fuzzy functions for each independent variable were constructed and optimized by 100 learning epochs. The constructed models using descriptors calculated by both PM6 and PM7 had good prediction efficiency with Q-square of 0.82 and 0.86, respectively. PMID:25153627
NASA Astrophysics Data System (ADS)
Memarian, Hadi; Pourreza Bilondi, Mohsen; Rezaei, Majid
2016-08-01
This work aims to assess the capability of co-active neuro-fuzzy inference system (CANFIS) for drought forecasting of Birjand, Iran through the combination of global climatic signals with rainfall and lagged values of Standardized Precipitation Index (SPI) index. Using stepwise regression and correlation analyses, the signals NINO 1 + 2, NINO 3, Multivariate Enso Index, Tropical Southern Atlantic index, Atlantic Multi-decadal Oscillation index, and NINO 3.4 were recognized as the effective signals on the drought event in Birjand. Based on the results from stepwise regression analysis and regarding the processor limitations, eight models were extracted for further processing by CANFIS. The metrics P-factor and D-factor were utilized for uncertainty analysis, based on the sequential uncertainty fitting algorithm. Sensitivity analysis showed that for all models, NINO indices and rainfall variable had the largest impact on network performance. In model 4 (as the model with the lowest error during training and testing processes), NINO 1 + 2(t-5) with an average sensitivity of 0.7 showed the highest impact on network performance. Next, the variables rainfall, NINO 1 + 2(t), and NINO 3(t-6) with the average sensitivity of 0.59, 0.28, and 0.28, respectively, could have the highest effect on network performance. The findings based on network performance metrics indicated that the global indices with a time lag represented a better correlation with El Niño Southern Oscillation (ENSO). Uncertainty analysis of the model 4 demonstrated that 68 % of the observed data were bracketed by the 95PPU and D-Factor value (0.79) was also within a reasonable range. Therefore, the fourth model with a combination of the input variables NINO 1 + 2 (with 5 months of lag and without any lag), monthly rainfall, and NINO 3 (with 6 months of lag) and correlation coefficient of 0.903 (between observed and simulated SPI) was selected as the most accurate model for drought forecasting using CANFIS
NASA Astrophysics Data System (ADS)
Heidary, Saeed; Setayeshi, Saeed
2015-01-01
This work presents a simulation based study by Monte Carlo which uses two adaptive neuro-fuzzy inference systems (ANFIS) for cross talk compensation of simultaneous 99mTc/201Tl dual-radioisotope SPECT imaging. We have compared two neuro-fuzzy systems based on fuzzy c-means (FCM) and subtractive (SUB) clustering. Our approach incorporates eight energy-windows image acquisition from 28 keV to 156 keV and two main photo peaks of 201Tl (77±10% keV) and 99mTc (140±10% keV). The Geant4 application in emission tomography (GATE) is used as a Monte Carlo simulator for three cylindrical and a NURBS Based Cardiac Torso (NCAT) phantom study. Three separate acquisitions including two single-isotopes and one dual isotope were performed in this study. Cross talk and scatter corrected projections are reconstructed by an iterative ordered subsets expectation maximization (OSEM) algorithm which models the non-uniform attenuation in the projection/back-projection. ANFIS-FCM/SUB structures are tuned to create three to sixteen fuzzy rules for modeling the photon cross-talk of the two radioisotopes. Applying seven to nine fuzzy rules leads to a total improvement of the contrast and the bias comparatively. It is found that there is an out performance for the ANFIS-FCM due to its acceleration and accurate results.
Mathur, Neha; Glesk, Ivan; Buis, Arjan
2016-10-01
Monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used impeding the required consistent positioning of the temperature sensors during donning and doffing. Predicting the in-socket residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. In this work, we propose to implement an adaptive neuro fuzzy inference strategy (ANFIS) to predict the in-socket residual limb temperature. ANFIS belongs to the family of fused neuro fuzzy system in which the fuzzy system is incorporated in a framework which is adaptive in nature. The proposed method is compared to our earlier work using Gaussian processes for machine learning. By comparing the predicted and actual data, results indicate that both the modeling techniques have comparable performance metrics and can be efficiently used for non-invasive temperature monitoring.
NASA Astrophysics Data System (ADS)
El-Zoghby, Helmy M.; Bendary, Ahmed F.
2016-10-01
Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.
NASA Astrophysics Data System (ADS)
Ajay Kumar, M.; Srikanth, N. V.
2014-03-01
In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.
Skin Cancer Recognition by Using a Neuro-Fuzzy System
Salah, Bareqa; Alshraideh, Mohammad; Beidas, Rasha; Hayajneh, Ferial
2011-01-01
Skin cancer is the most prevalent cancer in the light-skinned population and it is generally caused by exposure to ultraviolet light. Early detection of skin cancer has the potential to reduce mortality and morbidity. There are many diagnostic technologies and tests to diagnose skin cancer. However many of these tests are extremely complex and subjective and depend heavily on the experience of the clinician. To obviate these problems, image processing techniques, a neural network system (NN) and a fuzzy inference system were used in this study as promising modalities for detection of different types of skin cancer. The accuracy rate of the diagnosis of skin cancer by using the hierarchal neural network was 90.67% while using neuro-fuzzy system yielded a slightly higher rate of accuracy of 91.26% in diagnosis skin cancer type. The sensitivity of NN in diagnosing skin cancer was 95%, while the specificity was 88%. Skin cancer diagnosis by neuro-fuzzy system achieved sensitivity of 98% and a specificity of 89%. PMID:21340020
NASA Astrophysics Data System (ADS)
Fleischer, Christian; Waag, Wladislaw; Bai, Ziou; Sauer, Dirk Uwe
2013-12-01
The battery management system (BMS) of a battery-electric road vehicle must ensure an optimal operation of the electrochemical storage system to guarantee for durability and reliability. In particular, the BMS must provide precise information about the battery's state-of-functionality, i.e. how much dis-/charging power can the battery accept at current state and condition while at the same time preventing it from operating outside its safe operating area. These critical limits have to be calculated in a predictive manner, which serve as a significant input factor for the supervising vehicle energy management (VEM). The VEM must provide enough power to the vehicle's drivetrain for certain tasks and especially in critical driving situations. Therefore, this paper describes a new approach which can be used for state-of-available-power estimation with respect to lowest/highest cell voltage prediction using an adaptive neuro-fuzzy inference system (ANFIS). The estimated voltage for a given time frame in the future is directly compared with the actual voltage, verifying the effectiveness and accuracy of a relative voltage prediction error of less than 1%. Moreover, the real-time operating capability of the proposed algorithm was verified on a battery test bench while running on a real-time system performing voltage prediction.
Blanes-Vidal, Victoria; Cantuaria, Manuella Lech; Nadimi, Esmaeil S
2017-04-01
Many epidemiological studies have used proximity to sources as air pollution exposure assessment method. However, proximity measures are not generally good surrogates because of their complex non-linear relationship with exposures. Neuro-fuzzy inference systems (NFIS) can be used to map complex non-linear systems, but its usefulness in exposure assessment has not been extensively explored. We present a novel approach for exposure assessment using NFIS, where the inputs of the model were easily-obtainable proximity measures, and the output was residential exposure to an air pollutant. We applied it to a case-study on NH3 pollution, and compared health effects and exposures estimated from NFIS, with those obtained from emission-dispersion models, and linear and non-linear regression proximity models, using 10-fold cross validation. The agreement between emission-dispersion and NFIS exposures was high (Root-mean-square error (RMSE) =0.275, correlation coefficient (r)=0.91) and resulted in similar health effect estimates. Linear models showed poor performance (RMSE=0.527, r=0.59), while non-linear regression models resulted in heterocedasticity, non-normality and clustered data. NFIS could be a useful tool for estimating individual air pollution exposures in epidemiological studies on large populations, when emission-dispersion data are not available. The tradeoff between simplicity and accuracy needs to be considered.
Xie, Qiuju; Ni, Ji-Qin; Su, Zhongbin
2017-03-05
Ammonia (NH3) is considered one of the significant pollutions contributor to indoor air quality and odor gas emission from swine house because of the negative impact on the health of pigs, the workers and local environment. Prediction models could provide a reasonable way for pig industries and environment regulatory to determine environment control strategies and give an effective method to evaluate the air quality. The adaptive neuro fuzzy inference system (ANFIS) simulates human's vague thinking manner to solve the ambiguity and nonlinear problems which are difficult to be processed by conventional mathematics. Five kinds of membership functions were used to build a well fitted ANFIS prediction model. It was shown that the prediction model with "Gbell" membership function had the best capabilities among those five kinds of membership functions, and it had the best performances compared with backpropagation (BP) neuro network model and multiple linear regression model (MLRM) both in wintertime and summertime, the smallest value of mean square error (MSE), mean absolute percentage error (MAPE) and standard deviation (SD) are 0.002 and 0.0047, 31.1599 and 23.6816, 0.0564 and 0.0802, respectively, and the largest coefficients of determination (R(2)) are 0.6351 and 0.6483, repectively. The ANFIS prediction model could be served as a beneficial strategy for the environment control system that has input parameters with highly fluctuating, complexity, and non-linear relationship.
NASA Astrophysics Data System (ADS)
Woo, Youngkeun; Lee, Juwon; Hwang, Sujin; Hong, Cheol Pyo
2013-03-01
The purpose of this study was to investigate the associations between gait performance, postural stability, and depression in patients with Parkinson's disease (PD) by using an adaptive neuro-fuzzy inference system (ANFIS). Twenty-two idiopathic PD patients were assessed during outpatient physical therapy by using three clinical tests: the Berg balance scale (BBS), Dynamic gait index (DGI), and Geriatric depression scale (GDS). Scores were determined from clinical observation and patient interviews, and associations among gait performance, postural stability, and depression in this PD population were evaluated. The DGI showed significant positive correlation with the BBS scores, and negative correlation with the GDS score. We assessed the relationship between the BBS score and the DGI results by using a multiple regression analysis. In this case, the GDS score was not significantly associated with the DGI, but the BBS and DGI results were. Strikingly, the ANFIS-estimated value of the DGI, based on the BBS and the GDS scores, significantly correlated with the walking ability determined by using the DGI in patients with Parkinson's disease. These findings suggest that the ANFIS techniques effectively reflect and explain the multidirectional phenomena or conditions of gait performance in patients with PD.
NASA Astrophysics Data System (ADS)
Islam, Tanvir; Srivastava, Prashant K.; Rico-Ramirez, Miguel A.; Dai, Qiang; Han, Dawei; Gupta, Manika
2014-08-01
The authors have investigated an adaptive neuro fuzzy inference system (ANFIS) for the estimation of hydrometeors from the TRMM microwave imager (TMI). The proposed algorithm, named as Hydro-Rain algorithm, is developed in synergy with the TRMM precipitation radar (PR) observed hydrometeor information. The method retrieves rain rates by exploiting the synergistic relations between the TMI and PR observations in twofold steps. First, the fundamental hydrometeor parameters, liquid water path (LWP) and ice water path (IWP), are estimated from the TMI brightness temperatures. Next, the rain rates are estimated from the retrieved hydrometeor parameters (LWP and IWP). A comparison of the hydrometeor retrievals by the Hydro-Rain algorithm is done with the TRMM PR 2A25 and GPROF 2A12 algorithms. The results reveal that the Hydro-Rain algorithm has good skills in estimating hydrometeor paths LWP and IWP, as well as surface rain rate. An examination of the Hydro-Rain algorithm is also conducted on a super typhoon case, in which the Hydro-Rain has shown very good performance in reproducing the typhoon field. Nevertheless, the passive microwave based estimate of hydrometeors appears to suffer in high rain rate regimes, and as the rain rate increases, the discrepancies with hydrometeor estimates tend to increase as well.
Yolmeh, Mahmoud; Habibi Najafi, Mohammad B; Salehi, Fakhreddin
2014-01-01
Annatto is commonly used as a coloring agent in the food industry and has antimicrobial and antioxidant properties. In this study, genetic algorithm-artificial neural network (GA-ANN) and adaptive neuro-fuzzy inference system (ANFIS) models were used to predict the effect of annatto dye on Salmonella enteritidis in mayonnaise. The GA-ANN and ANFIS were fed with 3 inputs of annatto dye concentration (0, 0.1, 0.2 and 0.4%), storage temperature (4 and 25°C) and storage time (1-20 days) for prediction of S. enteritidis population. Both models were trained with experimental data. The results showed that the annatto dye was able to reduce of S. enteritidis and its effect was stronger at 25°C than 4°C. The developed GA-ANN, which included 8 hidden neurons, could predict S. enteritidis population with correlation coefficient of 0.999. The overall agreement between ANFIS predictions and experimental data was also very good (r=0.998). Sensitivity analysis results showed that storage temperature was the most sensitive factor for prediction of S. enteritidis population.
NASA Astrophysics Data System (ADS)
Ghanei, S.; Vafaeenezhad, H.; Kashefi, M.; Eivani, A. R.; Mazinani, M.
2015-04-01
Tracing microstructural evolution has a significant importance and priority in manufacturing lines of dual-phase steels. In this paper, an artificial intelligence method is presented for on-line microstructural characterization of dual-phase steels. A new method for microstructure characterization based on the theory of magnetic Barkhausen noise nondestructive testing method is introduced using adaptive neuro-fuzzy inference system (ANFIS). In order to predict the accurate martensite volume fraction of dual-phase steels while eliminating the effect and interference of frequency on the magnetic Barkhausen noise outputs, the magnetic responses were fed into the ANFIS structure in terms of position, height and width of the Barkhausen profiles. The results showed that ANFIS approach has the potential to detect and characterize microstructural evolution while the considerable effect of the frequency on magnetic outputs is overlooked. In fact implementing multiple outputs simultaneously enables ANFIS to approach to the accurate results using only height, position and width of the magnetic Barkhausen noise peaks without knowing the value of the used frequency.
NASA Astrophysics Data System (ADS)
Aghajani, Khadijeh; Tayebi, Habib-Allah
2017-01-01
In this study, the Mesoporous material SBA-15 were synthesized and then, the surface was modified by the surfactant Cetyltrimethylammoniumbromide (CTAB). Finally, the obtained adsorbent was used in order to remove Reactive Red 198 (RR 198) from aqueous solution. Transmission electron microscope (TEM), Fourier transform infra-red spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and BET were utilized for the purpose of examining the structural characteristics of obtained adsorbent. Parameters affecting the removal of RR 198 such as pH, the amount of adsorbent, and contact time were investigated at various temperatures and were also optimized. The obtained optimized condition is as follows: pH = 2, time = 60 min and adsorbent dose = 1 g/l. Moreover, a predictive model based on ANFIS for predicting the adsorption amount according to the input variables is presented. The presented model can be used for predicting the adsorption rate based on the input variables include temperature, pH, time, dosage, concentration. The error between actual and approximated output confirm the high accuracy of the proposed model in the prediction process. This fact results in cost reduction because prediction can be done without resorting to costly experimental efforts. SBA-15, CTAB, Reactive Red 198, adsorption study, Adaptive Neuro-Fuzzy Inference systems (ANFIS).
NASA Astrophysics Data System (ADS)
Entchev, Evgueniy; Yang, Libing
This study applies adaptive neuro-fuzzy inference system (ANFIS) techniques and artificial neural network (ANN) to predict solid oxide fuel cell (SOFC) performance while supplying both heat and power to a residence. A microgeneration 5 kW el SOFC system was installed at the Canadian Centre for Housing Technology (CCHT), integrated with existing mechanical systems and connected in parallel to the grid. SOFC performance data were collected during the winter heating season and used for training of both ANN and ANFIS models. The ANN model was built on back propagation algorithm as for ANFIS model a combination of least squares method and back propagation gradient decent method were developed and applied. Both models were trained with experimental data and used to predict selective SOFC performance parameters such as fuel cell stack current, stack voltage, etc. The study revealed that both ANN and ANFIS models' predictions agreed well with variety of experimental data sets representing steady-state, start-up and shut-down operations of the SOFC system. The initial data set was subjected to detailed sensitivity analysis and statistically insignificant parameters were excluded from the training set. As a result, significant reduction of computational time was achieved without affecting models' accuracy. The study showed that adaptive models can be applied with confidence during the design process and for performance optimization of existing and newly developed solid oxide fuel cell systems. It demonstrated that by using ANN and ANFIS techniques SOFC microgeneration system's performance could be modelled with minimum time demand and with a high degree of accuracy.
NASA Astrophysics Data System (ADS)
Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.
2015-12-01
This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.
NASA Astrophysics Data System (ADS)
Kentel, E.; Dogulu, N.
2015-12-01
In Turkey the experience and data required for a hydrological model setup is limited and very often not available. Moreover there are many ungauged catchments where there are also many planned projects aimed at utilization of water resources including development of existing hydropower potential. This situation makes runoff prediction at locations with lack of data and ungauged locations where small hydropower plants, reservoirs, etc. are planned an increasingly significant challenge and concern in the country. Flow duration curves have many practical applications in hydrology and integrated water resources management. Estimation of flood duration curve (FDC) at ungauged locations is essential, particularly for hydropower feasibility studies and selection of the installed capacities. In this study, we test and compare the performances of two methods for estimating FDCs in the Western Black Sea catchment, Turkey: (i) FDC based on Map Correlation Method (MCM) flow estimates. MCM is a recently proposed method (Archfield and Vogel, 2010) which uses geospatial information to estimate flow. Flow measurements of stream gauging stations nearby the ungauged location are the only data requirement for this method. This fact makes MCM very attractive for flow estimation in Turkey, (ii) Adaptive Neuro-Fuzzy Inference System (ANFIS) is a data-driven method which is used to relate FDC to a number of variables representing catchment and climate characteristics. However, it`s ease of implementation makes it very useful for practical purposes. Both methods use easily collectable data and are computationally efficient. Comparison of the results is realized based on two different measures: the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE) value. Ref: Archfield, S. A., and R. M. Vogel (2010), Map correlation method: Selection of a reference streamgage to estimate daily streamflow at ungaged catchments, Water Resour. Res., 46, W10513, doi:10.1029/2009WR008481.
Ghaedi, M; Hosaininia, R; Ghaedi, A M; Vafaei, A; Taghizadeh, F
2014-10-15
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope(SEM), Brunauer-Emmett-Teller(BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55m(2)/g) and low pore size (<22.46Å) and average particle size lower than 48.8Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02g adsorbent mass, 10mgL(-1) initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R(2)) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.
NASA Astrophysics Data System (ADS)
Ghaedi, M.; Hosaininia, R.; Ghaedi, A. M.; Vafaei, A.; Taghizadeh, F.
2014-10-01
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by ultrasound energy as a low cost routing protocol. Subsequently, this novel material characterization and identification followed by different techniques such as scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (<22.46 Å) and average particle size lower than 48.8 Å in addition to high reactive atoms and the presence of various functional groups make it possible for efficient removal of 1,3,4-thiadiazole-2,5-dithiol (TDDT). Generally, the influence of variables, including the amount of adsorbent, initial pollutant concentration, contact time on pollutants removal percentage has great effect on the removal percentage that their influence was optimized. The optimum parameters for adsorption of 1,3,4-thiadiazole-2, 5-dithiol onto gold nanoparticales-activated carbon were 0.02 g adsorbent mass, 10 mg L-1 initial 1,3,4-thiadiazole-2,5-dithiol concentration, 30 min contact time and pH 7. The Adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) models, have been applied for prediction of removal of 1,3,4-thiadiazole-2,5-dithiol using gold nanoparticales-activated carbon (Au-NP-AC) in a batch study. The input data are included adsorbent dosage (g), contact time (min) and pollutant concentration (mg/l). The coefficient of determination (R2) and mean squared error (MSE) for the training data set of optimal ANFIS model were achieved to be 0.9951 and 0.00017, respectively. These results show that ANFIS model is capable of predicting adsorption of 1,3,4-thiadiazole-2,5-dithiol using Au-NP-AC with high accuracy in an easy, rapid and cost effective way.
Wang, Cheng-Hang; Liu, Baw-Jhiune; Wu, Lawrence Shih-Hsin
2012-02-01
Asthma is one of the most common chronic diseases in children. It is caused by complicated coactions between various genetic factors and environmental allergens. The study aims to integrate the concept of implementing adaptive neuro-fuzzy inference system (ANFIS) and classification analysis methods for forecasting the association of asthma susceptibility genes on 3 serum IgE groups. The ANFIS model was trained and tested with data sets obtained from 425 asthmatic subjects and 483 non-asthma subjects from the Taiwanese population. We assessed 13 single-nucleotide polymorphisms (SNPs) in seven well-known asthma susceptibility genes; firstly, the proposed ANFIS model learned to reduce input features from the 13 SNPs. And secondly, the classification will be used to classify the serum IgE groups from the simulated SNPs results. The performance of the ANFIS model, classification accuracies and the results confirmed that the integration of ANFIS and classified analysis has potential in association discovery.
Classification of diabetes maculopathy images using data-adaptive neuro-fuzzy inference classifier.
Ibrahim, Sulaimon; Chowriappa, Pradeep; Dua, Sumeet; Acharya, U Rajendra; Noronha, Kevin; Bhandary, Sulatha; Mugasa, Hatwib
2015-12-01
Prolonged diabetes retinopathy leads to diabetes maculopathy, which causes gradual and irreversible loss of vision. It is important for physicians to have a decision system that detects the early symptoms of the disease. This can be achieved by building a classification model using machine learning algorithms. Fuzzy logic classifiers group data elements with a degree of membership in multiple classes by defining membership functions for each attribute. Various methods have been proposed to determine the partitioning of membership functions in a fuzzy logic inference system. A clustering method partitions the membership functions by grouping data that have high similarity into clusters, while an equalized universe method partitions data into predefined equal clusters. The distribution of each attribute determines its partitioning as fine or coarse. A simple grid partitioning partitions each attribute equally and is therefore not effective in handling varying distribution amongst the attributes. A data-adaptive method uses a data frequency-driven approach to partition each attribute based on the distribution of data in that attribute. A data-adaptive neuro-fuzzy inference system creates corresponding rules for both finely distributed and coarsely distributed attributes. This method produced more useful rules and a more effective classification system. We obtained an overall accuracy of 98.55%.
NASA Astrophysics Data System (ADS)
Kim, Chan Moon; Parnichkun, Manukid
2017-02-01
Coagulation is an important process in drinking water treatment to attain acceptable treated water quality. However, the determination of coagulant dosage is still a challenging task for operators, because coagulation is nonlinear and complicated process. Feedback control to achieve the desired treated water quality is difficult due to lengthy process time. In this research, a hybrid of k-means clustering and adaptive neuro-fuzzy inference system (k-means-ANFIS) is proposed for the settled water turbidity prediction and the optimal coagulant dosage determination using full-scale historical data. To build a well-adaptive model to different process states from influent water, raw water quality data are classified into four clusters according to its properties by a k-means clustering technique. The sub-models are developed individually on the basis of each clustered data set. Results reveal that the sub-models constructed by a hybrid k-means-ANFIS perform better than not only a single ANFIS model, but also seasonal models by artificial neural network (ANN). The finally completed model consisting of sub-models shows more accurate and consistent prediction ability than a single model of ANFIS and a single model of ANN based on all five evaluation indices. Therefore, the hybrid model of k-means-ANFIS can be employed as a robust tool for managing both treated water quality and production costs simultaneously.
NASA Astrophysics Data System (ADS)
Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed
2016-06-01
In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.
NASA Astrophysics Data System (ADS)
Chaudhuri, S.; Das, D.; Goswami, S.; Das, S. K.
2016-11-01
All India summer monsoon rainfall (AISMR) characteristics play a vital role for the policy planning and national economy of the country. In view of the significant impact of monsoon system on regional as well as global climate systems, accurate prediction of summer monsoon rainfall has become a challenge. The objective of this study is to develop an adaptive neuro-fuzzy inference system (ANFIS) for long range forecast of AISMR. The NCEP/NCAR reanalysis data of temperature, zonal and meridional wind at different pressure levels have been taken to construct the input matrix of ANFIS. The membership of the input parameters for AISMR as high, medium or low is estimated with trapezoidal membership function. The fuzzified standardized input parameters and the de-fuzzified target output are trained with artificial neural network models. The forecast of AISMR with ANFIS is compared with non-hybrid multi-layer perceptron model (MLP), radial basis functions network (RBFN) and multiple linear regression (MLR) models. The forecast error analyses of the models reveal that ANFIS provides the best forecast of AISMR with minimum prediction error of 0.076, whereas the errors with MLP, RBFN and MLR models are 0.22, 0.18 and 0.73 respectively. During validation with observations, ANFIS shows its potency over the said comparative models. Performance of the ANFIS model is verified through different statistical skill scores, which also confirms the aptitude of ANFIS in forecasting AISMR. The forecast skill of ANFIS is also observed to be better than Climate Forecast System version 2. The real-time forecast with ANFIS shows possibility of deficit (65-75 cm) AISMR in the year 2015.
A transductive neuro-fuzzy controller: application to a drilling process.
Gajate, Agustín; Haber, Rodolfo E; Vega, Pastora I; Alique, José R
2010-07-01
Recently, new neuro-fuzzy inference algorithms have been developed to deal with the time-varying behavior and uncertainty of many complex systems. This paper presents the design and application of a novel transductive neuro-fuzzy inference method to control force in a high-performance drilling process. The main goal is to study, analyze, and verify the behavior of a transductive neuro-fuzzy inference system for controlling this complex process, specifically addressing the dynamic modeling, computational efficiency, and viability of the real-time application of this algorithm as well as assessing the topology of the neuro-fuzzy system (e.g., number of clusters, number of rules). A transductive reasoning method is used to create local neuro-fuzzy models for each input/output data set in a case study. The direct and inverse dynamics of a complex process are modeled using this strategy. The synergies among fuzzy, neural, and transductive strategies are then exploited to deal with process complexity and uncertainty through the application of the neuro-fuzzy models within an internal model control (IMC) scheme. A comparative study is made of the adaptive neuro-fuzzy inference system (ANFIS) and the suggested method inspired in a transductive neuro-fuzzy inference strategy. The two neuro-fuzzy strategies are evaluated in a real drilling force control problem. The experimental results demonstrated that the transductive neuro-fuzzy control system provides a good transient response (without overshoot) and better error-based performance indices than the ANFIS-based control system. In particular, the IMC system based on a transductive neuro-fuzzy inference approach reduces the influence of the increase in cutting force that occurs as the drill depth increases, reducing the risk of rapid tool wear and catastrophic tool breakage.
Simulink-based HW/SW codesign of embedded neuro-fuzzy systems.
Reyneri, L M; Chiaberge, M; Lavagno, L
2000-06-01
We propose a semi-automatic HW/SW codesign flow for low-power and low-cost Neuro-Fuzzy embedded systems. Applications range from fast prototyping of embedded systems to high-speed simulation of Simulink models and rapid design of Neuro-Fuzzy devices. The proposed codesign flow works with different technologies and architectures (namely, software, digital and analog). We have used The Mathworks' Simulink environment for functional specification and for analysis of performance criteria such as timing (latency and throughput), power dissipation, size and cost. The proposed flow can exploit trade-offs between SW and HW as well as between digital and analog implementations, and it can generate, respectively, the C, VHDL and SKILL codes of the selected architectures.
NASA Astrophysics Data System (ADS)
Yang, G.; Lin, Y.; Bhattacharya, P.
2007-12-01
To achieve an effective and safe operation on the machine system where the human interacts with the machine mutually, there is a need for the machine to understand the human state, especially cognitive state, when the human's operation task demands an intensive cognitive activity. Due to a well-known fact with the human being, a highly uncertain cognitive state and behavior as well as expressions or cues, the recent trend to infer the human state is to consider multimodality features of the human operator. In this paper, we present a method for multimodality inferring of human cognitive states by integrating neuro-fuzzy network and information fusion techniques. To demonstrate the effectiveness of this method, we take the driver fatigue detection as an example. The proposed method has, in particular, the following new features. First, human expressions are classified into four categories: (i) casual or contextual feature, (ii) contact feature, (iii) contactless feature, and (iv) performance feature. Second, the fuzzy neural network technique, in particular Takagi-Sugeno-Kang (TSK) model, is employed to cope with uncertain behaviors. Third, the sensor fusion technique, in particular ordered weighted aggregation (OWA), is integrated with the TSK model in such a way that cues are taken as inputs to the TSK model, and then the outputs of the TSK are fused by the OWA which gives outputs corresponding to particular cognitive states under interest (e.g., fatigue). We call this method TSK-OWA. Validation of the TSK-OWA, performed in the Northeastern University vehicle drive simulator, has shown that the proposed method is promising to be a general tool for human cognitive state inferring and a special tool for the driver fatigue detection.
Jafari, Zohreh; Edrisi, Mehdi; Marateb, Hamid Reza
2014-10-01
The purpose of this study was to estimate the torque from high-density surface electromyography signals of biceps brachii, brachioradialis, and the medial and lateral heads of triceps brachii muscles during moderate-to-high isometric elbow flexion-extension. The elbow torque was estimated in two following steps: First, surface electromyography (EMG) amplitudes were estimated using principal component analysis, and then a fuzzy model was proposed to illustrate the relationship between the EMG amplitudes and the measured torque signal. A neuro-fuzzy method, with which the optimum number of rules could be estimated, was used to identify the model with suitable complexity. Utilizing the proposed neuro-fuzzy model, the clinical interpretability was introduced; contrary to the previous linear and nonlinear black-box system identification models. It also reduced the estimation error compared with that of the most recent and accurate nonlinear dynamic model introduced in the literature. The optimum number of the rules for all trials was 4 ± 1, that might be related to motor control strategies and the % variance accounted for criterion was 96.40 ± 3.38 which in fact showed considerable improvement compared with the previous methods. The proposed method is thus a promising new tool for EMG-Torque modeling in clinical applications.
Neuro-Fuzzy Control for Pneumatic Servo System
NASA Astrophysics Data System (ADS)
Shibata, Satoru; Jindai, Mitsuru; Yamamoto, Tomonori; Shimizu, Akira
A learning method for acquiring the appropriate fuzzy rules using error back propagation to improve the control performance of the pneumatic servo system is presented in this paper. In the proposed method, two criteria are defined and are adjusted so as to minimize them using error back propagation. These criteria are defined on the fuzzy rules, that is, shapes of membership functions of antecedent clause and real values of consequent clause in the fuzzy controller. Two differentiating coefficients of the plant, used in error back propagation with respect to those criteria, are estimated by the newly established neural network. Moreover, sigmoid function is introduced for the connection of the neural network to compensate for the effect of non-linearity of the system. The method was applied to an existent vertical type pneumatic servo system and proved its effectiveness for practical use.
A Neuro-Fuzzy System for Extracting Environment Features Based on Ultrasonic Sensors
Marichal, Graciliano Nicolás; Hernández, Angela; Acosta, Leopoldo; González, Evelio José
2009-01-01
In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case. PMID:22303160
FPGA implementation of neuro-fuzzy system with improved PSO learning.
Karakuzu, Cihan; Karakaya, Fuat; Çavuşlu, Mehmet Ali
2016-07-01
This paper presents the first hardware implementation of neuro-fuzzy system (NFS) with its metaheuristic learning ability on field programmable gate array (FPGA). Metaheuristic learning of NFS for all of its parameters is accomplished by using the improved particle swarm optimization (iPSO). As a second novelty, a new functional approach, which does not require any memory and multiplier usage, is proposed for the Gaussian membership functions of NFS. NFS and its learning using iPSO are implemented on Xilinx Virtex5 xc5vlx110-3ff1153 and efficiency of the proposed implementation tested on two dynamic system identification problems and licence plate detection problem as a practical application. Results indicate that proposed NFS implementation and membership function approximation is as effective as the other approaches available in the literature but requires less hardware resources.
A neuro-fuzzy system for extracting environment features based on ultrasonic sensors.
Marichal, Graciliano Nicolás; Hernández, Angela; Acosta, Leopoldo; González, Evelio José
2009-01-01
In this paper, a method to extract features of the environment based on ultrasonic sensors is presented. A 3D model of a set of sonar systems and a workplace has been developed. The target of this approach is to extract in a short time, while the vehicle is moving, features of the environment. Particularly, the approach shown in this paper has been focused on determining walls and corners, which are very common environment features. In order to prove the viability of the devised approach, a 3D simulated environment has been built. A Neuro-Fuzzy strategy has been used in order to extract environment features from this simulated model. Several trials have been carried out, obtaining satisfactory results in this context. After that, some experimental tests have been conducted using a real vehicle with a set of sonar systems. The obtained results reveal the satisfactory generalization properties of the approach in this case.
Lledó, Luis D; Badesa, Francisco J; Almonacid, Miguel; Cano-Izquierdo, José M; Sabater-Navarro, José M; Fernández, Eduardo; Garcia-Aracil, Nicolás
2015-01-01
This paper presents the application of an Adaptive Resonance Theory (ART) based on neural networks combined with Fuzzy Logic systems to classify physiological reactions of subjects performing robot-assisted rehabilitation therapies. First, the theoretical background of a neuro-fuzzy classifier called S-dFasArt is presented. Then, the methodology and experimental protocols to perform a robot-assisted neurorehabilitation task are described. Our results show that the combination of the dynamic nature of S-dFasArt classifier with a supervisory module are very robust and suggest that this methodology could be very useful to take into account emotional states in robot-assisted environments and help to enhance and better understand human-robot interactions.
Prediction of photonic crystal fiber characteristics by Neuro-Fuzzy system
NASA Astrophysics Data System (ADS)
Pourmahyabadi, M.; Mohammad Nejad, S.
2009-10-01
The most common methods applied in the analysis of photonic crystal fibers (PCFs) are finite difference time/frequency domain (FDTD/FDFD) method and finite element method (FEM). These methods are very general and reliable (well tested). They describe arbitrary structure but are numerically intensive and require detailed treatment of boundaries and complex definition of calculation mesh. So these conventional models that simulate the photonic response of PCFs are computationally expensive and time consuming. Therefore, a practical design process with trial and error cannot be done in a reasonable amount of time. In this article, an artificial intelligence method such as Neuro-Fuzzy system is used to establish a model that can predict the properties of PCFs. Simulation results show that this model is remarkably effective in predicting the properties of PCF such as dispersion, dispersion slope and loss over the C communication band.
NASA Astrophysics Data System (ADS)
Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-01-01
This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.
A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system
Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken
2010-12-15
This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)
Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm
NASA Technical Reports Server (NTRS)
Mitra, Sunanda; Pemmaraju, Surya
1992-01-01
Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.
Prediction of autistic disorder using neuro fuzzy system by applying ANN technique.
Arthi, K; Tamilarasi, A
2008-11-01
The major challenge in medical field is to diagnose disorder rather than a disease. In this paper, a neuro fuzzy based model is designed for identification or diagnosis of autism. The problematic areas are gathered from every individual and the related linguistic inputs are converted into fuzzy input values which are in turn given as input to feed forward multilayer neural network. The network is trained using back propagation training algorithm and tested for its performance with the expertise.
A Neuro-Fuzzy based System for Classification of Natural Textures
NASA Astrophysics Data System (ADS)
Jiji, G. Wiselin
2016-12-01
A statistical approach based on the coordinated clusters representation of images is used for classification and recognition of textured images. In this paper, two issues are being addressed; one is the extraction of texture features from the fuzzy texture spectrum in the chromatic and achromatic domains from each colour component histogram of natural texture images and the second issue is the concept of a fusion of multiple classifiers. The implementation of an advanced neuro-fuzzy learning scheme has been also adopted in this paper. The results of classification tests show the high performance of the proposed method that may have industrial application for texture classification, when compared with other works.
Neuro-fuzzy controller to navigate an unmanned vehicle.
Selma, Boumediene; Chouraqui, Samira
2013-12-01
A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).
Approximation abilities of neuro-fuzzy networks
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2010-01-01
The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.
Neuro-fuzzy identification applied to fault detection in nonlinear systems
NASA Astrophysics Data System (ADS)
Blázquez, L. Felipe; de Miguel, Luis J.; Aller, Fernando; Perán, José R.
2011-10-01
This article describes a fault detection method, based on the parity equations approach, to be applied to nonlinear systems. The input-output nonlinear model of the plant, used in the method, has been obtained by a neural fuzzy inference architecture and its learning algorithm. The proposed method is able to detect small abrupt faults, even in systems with unknown nonlinearities. This method has been applied to a real industrial pilot plant, and good performance has been obtained for the experimental case of fault detection in the level sensor of a level control process in the said industrial pilot plant.
Adaptive Neuro-fuzzy approach in friction identification
NASA Astrophysics Data System (ADS)
Zaiyad Muda @ Ismail, Muhammad
2016-05-01
Friction is known to affect the performance of motion control system, especially in terms of its accuracy. Therefore, a number of techniques or methods have been explored and implemented to alleviate the effects of friction. In this project, the Artificial Intelligent (AI) approach is used to model the friction which will be then used to compensate the friction. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is chosen among several other AI methods because of its reliability and capabilities of solving complex computation. ANFIS is a hybrid AI-paradigm that combines the best features of neural network and fuzzy logic. This AI method (ANFIS) is effective for nonlinear system identification and compensation and thus, being used in this project.
NASA Astrophysics Data System (ADS)
Prakash, S.; Sinha, S. K.
2015-09-01
In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.
Use of an adaptive neuro-fuzzy system to characterize root distribution patterns
Technology Transfer Automated Retrieval System (TEKTRAN)
Root-soil relationships are pivotal to understanding crop growth and function in a changing environmental. Plant root systems are difficult to measure and remain understudied relative to above ground responses. High variation among field samples often leads to non-significance when standard statist...
Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems
NASA Technical Reports Server (NTRS)
Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher
1994-01-01
Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.
Prediction of Conductivity by Adaptive Neuro-Fuzzy Model
Akbarzadeh, S.; Arof, A. K.; Ramesh, S.; Khanmirzaei, M. H.; Nor, R. M.
2014-01-01
Electrochemical impedance spectroscopy (EIS) is a key method for the characterizing the ionic and electronic conductivity of materials. One of the requirements of this technique is a model to forecast conductivity in preliminary experiments. The aim of this paper is to examine the prediction of conductivity by neuro-fuzzy inference with basic experimental factors such as temperature, frequency, thickness of the film and weight percentage of salt. In order to provide the optimal sets of fuzzy logic rule bases, the grid partition fuzzy inference method was applied. The validation of the model was tested by four random data sets. To evaluate the validity of the model, eleven statistical features were examined. Statistical analysis of the results clearly shows that modeling with an adaptive neuro-fuzzy is powerful enough for the prediction of conductivity. PMID:24658582
NASA Astrophysics Data System (ADS)
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
Landslide susceptibility mapping using a neuro-fuzzy
NASA Astrophysics Data System (ADS)
Lee, S.; Choi, J.; Oh, H.
2009-12-01
This paper develops and applied an adaptive neuro-fuzzy inference system (ANFIS) based on a geographic information system (GIS) environment using landslide-related factors and location for landslide susceptibility mapping. A neuro-fuzzy system is based on a fuzzy system that is trained by a learning algorithm derived from the neural network theory. The learning procedure operates on local information, and causes only local modifications in the underlying fuzzy system. The study area, Boun, suffered much damage following heavy rain in 1998 and was selected as a suitable site for the evaluation of the frequency and distribution of landslides. Boun is located in the central part of Korea. Landslide-related factors such as slope, soil texture, wood type, lithology, and density of lineament were extracted from topographic, soil, forest, and lineament maps. Landslide locations were identified from interpretation of aerial photographs and field surveys. Landslide-susceptible areas were analyzed by the ANFIS method and mapped using occurrence factors. In particular, we applied various membership functions (MFs) and analysis results were verified using the landslide location data. The predictive maps using triangular, trapezoidal, and polynomial MFs were the best individual MFs for modeling landslide susceptibility maps (84.96% accuracy), proving that ANFIS could be very effective in modeling landslide susceptibility mapping. Various MFs were used in this study, and after verification, the difference in accuracy according to the MFs was small, between 84.81% and 84.96%. The difference was just 0.15% and therefore the choice of MFs was not important in the study. Also, compared with the likelihood ratio model, which showed 84.94%, the accuracy was similar. Thus, the ANFIS could be applied to other study areas with different data and other study methods such as cross-validation. The developed ANFIS learns the if-then rules between landslide-related factors and landslide
Estimating the crowding level with a neuro-fuzzy classifier
NASA Astrophysics Data System (ADS)
Boninsegna, Massimo; Coianiz, Tarcisio; Trentin, Edmondo
1997-07-01
This paper introduces a neuro-fuzzy system for the estimation of the crowding level in a scene. Monitoring the number of people present in a given indoor environment is a requirement in a variety of surveillance applications. In the present work, crowding has to be estimated from the image processing of visual scenes collected via a TV camera. A suitable preprocessing of the images, along with an ad hoc feature extraction process, is discussed. Estimation of the crowding level in the feature space is described in terms of a fuzzy decision rule, which relies on the membership of input patterns to a set of partially overlapping crowding classes, comprehensive of doubt classifications and outliers. A society of neural networks, either multilayer perceptrons or hyper radial basis functions, is trained to model individual class-membership functions. Integration of the neural nets within the fuzzy decision rule results in an overall neuro-fuzzy classifier. Important topics concerning the generalization ability, the robustness, the adaptivity and the performance evaluation of the system are explored. Experiments with real-world data were accomplished, comparing the present approach with statistical pattern recognition techniques, namely linear discriminant analysis and nearest neighbor. Experimental results validate the neuro-fuzzy approach to a large extent. The system is currently working successfully as a part of a monitoring system in the Dinegro underground station in Genoa, Italy.
Modeling and Simulation of An Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning
ERIC Educational Resources Information Center
Al-Hmouz, A.; Shen, Jun; Al-Hmouz, R.; Yan, Jun
2012-01-01
With recent advances in mobile learning (m-learning), it is becoming possible for learning activities to occur everywhere. The learner model presented in our earlier work was partitioned into smaller elements in the form of learner profiles, which collectively represent the entire learning process. This paper presents an Adaptive Neuro-Fuzzy…
2004-11-01
Use of Artificial Neural Networks,” Microwave and Optical Technology Letters, Vol.14, pp. 89-93, 1997. [41] S. Sagiroglu, K. Guney, and M. Erler ...Computer-Aided Engineering, Vol. 8, pp. 270- 277, 1998. [42] S. Sagiroglu, K. Guney, and M. Erler , “Calculation of Bandwidth for Electrically Thin and...S. Sagiroglu, and M. Erler , “Neural Computation of Resonant Frequency of Electrically Thin and Thick Rectangular Microstrip Antennas,” IEE. Proc
MI-ANFIS: A Multiple Instance Adaptive Neuro-Fuzzy Inference System
2015-08-02
commonly used to evaluate MIL methods. The data sets are namely the MUSK1, MUSK2 [11], and Fox, Tiger , and Elephant from the COREL data set [12]. MUSK1...MUSK1 has 92 bags, of which 47 are positive, and MUSK2 has 102 bags, of which 39 are positive. The other data sets from COREL: Fox, Tiger , and...Negative No.Instances MUSK1 166(25) 92 47 45 2→ 40 MUSK2 166(25) 102 39 63 1→ 1044 Fox 230(10) 200 100 100 2→ 13 Tiger 230(10) 200 100 100 1→ 13 Elephant
Neuro-Fuzzy Phasing of Segmented Mirrors
NASA Technical Reports Server (NTRS)
Olivier, Philip D.
1999-01-01
A new phasing algorithm for segmented mirrors based on neuro-fuzzy techniques is described. A unique feature of this algorithm is the introduction of an observer bank. Its effectiveness is tested in a very simple model with remarkable success. The new algorithm requires much less computational effort than existing algorithms and therefore promises to be quite useful when implemented on more complex models.
Recognition of Handwritten Arabic words using a neuro-fuzzy network
Boukharouba, Abdelhak; Bennia, Abdelhak
2008-06-12
We present a new method for the recognition of handwritten Arabic words based on neuro-fuzzy hybrid network. As a first step, connected components (CCs) of black pixels are detected. Then the system determines which CCs are sub-words and which are stress marks. The stress marks are then isolated and identified separately and the sub-words are segmented into graphemes. Each grapheme is described by topological and statistical features. Fuzzy rules are extracted from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data using a fuzzy c-means, and rule parameter tuning phase using gradient descent learning. After learning, the network encodes in its topology the essential design parameters of a fuzzy inference system.The contribution of this technique is shown through the significant tests performed on a handwritten Arabic words database.
Neuro-Fuzzy Control of a Robotic Manipulator
NASA Astrophysics Data System (ADS)
Gierlak, P.; Muszyńska, M.; Żylski, W.
2014-08-01
In this paper, to solve the problem of control of a robotic manipulator's movement with holonomical constraints, an intelligent control system was used. This system is understood as a hybrid controller, being a combination of fuzzy logic and an artificial neural network. The purpose of the neuro-fuzzy system is the approximation of the nonlinearity of the robotic manipulator's dynamic to generate a compensatory control. The control system is designed in such a way as to permit modification of its properties under different operating conditions of the two-link manipulator
Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach
NASA Astrophysics Data System (ADS)
Verma, Akhilesh K.; Chaki, Soumi; Routray, Aurobinda; Mohanty, William K.; Jenamani, Mamata
2014-12-01
In this paper, we illustrate the modeling of a reservoir property (sand fraction) from seismic attributes namely seismic impedance, seismic amplitude, and instantaneous frequency using Neuro-Fuzzy (NF) approach. Input dataset includes 3D post-stacked seismic attributes and six well logs acquired from a hydrocarbon field located in the western coast of India. Presence of thin sand and shale layers in the basin area makes the modeling of reservoir characteristic a challenging task. Though seismic data is helpful in extrapolation of reservoir properties away from boreholes; yet, it could be challenging to delineate thin sand and shale reservoirs using seismic data due to its limited resolvability. Therefore, it is important to develop state-of-art intelligent methods for calibrating a nonlinear mapping between seismic data and target reservoir variables. Neural networks have shown its potential to model such nonlinear mappings; however, uncertainties associated with the model and datasets are still a concern. Hence, introduction of Fuzzy Logic (FL) is beneficial for handling these uncertainties. More specifically, hybrid variants of Artificial Neural Network (ANN) and fuzzy logic, i.e., NF methods, are capable for the modeling reservoir characteristics by integrating the explicit knowledge representation power of FL with the learning ability of neural networks. In this paper, we opt for ANN and three different categories of Adaptive Neuro-Fuzzy Inference System (ANFIS) based on clustering of the available datasets. A comparative analysis of these three different NF models (i.e., Sugeno-type fuzzy inference systems using a grid partition on the data (Model 1), using subtractive clustering (Model 2), and using Fuzzy c-means (FCM) clustering (Model 3)) and ANN suggests that Model 3 has outperformed its counterparts in terms of performance evaluators on the present dataset. Performance of the selected algorithms is evaluated in terms of correlation coefficients (CC), root
Potential of neuro-fuzzy methodology to estimate noise level of wind turbines
NASA Astrophysics Data System (ADS)
Nikolić, Vlastimir; Petković, Dalibor; Por, Lip Yee; Shamshirband, Shahaboddin; Zamani, Mazdak; Ćojbašić, Žarko; Motamedi, Shervin
2016-01-01
Wind turbines noise effect became large problem because of increasing of wind farms numbers since renewable energy becomes the most influential energy sources. However, wind turbine noise generation and propagation is not understandable in all aspects. Mechanical noise of wind turbines can be ignored since aerodynamic noise of wind turbine blades is the main source of the noise generation. Numerical simulations of the noise effects of the wind turbine can be very challenging task. Therefore in this article soft computing method is used to evaluate noise level of wind turbines. The main goal of the study is to estimate wind turbine noise in regard of wind speed at different heights and for different sound frequency. Adaptive neuro-fuzzy inference system (ANFIS) is used to estimate the wind turbine noise levels.
NASA Astrophysics Data System (ADS)
Al-Shammari, Eiman Tamah; Petković, Dalibor; Danesh, Amir Seyed; Shamshirband, Shahaboddin; Issa, Mirna; Zentner, Lena
2016-05-01
Robotic operations need to be safe for unpredictable contacts. Joints with passive compliance with springs can be used for soft robotic contacts. However the joints cannot measure external collision forces. In this investigation was developed one passive compliant joint which have soft contacts with external objects and measurement capabilities. To ensure it, conductive silicone rubber was used as material for modeling of the compliant segments of the robotic joint. These compliant segments represent embedded sensors. The conductive silicone rubber is electrically conductive by deformations. The main task was to obtain elastic absorbers for the external collision forces. These absorbers can be used for measurement in the same time. In other words, the joint has an internal measurement system. Adaptive neuro fuzzy inference system (ANFIS) was used to estimate the safety level of the robotic joint by head injury criteria (HIC).
Adaptive neuro-fuzzy modelling of anaerobic digestion of primary sedimentation sludge.
Cakmakci, Mehmet
2007-09-01
Modelling of anaerobic digestion systems is difficult because their performance is complex and varies significantly with influent characteristics and operational conditions. In this study, Adaptive Neuro-Fuzzy Inference System (ANFIS) were used for modelling of anaerobic digestion system of primary sludge of Kayseri municipal WasteWater Treatment Plant (WWTP). Effluent Volatile Solid (VS) and methane yield were predicted by the ANFIS. Two stage models were performed. In the first stage, effluent VS concentration was predicted using pH, VS concentration, flowrate of pre-thickened sludge and temperature of the influent as input parameters. In the second stage, effluent VS concentration in addition to first stage input parameters were used as input parameters to predict methane yield. The low Root Mean Square Error (RMSE) and high Index of agreement (IA) values were obtained with subtractive clustering method of a first order Sugeno type inference. The model performance was evaluated with statistical parameters. According to statistical evaluations, the models satisfactorily predict effluent VS concentration and methane yield.
NASA Astrophysics Data System (ADS)
Bilgehan, Mahmut
2011-03-01
In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) model have been successfully used for the evaluation of relationships between concrete compressive strength and ultrasonic pulse velocity (UPV) values using the experimental data obtained from many cores taken from different reinforced concrete structures having different ages and unknown ratios of concrete mixtures. A comparative study is made using the neural nets and neuro-fuzzy (NF) techniques. Statistic measures were used to evaluate the performance of the models. Comparing of the results, it is found that the proposed ANFIS architecture with Gaussian membership function is found to perform better than the multilayer feed-forward ANN learning by backpropagation algorithm. The final results show that especially the ANFIS modelling may constitute an efficient tool for prediction of the concrete compressive strength. Architectures of the ANFIS and neural network established in the current study perform sufficiently in the estimation of concrete compressive strength, and particularly ANFIS model estimates closely follow the desired values. Both ANFIS and ANN techniques can be used in conditions where too many structures are to be examined in a restricted time. The presented approaches enable to practically find concrete strengths in the existing reinforced concrete structures, whose records of concrete mixture ratios are not available or present. Thus, researchers can easily evaluate the compressive strength of concrete specimens using UPV and density values. These methods also contribute to a remarkable reduction in the computational time without any significant loss of accuracy. A comparison of the results clearly shows that particularly the NF approach can be used effectively to predict the compressive strength of concrete using UPV and density values. In addition, these model architectures can be used as a nondestructive procedure for health monitoring of
Adaptive Neuro-Fuzzy Methodology for Noise Assessment of Wind Turbine
Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin
2014-01-01
Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method. PMID:25075621
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat
2016-05-01
The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.
Adaptive neuro-fuzzy methodology for noise assessment of wind turbine.
Shamshirband, Shahaboddin; Petković, Dalibor; Hashim, Roslan; Motamedi, Shervin
2014-01-01
Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
NASA Astrophysics Data System (ADS)
El-Sebakhy, Emad A.
2009-09-01
Pressure-volume-temperature properties are very important in the reservoir engineering computations. There are many empirical approaches for predicting various PVT properties based on empirical correlations and statistical regression models. Last decade, researchers utilized neural networks to develop more accurate PVT correlations. These achievements of neural networks open the door to data mining techniques to play a major role in oil and gas industry. Unfortunately, the developed neural networks correlations are often limited, and global correlations are usually less accurate compared to local correlations. Recently, adaptive neuro-fuzzy inference systems have been proposed as a new intelligence framework for both prediction and classification based on fuzzy clustering optimization criterion and ranking. This paper proposes neuro-fuzzy inference systems for estimating PVT properties of crude oil systems. This new framework is an efficient hybrid intelligence machine learning scheme for modeling the kind of uncertainty associated with vagueness and imprecision. We briefly describe the learning steps and the use of the Takagi Sugeno and Kang model and Gustafson-Kessel clustering algorithm with K-detected clusters from the given database. It has featured in a wide range of medical, power control system, and business journals, often with promising results. A comparative study will be carried out to compare their performance of this new framework with the most popular modeling techniques, such as neural networks, nonlinear regression, and the empirical correlations algorithms. The results show that the performance of neuro-fuzzy systems is accurate, reliable, and outperform most of the existing forecasting techniques. Future work can be achieved by using neuro-fuzzy systems for clustering the 3D seismic data, identification of lithofacies types, and other reservoir characterization.
Predictive neuro-fuzzy controller for multilink robot manipulator
NASA Astrophysics Data System (ADS)
Kaymaz, Emre; Mitra, Sunanda
1995-10-01
A generalized controller based on fuzzy clustering and fuzzy generalized predictive control has been developed for nonlinear systems including multilink robot manipulators. The proposed controller is particularly useful when the dynamics of the nonlinear system to be controlled are difficult to yield exact solutions and the system specification can be obtained in terms of crisp input-output pairs. It inherits the advantages of both fuzzy logic and predictive control. The identification of the nonlinear mapping of the system to be controlled is realized by a three- layer feed-forward neural network model employing the input-output data obtained from the system. The speed of convergence of the neural network is improved by the introduction of a fuzzy logic controlled backpropagation learning algorithm. The neural network model is then used as a simulation tool to generate the input-output data for developing the predictive fuzzy logic controller for the chosen nonlinear system. The use of fuzzy clustering facilitates automatic generation of membership relations of the input-output data. Unlike the linguistic fuzzy logic controller which requires approximate knowledge of the shape and the numbers of the membership functions in the input and output universes of the discourse, this integrated neuro-fuzzy approach allows one to find the fuzzy relations and the membership functions more accurately. Furthermore, it is not necessary to tune the controller. For a two-link robot manipulator, the performance of this predictive fuzzy controller is shown to be superior to that of a conventional controller employing an ARMA model of the system in terms of accuracy and consumption of energy.
NASA Astrophysics Data System (ADS)
Petković, Dalibor; Nikolić, Vlastimir; Milovančević, Miloš; Lazov, Lyubomir
2016-07-01
Heat affected zone (HAZ) of the laser cutting process may be developed on the basis on combination of different factors. In this investigation was analyzed the HAZ forecasting based on the different laser cutting parameters. The main aim in this article was to analyze the influence of three inputs on the HAZ of the laser cutting process. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for HAZ forecasting. Three inputs are considered: laser power, cutting speed and gas pressure. According the results the cutting speed has the highest influence on the HAZ forecasting (RMSE: 0.0553). Gas pressure has the smallest influence on the HAZ forecasting (RMSE: 0.0801). The results can be used in order to simplify HAZ prediction and analyzing.
NASA Astrophysics Data System (ADS)
Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng
2016-05-01
Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.
NASA Astrophysics Data System (ADS)
Lin, J.; Zheng, Y. B.
2012-07-01
The main goal of this paper is to develop a novel approach for vibration control on a piezoelectric rotating truss structure. This study will analyze the dynamics and control of a flexible structure system with multiple degrees of freedom, represented in this research as a clamped-free-free-free truss type plate rotated by motors. The controller has two separate feedback loops for tracking and damping, and the vibration suppression controller is independent of position tracking control. In addition to stabilizing the actual system, the proposed proportional-derivative (PD) control, based on genetic algorithm (GA) to seek the primary optimal control gain, must supplement a fuzzy control law to ensure a stable nonlinear system. This is done by using an intelligent fuzzy controller based on adaptive neuro-fuzzy inference system (ANFIS) with GA tuning to increase the efficiency of fuzzy control. The PD controller, in its assisting role, easily stabilized the linear system. The fuzzy controller rule base was then constructed based on PD performance-related knowledge. Experimental validation for such a structure demonstrates the effectiveness of the proposed controller. The broad range of problems discussed in this research will be found useful in civil, mechanical, and aerospace engineering, for flexible structures with multiple degree-of-freedom motion.
Kayacan, Erkan; Kayacan, Erdal; Ramon, Herman; Saeys, Wouter
2013-02-01
As a model is only an abstraction of the real system, unmodeled dynamics, parameter variations, and disturbances can result in poor performance of a conventional controller based on this model. In such cases, a conventional controller cannot remain well tuned. This paper presents the control of a spherical rolling robot by using an adaptive neuro-fuzzy controller in combination with a sliding-mode control (SMC)-theory-based learning algorithm. The proposed control structure consists of a neuro-fuzzy network and a conventional controller which is used to guarantee the asymptotic stability of the system in a compact space. The parameter updating rules of the neuro-fuzzy system using SMC theory are derived, and the stability of the learning is proven using a Lyapunov function. The simulation results show that the control scheme with the proposed SMC-theory-based learning algorithm is able to not only eliminate the steady-state error but also improve the transient response performance of the spherical rolling robot without knowing its dynamic equations.
Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin
2016-01-01
Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder. PMID:27219539
Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin
2016-01-01
Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.
NASA Astrophysics Data System (ADS)
Chen, Chaochao; Vachtsevanos, George; Orchard, Marcos E.
2012-04-01
Machine prognosis can be considered as the generation of long-term predictions that describe the evolution in time of a fault indicator, with the purpose of estimating the remaining useful life (RUL) of a failing component/subsystem so that timely maintenance can be performed to avoid catastrophic failures. This paper proposes an integrated RUL prediction method using adaptive neuro-fuzzy inference systems (ANFIS) and high-order particle filtering, which forecasts the time evolution of the fault indicator and estimates the probability density function (pdf) of RUL. The ANFIS is trained and integrated in a high-order particle filter as a model describing the fault progression. The high-order particle filter is used to estimate the current state and carry out p-step-ahead predictions via a set of particles. These predictions are used to estimate the RUL pdf. The performance of the proposed method is evaluated via the real-world data from a seeded fault test for a UH-60 helicopter planetary gear plate. The results demonstrate that it outperforms both the conventional ANFIS predictor and the particle-filter-based predictor where the fault growth model is a first-order model that is trained via the ANFIS.
A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data
NASA Astrophysics Data System (ADS)
Ashrafi, Mohammad; Chua, Lloyd Hock Chye; Quek, Chai; Qin, Xiaosheng
2017-02-01
Current state-of-the-art online neuro fuzzy models (NFMs) such as DENFIS (Dynamic Evolving Neural-Fuzzy Inference System) have been used for runoff forecasting. Online NFMs adopt a local learning approach and are able to adapt to changes continuously. The DENFIS model however requires upper/lower bound for normalization and also the number of rules increases monotonically. This requirement makes the model unsuitable for use in basins with limited data, since a priori data is required. In order to address this and other drawbacks of current online models, the Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) is adopted in this study for forecast applications in basins with limited data. GSETSK is a fully-online NFM which updates its structure and parameters based on the most recent data. The model does not require the need for historical data and adopts clustering and rule pruning techniques to generate a compact and up-to-date rule-base. GSETSK was used in two forecast applications, rainfall-runoff (a catchment in Sweden) and river routing (Lower Mekong River) forecasts. Each of these two applications was studied under two scenarios: (i) there is no prior data, and (ii) only limited data is available (1 year for the Swedish catchment and 1 season for the Mekong River). For the Swedish Basin, GSETSK model results were compared to available results from a calibrated HBV (Hydrologiska Byråns Vattenbalansavdelning) model. For the Mekong River, GSETSK results were compared against the URBS (Unified River Basin Simulator) model. Both comparisons showed that results from GSETSK are comparable with the physically based models, which were calibrated with historical data. Thus, even though GSETSK was trained with a very limited dataset in comparison with HBV or URBS, similar results were achieved. Similarly, further comparisons between GSETSK with DENFIS and the RBF (Radial Basis Function) models highlighted further advantages of GSETSK as having a rule-base (compared to
Effect of fuzzy partitioning in Crohn's disease classification: a neuro-fuzzy-based approach.
Ahmed, Sk Saddam; Dey, Nilanjan; Ashour, Amira S; Sifaki-Pistolla, Dimitra; Bălas-Timar, Dana; Balas, Valentina E; Tavares, João Manuel R S
2017-01-01
Crohn's disease (CD) diagnosis is a tremendously serious health problem due to its ultimately effect on the gastrointestinal tract that leads to the need of complex medical assistance. In this study, the backpropagation neural network fuzzy classifier and a neuro-fuzzy model are combined for diagnosing the CD. Factor analysis is used for data dimension reduction. The effect on the system performance has been investigated when using fuzzy partitioning and dimension reduction. Additionally, further comparison is done between the different levels of the fuzzy partition to reach the optimal performance accuracy level. The performance evaluation of the proposed system is estimated using the classification accuracy and other metrics. The experimental results revealed that the classification with level-8 partitioning provides a classification accuracy of 97.67 %, with a sensitivity and specificity of 96.07 and 100 %, respectively.
An intelligent load shedding scheme using neural networks and neuro-fuzzy.
Haidar, Ahmed M A; Mohamed, Azah; Al-Dabbagh, Majid; Hussain, Aini; Masoum, Mohammad
2009-12-01
Load shedding is some of the essential requirement for maintaining security of modern power systems, particularly in competitive energy markets. This paper proposes an intelligent scheme for fast and accurate load shedding using neural networks for predicting the possible loss of load at the early stage and neuro-fuzzy for determining the amount of load shed in order to avoid a cascading outage. A large scale electrical power system has been considered to validate the performance of the proposed technique in determining the amount of load shed. The proposed techniques can provide tools for improving the reliability and continuity of power supply. This was confirmed by the results obtained in this research of which sample results are given in this paper.
NASA Astrophysics Data System (ADS)
Vaganova, E. V.; Syryamkin, M. V.
2015-11-01
The purpose of the research is the development of evolutionary algorithms for assessments of promising scientific directions. The main attention of the present study is paid to the evaluation of the foresight possibilities for identification of technological peaks and emerging technologies in professional medical equipment engineering in Russia and worldwide on the basis of intellectual property items and neural network modeling. An automated information system consisting of modules implementing various classification methods for accuracy of the forecast improvement and the algorithm of construction of neuro-fuzzy decision tree have been developed. According to the study result, modern trends in this field will focus on personalized smart devices, telemedicine, bio monitoring, «e-Health» and «m-Health» technologies.
NASA Astrophysics Data System (ADS)
Sdao, F.; Lioi, D. S.; Pascale, S.; Caniani, D.; Mancini, I. M.
2013-02-01
The complete assessment of landslide susceptibility needs uniformly distributed detailed information on the territory. This information, which is related to the temporal occurrence of landslide phenomena and their causes, is often fragmented and heterogeneous. The present study evaluates the landslide susceptibility map of the Natural Archaeological Park of Matera (Southern Italy) (Sassi and area Rupestrian Churches sites). The assessment of the degree of "spatial hazard" or "susceptibility" was carried out by the spatial prediction regardless of the return time of the events. The evaluation model for the susceptibility presented in this paper is very focused on the use of innovative techniques of artificial intelligence such as Neural Network, Fuzzy Logic and Neuro-fuzzy Network. The method described in this paper is a novel technique based on a neuro-fuzzy system. It is able to train data like neural network and it is able to shape and control uncertain and complex systems like a fuzzy system. This methodology allows us to derive susceptibility maps of the study area. These data are obtained from thematic maps representing the parameters responsible for the instability of the slopes. The parameters used in the analysis are: plan curvature, elevation (DEM), angle and aspect of the slope, lithology, fracture density, kinematic hazard index of planar and wedge sliding and toppling. Moreover, this method is characterized by the network training which uses a training matrix, consisting of input and output training data, which determine the landslide susceptibility. The neuro-fuzzy method was integrated to a sensitivity analysis in order to overcome the uncertainty linked to the used membership functions. The method was compared to the landslide inventory map and was validated by applying three methods: a ROC (Receiver Operating Characteristic) analysis, a confusion matrix and a SCAI method. The developed neuro-fuzzy method showed a good performance in the
Tao, Yang; Li, Yong; Zhou, Ruiyun; Chu, Dinh-Toi; Su, Lijuan; Han, Yongbin; Zhou, Jianzhong
2016-10-01
In the study, osmotically dehydrated cherry tomatoes were partially dried to water activity between 0.746 and 0.868, vacuum-packed and stored at 4-30 °C for 60 days. Adaptive neuro-fuzzy inference system (ANFIS) was utilized to predict the physicochemical and microbiological parameters of these partially dried cherry tomatoes during storage. Satisfactory accuracies were obtained when ANFIS was used to predict the lycopene and total phenolic contents, color and microbial contamination. The coefficients of determination for all the ANFIS models were higher than 0.86 and showed better performance for prediction compared with models developed by response surface methodology. Through ANFIS modeling, the effects of storage conditions on the properties of partially dried cherry tomatoes were visualized. Generally, contents of lycopene and total phenolics decreased with the increase in water activity, temperature and storage time, while aerobic plate count and number of yeasts and molds increased at high water activities and temperatures. Overall, ANFIS approach can be used as an effective tool to study the quality decrease and microbial pollution of partially dried cherry tomatoes during storage, as well as identify the suitable preservation conditions.
NASA Astrophysics Data System (ADS)
Nikolić, Vlastimir; Petković, Dalibor; Lazov, Lyubomir; Milovančević, Miloš
2016-07-01
Water-jet assisted underwater laser cutting has shown some advantages as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. It is important to determine which parameters are the most important for the process. In this investigation was analyzed the water-jet assisted underwater laser cutting parameters forecasting based on the different parameters. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for water-jet assisted underwater laser cutting parameters forecasting. Three inputs are considered: laser power, cutting speed and water-jet speed. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the water-jet assisted underwater laser cutting parameters. According to the results the combination of laser power cutting speed forms the most influential combination foe the prediction of water-jet assisted underwater laser cutting parameters. The best prediction was observed for the bottom kerf-width (R2 = 0.9653). The worst prediction was observed for dross area per unit length (R2 = 0.6804). According to the results, a greater improvement in estimation accuracy can be achieved by removing the unnecessary parameter.
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2016-04-01
Fueled by increasing demand for carbon neutral energy, erections of ever larger wind turbines (WTs), with WT blades (WTBs) with higher flexibilities and lower buckling capacities lead to increasing operation and maintenance costs. This can be counteracted with efficient structural health monitoring (SHM), which allows scheduling maintenance actions according to the structural state and preventing dramatic failures. The present study proposes a novel multi-step approach for vibration-based structural damage localization and severity estimation for application in operating WTs. First, partial autocorrelation coefficients (PACCs) are estimated from vibrational responses. Second, principal component analysis is applied to PACCs from the healthy structure in order to calculate scores. Then, the scores are ranked with respect to their ability to differentiate different damage scenarios. This ranking information is used for constructing hierarchical adaptive neuro-fuzzy inference systems (HANFISs), where cross-validation is used to identify optimal numbers of hierarchy levels. Different HANFISs are created for the purposes of structural damage localization and severity estimation. For demonstrating the applicability of the approach, experimental data are superimposed with signals from numerical simulations to account for characteristics of operational noise. For the physical experiments, a small scale WTB is excited with a domestic fan and damage scenarios are introduced non-destructively by attaching small masses. Numerical simulations are also performed for a representative fully functional small WT operating in turbulent wind. The obtained results are promising for future applications of vibration-based SHM to facilitate improved safety and reliability of WTs at lower costs.
Hybrid neuro-fuzzy approach for automatic vehicle license plate recognition
NASA Astrophysics Data System (ADS)
Lee, Hsi-Chieh; Jong, Chung-Shi
1998-03-01
Most currently available vehicle identification systems use techniques such as R.F., microwave, or infrared to help identifying the vehicle. Transponders are usually installed in the vehicle in order to transmit the corresponding information to the sensory system. It is considered expensive to install a transponder in each vehicle and the malfunction of the transponder will result in the failure of the vehicle identification system. In this study, novel hybrid approach is proposed for automatic vehicle license plate recognition. A system prototype is built which can be used independently or cooperating with current vehicle identification system in identifying a vehicle. The prototype consists of four major modules including the module for license plate region identification, the module for character extraction from the license plate, the module for character recognition, and the module for the SimNet neuro-fuzzy system. To test the performance of the proposed system, three hundred and eighty vehicle image samples are taken by a digital camera. The license plate recognition success rate of the prototype is approximately 91% while the character recognition success rate of the prototype is approximately 97%.
Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza
2003-01-01
Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.
Ghaedi, M; Ghaedi, A M; Abdi, F; Roosta, M; Vafaei, A; Asghari, A
2013-10-01
In the present study, activated carbon (AC) simply derived from Pistacia khinjuk and characterized using different techniques such as SEM and BET analysis. This new adsorbent was used for methylene blue (MB) adsorption. Fitting the experimental equilibrium data to various isotherm models shows the suitability and applicability of the Langmuir model. The adsorption mechanism and rate of processes was investigated by analyzing time dependency data to conventional kinetic models and it was found that adsorption follow the pseudo-second-order kinetic model. Principle component analysis (PCA) has been used for preprocessing of input data and genetic algorithm optimization have been used for prediction of adsorption of methylene blue using activated carbon derived from P. khinjuk. In our laboratory various activated carbon as sole adsorbent or loaded with various nanoparticles was used for removal of many pollutants (Ghaedi et al., 2012). These results indicate that the small amount of proposed adsorbent (1.0g) is applicable for successful removal of MB (RE>98%) in short time (45min) with high adsorption capacity (48-185mgg(-1)).
Evolutionary Local Search of Fuzzy Rules through a novel Neuro-Fuzzy encoding method.
Carrascal, A; Manrique, D; Ríos, J; Rossi, C
2003-01-01
This paper proposes a new approach for constructing fuzzy knowledge bases using evolutionary methods. We have designed a genetic algorithm that automatically builds neuro-fuzzy architectures based on a new indirect encoding method. The neuro-fuzzy architecture represents the fuzzy knowledge base that solves a given problem; the search for this architecture takes advantage of a local search procedure that improves the chromosomes at each generation. Experiments conducted both on artificially generated and real world problems confirm the effectiveness of the proposed approach.
Kazemipoor, Mahnaz; Hajifaraji, Majid; Radzi, Che Wan Jasimah Bt Wan Mohamed; Shamshirband, Shahaboddin; Petković, Dalibor; Mat Kiah, Miss Laiha
2015-01-01
This research examines the precision of an adaptive neuro-fuzzy computing technique in estimating the anti-obesity property of a potent medicinal plant in a clinical dietary intervention. Even though a number of mathematical functions such as SPSS analysis have been proposed for modeling the anti-obesity properties estimation in terms of reduction in body mass index (BMI), body fat percentage, and body weight loss, there are still disadvantages of the models like very demanding in terms of calculation time. Since it is a very crucial problem, in this paper a process was constructed which simulates the anti-obesity activities of caraway (Carum carvi) a traditional medicine on obese women with adaptive neuro-fuzzy inference (ANFIS) method. The ANFIS results are compared with the support vector regression (SVR) results using root-mean-square error (RMSE) and coefficient of determination (R(2)). The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the ANFIS approach. The following statistical characteristics are obtained for BMI loss estimation: RMSE=0.032118 and R(2)=0.9964 in ANFIS testing and RMSE=0.47287 and R(2)=0.361 in SVR testing. For fat loss estimation: RMSE=0.23787 and R(2)=0.8599 in ANFIS testing and RMSE=0.32822 and R(2)=0.7814 in SVR testing. For weight loss estimation: RMSE=0.00000035601 and R(2)=1 in ANFIS testing and RMSE=0.17192 and R(2)=0.6607 in SVR testing. Because of that, it can be applied for practical purposes.
Performance analysis of electronic power transformer based on neuro-fuzzy controller.
Acikgoz, Hakan; Kececioglu, O Fatih; Yildiz, Ceyhun; Gani, Ahmet; Sekkeli, Mustafa
2016-01-01
In recent years, electronic power transformer (EPT), which is also called solid state transformer, has attracted great interest and has been used in place of the conventional power transformers. These transformers have many important functions as high unity power factor, low harmonic distortion, constant DC bus voltage, regulated output voltage and compensation capability. In this study, proposed EPT structure contains a three-phase pulse width modulation rectifier that converts 800 Vrms AC to 2000 V DC bus at input stage, a dual active bridge converter that provides 400 V DC bus with 5:1 high frequency transformer at isolation stage and a three-phase two level inverter that is used to obtain AC output at output stage. In order to enhance dynamic performance of EPT structure, neuro fuzzy controllers which have durable and nonlinear nature are used in input and isolation stages instead of PI controllers. The main aim of EPT structure with the proposed controller is to improve the stability of power system and to provide faster response against disturbances. Moreover, a number of simulation results are carried out to verify EPT structure designed in MATLAB/Simulink environment and to analyze compensation ability for voltage harmonics, voltage flicker and voltage sag/swell conditions.
Julie, E Golden; Selvi, S Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes.
An effective neuro-fuzzy paradigm for machinery condition health monitoring.
Yen, G G; Meesad, P
2001-01-01
An innovative neuro-fuzzy network appropriate for fault detection and classification in a machinery condition health monitoring environment is proposed. The network, called an incremental learning fuzzy neural (ILFN) network, uses localized neurons to represent the distributions of the input space and is trained using a one-pass, on-line, and incremental learning algorithm that is fast and can operate in real time. The ILFN network employs a hybrid supervised and unsupervised learning scheme to generate its prototypes. The network is a self-organized structure with the ability to adaptively learn new classes of failure modes and update its parameters continuously while monitoring a system. To demonstrate the feasibility and effectiveness of the proposed network, numerical simulations have been performed using some well-known benchmark data sets, such as the Fisher's Iris data and the Deterding vowel data set. Comparison studies with other well-known classifiers were performed and the ILFN network was found competitive with or even superior to many existing classifiers. The ILFN network was applied on the vibration data known as Westland data set collected from a U.S. Navy CH-46E helicopter test stand, in order to assess its efficiency in machinery condition health monitoring. Using a simple fast Fourier transform (FFT) technique for feature extraction, the ILFN network has shown promising results. With various torque levels for training the network, 100% correct classification was achieved for the same torque Levels of the test data.
Improved control configuration of PWM rectifiers based on neuro-fuzzy controller.
Acikgoz, Hakan; Kececioglu, O Fatih; Gani, Ahmet; Yildiz, Ceyhun; Sekkeli, Mustafa
2016-01-01
It is well-known that rectifiers are used widely in many applications required AC/DC transformation. With technological advances, many studies are performed for AC/DC converters and many control methods are proposed in order to improve the performance of these rectifiers in recent years. Pulse width modulation (PWM) based rectifiers are one of the most popular rectifier types. PWM rectifiers have lower input current harmonics and higher power factor compared to classical diode and thyristor rectifiers. In this study, neuro-fuzzy controller (NFC) which has robust, nonlinear structure and do not require the mathematical model of the system to be controlled has been proposed for PWM rectifiers. Three NFCs are used in control scheme of proposed PWM rectifier in order to control the dq-axis currents and DC voltage of PWM rectifier. Moreover, simulation studies are carried out to demonstrate the performance of the proposed control scheme at MATLAB/Simulink environment in terms of rise time, settling time, overshoot, power factor, total harmonic distortion and power quality.
Trends and Issues in Fuzzy Control and Neuro-Fuzzy Modeling
NASA Technical Reports Server (NTRS)
Chiu, Stephen
1996-01-01
Everyday experience in building and repairing things around the home have taught us the importance of using the right tool for the right job. Although we tend to think of a 'job' in broad terms, such as 'build a bookcase,' we understand well that the 'right job' associated with each 'right tool' is typically a narrowly bounded subtask, such as 'tighten the screws.' Unfortunately, we often lose sight of this principle when solving engineering problems; we treat a broadly defined problem, such as controlling or modeling a system, as a narrow one that has a single 'right tool' (e.g., linear analysis, fuzzy logic, neural network). We need to recognize that a typical real-world problem contains a number of different sub-problems, and that a truly optimal solution (the best combination of cost, performance and feature) is obtained by applying the right tool to the right sub-problem. Here I share some of my perspectives on what constitutes the 'right job' for fuzzy control and describe recent advances in neuro-fuzzy modeling to illustrate and to motivate the synergistic use of different tools.
Julie, E. Golden; Selvi, S. Tamil
2016-01-01
Wireless sensor networks (WSNs) consist of sensor nodes with limited processing capability and limited nonrechargeable battery power. Energy consumption in WSN is a significant issue in networks for improving network lifetime. It is essential to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network lifetime. In this paper, a neuro-fuzzy energy aware clustering scheme (NFEACS) is proposed to form optimum and energy aware clusters. NFEACS consists of two parts: fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. NFEACS used neural network that provides effective training set related to energy and received signal strength of all nodes to estimate the expected energy for tentative cluster heads. Sensor nodes with higher energy are trained with center location of base station to select energy aware cluster heads. Fuzzy rule is used in fuzzy logic part that inputs to form clusters. NFEACS is designed for WSN handling mobility of node. The proposed scheme NFEACS is compared with related clustering schemes, cluster-head election mechanism using fuzzy logic, and energy aware fuzzy unequal clustering. The experiment results show that NFEACS performs better than the other related schemes. PMID:26881269
Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning
NASA Astrophysics Data System (ADS)
Talei, Amin; Chua, Lloyd Hock Chye; Quek, Chai; Jansson, Per-Erik
2013-04-01
SummaryA study using local learning Neuro-Fuzzy System (NFS) was undertaken for a rainfall-runoff modeling application. The local learning model was first tested on three different catchments: an outdoor experimental catchment measuring 25 m2 (Catchment 1), a small urban catchment 5.6 km2 in size (Catchment 2), and a large rural watershed with area of 241.3 km2 (Catchment 3). The results obtained from the local learning model were comparable or better than results obtained from physically-based, i.e. Kinematic Wave Model (KWM), Storm Water Management Model (SWMM), and Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The local learning algorithm also required a shorter training time compared to a global learning NFS model. The local learning model was next tested in real-time mode, where the model was continuously adapted when presented with current information in real time. The real-time implementation of the local learning model gave better results, without the need for retraining, when compared to a batch NFS model, where it was found that the batch model had to be retrained periodically in order to achieve similar results.
NASA Astrophysics Data System (ADS)
Mitra, Sunanda; Castellanos, Ramiro
1998-10-01
Pattern recognition by fuzzy, neural, and neuro-fuzzy approaches, has gained popularity partly because of intelligent decision processes involved in some of the above techniques, thus providing better classification and partly because of simplicity in computation required by these methods as opposed to traditional statistical approaches for complex data structures. However, the accuracy of pattern classification by various methods is often not considered. This paper considers the performance of major fuzzy, neural, and neuro-fuzzy pattern recognition algorithms and compares their performances with common statistical methods for the same data sets. For the specific data sets chosen namely the Iris data set, an the small Soybean data set, two neuro-fuzzy algorithms, AFLC and IAFC, outperform other well- known fuzzy, neural, and neuro-fuzzy algorithms in minimizing the classification error and equal the performance of the Bayesian classification. AFLC, and IAFC also demonstrate excellent learning vector quantization capability in generating optimal code books for coding and decoding of large color images at very low bit rates with exceptionally high visual fidelity.
Cheu, Eng Yeow; Quek, Chai; Ng, See Kiong
2012-02-01
Appetitive operant conditioning in Aplysia for feeding behavior via the electrical stimulation of the esophageal nerve contingently reinforces each spontaneous bite during the feeding process. This results in the acquisition of operant memory by the contingently reinforced animals. Analysis of the cellular and molecular mechanisms of the feeding motor circuitry revealed that activity-dependent neuronal modulation occurs at the interneurons that mediate feeding behaviors. This provides evidence that interneurons are possible loci of plasticity and constitute another mechanism for memory storage in addition to memory storage attributed to activity-dependent synaptic plasticity. In this paper, an associative ambiguity correction-based neuro-fuzzy network, called appetitive reward-based pseudo-outer-product-compositional rule of inference [ARPOP-CRI(S)], is trained based on an appetitive reward-based learning algorithm which is biologically inspired by the appetitive operant conditioning of the feeding behavior in Aplysia. A variant of the Hebbian learning rule called Hebbian concomitant learning is proposed as the building block in the neuro-fuzzy network learning algorithm. The proposed algorithm possesses the distinguishing features of the sequential learning algorithm. In addition, the proposed ARPOP-CRI(S) neuro-fuzzy system encodes fuzzy knowledge in the form of linguistic rules that satisfies the semantic criteria for low-level fuzzy model interpretability. ARPOP-CRI(S) is evaluated and compared against other modeling techniques using benchmark time-series datasets. Experimental results are encouraging and show that ARPOP-CRI(S) is a viable modeling technique for time-variant problem domains.
NASA Astrophysics Data System (ADS)
Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban
2017-01-01
Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is
NASA Astrophysics Data System (ADS)
Baraldi, Andrea; Binaghi, Elisabetta; Blonda, Palma N.; Brivio, Pietro A.; Rampini, Anna
1998-10-01
Mixed pixels, which do not follow a known statistical distribution that could be parameterized, are a major source of inconvenience in classification of remote sensing images. This paper reports on an experimental study designed for the in-depth investigation of how and why two neuro-fuzzy classification schemes, whose properties are complementary, estimate sub-pixel land cover composition from remotely sensed data. The first classifier is based on the fuzzy multilayer perceptron proposed by Pal and Mitra: the second classifier consists of a two-stage hybrid (TSH) learning scheme whose unsupervised first stage is based on the fully self- organizing simplified adaptive resonance theory clustering network proposed by Baraldi. Results of the two neuro-fuzzy classifiers are assessed by means of specific evaluation tools designed to extend conventional descriptive and analytical statistical estimators to the case of multi-membership in classes. When a synthetic data set consisting of pure and mixed pixels is processed by the two neuro-fuzzy classifiers, experimental result show that: i) the two neuro- fuzzy classifiers perform better than the traditional MLP; ii) classification accuracies of the two neuro-fuzzy classifiers are comparable; and iii) the TSH classifier requires to train less background knowledge than FMLP.
Application of neuro-fuzzy methods to gamma spectroscopy
NASA Astrophysics Data System (ADS)
Grelle, Austin L.
Nuclear non-proliferation activities are an essential part of national security activities both domestic and abroad. The safety of the public in densely populated environments such as urban areas or large events can be compromised if devices using special nuclear materials are present. Therefore, the prompt and accurate detection of these materials is an important topic of research, in which the identification of normal conditions is also of importance. With gamma-ray spectroscopy, these conditions are identified as the radiation background, which though being affected by a multitude of factors is ever present. Therefore, in nuclear non-proliferation activities the accurate identification of background is important. With this in mind, a method has been developed to utilize aggregate background data to predict the background of a location through the use of an Artificial Neural Network (ANN). After being trained on background data, the ANN is presented with nearby relevant gamma-ray spectroscopy data---as identified by a Fuzzy Inference System - to create a predicted background spectra to compare to a measured spectra. If a significant deviation exists between the predicted and measured data, the method alerts the user such that a more thorough investigation can take place. Research herein focused on data from an urban setting in which the number of false positives was observed to be 28 out of a total of 987, representing 2.94% error. The method therefore currently shows a high rate of false positives given the current configuration, however there are promising steps that can be taken to further minimize this error. With this in mind, the method stands as a potentially significant tool in urban nuclear nonproliferation activities.
NASA Astrophysics Data System (ADS)
Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain
2016-03-01
Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.
Chen, Tien-Chi; Yu, Chih-Hsien; Chen, Chun-Jung; Tsai, Mi-Ching
2008-07-01
This paper presents a Fuzzy Neural Network (FNN) control system for a traveling-wave ultrasonic motor (TWUSM) driven by a dual mode modulation non-resonant driving circuit. First, the motor configuration and the proposed driving circuit of a TWUSM are introduced. To drive a TWUSM effectively, a novel driving circuit, that simultaneously employs both the driving frequency and phase modulation control scheme, is proposed to provide two-phase balance voltage for a TWUSM. Since the dynamic characteristics and motor parameters of the TWUSM are highly nonlinear and time-varying, a FNN control system is therefore investigated to achieve high-precision speed control. The proposed FNN control system incorporates neuro-fuzzy control and the driving frequency and phase modulation to solve the problem of nonlinearities and variations. The proposed control system is digitally implemented by a low-cost digital signal processor based microcontroller, hence reducing the system hardware size and cost. The effectiveness of the proposed driving circuit and control system is verified with hardware experiments under the occurrence of uncertainties. In addition, the advantages of the proposed control scheme are indicated in comparison with a conventional proportional-integral control system.
NASA Astrophysics Data System (ADS)
Samhouri, M.; Al-Ghandoor, A.; Fouad, R. H.
2009-08-01
In this study two techniques, for modeling electricity consumption of the Jordanian industrial sector, are presented: (i) multivariate linear regression and (ii) neuro-fuzzy models. Electricity consumption is modeled as function of different variables such as number of establishments, number of employees, electricity tariff, prevailing fuel prices, production outputs, capacity utilizations, and structural effects. It was found that industrial production and capacity utilization are the most important variables that have significant effect on future electrical power demand. The results showed that both the multivariate linear regression and neuro-fuzzy models are generally comparable and can be used adequately to simulate industrial electricity consumption. However, comparison that is based on the square root average squared error of data suggests that the neuro-fuzzy model performs slightly better for future prediction of electricity consumption than the multivariate linear regression model. Such results are in full agreement with similar work, using different methods, for other countries.
Lee, Jae-Neung; Lee, Myung-Won; Byeon, Yeong-Hyeon; Lee, Won-Sik; Kwak, Keun-Chang
2016-01-01
In this study, we classify four horse gaits (walk, sitting trot, rising trot, canter) of three breeds of horse (Jeju, Warmblood, and Thoroughbred) using a neuro-fuzzy classifier (NFC) of the Takagi-Sugeno-Kang (TSK) type from data information transformed by a wavelet packet (WP). The design of the NFC is accomplished by using a fuzzy c-means (FCM) clustering algorithm that can solve the problem of dimensionality increase due to the flexible scatter partitioning. For this purpose, we use the rider’s hip motion from the sensor information collected by inertial sensors as feature data for the classification of a horse’s gaits. Furthermore, we develop a coaching system under both real horse riding and simulator environments and propose a method for analyzing the rider’s motion. Using the results of the analysis, the rider can be coached in the correct motion corresponding to the classified gait. To construct a motion database, the data collected from 16 inertial sensors attached to a motion capture suit worn by one of the country’s top-level horse riding experts were used. Experiments using the original motion data and the transformed motion data were conducted to evaluate the classification performance using various classifiers. The experimental results revealed that the presented FCM-NFC showed a better accuracy performance (97.5%) than a neural network classifier (NNC), naive Bayesian classifier (NBC), and radial basis function network classifier (RBFNC) for the transformed motion data. PMID:27171098
Experimental Validation of a Neuro-Fuzzy Approach to Phasing the SIBOA Segmented Mirror Testbed
NASA Technical Reports Server (NTRS)
Olivier, Philip D.
2002-01-01
NASA is preparing to launch the Next Generation Space Telescope (NGST). This telescope will be larger than the Hubble Space Telescope, be launched on an Atlas missile rather than the Space Shuttle, have a segmented primary mirror, and be placed in a higher orbit. All these differences pose significant challenges. This effort addresses the challenge of aligning the segments of the primary mirror during the initial deployment. The segments need to piston values aligned to within one tenth of a wavelength. The present study considers using a neuro-fuzzy model of the Fraunhofer diffraction theory. The intention of the current study was to experimentally verify the algorithm derived earlier. The experimental study was to be performed on the SIBOA (Systematic Image Based Optical Alignment) test bed. Unfortunately the hardware/software for SIBOA was not ready by the end of the study period. We did succeed in capturing several images of two stacked segments with various relative phases. These images can be used to calibrate the algorithm for future implementation. This effort is a continuation of prior work. The basic effort involves developing a closed loop control algorithm to phase a segmented mirror test bed (SIBOA). The control algorithm is based on a neuro-fuzzy model of SIBOA and incorporates nonlinear observers built from observer banks. This effort involves implementing the algorithm on the SIBOA test bed.
Characterizing root distribution with adaptive neuro-fuzzy analysis
Technology Transfer Automated Retrieval System (TEKTRAN)
Root-soil relationships are pivotal to understanding crop growth and function in a changing environment. Plant root systems are difficult to measure and remain understudied relative to above ground responses. High variation among field samples often leads to non-significance when standard statistics...
A neuro-fuzzy architecture for real-time applications
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Huang, Song
1992-01-01
Neural networks and fuzzy expert systems perform the same task of functional mapping using entirely different approaches. Each approach has certain unique features. The ability to learn specific input-output mappings from large input/output data possibly corrupted by noise and the ability to adapt or continue learning are some important features of neural networks. Fuzzy expert systems are known for their ability to deal with fuzzy information and incomplete/imprecise data in a structured, logical way. Since both of these techniques implement the same task (that of functional mapping--we regard 'inferencing' as one specific category under this class), a fusion of the two concepts that retains their unique features while overcoming their individual drawbacks will have excellent applications in the real world. In this paper, we arrive at a new architecture by fusing the two concepts. The architecture has the trainability/adaptibility (based on input/output observations) property of the neural networks and the architectural features that are unique to fuzzy expert systems. It also does not require specific information such as fuzzy rules, defuzzification procedure used, etc., though any such information can be integrated into the architecture. We show that this architecture can provide better performance than is possible from a single two or three layer feedforward neural network. Further, we show that this new architecture can be used as an efficient vehicle for hardware implementation of complex fuzzy expert systems for real-time applications. A numerical example is provided to show the potential of this approach.
Extracting TSK-type Neuro-Fuzzy model using the Hunting search algorithm
NASA Astrophysics Data System (ADS)
Bouzaida, Sana; Sakly, Anis; M'Sahli, Faouzi
2014-01-01
This paper proposes a Takagi-Sugeno-Kang (TSK) type Neuro-Fuzzy model tuned by a novel metaheuristic optimization algorithm called Hunting Search (HuS). The HuS algorithm is derived based on a model of group hunting of animals such as lions, wolves, and dolphins when looking for a prey. In this study, the structure and parameters of the fuzzy model are encoded into a particle. Thus, the optimal structure and parameters are achieved simultaneously. The proposed method was demonstrated through modeling and control problems, and the results have been compared with other optimization techniques. The comparisons indicate that the proposed method represents a powerful search approach and an effective optimization technique as it can extract the accurate TSK fuzzy model with an appropriate number of rules.
Neuro fuzzy force control for soft dry contact Hertzian ultrasonic probe
NASA Astrophysics Data System (ADS)
Gallegos, E.; Baltazar, A.; Treesatayapun, C.
2016-02-01
In this work the use of a cartesian robotic manipulator as scanner for the automated identification of hidden defects in an aluminum test plate is proposed. The robotic manipulator includes a custom made soft deformable ultrasonic probe and a force sensor for the recollection of the ultrasonic signals and force feedback. The contact between the soft probe and the test plate is regulated using a Neuro Fuzzy controller in order to avoid the complex mathematical model produced by the interaction. Finally the use of the correlation coefficient is proposed for the post processing of the obtained ultrasonic signals and identification of hidden defects inside the test plate. Experimental studies demonstrated the efficiency of the method.
Verifying Stability of Dynamic Soft-Computing Systems
NASA Technical Reports Server (NTRS)
Wen, Wu; Napolitano, Marcello; Callahan, John
1997-01-01
Soft computing is a general term for algorithms that learn from human knowledge and mimic human skills. Example of such algorithms are fuzzy inference systems and neural networks. Many applications, especially in control engineering, have demonstrated their appropriateness in building intelligent systems that are flexible and robust. Although recent research have shown that certain class of neuro-fuzzy controllers can be proven bounded and stable, they are implementation dependent and difficult to apply to the design and validation process. Many practitioners adopt the trial and error approach for system validation or resort to exhaustive testing using prototypes. In this paper, we describe our on-going research towards establishing necessary theoretic foundation as well as building practical tools for the verification and validation of soft-computing systems. A unified model for general neuro-fuzzy system is adopted. Classic non-linear system control theory and recent results of its applications to neuro-fuzzy systems are incorporated and applied to the unified model. It is hoped that general tools can be developed to help the designer to visualize and manipulate the regions of stability and boundedness, much the same way Bode plots and Root locus plots have helped conventional control design and validation.
NASA Astrophysics Data System (ADS)
Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok
2015-05-01
This work presents a novel neuro-fuzzy controller (NFC) for car-driver's seat-suspension system featuring magnetorheological (MR) dampers. The NFC is built based on the algorithm for building adaptive neuro-fuzzy inference systems (ANFISs) named B-ANFIS, which has been developed in Part 1, and fuzzy logic inference systems (FISs). In order to create the NFC, the following steps are performed. Firstly, a control strategy based on a ride-comfort-oriented tendency (RCOT) is established. Subsequently, optimal FISs are built based on a genetic algorithm (GA) to estimate the desired damping force that satisfies the RCOT corresponding to the road status at each time. The B-ANFIS is then used to build ANFISs for inverse dynamic models of the suspension system (I-ANFIS). Based on the FISs, the desired force values are calculated according to the status of road at each time. The corresponding exciting current value to be applied to the MR damper is then determined by the I-ANFIS. In order to validate the effectiveness of the developed neuro-fuzzy controller, control performances of the seat-suspension systems featuring MR dampers are evaluated under different road conditions. In addition, a comparative work between conventional skyhook controller and the proposed NFC is undertaken in order to demonstrate superior control performances of the proposed methodology.
Renjith, Arokia; Manjula, P; Mohan Kumar, P
2015-01-01
Brain tumour is one of the main causes for an increase in transience among children and adults. This paper proposes an improved method based on Magnetic Resonance Imaging (MRI) brain image classification and image segmentation approach. Automated classification is encouraged by the need of high accuracy when dealing with a human life. The detection of the brain tumour is a challenging problem, due to high diversity in tumour appearance and ambiguous tumour boundaries. MRI images are chosen for detection of brain tumours, as they are used in soft tissue determinations. First of all, image pre-processing is used to enhance the image quality. Second, dual-tree complex wavelet transform multi-scale decomposition is used to analyse texture of an image. Feature extraction extracts features from an image using gray-level co-occurrence matrix (GLCM). Then, the Neuro-Fuzzy technique is used to classify the stages of brain tumour as benign, malignant or normal based on texture features. Finally, tumour location is detected using Otsu thresholding. The classifier performance is evaluated based on classification accuracies. The simulated results show that the proposed classifier provides better accuracy than previous method.
NASA Astrophysics Data System (ADS)
Rigosa, J.; Weber, D. J.; Prochazka, A.; Stein, R. B.; Micera, S.
2011-08-01
Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.
Lee, Ho-Hyun; Jang, Sang-Bok; Shin, Gang-Wook; Hong, Sung-Taek; Lee, Dae-Jong; Chun, Myung Geun
2015-10-23
Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant.
An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants
Lee, Ho-Hyun; Jang, Sang-Bok; Shin, Gang-Wook; Hong, Sung-Taek; Lee, Dae-Jong; Chun, Myung Geun
2015-01-01
Ultrasonic concentration meters have widely been used at water purification, sewage treatment and waste water treatment plants to sort and transfer high concentration sludges and to control the amount of chemical dosage. When an unusual substance is contained in the sludge, however, the attenuation of ultrasonic waves could be increased or not be transmitted to the receiver. In this case, the value measured by a concentration meter is higher than the actual density value or vibration. As well, it is difficult to automate the residuals treatment process according to the various problems such as sludge attachment or sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve these problems, but an abnormal concentration value of a specific ultrasonic beam degrades the accuracy of the entire measurement in case of using a conventional arithmetic mean for all measurement values, so this paper proposes a method to improve the accuracy of the sludge concentration determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful results from a variety of experiments on a real water treatment plant. PMID:26512666
System Support for Forensic Inference
NASA Astrophysics Data System (ADS)
Gehani, Ashish; Kirchner, Florent; Shankar, Natarajan
Digital evidence is playing an increasingly important role in prosecuting crimes. The reasons are manifold: financially lucrative targets are now connected online, systems are so complex that vulnerabilities abound and strong digital identities are being adopted, making audit trails more useful. If the discoveries of forensic analysts are to hold up to scrutiny in court, they must meet the standard for scientific evidence. Software systems are currently developed without consideration of this fact. This paper argues for the development of a formal framework for constructing “digital artifacts” that can serve as proxies for physical evidence; a system so imbued would facilitate sound digital forensic inference. A case study involving a filesystem augmentation that provides transparent support for forensic inference is described.
Clustering of noisy image data using an adaptive neuro-fuzzy system
NASA Technical Reports Server (NTRS)
Pemmaraju, Surya; Mitra, Sunanda
1992-01-01
Identification of outliers or noise in a real data set is often quite difficult. A recently developed adaptive fuzzy leader clustering (AFLC) algorithm has been modified to separate the outliers from real data sets while finding the clusters within the data sets. The capability of this modified AFLC algorithm to identify the outliers in a number of real data sets indicates the potential strength of this algorithm in correct classification of noisy real data.
A mathematical model of neuro-fuzzy approximation in image classification
NASA Astrophysics Data System (ADS)
Gopalan, Sasi; Pinto, Linu; Sheela, C.; Arun Kumar M., N.
2016-06-01
Image digitization and explosion of World Wide Web has made traditional search for image, an inefficient method for retrieval of required grassland image data from large database. For a given input query image Content-Based Image Retrieval (CBIR) system retrieves the similar images from a large database. Advances in technology has increased the use of grassland image data in diverse areas such has agriculture, art galleries, education, industry etc. In all the above mentioned diverse areas it is necessary to retrieve grassland image data efficiently from a large database to perform an assigned task and to make a suitable decision. A CBIR system based on grassland image properties and it uses the aid of a feed-forward back propagation neural network for an effective image retrieval is proposed in this paper. Fuzzy Memberships plays an important role in the input space of the proposed system which leads to a combined neural fuzzy approximation in image classification. The CBIR system with mathematical model in the proposed work gives more clarity about fuzzy-neuro approximation and the convergence of the image features in a grassland image.
Flood Forecasting in River System Using ANFIS
Ullah, Nazrin; Choudhury, P.
2010-10-26
The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.
Flood Forecasting in River System Using ANFIS
NASA Astrophysics Data System (ADS)
Ullah, Nazrin; Choudhury, P.
2010-10-01
The aim of the present study is to investigate applicability of artificial intelligence techniques such as ANFIS (Adaptive Neuro-Fuzzy Inference System) in forecasting flood flow in a river system. The proposed technique combines the learning ability of neural network with the transparent linguistic representation of fuzzy system. The technique is applied to forecast discharge at a downstream station using flow information at various upstream stations. A total of three years data has been selected for the implementation of this model. ANFIS models with various input structures and membership functions are constructed, trained and tested to evaluate efficiency of the models. Statistical indices such as Root Mean Square Error (RMSE), Correlation Coefficient (CORR) and Coefficient of Efficiency (CE) are used to evaluate performance of the ANFIS models in forecasting river flood. The values of the indices show that ANFIS model can accurately and reliably be used to forecast flood in a river system.
An inference engine for embedded diagnostic systems
NASA Technical Reports Server (NTRS)
Fox, Barry R.; Brewster, Larry T.
1987-01-01
The implementation of an inference engine for embedded diagnostic systems is described. The system consists of two distinct parts. The first is an off-line compiler which accepts a propositional logical statement of the relationship between facts and conclusions and produces data structures required by the on-line inference engine. The second part consists of the inference engine and interface routines which accept assertions of fact and return the conclusions which necessarily follow. Given a set of assertions, it will generate exactly the conclusions which logically follow. At the same time, it will detect any inconsistencies which may propagate from an inconsistent set of assertions or a poorly formulated set of rules. The memory requirements are fixed and the worst case execution times are bounded at compile time. The data structures and inference algorithms are very simple and well understood. The data structures and algorithms are described in detail. The system has been implemented on Lisp, Pascal, and Modula-2.
GA-ANFIS Expert System Prototype for Prediction of Dermatological Diseases.
Begic Fazlic, Lejla; Avdagic, Korana; Omanovic, Samir
2015-01-01
This paper presents novel GA-ANFIS expert system prototype for dermatological disease detection by using dermatological features and diagnoses collected in real conditions. Nine dermatological features are used as inputs to classifiers that are based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for the first level of fuzzy model optimization. After that, they are used as inputs in Genetic Algorithm (GA) for the second level of fuzzy model optimization within GA-ANFIS system. GA-ANFIS system performs optimization in two steps. Modelling and validation of the novel GA-ANFIS system approach is performed in MATLAB environment by using validation set of data. Some conclusions concerning the impacts of features on the detection of dermatological diseases were obtained through analysis of the GA-ANFIS. We compared GA-ANFIS and ANFIS results. The results confirmed that the proposed GA-ANFIS model achieved accuracy rates which are higher than the ones we got by ANFIS model.
Prediction of Heart Attack Risk Using GA-ANFIS Expert System Prototype.
Begic Fazlic, Lejla; Avdagic, Aja; Besic, Ingmar
2015-01-01
The aim of this research is to develop a novel GA-ANFIS expert system prototype for classifying heart disease degree of a patient by using heart diseases attributes (features) and diagnoses taken in the real conditions. Thirteen attributes have been used as inputs to classifiers being based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for the first level of fuzzy model optimization. They are used as inputs in Genetic Algorithm (GA) for the second level of fuzzy model optimization within GA-ANFIS system. GA-ANFIS system performs optimization in two steps. Modelling and validating of the novel GA-ANFIS system approach is performed in MATLAB environment. We compared GA-ANFIS and ANFIS results. The proposed GA-ANFIS model with the predicted value technique is more efficient when diagnosis of heart disease is concerned, as well the earlier method we got by ANFIS model.
NASA Astrophysics Data System (ADS)
Kumar, M. Ajay; Srikanth, N. V.
2014-11-01
The voltage source converter (VSC) based multiterminal high voltage direct current (MTDC) transmission system is an interesting technical option to integrate offshore wind farms with the onshore grid due to its unique performance characteristics and reduced power loss via extruded DC cables. In order to enhance the reliability and stability of the MTDC system, an adaptive neuro fuzzy inference system (ANFIS) based coordinated control design has been addressed in this paper. A four terminal VSC-MTDC system which consists of an offshore wind farm and oil platform is implemented in MATLAB/ SimPowerSystems software. The proposed model is tested under different fault scenarios along with the converter outage and simulation results show that the novel coordinated control design has great dynamic stabilities and also the VSC-MTDC system can supply AC voltage of good quality to offshore loads during the disturbances.
Single board system for fuzzy inference
NASA Technical Reports Server (NTRS)
Symon, James R.; Watanabe, Hiroyuki
1991-01-01
The very large scale integration (VLSI) implementation of a fuzzy logic inference mechanism allows the use of rule-based control and decision making in demanding real-time applications. Researchers designed a full custom VLSI inference engine. The chip was fabricated using CMOS technology. The chip consists of 688,000 transistors of which 476,000 are used for RAM memory. The fuzzy logic inference engine board system incorporates the custom designed integrated circuit into a standard VMEbus environment. The Fuzzy Logic system uses Transistor-Transistor Logic (TTL) parts to provide the interface between the Fuzzy chip and a standard, double height VMEbus backplane, allowing the chip to perform application process control through the VMEbus host. High level C language functions hide details of the hardware system interface from the applications level programmer. The first version of the board was installed on a robot at Oak Ridge National Laboratory in January of 1990.
NASA Astrophysics Data System (ADS)
Akhoondzadeh, M.
2013-09-01
Anomaly detection is extremely important for forecasting the date, location and magnitude of an impending earthquake. In this paper, an Adaptive Network-based Fuzzy Inference System (ANFIS) has been proposed to detect the thermal and Total Electron Content (TEC) anomalies around the time of the Varzeghan, Iran, (Mw = 6.4) earthquake jolted in 11 August 2012 NW Iran. ANFIS is the famous hybrid neuro-fuzzy network for modeling the non-linear complex systems. In this study, also the detected thermal and TEC anomalies using the proposed method are compared to the results dealing with the observed anomalies by applying the classical and intelligent methods including Interquartile, Auto-Regressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN) and Support Vector Machine (SVM) methods. The duration of the dataset which is comprised from Aqua-MODIS Land Surface Temperature (LST) night-time snapshot images and also Global Ionospheric Maps (GIM), is 62 days. It can be shown that, if the difference between the predicted value using the ANFIS method and the observed value, exceeds the pre-defined threshold value, then the observed precursor value in the absence of non seismic effective parameters could be regarded as precursory anomaly. For two precursors of LST and TEC, the ANFIS method shows very good agreement with the other implemented classical and intelligent methods and this indicates that ANFIS is capable of detecting earthquake anomalies. The applied methods detected anomalous occurrences 1 and 2 days before the earthquake. This paper indicates that the detection of the thermal and TEC anomalies derive their credibility from the overall efficiencies and potentialities of the five integrated methods.
Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks
NASA Astrophysics Data System (ADS)
Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.
2010-09-01
Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagatiom fuzzy neural network (CFNN) for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.
Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks
NASA Astrophysics Data System (ADS)
Chiang, Y.-M.; Chang, L.-C.; Tsai, M.-J.; Wang, Y.-F.; Chang, F.-J.
2011-01-01
Pumping stations play an important role in flood mitigation in metropolitan areas. The existing sewerage systems, however, are facing a great challenge of fast rising peak flow resulting from urbanization and climate change. It is imperative to construct an efficient and accurate operating prediction model for pumping stations to simulate the drainage mechanism for discharging the rainwater in advance. In this study, we propose two rule-based fuzzy neural networks, adaptive neuro-fuzzy inference system (ANFIS) and counterpropagation fuzzy neural network for on-line predicting of the number of open and closed pumps of a pivotal pumping station in Taipei city up to a lead time of 20 min. The performance of ANFIS outperforms that of CFNN in terms of model efficiency, accuracy, and correctness. Furthermore, the results not only show the predictive water levels do contribute to the successfully operating pumping stations but also demonstrate the applicability and reliability of ANFIS in automatically controlling the urban sewerage systems.
An Ada inference engine for expert systems
NASA Technical Reports Server (NTRS)
Lavallee, David B.
1986-01-01
The purpose is to investigate the feasibility of using Ada for rule-based expert systems with real-time performance requirements. This includes exploring the Ada features which give improved performance to expert systems as well as optimizing the tradeoffs or workarounds that the use of Ada may require. A prototype inference engine was built using Ada, and rule firing rates in excess of 500 per second were demonstrated on a single MC68000 processor. The knowledge base uses a directed acyclic graph to represent production lines. The graph allows the use of AND, OR, and NOT logical operators. The inference engine uses a combination of both forward and backward chaining in order to reach goals as quickly as possible. Future efforts will include additional investigation of multiprocessing to improve performance and creating a user interface allowing rule input in an Ada-like syntax. Investigation of multitasking and alternate knowledge base representations will help to analyze some of the performance issues as they relate to larger problems.
NASA Astrophysics Data System (ADS)
Gholami, V.; Khaleghi, M. R.; Sebghati, M.
2016-12-01
The process of water quality testing is money/time-consuming, quite important and difficult stage for routine measurements. Therefore, use of models has become commonplace in simulating water quality. In this study, the coactive neuro-fuzzy inference system (CANFIS) was used to simulate groundwater quality. Further, geographic information system (GIS) was used as the pre-processor and post-processor tool to demonstrate spatial variation of groundwater quality. All important factors were quantified and groundwater quality index (GWQI) was developed. The proposed model was trained and validated by taking a case study of Mazandaran Plain located in northern part of Iran. The factors affecting groundwater quality were the input variables for the simulation, whereas GWQI index was the output. The developed model was validated to simulate groundwater quality. Network validation was performed via comparison between the estimated and actual GWQI values. In GIS, the study area was separated to raster format in the pixel dimensions of 1 km and also by incorporation of input data layers of the Fuzzy Network-CANFIS model; the geo-referenced layers of the effective factors in groundwater quality were earned. Therefore, numeric values of each pixel with geographical coordinates were entered to the Fuzzy Network-CANFIS model and thus simulation of groundwater quality was accessed in the study area. Finally, the simulated GWQI indices using the Fuzzy Network-CANFIS model were entered into GIS, and hence groundwater quality map (raster layer) based on the results of the network simulation was earned. The study's results confirm the high efficiency of incorporation of neuro-fuzzy techniques and GIS. It is also worth noting that the general quality of the groundwater in the most studied plain is fairly low.
Implementation of Fuzzy Inference Systems Using Neural Network Techniques
1992-03-01
rules required to implement the system, which are usually supplied by ’experts’. One alternative is to use a neural network -type architecture to implement...the fuzzy inference system, and neural network -type training techniques to ’learn’ the control parameters needed by the fuzzy inference system. By...using a generalized version of a neural network , the rules of the fuzzy inference system can be learned without the assistance of experts.
Inference by replication in densely connected systems
Neirotti, Juan P.; Saad, David
2007-10-15
An efficient Bayesian inference method for problems that can be mapped onto dense graphs is presented. The approach is based on message passing where messages are averaged over a large number of replicated variable systems exposed to the same evidential nodes. An assumption about the symmetry of the solutions is required for carrying out the averages; here we extend the previous derivation based on a replica-symmetric- (RS)-like structure to include a more complex one-step replica-symmetry-breaking-like (1RSB-like) ansatz. To demonstrate the potential of the approach it is employed for studying critical properties of the Ising linear perceptron and for multiuser detection in code division multiple access (CDMA) under different noise models. Results obtained under the RS assumption in the noncritical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also observed. While the 1RSB ansatz is not required for the original problems, it was applied to the CDMA signal detection problem with a more complex noise model that exhibits RSB behavior, resulting in an improvement in performance.
Causal Inferences in the Campbellian Validity System
ERIC Educational Resources Information Center
Lund, Thorleif
2010-01-01
The purpose of the present paper is to critically examine causal inferences and internal validity as defined by Campbell and co-workers. Several arguments are given against their counterfactual effect definition, and this effect definition should be considered inadequate for causal research in general. Moreover, their defined independence between…
Parameter Inference for Biochemical Systems that Undergo a Hopf Bifurcation
Kirk, Paul D. W.; Toni, Tina; Stumpf, Michael P. H.
2008-01-01
The increasingly widespread use of parametric mathematical models to describe biological systems means that the ability to infer model parameters is of great importance. In this study, we consider parameter inferability in nonlinear ordinary differential equation models that undergo a bifurcation, focusing on a simple but generic biochemical reaction model. We systematically investigate the shape of the likelihood function for the model's parameters, analyzing the changes that occur as the model undergoes a Hopf bifurcation. We demonstrate that there exists an intrinsic link between inference and the parameters' impact on the modeled system's dynamical stability, which we hope will motivate further research in this area. PMID:18456830
Models for inference in dynamic metacommunity systems
Dorazio, R.M.; Kery, M.; Royle, J. Andrew; Plattner, M.
2010-01-01
A variety of processes are thought to be involved in the formation and dynamics of species assemblages. For example, various metacommunity theories are based on differences in the relative contributions of dispersal of species among local communities and interactions of species within local communities. Interestingly, metacommunity theories continue to be advanced without much empirical validation. Part of the problem is that statistical models used to analyze typical survey data either fail to specify ecological processes with sufficient complexity or they fail to account for errors in detection of species during sampling. In this paper, we describe a statistical modeling framework for the analysis of metacommunity dynamics that is based on the idea of adopting a unified approach, multispecies occupancy modeling, for computing inferences about individual species, local communities of species, or the entire metacommunity of species. This approach accounts for errors in detection of species during sampling and also allows different metacommunity paradigms to be specified in terms of species-and location-specific probabilities of occurrence, extinction, and colonization: all of which are estimable. In addition, this approach can be used to address inference problems that arise in conservation ecology, such as predicting temporal and spatial changes in biodiversity for use in making conservation decisions. To illustrate, we estimate changes in species composition associated with the species-specific phenologies of flight patterns of butterflies in Switzerland for the purpose of estimating regional differences in biodiversity. ?? 2010 by the Ecological Society of America.
Models for inference in dynamic metacommunity systems
Dorazio, Robert M.; Kery, Marc; Royle, J. Andrew; Plattner, Matthias
2010-01-01
A variety of processes are thought to be involved in the formation and dynamics of species assemblages. For example, various metacommunity theories are based on differences in the relative contributions of dispersal of species among local communities and interactions of species within local communities. Interestingly, metacommunity theories continue to be advanced without much empirical validation. Part of the problem is that statistical models used to analyze typical survey data either fail to specify ecological processes with sufficient complexity or they fail to account for errors in detection of species during sampling. In this paper, we describe a statistical modeling framework for the analysis of metacommunity dynamics that is based on the idea of adopting a unified approach, multispecies occupancy modeling, for computing inferences about individual species, local communities of species, or the entire metacommunity of species. This approach accounts for errors in detection of species during sampling and also allows different metacommunity paradigms to be specified in terms of species- and location-specific probabilities of occurrence, extinction, and colonization: all of which are estimable. In addition, this approach can be used to address inference problems that arise in conservation ecology, such as predicting temporal and spatial changes in biodiversity for use in making conservation decisions. To illustrate, we estimate changes in species composition associated with the species-specific phenologies of flight patterns of butterflies in Switzerland for the purpose of estimating regional differences in biodiversity.
LOWER LEVEL INFERENCE CONTROL IN STATISTICAL DATABASE SYSTEMS
Lipton, D.L.; Wong, H.K.T.
1984-02-01
An inference is the process of transforming unclassified data values into confidential data values. Most previous research in inference control has studied the use of statistical aggregates to deduce individual records. However, several other types of inference are also possible. Unknown functional dependencies may be apparent to users who have 'expert' knowledge about the characteristics of a population. Some correlations between attributes may be concluded from 'commonly-known' facts about the world. To counter these threats, security managers should use random sampling of databases of similar populations, as well as expert systems. 'Expert' users of the DATABASE SYSTEM may form inferences from the variable performance of the user interface. Users may observe on-line turn-around time, accounting statistics. the error message received, and the point at which an interactive protocol sequence fails. One may obtain information about the frequency distributions of attribute values, and the validity of data object names from this information. At the back-end of a database system, improved software engineering practices will reduce opportunities to bypass functional units of the database system. The term 'DATA OBJECT' should be expanded to incorporate these data object types which generate new classes of threats. The security of DATABASES and DATABASE SySTEMS must be recognized as separate but related problems. Thus, by increased awareness of lower level inferences, system security managers may effectively nullify the threat posed by lower level inferences.
NASA Astrophysics Data System (ADS)
Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi
2016-09-01
This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.
INFeRS: Interactive Numeric Files Retrieval System. Final Report.
ERIC Educational Resources Information Center
Chiang, Katherine; And Others
In 1988 Mann Library at Cornell University proposed to develop a computer system that would support interactive access to significant electronic files in agriculture and the life sciences. This system was titled the Interactive Numeric Files Retrieval System (INFeRS). This report describes how project goals were met and it presents the project's…
Grey box modelling and advanced control scheme for building heating systems
NASA Astrophysics Data System (ADS)
Jassar, Surinder
This dissertation is aimed at generating new knowledge on Recurrent Neuro-Fuzzy Inference Systems (RenFIS) and to explore its application in building automation. Inferential sensing is an attractive approach for modeling the behavior of dynamic processes. Inferential sensor based control strategies are applied to optimize the control of residential heating systems and demonstrate significant energy saving and comfort improvement. Despite the rapidly decreasing cost and improving accuracy of most temperature sensors, it is normally impractical to use a lot of sensors to measure the average air temperature because the wiring and instrumentation can be very expensive to install and maintain. To design a reliable inferential sensor, of fundamental importance is to build a simple and robust dynamic model of the system to be controlled. This dissertation presents the development of an innovative algorithm that is suitable for the robust black-box model. The algorithm is derived from ANFIS (Adaptive Neuro-Fuzzy Inference System) and is referred to as RenFIS. Like all other modeling techniques, RenFIS performance is sensitive to the training data. In this study, RenFIS is used to model two different heating systems, hot water heating system and forced warm-air heating system. The training data is collected under different operational conditions. RenFIS gives better performance if trained with the data set representing overall qualities of the whole universe of the experimental data. The robustness analysis is conducted by introducing simulated noise to the training data. Results show that RenFIS is less sensitive than ANFIS to the quality of training data. The RenFIS based inferential sensor is then applied to design an inferential control algorithm that can improve the operation of residential heating systems. In current practice, the control of heating systems is based on the measurement of air temperature at one point within the building. The inferential control
Inferring connectivity in networked dynamical systems: Challenges using Granger causality
NASA Astrophysics Data System (ADS)
Lusch, Bethany; Maia, Pedro D.; Kutz, J. Nathan
2016-09-01
Determining the interactions and causal relationships between nodes in an unknown networked dynamical system from measurement data alone is a challenging, contemporary task across the physical, biological, and engineering sciences. Statistical methods, such as the increasingly popular Granger causality, are being broadly applied for data-driven discovery of connectivity in fields from economics to neuroscience. A common version of the algorithm is called pairwise-conditional Granger causality, which we systematically test on data generated from a nonlinear model with known causal network structure. Specifically, we simulate networked systems of Kuramoto oscillators and use the Multivariate Granger Causality Toolbox to discover the underlying coupling structure of the system. We compare the inferred results to the original connectivity for a wide range of parameters such as initial conditions, connection strengths, community structures, and natural frequencies. Our results show a significant systematic disparity between the original and inferred network, unless the true structure is extremely sparse or dense. Specifically, the inferred networks have significant discrepancies in the number of edges and the eigenvalues of the connectivity matrix, demonstrating that they typically generate dynamics which are inconsistent with the ground truth. We provide a detailed account of the dynamics for the Erdős-Rényi network model due to its importance in random graph theory and network science. We conclude that Granger causal methods for inferring network structure are highly suspect and should always be checked against a ground truth model. The results also advocate the need to perform such comparisons with any network inference method since the inferred connectivity results appear to have very little to do with the ground truth system.
Inferring connectivity in networked dynamical systems: Challenges using Granger causality.
Lusch, Bethany; Maia, Pedro D; Kutz, J Nathan
2016-09-01
Determining the interactions and causal relationships between nodes in an unknown networked dynamical system from measurement data alone is a challenging, contemporary task across the physical, biological, and engineering sciences. Statistical methods, such as the increasingly popular Granger causality, are being broadly applied for data-driven discovery of connectivity in fields from economics to neuroscience. A common version of the algorithm is called pairwise-conditional Granger causality, which we systematically test on data generated from a nonlinear model with known causal network structure. Specifically, we simulate networked systems of Kuramoto oscillators and use the Multivariate Granger Causality Toolbox to discover the underlying coupling structure of the system. We compare the inferred results to the original connectivity for a wide range of parameters such as initial conditions, connection strengths, community structures, and natural frequencies. Our results show a significant systematic disparity between the original and inferred network, unless the true structure is extremely sparse or dense. Specifically, the inferred networks have significant discrepancies in the number of edges and the eigenvalues of the connectivity matrix, demonstrating that they typically generate dynamics which are inconsistent with the ground truth. We provide a detailed account of the dynamics for the Erdős-Rényi network model due to its importance in random graph theory and network science. We conclude that Granger causal methods for inferring network structure are highly suspect and should always be checked against a ground truth model. The results also advocate the need to perform such comparisons with any network inference method since the inferred connectivity results appear to have very little to do with the ground truth system.
An expert system shell for inferring vegetation characteristics
NASA Technical Reports Server (NTRS)
Harrison, P. Ann; Harrison, Patrick R.
1992-01-01
The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. The report describes the extensions that have been made to the first generation version of VEG. An interface to a file of unkown cover type data has been constructed. An interface that allows the results of VEG to be written to a file has been implemented. A learning system that learns class descriptions from a data base of historical cover type data and then uses the learned class descriptions to classify an unknown sample has been built. This system has an interface that integrates it into the rest of VEG. The VEG subgoal PROPORTION.GROUND.COVER has been completed and a number of additional techniques that infer the proportion ground cover of a sample have been implemented.
Evaluation of fuzzy inference systems using fuzzy least squares
NASA Technical Reports Server (NTRS)
Barone, Joseph M.
1992-01-01
Efforts to develop evaluation methods for fuzzy inference systems which are not based on crisp, quantitative data or processes (i.e., where the phenomenon the system is built to describe or control is inherently fuzzy) are just beginning. This paper suggests that the method of fuzzy least squares can be used to perform such evaluations. Regressing the desired outputs onto the inferred outputs can provide both global and local measures of success. The global measures have some value in an absolute sense, but they are particularly useful when competing solutions (e.g., different numbers of rules, different fuzzy input partitions) are being compared. The local measure described here can be used to identify specific areas of poor fit where special measures (e.g., the use of emphatic or suppressive rules) can be applied. Several examples are discussed which illustrate the applicability of the method as an evaluation tool.
A fuzzy inference system to evaluate contract service provider performance.
Cruz, Antonio Miguel; Denis, Ernesto Rodriguez
2005-01-01
This paper puts forward a fuzzy inference system for evaluating the quality performance of service contract providers. An Application Service Provider was designed and put online, featuring surveys to establish the most useful indicators to evaluate the quality of the service. This model was implemented in 10 separate hospitals. As a result, the service cost-acquisition cost ratio in these cases was reduced from 16.14% to 6.09% in the period 2001-January 2003.
Topological augmentation to infer hidden processes in biological systems
Sunnåker, Mikael; Zamora-Sillero, Elias; López García de Lomana, Adrián; Rudroff, Florian; Sauer, Uwe; Stelling, Joerg; Wagner, Andreas
2014-01-01
Motivation: A common problem in understanding a biochemical system is to infer its correct structure or topology. This topology consists of all relevant state variables—usually molecules and their interactions. Here we present a method called topological augmentation to infer this structure in a statistically rigorous and systematic way from prior knowledge and experimental data. Results: Topological augmentation starts from a simple model that is unable to explain the experimental data and augments its topology by adding new terms that capture the experimental behavior. This process is guided by representing the uncertainty in the model topology through stochastic differential equations whose trajectories contain information about missing model parts. We first apply this semiautomatic procedure to a pharmacokinetic model. This example illustrates that a global sampling of the parameter space is critical for inferring a correct model structure. We also use our method to improve our understanding of glutamine transport in yeast. This analysis shows that transport dynamics is determined by glutamine permeases with two different kinds of kinetics. Topological augmentation can not only be applied to biochemical systems, but also to any system that can be described by ordinary differential equations. Availability and implementation: Matlab code and examples are available at: http://www.csb.ethz.ch/tools/index. Contact: mikael.sunnaker@bsse.ethz.ch; andreas.wagner@ieu.uzh.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24297519
NASA Astrophysics Data System (ADS)
Zaghba, L.; Khennane, M.; Terki, N.; Borni, A.; Bouchakour, A.; Fezzani, A.; Mahamed, I. Hadj; Oudjana, S. H.
2017-02-01
This paper presents modeling, simulation, and analysis evaluation of the grid-connected PV generation system performance under MATLAB/Simulink. The objective is to study the effect of seasonal variation on the performances of grid connected photovoltaic system in southern of Algeria. This system works with a power converter. This converter allows the connection to the network and extracts maximum power from photovoltaic panels with the MPPT algorithm based on robust neuro-fuzzy sliding approach. The photovoltaic energy produced by the PV generator will be completely injected on the network. Simulation results show that the system controlled by the neuro-fuzzy sliding adapts to changing external disturbances and show their effectiveness not only for continued maximum power point but also for response time and stability.
Malik, Owais A; Senanayake, S M N Arosha; Zaheer, Dansih
2015-03-01
An intelligent recovery evaluation system is presented for objective assessment and performance monitoring of anterior cruciate ligament reconstructed (ACL-R) subjects. The system acquires 3-D kinematics of tibiofemoral joint and electromyography (EMG) data from surrounding muscles during various ambulatory and balance testing activities through wireless body-mounted inertial and EMG sensors, respectively. An integrated feature set is generated based on different features extracted from data collected for each activity. The fuzzy clustering and adaptive neuro-fuzzy inference techniques are applied to these integrated feature sets in order to provide different recovery progress assessment indicators (e.g., current stage of recovery, percentage of recovery progress as compared to healthy group, etc.) for ACL-R subjects. The system was trained and tested on data collected from a group of healthy and ACL-R subjects. For recovery stage identification, the average testing accuracy of the system was found above 95% (95-99%) for ambulatory activities and above 80% (80-84%) for balance testing activities. The overall recovery evaluation performed by the proposed system was found consistent with the assessment made by the physiotherapists using standard subjective/objective scores. The validated system can potentially be used as a decision supporting tool by physiatrists, physiotherapists, and clinicians for quantitative rehabilitation analysis of ACL-R subjects in conjunction with the existing recovery monitoring systems.
Statistical inference for noisy nonlinear ecological dynamic systems.
Wood, Simon N
2010-08-26
Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.
NASA Astrophysics Data System (ADS)
Pasam, Gopi Krishna; Manohar, T. Gowri
2016-09-01
Determination of available transfer capability (ATC) requires the use of experience, intuition and exact judgment in order to meet several significant aspects in the deregulated environment. Based on these points, this paper proposes two heuristic approaches to compute ATC. The first proposed heuristic algorithm integrates the five methods known as continuation repeated power flow, repeated optimal power flow, radial basis function neural network, back propagation neural network and adaptive neuro fuzzy inference system to obtain ATC. The second proposed heuristic model is used to obtain multiple ATC values. Out of these, a specific ATC value will be selected based on a number of social, economic, deregulated environmental constraints and related to specific applications like optimization, on-line monitoring, and ATC forecasting known as multi-objective decision based optimal ATC. The validity of results obtained through these proposed methods are scrupulously verified on various buses of the IEEE 24-bus reliable test system. The results presented and derived conclusions in this paper are very useful for planning, operation, maintaining of reliable power in any power system and its monitoring in an on-line environment of deregulated power system. In this way, the proposed heuristic methods would contribute the best possible approach to assess multiple objective ATC using integrated methods.
An expert system shell for inferring vegetation characteristics
NASA Technical Reports Server (NTRS)
Harrison, P. Ann; Harrison, Patrick R.
1993-01-01
The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. VEG is described in detail in several references. The first generation version of VEG was extended. In the first year of this contract, an interface to a file of unknown cover type data was constructed. An interface that allowed the results of VEG to be written to a file was also implemented. A learning system that learned class descriptions from a data base of historical cover type data and then used the learned class descriptions to classify an unknown sample was built. This system had an interface that integrated it into the rest of VEG. The VEG subgoal PROPORTION.GROUND.COVER was completed and a number of additional techniques that inferred the proportion ground cover of a sample were implemented. This work was previously described. The work carried out in the second year of the contract is described. The historical cover type database was removed from VEG and stored as a series of flat files that are external to VEG. An interface to the files was provided. The framework and interface for two new VEG subgoals that estimate the atmospheric effect on reflectance data were built. A new interface that allows the scientist to add techniques to VEG without assistance from the developer was designed and implemented. A prototype Help System that allows the user to get more information about each screen in the VEG interface was also added to VEG.
A Combined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke
Roy, Serge H.; Cheng, M. Samuel; Chang, Shey-Sheen; Moore, John; De Luca, Gianluca; Nawab, S. Hamid; De Luca, Carlo J.
2010-01-01
Remote monitoring of physical activity using body-worn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data (eight channels each) were recorded from 10 hemiparetic patients while they carried out a sequence of 11 activities of daily living (identification tasks), and 10 activities used to evaluate misclassification errors (nonidentification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the nonidentification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of four ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0%, and a mean specificity of 99.7% for the identification tasks, and a mean misclassification error of <10% for the nonidentification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke. PMID:20051332
ANUBIS: artificial neuromodulation using a Bayesian inference system.
Smith, Benjamin J H; Saaj, Chakravarthini M; Allouis, Elie
2013-01-01
Gain tuning is a crucial part of controller design and depends not only on an accurate understanding of the system in question, but also on the designer's ability to predict what disturbances and other perturbations the system will encounter throughout its operation. This letter presents ANUBIS (artificial neuromodulation using a Bayesian inference system), a novel biologically inspired technique for automatically tuning controller parameters in real time. ANUBIS is based on the Bayesian brain concept and modifies it by incorporating a model of the neuromodulatory system comprising four artificial neuromodulators. It has been applied to the controller of EchinoBot, a prototype walking rover for Martian exploration. ANUBIS has been implemented at three levels of the controller; gait generation, foot trajectory planning using Bézier curves, and foot trajectory tracking using a terminal sliding mode controller. We compare the results to a similar system that has been tuned using a multilayer perceptron. The use of Bayesian inference means that the system retains mathematical interpretability, unlike other intelligent tuning techniques, which use neural networks, fuzzy logic, or evolutionary algorithms. The simulation results show that ANUBIS provides significant improvements in efficiency and adaptability of the three controller components; it allows the robot to react to obstacles and uncertainties faster than the system tuned with the MLP, while maintaining stability and accuracy. As well as advancing rover autonomy, ANUBIS could also be applied to other situations where operating conditions are likely to change or cannot be accurately modeled in advance, such as process control. In addition, it demonstrates one way in which neuromodulation could fit into the Bayesian brain framework.
Order restricted inference for oscillatory systems for detecting rhythmic signals
Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A.; Peddada, Shyamal D.
2016-01-01
Motivation: Many biological processes, such as cell cycle, circadian clock, menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit rhythmic patterns over time. It is not always easy to identify such rhythmic components. For example, it is a challenging problem to identify circadian genes in a given tissue using time-course gene expression data. There is a great potential for misclassifying non-rhythmic as rhythmic genes and vice versa. This has been a problem of considerable interest in recent years. In this article we develop a constrained inference based methodology called Order Restricted Inference for Oscillatory Systems (ORIOS) to detect rhythmic signals. Instead of using mathematical functions (e.g. sinusoidal) to describe shape of rhythmic signals, ORIOS uses mathematical inequalities. Consequently, it is robust and not limited by the biologist's choice of the mathematical model. We studied the performance of ORIOS using simulated as well as real data obtained from mouse liver, pituitary gland and data from NIH3T3, U2OS cell lines. Our results suggest that, for a broad collection of patterns of gene expression, ORIOS has substantially higher power to detect true rhythmic genes in comparison to some popular methods, while also declaring substantially fewer non-rhythmic genes as rhythmic. Availability and Implementation: A user friendly code implemented in R language can be downloaded from http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm. Contact: peddada@niehs.nih.gov PMID:27596593
Modeling urban air pollution with optimized hierarchical fuzzy inference system.
Tashayo, Behnam; Alimohammadi, Abbas
2016-10-01
Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.
Gago, Jorge; Martínez-Núñez, Lourdes; Landín, Mariana; Flexas, Jaume; Gallego, Pedro P.
2014-01-01
Background Plant acclimation is a highly complex process, which cannot be fully understood by analysis at any one specific level (i.e. subcellular, cellular or whole plant scale). Various soft-computing techniques, such as neural networks or fuzzy logic, were designed to analyze complex multivariate data sets and might be used to model large such multiscale data sets in plant biology. Methodology and Principal Findings In this study we assessed the effectiveness of applying neuro-fuzzy logic to modeling the effects of light intensities and sucrose content/concentration in the in vitro culture of kiwifruit on plant acclimation, by modeling multivariate data from 14 parameters at different biological scales of organization. The model provides insights through application of 14 sets of straightforward rules and indicates that plants with lower stomatal aperture areas and higher photoinhibition and photoprotective status score best for acclimation. The model suggests the best condition for obtaining higher quality acclimatized plantlets is the combination of 2.3% sucrose and photonflux of 122–130 µmol m−2 s−1. Conclusions Our results demonstrate that artificial intelligence models are not only successful in identifying complex non-linear interactions among variables, by integrating large-scale data sets from different levels of biological organization in a holistic plant systems-biology approach, but can also be used successfully for inferring new results without further experimental work. PMID:24465829
ANFIS optimized semi-active fuzzy logic controller for magnetorheological dampers
NASA Astrophysics Data System (ADS)
César, Manuel Braz; Barros, Rui Carneiro
2016-11-01
In this paper, we report on the development of a neuro-fuzzy controller for magnetorheological dampers using an Adaptive Neuro-Fuzzy Inference System or ANFIS. Fuzzy logic based controllers are capable to deal with non-linear or uncertain systems, which make them particularly well suited for civil engineering applications. The main objective is to develop a semi-active control system with a MR damper to reduce the response of a three degrees-of-freedom (DOFs) building structure. The control system is designed using ANFIS to optimize the fuzzy inference rule of a simple fuzzy logic controller. The results show that the proposed semi-active neuro-fuzzy based controller is effective in reducing the response of structural system.
Annual Rainfall Forecasting by Using Mamdani Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Fallah-Ghalhary, G.-A.; Habibi Nokhandan, M.; Mousavi Baygi, M.
2009-04-01
Long-term rainfall prediction is very important to countries thriving on agro-based economy. In general, climate and rainfall are highly non-linear phenomena in nature giving rise to what is known as "butterfly effect". The parameters that are required to predict the rainfall are enormous even for a short period. Soft computing is an innovative approach to construct computationally intelligent systems that are supposed to possess humanlike expertise within a specific domain, adapt themselves and learn to do better in changing environments, and explain how they make decisions. Unlike conventional artificial intelligence techniques the guiding principle of soft computing is to exploit tolerance for imprecision, uncertainty, robustness, partial truth to achieve tractability, and better rapport with reality. In this paper, 33 years of rainfall data analyzed in khorasan state, the northeastern part of Iran situated at latitude-longitude pairs (31°-38°N, 74°- 80°E). this research attempted to train Fuzzy Inference System (FIS) based prediction models with 33 years of rainfall data. For performance evaluation, the model predicted outputs were compared with the actual rainfall data. Simulation results reveal that soft computing techniques are promising and efficient. The test results using by FIS model showed that the RMSE was obtained 52 millimeter.
Prediction of Earth rotation parameters by fuzzy inference systems
NASA Astrophysics Data System (ADS)
Akyilmaz, O.; Kutterer, H.
2004-09-01
The short-term prediction of Earth rotation parameters (ERP) (length-of-day and polar motion) is studied up to 10 days by means of ANFIS (adaptive network based fuzzy inference system). The prediction is then extended to 40 days into the future by using the formerly predicted values as input data. The ERP C04 time series with daily values from the International Earth Rotation Service (IERS) serve as the data base. Well-known effects in the ERP series, such as the impact of the tides of the solid Earth and the oceans or seasonal variations of the atmosphere, were removed a priori from the C04 series. The residual series were used for both training and validation of the network. Different network architectures are discussed and compared in order to optimize the network solution. The results of the prediction are analyzed and compared with those of other methods. Short-term ERP values predicted by ANFIS show root-mean-square errors which are equal to or even lower than those from the other considered methods. The presented method is easy to use.
Perturbation biology: inferring signaling networks in cellular systems.
Molinelli, Evan J; Korkut, Anil; Wang, Weiqing; Miller, Martin L; Gauthier, Nicholas P; Jing, Xiaohong; Kaushik, Poorvi; He, Qin; Mills, Gordon; Solit, David B; Pratilas, Christine A; Weigt, Martin; Braunstein, Alfredo; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris
2013-01-01
We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology.
Accurate telemonitoring of Parkinson's disease diagnosis using robust inference system.
Mandal, Indrajit; Sairam, N
2013-05-01
This work presents more precise computational methods for improving the diagnosis of Parkinson's disease based on the detection of dysphonia. New methods are presented for enhanced evaluation and recognize Parkinson's disease affected patients at early stage. Analysis is performed with significant level of error tolerance rate and established our results with corrected T-test. Here new ensembles and other machine learning methods consisting of multinomial logistic regression classifier with Haar wavelets transformation as projection filter that outperform logistic regression is used. Finally a novel and reliable inference system is presented for early recognition of people affected by this disease and presents a new measure of the severity of the disease. Feature selection method is based on Support Vector Machines and ranker search method. Performance analysis of each model is compared to the existing methods and examines the main advancements and concludes with propitious results. Reliable methods are proposed for treating Parkinson's disease that includes sparse multinomial logistic regression, Bayesian network, Support Vector Machines, Artificial Neural Networks, Boosting methods and their ensembles. The study aim at improving the quality of Parkinson's disease treatment by tracking them and reinforce the viability of cost effective, regular and precise telemonitoring application.
Classification of Microarray Data Using Kernel Fuzzy Inference System.
Kumar, Mukesh; Kumar Rath, Santanu
2014-01-01
The DNA microarray classification technique has gained more popularity in both research and practice. In real data analysis, such as microarray data, the dataset contains a huge number of insignificant and irrelevant features that tend to lose useful information. Classes with high relevance and feature sets with high significance are generally referred for the selected features, which determine the samples classification into their respective classes. In this paper, kernel fuzzy inference system (K-FIS) algorithm is applied to classify the microarray data (leukemia) using t-test as a feature selection method. Kernel functions are used to map original data points into a higher-dimensional (possibly infinite-dimensional) feature space defined by a (usually nonlinear) function ϕ through a mathematical process called the kernel trick. This paper also presents a comparative study for classification using K-FIS along with support vector machine (SVM) for different set of features (genes). Performance parameters available in the literature such as precision, recall, specificity, F-measure, ROC curve, and accuracy are considered to analyze the efficiency of the classification model. From the proposed approach, it is apparent that K-FIS model obtains similar results when compared with SVM model. This is an indication that the proposed approach relies on kernel function.
An integrated fuzzy inference based monitoring, diagnostic, and prognostic system
NASA Astrophysics Data System (ADS)
Garvey, Dustin
To date the majority of the research related to the development and application of monitoring, diagnostic, and prognostic systems has been exclusive in the sense that only one of the three areas is the focus of the work. While previous research progresses each of the respective fields, the end result is a variable "grab bag" of techniques that address each problem independently. Also, the new field of prognostics is lacking in the sense that few methods have been proposed that produce estimates of the remaining useful life (RUL) of a device or can be realistically applied to real-world systems. This work addresses both problems by developing the nonparametric fuzzy inference system (NFIS) which is adapted for monitoring, diagnosis, and prognosis and then proposing the path classification and estimation (PACE) model that can be used to predict the RUL of a device that does or does not have a well defined failure threshold. To test and evaluate the proposed methods, they were applied to detect, diagnose, and prognose faults and failures in the hydraulic steering system of a deep oil exploration drill. The monitoring system implementing an NFIS predictor and sequential probability ratio test (SPRT) detector produced comparable detection rates to a monitoring system implementing an autoassociative kernel regression (AAKR) predictor and SPRT detector, specifically 80% vs. 85% for the NFIS and AAKR monitor respectively. It was also found that the NFIS monitor produced fewer false alarms. Next, the monitoring system outputs were used to generate symptom patterns for k-nearest neighbor (kNN) and NFIS classifiers that were trained to diagnose different fault classes. The NFIS diagnoser was shown to significantly outperform the kNN diagnoser, with overall accuracies of 96% vs. 89% respectively. Finally, the PACE implementing the NFIS was used to predict the RUL for different failure modes. The errors of the RUL estimates produced by the PACE-NFIS prognosers ranged from 1
Automatic Road Gap Detection Using Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Hashemi, S.; Valadan Zoej, M. J.; Mokhtarzadeh, M.
2011-09-01
Automatic feature extraction from aerial and satellite images is a high-level data processing which is still one of the most important research topics of the field. In this area, most of the researches are focused on the early step of road detection, where road tracking methods, morphological analysis, dynamic programming and snakes, multi-scale and multi-resolution methods, stereoscopic and multi-temporal analysis, hyper spectral experiments, are some of the mature methods in this field. Although most researches are focused on detection algorithms, none of them can extract road network perfectly. On the other hand, post processing algorithms accentuated on the refining of road detection results, are not developed as well. In this article, the main is to design an intelligent method to detect and compensate road gaps remained on the early result of road detection algorithms. The proposed algorithm consists of five main steps as follow: 1) Short gap coverage: In this step, a multi-scale morphological is designed that covers short gaps in a hierarchical scheme. 2) Long gap detection: In this step, the long gaps, could not be covered in the previous stage, are detected using a fuzzy inference system. for this reason, a knowledge base consisting of some expert rules are designed which are fired on some gap candidates of the road detection results. 3) Long gap coverage: In this stage, detected long gaps are compensated by two strategies of linear and polynomials for this reason, shorter gaps are filled by line fitting while longer ones are compensated by polynomials.4) Accuracy assessment: In order to evaluate the obtained results, some accuracy assessment criteria are proposed. These criteria are obtained by comparing the obtained results with truly compensated ones produced by a human expert. The complete evaluation of the obtained results whit their technical discussions are the materials of the full paper.
A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments
NASA Technical Reports Server (NTRS)
Hancock, Thomas M., III
1994-01-01
This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.
Dynamical Inference from a Kinematic Snapshot: The Force Law in the Solar System
NASA Astrophysics Data System (ADS)
Bovy, Jo; Murray, Iain; Hogg, David W.
2010-03-01
If a dynamical system is long-lived and non-resonant (that is, if there is a set of tracers that have evolved independently through many orbital times), and if the system is observed at any non-special time, it is possible to infer the dynamical properties of the system (such as the gravitational force or acceleration law) from a snapshot of the positions and velocities of the tracer population at a single moment in time. In this paper, we describe a general inference technique that solves this problem while allowing (1) the unknown distribution function of the tracer population to be simultaneously inferred and marginalized over, and (2) prior information about the gravitational field and distribution function to be taken into account. As an example, we consider the simplest problem of this kind: we infer the force law in the solar system using only an instantaneous kinematic snapshot (valid at 2009 April 1.0) for the eight major planets. We consider purely radial acceleration laws of the form ar = -A [r/r 0]-α, where r is the distance from the Sun. Using a probabilistic inference technique, we infer 1.989 < α < 2.052 (95% interval), largely independent of any assumptions about the distribution of energies and eccentricities in the system beyond the assumption that the system is phase-mixed. Generalizations of the methods used here will permit, among other things, inference of Milky Way dynamics from Gaia-like observations.
Erratum: Erratum to Central European Journal of Engineering, Volume 4, Issue 1
NASA Astrophysics Data System (ADS)
Kumar, M. Ajay; Srikanth, N. V.
2014-06-01
Paper by M. Ajay Kumar, N. V. Srikanth, et al. "An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions" in Volume 4, Issue 1, 27-38/March 2014 doi: 10.2478/s13531-013-0143-4 contains an error in the title. The correct title is presented below
Erratum to Central European Journal of Engineering, Volume 4, Issue 1
NASA Astrophysics Data System (ADS)
Kumar, M.; Srikanth, N.
2014-06-01
Paper by M. Ajay Kumar, N. V. Srikanth, et al. "An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions" in Volume 4, Issue 1, 27-38/March 2014 doi: 10.2478/s13531-013-0143-4 contains an error in the title. The correct title is presented below
A Self-Tuning Kalman Filter for Autonomous Navigation Using the Global Positioning System (GPS)
NASA Technical Reports Server (NTRS)
Truong, Son H.
1999-01-01
Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS (Global Positioning Systems) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.
Soil disturbance evaluation: application of ANFIS
Technology Transfer Automated Retrieval System (TEKTRAN)
New techniques to understand the relationship of soil components as impacted by management are needed. In this work, an Adaptive Neuro-Fuzzy Inference System (ANFIS) applied for study the contiguous relations between soil disturbed indicators. Several ANFIS surfaces, which described the contiguous ...
A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)
NASA Technical Reports Server (NTRS)
Truong, S. H.
1999-01-01
Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.
NASA Astrophysics Data System (ADS)
Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer
2015-03-01
Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.
NASA Astrophysics Data System (ADS)
Chang, L. C.; Kao, I. F.; Tsai, F. H.; Hsu, H. C.; Yang, S. N.; Shen, H. Y.; Chang, F. J.
2015-12-01
Typhoons and storms hit Taiwan several times every year and cause serious flood disasters. Because the mountainous terrain and steep landform rapidly accelerate the speed of flood flow, rivers cannot be a stable source of water supply. Reservoirs become one of the most important and effective floodwater storage facilities. However, real-time operation for reservoir flood control is a continuous and instant decision-making process based on rules, laws, meteorological nowcast, in addition to the immediate rainfall and hydrological data. The achievement of reservoir flood control can effectively mitigate flood disasters and store floodwaters for future uses. In this study, we construct an intelligent decision support system for reservoir flood control through integrating different types of neural networks and the above information to solve this problem. This intelligent reservoir flood control decision support system includes three parts: typhoon track classification, flood forecast and adaptive water release models. This study used the self-organizing map (SOM) for typhoon track clustering, nonlinear autoregressive with exogenous inputs (NARX) for multi-step-ahead reservoir inflow prediction, and adaptive neuro-fuzzy inference system (ANFIS) for reservoir flood control. Before typhoons landfall, we can estimate the entire flood hydrogragh of reservoir inflow by using SOM and make a pre-release strategy and real-time reservoir flood operating by using ANFIS. In the meanwhile, NARX can be constantly used real-time five-hour-ahead inflow prediction for providing the newest flood information. The system has been successfully implemented Typhoons Trami (2013), Fitow (2013) and Matmo (2014) in Shihmen Reservoir.
Sadegh Amalnick, Mohsen; Zarrin, Mansour
2017-03-13
Purpose The purpose of this paper is to present an integrated framework for performance evaluation and analysis of human resource (HR) with respect to the factors of health, safety, environment and ergonomics (HSEE) management system, and also the criteria of European federation for quality management (EFQM) as one of the well-known business excellence models. Design/methodology/approach In this study, an intelligent algorithm based on adaptive neuro-fuzzy inference system (ANFIS) along with fuzzy data envelopment analysis (FDEA) are developed and employed to assess the performance of the company. Furthermore, the impact of the factors on the company's performance as well as their strengths and weaknesses are identified by conducting a sensitivity analysis on the results. Similarly, a design of experiment is performed to prioritize the factors in the order of importance. Findings The results show that EFQM model has a far greater impact upon the company's performance than HSEE management system. According to the obtained results, it can be argued that integration of HSEE and EFQM leads to the performance improvement in the company. Practical implications In current study, the required data for executing the proposed framework are collected via valid questionnaires which are filled in by the staff of an aviation industry located in Tehran, Iran. Originality/value Managing HR performance results in improving usability, maintainability and reliability and finally in a significant reduction in the commercial aviation accident rate. Also, study of factors affecting HR performance authorities participate in developing systems in order to help operators better manage human error. This paper for the first time presents an intelligent framework based on ANFIS, FDEA and statistical tests for HR performance assessment and analysis with the ability of handling uncertainty and vagueness existing in real world environment.
Parameter and Structure Inference for Nonlinear Dynamical Systems
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark
2006-01-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.
Seizure detection in intracranial EEG using a fuzzy inference system.
Aarabi, A; Fazel-Rezai, R; Aghakhani, Y
2009-01-01
In this paper, we present a fuzzy rule-based system for the automatic detection of seizures in the intracranial EEG (IEEG) recordings. A total of 302.7 hours of the IEEG with 78 seizures, recorded from 21 patients aged between 10 and 47 years were used for the evaluation of the system. After preprocessing, temporal, spectral, and complexity features were extracted from the segmented IEEGs. The results were thresholded using the statistics of a reference window and integrated spatio-temporally using a fuzzy rule-based decision making system. The system yielded a sensitivity of 98.7%, a false detection rate of 0.27/h, and an average detection latency of 11 s. The results from the automatic system correlate well with the visual analysis of the seizures by the expert. This system may serve as a good seizure detection tool for monitoring long-term IEEG with relatively high sensitivity and low false detection rate.
Bayesian Inference Networks and Spreading Activation in Hypertext Systems.
ERIC Educational Resources Information Center
Savoy, Jacques
1992-01-01
Describes a method based on Bayesian networks for searching hypertext systems. Discussion covers the use of Bayesian networks for structuring index terms and representing user information needs; use of link semantics based on constrained spreading activation to find starting points for browsing; and evaluation of a prototype system. (64…
New developments of a knowledge based system (VEG) for inferring vegetation characteristics
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Harrison, P. A.; Harrison, P. R.
1992-01-01
An extraction technique for inferring physical and biological surface properties of vegetation using nadir and/or directional reflectance data as input has been developed. A knowledge-based system (VEG) accepts spectral data of an unknown target as input, determines the best strategy for inferring the desired vegetation characteristic, applies the strategy to the target data, and provides a rigorous estimate of the accuracy of the inference. Progress in developing the system is presented. VEG combines methods from remote sensing and artificial intelligence, and integrates input spectral measurements with diverse knowledge bases. VEG has been developed to (1) infer spectral hemispherical reflectance from any combination of nadir and/or off-nadir view angles; (2) test and develop new extraction techniques on an internal spectral database; (3) browse, plot, or analyze directional reflectance data in the system's spectral database; (4) discriminate between user-defined vegetation classes using spectral and directional reflectance relationships; and (5) infer unknown view angles from known view angles (known as view angle extension).
FINDS: A fault inferring nonlinear detection system. User's guide
NASA Technical Reports Server (NTRS)
Lancraft, R. E.; Caglayan, A. K.
1983-01-01
The computer program FINDS is written in FORTRAN-77, and is intended for operation on a VAX 11-780 or 11-750 super minicomputer, using the VMS operating system. The program detects, isolates, and compensates for failures in navigation aid instruments and onboard flight control and navigation sensors of a Terminal Configured Vehicle aircraft in a Microwave Landing System environment. In addition, FINDS provides sensor fault tolerant estimates for the aircraft states which are then used by an automatic guidance and control system to land the aircraft along a prescribed path. FINDS monitors for failures by evaluating all sensor outputs simultaneously using the nonlinear analytic relationships between the various sensor outputs arising from the aircraft point mass equations of motion. Hence, FINDS is an integrated sensor failure detection and isolation system.
Conditional Inference and Logic for Intelligent Systems: A Theory of Measure-Free Conditioning
1991-08-01
4 TITLE AND SUBTITLE 5 FUNDING NUMBERS CONDITIONAL INFERENCE AND LOGIC FOR INTELLIGENT SYSTEMS PR: ZE90 PR: ZW40 A Theory of Measure-Free Conditioning...200 UNCLASSIFIED tf F I CONDIT[ONAL INFERENCE AND LOGIC FOR INTELIUGENT SYSTEMS: I, A THEORY OF MEASURE-FREE CONDTONING F by L R. Goodman Command and...complete and satisfactory theory of "measure-free" conditioning. If the concept of "conditional event" can be formalized and a suitable algebra of
An expert system shell for inferring vegetation characteristics: The learning system (tasks C and D)
NASA Technical Reports Server (NTRS)
Harrison, P. Ann; Harrison, Patrick R.
1992-01-01
This report describes the implementation of a learning system that uses a data base of historical cover type reflectance data taken at different solar zenith angles and wavelengths to learn class descriptions of classes of cover types. It has been integrated with the VEG system and requires that the VEG system be loaded to operate. VEG is the NASA VEGetation workbench - an expert system for inferring vegetation characteristics from reflectance data. The learning system provides three basic options. Using option one, the system learns class descriptions of one or more classes. Using option two, the system learns class descriptions of one or more classes and then uses the learned classes to classify an unknown sample. Using option three, the user can test the system's classification performance. The learning system can also be run in an automatic mode. In this mode, options two and three are executed on each sample from an input file. The system was developed using KEE. It is menu driven and contains a sophisticated window and mouse driven interface which guides the user through various computations. Input and output file management and data formatting facilities are also provided.
Earth system sensitivity inferred from Pliocene modelling and data
Lunt, D.J.; Haywood, A.M.; Schmidt, G.A.; Salzmann, U.; Valdes, P.J.; Dowsett, H.J.
2010-01-01
Quantifying the equilibrium response of global temperatures to an increase in atmospheric carbon dioxide concentrations is one of the cornerstones of climate research. Components of the Earths climate system that vary over long timescales, such as ice sheets and vegetation, could have an important effect on this temperature sensitivity, but have often been neglected. Here we use a coupled atmosphere-ocean general circulation model to simulate the climate of the mid-Pliocene warm period (about three million years ago), and analyse the forcings and feedbacks that contributed to the relatively warm temperatures. Furthermore, we compare our simulation with proxy records of mid-Pliocene sea surface temperature. Taking these lines of evidence together, we estimate that the response of the Earth system to elevated atmospheric carbon dioxide concentrations is 30-50% greater than the response based on those fast-adjusting components of the climate system that are used traditionally to estimate climate sensitivity. We conclude that targets for the long-term stabilization of atmospheric greenhouse-gas concentrations aimed at preventing a dangerous human interference with the climate system should take into account this higher sensitivity of the Earth system. ?? 2010 Macmillan Publishers Limited. All rights reserved.
Asymptotic inference in system identification for the atom maser.
Catana, Catalin; van Horssen, Merlijn; Guta, Madalin
2012-11-28
System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.
Isotopic abundances - Inferences on solar system and planetary evolution
NASA Astrophysics Data System (ADS)
Wasserburg, G. J.
1987-12-01
For matter that has been removed from a region of nucleosynthetic activity and the effects of interactions with nuclear active particles, the only changes in nuclear abundances that can occur in an isolated system derive from the decay of radioactive nuclei of an element to yield the nucleus of another element. These two related nuclei furnish the absolute chronometers of geologic and cosmic time, through the decay of spontaneously radioactive parent nuclei and the accumulation of daughter nuclei. For systems related to such cosmic processes as the formation of the solar system from the precursor interstellar medium, and involving the very early evolution of the sun, there may arise considerable complexity, due to the intrinsic isotopic heterogeneity of the medium and the presence of short-lived nuclei.
Data-driven sensitivity inference for Thomson scattering electron density measurement systems
NASA Astrophysics Data System (ADS)
Fujii, Keisuke; Yamada, Ichihiro; Hasuo, Masahiro
2017-01-01
We developed a method to infer the calibration parameters of multichannel measurement systems, such as channel variations of sensitivity and noise amplitude, from experimental data. We regard such uncertainties of the calibration parameters as dependent noise. The statistical properties of the dependent noise and that of the latent functions were modeled and implemented in the Gaussian process kernel. Based on their statistical difference, both parameters were inferred from the data. We applied this method to the electron density measurement system by Thomson scattering for the Large Helical Device plasma, which is equipped with 141 spatial channels. Based on the 210 sets of experimental data, we evaluated the correction factor of the sensitivity and noise amplitude for each channel. The correction factor varies by ≈10%, and the random noise amplitude is ≈2%, i.e., the measurement accuracy increases by a factor of 5 after this sensitivity correction. The certainty improvement in the spatial derivative inference was demonstrated.
Daniels, Bryan C.; Nemenman, Ilya
2015-01-01
The nonlinearity of dynamics in systems biology makes it hard to infer them from experimental data. Simple linear models are computationally efficient, but cannot incorporate these important nonlinearities. An adaptive method based on the S-system formalism, which is a sensible representation of nonlinear mass-action kinetics typically found in cellular dynamics, maintains the efficiency of linear regression. We combine this approach with adaptive model selection to obtain efficient and parsimonious representations of cellular dynamics. The approach is tested by inferring the dynamics of yeast glycolysis from simulated data. With little computing time, it produces dynamical models with high predictive power and with structural complexity adapted to the difficulty of the inference problem. PMID:25806510
2012-09-30
Backscattering System Mounted on a REMUS-100 for Inferences of Zooplankton Size and Abundance Andone C. Lavery Department of Applied Ocean Physics and...SUBTITLE Field Demonstration of a Broadband Acoustical Backscattering System Mounted on a REMUS-100 for Inferences of Zooplankton Size and Abundance 5a...of this REMUS- mounted broadband backscattering system with regards to inferring fish and zooplankton distribution, size and abundance in comparison
PLY: A System of Plausibility Inference with a Probabilistic Basis,
1982-12-01
a hard time estimating. This estimation problem has been encountered in both the PROSPECTOR project [Hart 77], which deals with mineral exploration consulting...PROSPECTOR [Hart 77, Duda 79] is a computer system designed to aid mineral exploration . It takes in user information and then tells what and where...1976. [Duda 79] Duda, R., Hart, P., Konollge, K., Reboh, R. A Computer-Based Consultant for Mineral Exploration . Final Report, SRI Project 6415, SRI
Hydroclimatic Extremes: Inferences and Prediction from a Dynamical Systems Perspective
NASA Astrophysics Data System (ADS)
Lall, U.
2015-12-01
Hydroclimatic extremes , such as major floods and droughts, or periods with a high frequency of clustered tornadoes, fires or cyclones, have often been thought of as random, rare events, and much of the literature on these topics has been obsessed with the estimation of the tail probabilities (e.g., the 100 year event) of these processes. It has taken the "acceptance" of the notion of climate change to question whether the machinery developed for such estimation or even the associated questions are reasonable. However, much of the literature that has evolved since has focused on how to detect and model changes in these probabilities using a variety of methods. In this talk, I will argue that while such efforts may be useful in a certain, outdated context, they are not necessarily leading to an improvement in eihter the science of the application of the science to disaster risk mitigation. I develop an argument that hydroclimatic extremes result from an organization of the associated global and local dynamical systems that leads to the systems trajectories locking into a particular region of state space. Such excursions could be considered as rare events, in their ultimate expression, or in their frequency of visitation and persistence in those states. An open question is whether the dynamics of the system under such conditions are marked by high or low predictabilty in the Lyapunov sense. A characterization of the dimension and predictability of hydroclimatic extremes would allow us to better understand the potential implications of climate change, and also of whether or not a regional drought or similar persistent regime is likely to dissipate or grow.
Vrettas, Michail D; Opper, Manfred; Cornford, Dan
2015-01-01
This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.
NASA Technical Reports Server (NTRS)
Harrison, P. Ann
1992-01-01
The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. The VEG subgoal PROPORTION.GROUND.COVER has been completed and a number of additional techniques that infer the proportion ground cover of a sample have been implemented. Some techniques operate on sample data at a single wavelength. The techniques previously incorporated in VEG for other subgoals operated on data at a single wavelength so implementing the additional single wavelength techniques required no changes to the structure of VEG. Two techniques which use data at multiple wavelengths to infer proportion ground cover were also implemented. This work involved modifying the structure of VEG so that multiple wavelength techniques could be incorporated. All the new techniques were tested using both the VEG 'Research Mode' and the 'Automatic Mode.'
NASA Technical Reports Server (NTRS)
Ding, Y. J.; Hong, Q. F.; Hagyard, M. J.; Deloach, A. C.; Liu, X. P.
1987-01-01
Techniques to identify sources of electric current systems and their channels of flow in solar active regions are explored. Measured photospheric vector magnetic fields together with high-resolution white-light and H-alpha filtergrams provide the data base to derive the current systems in the photosphere and chromosphere. As an example, the techniques are then applied to infer current systems in AR 2372 in early April 1980.
Large-Scale Optimization for Bayesian Inference in Complex Systems
Willcox, Karen; Marzouk, Youssef
2013-11-12
The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimization) Project focused on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimization and inversion methods. The project was a collaborative effort among MIT, the University of Texas at Austin, Georgia Institute of Technology, and Sandia National Laboratories. The research was directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. The MIT--Sandia component of the SAGUARO Project addressed the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas--Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to-observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as ``reduce then sample'' and ``sample then reduce.'' In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their
The state of the atmosphere as inferred from the FGGE satellite observing systems during SOP-1
NASA Technical Reports Server (NTRS)
Halem, M.; Kalnay, E.; Baker, W. E.; Atlas, R.
1981-01-01
Data assimilation experiments were performed to test the influence of different elements of the satellite observing systems. Results from some of the experiments are presented. These findings show that the FGGE satellite systems are able to infer the three-dimensional motion field and improve the representation of the large-scale state of the atmosphere. Preliminary results of the forecast impact of the FGGE data sets are also presented.
Bayesian parameter inference and model selection by population annealing in systems biology.
Murakami, Yohei
2014-01-01
Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named "posterior parameter ensemble". We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor.
Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology
Murakami, Yohei
2014-01-01
Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named “posterior parameter ensemble”. We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor. PMID:25089832
Magliano, Joseph P; Larson, Adam M; Higgs, Karyn; Loschky, Lester C
2016-02-01
This study investigated the relative roles of visuospatial versus linguistic working memory (WM) systems in the online generation of bridging inferences while viewers comprehend visual narratives. We contrasted these relative roles in the visuospatial primacy hypothesis versus the shared (visuospatial & linguistic) systems hypothesis, and tested them in 3 experiments. Participants viewed picture stories containing multiple target episodes consisting of a beginning state, a bridging event, and an end state, respectively, and the presence of the bridging event was manipulated. When absent, viewers had to infer the bridging-event action to comprehend the end-state image. A pilot study showed that after viewing the end-state image, participants' think-aloud protocols contained more inferred actions when the bridging event was absent than when it was present. Likewise, Experiment 1 found longer viewing times for the end-state image when the bridging-event image was absent, consistent with viewing times revealing online inference generation processes. Experiment 2 showed that both linguistic and visuospatial WM loads attenuated the inference viewing time effect, consistent with the shared systems hypothesis. Importantly, however, Experiment 3 found that articulatory suppression did not attenuate the inference viewing time effect, indicating that (sub)vocalization did not support online inference generation during visual narrative comprehension. Thus, the results support a shared-systems hypothesis in which both visuospatial and linguistic WM systems support inference generation in visual narratives, with the linguistic WM system operating at a deeper level than (sub)vocalization.
FINDS: A fault inferring nonlinear detection system programmers manual, version 3.0
NASA Technical Reports Server (NTRS)
Lancraft, R. E.
1985-01-01
Detailed software documentation of the digital computer program FINDS (Fault Inferring Nonlinear Detection System) Version 3.0 is provided. FINDS is a highly modular and extensible computer program designed to monitor and detect sensor failures, while at the same time providing reliable state estimates. In this version of the program the FINDS methodology is used to detect, isolate, and compensate for failures in simulated avionics sensors used by the Advanced Transport Operating Systems (ATOPS) Transport System Research Vehicle (TSRV) in a Microwave Landing System (MLS) environment. It is intended that this report serve as a programmers guide to aid in the maintenance, modification, and revision of the FINDS software.
Assessing water quality in rivers with fuzzy inference systems: a case study.
Ocampo-Duque, William; Ferré-Huguet, Núria; Domingo, José L; Schuhmacher, Marta
2006-08-01
In recent years, fuzzy-logic-based methods have demonstrated to be appropriated to address uncertainty and subjectivity in environmental problems. In the present study, a methodology based on fuzzy inference systems (FIS) to assess water quality is proposed. A water quality index calculated with fuzzy reasoning has been developed. The relative importance of water quality indicators involved in the fuzzy inference process has been dealt with a multi-attribute decision-aiding method. The potential application of the fuzzy index has been tested with a case study. A data set collected from the Ebro River (Spain) by two different environmental protection agencies has been used. The current findings, managed within a geographic information system, clearly agree with official reports and expert opinions about the pollution problems in the studied area. Therefore, this methodology emerges as a suitable and alternative tool to be used in developing effective water management plans.
Aggelopoulos, Nikolaos C
2015-08-01
Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience.
Olyaie, Ehsan; Banejad, Hossein; Chau, Kwok-Wing; Melesse, Assefa M
2015-04-01
Accurate and reliable suspended sediment load (SSL) prediction models are necessary for planning and management of water resource structures. More recently, soft computing techniques have been used in hydrological and environmental modeling. The present paper compared the accuracy of three different soft computing methods, namely, artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), coupled wavelet and neural network (WANN), and conventional sediment rating curve (SRC) approaches for estimating the daily SSL in two gauging stations in the USA. The performances of these models were measured by the coefficient of correlation (R), Nash-Sutcliffe efficiency coefficient (CE), root-mean-square error (RMSE), and mean absolute percentage error (MAPE) to choose the best fit model. Obtained results demonstrated that applied soft computing models were in good agreement with the observed SSL values, while they depicted better results than the conventional SRC method. The comparison of estimation accuracies of various models illustrated that the WANN was the most accurate model in SSL estimation in comparison to other models. For example, in Flathead River station, the determination coefficient was 0.91 for the best WANN model, while it was 0.65, 0.75, and 0.481 for the best ANN, ANFIS, and SRC models, and also in the Santa Clara River, amounts of this statistical criteria was 0.92 for the best WANN model, while it was 0.76, 0.78, and 0.39 for the best ANN, ANFIS, and SRC models, respectively. Also, the values of cumulative suspended sediment load computed by the best WANN model were closer to the observed data than the other models. In general, results indicated that the WANN model could satisfactorily mimic phenomenon, acceptably estimate cumulative SSL, and reasonably predict peak SSL values.
Inference system using softcomputing and mixed data applied in metabolic pathway datamining.
Arredondo, Tomás; Candel, Diego; Leiva, Mauricio; Dombrovskaia, Lioubov; Agulló, Loreine; Seeger, Michael
2012-01-01
This paper describes the development of an inference system used for the identification of genes that encode enzymes of metabolic pathways. Input sequence alignment values are used to classify the best candidate genes for inclusion in a metabolic pathway map. The system workflow allows the user to provide feedback, which is stored in conjunction with analysed sequences for periodic retraining. The construction of the system involved the study of several different classifiers with various topologies, data sets and parameter normalisation data models. Experimental results show an excellent prediction capability with the classifiers trained with mixed data providing the best results.
Inference of biological S-system using the separable estimation method and the genetic algorithm.
Liu, Li-Zhi; Wu, Fang-Xiang; Zhang, W J
2012-01-01
Reconstruction of a biological system from its experimental time series data is a challenging task in systems biology. The S-system which consists of a group of nonlinear ordinary differential equations (ODEs) is an effective model to characterize molecular biological systems and analyze the system dynamics. However, inference of S-systems without the knowledge of system structure is not a trivial task due to its nonlinearity and complexity. In this paper, a pruning separable parameter estimation algorithm (PSPEA) is proposed for inferring S-systems. This novel algorithm combines the separable parameter estimation method (SPEM) and a pruning strategy, which includes adding an l₁ regularization term to the objective function and pruning the solution with a threshold value. Then, this algorithm is combined with the continuous genetic algorithm (CGA) to form a hybrid algorithm that owns the properties of these two combined algorithms. The performance of the pruning strategy in the proposed algorithm is evaluated from two aspects: the parameter estimation error and structure identification accuracy. The results show that the proposed algorithm with the pruning strategy has much lower estimation error and much higher identification accuracy than the existing method.
Path-space variational inference for non-equilibrium coarse-grained systems
Harmandaris, Vagelis; Katsoulakis, Markos; Plecháč, Petr
2016-06-01
In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.
Khan, Laiq
2017-01-01
The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm. PMID:28329015
Mumtaz, Sidra; Khan, Laiq
2017-01-01
The hybrid power system (HPS) is an emerging power generation scheme due to the plentiful availability of renewable energy sources. Renewable energy sources are characterized as highly intermittent in nature due to meteorological conditions, while the domestic load also behaves in a quite uncertain manner. In this scenario, to maintain the balance between generation and load, the development of an intelligent and adaptive control algorithm has preoccupied power engineers and researchers. This paper proposes a Hermite wavelet embedded NeuroFuzzy indirect adaptive MPPT (maximum power point tracking) control of photovoltaic (PV) systems to extract maximum power and a Hermite wavelet incorporated NeuroFuzzy indirect adaptive control of Solid Oxide Fuel Cells (SOFC) to obtain a swift response in a grid-connected hybrid power system. A comprehensive simulation testbed for a grid-connected hybrid power system (wind turbine, PV cells, SOFC, electrolyzer, battery storage system, supercapacitor (SC), micro-turbine (MT) and domestic load) is developed in Matlab/Simulink. The robustness and superiority of the proposed indirect adaptive control paradigm are evaluated through simulation results in a grid-connected hybrid power system testbed by comparison with a conventional PI (proportional and integral) control system. The simulation results verify the effectiveness of the proposed control paradigm.
Video-based cargo fire verification system with fuzzy inference engine for commercial aircraft
NASA Astrophysics Data System (ADS)
Sadok, Mokhtar; Zakrzewski, Radek; Zeliff, Bob
2005-02-01
Conventional smoke detection systems currently installed onboard aircraft are often subject to high rates of false alarms. Under current procedures, whenever an alarm is issued the pilot is obliged to release fire extinguishers and to divert to the nearest airport. Aircraft diversions are costly and dangerous in some situations. A reliable detection system that minimizes false-alarm rate and allows continuous monitoring of cargo compartments is highly desirable. A video-based system has been recently developed by Goodrich Corporation to address this problem. The Cargo Fire Verification System (CFVS) is a multi camera system designed to provide live stream video to the cockpit crew and to perform hotspot, fire, and smoke detection in aircraft cargo bays. In addition to video frames, the CFVS uses other sensor readings to discriminate between genuine events such as fire or smoke and nuisance alarms such as fog or dust. A Mamdani-type fuzzy inference engine is developed to provide approximate reasoning for decision making. In one implementation, Gaussian membership functions for frame intensity-based features, relative humidity, and temperature are constructed using experimental data to form the system inference engine. The CFVS performed better than conventional aircraft smoke detectors in all standardized tests.
Adaptive fuzzy control of underactuated robotic systems with the use of differential flatness theory
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos G.
2013-10-01
An adaptive fuzzy controller is designed for a class of underactuated nonlinear robotic manipulators, under the constraint that the system's model is unknown. The control algorithm aims at satisfying the H∞ tracking performance criterion, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. After transforming the robotic system into the canonical form, the resulting control inputs are shown to contain nonlinear elements which depend on the system's parameters. The nonlinear terms which appear in the control inputs are approximated with the use of neuro-fuzzy networks. It is shown that a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. With the use of Lyapunov stability analysis it is proven that the proposed adaptive fuzzy control scheme results in H∞ tracking performance. The efficiency of the proposed adaptive fuzzy control scheme is checked in the case of a 2-DOF planar robotic manipulator that has the structure of a closed-chain mechanism.
2013-01-01
Background Model selection and parameter inference are complex problems that have yet to be fully addressed in systems biology. In contrast with parameter optimisation, parameter inference computes both the parameter means and their standard deviations (or full posterior distributions), thus yielding important information on the extent to which the data and the model topology constrain the inferred parameter values. Results We report on the application of nested sampling, a statistical approach to computing the Bayesian evidence Z, to the inference of parameters, and the estimation of log Z in an established model of circadian rhythms. A ten-fold difference in the coefficient of variation between degradation and transcription parameters is demonstrated. We further show that the uncertainty remaining in the parameter values is reduced by the analysis of increasing numbers of circadian cycles of data, up to 4 cycles, but is unaffected by sampling the data more frequently. Novel algorithms for calculating the likelihood of a model, and a characterisation of the performance of the nested sampling algorithm are also reported. The methods we develop considerably improve the computational efficiency of the likelihood calculation, and of the exploratory step within nested sampling. Conclusions We have demonstrated in an exemplar circadian model that the estimates of posterior parameter densities (as summarised by parameter means and standard deviations) are influenced predominately by the length of the time series, becoming more narrowly constrained as the number of circadian cycles considered increases. We have also shown the utility of the coefficient of variation for discriminating between highly-constrained and less-well constrained parameters. PMID:23899119
Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System
NASA Astrophysics Data System (ADS)
Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo
This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.
Free-energy inference from partial work measurements in small systems
Ribezzi-Crivellari, Marco; Ritort, Felix
2014-01-01
Fluctuation relations (FRs) are among the few existing general results in nonequilibrium systems. Their verification requires the measurement of the total work performed on a system. Nevertheless in many cases only a partial measurement of the work is possible. Here we consider FRs in dual-trap optical tweezers where two different forces (one per trap) are measured. With this setup we perform pulling experiments on single molecules by moving one trap relative to the other. We demonstrate that work should be measured using the force exerted by the trap that is moved. The force that is measured in the trap at rest fails to provide the full dissipation in the system, leading to a (incorrect) work definition that does not satisfy the FR. The implications to single-molecule experiments and free-energy measurements are discussed. In the case of symmetric setups a second work definition, based on differential force measurements, is introduced. This definition is best suited to measure free energies as it shows faster convergence of estimators. We discuss measurements using the (incorrect) work definition as an example of partial work measurement. We show how to infer the full work distribution from the partial one via the FR. The inference process does also yield quantitative information, e.g., the hydrodynamic drag on the dumbbell. Results are also obtained for asymmetric dual-trap setups. We suggest that this kind of inference could represent a previously unidentified and general application of FRs to extract information about irreversible processes in small systems. PMID:25099353
Adaptive fuzzy control with output feedback for H infinity tracking of SISO nonlinear systems.
Rigatos, Gerasimos G
2008-08-01
Observer-based adaptive fuzzy H(infinity) control is proposed to achieve H(infinity) tracking performance for a class of nonlinear systems, which are subject to model uncertainty and external disturbances and in which only a measurement of the output is available. The key ideas in the design of the proposed controller are (i) to transform the nonlinear control problem into a regulation problem through suitable output feedback, (ii) to design a state observer for the estimation of the non-measurable elements of the system's state vector, (iii) to design neuro-fuzzy approximators that receive as inputs the parameters of the reconstructed state vector and give as output an estimation of the system's unknown dynamics, (iv) to use an H(infinity) control term for the compensation of external disturbances and modelling errors, (v) to use Lyapunov stability analysis in order to find the learning law for the neuro-fuzzy approximators, and a supervisory control term for disturbance and modelling error rejection. The control scheme is tested in the cart-pole balancing problem and in a DC-motor model.
Fuzzy systems in high-energy physics
NASA Astrophysics Data System (ADS)
Castellano, Marcello; Masulli, Francesco; Penna, Massimo
1996-06-01
Decision making is one of the major subjects of interest in physics. This is due to the intrinsic finite accuracy of measurement that leads to the possible results to span a region for each quantity. In this way, to recognize a particle type among the others by a measure of a feature vector, a decision must be made. The decision making process becomes a crucial point whenever a low statistical significance occurs as in space cosmic ray experiments where searching in rare events requires us to reject as many background events as possible (high purity), keeping as many signal events as possible (high efficiency). In the last few years, interesting theoretical results on some feedforward connectionist systems (FFCSs) have been obtained. In particular, it has been shown that multilayer perceptrons (MLPs), radial basis function networks (RBFs), and some fuzzy logic systems (FLSs) are nonlinear universal function approximators. This property permits us to build a system showing intelligent behavior , such as function estimation, time series forecasting, and pattern classification, and able to learn their skill from a set of numerical data. From the classification point of view, it has been demonstrated that non-parametric classifiers based FFCSs holding the universal function approximation property, can approximate the Bayes optimal discriminant function and then minimize the classification error. In this paper has been studied the FBF when applied to a high energy physics problem. The FBF is a powerful neuro-fuzzy system (or adaptive fuzzy logic system) holding the universal function approximation property and the capability of learning from examples. The FBF is based on product-inference rule (P), the Gaussian membership function (G), a singleton fuzzifier (S), and a center average defuzzifier (CA). The FBF can be regarded as a feedforward connectionist system with just one hidden layer whose units correspond to the fuzzy MIMO rules. The FBF can be identified both by
Development of rainfall runoff models using Takagi Sugeno fuzzy inference systems
NASA Astrophysics Data System (ADS)
Jacquin, Alexandra P.; Shamseldin, Asaad Y.
2006-09-01
SummaryThis study explores the application of Takagi-Sugeno fuzzy inference systems to rainfall-runoff modelling. The models developed intend to describe the non-linear relationship between rainfall as input and runoff as output to the real system using a system based approach. Two types of fuzzy models are proposed, where the first type is intended to account for the effect of changes in catchment wetness in the rainfall-runoff transformation and the second type incorporates seasonality as a source of non-linearity in this relationship. The models developed are applied to data from six catchments of diverse climatic characteristics. The results of the fuzzy models are compared with those of the Simple Linear Model, the Linear Perturbation Model and the Nearest Neighbour Linear Perturbation Model, which use similar input information. The results of this study indicate that fuzzy inference systems are a suitable alternative to the traditional methods for modelling the non-linear relationship between rainfall and runoff.
Use of fuzzy inference system for condition monitoring of induction motor
NASA Astrophysics Data System (ADS)
Janier, Josefina B.; Zaim Zaharia, M. F.; Karim, Samsul Ariffin Abd.
2012-09-01
Three phase induction motors are commonly used in industry due to its robustness, simplicity of its construction and high reliability. The tasks performed by these motors grow increasingly complex because of modern industries hence there is a need to determine the faults. Early detection of faults will reduce an unscheduled machine downtime that can upset production deadlines and may cause heavy financial losses. This paper is focused in developing a computer based system using Fuzzy Inference system's membership function. An unusual increase in vibration of the motor could be an indicator of faulty condition hence the vibration of the motor of an induction motor was used as an input, whereas the output is the motor condition. An inference system of the Fuzzy Logic was created to classify the vibration characteristics of the motor which is called vibration analysis. The system classified the motor of the gas distribution pump condition as from 'acceptable' to 'monitor closely'. The early detection of unusual increase in vibration of the induction motor is an important part of a predictive maintenance for motor driven machinery.
The early solar system abundance of /sup 244/Pu as inferred from the St. Severin chondrite
Hudson, G.B.; Kennedy, B.M.; Podosek, F.A.; Hohenberg, C.M.
1987-03-01
We describe the analysis of Xe released in stepwise heating of neutron-irradiated samples of the St. Severin chondrite. This analysis indicates that at the time of formation of most chondritic meteorites, approximately 4.56 x 10/sup 9/ years ago, the atomic ratio of /sup 244/Pu//sup 238/U was 0.0068 +- 0.0010 in chondritic meteorites. We believe that this value is more reliable than that inferred from earlier analyses of St. Severin. We feel that this value is currently the best available estimate for the early solar system abundance of /sup 244/Pu. 42 refs., 2 tabs.
NASA Astrophysics Data System (ADS)
Zhang, Daili
Increasing societal demand for automation has led to considerable efforts to control large-scale complex systems, especially in the area of autonomous intelligent control methods. The control system of a large-scale complex system needs to satisfy four system level requirements: robustness, flexibility, reusability, and scalability. Corresponding to the four system level requirements, there arise four major challenges. First, it is difficult to get accurate and complete information. Second, the system may be physically highly distributed. Third, the system evolves very quickly. Fourth, emergent global behaviors of the system can be caused by small disturbances at the component level. The Multi-Agent Based Control (MABC) method as an implementation of distributed intelligent control has been the focus of research since the 1970s, in an effort to solve the above-mentioned problems in controlling large-scale complex systems. However, to the author's best knowledge, all MABC systems for large-scale complex systems with significant uncertainties are problem-specific and thus difficult to extend to other domains or larger systems. This situation is partly due to the control architecture of multiple agents being determined by agent to agent coupling and interaction mechanisms. Therefore, the research objective of this dissertation is to develop a comprehensive, generalized framework for the control system design of general large-scale complex systems with significant uncertainties, with the focus on distributed control architecture design and distributed inference engine design. A Hybrid Multi-Agent Based Control (HyMABC) architecture is proposed by combining hierarchical control architecture and module control architecture with logical replication rings. First, it decomposes a complex system hierarchically; second, it combines the components in the same level as a module, and then designs common interfaces for all of the components in the same module; third, replications
Reliable Identification of Vehicle-Boarding Actions Based on Fuzzy Inference System
Ahn, DaeHan; Park, Homin; Hwang, Seokhyun; Park, Taejoon
2017-01-01
Existing smartphone-based solutions to prevent distracted driving suffer from inadequate system designs that only recognize simple and clean vehicle-boarding actions, thereby failing to meet the required level of accuracy in real-life environments. In this paper, exploiting unique sensory features consistently monitored from a broad range of complicated vehicle-boarding actions, we propose a reliable and accurate system based on fuzzy inference to classify the sides of vehicle entrance by leveraging built-in smartphone sensors only. The results of our comprehensive evaluation on three vehicle types with four participants demonstrate that the proposed system achieves 91.1%∼94.0% accuracy, outperforming other methods by 26.9%∼38.4% and maintains at least 87.8% accuracy regardless of smartphone positions and vehicle types. PMID:28208795
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).
Urban area mapping from polarimetric SAR data using fuzzy inference system
NASA Astrophysics Data System (ADS)
Ahluwalia, Asmeet; Manickam, Surendar; Bhattacharya, Avik; Porwal, Alok
2016-05-01
In this work, we present urban area mapping from full-polarimetric synthetic aperture radar (SAR) data using fuzzy inference system (FIS). In particular, our aim is to utilize the profound knowledge available about scattering mechanism from urban targets to delineate urban environment. In this approach, we have utilized the recently developed polarimetric SAR scattering power decomposition technique (SD-Y4O) given in Bhattacharya et. al. The improved powers along with some other polarimetric parameters were used in this study. A suitable normalization procedure was adapted to handle the skewness in the estimated parameters. The fuzzy if-then rules were constructed from the in-depth knowledge of scattering mechanisms from an urban environment. Suitable methods were introduced to define the fuzzy inference system. The defuzzified membership values were thresholded using an unsupervised clustering method (k-means). The pixels lying in the range [μmax-σ, μmax+σ] corresponds to urban areas where µmax is the largest cluster center and σ is the standard deviation of the cluster corresponding to µmax. The extracted urban area is in visually good agreement with the high resolution optical image. ALOS PALSAR full-polarimetric L-band SAR data has been used in this study.
A Context-Aware Interactive Health Care System Based on Ontology and Fuzzy Inference.
Chiang, Tzu-Chiang; Liang, Wen-Hua
2015-09-01
In the present society, most families are double-income families, and as the long-term care is seriously short of manpower, it contributes to the rapid development of tele-homecare equipment, and the smart home care system gradually emerges, which assists the elderly or patients with chronic diseases in daily life. This study aims at interaction between persons under care and the system in various living spaces, as based on motion-sensing interaction, and the context-aware smart home care system is proposed. The system stores the required contexts in knowledge ontology, including the physiological information and environmental information of the person under care, as the database of decision. The motion-sensing device enables the person under care to interact with the system through gestures. By the inference mechanism of fuzzy theory, the system can offer advice and rapidly execute service, thus, implementing the EHA. In addition, the system is integrated with the functions of smart phone, tablet PC, and PC, in order that users can implement remote operation and share information regarding the person under care. The health care system constructed in this study enables the decision making system to probe into the health risk of each person under care; then, from the view of preventive medicine, and through a composing system and simulation experimentation, tracks the physiological trend of the person under care, and provides early warning service, thus, promoting smart home care.
Erguler, Kamil; Stumpf, Michael P H
2011-05-01
The size and complexity of cellular systems make building predictive models an extremely difficult task. In principle dynamical time-course data can be used to elucidate the structure of the underlying molecular mechanisms, but a central and recurring problem is that many and very different models can be fitted to experimental data, especially when the latter are limited and subject to noise. Even given a model, estimating its parameters remains challenging in real-world systems. Here we present a comprehensive analysis of 180 systems biology models, which allows us to classify the parameters with respect to their contribution to the overall dynamical behaviour of the different systems. Our results reveal candidate elements of control in biochemical pathways that differentially contribute to dynamics. We introduce sensitivity profiles that concisely characterize parameter sensitivity and demonstrate how this can be connected to variability in data. Systematically linking data and model sloppiness allows us to extract features of dynamical systems that determine how well parameters can be estimated from time-course measurements, and associates the extent of data required for parameter inference with the model structure, and also with the global dynamical state of the system. The comprehensive analysis of so many systems biology models reaffirms the inability to estimate precisely most model or kinetic parameters as a generic feature of dynamical systems, and provides safe guidelines for performing better inferences and model predictions in the context of reverse engineering of mathematical models for biological systems.
Another expert system rule inference based on DNA molecule logic gates
NASA Astrophysics Data System (ADS)
WÄ siewicz, Piotr
2013-10-01
With the help of silicon industry microfluidic processors were invented utilizing nano membrane valves, pumps and microreactors. These so called lab-on-a-chips combined together with molecular computing create molecular-systems-ona- chips. This work presents a new approach to implementation of molecular inference systems. It requires the unique representation of signals by DNA molecules. The main part of this work includes the concept of logic gates based on typical genetic engineering reactions. The presented method allows for constructing logic gates with many inputs and for executing them at the same quantity of elementary operations, regardless of a number of input signals. Every microreactor of the lab-on-a-chip performs one unique operation on input molecules and can be connected by dataflow output-input connections to other ones.
Seismic events discrimination by neuro-fuzzy-based data merging
NASA Astrophysics Data System (ADS)
Muller, S.; Legrand, J.-F.; Muller, J.-D.; Cansi, Y.; Crusem, R.; Garda, P.
This article involves an original method to classify low magnitude seismic events recorded in France by a network of seismometers. This method is based on the merging of high-level data with possibly incomplete low-level data extracted from seismic signals. The merging is performed by a multi-layer neural network. A fuzzy coding is applied to the neural network's inputs to process efficiently incomplete data. The results reveal that the fuzzy coding coupled with the data merging increases the correct classification rate to more than 90% even when the database contains missing values.
Classification of Sleep Stages in Infants: A Neuro Fuzzy Approach
2007-11-02
Sleep -Waking States & Stages Pattern NREM - I NREM - II NREM - III&IV REM ...shows the relative activation frequency of rules R1, R2 and R3, as a function of the sleep -waking state previous to NREM -I. A rule was considered active ...RELATIVE ACTIVATION FREQUENCY FOR RULES R1,R2 AND R3 IN NREM -I Previous State to NREM -I R1 R2 R3 NREM 40.7% 70.0% 100% REM OR WA 59.3% 30.0% 0%
Portable inference engine: An extended CLIPS for real-time production systems
NASA Technical Reports Server (NTRS)
Le, Thach; Homeier, Peter
1988-01-01
The present C-Language Integrated Production System (CLIPS) architecture has not been optimized to deal with the constraints of real-time production systems. Matching in CLIPS is based on the Rete Net algorithm, whose assumption of working memory stability might fail to be satisfied in a system subject to real-time dataflow. Further, the CLIPS forward-chaining control mechanism with a predefined conflict resultion strategy may not effectively focus the system's attention on situation-dependent current priorties, or appropriately address different kinds of knowledge which might appear in a given application. Portable Inference Engine (PIE) is a production system architecture based on CLIPS which attempts to create a more general tool while addressing the problems of real-time expert systems. Features of the PIE design include a modular knowledge base, a modified Rete Net algorithm, a bi-directional control strategy, and multiple user-defined conflict resolution strategies. Problems associated with real-time applications are analyzed and an explanation is given for how the PIE architecture addresses these problems.
Evaluation of a dual processor implementation for a fault inferring nonlinear detection system
NASA Technical Reports Server (NTRS)
Godiwala, P. M.; Caglayan, A. K.; Morrell, F. R.
1987-01-01
The design of a modified fault inferring nonlinear detection system (FINDS) algorithm for a dual-processor configured flight computer is described. The algorithm was changed in order to divide it into its translational dynamics and rotational kinematics and to use it for parallel execution on the flight computer. The FINDS consists of: (1) a no-fail filter (NFF), (2) a set of test-of-mean detection tests, (3) a bank of first order filters to estimate failure levels in individual sensors, and (4) a decision function. NFF filter performance using flight recorded sensor data is analyzed using a filter autoinitialization routine. The failure detection and isolation capability of the partitioned algorithm is evaluated. A multirate implementation for the bias-free and bias filter gain and covariance matrices is discussed.
Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai
2016-01-01
Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639
Schumacher, Johannes; Wunderle, Thomas; Fries, Pascal; Jäkel, Frank; Pipa, Gordon
2015-08-01
In neuroscience, data are typically generated from neural network activity. The resulting time series represent measurements from spatially distributed subsystems with complex interactions, weakly coupled to a high-dimensional global system. We present a statistical framework to estimate the direction of information flow and its delay in measurements from systems of this type. Informed by differential topology, gaussian process regression is employed to reconstruct measurements of putative driving systems from measurements of the driven systems. These reconstructions serve to estimate the delay of the interaction by means of an analytical criterion developed for this purpose. The model accounts for a range of possible sources of uncertainty, including temporally evolving intrinsic noise, while assuming complex nonlinear dependencies. Furthermore, we show that if information flow is delayed, this approach also allows for inference in strong coupling scenarios of systems exhibiting synchronization phenomena. The validity of the method is demonstrated with a variety of delay-coupled chaotic oscillators. In addition, we show that these results seamlessly transfer to local field potentials in cat visual cortex.
A novel bridge scour monitoring and prediction system
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Michalis, Panagiotis; Zhang, Hanqing
2015-04-01
Earth's surface is continuously shaped due to the action of geophysical flows. Erosion due to the flow of water in river systems has been identified as a key problem in preserving ecological health but also a threat to our built environment and critical infrastructure, worldwide. As an example, it has been estimated that a major reason for bridge failure is due to scour. Even though the flow past bridge piers has been investigated both experimentally and numerically, and the mechanisms of scouring are relatively understood, there still lacks a tool that can offer fast and reliable predictions. Most of the existing formulas for prediction of bridge pier scour depth are empirical in nature, based on a limited range of data or for piers of specific shape. In this work, the use of a novel methodology is proposed for the prediction of bridge scour. Specifically, the use of an Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to estimate the scour depth around bridge piers. In particular, various complexity architectures are sequentially built, in order to identify the optimal for scour depth predictions, using appropriate training and validation subsets obtained from the USGS database (and pre-processed to remove incomplete records). The model has five variables, namely the effective pier width (b), the approach velocity (v), the approach depth (y), the mean grain diameter (D50) and the skew to flow. Simulations are conducted with data groups (bed material type, pier type and shape) and different number of input variables, to produce reduced complexity and easily interpretable models. Analysis and comparison of the results indicate that the developed ANFIS model has high accuracy and outstanding generalization ability for prediction of scour parameters. The effective pier width (as opposed to skew to flow) is amongst the most relevant input parameters for the estimation. Training of the system to new bridge geometries and flow conditions can be achieved by
The Role of Probability-Based Inference in an Intelligent Tutoring System.
ERIC Educational Resources Information Center
Mislevy, Robert J.; Gitomer, Drew H.
Probability-based inference in complex networks of interdependent variables is an active topic in statistical research, spurred by such diverse applications as forecasting, pedigree analysis, troubleshooting, and medical diagnosis. This paper concerns the role of Bayesian inference networks for updating student models in intelligent tutoring…
NASA Astrophysics Data System (ADS)
Jontof-Hutter, Daniel; Van Laerhoven, Christa L.; Ford, Eric B.
2016-05-01
Hundreds of multi-transiting systems discovered by the Kepler mission show Transit Timing Variations (TTV). In cases where the TTVs are uniquely attributable to transiting planets, the TTVs enable precise measurements of planetary masses and orbital parameters. Of particular interest are the constraints on eccentricity vectors that can be inferred in systems of low-mass exoplanets.The TTVs in these systems are dominated by a signal caused by near-resonant mean motions. This causes the well-known near-degeneracy between planetary masses and orbital eccentricities. In addition, it causes a degeneracy between the eccentricities of interacting planet pairs.For many systems, the magnitude of individual eccentricities are weakly constrained, yet the data typically provide a tight constraint on the posterior joint distribution for the eccentricity vector components. This permits tight constraints on the relative eccentricity and degree of alignment of interacting planets.For a sample of two and three-planet systems with TTVs, we highlight the effects of these correlations. While the most eccentric orbital solutions for these systems show apsidal alignment, this is often due to the degeneracy that causes correlated constraints on the eccentricity vector components. We compare the likelihood of apsidal alignment for two choices of eccentricity prior: a wide prior using a Rayleigh distribution of scale length 0.1 and a narrower prior with scale length 0.02. In all cases the narrower prior decreased the fraction of samples that exhibited apsidal alignment. However, apsidal alignment persisted in the majority of cases with a narrower eccentricity prior. For a sample of our TTV solutions, we ran simulations of these systems over secular timescales, and decomposed their eccentricity eigenmodes over time, confirming that in most cases, the eccentricities were dominated by parallel eigenmodes which favor apsidal alignment.
Shape Descriptions of Nonlinear Dynamical Systems for Video-based Inference.
Venkataraman, Vinay; Turaga, Pavan
2016-02-23
This paper presents a shape-theoretic framework for dynamical analysis of nonlinear dynamical systems which appear frequently in several video-based inference tasks. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. A novel approach we propose is the use of descriptors of the shape of the dynamical attractor as a feature representation of nature of dynamics. The proposed framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail. We illustrate our idea using nonlinear dynamical models such as Lorenz and Rossler systems, where our feature representations (shape distribution) support our hypothesis that the local shape of the reconstructed phase space can be used as a discriminative feature. Our experimental analyses on these models also indicate that the proposed framework show stability for different time-series lengths, which is useful when the available number of samples are small/variable. The specific applications of interest in this paper are: 1) activity recognition using motion capture and RGBD sensors, 2) activity quality assessment for applications in stroke rehabilitation, and 3) dynamical scene classification.We provide experimental validation through action and gesture recognition experiments on motion capture and Kinect datasets. In all these scenarios, we show experimental evidence of the favorable properties of the proposed representation.
Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference.
Venkataraman, Vinay; Turaga, Pavan
2016-12-01
This paper presents a shape-theoretic framework for dynamical analysis of nonlinear dynamical systems which appear frequently in several video-based inference tasks. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. A novel approach we propose is the use of descriptors of the shape of the dynamical attractor as a feature representation of nature of dynamics. The proposed framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail. We illustrate our idea using nonlinear dynamical models such as Lorenz and Rossler systems, where our feature representations (shape distribution) support our hypothesis that the local shape of the reconstructed phase space can be used as a discriminative feature. Our experimental analyses on these models also indicate that the proposed framework show stability for different time-series lengths, which is useful when the available number of samples are small/variable. The specific applications of interest in this paper are: 1) activity recognition using motion capture and RGBD sensors, 2) activity quality assessment for applications in stroke rehabilitation, and 3) dynamical scene classification. We provide experimental validation through action and gesture recognition experiments on motion capture and Kinect datasets. In all these scenarios, we show experimental evidence of the favorable properties of the proposed representation.
NASA Astrophysics Data System (ADS)
King, Gary; Rosen, Ori; Tanner, Martin A.
2004-09-01
This collection of essays brings together a diverse group of scholars to survey the latest strategies for solving ecological inference problems in various fields. The last half-decade has witnessed an explosion of research in ecological inference--the process of trying to infer individual behavior from aggregate data. Although uncertainties and information lost in aggregation make ecological inference one of the most problematic types of research to rely on, these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, by business in marketing research, and by governments in policy analysis.
Application of ANFIS to Phase Estimation for Multiple Phase Shift Keying
NASA Technical Reports Server (NTRS)
Drake, Jeffrey T.; Prasad, Nadipuram R.
2000-01-01
The paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for estimating phase in Multiple Phase Shift Keying (M-PSK) modulation. A brief overview of communications phase estimation is provided. The modeling of both general open-loop, and closed-loop phase estimation schemes for M-PSK symbols with unknown structure are discussed. Preliminary performance results from simulation of the above schemes are presented.
Petrov, S.
1996-10-01
Languages with a solvable implication problem but without complete and consistent systems of inference rules (`poor` languages) are considered. The problem of existence of finite complete and consistent inference rule system for a ``poor`` language is stated independently of the language or rules syntax. Several properties of the problem arc proved. An application of results to the language of join dependencies is given.
Crop parameters estimation by fuzzy inference system using X-band scatterometer data
NASA Astrophysics Data System (ADS)
Pandey, Abhishek; Prasad, R.; Singh, V. P.; Jha, S. K.; Shukla, K. K.
2013-03-01
Learning fuzzy rule based systems with microwave remote sensing can lead to very useful applications in solving several problems in the field of agriculture. Fuzzy logic provides a simple way to arrive at a definite conclusion based upon imprecise, ambiguous, vague, noisy or missing input information. In the present paper, a subtractive based fuzzy inference system is introduced to estimate the potato crop parameters like biomass, leaf area index, plant height and soil moisture. Scattering coefficient for HH- and VV-polarizations were used as an input in the Fuzzy network. The plant height, biomass, and leaf area index of potato crop and soil moisture measured at its various growth stages were used as the target variables during the training and validation of the network. The estimated values of crop/soil parameters by this methodology are much closer to the experimental values. The present work confirms the estimation abilities of fuzzy subtractive clustering in potato crop parameters estimation. This technique may be useful for the other crops cultivated over regional or continental level.
The application of fuzzy Delphi and fuzzy inference system in supplier ranking and selection
NASA Astrophysics Data System (ADS)
Tahriri, Farzad; Mousavi, Maryam; Hozhabri Haghighi, Siamak; Zawiah Md Dawal, Siti
2014-06-01
In today's highly rival market, an effective supplier selection process is vital to the success of any manufacturing system. Selecting the appropriate supplier is always a difficult task because suppliers posses varied strengths and weaknesses that necessitate careful evaluations prior to suppliers' ranking. This is a complex process with many subjective and objective factors to consider before the benefits of supplier selection are achieved. This paper identifies six extremely critical criteria and thirteen sub-criteria based on the literature. A new methodology employing those criteria and sub-criteria is proposed for the assessment and ranking of a given set of suppliers. To handle the subjectivity of the decision maker's assessment, an integration of fuzzy Delphi with fuzzy inference system has been applied and a new ranking method is proposed for supplier selection problem. This supplier selection model enables decision makers to rank the suppliers based on three classifications including "extremely preferred", "moderately preferred", and "weakly preferred". In addition, in each classification, suppliers are put in order from highest final score to the lowest. Finally, the methodology is verified and validated through an example of a numerical test bed.
Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion
Thomas, Philipp; Kazeroonian, Atefeh; Theis, Fabian J.; Grima, Ramon; Hasenauer, Jan
2016-01-01
Quantitative mechanistic models are valuable tools for disentangling biochemical pathways and for achieving a comprehensive understanding of biological systems. However, to be quantitative the parameters of these models have to be estimated from experimental data. In the presence of significant stochastic fluctuations this is a challenging task as stochastic simulations are usually too time-consuming and a macroscopic description using reaction rate equations (RREs) is no longer accurate. In this manuscript, we therefore consider moment-closure approximation (MA) and the system size expansion (SSE), which approximate the statistical moments of stochastic processes and tend to be more precise than macroscopic descriptions. We introduce gradient-based parameter optimization methods and uncertainty analysis methods for MA and SSE. Efficiency and reliability of the methods are assessed using simulation examples as well as by an application to data for Epo-induced JAK/STAT signaling. The application revealed that even if merely population-average data are available, MA and SSE improve parameter identifiability in comparison to RRE. Furthermore, the simulation examples revealed that the resulting estimates are more reliable for an intermediate volume regime. In this regime the estimation error is reduced and we propose methods to determine the regime boundaries. These results illustrate that inference using MA and SSE is feasible and possesses a high sensitivity. PMID:27447730
Condition monitoring of distributed systems using two-stage Bayesian inference data fusion
NASA Astrophysics Data System (ADS)
Jaramillo, Víctor H.; Ottewill, James R.; Dudek, Rafał; Lepiarczyk, Dariusz; Pawlik, Paweł
2017-03-01
In industrial practice, condition monitoring is typically applied to critical machinery. A particular piece of machinery may have its own condition monitoring system that allows the health condition of said piece of equipment to be assessed independently of any connected assets. However, industrial machines are typically complex sets of components that continuously interact with one another. In some cases, dynamics resulting from the inception and development of a fault can propagate between individual components. For example, a fault in one component may lead to an increased vibration level in both the faulty component, as well as in connected healthy components. In such cases, a condition monitoring system focusing on a specific element in a connected set of components may either incorrectly indicate a fault, or conversely, a fault might be missed or masked due to the interaction of a piece of equipment with neighboring machines. In such cases, a more holistic condition monitoring approach that can not only account for such interactions, but utilize them to provide a more complete and definitive diagnostic picture of the health of the machinery is highly desirable. In this paper, a Two-Stage Bayesian Inference approach allowing data from separate condition monitoring systems to be combined is presented. Data from distributed condition monitoring systems are combined in two stages, the first data fusion occurring at a local, or component, level, and the second fusion combining data at a global level. Data obtained from an experimental rig consisting of an electric motor, two gearboxes, and a load, operating under a range of different fault conditions is used to illustrate the efficacy of the method at pinpointing the root cause of a problem. The obtained results suggest that the approach is adept at refining the diagnostic information obtained from each of the different machine components monitored, therefore improving the reliability of the health assessment of
A Fuzzy Inference System for Closed-Loop Deep Brain Stimulation in Parkinson's Disease.
Camara, Carmen; Warwick, Kevin; Bruña, Ricardo; Aziz, Tipu; del Pozo, Francisco; Maestú, Fernando
2015-11-01
Parkinsons disease is a complex neurodegenerative disorder for which patients present many symptoms, tremor being the main one. In advanced stages of the disease, Deep Brain Stimulation is a generalized therapy which can significantly improve the motor symptoms. However despite its beneficial effects on treating the symptomatology, the technique can be improved. One of its main limitations is that the parameters are fixed, and the stimulation is provided uninterruptedly, not taking into account any fluctuation in the patients state. A closed-loop system which provides stimulation by demand would adjust the stimulation to the variations in the state of the patient, stimulating only when it is necessary. It would not only perform a more intelligent stimulation, capable of adapting to the changes in real time, but also extending the devices battery life, thereby avoiding surgical interventions. In this work we design a tool that learns to recognize the principal symptom of Parkinsons disease and particularly the tremor. The goal of the designed system is to detect the moments the patient is suffering from a tremor episode and consequently to decide whether stimulation is needed or not. For that, local field potentials were recorded in the subthalamic nucleus of ten Parkinsonian patients, who were diagnosed with tremor-dominant Parkinsons disease and who underwent surgery for the implantation of a neurostimulator. Electromyographic activity in the forearm was simultaneously recorded, and the relation between both signals was evaluated using two different synchronization measures. The results of evaluating the synchronization indexes on each moment represent the inputs to the designed system. Finally, a fuzzy inference system was applied with the goal of identifying tremor episodes. Results are favourable, reaching accuracies of higher 98.7% in 70% of the patients.
Smartphone-Based System for Learning and Inferring Hearing Aid Settings
Aldaz, Gabriel; Puria, Sunil; Leifer, Larry J.
2017-01-01
Background Previous research has shown that hearing aid wearers can successfully self-train their instruments’ gain-frequency response and compression parameters in everyday situations. Combining hearing aids with a smartphone introduces additional computing power, memory, and a graphical user interface that may enable greater setting personalization. To explore the benefits of self-training with a smartphone-based hearing system, a parameter space was chosen with four possible combinations of microphone mode (omnidirectional and directional) and noise reduction state (active and off). The baseline for comparison was the “untrained system,” that is, the manufacturer’s algorithm for automatically selecting microphone mode and noise reduction state based on acoustic environment. The “trained system” first learned each individual’s preferences, self-entered via a smartphone in real-world situations, to build a trained model. The system then predicted the optimal setting (among available choices) using an inference engine, which considered the trained model and current context (e.g., sound environment, location, and time). Purpose To develop a smartphone-based prototype hearing system that can be trained to learn preferred user settings. Determine whether user study participants showed a preference for trained over untrained system settings. Research Design An experimental within-participants study. Participants used a prototype hearing system—comprising two hearing aids, Android smartphone, and body-worn gateway device—for ~6 weeks. Study Sample Sixteen adults with mild-to-moderate sensorineural hearing loss (HL) (ten males, six females; mean age = 55.5 yr). Fifteen had ≥6 mo of experience wearing hearing aids, and 14 had previous experience using smartphones. Intervention Participants were fitted and instructed to perform daily comparisons of settings (“listening evaluations”) through a smartphone-based software application called Hearing Aid
Application of artificial intelligence models in water quality forecasting.
Yeon, I S; Kim, J H; Jun, K W
2008-06-01
The real-time data of the continuous water quality monitoring station at the Pyeongchang river was analyzed separately during the rainy period and non-rainy period. Total organic carbon data observed during the rainy period showed a greater mean value, maximum value and standard deviation than the data observed during the non-rainy period. Dissolved oxygen values during the rainy period were lower than those observed during the non-rainy period. It was analyzed that the discharge due to rain fall from the basin affects the change of the water quality. A model for the forecasting of water quality was constructed and applied using the neural network model and the adaptive neuro-fuzzy inference system. Regarding the models of levenberg-marquardt neural network, modular neural network and adaptive neuro-fuzzy inference system, all three models showed good results for the simulation of total organic carbon. The levenberg-marquardt neural network and modular neural network models showed better results than the adaptive neuro-fuzzy inference system model in the forecasting of dissolved oxygen. The modular neural network model, which was applied with the qualitative data of time in addition to quantitative data, showed the least error.
Bal, Mert; Amasyali, M. Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse
2014-01-01
The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets. PMID:25295291
Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse
2014-01-01
The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.
NASA Astrophysics Data System (ADS)
Thakar, Juilee; Albert, Réka
The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References
Inferring the Architectures of Planetary Systems from Kepler Results with SysSim
NASA Astrophysics Data System (ADS)
Ford, Eric
. Without a method to interpret and debias the Kepler planet candidates on a system-by- system basis, it is not possible to rigorously address critical NASA-relevant science questions like: 1) What fraction of stars have planets? What fraction of stars have solar system analogs? 2) What is the planetary system environment of potentially habitable planets? 3) What is the expected yield of future NASA exoplanet missions? 4) Are there different populations of planetary systems? What are their architectures? and many other valuable questions that are critical for understanding the origins of solar systems. To fill this critical gap, we have developed the Planetary System Simulator or SysSim, which empirically determines the underlying debiased distribution of planetary properties (e.g., planet size, orbital period, etc.) and planetary system architecture (e.g., relative inclinations, number of planets per star) simultaneously. The earliest version of SysSim measured the exoplanetary inclination distribution for the first time, a finding of major consequence for planet formation theorists (LR+11). We propose to extend SysSim to include new planetary architecture parameters and new observational constraints from the growing Kepler dataset. We will produce rigorously-debiased exoplanetary populations that will improve the understanding of the frequency, architecture, and origins of planetary systems. Our team is uniquely qualified to fulfill these tasks based on our extensive experience with Kepler data, metadata, multi-transiting systems, statistical inference, and previous work (LR+11, B12, Ragozzine & Holman 2010).
Dragović, Ivana; Turajlić, Nina; Pilčević, Dejan; Petrović, Bratislav; Radojević, Dragan
2015-01-01
Fuzzy inference systems (FIS) enable automated assessment and reasoning in a logically consistent manner akin to the way in which humans reason. However, since no conventional fuzzy set theory is in the Boolean frame, it is proposed that Boolean consistent fuzzy logic should be used in the evaluation of rules. The main distinction of this approach is that it requires the execution of a set of structural transformations before the actual values can be introduced, which can, in certain cases, lead to different results. While a Boolean consistent FIS could be used for establishing the diagnostic criteria for any given disease, in this paper it is applied for determining the likelihood of peritonitis, as the leading complication of peritoneal dialysis (PD). Given that patients could be located far away from healthcare institutions (as peritoneal dialysis is a form of home dialysis) the proposed Boolean consistent FIS would enable patients to easily estimate the likelihood of them having peritonitis (where a high likelihood would suggest that prompt treatment is indicated), when medical experts are not close at hand. PMID:27069500
Ling, Steve S H; Nguyen, Hung T
2011-03-01
Hypoglycemia or low blood glucose is dangerous and can result in unconsciousness, seizures, and even death. It is a common and serious side effect of insulin therapy in patients with diabetes. Hypoglycemic monitor is a noninvasive monitor that measures some physiological parameters continuously to provide detection of hypoglycemic episodes in type 1 diabetes mellitus patients (T1DM). Based on heart rate (HR), corrected QT interval of the ECG signal, change of HR, and the change of corrected QT interval, we develop a genetic algorithm (GA)-based multiple regression with fuzzy inference system (FIS) to classify the presence of hypoglycemic episodes. GA is used to find the optimal fuzzy rules and membership functions of FIS and the model parameters of regression method. From a clinical study of 16 children with T1DM, natural occurrence of nocturnal hypoglycemic episodes is associated with HRs and corrected QT intervals. The overall data were organized into a training set (eight patients) and a testing set (another eight patients) randomly selected. The results show that the proposed algorithm performs a good sensitivity with an acceptable specificity.
Tfwala, Samkele S; Wang, Yu-Min; Lin, Yu-Chieh
2013-01-01
Hydrological data are often missing due to natural disasters, improper operation, limited equipment life, and other factors, which limit hydrological analysis. Therefore, missing data recovery is an essential process in hydrology. This paper investigates the accuracy of artificial neural networks (ANN) in estimating missing flow records. The purpose is to develop and apply neural networks models to estimate missing flow records in a station when data from adjacent stations is available. Multilayer perceptron neural networks model (MLP) and coactive neurofuzzy inference system model (CANFISM) are used to estimate daily flow records for Li-Lin station using daily flow data for the period 1997 to 2009 from three adjacent stations (Nan-Feng, Lao-Nung and San-Lin) in southern Taiwan. The performance of MLP is slightly better than CANFISM, having R (2) of 0.98 and 0.97, respectively. We conclude that accurate estimations of missing flow records under the complex hydrological conditions of Taiwan could be attained by intelligent methods such as MLP and CANFISM.
The Gaia astrophysical parameters inference system (Apsis). Pre-launch description
NASA Astrophysics Data System (ADS)
Bailer-Jones, C. A. L.; Andrae, R.; Arcay, B.; Astraatmadja, T.; Bellas-Velidis, I.; Berihuete, A.; Bijaoui, A.; Carrión, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; de Laverny, P.; Delchambre, L.; Drazinos, P.; Drimmel, R.; Frémat, Y.; Fustes, D.; García-Torres, M.; Guédé, C.; Heiter, U.; Janotto, A.-M.; Karampelas, A.; Kim, D.-W.; Knude, J.; Kolka, I.; Kontizas, E.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Lebreton, Y.; Lindstrøm, H.; Liu, C.; Livanou, E.; Lobel, A.; Manteiga, M.; Martayan, C.; Ordenovic, Ch.; Pichon, B.; Recio-Blanco, A.; Rocca-Volmerange, B.; Sarro, L. M.; Smith, K.; Sordo, R.; Soubiran, C.; Surdej, J.; Thévenin, F.; Tsalmantza, P.; Vallenari, A.; Zorec, J.
2013-11-01
The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial velocities for over one hundred million stars. Itsmain objective is to take a census of the stellar content of our Galaxy, with the goal of revealing its formation and evolution. Gaia's unique feature is the measurement of parallaxes and proper motions with hitherto unparalleled accuracy for many objects. As a survey, the physical properties of most of these objects are unknown. Here we describe the data analysis system put together by the Gaia consortium to classify these objects and to infer their astrophysical properties using the satellite's data. This system covers single stars, (unresolved) binary stars, quasars, and galaxies, all covering a wide parameter space. Multiple methods are used for many types of stars, producing multiple results for the end user according to different models and assumptions. Prior to its application to real Gaia data the accuracy of these methods cannot be assessed definitively. But as an example of the current performance, we can attain internal accuracies (rms residuals) on F, G, K, M dwarfs and giants at G = 15 (V = 15-17) for a wide range of metallicites and interstellar extinctions of around 100 K in effective temperature (Teff), 0.1 mag in extinction (A0), 0.2 dex in metallicity ([Fe/H]), and 0.25 dex in surface gravity (log g). The accuracy is a strong function of the parameters themselves, varying by a factor of more than two up or down over this parameter range. After its launch in December 2013, Gaia will nominally observe for five years, during which the system we describe will continue to evolve in light of experience with the real data.
Application of Soft Computing in Coherent Communications Phase Synchronization
NASA Technical Reports Server (NTRS)
Drake, Jeffrey T.; Prasad, Nadipuram R.
2000-01-01
The use of soft computing techniques in coherent communications phase synchronization provides an alternative to analytical or hard computing methods. This paper discusses a novel use of Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for phase synchronization in coherent communications systems utilizing Multiple Phase Shift Keying (MPSK) modulation. A brief overview of the M-PSK digital communications bandpass modulation technique is presented and it's requisite need for phase synchronization is discussed. We briefly describe the hybrid platform developed by Jang that incorporates fuzzy/neural structures namely the, Adaptive Neuro-Fuzzy Interference Systems (ANFIS). We then discuss application of ANFIS to phase estimation for M-PSK. The modeling of both explicit, and implicit phase estimation schemes for M-PSK symbols with unknown structure are discussed. Performance results from simulation of the above scheme is presented.
Kimura, S; Araki, D; Matsumura, K; Okada-Hatakeyama, M
2012-02-01
Voit and Almeida have proposed the decoupling approach as a method for inferring the S-system models of genetic networks. The decoupling approach defines the inference of a genetic network as a problem requiring the solutions of sets of algebraic equations. The computation can be accomplished in a very short time, as the approach estimates S-system parameters without solving any of the differential equations. Yet the defined algebraic equations are non-linear, which sometimes prevents us from finding reasonable S-system parameters. In this study, we propose a new technique to overcome this drawback of the decoupling approach. This technique transforms the problem of solving each set of algebraic equations into a one-dimensional function optimization problem. The computation can still be accomplished in a relatively short time, as the problem is transformed by solving a linear programming problem. We confirm the effectiveness of the proposed approach through numerical experiments.
NASA Astrophysics Data System (ADS)
Soto, I.; Andréfouët, S.; Hu, C.; Muller-Karger, F. E.; Wall, C. C.; Sheng, J.; Hatcher, B. G.
2009-06-01
Ocean color images acquired from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) from 1998 to 2006 were used to examine the patterns of physical connectivity between land and reefs, and among reefs in the Mesoamerican Barrier Reef System (MBRS) in the northwestern Caribbean Sea. Connectivity was inferred by tracking surface water features in weekly climatologies and a time series of weekly mean chlorophyll- a concentrations derived from satellite imagery. Frequency of spatial connections between 17 pre-defined, geomorphological domains that include the major reefs in the MBRS and river deltas in Honduras and Nicaragua were recorded and tabulated as percentage of connections. The 9-year time series of 466 weekly mean images portrays clearly the seasonal patterns of connectivity, including river plumes and transitions in the aftermath of perturbations such as hurricanes. River plumes extended offshore from the Honduras coast to the Bay Islands (Utila, Cayo Cochinos, Guanaja, and Roatán) in 70% of the weekly mean images. Belizean reefs, especially those in the southern section of the barrier reef and Glovers Atoll, were also affected by riverine discharges in every one of the 9 years. Glovers Atoll was exposed to river plumes originating in Honduras 104/466 times (22%) during this period. Plumes from eastern Honduras went as far as Banco Chinchorro and Cozumel in Mexico. Chinchorro appeared to be more frequently connected to Turneffe Atoll and Honduran rivers than with Glovers and Lighthouse Atolls, despite their geographic proximity. This new satellite data analysis provides long-term, quantitative assessments of the main pathways of connectivity in the region. The percentage of connections can be used to validate predictions made using other approaches such as numerical modeling, and provides valuable information to ecosystem-based management in coral reef provinces.
Misra, Sudip; Singh, Ranjit; Rohith Mohan, S. V.
2010-01-01
The proposed mechanism for jamming attack detection for wireless sensor networks is novel in three respects: firstly, it upgrades the jammer to include versatile military jammers; secondly, it graduates from the existing node-centric detection system to the network-centric system making it robust and economical at the nodes, and thirdly, it tackles the problem through fuzzy inference system, as the decision regarding intensity of jamming is seldom crisp. The system with its high robustness, ability to grade nodes with jamming indices, and its true-detection rate as high as 99.8%, is worthy of consideration for information warfare defense purposes. PMID:22319307
Astrophysical Site of the Origin of the Solar System Inferred from Extinct Radionuclide Abundances
NASA Astrophysics Data System (ADS)
Harper, Charles L., Jr.
1996-08-01
Extinct radionuclides in the solar abundance distribution (SAD) provide a basis with which to characterize the molecular cloud environment in which the solar system formed 4566±2 Ma ago. The low abundance of the longer-lived r-process radionuclide 129I(T½ = 16 Ma) indicates a long (˜ 102 Ma) isolation time from energetic interstellar medium (ISM) reservoirs containing most of the Galaxy's budget of freshly-synthesized Type II supernova products. However, the abundances of the shorter-lived species 60Fe (T½ = 1.5 Ma), 53Mn (T½ = 3.7 Ma), and 107Pd (T½ = 6.5 Ma) are consistent with late admixture of freshly synthesized Type II supernova products. The fit for these species is based on an average yield distribution obtained by decomposition of the SAD. The apparent timescale contradiction is resolved in a simple two timescale molecular cloud self-contamination model consistent with formation of the Sun in an old evolved stellar complex at the eroding boundary of a molecular cloud interacting with an adjacent OB association. Admixture of an ˜10-5 to ˜10-6 mass fraction of Type II supernova ejecta into the presolar cloud dominates the shorter-lived species and 107Pd, whereas longer- lived 129I preserves information on the longer timescale constraining the mean isolation/condensation/ accretion age of the molecular material in the protosolar reservoir. The inferred model age of nucleosynthetic isolation in the long timescale is consistent with cyclicity in the nucleosynthesis rate in an orbiting ISM parcel controlled by galactic spiral structure and beads-on-a-string organization of star formation in "stellar complexes" in arms. Abundant 26Al (T½ = 0.7 Ma) in the early solar system at ˜102 times the model prediction may point to 26Al/27Al ratio of ˜0.2 in the source, or an ˜102 times greater mixing fraction for pre-explosion winds over postexplosion ejecta. A mass-losing low-mass asymptotic giant branch (AGB) star model can be tuned to account for 41Ca, 26Al
Inferring cortical function in the mouse visual system through large-scale systems neuroscience.
Hawrylycz, Michael; Anastassiou, Costas; Arkhipov, Anton; Berg, Jim; Buice, Michael; Cain, Nicholas; Gouwens, Nathan W; Gratiy, Sergey; Iyer, Ramakrishnan; Lee, Jung Hoon; Mihalas, Stefan; Mitelut, Catalin; Olsen, Shawn; Reid, R Clay; Teeter, Corinne; de Vries, Saskia; Waters, Jack; Zeng, Hongkui; Koch, Christof
2016-07-05
The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort.
Inferring cortical function in the mouse visual system through large-scale systems neuroscience
Hawrylycz, Michael; Anastassiou, Costas; Arkhipov, Anton; Berg, Jim; Buice, Michael; Cain, Nicholas; Gouwens, Nathan W.; Gratiy, Sergey; Iyer, Ramakrishnan; Lee, Jung Hoon; Mihalas, Stefan; Mitelut, Catalin; Olsen, Shawn; Reid, R. Clay; Teeter, Corinne; de Vries, Saskia; Waters, Jack; Zeng, Hongkui; Koch, Christof
2016-01-01
The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort. PMID:27382147
Robson, Barry
2007-08-01
What is the Best Practice for automated inference in Medical Decision Support for personalized medicine? A known system already exists as Dirac's inference system from quantum mechanics (QM) using bra-kets and bras where A and B are states, events, or measurements representing, say, clinical and biomedical rules. Dirac's system should theoretically be the universal best practice for all inference, though QM is notorious as sometimes leading to bizarre conclusions that appear not to be applicable to the macroscopic world of everyday world human experience and medical practice. It is here argued that this apparent difficulty vanishes if QM is assigned one new multiplication function @, which conserves conditionality appropriately, making QM applicable to classical inference including a quantitative form of the predicate calculus. An alternative interpretation with the same consequences is if every i = radical-1 in Dirac's QM is replaced by h, an entity distinct from 1 and i and arguably a hidden root of 1 such that h2 = 1. With that exception, this paper is thus primarily a review of the application of Dirac's system, by application of linear algebra in the complex domain to help manipulate information about associations and ontology in complicated data. Any combined bra-ket can be shown to be composed only of the sum of QM-like bra and ket weights c(), times an exponential function of Fano's mutual information measure I(A; B) about the association between A and B, that is, an association rule from data mining. With the weights and Fano measure re-expressed as expectations on finite data using Riemann's Incomplete (i.e., Generalized) Zeta Functions, actual counts of observations for real world sparse data can be readily utilized. Finally, the paper compares identical character, distinguishability of states events or measurements, correlation, mutual information, and orthogonal character, important issues in data mining
GenSo-EWS: a novel neural-fuzzy based early warning system for predicting bank failures.
Tung, W L; Quek, C; Cheng, P
2004-05-01
Bank failure prediction is an important issue for the regulators of the banking industries. The collapse and failure of a bank could trigger an adverse financial repercussion and generate negative impacts such as a massive bail out cost for the failing bank and loss of confidence from the investors and depositors. Very often, bank failures are due to financial distress. Hence, it is desirable to have an early warning system (EWS) that identifies potential bank failure or high-risk banks through the traits of financial distress. Various traditional statistical models have been employed to study bank failures [J Finance 1 (1975) 21; J Banking Finance 1 (1977) 249; J Banking Finance 10 (1986) 511; J Banking Finance 19 (1995) 1073]. However, these models do not have the capability to identify the characteristics of financial distress and thus function as black boxes. This paper proposes the use of a new neural fuzzy system [Foundations of neuro-fuzzy systems, 1997], namely the Generic Self-organising Fuzzy Neural Network (GenSoFNN) [IEEE Trans Neural Networks 13 (2002c) 1075] based on the compositional rule of inference (CRI) [Commun ACM 37 (1975) 77], as an alternative to predict banking failure. The CRI based GenSoFNN neural fuzzy network, henceforth denoted as GenSoFNN-CRI(S), functions as an EWS and is able to identify the inherent traits of financial distress based on financial covariates (features) derived from publicly available financial statements. The interaction between the selected features is captured in the form of highly intuitive IF-THEN fuzzy rules. Such easily comprehensible rules provide insights into the possible characteristics of financial distress and form the knowledge base for a highly desired EWS that aids bank regulation. The performance of the GenSoFNN-CRI(S) network is subsequently benchmarked against that of the Cox's proportional hazards model [J Banking Finance 10 (1986) 511; J Banking Finance 19 (1995) 1073], the multi
NASA Astrophysics Data System (ADS)
Murray-Moraleda, J. R.; Thatcher, W. R.; Onishi, C. T.; Svarc, J. L.
2011-12-01
The Central California Coast Region (CCCR), defined here as the area from north of Point Piedras Blancas (36°N) south to Point Arguello (34.6°N) and west of the Rinconada and East Huasna faults, is a structurally complex region cut by several subparallel, late Quaternary faults. Despite relatively low rates of deformation inferred from geologic studies of the CCCR, the occurrence of the 2003 Mw 6.5 San Simeon earthquake southeast of Point Piedras Blancas highlights the need to better understand the ongoing patterns of deformation here as a means for assessing the seismic hazard. Geological and geophysical data from this region have been interpreted as evidence for ongoing transpression due to the clockwise rotation of the Transverse Ranges which would predict crustal contraction normal to the plate boundary. However an alternative interpretation concludes that the region instead experiences the active westward transfer of right-lateral strike-slip motion in a left-stepping fashion which would result in northwest-southeast contraction. Geodetic data can be used to elucidate how strain is currently partitioned between shear parallel to the San Andreas Fault (SAF) and contraction within the CCCR and to identify actively deforming structures. We use a newly compiled Global Positioning System (GPS) secular velocity field for the CCCR as well as GPS velocities for the greater southern California region from the SCEC Crustal Motion Map v.4 and the EarthScope Plate Boundary Observatory velocity solution to constrain block models of deformation. We solve for the rotation of fault-bounded blocks, fault slip rates, and internal strain within blocks. Results thus far indicate that the data do not require substantial slip on the Rinconada fault (for which the estimated slip rate is ~2 mm/yr) or on the Oceanic and West Huasna faults that bound the eastern edge of the CCCR in an alternative block configuration (for which the estimated slip rate is <1 mm/yr). The data also do
2012-01-13
demonstrating a wide range over which they are informative. These RNA-respiration trends were also tested in an additional strain of...with Bayesian inference algorithms to generate data-driven models of gene networks and gene-metabolite interactions. Summary of the most important...hypothesis that electrons stripped from H2 are first passed to Nuo as the first step in the electron transport chain in these organisms. Biochemical assays
Measure of librarian pressure using fuzzy inference system: A case study in Longyan University
NASA Astrophysics Data System (ADS)
Huang, Jian-Jing
2014-10-01
As the hierarchy of middle managers in college's librarian. They may own much work pressure from their mind. How to adapt psychological problem, control the emotion and keep a good relationship in their work place, it becomes an important issue. Especially, they work in China mainland environment. How estimate the librarians work pressure and improve the quality of service in college libraries. Those are another serious issues. In this article, the authors would like discuss how can we use fuzzy inference to test librarian work pressure.
Detwiler, Jillian T; Criscione, Charles D
2011-09-01
Cryptic aspects of parasite population biology, e.g., mating systems, are increasingly being inferred from polymorphic and co-dominant genetic markers such as microsatellite loci. Underlying the use of such co-dominant markers is the assumption of Mendelian inheritance. The failure to meet this assumption can lead to artifactual statistics and erroneous population inferences. Here, we illustrate the importance of testing the Mendelian segregation and assortment of genetic markers and demonstrate how field-collected samples can be utilised for this purpose. To examine the reproductive mode and mating system of hermaphroditic parasites, we developed microsatellites for the cestode, Oochoristica javaensis. Among loci, we found a bimodal distribution of F(IS) (a fixation index that quantifies the deviation from Hardy-Weinberg equilibrium within subpopulations) values where loci were either highly negative (close to -1) or highly positive (∼0.8). By conducting tests of Mendelian segregation from natural crosses, we determined that loci with negative F(IS) values were in fact duplicated loci that were amplified by a single primer pair. Genetic crosses also provided linkage data and indicated that the duplicated loci most likely arose via tandem duplications rather than whole genome/chromosome duplications. By correcting for the duplicated loci, we were able to correctly infer that O. javaensis has sexual reproduction, but the mating system is highly inbred. To assist others in testing Mendelian segregation and independent assortment from natural samples, we discuss the benefits and limitations, and provide guidelines for particular parasite systems amenable to the methods employed here.
NASA Astrophysics Data System (ADS)
Khan, Shahjahan
Often scientific information on various data generating processes are presented in the from of numerical and categorical data. Except for some very rare occasions, generally such data represent a small part of the population, or selected outcomes of any data generating process. Although, valuable and useful information is lurking in the array of scientific data, generally, they are unavailable to the users. Appropriate statistical methods are essential to reveal the hidden "jewels" in the mess of the row data. Exploratory data analysis methods are used to uncover such valuable characteristics of the observed data. Statistical inference provides techniques to make valid conclusions about the unknown characteristics or parameters of the population from which scientifically drawn sample data are selected. Usually, statistical inference includes estimation of population parameters as well as performing test of hypotheses on the parameters. However, prediction of future responses and determining the prediction distributions are also part of statistical inference. Both Classical or Frequentists and Bayesian approaches are used in statistical inference. The commonly used Classical approach is based on the sample data alone. In contrast, increasingly popular Beyesian approach uses prior distribution on the parameters along with the sample data to make inferences. The non-parametric and robust methods are also being used in situations where commonly used model assumptions are unsupported. In this chapter,we cover the philosophical andmethodological aspects of both the Classical and Bayesian approaches.Moreover, some aspects of predictive inference are also included. In the absence of any evidence to support assumptions regarding the distribution of the underlying population, or if the variable is measured only in ordinal scale, non-parametric methods are used. Robust methods are employed to avoid any significant changes in the results due to deviations from the model
NASA Astrophysics Data System (ADS)
Khan, Shahjahan
Often scientific information on various data generating processes are presented in the from of numerical and categorical data. Except for some very rare occasions, generally such data represent a small part of the population, or selected outcomes of any data generating process. Although, valuable and useful information is lurking in the array of scientific data, generally, they are unavailable to the users. Appropriate statistical methods are essential to reveal the hidden “jewels” in the mess of the row data. Exploratory data analysis methods are used to uncover such valuable characteristics of the observed data. Statistical inference provides techniques to make valid conclusions about the unknown characteristics or parameters of the population from which scientifically drawn sample data are selected. Usually, statistical inference includes estimation of population parameters as well as performing test of hypotheses on the parameters. However, prediction of future responses and determining the prediction distributions are also part of statistical inference. Both Classical or Frequentists and Bayesian approaches are used in statistical inference. The commonly used Classical approach is based on the sample data alone. In contrast, increasingly popular Beyesian approach uses prior distribution on the parameters along with the sample data to make inferences. The non-parametric and robust methods are also being used in situations where commonly used model assumptions are unsupported. In this chapter,we cover the philosophical andmethodological aspects of both the Classical and Bayesian approaches.Moreover, some aspects of predictive inference are also included. In the absence of any evidence to support assumptions regarding the distribution of the underlying population, or if the variable is measured only in ordinal scale, non-parametric methods are used. Robust methods are employed to avoid any significant changes in the results due to deviations from the model
NASA Astrophysics Data System (ADS)
Greisch, Jean Francois; Harding, Michael E.; Chmela, Jiri; Klopper, Willem M.; Schooss, Detlef; Kappes, Manfred M.
2016-06-01
The application of lanthanoid complexes ranges from photovoltaics and light-emitting diodes to quantum memories and biological assays. Rationalization of their design requires a thorough understanding of intramolecular processes such as energy transfer, charge transfer, and non-radiative decay involving their subunits. Characterization of the excited states of such complexes considerably benefits from mass spectrometric methods since the associated optical transitions and processes are strongly affected by stoichiometry, symmetry, and overall charge state. We report herein spectroscopic measurements on ensembles of ions trapped in the gas phase and soft-landed in neon matrices. Their interpretation is considerably facilitated by direct comparison with computations. The combination of energy- and time-resolved measurements on isolated species with density functional as well as ligand-field and Franck-Condon computations enables us to infer structural as well as dynamical information about the species studied. The approach is first illustrated for sets of model lanthanoid complexes whose structure and electronic properties are systematically varied via the substitution of one component (lanthanoid or alkali,alkali-earth ion): (i) systematic dependence of ligand-centered phosphorescence on the lanthanoid(III) promotion energy and its impact on sensitization, and (ii) structural changes induced by the substitution of alkali or alkali-earth ions in relation with structures inferred using ion mobility spectroscopy. The temperature dependence of sensitization is briefly discussed. The focus is then shifted to measurements involving europium complexes with doxycycline an antibiotic of the tetracycline family. Besides discussing the complexes' structural and electronic features, we report on their use to monitor enzymatic processes involving hydrogen peroxide or biologically relevant molecules such as adenosine triphosphate (ATP).
Najafi, Shahriar; Flintsch, Gerardo W; Khaleghian, Seyedmeysam
2016-05-01
Minimizing roadway crashes and fatalities is one of the primary objectives of highway engineers, and can be achieved in part through appropriate maintenance practices. Maintaining an appropriate level of friction is a crucial maintenance practice, due to the effect it has on roadway safety. This paper presents a fuzzy logic inference system that predicts the rate of vehicle crashes based on traffic level, speed limit, and surface friction. Mamdani and Sugeno fuzzy controllers were used to develop the model. The application of the proposed fuzzy control system in a real-time slippery road warning system is demonstrated as a proof of concept. The results of this study provide a decision support model for highway agencies to monitor their network's friction and make appropriate judgments to correct deficiencies based on crash risk. Furthermore, this model can be implemented in the connected vehicle environment to warn drivers of potentially slippery locations.
NASA Astrophysics Data System (ADS)
Pricop, Emil; Zamfir, Florin; Paraschiv, Nicolae
2015-11-01
Process control is a challenging research topic for both academia and industry for a long time. Controllers evolved from the classical SISO approach to modern fuzzy or neuro-fuzzy embedded devices with networking capabilities, however PID algorithms are still used in the most industrial control loops. In this paper, we focus on the implementation of a PID controller using mbed NXP LPC1768 development board. This board integrates a powerful ARM Cortex- M3 core and has networking capabilities. The implemented controller can be remotely operated by using an Internet connection and a standard Web browser. The main advantages of the proposed embedded system are customizability, easy operation and very low power consumption. The experimental results obtained by using a simulated process are analysed and shows that the implementation can be done with success in industrial applications.
Hydrological connectivity inferred from diatom transport through the riparian-stream system
NASA Astrophysics Data System (ADS)
Martínez-Carreras, N.; Wetzel, C. E.; Frentress, J.; Ector, L.; McDonnell, J. J.; Hoffmann, L.; Pfister, L.
2015-07-01
Diatoms (Bacillariophyta) are one of the most common and diverse algal groups (ca. 200 000 species, ≈ 10-200 μm, unicellular, eukaryotic). Here we investigate the potential of aerial diatoms (i.e. diatoms nearly exclusively occurring outside water bodies, in wet, moist or temporarily dry places) to infer surface hydrological connectivity between hillslope-riparian-stream (HRS) landscape units during storm runoff events. We present data from the Weierbach catchment (0.45 km2, northwestern Luxembourg) that quantify the relative abundance of aerial diatom species on hillslopes and in riparian zones (i.e. surface soils, litter, bryophytes and vegetation) and within streams (i.e. stream water, epilithon and epipelon). We tested the hypothesis that different diatom species assemblages inhabit specific moisture domains of the catchment (i.e. HRS units) and, consequently, the presence of certain species assemblages in the stream during runoff events offers the potential for recording whether there was hydrological connectivity between these domains or not. We found that a higher percentage of aerial diatom species was present in samples collected from the riparian and hillslope zones than inside the stream. However, diatoms were absent on hillslopes covered by dry litter and the quantities of diatoms (in absolute numbers) were small in the rest of hillslope samples. This limits their use for inferring hillslope-riparian zone connectivity. Our results also showed that aerial diatom abundance in the stream increased systematically during all sampled events (n = 11, 2011-2012) in response to incident precipitation and increasing discharge. This transport of aerial diatoms during events suggested a rapid connectivity between the soil surface and the stream. Diatom transport data were compared to two-component hydrograph separation, and end-member mixing analysis (EMMA) using stream water chemistry and stable isotope data. Hillslope overland flow was insignificant during
Novichkov, Pavel S.; Rodionov, Dmitry A.; Stavrovskaya, Elena D.; Novichkova, Elena S.; Kazakov, Alexey E.; Gelfand, Mikhail S.; Arkin, Adam P.; Mironov, Andrey A.; Dubchak, Inna
2010-05-26
RegPredict web server is designed to provide comparative genomics tools for reconstruction and analysis of microbial regulons using comparative genomics approach. The server allows the user to rapidly generate reference sets of regulons and regulatory motif profiles in a group of prokaryotic genomes. The new concept of a cluster of co-regulated orthologous operons allows the user to distribute the analysis of large regulons and to perform the comparative analysis of multiple clusters independently. Two major workflows currently implemented in RegPredict are: (i) regulon reconstruction for a known regulatory motif and (ii) ab initio inference of a novel regulon using several scenarios for the generation of starting gene sets. RegPredict provides a comprehensive collection of manually curated positional weight matrices of regulatory motifs. It is based on genomic sequences, ortholog and operon predictions from the MicrobesOnline. An interactive web interface of RegPredict integrates and presents diverse genomic and functional information about the candidate regulon members from several web resources. RegPredict is freely accessible at http://regpredict.lbl.gov.
Yang, Bin; Zhang, Wei; Wang, Haifeng; Song, Chuandong; Chen, Yuehui
2016-05-01
Regulatory interactions among target genes and regulatory factors occur instantaneously or with time-delay. In this paper, we propose a novel approach namely TDSDMI based on time-delayed S-system model (TDSS) model and delayed mutual information (DMI) to infer time-delay gene regulatory network (TDGRN). Firstly DMI is proposed to delete redundant regulator factors for each target gene. Secondly restricted gene expression programming (RGEP) is proposed as a new representation of the TDSS model to identify instantaneous and time-delayed interactions. To verify the effectiveness of the proposed method, TDSDMI is applied to both simulated and real biological datasets. Experimental results reveal that TDSDMI performs better than the recent reconstruction methods.
Goldstein, D B; Roemer, G W; Smith, D A; Reich, D E; Bergman, A; Wayne, R K
1999-02-01
To assess the reliability of genetic markers it is important to compare inferences that are based on them to a priori expectations. In this article we present an analysis of microsatellite variation within and among populations of island foxes (Urocyon littoralis) on California's Channel Islands. We first show that microsatellite variation at a moderate number of loci (19) can provide an essentially perfect description of the boundaries between populations and an accurate representation of their historical relationships. We also show that the pattern of variation across unlinked microsatellite loci can be used to test whether population size has been constant or increasing. Application of these approaches to the island fox system indicates that microsatellite variation may carry considerably more information about population history than is currently being used.
Developing a Dynamic Inference Expert System to Support Individual Learning at Work
ERIC Educational Resources Information Center
Hung, Yu Hsin; Lin, Chun Fu; Chang, Ray I.
2015-01-01
In response to the rapid growth of information in recent decades, knowledge-based systems have become an essential tool for organizational learning. The application of electronic performance-support systems in learning activities has attracted considerable attention from researchers. Nevertheless, the vast, ever-increasing amount of information is…
NASA Astrophysics Data System (ADS)
Christensen, Claire Petra
Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author
NASA Astrophysics Data System (ADS)
Taira, Taka'aki; Brenguier, Florent
2016-10-01
Time-lapse monitoring of seismic velocity at volcanic areas can provide unique insight into the property of hydrothermal and magmatic fluids and their temporal variability. We established a quasi real-time velocity monitoring system by using seismic interferometry with ambient noise to explore the temporal evolution of velocity in the Lassen Volcanic Center, Northern California. Our monitoring system finds temporal variability of seismic velocity in response to stress changes imparted by an earthquake and by seasonal environmental changes. Dynamic stress changes from a magnitude 5.7 local earthquake induced a 0.1 % velocity reduction at a depth of about 1 km. The seismic velocity susceptibility defined as ratio of seismic velocity change to dynamic stress change is estimated to be about 0.006 MPa-1, which suggests the Lassen hydrothermal system is marked by high-pressurized hydrothermal fluid. By combining geodetic measurements, our observation shows that the long-term seismic velocity fluctuation closely tracks snow-induced vertical deformation without time delay, which is most consistent with an hydrological load model (either elastic or poroelastic response) in which surface loading drives hydrothermal fluid diffusion that leads to an increase of opening of cracks and subsequently reductions of seismic velocity. We infer that heated-hydrothermal fluid in a vapor-dominated zone at a depth of 2-4 km range is responsible for the long-term variation in seismic velocity[Figure not available: see fulltext.
Mc Mahon, Siobhan S; Sim, Aaron; Filippi, Sarah; Johnson, Robert; Liepe, Juliane; Smith, Dominic; Stumpf, Michael P H
2014-11-01
Sensing and responding to the environment are two essential functions that all biological organisms need to master for survival and successful reproduction. Developmental processes are marshalled by a diverse set of signalling and control systems, ranging from systems with simple chemical inputs and outputs to complex molecular and cellular networks with non-linear dynamics. Information theory provides a powerful and convenient framework in which such systems can be studied; but it also provides the means to reconstruct the structure and dynamics of molecular interaction networks underlying physiological and developmental processes. Here we supply a brief description of its basic concepts and introduce some useful tools for systems and developmental biologists. Along with a brief but thorough theoretical primer, we demonstrate the wide applicability and biological application-specific nuances by way of different illustrative vignettes. In particular, we focus on the characterisation of biological information processing efficiency, examining cell-fate decision making processes, gene regulatory network reconstruction, and efficient signal transduction experimental design.
1988-06-27
de olf nessse end Id e ;-tl Sb ieeI smleo) ,Optical Artificial Intellegence ; Optical inference engines; Optical logic; Optical informationprocessing...common. They arise in areas such as expert systems and other artificial intelligence systems. In recent years, the computer science language PROLOG has...cal processors should in principle be well suited for : I artificial intelligence applications. In recent years, symbolic logic processing. , the
Bayesian inference for functional response in a stochastic predator-prey system.
Gilioli, Gianni; Pasquali, Sara; Ruggeri, Fabrizio
2008-02-01
We present a Bayesian method for functional response parameter estimation starting from time series of field data on predator-prey dynamics. Population dynamics is described by a system of stochastic differential equations in which behavioral stochasticities are represented by noise terms affecting each population as well as their interaction. We focus on the estimation of a behavioral parameter appearing in the functional response of predator to prey abundance when a small number of observations is available. To deal with small sample sizes, latent data are introduced between each pair of field observations and are considered as missing data. The method is applied to both simulated and observational data. The results obtained using different numbers of latent data are compared with those achieved following a frequentist approach. As a case study, we consider an acarine predator-prey system relevant to biological control problems.
Methane leakage from evolving petroleum systems: Masses, rates and inferences for climate feedback
NASA Astrophysics Data System (ADS)
Berbesi, L. A.; di Primio, R.; Anka, Z.; Horsfield, B.; Wilkes, H.
2014-02-01
The immense mass of organic carbon contained in sedimentary systems, currently estimated at 1.56×1010 Tg (Des Marais et al., 1992), bears the potential of affecting global climate through the release of thermally or biologically generated methane to the atmosphere. Here we investigate the potential of naturally-occurring gas leakage, controlled by petroleum generation and degradation as a forcing mechanism for climate at geologic time scales. We addressed the potential methane contributions to the atmosphere during the evolution of petroleum systems in two different, petroliferous geological settings: the Western Canada Sedimentary Basin (WCSB) and the Central Graben area of the North Sea. Besides 3D numerical simulation, different types of mass balance and theoretical approaches were applied depending on the data available and the processes taking place in each basin. In the case of the WCSB, we estimate maximum thermogenic methane leakage rates in the order of 10-2-10-3 Tg/yr, and maximum biogenic methane generation rates of 10-2 Tg/yr. In the case of the Central Graben, maximum estimates for thermogenic methane leakage are in the order in 10-3 Tg/yr. Extrapolation of our results to a global scale suggests that, at least as a single process, thermal gas generation in hydrocarbon kitchen areas would not be able to influence climate, although it may contribute to a positive feedback. Conversely, only the sudden release of subsurface methane accumulations, formed over geologic timescales, can possibly allow for petroleum systems to exert an effect on climate.
Yildiz, Izzet B; von Kriegstein, Katharina; Kiebel, Stefan J
2013-01-01
Our knowledge about the computational mechanisms underlying human learning and recognition of sound sequences, especially speech, is still very limited. One difficulty in deciphering the exact means by which humans recognize speech is that there are scarce experimental findings at a neuronal, microscopic level. Here, we show that our neuronal-computational understanding of speech learning and recognition may be vastly improved by looking at an animal model, i.e., the songbird, which faces the same challenge as humans: to learn and decode complex auditory input, in an online fashion. Motivated by striking similarities between the human and songbird neural recognition systems at the macroscopic level, we assumed that the human brain uses the same computational principles at a microscopic level and translated a birdsong model into a novel human sound learning and recognition model with an emphasis on speech. We show that the resulting Bayesian model with a hierarchy of nonlinear dynamical systems can learn speech samples such as words rapidly and recognize them robustly, even in adverse conditions. In addition, we show that recognition can be performed even when words are spoken by different speakers and with different accents-an everyday situation in which current state-of-the-art speech recognition models often fail. The model can also be used to qualitatively explain behavioral data on human speech learning and derive predictions for future experiments.
Yildiz, Izzet B.; von Kriegstein, Katharina; Kiebel, Stefan J.
2013-01-01
Our knowledge about the computational mechanisms underlying human learning and recognition of sound sequences, especially speech, is still very limited. One difficulty in deciphering the exact means by which humans recognize speech is that there are scarce experimental findings at a neuronal, microscopic level. Here, we show that our neuronal-computational understanding of speech learning and recognition may be vastly improved by looking at an animal model, i.e., the songbird, which faces the same challenge as humans: to learn and decode complex auditory input, in an online fashion. Motivated by striking similarities between the human and songbird neural recognition systems at the macroscopic level, we assumed that the human brain uses the same computational principles at a microscopic level and translated a birdsong model into a novel human sound learning and recognition model with an emphasis on speech. We show that the resulting Bayesian model with a hierarchy of nonlinear dynamical systems can learn speech samples such as words rapidly and recognize them robustly, even in adverse conditions. In addition, we show that recognition can be performed even when words are spoken by different speakers and with different accents—an everyday situation in which current state-of-the-art speech recognition models often fail. The model can also be used to qualitatively explain behavioral data on human speech learning and derive predictions for future experiments. PMID:24068902
NASA Astrophysics Data System (ADS)
Abouelmagd, A.; McCabe, M. F.; Castro, M. C.; Sultan, M.; Jana, R. B.; Al-Mashharawi, S.
2014-12-01
One of the most valuable groundwater reserves in Saudi Arabia is the Saq aquifer system (SAS), a thick (400-1200 meters) sandstone unit that extends across 300,000 km2 in Saudi Arabia and neighboring Jordan. Due to its high productivity and high water quality, current pumping and overexploitation of the aquifer has significantly lowered the groundwater level over the years. Understanding the recharge regimes of the SAS is critical for the development of sustainable exploitation of water resources in the region and for the establishment of appropriate management practices. In this study, we investigate the hydrologic setting of the SAS and seek to differentiate the degree of paleo versus modern contributions using a range of geochemical approaches. Multiple groundwater samples were collected from deep production wells tapping the SAS at depths between 375-1800 m and across a range of locations. Samples were analyzed for their chemical concentrations, stable isotopic compositions (δ18O and δ2H), and dissolved noble gas concentrations and isotopic ratios. Examining these data identifies unmixed pools of fossil groundwater at deeper depths as well as mixed shallower systems that indicate contributions from modern precipitation. Through isotopic and noble gas analyses, the relative age and timing of these recharge events was examined and show contributions from both glacial and inter-glacial periods, with some modest contributions from modern meteoric sources.
Chung, Mi Yoon; López-Pujol, Jordi; Chung, Jae Min; Moon, Myung-Ok; Chung, Myong Gi
2013-03-01
It is generally believed that the members of Ophioglossaceae have subterranean, potentially bisexual gametophytes, which favor intragametophytic selfing. In Ophioglossaceae, previous allozyme studies revealed substantial inbreeding within Botrychium species and Mankyua chejuense. However, little is known about the mating system in species of the genus Ophioglossum. Molecular marker analyses can provide insights into the relative occurrence of selfing versus cross-fertilization in the species of Ophioglossum. We investigated allozyme variation in 8 Korean populations of the homosporous fern Ophioglossum vulgatum to infer its mating system and to get some insight into the population-establishment history in South Korea. We detected homozygous genotypes for alternative alleles at several loci, which suggest the occurrence of intragametophytic self-fertilization. Populations harbor low within-population variation (% P = 7.2, A = 1.08, and H (e) = 0.026) and a high among-population differentiation (F (ST) = 0.733). This, together with the finding that alternative alleles were fixed at several loci, suggests that the number and size of populations of O. vulgatum might have been severely reduced during the last glaciation (i.e., due to its in situ persistence in small, isolated refugia). The combined effects of severe random genetic drift and high rates of intragametophytic selfing are likely responsible for the genetic structure displayed by this homosporous fern. Its low levels of genetic diversity in South Korea justify the implementation of some conservation measures to ensure its long-term preservation.
Macdonald, Benn; Husmeier, Dirk
2015-01-01
Parameter inference in mathematical models of biological pathways, expressed as coupled ordinary differential equations (ODEs), is a challenging problem in contemporary systems biology. Conventional methods involve repeatedly solving the ODEs by numerical integration, which is computationally onerous and does not scale up to complex systems. Aimed at reducing the computational costs, new concepts based on gradient matching have recently been proposed in the computational statistics and machine learning literature. In a preliminary smoothing step, the time series data are interpolated; then, in a second step, the parameters of the ODEs are optimized, so as to minimize some metric measuring the difference between the slopes of the tangents to the interpolants, and the time derivatives from the ODEs. In this way, the ODEs never have to be solved explicitly. This review provides a concise methodological overview of the current state-of-the-art methods for gradient matching in ODEs, followed by an empirical comparative evaluation based on a set of widely used and representative benchmark data.
Janga, Sarath Chandra; Collado-Vides, Julio; Moreno-Hagelsieb, Gabriel
2005-01-01
Since operons are unstable across Prokaryotes, it has been suggested that perhaps they re-combine in a conservative manner. Thus, genes belonging to a given operon in one genome might re-associate in other genomes revealing functional relationships among gene products. We developed a system to build networks of functional relationships of gene products based on their organization into operons in any available genome. The operon predictions are based on inter-genic distances. Our system can use different kinds of thresholds to accept a functional relationship, either related to the prediction of operons, or to the number of non-redundant genomes that support the associations. We also work by shells, meaning that we decide on the number of linking iterations to allow for the complementation of related gene sets. The method shows high reliability benchmarked against knowledge-bases of functional interactions. We also illustrate the use of Nebulon in finding new members of regulons, and of other functional groups of genes. Operon rearrangements produce thousands of high-quality new interactions per prokaryotic genome, and thousands of confirmations per genome to other predictions, making it another important tool for the inference of functional interactions from genomic context. PMID:15867197
NASA Astrophysics Data System (ADS)
Alken, P.
2015-12-01
Large scale currents in the ionosphere are driven by a variety of sources, including neutral winds, gravity, and plasma pressure gradients. While thestronger day-time wind-driven currents have been extensively studied, gravity and diamagnetic currents in the ionosphere have receivedlittle attention, but can have substantial effects even during the night. With the availability of a new generation of magnetic field models basedon high-accuracy satellite magnetic measurements, it becomes increasingly important to account for these smaller current systems. In this study,we use over a decade of high-quality geomagnetic field measurements from the CHAMP and Swarm missions to study the seasonal and longitudinalstructure of these currents. These results allow us to visualize the global structure of these currents and quantify their magneticperturbations both on the ground and at satellite altitude.
Radchenko, O A
2015-11-01
Based on an analysis of sequence variation in mitochondrial and nuclear markers, the levels of divergence, relationships, and system of the suborder Zoarcoidei was defined. It was demonstrated that DNA lineages of the families Bathymasteridae and Cebidichthyidae were positioned at the bottom ofthe suborder phylogenetic tree. The family Zoarcidae is a monophyletic group, the youngest in the evolutionary terms. Zoarcidae, Anarhichadidae, Neozorcidae, and Eulophiidae form a group of related families. The family Stichaeidae is heterogeneous and has a polyphyletic origin; within this family, the subfamilies Chirolophinae, Alectgiinae, Xiphisterinae, and Stichaeinae are sister taxa. The subfamilies Opisthocentrinae and Lumpeninae are isolated from Stichaedae; Opisthocentrinae is closely associated with the families Pholidae and Ptilichthyidae, and Lumpeninae is closely associated with Zaproridae and Cryptacanthodidae. It is suggested that the rank of subfamilies Opisthocentrinae and Lumpeninae should be raised.
Kim, Y J; Bae, H; Ko, J H; Poo, K M; Kim, S; Kim, C W; Woo, H J
2006-01-01
A fuzzy inference system using sensor measurements was developed to estimate the influent COD/N ratio and ammonia load. The sensors measured ORP, DO and pH. The sensor profiles had a close relationship with the influent COD/N ratio and ammonia load. To confirm this operational knowledge for constructing a rule set, a correlation analysis was conducted. The results showed that a rule generation method based only on operational knowledge did not generate a sufficiently accurate relationship between sensor measurements and target variables. To compensate for this defect, a decision tree algorithm was used as a standardized method for rule generation. Given a set of inputs, this algorithm was used to determine the output variables. However, the generated rules could not estimate the continuous influent COD/N ratio and ammonia load. Fuzzified rules and the fuzzy inference system were developed to overcome this problem. The fuzzy inference system estimated the influent COD/N ratio and ammonia load quite well. When these results were compared to the results from a predictive polynomial neural network model, the fuzzy inference system was more stable.
NASA Astrophysics Data System (ADS)
Mohamed, A.; Sultan, M.; Ahmed, M.; Yan, E.
2014-12-01
The Nubian Sandstone Aquifer System (NSAS) is shared by Egypt, Libya, Chad and Sudanand is one of the largest (area: ~ 2 × 106 km2) groundwater systems in the world. Despite its importance to the population of these countries, major hydrological parameters such as modern recharge and extraction rates remain poorly investigated given: (1) the large extent of the NSAS, (2) the absence of comprehensive monitoring networks, (3) the general inaccessibility of many of the NSAS regions, (4) difficulties in collecting background information, largely included in unpublished governmental reports, and (5) limited local funding to support the construction of monitoring networks and/or collection of field and background datasets. Data from monthly Gravity Recovery and Climate Experiment (GRACE) gravity solutions were processed (Gaussian smoothed: 100 km; rescaled) and used to quantify the modern recharge to the NSAS during the period from January 2003 to December 2012. To isolate the groundwater component in GRACE data, the soil moisture and river channel storages were removed using the outputs from the most recent Community Land Model version 4.5 (CLM4.5). GRACE-derived recharge calculations were performed over the southern NSAS outcrops (area: 835 × 103 km2) in Sudan and Chad that receive average annual precipitation of 65 km3 (77.5 mm). GRACE-derived recharge rates were estimated at 2.79 ± 0.98 km3/yr (3.34 ± 1.17 mm/yr). If we take into account the total annual extraction rates (~ 0.4 km3; CEDARE, 2002) from Chad and Sudan the average annual recharge rate for the NSAS could reach up to ~ 3.20 ± 1.18 km3/yr (3.84 ± 1.42 mm/yr). Our recharge rates estimates are similar to those calculated using (1) groundwater flow modelling in the Central Sudan Rift Basins (4-8 mm/yr; Abdalla, 2008), (2) WaterGAP global scale groundwater recharge model (< 5 mm/yr, Döll and Fiedler, 2008), and (3) chloride tracer in Sudan (3.05 mm/yr; Edmunds et al. 1988). Given the available global
NASA Technical Reports Server (NTRS)
Harrison, P. Ann
1993-01-01
All the NASA VEGetation Workbench (VEG) goals except the Learning System provide the scientist with several different techniques. When VEG is run, rules assist the scientist in selecting the best of the available techniques to apply to the sample of cover type data being studied. The techniques are stored in the VEG knowledge base. The design and implementation of an interface that allows the scientist to add new techniques to VEG without assistance from the developer were completed. A new interface that enables the scientist to add techniques to VEG without assistance from the developer was designed and implemented. This interface does not require the scientist to have a thorough knowledge of Knowledge Engineering Environment (KEE) by Intellicorp or a detailed knowledge of the structure of VEG. The interface prompts the scientist to enter the required information about the new technique. It prompts the scientist to enter the required Common Lisp functions for executing the technique and the left hand side of the rule that causes the technique to be selected. A template for each function and rule and detailed instructions about the arguments of the functions, the values they should return, and the format of the rule are displayed. Checks are made to ensure that the required data were entered, the functions compiled correctly, and the rule parsed correctly before the new technique is stored. The additional techniques are stored separately from the VEG knowledge base. When the VEG knowledge base is loaded, the additional techniques are not normally loaded. The interface allows the scientist the option of adding all the previously defined new techniques before running VEG. When the techniques are added, the required units to store the additional techniques are created automatically in the correct places in the VEG knowledge base. The methods file containing the functions required by the additional techniques is loaded. New rule units are created to store the new rules
NASA Astrophysics Data System (ADS)
Emery, A. F.; Valenti, E.; Bardot, D.
2007-01-01
Parameter estimation is generally based upon the maximum likelihood approach and often involves regularization. Typically it is desired that the results be unbiased and of minimum variance. However, it is often better to accept biased estimates that have minimum mean square error. Bayesian inference is an attractive approach that achieves this goal and incorporates regularization automatically. More importantly, it permits us to analyse experiments in which both the system response and the independent variables (time, sensor position, experimental conditions, etc) are corrupted by noise and in which the model includes nuisance variables. This paper describes the use of Bayesian inference for an apparently simple experiment which is, in fact, fundamentally difficult and is compounded by a nuisance variable. By presenting this analysis we hope that members of the inverse community will see the value of applying Bayesian inference.
Nyamulagira’s magma plumbing system inferred from 15 years of InSAR
Wauthier, Christelle; Cayol, Valérie; Poland, Michael; Kervyn, François; D'Oreye, Nicolas; Hooper, Andrew; Samsonov, Sergei; Tiampo, Kristy; Smets, Benoit; Pyle, D. M.; Mather, T.A.; Biggs, J.
2013-01-01
Nyamulagira, located in the east of the Democratic Republic of Congo on the western branch of the East African rift, is Africa’s most active volcano, with an average of one eruption every 3 years since 1938. Owing to the socio-economical context of that region, the volcano lacks ground-based geodetic measurements but has been monitored by interferometric synthetic aperture radar (InSAR) since 1996. A combination of 3D Mixed Boundary Element Method and inverse modelling, taking into account topography and source interactions, is used to interpret InSAR ground displacements associated with eruptive activity in 1996, 2002, 2004, 2006 and 2010. These eruptions can be fitted by models incorporating dyke intrusions, and some (namely the 2006 and 2010 eruptions) require a magma reservoir beneath the summit caldera. We investigate inter-eruptive deformation with a multi-temporal InSAR approach. We propose the following magma plumbing system at Nyamulagira by integrating numerical deformation models with other available data: a deep reservoir (c. 25 km depth) feeds a shallower reservoir (c. 4 km depth); proximal eruptions are fed from the shallow reservoir through dykes while distal eruptions can be fed directly from the deep reservoir. A dyke-like conduit is also present beneath the upper southeastern flank of Nyamulagira.
Early accretion of protoplanets inferred from a reduced inner solar system (26)Al inventory.
Schiller, Martin; Connelly, James N; Glad, Aslaug C; Mikouchi, Takashi; Bizzarro, Martin
2015-06-15
The mechanisms and timescales of accretion of 10-1000 km sized planetesimals, the building blocks of planets, are not yet well understood. With planetesimal melting predominantly driven by the decay of the short-lived radionuclide (26)Al ((26)Al→(26)Mg; t1/2 = 0.73 Ma), its initial abundance determines the permissible timeframe of planetesimal-scale melting and its subsequent cooling history. Currently, precise knowledge about the initial (26)Al abundance [((26)Al/(27)Al)0] exists only for the oldest known solids, calcium aluminum-rich inclusions (CAIs) - the so-called canonical value. We have determined the (26)Al/(27)Al of three angrite meteorites, D'Orbigny, Sahara 99555 and NWA 1670, at their time of crystallization, which corresponds to (3.98 ± 0.15)×10(-7), (3.64 ± 0.18)×10(-7), and (5.92 ± 0.59)×10(-7), respectively. Combined with a newly determined absolute U-corrected Pb-Pb age for NWA 1670 of 4564.39 ± 0.24 Ma and published U-corrected Pb-Pb ages for the other two angrites, this allows us to calculate an initial ((26)Al/(27)Al)0 of [Formula: see text] for the angrite parent body (APB) precursor material at the time of CAI formation, a value four times lower than the accepted canonical value of 5.25 × 10(-5). Based on their similar (54)Cr/(52)Cr ratios, most inner solar system materials likely accreted from material containing a similar (26)Al/(27)Al ratio as the APB precursor at the time of CAI formation. To satisfy the abundant evidence for widespread planetesimal differentiation, the subcanonical (26)Al budget requires that differentiated planetesimals, and hence protoplanets, accreted rapidly within 0.25 ± 0.15 Ma of the formation of canonical CAIs.
Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory
NASA Astrophysics Data System (ADS)
Schiller, Martin; Connelly, James N.; Glad, Aslaug C.; Mikouchi, Takashi; Bizzarro, Martin
2015-06-01
The mechanisms and timescales of accretion of 10-1000 km sized planetesimals, the building blocks of planets, are not yet well understood. With planetesimal melting predominantly driven by the decay of the short-lived radionuclide 26Al (26Al→26Mg; t1/2 = 0.73 Ma), its initial abundance determines the permissible timeframe of planetesimal-scale melting and its subsequent cooling history. Currently, precise knowledge about the initial 26Al abundance [(26Al/27Al)0] exists only for the oldest known solids, calcium aluminum-rich inclusions (CAIs) - the so-called canonical value. We have determined the 26Al/27Al of three angrite meteorites, D'Orbigny, Sahara 99555 and NWA 1670, at their time of crystallization, which corresponds to (3.98 ± 0.15) ×10-7, (3.64 ± 0.18) ×10-7, and (5.92 ± 0.59) ×10-7, respectively. Combined with a newly determined absolute U-corrected Pb-Pb age for NWA 1670 of 4564.39 ± 0.24 Ma and published U-corrected Pb-Pb ages for the other two angrites, this allows us to calculate an initial (26Al/27Al)0 of (1.33-0.18+0.21) ×10-5 for the angrite parent body (APB) precursor material at the time of CAI formation, a value four times lower than the accepted canonical value of 5.25 ×10-5. Based on their similar 54Cr/52Cr ratios, most inner solar system materials likely accreted from material containing a similar 26Al/27Al ratio as the APB precursor at the time of CAI formation. To satisfy the abundant evidence for widespread planetesimal differentiation, the subcanonical 26Al budget requires that differentiated planetesimals, and hence protoplanets, accreted rapidly within 0.25 ± 0.15 Ma of the formation of canonical CAIs.
Physical Properties of the Saturnian Ring System Inferred from Cassini VIMS Opposition Observations
NASA Astrophysics Data System (ADS)
Hapke, B.; Nelson, R. M.; Brown, R. H.; Spilker, L. J.; Smythe, W. D.; Kamp, L.; Boryta, M.; Leader, F.; Matson, D. L.; Edgington, S.; Nicholson, P. D.; Filacchione, G.; Clark, R. N.; Bibring, J.; Baines, K. H.; Buratti, B. J.; Bellucci, G.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D. P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; McCord, T.; Menella, V.; Sicardy, B.
2005-12-01
Much can be learned about the nature of Saturn's ring particles and their regoliths by studying the wavelength dependence of their reflectance as a function of phase angle. At small phase angles the reflectance of the rings exhibits the opposition effect (OE) a significant increase in reflectance as phase angle approaches zero degrees. The wavelength dependence of the width and the peak of the OE are indicators of important physical properties of the regoliths of the ring particles such as particle size, particle shape, packing density and albedo. The Cassini VIMS multi spectral imaging spectrometer obtained low phase observations of the Saturnian ring system from 0.4-5.2 microns during 2005. These data clearly show a pronounced (OE). Cassini VIMS opposition surge data indicate a wavelength dependence of the OE that relates to the size and separation of the scattering centers on the surface of the ring particles. Laboratory studies and theoretical models of the OE relate the size and shape of the reflectance increase to physical properties of the medium (Nelson et al, 2002; Spilker et al. 1995; Hapke et al., 1993)). The OE arises from two processes, shadow hiding (SH) and coherent backscattering (CB). The SHOE is observed because shadows cast by the particulate grains on one another are eliminated as phase angle approaches zero degrees. The CBOE is due to constructive interference between light rays traveling in opposite paths through the medium as the path length decreases with decreasing phase angle. The VIMS data at 1.9 microns, where the rings are highly reflective, indicate a strong CBOE effect, however, at 2.1 microns, where the rings are very absorbing, the shape of the phase curve is consistent with SHOE. Hapke et al. 1993,Science, 260, 509-511 Nelson, R. M. et al., 2002. Planetary and Space Science, 50, 849-856 Spilker aka Horn, L.J et al., 1995. IAU Colloquium #150 This work done at JPL under contract with NASA
Final Report: Large-Scale Optimization for Bayesian Inference in Complex Systems
Ghattas, Omar
2013-10-15
The SAGUARO (Scalable Algorithms for Groundwater Uncertainty Analysis and Robust Optimiza- tion) Project focuses on the development of scalable numerical algorithms for large-scale Bayesian inversion in complex systems that capitalize on advances in large-scale simulation-based optimiza- tion and inversion methods. Our research is directed in three complementary areas: efficient approximations of the Hessian operator, reductions in complexity of forward simulations via stochastic spectral approximations and model reduction, and employing large-scale optimization concepts to accelerate sampling. Our efforts are integrated in the context of a challenging testbed problem that considers subsurface reacting flow and transport. The MIT component of the SAGUARO Project addresses the intractability of conventional sampling methods for large-scale statistical inverse problems by devising reduced-order models that are faithful to the full-order model over a wide range of parameter values; sampling then employs the reduced model rather than the full model, resulting in very large computational savings. Results indicate little effect on the computed posterior distribution. On the other hand, in the Texas-Georgia Tech component of the project, we retain the full-order model, but exploit inverse problem structure (adjoint-based gradients and partial Hessian information of the parameter-to- observation map) to implicitly extract lower dimensional information on the posterior distribution; this greatly speeds up sampling methods, so that fewer sampling points are needed. We can think of these two approaches as "reduce then sample" and "sample then reduce." In fact, these two approaches are complementary, and can be used in conjunction with each other. Moreover, they both exploit deterministic inverse problem structure, in the form of adjoint-based gradient and Hessian information of the underlying parameter-to-observation map, to achieve their speedups.
Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory
Schiller, Martin; Connelly, James N.; Glad, Aslaug C.; Mikouchi, Takashi; Bizzarro, Martin
2016-01-01
The mechanisms and timescales of accretion of 10–1000 km sized planetesimals, the building blocks of planets, are not yet well understood. With planetesimal melting predominantly driven by the decay of the short-lived radionuclide 26Al (26Al→26Mg; t1/2 = 0.73 Ma), its initial abundance determines the permissible timeframe of planetesimal-scale melting and its subsequent cooling history. Currently, precise knowledge about the initial 26Al abundance [(26Al/27Al)0] exists only for the oldest known solids, calcium aluminum-rich inclusions (CAIs) – the so-called canonical value. We have determined the 26Al/27Al of three angrite meteorites, D’Orbigny, Sahara 99555 and NWA 1670, at their time of crystallization, which corresponds to (3.98 ± 0.15)×10−7, (3.64 ± 0.18)×10−7, and (5.92 ± 0.59)×10−7, respectively. Combined with a newly determined absolute U-corrected Pb–Pb age for NWA 1670 of 4564.39 ± 0.24 Ma and published U-corrected Pb–Pb ages for the other two angrites, this allows us to calculate an initial (26Al/27Al)0 of (1.33−0.18+0.21)×10−5 for the angrite parent body (APB) precursor material at the time of CAI formation, a value four times lower than the accepted canonical value of 5.25 × 10−5. Based on their similar 54Cr/52Cr ratios, most inner solar system materials likely accreted from material containing a similar 26Al/27Al ratio as the APB precursor at the time of CAI formation. To satisfy the abundant evidence for widespread planetesimal differentiation, the subcanonical 26Al budget requires that differentiated planetesimals, and hence protoplanets, accreted rapidly within 0.25 ± 0.15 Ma of the formation of canonical CAIs. PMID:27429474
Marzouk, Youssef
2016-08-31
Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesian inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.
Amiri, Mohammad J; Abedi-Koupai, Jahangir; Eslamian, Sayed S; Mousavi, Sayed F; Hasheminejad, Hasti
2013-01-01
To evaluate the performance of Adaptive Neural-Based Fuzzy Inference System (ANFIS) model in estimating the efficiency of Pb (II) ions removal from aqueous solution by ostrich bone ash, a batch experiment was conducted. Five operational parameters including adsorbent dosage (C(s)), initial concentration of Pb (II) ions (C(o)), initial pH, temperature (T) and contact time (t) were taken as the input data and the adsorption efficiency (AE) of bone ash as the output. Based on the 31 different structures, 5 ANFIS models were tested against the measured adsorption efficiency to assess the accuracy of each model. The results showed that ANFIS5, which used all input parameters, was the most accurate (RMSE = 2.65 and R(2) = 0.95) and ANFIS1, which used only the contact time input, was the worst (RMSE = 14.56 and R(2) = 0.46). In ranking the models, ANFIS4, ANFIS3 and ANFIS2 ranked second, third and fourth, respectively. The sensitivity analysis revealed that the estimated AE is more sensitive to the contact time, followed by pH, initial concentration of Pb (II) ions, adsorbent dosage, and temperature. The results showed that all ANFIS models overestimated the AE. In general, this study confirmed the capabilities of ANFIS model as an effective tool for estimation of AE.
NASA Astrophysics Data System (ADS)
Daud, H.; Razali, R.; Low, T. J.; Sabdin, M.; Zafrul, S. Z. Mohd
2014-06-01
An expert system for diagnosing sickness and suggesting treatment based on Islamic Medication (IM) was constructed using Rule Based (RB) and Bayes' theorem (BT) algorithms independently as its inference engine. Comparative assessment on the quality of diagnosing based on symptoms provided by users for certain type of sickness using RB and BT reasoning that lead to the suggested treatment (based on IM) are discussed. Both approaches are found to be useful, each has its own advantages and disadvantages. Major difference of the two algorithms is the selection of symptoms during the diagnosing process. For BT, likely combinations of symptoms need to be classified for each sickness before the diagnosing process. This eliminates any irrelevant sickness based on the combination of symptoms provided by user and combination of symptoms that is unlikely. This is not the case for RB, it will diagnose the sickness as long as one the symptoms is related to the sickness regardless of unlikely combination. Few tests have been carried out using combinations of symptoms for same sickness to investigate their diagnosing accuracy in percentage. BT gives more promising diagnosing results compared to RB for each sickness that comes with common symptoms.
NASA Astrophysics Data System (ADS)
Migeon, Sébastien; Mulder, Thierry; Savoye, Bruno; Sage, Françoise
2012-03-01
The Var Turbidite System (NW Mediterranean Sea) is fed during the present-day highstand sea level by large earthquake-induced ignitive turbidity currents, low-density turbidity currents resulting from retrogressive failures triggered on the upper continental slope, and hyperpycnal flows related to the Var River floods. Using a large dataset including bathymetric data, side-scan sonar images, seismic-reflection profiles, cores and photographs of the seafloor, this paper attempts to better constrain the hydrodynamic behaviour of debris flows and turbidity currents along the Upper and Middle Valley of the Var Turbidite System. The drastic change of the seafloor morphology between the Upper and the Middle Valley suggests that gravity flows undergo rapid transformation from cohesive to fully turbulent behaviour. This transformation is related to a hydraulic jump caused by an abrupt decrease in slope angle at the transition between the Upper and the Middle Valley and is associated with en masse deposition and elevation of the seafloor. Strong seafloor erosion prevails in the Middle Valley, suggesting that, for a low and constant slope angle, turbulent flows must regain a balance between concentration and flow thickness rapidly after they experience hydraulic jump. The internal stratification and vertical grain-size distribution within turbulent flows are inferred from the distribution of fine- to coarse-grained turbidites found in cores located along the crest of the Var Sedimentary Ridge with a decreasing elevation above the floor of the Middle Valley. The theoretical vertical velocity profile deduced from the vertical grain-size distribution exhibits a general trend and an inflection of the gradient curve different from those of the velocity profiles classically obtained using numerical modelling.
Bittkau, C; Comes, H P
2005-11-01
Continental shelf island systems, created by rising sea levels, provide a premier setting for studying the effects of past fragmentation, dispersal, and genetic drift on taxon diversification. We used phylogeographical (nested clade) and population genetic analyses to elucidate the relative roles of these processes in the evolutionary history of the Aegean Nigella arvensis alliance (= 'coenospecies'). We surveyed chloroplast DNA (cpDNA) variation in 455 individuals from 47 populations (nine taxa) of the alliance throughout its core range in the Aegean Archipelago and surrounding mainland areas of Greece and Turkey. The study revealed the presence of three major lineages, with largely nonoverlapping distributions in the Western, Central, and Eastern Aegean. There is evidence supporting the idea that these major lineages evolved in situ from a widespread (pan-Aegean) ancestral stock as a result of multiple fragmentation events, possibly due to the influence of post-Messinian sea flooding, Pleistocene eustatic changes and corresponding climate fluctuations. Over-sea dispersal and founder events appear to have played a rather insignificant role in the group's history. Rather, all analytical approaches identified the alliance as an organism group with poor seed dispersal capabilities and a susceptibility to genetic drift. In particular, we inferred that the observed level of cpDNA differentiation between Kikladian island populations of Nigella degenii largely reflects population history, (viz. Holocene island fragmentation) and genetic drift in the near absence of seed flow since their time of common ancestry. Overall, our cpDNA data for the N. arvensis alliance in general, and N. degenii in particular, indicate that historical events were important in determining the phylogeographical patterns seen, and that genetic drift has historically been relatively more influential on population structure than has cytoplasmic gene flow.
Dehlaghi, Vahab; Taghipour, Mostafa; Haghparast, Abbas; Roshani, Gholam Hossein; Rezaei, Abbas; Shayesteh, Sajjad Pashootan; Adineh-Vand, Ayoub; Karimi, Gholam Reza
2015-04-01
In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS) are investigated to predict the thickness of the compensator filter in radiation therapy. In the proposed models, the input parameters are field size (S), off-axis distance, and relative dose (D/D{sub 0}), and the output is the thickness of the compensator. The obtained results show that the proposed ANN and ANFIS models are useful, reliable, and cheap tools to predict the thickness of the compensator filter in intensity-modulated radiation therapy.
Azarkhish, Iman; Raoufy, Mohammad Reza; Gharibzadeh, Shahriar
2012-06-01
Iron deficiency anemia (IDA) is the most common nutritional deficiency worldwide. Measuring serum iron is time consuming, expensive and not available in most hospitals. In this study, based on four accessible laboratory data (MCV, MCH, MCHC, Hb/RBC), we developed an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) to diagnose the IDA and to predict serum iron level. Our results represent that the neural network analysis is superior to ANFIS and logistic regression models in diagnosing IDA. Moreover, the results show that the ANN is likely to provide an accurate test for predicting serum iron levels with high accuracy and acceptable precision.
Ganesan, S; Victoire, T Aruldoss Albert; Vijayalakshmy, G
2014-01-01
In this paper, the work is mainly concentrated on removing non-linear parameters to make the physiological signals more linear and reducing the complexity of the signals. This paper discusses three different types of techniques that can be successfully utilised to remove non-linear parameters in EEG and ECG. (i) Transformation technique using Discrete Walsh-Hadamard Transform (DWHT); (ii) application of fuzzy logic control and (iii) building the Adaptive Neuro-Fuzzy Inference System (ANFIS) model for fuzzy. This work has been inspired by the need to arrive at an efficient, simple, accurate and quicker method for analysis of bio-signal.
NASA Astrophysics Data System (ADS)
Mekanik, F.; Imteaz, M. A.; Talei, A.
2016-05-01
Accurate seasonal rainfall forecasting is an important step in the development of reliable runoff forecast models. The large scale climate modes affecting rainfall in Australia have recently been proven useful in rainfall prediction problems. In this study, adaptive network-based fuzzy inference systems (ANFIS) models are developed for the first time for southeast Australia in order to forecast spring rainfall. The models are applied in east, center and west Victoria as case studies. Large scale climate signals comprising El Nino Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Inter-decadal Pacific Ocean (IPO) are selected as rainfall predictors. Eight models are developed based on single climate modes (ENSO, IOD, and IPO) and combined climate modes (ENSO-IPO and ENSO-IOD). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson correlation coefficient (r) and root mean square error in probability (RMSEP) skill score are used to evaluate the performance of the proposed models. The predictions demonstrate that ANFIS models based on individual IOD index perform superior in terms of RMSE, MAE and r to the models based on individual ENSO indices. It is further discovered that IPO is not an effective predictor for the region and the combined ENSO-IOD and ENSO-IPO predictors did not improve the predictions. In order to evaluate the effectiveness of the proposed models a comparison is conducted between ANFIS models and the conventional Artificial Neural Network (ANN), the Predictive Ocean Atmosphere Model for Australia (POAMA) and climatology forecasts. POAMA is the official dynamic model used by the Australian Bureau of Meteorology. The ANFIS predictions certify a superior performance for most of the region compared to ANN and climatology forecasts. POAMA performs better in regards to RMSE and MAE in east and part of central Victoria, however, compared to ANFIS it shows weaker results in west Victoria in terms of prediction errors and RMSEP skill
Adaptive fuzzy system for 3-D vision
NASA Technical Reports Server (NTRS)
Mitra, Sunanda
1993-01-01
An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.
Artificial Intelligence Techniques for the Estimation of Direct Methanol Fuel Cell Performance
NASA Astrophysics Data System (ADS)
Hasiloglu, Abdulsamet; Aras, Ömür; Bayramoglu, Mahmut
2016-04-01
Artificial neural networks and neuro-fuzzy inference systems are well known artificial intelligence techniques used for black-box modelling of complex systems. In this study, Feed-forward artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used for modelling the performance of direct methanol fuel cell (DMFC). Current density (I), fuel cell temperature (T), methanol concentration (C), liquid flow-rate (q) and air flow-rate (Q) are selected as input variables to predict the cell voltage. Polarization curves are obtained for 35 different operating conditions according to a statistically designed experimental plan. In modelling study, various subsets of input variables and various types of membership function are considered. A feed -forward architecture with one hidden layer is used in ANN modelling. The optimum performance is obtained with the input set (I, T, C, q) using twelve hidden neurons and sigmoidal activation function. On the other hand, first order Sugeno inference system is applied in ANFIS modelling and the optimum performance is obtained with the input set (I, T, C, q) using sixteen fuzzy rules and triangular membership function. The test results show that ANN model estimates the polarization curve of DMFC more accurately than ANFIS model.
Poorbagher, Hadi; Moghaddam, Maryam Nasrollahpour; Eagderi, Soheil; Farahmand, Hamid
2016-07-01
The DNA breakage has been widely used in ecotoxicological studies to investigate effects of pesticides in fishes. The present study used a fuzzy inference system to quantify the breakage of DNA double strand in Aphanius sophiae exposed to the cypermethrin. The specimens were adapted to different temperatures and salinity for 14 days and then exposed to cypermethrin. DNA of each specimens were extracted, electrophoresed and photographed. A fuzzy system with three input variables and 27 rules were defined. The pixel value curve of DNA on each gel lane was obtained using ImageJ. The DNA breakage was quantified using the pixel value curve and fuzzy system. The defuzzified values were analyzed using a three-way analysis of variance. Cypermethrin had significant effects on DNA breakage. Fuzzy inference systems can be used as a tool to quantify the breakage of double strand DNA. DNA double strand of the gill of A. sophiae is sensitive enough to be used to detect cypermethrin in surface waters in concentrations much lower than those reported in previous studies.
Kim, Y J; Bae, H; Poo, K M; Ko, J H; Kim, B G; Park, T J; Kim, C W
2006-01-01
The importance of a detection technique to prevent process deterioration is increasing. For the fast detection of this disturbance, a diagnostic algorithm was developed to determine types of equipment faults by using on-line ORP and DO profile in sequencing batch reactors (SBRs). To develop the rule base for fault diagnosis, the sensor profiles were obtained from a pilot-scale SBR when blower, influent pump and mixer were broken. The rules were generated based on the calculated error between an abnormal profile and a normal profile, e(ORP)(t) and e(DO)(t). To provide intermediate diagnostic results between "normal" and "fault", a fuzzy inference algorithm was incorporated to the rules. Fuzzified rules could present the diagnosis result "need to be checked". The diagnosis showed good performance in detecting and diagnosing various faults. The developed algorithm showed its applicability to detect faults and make possible fast action to correct them.
Business Planning in the Light of Neuro-fuzzy and Predictive Forecasting
NASA Astrophysics Data System (ADS)
Chakrabarti, Prasun; Basu, Jayanta Kumar; Kim, Tai-Hoon
In this paper we have pointed out gain sensing on forecast based techniques.We have cited an idea of neural based gain forecasting. Testing of sequence of gain pattern is also verifies using statsistical analysis of fuzzy value assignment. The paper also suggests realization of stable gain condition using K-Means clustering of data mining. A new concept of 3D based gain sensing has been pointed out. The paper also reveals what type of trend analysis can be observed for probabilistic gain prediction.
A Car-Steering Model Based on an Adaptive Neuro-Fuzzy Controller
NASA Astrophysics Data System (ADS)
Amor, Mohamed Anis Ben; Oda, Takeshi; Watanabe, Shigeyoshi
This paper is concerned with the development of a car-steering model for traffic simulation. Our focus in this paper is to propose a model of the steering behavior of a human driver for different driving scenarios. These scenarios are modeled in a unified framework using the idea of target position. The proposed approach deals with the driver’s approximation and decision-making mechanisms in tracking a target position by means of fuzzy set theory. The main novelty in this paper lies in the development of a learning algorithm that has the intention to imitate the driver’s self-learning from his driving experience and to mimic his maneuvers on the steering wheel, using linear networks as local approximators in the corresponding fuzzy areas. Results obtained from the simulation of an obstacle avoidance scenario show the capability of the model to carry out a human-like behavior with emphasis on learned skills.
Digital modelling of landscape and soil in a mountainous region: A neuro-fuzzy approach
NASA Astrophysics Data System (ADS)
Viloria, Jesús A.; Viloria-Botello, Alvaro; Pineda, María Corina; Valera, Angel
2016-01-01
Research on genetic relationships between soil and landforms has largely improved soil mapping. Recent technological advances have created innovative methods for modelling the spatial soil variation from digital elevation models (DEMs) and remote sensors. This generates new opportunities for the application of geomorphology to soil mapping. This study applied a method based on artificial neural networks and fuzzy clustering to recognize digital classes of land surfaces in a mountainous area in north-central Venezuela. The spatial variation of the fuzzy memberships exposed the areas where each class predominates, while the class centres helped to recognize the topographic attributes and vegetation cover of each class. The obtained classes of terrain revealed the structure of the land surface, which showed regional differences in climate, vegetation, and topography and landscape stability. The land-surface classes were subdivided on the basis of the geological substratum to produce landscape classes that additionally considered the influence of soil parent material. These classes were used as a framework for soil sampling. A redundancy analysis confirmed that changes of landscape classes explained the variation in soil properties (p = 0.01), and a Kruskal-Wallis test showed significant differences (p = 0.01) in clay, hydraulic conductivity, soil organic carbon, base saturation, and exchangeable Ca and Mg between classes. Thus, the produced landscape classes correspond to three-dimensional bodies that differ in soil conditions. Some changes of land-surface classes coincide with abrupt boundaries in the landscape, such as ridges and thalwegs. However, as the model is continuous, it disclosed the remaining variation between those boundaries.
User/Tutor Optimal Learning Path in E-Learning Using Comprehensive Neuro-Fuzzy Approach
ERIC Educational Resources Information Center
Fazlollahtabar, Hamed; Mahdavi, Iraj
2009-01-01
Internet evolution has affected all industrial, commercial, and especially learning activities in the new context of e-learning. Due to cost, time, or flexibility e-learning has been adopted by participators as an alternative training method. By development of computer-based devices and new methods of teaching, e-learning has emerged. The…
Multiple Instance Fuzzy Inference
2015-12-02
INFERENCE A novel fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The...fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The framework introduces a...or learned from data. In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are
Application of Transformations in Parametric Inference
ERIC Educational Resources Information Center
Brownstein, Naomi; Pensky, Marianna
2008-01-01
The objective of the present paper is to provide a simple approach to statistical inference using the method of transformations of variables. We demonstrate performance of this powerful tool on examples of constructions of various estimation procedures, hypothesis testing, Bayes analysis and statistical inference for the stress-strength systems.…
Symbolic transfer entropy: inferring directionality in biosignals.
Staniek, Matthäus; Lehnertz, Klaus
2009-12-01
Inferring directional interactions from biosignals is of crucial importance to improve understanding of dynamical interdependences underlying various physiological and pathophysiological conditions. We here present symbolic transfer entropy as a robust measure to infer the direction of interactions between multidimensional dynamical systems. We demonstrate its performance in quantifying driver-responder relationships in a network of coupled nonlinear oscillators and in the human epileptic brain.
NASA Astrophysics Data System (ADS)
Larour, E. Y.; Khazendar, A.; Seroussi, H. L.; Schlegel, N.; Csatho, B. M.; Schenk, A. F.; Rignot, E. J.; Morlighem, M.
2014-12-01
Altimetry signals from missions such as ICESat-1, CryoSat, EnviSat, as well as altimeters onboard Operation IceBridge provide vital insights into processes such as surface mass balance, mass transport and ice-flow dynamics. Historically however, ice-flow models have been focused on assimilating surface velocities from satellite-based radar observations, to infer properties such as basal friction or the position of the bedrock. Here, we leverage a new methodology based on automatic differentation of the Ice Sheet System Model to assimilate surface altimetry data into a reconstruction of the past decade of ice flow on the North Greenland area. We infer corrections to boundary conditions such as basal friction and surface mass balance, as well as corrections to the ice hardness, to best-match the observed altimetry record. We compare these corrections between glaciers such as Petermann Glacier, 79 North and Zacchariae Isstrom. The altimetry signals exhibit very different patterns between East and West, which translate into very different signatures for the inverted boundary conditions. This study gives us greater insights into what differentiates different basins, both in terms of mass transport and ice-flow dynamics, and what could bethe controlling mechanisms behind the very different evolutions of these basins.
Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John
2014-01-01
Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.
Bayesian Inference on Proportional Elections
Brunello, Gabriel Hideki Vatanabe; Nakano, Eduardo Yoshio
2015-01-01
Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software. PMID:25786259
Statistical inference and Aristotle's Rhetoric.
Macdonald, Ranald R
2004-11-01
Formal logic operates in a closed system where all the information relevant to any conclusion is present, whereas this is not the case when one reasons about events and states of the world. Pollard and Richardson drew attention to the fact that the reasoning behind statistical tests does not lead to logically justifiable conclusions. In this paper statistical inferences are defended not by logic but by the standards of everyday reasoning. Aristotle invented formal logic, but argued that people mostly get at the truth with the aid of enthymemes--incomplete syllogisms which include arguing from examples, analogies and signs. It is proposed that statistical tests work in the same way--in that they are based on examples, invoke the analogy of a model and use the size of the effect under test as a sign that the chance hypothesis is unlikely. Of existing theories of statistical inference only a weak version of Fisher's takes this into account. Aristotle anticipated Fisher by producing an argument of the form that there were too many cases in which an outcome went in a particular direction for that direction to be plausibly attributed to chance. We can therefore conclude that Aristotle would have approved of statistical inference and there is a good reason for calling this form of statistical inference classical.
Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor
NASA Astrophysics Data System (ADS)
Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.
2011-08-01
Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.
Artificial intelligence in public health prevention of legionelosis in drinking water systems.
Sinčak, Peter; Ondo, Jaroslav; Kaposztasova, Daniela; Virčikova, Maria; Vranayova, Zuzana; Sabol, Jakub
2014-08-21
Good quality water supplies and safe sanitation in urban areas are a big challenge for governments throughout the world. Providing adequate water quality is a basic requirement for our lives. The colony forming units of the bacterium Legionella pneumophila in potable water represent a big problem which cannot be overlooked for health protection reasons. We analysed several methods to program a virtual hot water tank with AI (artificial intelligence) tools including neuro-fuzzy systems as a precaution against legionelosis. The main goal of this paper is to present research which simulates the temperature profile in the water tank. This research presents a tool for a water management system to simulate conditions which are able to prevent legionelosis outbreaks in a water system. The challenge is to create a virtual water tank simulator including the water environment which can simulate a situation which is common in building water distribution systems. The key feature of the presented system is its adaptation to any hot water tank. While respecting the basic parameters of hot water, a water supplier and building maintainer are required to ensure the predefined quality and water temperature at each sampling site and avoid the growth of Legionella. The presented system is one small contribution how to overcome a situation when legionelosis could find good conditions to spread and jeopardize human lives.
Artificial Intelligence in Public Health Prevention of Legionelosis in Drinking Water Systems
Sinčak, Peter; Ondo, Jaroslav; Kaposztasova, Daniela; Virčikova, Maria; Vranayova, Zuzana; Sabol, Jakub
2014-01-01
Good quality water supplies and safe sanitation in urban areas are a big challenge for governments throughout the world. Providing adequate water quality is a basic requirement for our lives. The colony forming units of the bacterium Legionella pneumophila in potable water represent a big problem which cannot be overlooked for health protection reasons. We analysed several methods to program a virtual hot water tank with AI (artificial intelligence) tools including neuro-fuzzy systems as a precaution against legionelosis. The main goal of this paper is to present research which simulates the temperature profile in the water tank. This research presents a tool for a water management system to simulate conditions which are able to prevent legionelosis outbreaks in a water system. The challenge is to create a virtual water tank simulator including the water environment which can simulate a situation which is common in building water distribution systems. The key feature of the presented system is its adaptation to any hot water tank. While respecting the basic parameters of hot water, a water supplier and building maintainer are required to ensure the predefined quality and water temperature at each sampling site and avoid the growth of Legionella. The presented system is one small contribution how to overcome a situation when legionelosis could find good conditions to spread and jeopardize human lives. PMID:25153475
Brink, G.J.
1989-03-01
Development of 67 middle Valanginian to middle Campanian cyclic depositional sequences is interpreted to be a response to the interplay of unique tectonics and higher order eustatic sea level cycles capable of imposing type 1 unconformities. Direct correlation of 16 sequences, within available paleontological age constraints, with Exxon's global third-order cycles encompasses the remaining 51 sequences, which are inferred to be fourth-order and fifth-order cycles. These unconformity bound sequences were grouped into genetic megasequences bound by major type 1 unconformities (third-order or fourth-order falls at the trough of a third-order cycle) typically displaying evidence of extensive erosion of thick highstand systems tracts.
NASA Technical Reports Server (NTRS)
Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)
2001-01-01
A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.
Boutalis, Yiannis; Theodoridis, Dimitris C; Christodoulou, Manolis A
2009-04-01
The indirect adaptive regulation of unknown nonlinear dynamical systems is considered in this paper. The method is based on a new neuro-fuzzy dynamical system (neuro-FDS) definition, which uses the concept of adaptive fuzzy systems (AFSs) operating in conjunction with high-order neural network functions (FHONNFs). Since the plant is considered unknown, we first propose its approximation by a special form of an FDS and then the fuzzy rules are approximated by appropriate HONNFs. Thus, the identification scheme leads up to a recurrent high-order neural network (RHONN), which however takes into account the fuzzy output partitions of the initial FDS. The proposed scheme does not require a priori experts' information on the number and type of input variable membership functions making it less vulnerable to initial design assumptions. Once the system is identified around an operation point, it is regulated to zero adaptively. Weight updating laws for the involved HONNFs are provided, which guarantee that both the identification error and the system states reach zero exponentially fast, while keeping all signals in the closed loop bounded. The existence of the control signal is always assured by introducing a novel method of parameter hopping, which is incorporated in the weight updating law. Simulations illustrate the potency of the method and comparisons with conventional approaches on benchmarking systems are given. Also, the applicability of the method is tested on a direct current (dc) motor system where it is shown that by following the proposed procedure one can obtain asymptotic regulation.
Social Inference Through Technology
NASA Astrophysics Data System (ADS)
Oulasvirta, Antti
Awareness cues are computer-mediated, real-time indicators of people’s undertakings, whereabouts, and intentions. Already in the mid-1970 s, UNIX users could use commands such as “finger” and “talk” to find out who was online and to chat. The small icons in instant messaging (IM) applications that indicate coconversants’ presence in the discussion space are the successors of “finger” output. Similar indicators can be found in online communities, media-sharing services, Internet relay chat (IRC), and location-based messaging applications. But presence and availability indicators are only the tip of the iceberg. Technological progress has enabled richer, more accurate, and more intimate indicators. For example, there are mobile services that allow friends to query and follow each other’s locations. Remote monitoring systems developed for health care allow relatives and doctors to assess the wellbeing of homebound patients (see, e.g., Tang and Venables 2000). But users also utilize cues that have not been deliberately designed for this purpose. For example, online gamers pay attention to other characters’ behavior to infer what the other players are like “in real life.” There is a common denominator underlying these examples: shared activities rely on the technology’s representation of the remote person. The other human being is not physically present but present only through a narrow technological channel.
Koonin, Eugene V
2006-01-01
Background The core enzymes of the DNA replication systems show striking diversity among cellular life forms and more so among viruses. In particular, and counter-intuitively, given the central role of DNA in all cells and the mechanistic uniformity of replication, the core enzymes of the replication systems of bacteria and archaea (as well as eukaryotes) are unrelated or extremely distantly related. Viruses and plasmids, in addition, possess at least two unique DNA replication systems, namely, the protein-primed and rolling circle modalities of replication. This unexpected diversity makes the origin and evolution of DNA replication systems a particularly challenging and intriguing problem in evolutionary biology. Results I propose a specific succession for the emergence of different DNA replication systems, drawing argument from the differences in their representation among viruses and other selfish replicating elements. In a striking pattern, the DNA replication systems of viruses infecting bacteria and eukaryotes are dominated by the archaeal-type B-family DNA polymerase (PolB) whereas the bacterial replicative DNA polymerase (PolC) is present only in a handful of bacteriophage genomes. There is no apparent mechanistic impediment to the involvement of the bacterial-type replication machinery in viral DNA replication. Therefore, I hypothesize that the observed, markedly unequal distribution of the replicative DNA polymerases among the known cellular and viral replication systems has a historical explanation. I propose that, among the two types of DNA replication machineries that are found in extant life forms, the archaeal-type, PolB-based system evolved first and had already given rise to a variety of diverse viruses and other selfish elements before the advent of the bacterial, PolC-based machinery. Conceivably, at that stage of evolution, the niches for DNA-viral reproduction have been already filled with viruses replicating with the help of the archaeal
Xu, Yungang; Guo, Maozu; Zou, Quan; Liu, Xiaoyan; Wang, Chunyu; Liu, Yang
2014-01-01
Cellular interactome, in which genes and/or their products interact on several levels, forming transcriptional regulatory-, protein interaction-, metabolic-, signal transduction networks, etc., has attracted decades of research focuses. However, such a specific type of network alone can hardly explain the various interactive activities among genes. These networks characterize different interaction relationships, implying their unique intrinsic properties and defects, and covering different slices of biological information. Functional gene network (FGN), a consolidated interaction network that models fuzzy and more generalized notion of gene-gene relations, have been proposed to combine heterogeneous networks with the goal of identifying functional modules supported by multiple interaction types. There are yet no successful precedents of FGNs on sparsely studied non-model organisms, such as soybean (Glycine max), due to the absence of sufficient heterogeneous interaction data. We present an alternative solution for inferring the FGNs of soybean (SoyFGNs), in a pioneering study on the soybean interactome, which is also applicable to other organisms. SoyFGNs exhibit the typical characteristics of biological networks: scale-free, small-world architecture and modularization. Verified by co-expression and KEGG pathways, SoyFGNs are more extensive and accurate than an orthology network derived from Arabidopsis. As a case study, network-guided disease-resistance gene discovery indicates that SoyFGNs can provide system-level studies on gene functions and interactions. This work suggests that inferring and modelling the interactome of a non-model plant are feasible. It will speed up the discovery and definition of the functions and interactions of other genes that control important functions, such as nitrogen fixation and protein or lipid synthesis. The efforts of the study are the basis of our further comprehensive studies on the soybean functional interactome at the genome
NASA Astrophysics Data System (ADS)
Saeidi, Omid; Torabi, Seyed Rahman; Ataei, Mohammad
2014-03-01
Rock mass classification systems are one of the most common ways of determining rock mass excavatability and related equipment assessment. However, the strength and weak points of such rating-based classifications have always been questionable. Such classification systems assign quantifiable values to predefined classified geotechnical parameters of rock mass. This causes particular ambiguities, leading to the misuse of such classifications in practical applications. Recently, intelligence system approaches such as artificial neural networks (ANNs) and neuro-fuzzy methods, along with multiple regression models, have been used successfully to overcome such uncertainties. The purpose of the present study is the construction of several models by using an adaptive neuro-fuzzy inference system (ANFIS) method with two data clustering approaches, including fuzzy c-means (FCM) clustering and subtractive clustering, an ANN and non-linear multiple regression to estimate the basic rock mass diggability index. A set of data from several case studies was used to obtain the real rock mass diggability index and compared to the predicted values by the constructed models. In conclusion, it was observed that ANFIS based on the FCM model shows higher accuracy and correlation with actual data compared to that of the ANN and multiple regression. As a result, one can use the assimilation of ANNs with fuzzy clustering-based models to construct such rigorous predictor tools.
NASA Astrophysics Data System (ADS)
Ansari, Hamid Reza
2014-09-01
In this paper we propose a new method for predicting rock porosity based on a combination of several artificial intelligence systems. The method focuses on one of the Iranian carbonate fields in the Persian Gulf. Because there is strong heterogeneity in carbonate formations, estimation of rock properties experiences more challenge than sandstone. For this purpose, seismic colored inversion (SCI) and a new approach of committee machine are used in order to improve porosity estimation. The study comprises three major steps. First, a series of sample-based attributes is calculated from 3D seismic volume. Acoustic impedance is an important attribute that is obtained by the SCI method in this study. Second, porosity log is predicted from seismic attributes using common intelligent computation systems including: probabilistic neural network (PNN), radial basis function network (RBFN), multi-layer feed forward network (MLFN), ε-support vector regression (ε-SVR) and adaptive neuro-fuzzy inference system (ANFIS). Finally, a power law committee machine (PLCM) is constructed based on imperial competitive algorithm (ICA) to combine the results of all previous predictions in a single solution. This technique is called PLCM-ICA in this paper. The results show that PLCM-ICA model improved the results of neural networks, support vector machine and neuro-fuzzy system.
FUNCTIONAL OVERLAP OF ROOT SYSTEMS IN AN OLD-GROWTH FOREST INFERRED FROM TRACER 15N UPTAKE
Belowground competition for nutrients and water is considered a key factor affecting spatial organization and productivity of individual stems within forest stands, yet there are few data describing the lateral extent and overlap of competing root systems. We quantified the func...
NASA Astrophysics Data System (ADS)
Pedersen, R.; Sigmundsson, F.
2002-12-01
We present measurements of volcano deformation from a series of 18 interferograms spanning the years 1993-2000. The detected deformation originates from repeated intrusions in the Eyjafjallaj”kull system, an icecap covered stratovolcano situated in, what is considered to be, a propagating rift zone in southern Iceland. The volcano erupts infrequently, with only two known eruptions in historic time (last 1100 years). The eruptive products are alkaline in composition, with only small volumes produced in recent eruptions. In spite of the apparent silence of this system two intrusive episodes have been detected within the last decade, causing major concern in the local community. In 1994, and again in 1999, seismic unrest associated with magmatic intrusions occurred in the system. Crustal deformation associated with the events was detected by dry-tilt, GPS and interferometry. During the 1994 episode, the center of deformation was situated underneath the icecap, and the area experiencing maximum uplift was therefore within the zone of decorrelation. The deformation shows an oval fringe pattern, which reaches well beyond the icecap, covering more than 300 km2 in total. Up to 15 cm of LOS ("line of sight") displacement is observed. The temporal resolution of the InSAR images during the 1999 intrusive episode is better and it is possible to follow the development of the intrusive event through time. The center of deformation does not coincide with the center from the 1994 event, but is situated just south of the icecap. The deformation during this event amounts to about 20 cm of LOS. Several of the interferograms cover the whole time-span of the 1999 intrusion, but three interferograms cover different periods of the intrusive event. The data set enables us to follow the temporal development of the crustal deformation created by the intrusion, and hence the growth of the intrusion itself through time. A previous study based on forward modeling of GPS and tilt data
Estimation and optimization of thermal performance of evacuated tube solar collector system
NASA Astrophysics Data System (ADS)
Dikmen, Erkan; Ayaz, Mahir; Ezen, H. Hüseyin; Küçüksille, Ecir U.; Şahin, Arzu Şencan
2014-05-01
In this study, artificial neural networks (ANNs) and adaptive neuro-fuzzy (ANFIS) in order to predict the thermal performance of evacuated tube solar collector system have been used. The experimental data for the training and testing of the networks were used. The results of ANN are compared with ANFIS in which the same data sets are used. The R2-value for the thermal performance values of collector is 0.811914 which can be considered as satisfactory. The results obtained when unknown data were presented to the networks are satisfactory and indicate that the proposed method can successfully be used for the prediction of the thermal performance of evacuated tube solar collectors. In addition, new formulations obtained from ANN are presented for the calculation of the thermal performance. The advantages of this approaches compared to the conventional methods are speed, simplicity, and the capacity of the network to learn from examples. In addition, genetic algorithm (GA) was used to maximize the thermal performance of the system. The optimum working conditions of the system were determined by the GA.
NASA Astrophysics Data System (ADS)
Li, Bin; Atakan, Kuvvet; Sørensen, Mathilde Bøttger; Havskov, Jens
2015-05-01
Earthquake focal mechanisms of the Shanxi rift system, North China, are investigated for the time period 1965-April 2014. A total of 143 focal mechanisms of ML ≥ 3.0 earthquakes were compiled. Among them, 105 solutions are newly determined in this study by combining the P-wave first motions and full waveform inversion, and 38 solutions are from available published data. Stress tensor inversion was then performed based on the new database. The results show that most solutions in the Shanxi rift system exhibit normal or strike-slip faulting, and the regional stress field is transtensional and dominated by NNW-SSE extension. This correlates well with results from GPS data, geological field observations and levelling measurements across the faults. Heterogeneity exists in the regional stress field, as indicated by individual stress tensor inversions conducted for five subzones. While the minimum stress axis (σ3) appears to be consistent and stable, the orientations, especially the plunges, of the maximum and intermediate stresses (σ1 and σ2) vary significantly along the strike of the different subzones. Based on our results and combining multidisciplinary observations from geological surveys, GPS and cross-fault monitoring, a kinematic model is proposed for the Shanxi rift system, in which the rift is situated between two opposite rotating crustal blocks, exhibiting a transtensional stress regimes. This model illustrates the present-day stress field and its correlation to the regional tectonics, as well as the current crustal deformation of the Shanxi rift system. Results obtained in this study, may help to understand the geodynamics, neotectonic activity, active seismicity and potential seismic hazard in this region.
NASA Astrophysics Data System (ADS)
Li, Bin; Sørensen, Mathilde; Atakan, Kuvvet; Havskov, Jens
2015-04-01
The Shanxi rift system is one of the most outstanding intra-plate transtensional fault zones in the North China block. Earthquake focal mechanisms of the rift system are investigated for the time period 1965 - Apr. 2014. A total of 143 focal mechanisms of ML ≥ 3.0 earthquakes were compiled. Among them, 105 solutions are newly determined by combining the P-wave first motions and full waveform inversion, and 38 solutions are from available published data. Stress tensor inversion was then performed based on the new database. The results show that most solutions exhibit normal or strike-slip faulting, and the regional stress field is transtensional and dominated by NNW-SSE extension. This correlates well with results from GPS data, geological field observations and leveling measurements across the faults. Heterogeneity exists in the regional stress field, as indicated by individual stress tensor inversions conducted for five subzones. While the minimum stress axis (σ3) appears to be consistent and stable, the orientations, especially the plunges, of the maximum and intermediate stresses (σ1 and σ2) vary significantly among the different subzones. Based on our results and combining multidisciplinary observations from geological surveys, GPS and cross-fault monitoring, a kinematic model is proposed, in which the Shanxi rift system is situated between two opposite rotating blocks, exhibiting a transtensional stress regime. This model illustrates the present-day stress field and its correlation with the regional tectonics, as well as the current crustal deformation of the Shanxi rift system. Results obtained in this study, may help to understand the geodynamics, neotectonic activity, active seismicity and potential seismic hazard in this region of North China.
2011-09-30
the Rayleigh-to-geometric scattering transition is within the frequency band of the WHOI broadband system (e.g., copepods ), and either larger fluid...that numerical abundance of zooplankton was dominated by small copepods that were relatively evenly distributed throughout the water-column...indication in either the MONESS or the VPR that the acoustic scattering layer was correlated to an increased abundance of zooplankton. Small copepods
NASA Astrophysics Data System (ADS)
Karamitopoulos, P.; Weltje, G.; Dalman, R.
2011-12-01
Spatial and temporal variability of sediment storage in fluvio-deltaic sedimentary systems is controlled by the interplay of allogenic and autogenic processes. In order to investigate the effects of this interplay on the resulting stratigraphy at varying spatio-temporal scales, we carried out a series of numerical experiments using an aggregated process-based model of fluvio-deltaic systems (SIMCLAST), which combines diffusive and advective transport with sub-grid channel stability algorithms in the fluvial domain. New distributary channels occur by avulsions under conditions of local superelevation or through bifurcations due to mouth bar deposition. A series of numerical experiments were performed under forcing by glacio-eustatic sealevel cycles in the order of 100 kyr. Initial conditions of all experiments are represented by classic continental-margin topography with a shelf break. In this scenario, erosional features (canyons) are developed when sea level falls below the shelf break. Sediment supply and liquid discharge remain constant throughout the experiments. In order to characterize the topographic variability during the experiments, we used a difference measure obtained by summation of local changes in net sediment accumulation rates across the entire model domain. Long-term average variability (10 kyr resolution) correlates strongly with the allogenic sea-level signal. The long-term variability reaches a maximum around the time interval corresponding to isochronous maximum flooding surfaces, when retrogradation gives way to a new episode of progradation. Long-term mean variability is lowest during periods of sea-level fall, when incision restricts sediment dispersal. Increasing the time resolution of our difference measure allows recognition of numerous small peaks which correspond to local changes in sediment accumulation rates induced by autogenic processes (avulsions and bifurcations). The amplitudes of these peaks are related to the rate of change of
Wu, Wei; Mast, Thomas G; Ziembko, Christopher; Breza, Joseph M; Contreras, Robert J
2013-01-01
We analyzed the spike discharge patterns of two types of neurons in the rodent peripheral gustatory system, Na specialists (NS) and acid generalists (AG) to lingual stimulation with NaCl, acetic acid, and mixtures of the two stimuli. Previous computational investigations found that both spike rate and spike timing contribute to taste quality coding. These studies used commonly accepted computational methods, but they do not provide a consistent statistical evaluation of spike trains. In this paper, we adopted a new computational framework that treated each spike train as an individual data point for computing summary statistics such as mean and variance in the spike train space. We found that these statistical summaries properly characterized the firing patterns (e. g. template and variability) and quantified the differences between NS and AG neurons. The same framework was also used to assess the discrimination performance of NS and AG neurons and to remove spontaneous background activity or "noise" from the spike train responses. The results indicated that the new metric system provided the desired decoding performance and noise-removal improved stimulus classification accuracy, especially of neurons with high spontaneous rates. In summary, this new method naturally conducts statistical analysis and neural decoding under one consistent framework, and the results demonstrated that individual peripheral-gustatory neurons generate a unique and reliable firing pattern during sensory stimulation and that this pattern can be reliably decoded.
NASA Astrophysics Data System (ADS)
Li, B.; Atakan, K.; Sorensen, M. B.; Havskov, J.
2014-12-01
Earthquake focal mechanisms of the Shanxi rift system, North China, are investigated for the time period 1965 - Apr. 2014. A total of 143 focal mechanisms of ML ≥ 3.0 earthquakes were compiled. Among them, 105 solutions are newly determined by combining the P-wave first motions and full waveform inversion, and 38 solutions are from available published data. Stress tensor inversion was then performed based on the new database. The results show that most solutions exhibit normal or strike-slip faulting, and the regional stress field is characterized by a stable, dominating NNW-SSE extension and an ENE-WSW compression. This correlates well with results from GPS data, geological field observations and leveling measurements across the faults. Heterogeneity exists in the regional stress field, as indicated by individual stress tensor inversions conducted for five subzones. While the minimum stress axis (σ3) appears to be consistent and stable, the orientations, especially the plunges, of the maximum and intermediate stresses (σ1 and σ2) vary significantly among the different subzones. Based on our results and combining multidisciplinary observations from geological surveys, GPS and cross-fault monitoring, a kinematic model is proposed, to illustrate the present-day stress field and its correlation with the regional tectonics, as well as the current crustal deformation of the Shanxi rift system. Results obtained in this study, may help to understand the geodynamics, neotectonic activity, active seismicity and potential seismic hazard in this region of North China.
NASA Astrophysics Data System (ADS)
Nimalsiri, Thusitha Bandara; Suriyaarachchi, Nuwan Buddhika; Hobbs, Bruce; Manzella, Adele; Fonseka, Morrel; Dharmagunawardena, H. A.; Subasinghe, Nalaka Deepal
2015-06-01
First comprehensive geothermal exploration in Sri Lanka was conducted in 2010 encompassing seven thermal springs, of which Kapurella records the highest temperature. The study consisted of passive magnetotelluric (MT) soundings, in which static shifts were corrected using time domain electromagnetic method (TDEM). A frequency range of 12,500-0.001 Hz was used for MT acquisition and polar diagrams were employed for dimensionality determination. MT and TDEM data were jointly inverted and 2D models were created using both transverse electric and transverse magnetic modes. A conductive southeast dipping structure is revealed from both phase pseudosections and the preferred 2D inversion model. A conductive formation starting at a depth of 7.5 km shows a direct link with the dipping structure. We suggest that these conductive structures are accounted for deep circulation and accumulation of groundwater. Our results show the geothermal reservoir of Kapurella system with a lateral extension of around 2.5 km and a depth range of 3 km. It is further found that the associated dolerite dike is not the source of heat although it could be acting as an impermeable barrier to form the reservoir. The results have indicated the location of the deep reservoir and the possible fluid path of the Kapurella system, which could be utilized to direct future geothermal studies. This pioneering study makes suggestions to improve future MT data acquisition and to use boreholes and other geophysical methods to improve the investigation of structures at depth.
"Groundwater ages" of the Lake Chad multi-layer aquifers system inferred from 14C and 36Cl data
NASA Astrophysics Data System (ADS)
Bouchez, Camille; Deschamps, Pierre; Goncalves, Julio; Hamelin, Bruno; Seidel, Jean-Luc; Doumnang, Jean-Claude
2014-05-01
Assessment of recharge, paleo-recharge and groundwater residence time of aquifer systems of the Sahel is pivotal for a sustainable management of this vulnerable resource. Due to its stratified aquifer system, the Lake Chad Basin (LCB) offers the opportunity to assess recharge processes over time and to link climate and hydrology in the Sahel. Located in north-central Africa at the fringe between the Sahel and the Sahara, the lake Chad basin (LCB) is an endorheic basin of 2,5.106 km2. With a monsoon climate, the majority of the rainfall occurs in the southern one third of the basin, the Chari/Logone River system transporting about 90% of the runoff generated within the drainage basin. A complex multi-layer aquifer system is located in the central part of the LCB. The Quaternary unconfined aquifer, covering 500 000 km2, is characterized by the occurrence of poorly understood piezometric depressions. Artesian groundwaters are found in the Plio-Pleistocene lacustrine and deltaic sedimentary aquifers (early Pliocene and Continental Terminal). The present-day lake is in hydraulic contact with the Quaternary Aquifer, but during past megalake phases, most of the Quaternary aquifer was submerged and may experience major recharge events. To identify active recharge area and assess groundwater dynamics, one hundred surface and groundwater samples of all layers have been collected over the southern part of the LCB. Major and trace elements have been analyzed. Measurements of 36Cl have been carried out at CEREGE, on the French 5 MV AMS National Facility ASTER and 14C activities have been analyzed for 17 samples on the French AMS ARTEMIS. Additionally, the stable isotopic composition was measured on the artesian aquifer samples. In the Quaternary aquifer, results show a large scatter with waters having very different isotopic and geochemical signature. In its southern part and in the vicinity of the surface waters, groundwaters are predominantly Ca-Mg-HCO3 type waters with very
Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach
NASA Astrophysics Data System (ADS)
Taufik, Afirah; Sakinah Syed Ahmad, Sharifah
2016-06-01
The aim of this paper is to propose a method to classify the land covers of a satellite image based on fuzzy rule-based system approach. The study uses bands in Landsat 8 and other indices, such as Normalized Difference Water Index (NDWI), Normalized difference built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) as input for the fuzzy inference system. The selected three indices represent our main three classes called water, built- up land, and vegetation. The combination of the original multispectral bands and selected indices provide more information about the image. The parameter selection of fuzzy membership is performed by using a supervised method known as ANFIS (Adaptive neuro fuzzy inference system) training. The fuzzy system is tested for the classification on the land cover image that covers Klang Valley area. The results showed that the fuzzy system approach is effective and can be explored and implemented for other areas of Landsat data.
Inferring genetic networks from microarray data.
May, Elebeoba Eni; Davidson, George S.; Martin, Shawn Bryan; Werner-Washburne, Margaret C.; Faulon, Jean-Loup Michel
2004-06-01
In theory, it should be possible to infer realistic genetic networks from time series microarray data. In practice, however, network discovery has proved problematic. The three major challenges are: (1) inferring the network; (2) estimating the stability of the inferred network; and (3) making the network visually accessible to the user. Here we describe a method, tested on publicly available time series microarray data, which addresses these concerns. The inference of genetic networks from genome-wide experimental data is an important biological problem which has received much attention. Approaches to this problem have typically included application of clustering algorithms [6]; the use of Boolean networks [12, 1, 10]; the use of Bayesian networks [8, 11]; and the use of continuous models [21, 14, 19]. Overviews of the problem and general approaches to network inference can be found in [4, 3]. Our approach to network inference is similar to earlier methods in that we use both clustering and Boolean network inference. However, we have attempted to extend the process to better serve the end-user, the biologist. In particular, we have incorporated a system to assess the reliability of our network, and we have developed tools which allow interactive visualization of the proposed network.
Linguistic Markers of Inference Generation While Reading.
Clinton, Virginia; Carlson, Sarah E; Seipel, Ben
2016-06-01
Words can be informative linguistic markers of psychological constructs. The purpose of this study is to examine associations between word use and the process of making meaningful connections to a text while reading (i.e., inference generation). To achieve this purpose, think-aloud data from third-fifth grade students ([Formula: see text]) reading narrative texts were hand-coded for inferences. These data were also processed with a computer text analysis tool, Linguistic Inquiry and Word Count, for percentages of word use in the following categories: cognitive mechanism words, nonfluencies, and nine types of function words. Findings indicate that cognitive mechanisms were an independent, positive predictor of connections to background knowledge (i.e., elaborative inference generation) and nonfluencies were an independent, negative predictor of connections within the text (i.e., bridging inference generation). Function words did not provide unique variance towards predicting inference generation. These findings are discussed in the context of a cognitive reflection model and the differences between bridging and elaborative inference generation. In addition, potential practical implications for intelligent tutoring systems and computer-based methods of inference identification are presented.
Hurwitz, S.; Lowenstern, J. B.; Heasler, H.
2007-01-01
We present and analyze a chemical dataset that includes the concentrations and fluxes of HCO3-, SO42-, Cl-, and F- in the major rivers draining Yellowstone National Park (YNP) for the 2002-2004 water years (1 October 2001 - 30 September 2004). The total (molar) flux in all rivers decreases in the following order, HCO3- > Cl- > SO42- > F-, but each river is characterized by a distinct chemical composition, implying large-scale spatial heterogeneity in the inputs of the various solutes. The data also display non-uniform temporal trends; whereas solute concentrations and fluxes are nearly constant during base-flow conditions, concentrations decrease, solute fluxes increase, and HCO3-/Cl-, and SO42-/Cl- increase during the late-spring high-flow period. HCO3-/SO42- decreases with increasing discharge in the Madison and Falls Rivers, but increases with discharge in the Yellowstone and Snake Rivers. The non-linear relations between solute concentrations and river discharge and the change in anion ratios associated with spring runoff are explained by mixing between two components: (1) a component that is discharged during base-flow conditions and (2) a component associated with snow-melt runoff characterized by higher HCO3-/Cl- and SO42-/Cl-. The fraction of the second component is greater in the Yellowstone and Snake Rivers, which host lakes in their drainage basins and where a large fraction of the solute flux follows thaw of ice cover in the spring months. Although the total river HCO3- flux is larger than the flux of other solutes (HCO3-/Cl- ??? 3), the CO2 equivalent flux is only ??? 1% of the estimated emission of magmatic CO2 soil emissions from Yellowstone. No anomalous solute flux in response to perturbations in the hydrothermal system was observed, possibly because gage locations are too distant from areas of disturbance, or because of the relatively low sampling frequency. In order to detect changes in river hydrothermal solute fluxes, sampling at higher
Hanson, K.M.; Cunningham, G.S.
1996-04-01
The authors are developing a computer application, called the Bayes Inference Engine, to provide the means to make inferences about models of physical reality within a Bayesian framework. The construction of complex nonlinear models is achieved by a fully object-oriented design. The models are represented by a data-flow diagram that may be manipulated by the analyst through a graphical programming environment. Maximum a posteriori solutions are achieved using a general, gradient-based optimization algorithm. The application incorporates a new technique of estimating and visualizing the uncertainties in specific aspects of the model.
Cortical circuits for perceptual inference.
Friston, Karl; Kiebel, Stefan
2009-10-01
This paper assumes that cortical circuits have evolved to enable inference about the causes of sensory input received by the brain. This provides a principled specification of what neural circuits have to achieve. Here, we attempt to address how the brain makes inferences by casting inference as an optimisation problem. We look at how the ensuing recognition dynamics could be supported by directed connections and message-passing among neuronal populations, given our knowledge of intrinsic and extrinsic neuronal connections. We assume that the brain models the world as a dynamic system, which imposes causal structure on the sensorium. Perception is equated with the optimisation or inversion of this internal model, to explain sensory input. Given a model of how sensory data are generated, we use a generic variational approach to model inversion to furnish equations that prescribe recognition; i.e., the dynamics of neuronal activity that represents the causes of sensory input. Here, we focus on a model whose hierarchical and dynamical structure enables simulated brains to recognise and predict sequences of sensory states. We first review these models and their inversion under a variational free-energy formulation. We then show that the brain has the necessary infrastructure to implement this inversion and present stimulations using synthetic birds that generate and recognise birdsongs.
NASA Astrophysics Data System (ADS)
Colombani, N.; Di Giuseppe, D.; Faccini, B.; Ferretti, G.; Mastrocicco, M.; Coltorti, M.
2016-06-01
Shallow lenses in reclaimed coastal areas are precious sources of freshwater for crop development, but their seasonal behaviour is seldom known in tile-drained fields. In this study, field monitoring and numerical modelling provide a robust conceptual model of these complex environments. Crop and meteorological data are used to implement an unsaturated flow model to reconstruct daily recharge. Groundwater fluxes and salinity, water table elevation, tile-drains' discharge and salinity are used to calibrate a 2D density-dependent numerical model to quantify non-reactive solute transport within the aquifer-aquitard system. Results suggest that lateral fluxes in low hydraulic conductivity sediments are limited, while water table fluctuation is significant. The use of depth-integrated monitoring to calibrate the model results in poor efficiency, while multi-level soil profiles are crucial to define the mixing zone between fresh and brackish groundwater. Measured fluxes and chloride concentrations from tile-drains not fully compare with calculated ones due to preferential flow through cracks.
NASA Astrophysics Data System (ADS)
Konstantinou, K. I.; Rontogianni, S.; Lin, C.-H.
2012-04-01
The Tatun Volcano Group (TVG) is located in northern Taiwan near the capital Taipei. In this study we selected and analyzed almost four years (2004 - 2007) of its seismic activity. The seismic network established around TVG initially consisted of eight three component seismic stations with this number increasing to twelve by 2007. Local seismicity mainly involved High Frequency (HF) earthquakes occurring as isolated events or as spasmodic bursts. Mixed and Low Frequency (LF) events were observed during the same period but more rarely. During the analysis we estimated the magnitudes for the HF earthquakes and used a probabilistic non-linear method to locate all these events. We examined the temporal and spatial distribution of our data-set for each year and the monthly seismic energy distribution. In addition, complex frequencies for LF events were analyzed with the Sompi method. We juxtapose these results with gas geochemistry studies of fumaroles covering a similar period. A model for the volcano-hydrothermal system is proposed where fluids and magmatic gases ascend from a magma body that lies at around 7- 8 km depth. The movement of fluids to shallow depths increases the heat, the fracturing and also creates resonance and vibrations in cracks and conduits. This detailed analysis and previous physical volcanology observations at TVG suggest that the region is volcanically active and that measures to mitigate the risks have to be considered by the local authorities.
NASA Astrophysics Data System (ADS)
Takahashi, N.; Kodaira, S.; Miura, S.; Sato, T.; Yamashita, M.; No, T.; Takizawa, K.; Kaiho, Y.; Kaneda, Y.
2008-12-01
The Izu-Ogasawara-Mariana (IBM) arc-backarc system has continued the crustal growth through crustal thickening by magmatic activities and crustal thinning by backarc opening. Tatsumi et al (2008) proposed petrological crustal growth model started from basaltic magmas rising from the slab, and showed the consistency with the seismic velocity model. Although crustal growth by the crustal thickening are modeled, crustal structural change by the backarc opening are not still unknown yet. The Shikoku Basin and Parece Vela Basin were formed by the backarc opening during approximately 15-30 Ma. Since 6 Ma, the Mariana Trough has opened and the stage already moved to spreading process from rifting process. In the northern Izu-Ogasawara arc, the Sumisu rift is in the initial rifting stage. Therefore, understanding of the crustal change by the backarc opening from rifting to spreading is indispensable to know the crustal growth of whole Izu-Ogasawara-Mariana island arc. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has carried out seismic studies using a multichannel reflection survey system and ocean bottom seismographs (OBSs) around the IBM arc since 2003 (Takahashi et al., 2007; Kodaira et al., 2007; Takahashi et al., 2008; Kodaira et al., 2008). We already obtained eight P-wave velocity models across the IBM arc and these structures record the crustal structural change during the backarc opening process from the rifting stage to the spreading stage. As the results, we identified characteristics of the crustal structural change accompanied with backarc opening as follows. (1) Beneath the initial rifting stage without normal faults, for example, in the northern tip of the Mariana Trough, crustal thickening are identified. (2) Beneath the initial rifting stage with normal faults, for example, in the Sumisu Rift, the crustal thickness is almost similar to that beneath the volcanic front. Although an existence of the crust-mantle transition layer with
NASA Technical Reports Server (NTRS)
1993-01-01
All the options in the NASA VEGetation Workbench (VEG) make use of a database of historical cover types. This database contains results from experiments by scientists on a wide variety of different cover types. The learning system uses the database to provide positive and negative training examples of classes that enable it to learn distinguishing features between classes of vegetation. All the other VEG options use the database to estimate the error bounds involved in the results obtained when various analysis techniques are applied to the sample of cover type data that is being studied. In the previous version of VEG, the historical cover type database was stored as part of the VEG knowledge base. This database was removed from the knowledge base. It is now stored as a series of flat files that are external to VEG. An interface between VEG and these files was provided. The interface allows the user to select which files of historical data to use. The files are then read, and the data are stored in Knowledge Engineering Environment (KEE) units using the same organization of units as in the previous version of VEG. The interface also allows the user to delete some or all of the historical database units from VEG and load new historical data from a file. This report summarizes the use of the historical cover type database in VEG. It then describes the new interface to the files containing the historical data. It describes minor changes that were made to VEG to enable the externally stored database to be used. Test runs to test the operation of the new interface and also to test the operation of VEG using historical data loaded from external files are described. Task F was completed. A Sun cartridge tape containing the KEE and Common Lisp code for the new interface and the modified version of the VEG knowledge base was delivered to the NASA GSFC technical representative.
2011-01-01
Background Main waterfowl migration systems are well understood through ringing activities. However, in mallards (Anas platyrhynchos) ringing studies suggest deviations from general migratory trends and traditions in waterfowl. Furthermore, surprisingly little is known about the population genetic structure of mallards, and studying it may yield insight into the spread of diseases such as Avian Influenza, and in management and conservation of wetlands. The study of evolution of genetic diversity and subsequent partitioning thereof during the last glaciation adds to ongoing discussions on the general evolution of waterfowl populations and flyway evolution. Hypothesised mallard flyways are tested explicitly by analysing mitochondrial mallard DNA from the whole northern hemisphere. Results Phylogenetic analyses confirm two mitochondrial mallard clades. Genetic differentiation within Eurasia and North-America is low, on a continental scale, but large differences occur between these two land masses (FST = 0.51). Half the genetic variance lies within sampling locations, and a negligible portion between currently recognised waterfowl flyways, within Eurasia and North-America. Analysis of molecular variance (AMOVA) at continent scale, incorporating sampling localities as smallest units, also shows the absence of population structure on the flyway level. Finally, demographic modelling by coalescence simulation proposes a split between Eurasia and North-America 43,000 to 74,000 years ago and strong population growth (~100fold) since then and little migration (not statistically different from zero). Conclusions Based on this first complete assessment of the mallard's world-wide population genetic structure we confirm that no more than two mtDNA clades exist. Clade A is characteristic for Eurasia, and clade B for North-America although some representatives of clade A are also found in North-America. We explain this pattern by evaluating competing hypotheses and conclude that a
NASA Astrophysics Data System (ADS)
Kuria, Z. N.; Woldai, T.; van der Meer, F. D.; Barongo, J. O.
2010-06-01
uplifted, heavily fractured and deformed basin to the north (highly disturbed magnetic signatures) characteristic of on going active rifting; and a refined architecture of the asymmetry graben to the south with an intrarift horst, whose western graben is 4 km deep and eastern graben is much deeper (9 km), with a zone of significant break in magnetic signatures at that depth, interpreted as source of the hot springs south of Lake Magadi (a location confirmed near surface by ground magnetic and resistivity data sets). The magnetic sources to the north are shallow at 15 km depth compared to 22 km to the south. The loss of magnetism to the north is probably due to increased heat as a result of magmatic intrusion supporting active rifting model. Conclusively, the integrated approach employed in this research confirms that fault system delineated to the north is actively deforming under E-W normal extension and is a potential earthquake source probably related to magmatic intrusion, while the presence of fluids within the south fault zone reduce intensity of faulting activity and explains lack of earthquakes in a continental rift setting.
NASA Astrophysics Data System (ADS)
Relvas, P.; Luis, J. M.; Silva, P. L.; Santos, A. M.
2011-12-01
Satellite-derived sea surface temperature (SST) trends are built at the pixel scale to investigate long term changes in oceanic patterns. We consider that the SST time-series already available is long enough to attempt the analysis at the decadal scale. The analysis extends from 1982 to 2009 and is applied to the eastern boundary of the North Atlantic, from 10 to 45 N extending until 30 W, covering the Canary Current Upwelling System. Monthly mean SST data from the Advanced Very High Resolution Radiometer (AVHRR) on board NOAA series satellites, with a spatial resolution of 4x4 km, were provided by the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory. SST estimates are derived from the Pathfinder Version 5 algorithms. Whenever possible the time series are limited to the night-time passes to avoid any solar heating effect. Only high quality SST values with a flag assignment of 6 and 7 (Kilpatrick et al., 2001) are used. Using only the highest quality values creates a data processing problem that is posed by the voids left on the temperature grids on the node positions corresponding to the rejected values. The case is further complicated by the fact that the voids, originated by unfavourable weather conditions of strong cloud cover and coastal fogs, most intense during strong upwelling events, are located on variable positions on the grids depending on the month the grid refers to. This is particular evident on the winter months where large areas of the ocean did not have any reliable measure, even on a monthly average. We apply several procedures to fill these data gaps that guarantee that annual and seasonal averages are not biased towards summer temperatures. To investigate the spatial variability of the long term SST trend a robust linear fit was applied to each individual pixel, crossing along the time the same 4x4 km pixel in all the processed monthly mean AVHRR SST images from 1982 until 2009. Fields of
ERIC Educational Resources Information Center
Watson, Jane
2007-01-01
Inference, or decision making, is seen in curriculum documents as the final step in a statistical investigation. For a formal statistical enquiry this may be associated with sophisticated tests involving probability distributions. For young students without the mathematical background to perform such tests, it is still possible to draw informal…
NASA Astrophysics Data System (ADS)
Mirmomeni, Masoud; Shafiee, Masoud; Lucas, Caro; Araabi, Babak Nadjar
2006-12-01
In the last two decades, researches indicate that the physical precursor and solar dynamo techniques are preferred as practical tools for long term prediction of solar activity. But, why more than 23 cycles of solar activity history should be omitted and just use the empirical methods or simple autoregressive methods on the basis of observations for the latest eight cycles? In this article, a method based on fuzzy descriptor systems (as a generalization of ordinary Takagi Sugeno (T S) neuro-fuzzy models), developed by the authors to yield a satisfactory solution to the unresolved problem of nonlinear descriptor system identification, and singular spectrum analysis (SSA) as one of the spectral analysis is proposed to forecast some of solar activity's indexes in the way that, a fuzzy descriptor model is optimized for each of the principal components obtained from SSA, and the multi step predicted values are recombined to make the disturbance storm time (DST) and proton flux indexes. The proposed method is used for forecasting hourly DST index in 2001 and daily average of the DST index from 1957 to 2005 and proton flux index in 2001. The results are remarkably good in the predictions of DST and proton flux indexes.
Warburton, Elizabeth M; Kam, Michael; Bar-Shira, Enav; Friedman, Aharon; Khokhlova, Irina S; Koren, Lee; Asfur, Mustafa; Geffen, Eli; Kiefer, Daniel; Krasnov, Boris R; Degen, A Allan
2016-09-01
Evaluating host resistance via parasite fitness helps place host-parasite relationships within evolutionary and ecological contexts; however, few studies consider both these processes simultaneously. We investigated how different levels of parasite pressure affect parasite mortality and reproductive success in relationship to host defense efforts, using the rodent Gerbillus nanus and the flea Xenopsylla conformis as a host-parasite system. Fifteen immune-naïve male rodents were infested with 20, 50, or 100 fleas for four weeks. During this time number of new imagoes produced per adult flea (our flea reproductive output metric), flea mortality, and change in circulating anti-flea immunoglobulin G (our measure of adaptive immune defense) were monitored. Three hypotheses guided this work: (1) increasing parasite pressure would heighten host defenses; (2) parasite mortality would increase and parasite reproductive output would decrease with increasing investment in host defense; and (3) hosts under high parasite pressure could invest in behavioral and/or immune responses. We predicted that at high infestation levels (a) parasite mortality would increase; (b) flea reproductive output per individual would decrease; and (c) host circulating anti-flea antibody levels would increase. The hypotheses were partially supported. Flea mortality significantly increased and flea reproductive output significantly decreased as flea pressure increased. Host adaptive immune defense did not significantly change with increasing flea pressure. Therefore, we inferred that investment in host behavioral defense, either alone or in combination with density-dependent effects, may be more efficient at increasing flea mortality and decreasing flea reproductive output than antibody production during initial infestation in this system.
Prediction on carbon dioxide emissions based on fuzzy rules
NASA Astrophysics Data System (ADS)
Pauzi, Herrini; Abdullah, Lazim
2014-06-01
There are several ways to predict air quality, varying from simple regression to models based on artificial intelligence. Most of the conventional methods are not sufficiently able to provide good forecasting performances due to the problems with non-linearity uncertainty and complexity of the data. Artificial intelligence techniques are successfully used in modeling air quality in order to cope with the problems. This paper describes fuzzy inference system (FIS) to predict CO2 emissions in Malaysia. Furthermore, adaptive neuro-fuzzy inference system (ANFIS) is used to compare the prediction performance. Data of five variables: energy use, gross domestic product per capita, population density, combustible renewable and waste and CO2 intensity are employed in this comparative study. The results from the two model proposed are compared and it is clearly shown that the ANFIS outperforms FIS in CO2 prediction.
Active inference and learning.
Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O'Doherty, John; Pezzulo, Giovanni
2016-09-01
This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity.
Network inference in the nonequilibrium steady state
NASA Astrophysics Data System (ADS)
Dettmer, Simon L.; Nguyen, H. Chau; Berg, Johannes
2016-11-01
Nonequilibrium systems lack an explicit characterization of their steady state like the Boltzmann distribution for equilibrium systems. This has drastic consequences for the inference of the parameters of a model when its dynamics lacks detailed balance. Such nonequilibrium systems occur naturally in applications like neural networks and gene regulatory networks. Here, we focus on the paradigmatic asymmetric Ising model and show that we can learn its parameters from independent samples of the nonequilibrium steady state. We present both an exact inference algorithm and a computationally more efficient, approximate algorithm for weak interactions based on a systematic expansion around mean-field theory. Obtaining expressions for magnetizations and two- and three-point spin correlations, we establish that these observables are sufficient to infer the model parameters. Further, we discuss the symmetries characterizing the different orders of the expansion around the mean field and show how different types of dynamics can be distinguished on the basis of samples from the nonequilibrium steady state.
Ocampo-Duque, William; Osorio, Carolina; Piamba, Christian; Schuhmacher, Marta; Domingo, José L
2013-02-01
The integration of water quality monitoring variables is essential in environmental decision making. Nowadays, advanced techniques to manage subjectivity, imprecision, uncertainty, vagueness, and variability are required in such complex evaluation process. We here propose a probabilistic fuzzy hybrid model to assess river water quality. Fuzzy logic reasoning has been used to compute a water quality integrative index. By applying a Monte Carlo technique, based on non-parametric probability distributions, the randomness of model inputs was estimated. Annual histograms of nine water quality variables were built with monitoring data systematically collected in the Colombian Cauca River, and probability density estimations using the kernel smoothing method were applied to fit data. Several years were assessed, and river sectors upstream and downstream the city of Santiago de Cali, a big city with basic wastewater treatment and high industrial activity, were analyzed. The probabilistic fuzzy water quality index was able to explain the reduction in water quality, as the river receives a larger number of agriculture, domestic, and industrial effluents. The results of the hybrid model were compared to traditional water quality indexes. The main advantage of the proposed method is that it considers flexible boundaries between the linguistic qualifiers used to define the water status, being the belongingness of water quality to the diverse output fuzzy sets or classes provided with percentiles and histograms, which allows classify better the real water condition. The results of this study show that fuzzy inference systems integrated to stochastic non-parametric techniques may be used as complementary tools in water quality indexing methodologies.
Decision generation tools and Bayesian inference
NASA Astrophysics Data System (ADS)
Jannson, Tomasz; Wang, Wenjian; Forrester, Thomas; Kostrzewski, Andrew; Veeris, Christian; Nielsen, Thomas
2014-05-01
Digital Decision Generation (DDG) tools are important software sub-systems of Command and Control (C2) systems and technologies. In this paper, we present a special type of DDGs based on Bayesian Inference, related to adverse (hostile) networks, including such important applications as terrorism-related networks and organized crime ones.
Multimodel inference and adaptive management
Rehme, S.E.; Powell, L.A.; Allen, C.R.
2011-01-01
Ecology is an inherently complex science coping with correlated variables, nonlinear interactions and multiple scales of pattern and process, making it difficult for experiments to result in clear, strong inference. Natural resource managers, policy makers, and stakeholders rely on science to provide timely and accurate management recommendations. However, the time necessary to untangle the complexities of interactions within ecosystems is often far greater than the time available to make management decisions. One method of coping with this problem is multimodel inference. Multimodel inference assesses uncertainty by calculating likelihoods among multiple competing hypotheses, but multimodel inference results are often equivocal. Despite this, there may be pressure for ecologists to provide management recommendations regardless of the strength of their study’s inference. We reviewed papers in the Journal of Wildlife Management (JWM) and the journal Conservation Biology (CB) to quantify the prevalence of multimodel inference approaches, the resulting inference (weak versus strong), and how authors dealt with the uncertainty. Thirty-eight percent and 14%, respectively, of articles in the JWM and CB used multimodel inference approaches. Strong inference was rarely observed, with only 7% of JWM and 20% of CB articles resulting in strong inference. We found the majority of weak inference papers in both journals (59%) gave specific management recommendations. Model selection uncertainty was ignored in most recommendations for management. We suggest that adaptive management is an ideal method to resolve uncertainty when research results in weak inference.
NASA Astrophysics Data System (ADS)
Al-Abadi, Alaa M.
2016-11-01
The potential of using three different data-driven techniques namely, multilayer perceptron with backpropagation artificial neural network (MLP), M5 decision tree model, and Takagi-Sugeno (TS) inference system for mimic stage-discharge relationship at Gharraf River system, southern Iraq has been investigated and discussed in this study. The study used the available stage and discharge data for predicting discharge using different combinations of stage, antecedent stages, and antecedent discharge values. The models' results were compared using root mean squared error (RMSE) and coefficient of determination ( R 2) error statistics. The results of the comparison in testing stage reveal that M5 and Takagi-Sugeno techniques have certain advantages for setting up stage-discharge than multilayer perceptron artificial neural network. Although the performance of TS inference system was very close to that for M5 model in terms of R 2, the M5 method has the lowest RMSE (8.10 m3/s). The study implies that both M5 and TS inference systems are promising tool for identifying stage-discharge relationship in the study area.
ERIC Educational Resources Information Center
Briggs, Derek C.
2010-01-01
The use of large-scale assessments for making high stakes inferences about students and the schools in which they are situated is premised on the assumption that tests are sensitive to good instruction. An increase in the quality of classroom instruction should cause, on the average, an increase in test scores. In work with a number of colleagues…
Distributed generation system using wind/photovoltaic/fuel cell
NASA Astrophysics Data System (ADS)
Buasri, Panhathai
This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.
NASA Technical Reports Server (NTRS)
Wheeler, Kevin; Timucin, Dogan; Rabbette, Maura; Curry, Charles; Allan, Mark; Lvov, Nikolay; Clanton, Sam; Pilewskie, Peter
2002-01-01
The goal of visual inference programming is to develop a software framework data analysis and to provide machine learning algorithms for inter-active data exploration and visualization. The topics include: 1) Intelligent Data Understanding (IDU) framework; 2) Challenge problems; 3) What's new here; 4) Framework features; 5) Wiring diagram; 6) Generated script; 7) Results of script; 8) Initial algorithms; 9) Independent Component Analysis for instrument diagnosis; 10) Output sensory mapping virtual joystick; 11) Output sensory mapping typing; 12) Closed-loop feedback mu-rhythm control; 13) Closed-loop training; 14) Data sources; and 15) Algorithms. This paper is in viewgraph form.
Quantum Inference on Bayesian Networks
NASA Astrophysics Data System (ADS)
Yoder, Theodore; Low, Guang Hao; Chuang, Isaac
2014-03-01
Because quantum physics is naturally probabilistic, it seems reasonable to expect physical systems to describe probabilities and their evolution in a natural fashion. Here, we use quantum computation to speedup sampling from a graphical probability model, the Bayesian network. A specialization of this sampling problem is approximate Bayesian inference, where the distribution on query variables is sampled given the values e of evidence variables. Inference is a key part of modern machine learning and artificial intelligence tasks, but is known to be NP-hard. Classically, a single unbiased sample is obtained from a Bayesian network on n variables with at most m parents per node in time (nmP(e) - 1 / 2) , depending critically on P(e) , the probability the evidence might occur in the first place. However, by implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking (n2m P(e) -1/2) time per sample. The speedup is the result of amplitude amplification, which is proving to be broadly applicable in sampling and machine learning tasks. In particular, we provide an explicit and efficient circuit construction that implements the algorithm without the need for oracle access.
Circular inferences in schizophrenia.
Jardri, Renaud; Denève, Sophie
2013-11-01
A considerable number of recent experimental and computational studies suggest that subtle impairments of excitatory to inhibitory balance or regulation are involved in many neurological and psychiatric conditions. The current paper aims to relate, specifically and quantitatively, excitatory to inhibitory imbalance with psychotic symptoms in schizophrenia. Considering that the brain constructs hierarchical causal models of the external world, we show that the failure to maintain the excitatory to inhibitory balance results in hallucinations as well as in the formation and subsequent consolidation of delusional beliefs. Indeed, the consequence of excitatory to inhibitory imbalance in a hierarchical neural network is equated to a pathological form of causal inference called 'circular belief propagation'. In circular belief propagation, bottom-up sensory information and top-down predictions are reverberated, i.e. prior beliefs are misinterpreted as sensory observations and vice versa. As a result, these predictions are counted multiple times. Circular inference explains the emergence of erroneous percepts, the patient's overconfidence when facing probabilistic choices, the learning of 'unshakable' causal relationships between unrelated events and a paradoxical immunity to perceptual illusions, which are all known to be associated with schizophrenia.
Inferring Horizontal Gene Transfer
Lassalle, Florent; Dessimoz, Christophe
2015-01-01
Horizontal or Lateral Gene Transfer (HGT or LGT) is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages [1]. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric") methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic") approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events. PMID:26020646
Moment inference from tomograms
Day-Lewis, F. D.; Chen, Y.; Singha, K.
2007-01-01
Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.
Computational inference of neural information flow networks.
Smith, V Anne; Yu, Jing; Smulders, Tom V; Hartemink, Alexander J; Jarvis, Erich D
2006-11-24
Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.
Reliability of the Granger causality inference
NASA Astrophysics Data System (ADS)
Zhou, Douglas; Zhang, Yaoyu; Xiao, Yanyang; Cai, David
2014-04-01
How to characterize information flows in physical, biological, and social systems remains a major theoretical challenge. Granger causality (GC) analysis has been widely used to investigate information flow through causal interactions. We address one of the central questions in GC analysis, that is, the reliability of the GC evaluation and its implications for the causal structures extracted by this analysis. Our work reveals that the manner in which a continuous dynamical process is projected or coarse-grained to a discrete process has a profound impact on the reliability of the GC inference, and different sampling may potentially yield completely opposite inferences. This inference hazard is present for both linear and nonlinear processes. We emphasize that there is a hazard of reaching incorrect conclusions about network topologies, even including statistical (such as small-world or scale-free) properties of the networks, when GC analysis is blindly applied to infer the network topology. We demonstrate this using a small-world network for which a drastic loss of small-world attributes occurs in the reconstructed network using the standard GC approach. We further show how to resolve the paradox that the GC analysis seemingly becomes less reliable when more information is incorporated using finer and finer sampling. Finally, we present strategies to overcome these inference artifacts in order to obtain a reliable GC result.
Gene-network inference by message passing
NASA Astrophysics Data System (ADS)
Braunstein, A.; Pagnani, A.; Weigt, M.; Zecchina, R.
2008-01-01
The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware.
Afifi, Firdaus; Anuar, Nor Badrul; Shamshirband, Shahaboddin; Choo, Kim-Kwang Raymond
2016-01-01
To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO).
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware
Afifi, Firdaus; Anuar, Nor Badrul; Shamshirband, Shahaboddin
2016-01-01
To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO). PMID:27611312
BIE: Bayesian Inference Engine
NASA Astrophysics Data System (ADS)
Weinberg, Martin D.
2013-12-01
The Bayesian Inference Engine (BIE) is an object-oriented library of tools written in C++ designed explicitly to enable Bayesian update and model comparison for astronomical problems. To facilitate "what if" exploration, BIE provides a command line interface (written with Bison and Flex) to run input scripts. The output of the code is a simulation of the Bayesian posterior distribution from which summary statistics e.g. by taking moments, or determine confidence intervals and so forth, can be determined. All of these quantities are fundamentally integrals and the Markov Chain approach produces variates heta distributed according to P( heta|D) so moments are trivially obtained by summing of the ensemble of variates.
Bayesian inference in geomagnetism
NASA Technical Reports Server (NTRS)
Backus, George E.
1988-01-01
The inverse problem in empirical geomagnetic modeling is investigated, with critical examination of recently published studies. Particular attention is given to the use of Bayesian inference (BI) to select the damping parameter lambda in the uniqueness portion of the inverse problem. The mathematical bases of BI and stochastic inversion are explored, with consideration of bound-softening problems and resolution in linear Gaussian BI. The problem of estimating the radial magnetic field B(r) at the earth core-mantle boundary from surface and satellite measurements is then analyzed in detail, with specific attention to the selection of lambda in the studies of Gubbins (1983) and Gubbins and Bloxham (1985). It is argued that the selection method is inappropriate and leads to lambda values much larger than those that would result if a reasonable bound on the heat flow at the CMB were assumed.
Bayes factors and multimodel inference
Link, W.A.; Barker, R.J.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.
2009-01-01
Multimodel inference has two main themes: model selection, and model averaging. Model averaging is a means of making inference conditional on a model set, rather than on a selected model, allowing formal recognition of the uncertainty associated with model choice. The Bayesian paradigm provides a natural framework for model averaging, and provides a context for evaluation of the commonly used AIC weights. We review Bayesian multimodel inference, noting the importance of Bayes factors. Noting the sensitivity of Bayes factors to the choice of priors on parameters, we define and propose nonpreferential priors as offering a reasonable standard for objective multimodel inference.
The research on high speed underwater target recognition based on fuzzy logic inference
NASA Astrophysics Data System (ADS)
Jiang, Xiang-Dong; Yang, De-Sen; Shi, Sheng-Guo; Li, Si-Chun
2006-06-01
The underwater target recognition is a key technology in acoustic confrontation and underwater defence. In this article, a recognition system based of fuzzy logic inference (FLI) is set up. This system is mainly composed of three parts: the fuzzy input module, the fuzzy logic inference module with a set of inference rules and the de-fuzzy output module. The inference result shows the recognition system is effective in most conditions.
NASA Astrophysics Data System (ADS)
Tautz-Weinert, J.; Watson, S. J.
2016-09-01
Effective condition monitoring techniques for wind turbines are needed to improve maintenance processes and reduce operational costs. Normal behaviour modelling of temperatures with information from other sensors can help to detect wear processes in drive trains. In a case study, modelling of bearing and generator temperatures is investigated with operational data from the SCADA systems of more than 100 turbines. The focus is here on automated training and testing on a farm level to enable an on-line system, which will detect failures without human interpretation. Modelling based on linear combinations, artificial neural networks, adaptive neuro-fuzzy inference systems, support vector machines and Gaussian process regression is compared. The selection of suitable modelling inputs is discussed with cross-correlation analyses and a sensitivity study, which reveals that the investigated modelling techniques react in different ways to an increased number of inputs. The case study highlights advantages of modelling with linear combinations and artificial neural networks in a feedforward configuration.
Using intelligent controller to enhance the walking stability of bipedal walking robot
NASA Astrophysics Data System (ADS)
Hsieh, Tsung-Che; Chang, Chia-Der
2016-07-01
This paper is to improve the stability issue of the bipedal walking robot. The study of robot's pivot joint constructs the driver system to control the implementation. First, a Proportion-Integral-Derivative (PID) controller is designed by which is used the concept of tuning parameter to achieve the stability of the system. Second, Fuzzy controller and tradition PID controller is used to maintain output. It improved original PID controller efficacy. Finally, Artificial Neuro-Fuzzy Inference System (ANFIS) is utilized which is made the controller to achieve self-studying and modify the effect which is completed by the intelligent controller. It improved bipedal robot's stability control of realization. The result is verified that the walking stability of the bipedal walking robot in Matlab/Simulink. The intelligent controller has achieved the desired position of motor joint and the target stability performance.
Stevens, Katherine; McCabe, Christopher; Brazier, John; Roberts, Jennifer
2007-09-01
A key issue in health state valuation modelling is the choice of functional form. The two most frequently used preference based instruments adopt different approaches; one based on multi-attribute utility theory (MAUT), the other on statistical analysis. There has been no comparison of these alternative approaches in the context of health economics. We report a comparison of these approaches for the health utilities index mark 2. The statistical inference model predicts more accurately than the one based on MAUT. We discuss possible explanations for the differences in performance, the importance of the findings, and implications for future research.
Improving Inferences from Multiple Methods.
ERIC Educational Resources Information Center
Shotland, R. Lance; Mark, Melvin M.
1987-01-01
Multiple evaluation methods (MEMs) can cause an inferential challenge, although there are strategies to strengthen inferences. Practical and theoretical issues involved in the use by social scientists of MEMs, three potential problems in drawing inferences from MEMs, and short- and long-term strategies for alleviating these problems are outlined.…
Causal Inference and Developmental Psychology
ERIC Educational Resources Information Center
Foster, E. Michael
2010-01-01
Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether…
Causal Inference in Retrospective Studies.
ERIC Educational Resources Information Center
Holland, Paul W.; Rubin, Donald B.
1988-01-01
The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…
Anfis Approach for Sssc Controller Design for the Improvement of Transient Stability Performance
NASA Astrophysics Data System (ADS)
Khuntia, Swasti R.; Panda, Sidhartha
2011-06-01
In this paper, Adaptive Neuro-Fuzzy Inference System (ANFIS) method based on the Artificial Neural Network (ANN) is applied to design a Static Synchronous Series Compensator (SSSC)-based controller for improvement of transient stability. The proposed ANFIS controller combines the advantages of fuzzy controller and quick response and adaptability nature of ANN. The ANFIS structures were trained using the generated database by fuzzy controller of SSSC. It is observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances. The results prove that the proposed SSSC-based ANFIS controller is found to be robust to fault location and change in operating conditions. Further, the results obtained are compared with the conventional lead-lag controllers for SSSC.
Improving motor imagery classification with a new BCI design using neuro-fuzzy S-dFasArt.
Cano-Izquierdo, Jose-Manuel; Ibarrola, Julio; Almonacid, Miguel
2012-01-01
This paper presents an algorithm based on neural networks and fuzzy theory (S-dFasArt) to classify spontaneous mental activities from electroencephalogram (EEG) signals, in order to operate a noninvasive brain-computer interface. The focus is placed on the three-class problem, left-hand movement imagination, right movement imagination and word generation. The algorithm allows a supervised classification of temporal patterns improving the classification rates of the BCI Competition III (Data Set V: multiclass problem, continuous EEG). Using the precomputed data supplied for the competition and following the rules established there, a new method based on S-dFasArt, along with rule prune and voting strategy is proposed. The results have been compared with other published methods improving their success rates.
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
NASA Astrophysics Data System (ADS)
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-05-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.
Efficient Bayesian inference for ARFIMA processes
NASA Astrophysics Data System (ADS)
Graves, T.; Gramacy, R. B.; Franzke, C. L. E.; Watkins, N. W.
2015-03-01
Many geophysical quantities, like atmospheric temperature, water levels in rivers, and wind speeds, have shown evidence of long-range dependence (LRD). LRD means that these quantities experience non-trivial temporal memory, which potentially enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is important to reliably identify whether or not a system exhibits LRD. In this paper we present a modern and systematic approach to the inference of LRD. Rather than Mandelbrot's fractional Gaussian noise, we use the more flexible Autoregressive Fractional Integrated Moving Average (ARFIMA) model which is widely used in time series analysis, and of increasing interest in climate science. Unlike most previous work on the inference of LRD, which is frequentist in nature, we provide a systematic treatment of Bayesian inference. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g. short memory effects) can be integrated over in order to focus on long memory parameters, and hypothesis testing more directly. We illustrate our new methodology on the Nile water level data, with favorable comparison to the standard estimators.
Inverse Ising inference with correlated samples
NASA Astrophysics Data System (ADS)
Obermayer, Benedikt; Levine, Erel
2014-12-01
Correlations between two variables of a high-dimensional system can be indicative of an underlying interaction, but can also result from indirect effects. Inverse Ising inference is a method to distinguish one from the other. Essentially, the parameters of the least constrained statistical model are learned from the observed correlations such that direct interactions can be separated from indirect correlations. Among many other applications, this approach has been helpful for protein structure prediction, because residues which interact in the 3D structure often show correlated substitutions in a multiple sequence alignment. In this context, samples used for inference are not independent but share an evolutionary history on a phylogenetic tree. Here, we discuss the effects of correlations between samples on global inference. Such correlations could arise due to phylogeny but also via other slow dynamical processes. We present a simple analytical model to address the resulting inference biases, and develop an exact method accounting for background correlations in alignment data by combining phylogenetic modeling with an adaptive cluster expansion algorithm. We find that popular reweighting schemes are only marginally effective at removing phylogenetic bias, suggest a rescaling strategy that yields better results, and provide evidence that our conclusions carry over to the frequently used mean-field approach to the inverse Ising problem.
Double jeopardy in inferring cognitive processes
Fific, Mario
2014-01-01
Inferences we make about underlying cognitive processes can be jeopardized in two ways due to problematic forms of aggregation. First, averaging across individuals is typically considered a very useful tool for removing random variability. The threat is that averaging across subjects leads to averaging across different cognitive strategies, thus harming our inferences. The second threat comes from the construction of inadequate research designs possessing a low diagnostic accuracy of cognitive processes. For that reason we introduced the systems factorial technology (SFT), which has primarily been designed to make inferences about underlying processing order (serial, parallel, coactive), stopping rule (terminating, exhaustive), and process dependency. SFT proposes that the minimal research design complexity to learn about n number of cognitive processes should be equal to 2n. In addition, SFT proposes that (a) each cognitive process should be controlled by a separate experimental factor, and (b) The saliency levels of all factors should be combined in a full factorial design. In the current study, the author cross combined the levels of jeopardies in a 2 × 2 analysis, leading to four different analysis conditions. The results indicate a decline in the diagnostic accuracy of inferences made about cognitive processes due to the presence of each jeopardy in isolation and when combined. The results warrant the development of more individual subject analyses and the utilization of full-factorial (SFT) experimental designs. PMID:25374545
NASA Astrophysics Data System (ADS)
Quej, Victor H.; Almorox, Javier; Arnaldo, Javier A.; Saito, Laurel
2017-03-01
Daily solar radiation is an important variable in many models. In this paper, the accuracy and performance of three soft computing techniques (i.e., adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and support vector machine (SVM) were assessed for predicting daily horizontal global solar radiation from measured meteorological variables in the Yucatán Peninsula, México. Model performance was assessed with statistical indicators such as root mean squared error (RMSE), mean absolute error (MAE) and coefficient of determination (R2). The performance assessment indicates that the SVM technique with requirements of daily maximum and minimum air temperature, extraterrestrial solar radiation and rainfall has better performance than the other techniques and may be a promising alternative to the usual approaches for predicting solar radiation.
Abbaspour, Sara; Fallah, Ali; Lindén, Maria; Gholamhosseini, Hamid
2016-02-01
In recent years, the removal of electrocardiogram (ECG) interferences from electromyogram (EMG) signals has been given large consideration. Where the quality of EMG signal is of interest, it is important to remove ECG interferences from EMG signals. In this paper, an efficient method based on a combination of adaptive neuro-fuzzy inference system (ANFIS) and wavelet transform is proposed to effectively eliminate ECG interferences from surface EMG signals. The proposed approach is compared with other common methods such as high-pass filter, artificial neural network, adaptive noise canceller, wavelet transform, subtraction method and ANFIS. It is found that the performance of the proposed ANFIS-wavelet method is superior to the other methods with the signal to noise ratio and relative error of 14.97dB and 0.02 respectively and a significantly higher correlation coefficient (p<0.05).
NASA Astrophysics Data System (ADS)
Shamsipour, Majid; Pahlevani, Zahra; Shabani, Mohsen Ostad; Mazahery, Ali
2016-04-01
Understanding of the electromagnetic stirrer (EMS) process parameters-wear relation in nanocomposite is required for further creation of tailored modifications of process in accordance with the demands for various applications. This study depicts the performance of hybrid algorithm for optimization of the parameters in EMS compocasting of nano-TiC-reinforced Al-Si alloys. Adaptive neuro-fuzzy inference system (ANFIS) coupled with particle swarm optimization (PSO) was applied to find the optimum combination of the inputs including mold temperature, mix time, impeller speed, powder temperature, cast temperature and average particle size. The optimized condition was obtained in minimization of objective function. The objective function is calculated by ANFIS and then minimized by PSO. The optimized parameters were used to produce semisolid cast aluminum matrix composites reinforced with nano-TiC particles. The optimized nanocomposites were then studied for their tribological properties.
Hydrograph estimation with fuzzy chain model
NASA Astrophysics Data System (ADS)
Güçlü, Yavuz Selim; Şen, Zekai
2016-07-01
Hydrograph peak discharge estimation is gaining more significance with unprecedented urbanization developments. Most of the existing models do not yield reliable peak discharge estimations for small basins although they provide acceptable results for medium and large ones. In this study, fuzzy chain model (FCM) is suggested by considering the necessary adjustments based on some measurements over a small basin, Ayamama basin, within Istanbul City, Turkey. FCM is based on Mamdani and the Adaptive Neuro Fuzzy Inference Systems (ANFIS) methodologies, which yield peak discharge estimation. The suggested model is compared with two well-known approaches, namely, Soil Conservation Service (SCS)-Snyder and SCS-Clark methodologies. In all the methods, the hydrographs are obtained through the use of dimensionless unit hydrograph concept. After the necessary modeling, computation, verification and adaptation stages comparatively better hydrographs are obtained by FCM. The mean square error for the FCM is many folds smaller than the other methodologies, which proves outperformance of the suggested methodology.
Chelgani, S.C.; Hart, B.; Grady, W.C.; Hower, J.C.
2011-01-01
The relationship between maceral content plus mineral matter and gross calorific value (GCV) for a wide range of West Virginia coal samples (from 6518 to 15330 BTU/lb; 15.16 to 35.66MJ/kg) has been investigated by multivariable regression and adaptive neuro-fuzzy inference system (ANFIS). The stepwise least square mathematical method comparison between liptinite, vitrinite, plus mineral matter as input data sets with measured GCV reported a nonlinear correlation coefficient (R2) of 0.83. Using the same data set the correlation between the predicted GCV from the ANFIS model and the actual GCV reported a R2 value of 0.96. It was determined that the GCV-based prediction methods, as used in this article, can provide a reasonable estimation of GCV. Copyright ?? Taylor & Francis Group, LLC.
3D image analysis and artificial intelligence for bone disease classification.
Akgundogdu, Abdurrahim; Jennane, Rachid; Aufort, Gabriel; Benhamou, Claude Laurent; Ucan, Osman Nuri
2010-10-01
In order to prevent bone fractures due to disease and ageing of the population, and to detect problems while still in their early stages, 3D bone micro architecture needs to be investigated and characterized. Here, we have developed various image processing and simulation techniques to investigate bone micro architecture and its mechanical stiffness. We have evaluated morphological, topological and mechanical bone features using artificial intelligence methods. A clinical study is carried out on two populations of arthritic and osteoporotic bone samples. The performances of Adaptive Neuro Fuzzy Inference System (ANFIS), Support Vector Machines (SVM) and Genetic Algorithm (GA) in classifying the different samples have been compared. Results show that the best separation success (100 %) is achieved with Genetic Algorithm.
An enhanced segmentation of blood vessels in retinal images using contourlet.
Rezatofighi, S H; Roodaki, A; Ahmadi Noubari, H
2008-01-01
Retinal images acquired using a fundus camera often contain low grey, low level contrast and are of low dynamic range. This may seriously affect the automatic segmentation stage and subsequent results; hence, it is necessary to carry-out preprocessing to improve image contrast results before segmentation. Here we present a new multi-scale method for retinal image contrast enhancement using Contourlet transform. In this paper, a combination of feature extraction approach which utilizes Local Binary Pattern (LBP), morphological method and spatial image processing is proposed for segmenting the retinal blood vessels in optic fundus images. Furthermore, performance of Adaptive Neuro-Fuzzy Inference System (ANFIS) and Multilayer Perceptron (MLP) is investigated in the classification section. The performance of the proposed algorithm is tested on the publicly available DRIVE database. The results are numerically assessed for different proposed algorithms.
Taheri, M; Alavi Moghaddam, M R; Arami, M
2013-10-15
In this research, Response Surface Methodology (RSM) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were applied for optimization of Reactive Blue 19 removal using combined electrocoagulation/coagulation process through Multi-Objective Particle Swarm Optimization (MOPSO). By applying RSM, the effects of five independent parameters including applied current, reaction time, initial dye concentration, initial pH and dosage of Poly Aluminum Chloride were studied. According to the RSM results, all the independent parameters are equally important in dye removal efficiency. In addition, ANFIS was applied for dye removal efficiency and operating costs modeling. High R(2) values (≥85%) indicate that the predictions of RSM and ANFIS models are acceptable for both responses. ANFIS was also used in MOPSO for finding the best techno-economical Reactive Blue 19 elimination conditions according to RSM design. Through MOPSO and the selected ANFIS model, Minimum and maximum values of 58.27% and 99.67% dye removal efficiencies were obtained, respectively.
Autonomous agricultural remote sensing systems with high spatial and temporal resolutions
NASA Astrophysics Data System (ADS)
Xiang, Haitao
In this research, two novel agricultural remote sensing (RS) systems, a Stand-alone Infield Crop Monitor RS System (SICMRS) and an autonomous Unmanned Aerial Vehicles (UAV) based RS system have been studied. A high-resolution digital color and multi-spectral camera was used as the image sensor for the SICMRS system. An artificially intelligent (AI) controller based on artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) was developed. Morrow Plots corn field RS images in the 2004 and 2006 growing seasons were collected by the SICMRS system. The field site contained 8 subplots (9.14 m x 9.14 m) that were planted with corn and three different fertilizer treatments were used among those subplots. The raw RS images were geometrically corrected, resampled to 10cm resolution, removed soil background and calibrated to real reflectance. The RS images from two growing seasons were studied and 10 different vegetation indices were derived from each day's image. The result from the image processing demonstrated that the vegetation indices have temporal effects. To achieve high quality RS data, one has to utilize the right indices and capture the images at the right time in the growing season. Maximum variations among the image data set are within the V6-V10 stages, which indicated that these stages are the best period to identify the spatial variability caused by the nutrient stress in the corn field. The derived vegetation indices were also used to build yield prediction models via the linear regression method. At that point, all of the yield prediction models were evaluated by comparing the R2-value and the best index model from each day's image was picked based on the highest R 2-value. It was shown that the green normalized difference vegetation (GNDVI) based model is more sensitive to yield prediction than other indices-based models. During the VT-R4 stages, the GNDVI based models were able to explain more than 95% potential corn yield
A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
Tahmasebi, Pejman; Hezarkhani, Ardeshir
2012-01-01
The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. PMID:25540468
Quantum-Like Representation of Non-Bayesian Inference
NASA Astrophysics Data System (ADS)
Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.
2013-01-01
This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.
The empirical accuracy of uncertain inference models
NASA Technical Reports Server (NTRS)
Vaughan, David S.; Yadrick, Robert M.; Perrin, Bruce M.; Wise, Ben P.
1987-01-01
Uncertainty is a pervasive feature of the domains in which expert systems are designed to function. Research design to test uncertain inference methods for accuracy and robustness, in accordance with standard engineering practice is reviewed. Several studies were conducted to assess how well various methods perform on problems constructed so that correct answers are known, and to find out what underlying features of a problem cause strong or weak performance. For each method studied, situations were identified in which performance deteriorates dramatically. Over a broad range of problems, some well known methods do only about as well as a simple linear regression model, and often much worse than a simple independence probability model. The results indicate that some commercially available expert system shells should be used with caution, because the uncertain inference models that they implement can yield rather inaccurate results.
Bayesian Inference of Galaxy Morphology
NASA Astrophysics Data System (ADS)
Yoon, Ilsang; Weinberg, M.; Katz, N.
2011-01-01
Reliable inference on galaxy morphology from quantitative analysis of ensemble galaxy images is challenging but essential ingredient in studying galaxy formation and evolution, utilizing current and forthcoming large scale surveys. To put galaxy image decomposition problem in broader context of statistical inference problem and derive a rigorous statistical confidence levels of the inference, I developed a novel galaxy image decomposition tool, GALPHAT (GALaxy PHotometric ATtributes) that exploits recent developments in Bayesian computation to provide full posterior probability distributions and reliable confidence intervals for all parameters. I will highlight the significant improvements in galaxy image decomposition using GALPHAT, over the conventional model fitting algorithms and introduce the GALPHAT potential to infer the statistical distribution of galaxy morphological structures, using ensemble posteriors of galaxy morphological parameters from the entire galaxy population that one studies.
Unified Theory of Inference for Text Understanding
1986-11-25
reataurant script is recognized, script application would lead to inferences such as identifying the waiter as ’ ’the waiter who is employed by the...relations between the objects. Objects have names as a convenience for the system modeler, but the names are not used for purposes other than...intent is that we can consider talking to be a frame with a talker slot which must be filled by a person. This is just a convenient notation; the
A Unified Approach to Abductive Inference
2014-09-30
performance hacks . Alchemy Lite allows for fast, exact inference for models formulated in terms of TML, as well as the ability to update models with...Kimelfeld (bennyk@gmail.com) Molham Aref (molham.aref@logicblox.com) Charles Rivers Analytics Avi Pfeffer (apfeffer@cra.com) Facebook ...works at Yahoo; now at Facebook ) BAE systems Gregory Sullivan (gregory.sullivan@baesystems.com) Raytheon Kenric P Nelson
Statistical Inference in Graphical Models
2008-06-17
Probabilistic Network Library ( PNL ). While not fully mature, PNL does provide the most commonly-used algorithms for inference and learning with the efficiency...of C++, and also offers interfaces for calling the library from MATLAB and R 1361. Notably, both BNT and PNL provide learning and inference algorithms...mature and has been used for research purposes for several years, it is written in MATLAB and thus is not suitable to be used in real-time settings. PNL
Statistical Inference: The Big Picture.
Kass, Robert E
2011-02-01
Statistics has moved beyond the frequentist-Bayesian controversies of the past. Where does this leave our ability to interpret results? I suggest that a philosophy compatible with statistical practice, labelled here statistical pragmatism, serves as a foundation for inference. Statistical pragmatism is inclusive and emphasizes the assumptions that connect statistical models with observed data. I argue that introductory courses often mis-characterize the process of statistical inference and I propose an alternative "big picture" depiction.
Bayesian Inference: with ecological applications
Link, William A.; Barker, Richard J.
2010-01-01
This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.
2014-01-01
images. To our knowledge, this challenging problem has not yet been extensively explored in computer vision. We present a novel learning based...automatically infers why people are performing actions in images by learning from visual data and written language. ∗denotes equal contribution 1 Report...explored in computer vision. We present a novel learning based framework that uses high-level visual recognition to infer why people are performing
Active inference, communication and hermeneutics☆
Friston, Karl J.; Frith, Christopher D.
2015-01-01
Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others – during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions – both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then – in principle – they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa. PMID:25957007
Active inference, communication and hermeneutics.
Friston, Karl J; Frith, Christopher D
2015-07-01
Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others--during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions--both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then--in principle--they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa.
Causal inference and developmental psychology.
Foster, E Michael
2010-11-01
Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether the risk factor actually causes outcomes. Random assignment is not possible in many instances, and for that reason, psychologists must rely on observational studies. Such studies identify associations, and causal interpretation of such associations requires additional assumptions. Research in developmental psychology generally has relied on various forms of linear regression, but this methodology has limitations for causal inference. Fortunately, methodological developments in various fields are providing new tools for causal inference-tools that rely on more plausible assumptions. This article describes the limitations of regression for causal inference and describes how new tools might offer better causal inference. This discussion highlights the importance of properly identifying covariates to include (and exclude) from the analysis. This discussion considers the directed acyclic graph for use in accomplishing this task. With the proper covariates having been chosen, many of the available methods rely on the assumption of "ignorability." The article discusses the meaning of ignorability and considers alternatives to this assumption, such as instrumental variables estimation. Finally, the article considers the use of the tools discussed in the context of a specific research question, the effect of family structure on child development.
NASA Astrophysics Data System (ADS)
Robion, Philippe; Mehl, Caroline
2016-04-01
We propose to investigate the set up mechanisms of sands injection in the case of dykes injected in host marls of Aptian-Albian age in the Vocontian basin (SE France). Several models have been proposed for a downward injection of the dyke in the Bevons area and we guess that AMS fabric investigations can be used to infer the flow direction. 144 drill cores distributed on 14 sites were sampled, among which 8 sites in the injectites and 6 sites in the host rocks. The studied dykes are generally of a few decimeters thick and are setting up in both in vertical or oblique position with respect to the subhorizontal bedding of the host rocks. There were sampled from one side to the other in order to track the flow direction by identification of imbricated fabric. Magnetic mineralogy, i.e. unblocking temperature inferred from IRM 3 axes demagnetization, indicates that the ferromagnetics s.l. mineralogy is dominated by an assemblage of magnetite (unblocking temperature Tub=580°C) and pyrrhotite (Tub=325°C). Magnetic susceptibility is low, typical for siliciclastic rocks, ranging from 4x10-5 up to 1.7x10-4 SI. Degree of magnetic anisotropy is likely representative of AMS measurements in sedimentary rocks with weak values, below than 5 %. In marly host rocks magnetic mineralogy is dominated by pyrrhotite associated with magnetite and both the magnetic susceptibility and degree of anisotropy are slightly lower than for injectites. Regarding magnetic fabric axes distribution, despite some dispersion, the results show that minimum axes of AMS (K3) are parallel to the dyke plane, and maximum axes (K1) are roughly in horizontal position. In marly host rocks, the magnetic fabric is related to tectonic shortening. We interpret that the host rocks have recorded the regional tectonic imprint while the magnetic fabric of the injectites are related to early sedimentary processes. The mechanism of set up proposed to explain the magnetic fabric in the Bevon injectites is a step
1991-07-01
sentence (1) is followed by sentence (4), and that the system is able to conclude that her is anaphoric to an undergrad in (1). It could immediately conclude...the system is able to conclude that her in the second sentence is anaphoric to an undergrad in the first sentence, it will also be able to conclude... anaphoric relations [Schubert and Pelletier, 1988; Groenendijk and Stokhof, 1990]. 4.2 A Relational Semantics for DRT The Syntax of DRT0 The set of
Optimal inference with suboptimal models: Addiction and active Bayesian inference
Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl
2015-01-01
When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321
Active inference and robot control: a case study.
Pio-Lopez, Léo; Nizard, Ange; Friston, Karl; Pezzulo, Giovanni
2016-09-01
Active inference is a general framework for perception and action that is gaining prominence in computational and systems neuroscience but is less known outside these fields. Here, we discuss a proof-of-principle implementation of the active inference scheme for the control or the 7-DoF arm of a (simulated) PR2 robot. By manipulating visual and proprioceptive noise levels, we show under which conditions robot control under the active inference scheme is accurate. Besides accurate control, our analysis of the internal system dynamics (e.g. the dynamics of the hidden states that are inferred during the inference) sheds light on key aspects of the framework such as the quintessentially multimodal nature of control and the differential roles of proprioception and vision. In the discussion, we consider the potential importance of being able to implement active inference in robots. In particular, we briefly review the opportunities for modelling psychophysiological phenomena such as sensory attenuation and related failures of gain control, of the sort seen in Parkinson's disease. We also consider the fundamental difference between active inference and optimal control formulations, showing that in the former the heavy lifting shifts from solving a dynamical inverse problem to creating deep forward or generative models with dynamics, whose attracting sets prescribe desired behaviours.
Active inference and robot control: a case study
Nizard, Ange; Friston, Karl; Pezzulo, Giovanni
2016-01-01
Active inference is a general framework for perception and action that is gaining prominence in computational and systems neuroscience but is less known outside these fields. Here, we discuss a proof-of-principle implementation of the active inference scheme for the control or the 7-DoF arm of a (simulated) PR2 robot. By manipulating visual and proprioceptive noise levels, we show under which conditions robot control under the active inference scheme is accurate. Besides accurate control, our analysis of the internal system dynamics (e.g. the dynamics of the hidden states that are inferred during the inference) sheds light on key aspects of the framework such as the quintessentially multimodal nature of control and the differential roles of proprioception and vision. In the discussion, we consider the potential importance of being able to implement active inference in robots. In particular, we briefly review the opportunities for modelling psychophysiological phenomena such as sensory attenuation and related failures of gain control, of the sort seen in Parkinson's disease. We also consider the fundamental difference between active inference and optimal control formulations, showing that in the former the heavy lifting shifts from solving a dynamical inverse problem to creating deep forward or generative models with dynamics, whose attracting sets prescribe desired behaviours. PMID:27683002
Functional neuroanatomy of intuitive physical inference.
Fischer, Jason; Mikhael, John G; Tenenbaum, Joshua B; Kanwisher, Nancy
2016-08-23
To engage with the world-to understand the scene in front of us, plan actions, and predict what will happen next-we must have an intuitive grasp of the world's physical structure and dynamics. How do the objects in front of us rest on and support each other, how much force would be required to move them, and how will they behave when they fall, roll, or collide? Despite the centrality of physical inferences in daily life, little is known about the brain mechanisms recruited to interpret the physical structure of a scene and predict how physical events will unfold. Here, in a series of fMRI experiments, we identified a set of cortical regions that are selectively engaged when people watch and predict the unfolding of physical events-a "physics engine" in the brain. These brain regions are selective to physical inferences relative to nonphysical but otherwise highly similar scenes and tasks. However, these regions are not exclusively engaged in physical inferences per se or, indeed, even in scene understanding; they overlap with the domain-general "multiple demand" system, especially the parts of that system involved in action planning and tool use, pointing to a close relationship between the cognitive and neural mechanisms involved in parsing the physical content of a scene and preparing an appropriate action.
Functional neuroanatomy of intuitive physical inference
Mikhael, John G.; Tenenbaum, Joshua B.; Kanwisher, Nancy
2016-01-01
To engage with the world—to understand the scene in front of us, plan actions, and predict what will happen next—we must have an intuitive grasp of the world’s physical structure and dynamics. How do the objects in front of us rest on and support each other, how much force would be required to move them, and how will they behave when they fall, roll, or collide? Despite the centrality of physical inferences in daily life, little is known about the brain mechanisms recruited to interpret the physical structure of a scene and predict how physical events will unfold. Here, in a series of fMRI experiments, we identified a set of cortical regions that are selectively engaged when people watch and predict the unfolding of physical events—a “physics engine” in the brain. These brain regions are selective to physical inferences relative to nonphysical but otherwise highly similar scenes and tasks. However, these regions are not exclusively engaged in physical inferences per se or, indeed, even in scene understanding; they overlap with the domain-general “multiple demand” system, especially the parts of that system involved in action planning and tool use, pointing to a close relationship between the cognitive and neural mechanisms involved in parsing the physical content of a scene and preparing an appropriate action. PMID:27503892
Consistency and Plausible Inference,
1982-10-01
the Pros- po(:tor Consultant System for Mineral Exploration ," Expert 5,ystems in the Mi cro Electronic Age £I). Michie, ed.), Edinburgh University...Press, 11979. . Duda, R.O., P.E. Hart, K. Konolige, and R. Reboh, A Computer-Based Consultant for Mineral Exploration , SRI International, 19,9. 8. Garvey
Statistical inference and string theory
NASA Astrophysics Data System (ADS)
Heckman, Jonathan J.
2015-09-01
In this paper, we expose some surprising connections between string theory and statistical inference. We consider a large collective of agents sweeping out a family of nearby statistical models for an M-dimensional manifold of statistical fitting parameters. When the agents making nearby inferences align along a d-dimensional grid, we find that the pooled probability that the collective reaches a correct inference is the partition function of a nonlinear sigma model in d dimensions. Stability under perturbations to the original inference scheme requires the agents of the collective to distribute along two dimensions. Conformal invariance of the sigma model corresponds to the condition of a stable inference scheme, directly leading to the Einstein field equations for classical gravity. By summing over all possible arrangements of the agents in the collective, we reach a string theory. We also use this perspective to quantify how much an observer can hope to learn about the internal geometry of a superstring compactification. Finally, we present some brief speculative remarks on applications to the AdS/CFT correspondence and Lorentzian signature space-times.
Locative inferences in medical texts.
Mayer, P S; Bailey, G H; Mayer, R J; Hillis, A; Dvoracek, J E
1987-06-01
Medical research relies on epidemiological studies conducted on a large set of clinical records that have been collected from physicians recording individual patient observations. These clinical records are recorded for the purpose of individual care of the patient with little consideration for their use by a biostatistician interested in studying a disease over a large population. Natural language processing of clinical records for epidemiological studies must deal with temporal, locative, and conceptual issues. This makes text understanding and data extraction of clinical records an excellent area for applied research. While much has been done in making temporal or conceptual inferences in medical texts, parallel work in locative inferences has not been done. This paper examines the locative inferences as well as the integration of temporal, locative, and conceptual issues in the clinical record understanding domain by presenting an application that utilizes two key concepts in its parsing strategy--a knowledge-based parsing strategy and a minimal lexicon.
Development of Statistical Methods Using Predictive Inference and Entropy.
1986-03-01
Inference and Entopy APPENDIX B: Achieab Accuracy in Parametric Estimation of B-I Multivariate spectra ii LWl OF MIUMU AND TABLES FIGURES PAGE Figre1...1986e). "Achievable Accuracy in Parametric Estimation of Multivariate Spec- tra’. Draft. Larimore, WE. (1983a). ’Predictive inference, sufficiency... PARAMETRIC ESTIMATION OF MULTIVARIATE SPECTRA By Wallace E. Larimore Scientific Systems Inc., Cambridge, Massachusetts, U.SA. Research Sponsored by the
Causal inference in biology networks with integrated belief propagation.
Chang, Rui; Karr, Jonathan R; Schadt, Eric E
2015-01-01
Inferring causal relationships among molecular and higher order phenotypes is a critical step in elucidating the complexity of living systems. Here we propose a novel method for inferring causality that is no longer constrained by the conditional dependency arguments that limit the ability of statistical causal inference methods to resolve causal relationships within sets of graphical models that are Markov equivalent. Our method utilizes Bayesian belief propagation to infer the responses of perturbation events on molecular traits given a hypothesized graph structure. A distance measure between the inferred response distribution and the observed data is defined to assess the 'fitness' of the hypothesized causal relationships. To test our algorithm, we infer causal relationships within equivalence classes of gene networks in which the form of the functional interactions that are possible are assumed to be nonlinear, given synthetic microarray and RNA sequencing data. We also apply our method to infer causality in real metabolic network with v-structure and feedback loop. We show that our method can recapitulate the causal structure and recover the feedback loop only from steady-state data which conventional method cannot.
NASA Technical Reports Server (NTRS)
Halem, M.; Kalnay-Rivas, E.; Baker, W. E.; Atlas, R.
1981-01-01
The statistical properties, and coverage, of satellite temperature sounding data are described. Tropical regions are observed every two days, extratropics from one to four times a day. Oceans are covered two to three times a day. Asynoptic coverage is comparable to the U.S. rawinsonde network twice daily coverage. Lack of ground truth for data sparse areas makes accuracy difficult to assess. The rms differences of layer mean temperatures obtained from collocating rawinsonde observations with satellite temperature profiles in space and time differ from rms differences of layer mean satellite temperature soundings. The FGGE satellite systems can infer the three dimensional motion field and improve the representation of the large scale state of the atmosphere.
Inferring Trust Based on Similarity with TILLIT
NASA Astrophysics Data System (ADS)
Tavakolifard, Mozhgan; Herrmann, Peter; Knapskog, Svein J.
A network of people having established trust relations and a model for propagation of related trust scores are fundamental building blocks in many of today’s most successful e-commerce and recommendation systems. However, the web of trust is often too sparse to predict trust values between non-familiar people with high accuracy. Trust inferences are transitive associations among users in the context of an underlying social network and may provide additional information to alleviate the consequences of the sparsity and possible cold-start problems. Such approaches are helpful, provided that a complete trust path exists between the two users. An alternative approach to the problem is advocated in this paper. Based on collaborative filtering one can exploit the like-mindedness resp. similarity of individuals to infer trust to yet unknown parties which increases the trust relations in the web. For instance, if one knows that with respect to a specific property, two parties are trusted alike by a large number of different trusters, one can assume that they are similar. Thus, if one has a certain degree of trust to the one party, one can safely assume a very similar trustworthiness of the other one. In an attempt to provide high quality recommendations and proper initial trust values even when no complete trust propagation path or user profile exists, we propose TILLIT — a model based on combination of trust inferences and user similarity. The similarity is derived from the structure of the trust graph and users’ trust behavior as opposed to other collaborative-filtering based approaches which use ratings of items or user’s profile. We describe an algorithm realizing the approach based on a combination of trust inferences and user similarity, and validate the algorithm using a real large-scale data-set.
Algorithm Optimally Orders Forward-Chaining Inference Rules
NASA Technical Reports Server (NTRS)
James, Mark
2008-01-01
People typically develop knowledge bases in a somewhat ad hoc manner by incrementally adding rules with no specific organization. This often results in a very inefficient execution of those rules since they are so often order sensitive. This is relevant to tasks like Deep Space Network in that it allows the knowledge base to be incrementally developed and have it automatically ordered for efficiency. Although data flow analysis was first developed for use in compilers for producing optimal code sequences, its usefulness is now recognized in many software systems including knowledge-based systems. However, this approach for exhaustively computing data-flow information cannot directly be applied to inference systems because of the ubiquitous execution of the rules. An algorithm is presented that efficiently performs a complete producer/consumer analysis for each antecedent and consequence clause in a knowledge base to optimally order the rules to minimize inference cycles. An algorithm was developed that optimally orders a knowledge base composed of forwarding chaining inference rules such that independent inference cycle executions are minimized, thus, resulting in significantly faster execution. This algorithm was integrated into the JPL tool Spacecraft Health Inference Engine (SHINE) for verification and it resulted in a significant reduction in inference cycles for what was previously considered an ordered knowledge base. For a knowledge base that is completely unordered, then the improvement is much greater.
How Forgetting Aids Heuristic Inference
ERIC Educational Resources Information Center
Schooler, Lael J.; Hertwig, Ralph
2005-01-01
Some theorists, ranging from W. James (1890) to contemporary psychologists, have argued that forgetting is the key to proper functioning of memory. The authors elaborate on the notion of beneficial forgetting by proposing that loss of information aids inference heuristics that exploit mnemonic information. To this end, the authors bring together 2…
Science Shorts: Observation versus Inference
ERIC Educational Resources Information Center
Leager, Craig R.
2008-01-01
When you observe something, how do you know for sure what you are seeing, feeling, smelling, or hearing? Asking students to think critically about their encounters with the natural world will help to strengthen their understanding and application of the science-process skills of observation and inference. In the following lesson, students make…
The mechanisms of temporal inference
NASA Technical Reports Server (NTRS)
Fox, B. R.; Green, S. R.
1987-01-01
The properties of a temporal language are determined by its constituent elements: the temporal objects which it can represent, the attributes of those objects, the relationships between them, the axioms which define the default relationships, and the rules which define the statements that can be formulated. The methods of inference which can be applied to a temporal language are derived in part from a small number of axioms which define the meaning of equality and order and how those relationships can be propagated. More complex inferences involve detailed analysis of the stated relationships. Perhaps the most challenging area of temporal inference is reasoning over disjunctive temporal constraints. Simple forms of disjunction do not sufficiently increase the expressive power of a language while unrestricted use of disjunction makes the analysis NP-hard. In many cases a set of disjunctive constraints can be converted to disjunctive normal form and familiar methods of inference can be applied to the conjunctive sub-expressions. This process itself is NP-hard but it is made more tractable by careful expansion of a tree-structured search space.
Word Learning as Bayesian Inference
ERIC Educational Resources Information Center
Xu, Fei; Tenenbaum, Joshua B.
2007-01-01
The authors present a Bayesian framework for understanding how adults and children learn the meanings of words. The theory explains how learners can generalize meaningfully from just one or a few positive examples of a novel word's referents, by making rational inductive inferences that integrate prior knowledge about plausible word meanings with…
Starfish: Robust spectroscopic inference tools
NASA Astrophysics Data System (ADS)
Czekala, Ian; Andrews, Sean M.; Mandel, Kaisey S.; Hogg, David W.; Green, Gregory M.
2015-05-01
Starfish is a set of tools used for spectroscopic inference. It robustly determines stellar parameters using high resolution spectral models and uses Markov Chain Monte Carlo (MCMC) to explore the full posterior probability distribution of the stellar parameters. Additional potential applications include other types of spectra, such as unresolved stellar clusters or supernovae spectra.
Improving Explanatory Inferences from Assessments
ERIC Educational Resources Information Center
Diakow, Ronli Phyllis
2013-01-01
This dissertation comprises three papers that propose, discuss, and illustrate models to make improved inferences about research questions regarding student achievement in education. Addressing the types of questions common in educational research today requires three different "extensions" to traditional educational assessment: (1)…
Perceptual Inference and Autistic Traits
ERIC Educational Resources Information Center
Skewes, Joshua C; Jegindø, Else-Marie; Gebauer, Line
2015-01-01
Autistic people are better at perceiving details. Major theories explain this in terms of bottom-up sensory mechanisms or in terms of top-down cognitive biases. Recently, it has become possible to link these theories within a common framework. This framework assumes that perception is implicit neural inference, combining sensory evidence with…
Degradation monitoring using probabilistic inference
NASA Astrophysics Data System (ADS)
Alpay, Bulent
In order to increase safety and improve economy and performance in a nuclear power plant (NPP), the source and extent of component degradations should be identified before failures and breakdowns occur. It is also crucial for the next generation of NPPs, which are designed to have a long core life and high fuel burnup to have a degradation monitoring system in order to keep the reactor in a safe state, to meet the designed reactor core lifetime and to optimize the scheduled maintenance. Model-based methods are based on determining the inconsistencies between the actual and expected behavior of the plant, and use these inconsistencies for detection and diagnostics of degradations. By defining degradation as a random abrupt change from the nominal to a constant degraded state of a component, we employed nonlinear filtering techniques based on state/parameter estimation. We utilized a Bayesian recursive estimation formulation in the sequential probabilistic inference framework and constructed a hidden Markov model to represent a general physical system. By addressing the problem of a filter's inability to estimate an abrupt change, which is called the oblivious filter problem in nonlinear extensions of Kalman filtering, and the sample impoverishment problem in particle filtering, we developed techniques to modify filtering algorithms by utilizing additional data sources to improve the filter's response to this problem. We utilized a reliability degradation database that can be constructed from plant specific operational experience and test and maintenance reports to generate proposal densities for probable degradation modes. These are used in a multiple hypothesis testing algorithm. We then test samples drawn from these proposal densities with the particle filtering estimates based on the Bayesian recursive estimation formulation with the Metropolis Hastings algorithm, which is a well-known Markov chain Monte Carlo method (MCMC). This multiple hypothesis testing
Inferring biochemical reaction pathways: the case of the gemcitabine pharmacokinetics
2012-01-01
Background The representation of a biochemical system as a network is the precursor of any mathematical model of the processes driving the dynamics of that system. Pharmacokinetics uses mathematical models to describe the interactions between drug, and drug metabolites and targets and through the simulation of these models predicts drug levels and/or dynamic behaviors of drug entities in the body. Therefore, the development of computational techniques for inferring the interaction network of the drug entities and its kinetic parameters from observational data is raising great interest in the scientific community of pharmacologists. In fact, the network inference is a set of mathematical procedures deducing the structure of a model from the experimental data associated to the nodes of the network of interactions. In this paper, we deal with the inference of a pharmacokinetic network from the concentrations of the drug and its metabolites observed at discrete time points. Results The method of network inference presented in this paper is inspired by the theory of time-lagged correlation inference with regard to the deduction of the interaction network, and on a maximum likelihood approach with regard to the estimation of the kinetic parameters of the network. Both network inference and parameter estimation have been designed specifically to identify systems of biotransformations, at the biochemical level, from noisy time-resolved experimental data. We use our inference method to deduce the metabolic pathway of the gemcitabine. The inputs to our inference algorithm are the experimental time series of the concentration of gemcitabine and its metabolites. The output is the set of reactions of the metabolic network of the gemcitabine. Conclusions Time-lagged correlation based inference pairs up to a probabilistic model of parameter inference from metabolites time series allows the identification of the microscopic pharmacokinetics and pharmacodynamics of a drug with a
NASA Astrophysics Data System (ADS)
Golsanami, Naser; Kadkhodaie-Ilkhchi, Ali; Erfani, Amir
2015-01-01
Capillary pressure curves are important data for reservoir rock typing, analyzing pore throat distribution, determining height above free water level, and reservoir simulation. Laboratory experiments provide accurate data, however they are expensive, time-consuming and discontinuous through the reservoir intervals. The current study focuses on synthesizing artificial capillary pressure (Pc) curves from seismic attributes with the use of artificial intelligent systems including Artificial Neural Networks (ANNs), Fuzzy logic (FL) and Adaptive Neuro-Fuzzy Inference Systems (ANFISs). The synthetic capillary pressure curves were achieved by estimating pressure values at six mercury saturation points. These points correspond to mercury filled pore volumes of core samples (Hg-saturation) at 5%, 20%, 35%, 65%, 80%, and 90% saturations. To predict the synthetic Pc curve at each saturation point, various FL, ANFIS and ANN models were constructed. The varying neural network models differ in their training algorithm. Based on the performance function, the most accurately functioning models were selected as the final solvers to do the prediction process at each of the above-mentioned mercury saturation points. The constructed models were then tested at six depth points of the studied well which were already unforeseen by the models. The results show that the Fuzzy logic and neuro-fuzzy models were not capable of making reliable estimations, while the predictions from the ANN models were satisfyingly trustworthy. The obtained results showed a good agreement between the laboratory derived and synthetic capillary pressure curves. Finally, a 3D seismic cube was captured for which the required attributes were extracted and the capillary pressure cube was estimated by using the developed models. In the next step, the synthesized Pc cube was compared with the seismic cube and an acceptable correspondence was observed.
Heddam, Salim
2014-01-01
In this study, we present application of an artificial intelligence (AI) technique model called dynamic evolving neural-fuzzy inference system (DENFIS) based on an evolving clustering method (ECM), for modelling dissolved oxygen concentration in a river. To demonstrate the forecasting capability of DENFIS, a one year period from 1 January 2009 to 30 December 2009, of hourly experimental water quality data collected by the United States Geological Survey (USGS Station No: 420853121505500) station at Klamath River at Miller Island Boat Ramp, OR, USA, were used for model development. Two DENFIS-based models are presented and compared. The two DENFIS systems are: (1) offline-based system named DENFIS-OF, and (2) online-based system, named DENFIS-ON. The input variables used for the two models are water pH, temperature, specific conductance, and sensor depth. The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. The lowest root mean square error and highest correlation coefficient values were obtained with the DENFIS-ON method. The results obtained with DENFIS models are compared with linear (multiple linear regression, MLR) and nonlinear (multi-layer perceptron neural networks, MLPNN) methods. This study demonstrates that DENFIS-ON investigated herein outperforms all the proposed techniques for DO modelling.
Nonparametric inference of network structure and dynamics
NASA Astrophysics Data System (ADS)
Peixoto, Tiago P.
The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among
Marateb, Hamid Reza; Goudarzi, Sobhan
2015-01-01
Background: Coronary heart diseases/coronary artery diseases (CHDs/CAD), the most common form of cardiovascular disease (CVD), are a major cause for death and disability in developing/developed countries. CAD risk factors could be detected by physicians to prevent the CAD occurrence in the near future. Invasive coronary angiography, a current diagnosis method, is costly and associated with morbidity and mortality in CAD patients. The aim of this study was to design a computer-based noninvasive CAD diagnosis system with clinically interpretable rules. Materials and Methods: In this study, the Cleveland CAD dataset from the University of California UCI (Irvine) was used. The interval-scale variables were discretized, with cut points taken from the literature. A fuzzy rule-based system was then formulated based on a neuro-fuzzy classifier (NFC) whose learning procedure was speeded up by the scaled conjugate gradient algorithm. Two feature selection (FS) methods, multiple logistic regression (MLR) and sequential FS, were used to reduce the required attributes. The performance of the NFC (without/with FS) was then assessed in a hold-out validation framework. Further cross-validation was performed on the best classifier. Results: In this dataset, 16 complete attributes along with the binary CHD diagnosis (gold standard) for 272 subjects (68% male) were analyzed. MLR + NFC showed the best performance. Its overall sensitivity, specificity, accuracy, type I error (α) and statistical power were 79%, 89%, 84%, 0.1 and 79%, respectively. The selected features were “age and ST/heart rate slope categories,” “exercise-induced angina status,” fluoroscopy, and thallium-201 stress scintigraphy results. Conclusion: The proposed method showed “substantial agreement” with the gold standard. This algorithm is thus, a promising tool for screening CAD patients. PMID:26109965
Identifying inference attacks against healthcare data repositories
Vaidya, Jaideep; Shafiq, Basit; Jiang, Xiaoqian; Ohno-Machado, Lucila
Health care data repositories play an important role in driving progress in medical research. Finding new pathways to discovery requires having adequate data and relevant analysis. However, it is critical to ensure the privacy and security of the stored data. In this paper, we identify a dangerous inference attack against naive suppression based approaches that are used to protect sensitive information. We base our attack on the querying system provided by the Healthcare Cost and Utilization Project, though it applies in general to any medical database providing a query capability. We also discuss potential solutions to this problem. PMID:24303279
Baldwin, W.E.; Morton, R.A.; Putney, T.R.; Katuna, M.P.; Harris, M.S.; Gayes, P.T.; Driscoll, N.W.; Denny, J.F.; Schwab, W.C.
2006-01-01
Several generations of the ancestral Pee Dee River system have been mapped beneath the South Carolina Grand Strand coastline and adjacent Long Bay inner shelf. Deep boreholes onshore and high-resolution seismic-reflection data offshore allow for reconstruction of these paleochannels, which formed during glacial lowstands, when the Pee Dee River system incised subaerially exposed coastal-plain and continental-shelf strata. Paleochannel groups, representing different generations of the system, decrease in age to the southwest, where the modern Pee Dee River merges with several coastal-plain tributaries at Winyah Bay, the southern terminus of Long Bay. Positions of the successive generational groups record a regional, southwestward migration of the river system that may have initiated during the late Pliocene. The migration was primarily driven by barrier-island deposition, resulting from the interaction of fluvial and shoreline processes during eustatic highstands. Structurally driven, subsurface paleotopography associated with the Mid-Carolina Platform High has also indirectly assisted in forcing this migration. These results provide a better understanding of the evolution of the region and help explain the lack of mobile sediment on the Long Bay inner shelf. Migration of the river system caused a profound change in sediment supply during the late Pleistocene. The abundant fluvial source that once fed sand-rich barrier islands was cut off and replaced with a limited source, supplied by erosion and reworking of former coastal deposits exposed at the shore and on the inner shelf.
Towards General Algorithms for Grammatical Inference
NASA Astrophysics Data System (ADS)
Clark, Alexander
Many algorithms for grammatical inference can be viewed as instances of a more general algorithm which maintains a set of primitive elements, which distributionally define sets of strings, and a set of features or tests that constrain various inference rules. Using this general framework, which we cast as a process of logical inference, we re-analyse Angluin's famous lstar algorithm and several recent algorithms for the inference of context-free grammars and multiple context-free grammars. Finally, to illustrate the advantages of this approach, we extend it to the inference of functional transductions from positive data only, and we present a new algorithm for the inference of finite state transducers.
Bayesian Estimation and Inference Using Stochastic Electronics
Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan; van Schaik, André
2016-01-01
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream. PMID:27047326
Bayesian Estimation and Inference Using Stochastic Electronics.
Thakur, Chetan Singh; Afshar, Saeed; Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan; van Schaik, André
2016-01-01
In this paper, we present the implementation of two types of Bayesian inference problems to demonstrate the potential of building probabilistic algorithms in hardware using single set of building blocks with the ability to perform these computations in real time. The first implementation, referred to as the BEAST (Bayesian Estimation and Stochastic Tracker), demonstrates a simple problem where an observer uses an underlying Hidden Markov Model (HMM) to track a target in one dimension. In this implementation, sensors make noisy observations of the target position at discrete time steps. The tracker learns the transition model for target movement, and the observation model for the noisy sensors, and uses these to estimate the target position by solving the Bayesian recursive equation online. We show the tracking performance of the system and demonstrate how it can learn the observation model, the transition model, and the external distractor (noise) probability interfering with the observations. In the second implementation, referred to as the Bayesian INference in DAG (BIND), we show how inference can be performed in a Directed Acyclic Graph (DAG) using stochastic circuits. We show how these building blocks can be easily implemented using simple digital logic gates. An advantage of the stochastic electronic implementation is that it is robust to certain types of noise, which may become an issue in integrated circuit (IC) technology with feature sizes in the order of tens of nanometers due to their low noise margin, the effect of high-energy cosmic rays and the low supply voltage. In our framework, the flipping of random individual bits would not affect the system performance because information is encoded in a bit stream.
Dynamical Inference in the Milky Way
NASA Astrophysics Data System (ADS)
Bovy, Jo
Current and future surveys of the Galaxy contain a wealth of information about the structure and evolution of the Galactic disk and halo. Teasing out this information is complicated by measurement uncertainties, missing data, and sparse sampling. I develop and describe several applications of generative modeling--creating an approximate description of the probability of the data given the physical parameters of the system--to deal with these issues. I develop a method for inferring the Galactic potential from individual observations of stellar kinematics such as will be furnished by the upcoming Gaia space astrometry mission. This method takes uncertainties in our knowledge of the distribution function of stellar tracers into account through marginalization. I demonstrate the method by inferring the force law in the Solar System from observations of the positions and velocities of the eight planets at a single epoch. I apply a similar method to derive the Milky Way's circular velocity from observations of maser kinematics. I infer the velocity distribution of nearby stars from Hipparcos data, which only consist of tangential velocities, by forward modeling the underlying distribution with a flexible multi-Gaussian model. I characterize the contribution of several "moving groups"---overdensities of co-moving stars---to the full distribution. By studying the properties of stars in these moving groups, I show that they do not form a single-burst population and that they are most likely due to transient non-axisymmetric features of the disk, such as transient spiral structure. By forward modeling one such scenario, I show how the Hercules moving group can be traced around the Galaxy by future surveys, which would confirm that the Milky Way bar's outer Lindblad resonance lies near the Solar radius.
Statistical learning and selective inference
Taylor, Jonathan; Tibshirani, Robert J.
2015-01-01
We describe the problem of “selective inference.” This addresses the following challenge: Having mined a set of data to find potential associations, how do we properly assess the strength of these associations? The fact that we have “cherry-picked”—searched for the strongest associations—means that we must set a higher bar for declaring significant the associations that we see. This challenge becomes more important in the era of big data and complex statistical modeling. The cherry tree (dataset) can be very large and the tools for cherry picking (statistical learning methods) are now very sophisticated. We describe some recent new developments in selective inference and illustrate their use in forward stepwise regression, the lasso, and principal components analysis. PMID:26100887
Causal inference based on counterfactuals
Höfler, M
2005-01-01
Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept. PMID:16159397
Statistical learning and selective inference.
Taylor, Jonathan; Tibshirani, Robert J
2015-06-23
We describe the problem of "selective inference." This addresses the following challenge: Having mined a set of data to find potential associations, how do we properly assess the strength of these associations? The fact that we have "cherry-picked"--searched for the strongest associations--means that we must set a higher bar for declaring significant the associations that we see. This challenge becomes more important in the era of big data and complex statistical modeling. The cherry tree (dataset) can be very large and the tools for cherry picking (statistical learning methods) are now very sophisticated. We describe some recent new developments in selective inference and illustrate their use in forward stepwise regression, the lasso, and principal components analysis.
Inferring Centrality from Network Snapshots
NASA Astrophysics Data System (ADS)
Shao, Haibin; Mesbahi, Mehran; Li, Dewei; Xi, Yugeng
2017-01-01
The topology and dynamics of a complex network shape its functionality. However, the topologies of many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of network topology, we show how the data generated from the network dynamics can be utilised to infer the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We show that the tempo centrality can be used to construct an accurate estimate of both the propagation rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. Our findings provide an approach to infer the performance of a consensus network from its temporal data.
Network Plasticity as Bayesian Inference
Legenstein, Robert; Maass, Wolfgang
2015-01-01
General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling. PMID:26545099
Inferring Centrality from Network Snapshots
Shao, Haibin; Mesbahi, Mehran; Li, Dewei; Xi, Yugeng
2017-01-01
The topology and dynamics of a complex network shape its functionality. However, the topologies of many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of network topology, we show how the data generated from the network dynamics can be utilised to infer the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We show that the tempo centrality can be used to construct an accurate estimate of both the propagation rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. Our findings provide an approach to infer the performance of a consensus network from its temporal data. PMID:28098166
Bayesian inference for agreement measures.
Vidal, Ignacio; de Castro, Mário
2016-08-25
The agreement of different measurement methods is an important issue in several disciplines like, for example, Medicine, Metrology, and Engineering. In this article, some agreement measures, common in the literature, were analyzed from a Bayesian point of view. Posterior inferences for such agreement measures were obtained based on well-known Bayesian inference procedures for the bivariate normal distribution. As a consequence, a general, simple, and effective method is presented, which does not require Markov Chain Monte Carlo methods and can be applied considering a great variety of prior distributions. Illustratively, the method was exemplified using five objective priors for the bivariate normal distribution. A tool for assessing the adequacy of the model is discussed. Results from a simulation study and an application to a real dataset are also reported.
Bauer, Raymond T.; Okuno, Junji; Thiel, Martin
2014-01-01
Abstract Sexual dimorphism in body size and weaponry was examined in two Cinetorhynchus shrimp species in order to formulate hypotheses on their sexual and mating systems. Collections of Cinetorhynchus sp. A and Cinetorhynchus sp. B were made in March, 2011 on Coconut Island, Hawaii, by hand dipnetting and minnow traps in coral rubble bottom in shallow water. Although there is overlap in male and female size, some males are much larger than females. The major (pereopod 1) chelipeds of males are significantly larger and longer than those of females. In these two Cinetorhynchus species, males and females have third maxillipeds of similar relative size, i.e., those of males are not hypertrophied and probably not used as spear-like weapons as in some other rhynchocinetid (Rhynchocinetes) species. Major chelae of males vary with size, changing from typical female-like chelae tipped with black corneous stout setae to subchelate or prehensile appendages in larger males. Puncture wounds or regenerating major chelipeds were observed in 26.1 % of males examined (N = 38 including both species). We interpret this evidence on sexual dimorphism as an indication of a temporary male mate guarding or “neighborhoods of dominance” mating system, in which larger dominant robustus males defend females and have greater mating success than smaller males. Fecundity of females increased with female size, as in most caridean species (500–800 in Cinetorhynchus sp. A; 300–3800 in Cinetorhynchus sp. B). Based on the sample examined, we conclude that these two species have a gonochoric sexual system (separate sexes) like most but not all other rhynchocinetid species in which the sexual system has been investigated. PMID:25561837
Lugaro, Maria; Pignatari, Marco; Ott, Ulrich; Zuber, Kai; Travaglio, Claudia; Gyürky, György; Fülöp, Zsolt
2016-01-26
The abundances of (92)Nb and (146)Sm in the early solar system are determined from meteoritic analysis, and their stellar production is attributed to the p process. We investigate if their origin from thermonuclear supernovae deriving from the explosion of white dwarfs with mass above the Chandrasekhar limit is in agreement with the abundance of (53)Mn, another radionuclide present in the early solar system and produced in the same events. A consistent solution for (92)Nb and (53)Mn cannot be found within the current uncertainties and requires the (92)Nb/(92)Mo ratio in the early solar system to be at least 50% lower than the current nominal value, which is outside its present error bars. A different solution is to invoke another production site for (92)Nb, which we find in the α-rich freezeout during core-collapse supernovae from massive stars. Whichever scenario we consider, we find that a relatively long time interval of at least ∼ 10 My must have elapsed from when the star-forming region where the Sun was born was isolated from the interstellar medium and the birth of the Sun. This is in agreement with results obtained from radionuclides heavier than iron produced by neutron captures and lends further support to the idea that the Sun was born in a massive star-forming region together with many thousands of stellar siblings.
Lugaro, Maria; Pignatari, Marco; Ott, Ulrich; Zuber, Kai; Travaglio, Claudia; Gyürky, György; Fülöp, Zsolt
2016-01-01
The abundances of 92Nb and 146Sm in the early solar system are determined from meteoritic analysis, and their stellar production is attributed to the p process. We investigate if their origin from thermonuclear supernovae deriving from the explosion of white dwarfs with mass above the Chandrasekhar limit is in agreement with the abundance of 53Mn, another radionuclide present in the early solar system and produced in the same events. A consistent solution for 92Nb and 53Mn cannot be found within the current uncertainties and requires the 92Nb/92Mo ratio in the early solar system to be at least 50% lower than the current nominal value, which is outside its present error bars. A different solution is to invoke another production site for 92Nb, which we find in the α-rich freezeout during core-collapse supernovae from massive stars. Whichever scenario we consider, we find that a relatively long time interval of at least ∼10 My must have elapsed from when the star-forming region where the Sun was born was isolated from the interstellar medium and the birth of the Sun. This is in agreement with results obtained from radionuclides heavier than iron produced by neutron captures and lends further support to the idea that the Sun was born in a massive star-forming region together with many thousands of stellar siblings. PMID:26755600
Kumagai, H.; Chouet, B.A.; Nakano, M.
2002-01-01
We present a detailed description of temporal variations in the complex frequencies of long-period (LP) events observed at Kusatsu-Shirane Volcano. Using the Sompi method, we analyze 35 LP events that occurred during the period from August 1992 through January 1993. The observed temporal variations in the complex frequencies can be divided into three periods. During the first period the dominant frequency rapidly decreases from 5 to 1 Hz, and Q of the dominant spectral peak remains roughly constant with an average value near 100. During the second period the dominant frequency gradually increases up to 3 Hz, and Q gradually decreases from 160 to 30. During the third period the dominant frequency increases more rapidly from 3 to 5 Hz, and Q shows an abrupt increase at the beginning of this period and then remains roughly constant with an average value near 100. Such temporal variations can be consistently explained by the dynamic response of a hydrothermal crack to a magmatic heat pulse. During the first period, crack growth occurs in response to the overall pressure increase in the hydrothermal system caused by the heat pulse. Once crack formation is complete, heat gradually changes the fluid in the crack from a wet misty gas to a dry gas during the second period. As heating of the hydrothermal system gradually subsides, the overall pressure in this system starts to decrease, causing the collapse of the crack during the third period.
Inference of reversible tree languages.
López, Damián; Sempere, José M; García, Pedro
2004-08-01
In this paper, we study the notion of k-reversibility and k-testability when regular tree languages are involved. We present an inference algorithm for learning a k-testable tree language that runs in polynomial time with respect to the size of the sample used. We also study the tree language classes in relation to other well known ones, and some properties of these languages are proven.
Fast, Flexible, Rational Inductive Inference
2013-08-23
learning phonetic categories – the sounds that make up speech – learning the words that those sounds appear in provides sufficiently strong constraints...first to be able to infer realistic phonetic categories directly from simulated speech data. Objective 2.2: Forming feature-based representations...lexicon in phonetic category acquisition. Psychological Review. Griffiths, T. L., Austerweil, J. L., & Berthiaume, V. G. (2012). Comparing the
Reputation-like inference in domestic dogs (Canis familiaris).
Kundey, Shannon M A; De los Reyes, Andres; Royer, Erica; Molina, Sabrina; Monnier, Brittany; German, Rebecca; Coshun, Ariel
2011-03-01
Humans frequently interact with strangers absent prior direct experience with their behavior. Some conjecture that this may have favored evolution of a cognitive system within the hominoid clade or perhaps the primate order to assign reputations based on third-party exchanges. However, non-primate species' acquisition of skills from experienced individuals, attention to communicative cues, and propensity to infer social rules suggests reputation inference may be more widespread. We utilized dogs' sensitivity to humans' social and communicative cues to explore whether dogs evidenced reputation-like inference for strangers through third-party interactions. Results indicated dogs spontaneously show reputation-like inference for strangers from indirect exchanges. Further manipulations revealed that dogs continued to evidence this ability despite reduction of specific components of the observed interactions, including reduction of visual social cues (i.e., face-to-face contact between the participants in the interaction) and the nature of the recipient (i.e., living, animate agent versus living, inanimate self-propelled agent). Dogs also continued to demonstrate reputation-like inference when local enhancement was controlled and in a begging paradigm. However, dogs did not evidence reputation-like inference when the observed interaction was inadvertent.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; De Lannoy, Gabrielle J. M.
2012-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters
An introduction to causal inference.
Pearl, Judea
2010-02-26
This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underlie all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: those about (1) the effects of potential interventions, (2) probabilities of counterfactuals, and (3) direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation.
An algebra-based method for inferring gene regulatory networks
2014-01-01
Background The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. Results This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also
Pillow, Bradford H
2002-01-01
Two experiments investigated kindergarten through fourth-grade children's and adults' (N = 128) ability to (1) evaluate the certainty of deductive inferences, inductive inferences, and guesses; and (2) explain the origins of inferential knowledge. When judging their own cognitive state, children in first grade and older rated deductive inferences as more certain than guesses; but when judging another person's knowledge, children did not distinguish valid inferences from invalid inferences and guesses until fourth grade. By third grade, children differentiated their own deductive inferences from inductive inferences and guesses, but only adults both differentiated deductive inferences from inductive inferences and differentiated inductive inferences from guesses. Children's recognition of their own inferences may contribute to the development of knowledge about cognitive processes, scientific reasoning, and a constructivist epistemology.
Automated adaptive inference of phenomenological dynamical models
NASA Astrophysics Data System (ADS)
Daniels, Bryan C.; Nemenman, Ilya
2015-08-01
Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.
Automated adaptive inference of phenomenological dynamical models
Daniels, Bryan C.; Nemenman, Ilya
2015-01-01
Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508
Inferring heuristic classification hierarchies from natural language input
NASA Technical Reports Server (NTRS)
Hull, Richard; Gomez, Fernando
1993-01-01
A methodology for inferring hierarchies representing heuristic knowledge about the check out, control, and monitoring sub-system (CCMS) of the space shuttle launch processing system from natural language input is explained. Our method identifies failures explicitly and implicitly described in natural language by domain experts and uses those descriptions to recommend classifications for inclusion in the experts' heuristic hierarchies.
NASA Astrophysics Data System (ADS)
Wade, A. J.; Skeffington, R. A.; Halliday, S. J.; Bowes, M. J.; Palmer-Felgate, E. J.; Loewenthal, M.; Jarvie, H. P.; Neal, C.; Reynolds, B.; Norris, D.; Gozzard, E.; Newman, J.; Greenway, G.; Bell, I.; Joly, E.; Haswell, S. J.
2012-04-01
Model-based assessments of the impacts of environmental change on European freshwater ecosystems are needed to aid informed resource management. This talk will focus on how such model-based assessments can be improved using the latest results from in-situ, continuous sub-daily water quality monitoring in upland and lowland UK river systems. Two catchments in the lowland Thames basin, the Enborne and The Cut, have been instrumented since November 2009 to examine the water quality dynamics using laboratory instruments (Hach-Lange; Micromac) installed in the field to produce hourly measurements of nutrient dynamics. Total Phosphorus and Total Reactive Phosphorus were measured in The Cut and nitrate was measured in the Enborne. These data were supplemented at both sites by nearby flow measurements and data collected using YSI multi-parameter sondes fitted with pH, dissolved oxygen, conductivity and water temperature probes. Experiences of installing and using these in-situ technologies will be described. The observed dynamics evident in these datasets will be compared to those identified at Plynlimon, Wales, which represent the hydrochemical functioning of an upland river-system. Both the lowland and upland data will be interpreted in terms of: the gain in information by sampling at sub-daily frequencies (and what is lost by sampling at lower frequencies); new information derived in terms of hydrochemical functioning; and the implications for progressing hydrochemical models. As part of the discussion, new opportunities from 'lab-on-a-chip' technologies will be described.
Inferring epigenetic dynamics from kin correlations
Hormoz, Sahand; Desprat, Nicolas; Shraiman, Boris I.
2015-01-01
Populations of isogenic embryonic stem cells or clonal bacteria often exhibit extensive phenotypic heterogeneity that arises from intrinsic stochastic dynamics of cells. The phenotypic state of a cell can be transmitted epigenetically in cell division, leading to correlations in the states of cells related by descent. The extent of these correlations is determined by the rates of transitions between the phenotypic states. Th